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How electricity flows? 



Electricity Basics 
 

Electricity starts with electrons. Every atom  
contains one or more electrons. Electrons have a  
negative charge. 

Simplest model 

of an atom 



Electrical Circuits 
Whether you are using a battery, a fuel cell or a  
solar cell to produce electricity, there are three  
things that are always the same: 

The source of electricity will  
have two terminals: a positive  
terminal and a negative terminal. 



Basic Electrical Circuits 
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How does electricity flow? 

What causes electrons to move from atom to atom? 
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Voltage Pushes the electrons 

How does electricity flow? 

What causes electrons to move from atom to atom? 
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What causes electrons to move from atom to atom? 
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The flow of the electrons is referred to as Current 

How does electricity flow? 

What causes electrons to move from atom to atom? 
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How does electricity flow? 

What causes electrons to move from atom to atom? 

The flow of the electrons is referred to as Current 

- - - 

Electron Flow is measured in Amps 



Basics Concept of Battery Discharging And Charging 

Positive post has a  

negative charge.  

(Excess electrons)  

They will be pushed  

from the positive 

Terminal. 

Negative post has a  

positive charge.  

(Excess protons)  

Therefore they will pull  

the electrons from the  

positive post. 

12.6 Volts 
Negative Charge Positive Charge 
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Loop (Mesh) Analysis 
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Loop Analysis 

• Nodal analysis was developed by applying  
KCL at each non-reference node. 

• Loop analysis is developed by applying KVL  
around loops in the circuit. 

• Loop (mesh) analysis results in a system of  
linear equations which must be solved for  
unknown currents. 
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Another Summing Circuit 

+ 

– 

Vout 

1k 

1k 

1k 

V1 V2 
+ 
– 

+ 
– 

• The output voltage V of this circuit is  
proportional to the sum of the two input  
voltages V1  and V2. 
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Steps of Mesh Analysis 

1. Identify mesh (loops). 

2. Assign a current to each mesh. 

3. Apply KVL around each loop to get an  
equation in terms of the loop currents. 

4. Solve the resulting system of linear 
equations. 
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Mesh 2 

1k 

1k 

1k 

1. Identifying the Meshes 

V1 V2 Mesh 1 
+ 
– 

+ 
– 
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Steps of Mesh Analysis 

1. Identify mesh (loops). 

2. Assign a current to each mesh. 

3. Apply KVL around each loop to get an 
equation in terms of the loop currents. 

4. Solve the resulting system of linear  
equations. 
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1k 

1k 

1k 

2. Assigning Mesh Currents 

V1 V2 I 1 I 2 

+ 
– 

+ 
– 
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Steps of Mesh Analysis 

1. Identify mesh (loops). 

2. Assign a current to each mesh. 

3. Apply KVL around each loop to get an  
equation in terms of the loop currents. 

4. Solve the resulting system of linear 
equations. 
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Voltages from Mesh Currents 

+ 

R 

– VR 

I1 

 

VR  = I1 R 

R 

+ – 
VR  

I2 

I1 

 
 

VR = (I1 – I2 ) 

R 
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3. KVL Around Mesh 1 

–V1  + I1  1k + (I1  – I2) 1k = 0 

I1  1k + (I1  – I2) 1k = V1 

1k 1k 

 
 

1k 

V1 V2 I 1 I 2 

+ 
– 

+ 
– 
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3. KVL Around Mesh 2 

(I2 – I1) 1k + I2 1k + V2 = 0  

(I2  – I1) 1k + I2  1k = –V2 

1k 1k 

 
 

1k 

V1 V2 I 1 I 2 

+ 
– 

+ 
– 
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Steps of Mesh Analysis 

1. Identify mesh (loops). 

2. Assign a current to each mesh. 

3. Apply KVL around each loop to get an  
equation in terms of the loop currents. 

4. Solve the resulting system of linear 
equations. 
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Matrix Notation 

• The two equations can be combined into a  
single matrix/vector equation. 

 
 

     
 1k 

1k 1k  1k 

 V2  

 V1 

1k  1kI 2  

 I1  
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 
 

    
 

 
(R2  R3 ) (R3 ) 

(R3 ) 

I2   E2  

 E1  I1 (R1  R2 ) 

 
 

 
 

 
 

 

1 

(R2  R3 ) (R3 ) 

(R3 ) (R1  R2 ) 

 E2 (R2  R3 ) 

 E1 (R3 ) 

I  

Cramer’s Rule 
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 
 

 
 

 
 

 
 

2 

(R2  R3 ) (R3 ) 

(R3 ) (R1  R2 ) 

 E2  (R3 ) 

(R1   R2 ) E1 

I  
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4. Solving the Equations 

V1 = 7V and V2 = 4V Let: 

Results: 

I1  = 3.33 mA 

I2  = –0.33 mA 

Finally 

Vout  = (I1  – I2) 1k = 3.66V 
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Another Example 

1k 

2k 

12V 4mA 

2mA 

2k 

I0 

+ 
– 
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Mesh 2 

Mesh 3 

Mesh 1 

1. Identify Meshes 

1k 

2k 

2k 

12V 4mA 

2mA 

I0 

+ 
– 



80 

2. Assign Mesh Currents 

I1 I2 

I3 

1k 

2k 

2k 

12V 4mA 

2mA 

I0 

+ 
– 
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Current Sources 

• The current sources in this circuit will have  
whatever voltage is necessary to make the  
current correct. 

• We can’t use KVL around any mesh because  
we don’t know the voltage for the current  
sources. 

• What to do? 



82 

Current Sources 

• The 4mA current source sets I2: 

I2  = –4 mA 

• The 2mA current source sets a constraint on 

I1 and I3: 

I1  – I3  = 2 mA 

• We have two equations and three unknowns. 
Where is the third equation? 
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1k 

2k 

2k 

12V 4mA 

2mA 

I0 

I1 I2 

I3 

The  
Supermesh  
surrounds this  
source! 

The  
Supermesh  

does not  
include this 

source! 

+ 
– 

Supermesh 
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3. KVL Around the Supermesh 

-12V + I3  2k + (I3  - I2)1k + (I1  - I2)2k = 

0 

 
I3  2k + (I3  - I2)1k + (I1  - I2)2k = 12V 
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Matrix Notation 

• The three equations can be combined into a  
single matrix/vector equation. 

 
 

  

 
 

 4mA 

2k 

0 

1 2  

1 0 

0  1  
 1k  2k 2k  1kI3   12V 

I    2mA  
 I1  
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Advantages of Nodal Analysis 

• Solves directly for node voltages. 

• Current sources are easy. 

• Voltage sources are either very easy or  
somewhat difficult. 

• Works best for circuits with few nodes. 

• Works for any circuit. 
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Advantages of Loop Analysis 

• Solves directly for some currents. 

• Voltage sources are easy. 

• Current sources are either very easy or  
somewhat difficult. 

• Works best for circuits with few loops. 
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Disadvantages of Loop Analysis 

• Some currents must be computed from loop  
currents. 

• Does not work with non-planar circuits. 

• Choosing the supermesh may be difficult. 

 
• FYI: Spice uses a nodal analysis approach 
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Magnetically Coupled Networks 

• A new four-terminal element, the transformer, is  
introduced in this chapter 

• A transformer is composed of two closely spaced  
inductors, that is, two or more magnetically  
coupled coils 

– primary side is connected to the source 

– secondary side is connected to the load 
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Dot Convention 

• dot convention: dots are placed beside each  
coil (inductor) so that if the currents are  
entering (or leaving) both dotted terminals,  
then the fluxes add 

• right hand rule says that curling the fingers  
(of the right hand) around the coil in the  
direction of the current gives the direction of  
the magnetic flux based on the direction of  
the thumb 

• We need dots on the schematic to know how  
the coils are physicaLelcltyure o11 riented wrt one 
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Mutually Coupled Coils 
The following equations define the coupling  
between the two inductors assuming that each  
respective current enters the dot side which is 

where L1 and L2  are the self-inductances of the  
coils (inductors), and M is the mutual  
inductance between thLeecturet1w1  o coils 

dt dt 

dt 

also the positive voltagdei side d i 

dt  

d i2 

2 2 

1 1 

v (t)  M 
d i1   L 

  1   M  2  v (t)  L 
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Mutually Coupled Coils 

dt dt 

Lecture 11 

dt dt  

d i2 

2 2 

1 1 

v (t)  M 
d i1  L 


M 

d i2 
v (t)  L 

d i1 

+ 

v1(t) 

– 

L1 

i1(t) i2(t) 

+ 

L2 v2(t) 

– 

M 
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Class Example 

• Extension Exercise E11.1 
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Mutually Coupled Coils (AC) 

• The frequency domain model of the coupled  
circuit is essentially identical to that of the  
time domain 

V1  j L1 I1  j M I2 

V2  j M I1  j L2 I2 
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Class Examples 

• Extension Exercise E11.2 

• Extension Exercise E11.3 
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Source Input Impedance 

The source sees an input impedance, Zi, that is  

the sum of the primary impedance, and a  

reflected impedance, ZR, due to the secondary 

 L  P R P 

S 

I P 

V (load) side 
Z i   Z  Z  Z  f Z 

L1 L2 ZL 
+ 
– 

VS 

M 
 

Z 
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Class Example 

• Extension Exercise E11.4 
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Energy Analysis 

• An energy analysis of the mutually coupled  
inductors provides an expression for the  
instantaneous stored energy 

• The sign is positive (+) if currents are both  
entering (or leaving) the dots; sign is  
negative (-) if currents are otherwise 

2 2 1 2 
1 

2 

2 2 

1 1 
1 

2 
(t) L i  (t)  L i (t)  M i (t) i w(t)  
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Quantifying the Coupling 

• The mutual inductance, M, is in the range 

• The coefficient of coupling (k) between two  
inductors is defined as 

– for k > 0.5, inductors are said to be tightly coupled 

– for k  0.5, coils are considered to be loosely 

coupled 

L1 L2 0  M  

  1 
 

L1 L2  

M  
0  k  

 
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Class Example 

• Extension Exercise E11.5 



Electromagnetic Induction 

Chapter 31 

 
Faraday’s Law  

Induced currents  

Lenz’s Law  

Induced EMF  

Magnetic Flux 

Induced Electric fields 



Electromagnetic Induction 

 
A changing magnetic field (intensity,  

movement) 
will induce an electromotive force (emf) 

In a closed electric circuit,  
a changing magnetic field 

will produce an electric current 



Electromagnetic Induction  
Faraday’s Law 

The induced emf in a circuit is proportional to the rate of change  
of magnetic flux, through any surface bounded by that circuit. 

E = - dB / dt 



Faraday’s Experiments 

• Michael Faraday discovered induction in 1831. 

• Moving the magnet induces a current I. 

• Reversing the direction reverses the current. 

• Moving the loop induces a current. 

• The induced current is set up by an induced 
EMF. 

N S 

I 
v 



Faraday’s Experiments 

• Changing the current in the right-hand coil  
induces 

a current in the left-hand coil. 

• The induced current does not depend on the  
size of 

the current in the right-hand coil. 

• The induced current depends on dI/dt. 

I 

dI/dt 

S 

EMF 

(right) (left) 



• In the easiest case, with a constant magnetic field B,  
and a flat surface of area A, the magnetic flux is 

B = B . A 

• Units : 1 tesla x m2 = 1 weber 

Magnetic Flux 

A 
 

 
B 



Magnetic Flux 

• Break the surface into bits dA. The flux through one bit 
is 

• Add the bits: 

B 

N S 

dA  
 

B 

• When B is not constant, or the surface is not flat, one 
must 

do an integral. 

. 

B 
dB =B . dBA=dBAdA cosBcosdA   



Faraday’s Law 

• Moving the magnet changes the flux B (1). 

• Changing the current changes the flux B (2). 

• Faraday: changing the flux induces an emf. 

i 

di/dt 

S 

EMF 
N S 

i 
v 

E = - dB /dt 

The emf induced  
around a loop 

equals the rate of change 
of the flux through that loop 

Faraday’s law 

1) 2) 



Lenz’s Law 

• Faraday’s law gives the direction of the induced emf and  
therefore the direction of any induced current. 

 

• Lenz’s law is a simple way to get the directions straight, with 
less effort. 

 

• Lenz’s Law: 

The induced emf is directed so that any induced current 
flow 

will oppose the change in magnetic flux (which causes the  

induced emf). 

• This is easier to use than to say ... 

Decreasing magnetic flux  emf creates additional magnetic 

field 



Lenz’s Law 

If we move the magnet towards the  
loop 

the flux of B will increase. 

Lenz’s Law  the current induced in 

the 

loop will generate a field B opposed 

N S 

I 
v 

B 

B 



Example of Faraday’s Law 

Consider a coil of radius 5 cm with N = 250 turns.  
A magnetic field B, passing through it, 
changes at the rate of dB/dt = 0.6 T/s. 

The total resistance of the coil is 8 . 

What is the induced current ? 

B = 0.6 t [T] (t = time in seconds) 

B 
Use Lenz’s law to determine the 
direction of the induced current. 

 

Apply Faraday’s law to find the  
emf and then the current. 



Example of Faraday’s Law 

B 

Hence the induced current must be 

clockwise when looked at from 

above. 

Lenz’s law: dB/dt > 0 

The change in B is increasing  
the 
upward flux through the coil. 

So the induced current will have  
a magnetic field whose flux  

(and therefore field) is down. 

Induced B 

I 

Use Faraday’s law to get the magnitude of the induced emf and current. 



B  

Induced B 

I 

The induced EMF is E = - dB /dt 

In terms of B: B = N(BA) = NB (r2) 

Therefore E = - N (r2) dB /dt 

E = - (250) ( 0.0052)(0.6T/s) = -1.18 V 

= E / R = (-1.18V) / (8 ) = - 0.147 

(1V=1Tm2 /s) 

Current I  

A 

B  =  B . dA 

E = - dB /dt 



I 

w 

l 

a 
Magnetic Flux in a Nonuniform Field 

A long, straight wire carries a current I. A rectangular  
loop (w by l) lies at a distance a, as shown in the figure.  
What is the magnetic flux through the loop?. 

I 

w 

l 

a 



I 

w 

l 

a Induced emf Due to Changing Curren 
A long, straight wire carries a current I = I0 + i t.  
A rectangular loop (w by l) lies at a distance a,  
as shown in the figure. 
What is the induced emf in the loop?. 
What is the direction of the induced current and field? 



x x Bx 

 

x x x 

Up until now we have considered fixed loops.  

The flux through them changed because the  

magnetic field changed with time. 

 
Now try moving the loop in a uniform and  
constant magnetic field. This changes the flux,  
too. 

x x x x x 

Motional EMF 

B points  
into  
screen 

x  x 

 
x x  x 

R D 

v 



x x x x  x 

x x 

x 

x Bx 

 

x x x 

R D 

v 

= BDx The flux is B = B A  

This changes in time: 

x 

x x 

. 

Motional EMF - Use Faraday’s Law 

. . 



= BDx The flux is B = B A  

This changes in time: 

dB / dt = d(BDx)/dt = BDdx/dt = -BDv 

Hence by Faraday’s law there is an induced emf 
and current. What is the direction of the current? 

x x x x  x 

x x 

x 

x Bx 

 

x x x 

R D 

v 

x 

x x 

. 

Motional EMF - Use Faraday’s Law 

. . 



x x x x  x 

x x 

x 

x Bx 

 

x x x 

R D 

v 

= BDx The flux is B = B A  

This changes in time: 

dB / dt = d(BDx)/dt = BDdx/dt = -BDv 

Hence by Faraday’s law there is an induced emf  

and current. What is the direction of the current?  

Lenz’s law: there is less inward flux through the 

loop. Hence the induced current gives inward flux. 

 So the induced current is clockwise. 

x 

x x 

. 

Motional EMF - Use Faraday’s Law 

. . 



x x x x x 

x x Bx x 

x x x x 

x 

x x 

R D 

v 

Now Faraday’s Law dB/dt = - E 

gives the EMF  E = BDv 

In a circuit with a resistor, this gives 

E = BDv = IR  I = BDv/R 

Thus moving a circuit in a magnetic field 
produces an emf exactly like a battery. 

This is the principle of an electric generator. 

. 

Motional EMF  
Faraday’s Law 



Rotating Loop - The Electricity 
  Generator  
Consider a loop of area A in a region of space in  

which there is a uniform magnetic field B. 

Rotate the loop with an angular frequency  . 

A 

B 

 

The flux changes because  
angle  changes with time:  = 
t. 

Hence: 

dB/dt = d( B . A)/dt 

= d(BAcos )/dt 

= B A d(cos(t))/dt 

= - BA sin( t) 



•Then by Faraday’s Law this motion causes an  

emf 

E = - dB /dt = BA sin( t) 

• This is an AC (alternating current) 

B 

A  

dB/dt = - BA sin( t) 

Rotating Loop - The Electricity Genera 



A New Source of EMF 

• If we have a conducting loop in a magnetic field,  
we can create an EMF (like a battery) by  
changing the value of B . A. 

• This can be done by changing the area, by  
changing the magnetic field, or the angle  
between them. 

• We can use this source of EMF in electrical  
circuits in the same way we used batteries. 

• Remember we have to do work to move the loop  
or to change B, to generate the EMF (Nothing is  
for free!). 



Example: a 120 turn coil (r= 1.8 cm, R = 5.3 ) is placed 

outside a solenoid (r=1.6cm, n=220/cm, i=1.5A). The current in  
the solenoid is reduced to 0 in 0.16s. What current 
appears in the coil ? 

Current induced in coil: 

ic  
EMF  ( N ) 

R R dt 

dB 

B  B  A  0nis As 
Only field in coil is inside solenoid 



Example: a 120 turn coil (r= 1.8 cm, R = 5.3 ) is placed 

outside a solenoid (r=1.6cm, n=220/cm, i=1.5A). The current in  
the solenoid is reduced to 0 in 0.16s. What current 
appears in the coil ? 

Current induced in coil: 

ic  EMF  ( N ) 
dB  

R R dt 

B  B  A  0nis As 
Only field in coil is inside solenoid 

ic  
 R  dt 

 N  d ( 0nis As  )  N   
 R  

 0nAs 

dis 

dt 

 
 N  i0 

 R   0nA 
t 

 4.72 mA 



Consider a stationary 
conductor 
in a time-varying magnetic  
field. 

Induced Electric Fields 

x B 

So the electrons must feel a force F. 
A current starts to flow. 
It is not F = qvxB, because the wire is stationary. 

Instead: we know that  = - dB/dt 

This is equivalent to an induced electric field E, such 
that: 

F = qE 

 a time-varying magnetic field B causes an  
electric field E to appear in the conductor! 

o 

and  =  E.dl 



Induced Electric Fields 

x B and 

E = o                 E . 
dl 
E = - dB/dt 

Then: o E . dl = - dB/dt Faraday’s Law 

The induced electric field E is NOT a conservative field 
 

We can NOT write E = - dV/dl or E = -V 
 

The electrostatic field Ee is conservative  Ee.dl = 0 

o 



Electrostatic Field Induced Electric Field 

F = q E 

 
 E . dl = - 

dB/dt 

 E.dl  0 

 
Nonconservative 

F = q Ee 

 
Vab = -  Ee.dl 

 Ee.dl = 0 and Ee = V  

Conservativ 

e 
Work or energy difference 
does NOT depend on path 

Caused by stationary  
charges or emf sources 

Work or energy difference 
DOES depend on path 

Caused by changing  
magnetic fields 



Induced Electric Fields 

x B 
o E . dl = - dB/dt 

Faraday’s Law 

Now suppose there is no conductor: 
Is there still an electric field? 

YES!, the field does not depend 
on the presence of the conductor. 

For a magnetic field with axial or cylindrical  
symmetry, the field lines of E are circles. 

B 

E 



Self-Inductance 

• When the switch is  
closed, the current  
does not  
immediately reach  
its maximum value 

• Faraday’s law can be  
used to describe the  
effect 



Self-induced emf 

• A current in the coil produces a magnetic field 
directed toward the left (a) 

• If the current increases, the increasing flux creates 
an induced emf of the polarity shown (b) 

• The polarity of the induced emf reverses if the  
current decreases (c) 



Self Inductance 

o 
dt dt dt I dt 

  N 
dB  N 

donIA 
 N nA 

dI 
  

NBA dI 

B  onI 

dI 
 L 

dI 

I dt dt 
   

NB 

I 
L  

NB Define: Self Inductance 



Inductance of a Solenoid 

• The magnetic flux through each turn is 

• Therefore, the inductance is 

• This shows that L depends on the 
geometry of the object 

  
B  o    BA  

 μ 
N 

I 
 A 

2 

I 
o L  

NB μ N A 
 



Inductance Units 

I 
L  

NB 

dt 
  L 

dI 

V 
L       s  Henry  H   A / s  



3. A 2.00-H inductor carries a steady current of 0.500 A. When the  
switch in the circuit is opened, the current is effectively zero after 10.0 ms.  
What is the average induced emf in the inductor during this time? 

5. A 10.0-mH inductor carries a current I = Imax sin ωt, with Imax = 
5.00 A and ω/2π = 60.0 Hz. What is the back emf as a function of time? 

7. An inductor in the form of a solenoid contains 420 turns, is 16.0 cm  
in length, and has a cross-sectional area of 3.00 cm2. What uniform rate of  

decrease of current through the inductor induces an emf of 175 μV? 



LR Circuits 

Charging 

Kirchhoff Loop Equation: 

o 
dt 

V  RI  L 
dI 

 0 

Solution: 

R 
I  

Vo  1 et/   

R 
  

L 



LR Circuits 

Discharging 

dt 

Kirchhoff Loop Equation: 
 
 

RI  L 
dI 

 0 

Solution: 

R 

 t /   

I  Ioe 

 
  

L 



Active Figure 32.3 

(SLIDESHOW MODE ONLY) 



14. Calculate the resistance in an RL circuit in which L = 2.50 H and 
the current increases to 90.0% of its final value in 3.00 s. 

20. A 12.0-V battery is connected in series with a resistor and an  

inductor. The circuit has a time constant of 500 μs, and the maximum  
current is 200 mA. What is the value of the inductance? 

24. A series RL circuit with L = 3.00 H and a series RC circuit with C 
= 3.00 μF have equal time constants. If the two circuits contain the same  

resistance R, (a) what is the value of R and (b) what is the time  
constant? 



Energy in a coil 

P  VI  
 

L 
dI  

I  
dt  

  

U  
1 

LI2 

2 
PE in an Inductor 

PE in an Capacitor U  
1 

CV2 

2 



Energy Density in a coil 

PE in an Inductor 

I 
L  

NB 

U  
1 

LI2 

2 

 
NBA 

 
No NI / A  

I I 

  
2 

o 1   B   N  N A   
U      

  1  
B2 A  

2o 2   o N  

I   
B  

o N 

1 
B2 

u  
2o 

o 
2 

u  
1 

 E2 



31. An air-core solenoid with 68 turns is 8.00 cm long and has a  
diameter of 1.20 cm. How much energy is stored in its magnetic field when it  
carries a current of 0.770 A? 

33. On a clear day at a certain location, a 100-V/m vertical electric field  
exists near the Earth’s surface. At the same place, the Earth’s magnetic field  
has a magnitude of 0.500 × 10–4 T. Compute the energy densities of the two  
fields. 

36. A 10.0-V battery, a 5.00-Ω resistor, and a 10.0-H inductor are  
connected in series. After the current in the circuit has reached its maximum  
value, calculate (a) the power being supplied by the battery, (b) the power  
being delivered to the resistor, (c) the power being delivered to the inductor,  
and (d) the energy stored in the magnetic field of the inductor. 



Example 32-5: The Coaxial Cable 

• Calculate L for the cable 

• The total flux is 

• Therefore, L is 

• The total energy is 

B 
a 

b  μo I 

2πr 2π 
ln b  

  B dA  dr  
μo  I 

 a  
  

  

I 2π 
ln b  

L  
B  

μo 

 a  
  

2 

2 

I 

4π 
ln b  

U  
1 

L I 2  
μo 

 a  
  



Mutual Inductance 

N212  I1 

 
N212  M12I1 

12  1 

2 2 2 12 

M I 
d 

N2 dI1 

dt dt dt 

  
 

d12 

 
 

  N  N   M 1 21 

dI2 

dt 
  M 



Mutual Inductance example 

1 0 1 

N1 I B   

12 
  B A   

N1  I A 
1 0 1 

1 

2 2 2 0 

N 
I A 

N N dI   1 2 A   21 

dt dt 

 
d


  0 1  d 

  N  N 
       

dt 

M12 

N1N2 

 0 A  M 



LC Circuits 

Q 
 L 

dI 
 0  

C dt 

d2Q Q 

dt2 LC 
  0 

Kirchhoff Loop Equation: Solution: 

  max 
Q  Q cos t   

1 
   

  I t  0  0 

LC 

Q(t  0)  Qmax 



Energy in an LC circuit 

  
2 

2 
2 

max 
E 

Q 
U cos 

2 C 2C 
 

1 Q 
 t   

Q  Qmax cost 1 

LC 
   

    
2 2 

2 2 max 

2 

max 
B 

Q 

2 2C 

L Q U  
1 

LI2  
2 

sin t  sin t 

max 
dt 

I   
dQ 

 Q sin t 

    2 2 
2 

max 

2 

max 

2 

max 
E B 

Q Q Q 

2C 2C 2C 
U  U  cos t  sin t  



Active Figure 32.17 

(SLIDESHOW MODE ONLY) 



LRC Circuits 

Kirchhoff Loop Equation: 
 

 Q 
 RI  L 

dI 
 0  

C dt 

Solution: 

d2Q 
L 

dt2 

dQ Q 

dt C 
 R   0 

  max d 

t Q  Q e cos  t   

d 

1 R 2 

LC 4L2 
   

R 

2L 
  



Damped RLC Circuit 

• The maximum value  

of Q decreases after  
each oscillation 

– R < RC 

• This is analogous to  
the amplitude of a  
damped spring-mass  
system 



Active Figure 32.21 

(SLIDESHOW MODE ONLY) 



LRC Circuits 

• Underdamped 

• Critically Damped 

• Overdamped 

R 
t  

2L Q  Qoe cos' t   

1 R 2 

LC 4L2 
'   

1 R 2 

 
LC 4L2 

2 1 
 

R 

LC 4L2 

1 R 2 

LC 4L2 
 

C 

4L 
 R 2 

C 

4L 
 R 2 

4L 

C 
 R 2 





41. An emf of 96.0 mV is induced in the windings of a coil when the  
current in a nearby coil is increasing at the rate of 1.20 A/s. What is the  
mutual inductance of the two coils? 

49. A fixed inductance L = 1.05 μH is used in series with a variable  
capacitor in the tuning section of a radiotelephone on a ship. What capacitance  

tunes the circuit to the signal from a transmitter broadcasting at 6.30 MHz? 

55. Consider an LC circuit in which L = 500 mH and C = 0.100 μF. (a)  

What is the resonance frequency ω0? (b) If a resistance of 1.00 kΩ is  
introduced into this circuit, what is the frequency of the (damped)  

oscillations? (c) What is the percent difference between the two frequencies? 



LC Demo 

R = 10 W 
C = 2.5 mF  

L = 850 mH 

1. Calculate period 

2. What if we change  
C = 10 mF 

3. Underdamped? 
4. How can we change  

damping? 



Kit Building Class Lesson 4 Page 156 

R and X in Series Inductors and capacitors resist the flow of AC. This property is called 
reactance. Resistance also impedes the flow of AC. The combination of  

reactance and resistance in a circuit is called impedance. 

Reactance and resistance which are in series cannot simply be added  
because they differ in the phase relationship between current and  
voltage. With reactance, current and voltage are out of phase (“ELI the  
ICE man”) while with resistance they are in phase. A method called 

phase relationship. 

The impedance of the reactance and resistance in series is found by  
completing the triangle whose legs are R and X: 

X L 

XC 

R 

Z 

 

Z  R2  X 2 

R 
  arctan 

X 
voltage leads the current is given by: 

This 
arrow is 

triangulation is used to combine the two and to determine the resultinginductive 

reactance 

This  
arrow is 

capacitive 
The phase angle between current and voltage (the angle by which thereactance 

inductive reactance  
is positive; capacitive  
reactance is negative 

Make sure that X is given the correct sign (positive or negative) when finding the phase angle. 



Kit Building Class Lesson 4 

R and X in Parallel 
For a parallel combination of resistance and reactance, we use a different formula for  
finding the resulting impedance: 

RX 

R2  X 2 
Z  

In this case, the phase angle by which voltage leads current is given by 
 

  arctan 
R 

X 
If the reactance is capacitive, the phase angle is negative. If the reactance is inductive, the  
phase angle is positive. 

Ohm’s Law for Impedance 

E  IZ I  
E 

Z  
E  

Z  I 
 

Page 157 



AC Circuits 

 

 

 

 

i
m 

R 

i
m

L 

i
m 

C 


m 

 

N
1 

(primary) 

N
2 

(secondary) 

iron 

V2 
 V1 



Lecture Outline 

• Driven Series LCR Circuit: 
• General solution 
• Resonance condition 

• Resonant frequency 

• “Sharpness of resonance” = Q 

• Power considerations 

• Power factor depends on impedance 

• Transformers 

• Voltage changes 

• Faraday’s Law in action gives induced primary 
current. 

• Power considerations 
Text Reference: Chapter 33.4-6 



Phasors 

• A phasor is a vector whose magnitude is the maximum value of a quantity (eg V or 
I) and which rotates counterclockwise in a 2-d plane with angular velocity . Recall 
uniform circular motion: 

The projections of r (on the  

vertical y axis) execute  

sinusoidal oscillation. 

 

 

 
 

L  
i L      m  cost  

iC   C m  cost 

R 

 
iR    m sint 

x  r cost 

y  r sint 

VR   RiR  m sint 

C 
C m V  

Q 
  sin t 

• R: V in phase with i 

• C: V lags i by 90 

dt 
L m V  L 

diL   sin t • L: V leads i by 90 

 

x 

y y 



Phasors for L,C,R 

i  
V 

R 

t 

i 

  t  

 V 
L 

i 

t 

 

V 
C 

Suppose: 

 

VR  Rim sint 

C m V    
1 

C 
i cost 

VL   Lim cost  

t 

i 
V 

R 

0 

V 
C 

0 

i 

0 

i 

V 
L 



Series LCR 
AC Circuit 

the loop • Back to the original problem:  
equation gives: 

• Here all unknowns, (im,) , must be found from the loop eqn; the initial conditions 

have been taken care of by taking the emf to be:   m sint. 

• To solve this problem graphically, first write down expressions for  
the voltages across R,C, and L and then plot the appropriate phasor  
diagram. 

L C 

 

 

R 

C dt 
m 

2 

dt2 
L 

d Q 
 

Q 
 R 

dQ 
  sint 

• Assume a solution of the form: i  im sin(t  ) 



Phasors: LCR 

• From these equations, we can draw the phasor  
diagram to the right. 

 

 

 

 

i
m 

R 

i
m

L 

i
m 

C 

 
m 

L C 

 

 

 

R 

• Given: 

• Assume: 

  m sint 

 

l This picture corresponds to a snapshot at t=0. The 
projections of these phasors along the vertical axis  
are the actual values of the voltages at the given  
time. 



Phasors: LCR 

• The phasor diagram has been relabeled in terms of the reactances 
defined from: 

 

 

 

 

i
m 

R 


m 

imXC 

i X 
m L 

L C 

 

 

R 

XC  
1 

C 
XL  L 

The unknowns (im,) can now be solved for graphically  
since the vector sum of the voltages 

VL  + VC + VR  must sum to the driving emf . 



Lecture 20, ACT 3 
• A driven RLC circuit is connected as shown. 

– For what frequencies  of the  

voltage source is the current  
through the resistor largest? 

(a)  small (b)  large (c)   
1 

LC 

L 

C 
 

 R 

 



Conceptual Question 
• A driven RLC circuit is connected as shown. 

– For what frequencies  of the  

voltage source is the current 

through the resistor largest? 
(a)  small 

L 

C 
 

 R 

(b)  large (c)   
1 

LC 

 

•This is NOT a series RLC circuit. We cannot blindly apply our techniques for solving  
the circuit. We must think a little bit. 
•However, we can use the frequency dependence of the impedances (reactances) to  
answer this question. 
• The reactance of an inductor = XL = L. 
• The reactance of a capacitor = XC  = 1/(C). 
• Therefore, 

• in the low frequency limit, XL   0 and XC    . 

•Therefore, as   0, the current will flow mostly through the inductor;  
the current through the capacitor approaches 0. 

• in the high frequency limit, XL    and XC   0 . 

•Therefore, as   , the current will flow mostly through the capacitor,  
approaching a maximum imax  = /R. 



  
m 

i
m 

R 

 

im(XL-XC) 

 

 
 

 

i
m 

R 


m 

imXC 

Phasors:LCR 
imXL 

C X  
1 

C 
XL  L 

Z  R2  XL  XC 
2 

R 
tan  

XL  XC 

   
m m L C  
2 2 2 2 

 i R  X  X 

Z 
im 

  m    m   

R2  XL  XC 
2 



Phasors:Tips 

•This phasor diagram was drawn as a snapshot  
of time t=0 with the voltages being given as the  
projections along the y-axis. 

 
 

 

i
m 

R 


m 

imXC 

imXL 

y 

x 

 
imR 

imXL 

imXC 

“Full Phasor Diagram” 

m 

From this diagram, we can also create a triangle 
which allows us to calculate the impedance Z: 

XL  XC 
 

Z 

R 

“ Impedance Triangle” 

•Sometimes, in working problems, it is easier to  
draw the diagram at a time when the current is  
along the x-axis (when i=0). 



Phasors:LCR 
We have found the general solution for the driven LCR circuit: 

XL  L 

C X  
1 

C 

Z  R2  XL  XC 
2 

R 

XL 

XC 

 

 

R 
tan  

XL  XC 

i 
Z 

m  
m 

  
  imZ 

the loop 
eqn 

XL - XC 

i  im sin(t  ) 

 
imR 

imXL 

imXC 

m 
 



Lagging & Leading 
The phase  between the current and the driving emf depends on the relative  
magnitudes of the inductive and capacitive reactances. 

 

R 

XL 

XC 

 

R 
tan  

XL  XC i 
Z 

m  
m 

XL  L 

XC  
1 

C 

 
R 

XL 

X C 

 

XL > XC XL < XC XL = XC 

 > 0  < 0  = 0 
current current current 
LAGS LEADS IN PHASE 
applied voltage applied voltage applied voltage 

X L 

XC 

 

R 



Conceptual Question 
• The series LCR circuit shown is driven by a 

generator with voltage  =  msint. The time  
dependence of the current i which flows in the  
circuit is shown in the plot. 

– How should  be changed to 
bring the current and driving  
voltage into phase? 

(a) increase  (b) decrease  (c) impossible 

• Which of the following phasors represents the current i at t=0? 1B 

1A 

(a) (b) (c) i i 

i 



Lecture 21, ACT 1 
• The series LCR circuit shown is driven by a 

generator with voltage  =  msint. The time  
dependence of the current i which flows in the  
circuit is shown in the plot. 

– How should  be changed to  

bring the current and driving  
voltage into phase? 

1A 

L C 

 

 

R io 

i m 

-im 

0 

i 0 

t 

(a) increase  (b) decrease  (c) impossible 

• From the plot, it is clear that the current is LEADING the applied voltage. 

 

i 

 

XC 

XL 

Therefore, the phasor  
diagram must look like  
this: 

Therefore, XC  XL 

•To bring the current into phase with the  
applied voltage, we need to increase XL  

and decrease XC. 
• Increasing  will do both!! 



Lecture 21, ACT 1 
• The series LCR circuit shown is driven by a 

generator with voltage  =  msint. The time  
dependence of the current i which flows in the  
circuit is shown in the plot. 

– How should  be changed to  

bring the current and driving  
voltage into phase? 

(a) increase  (b) decrease  (c) impossible 

• Which of the following phasors represents the current i at t=0? 

(a) 

1A 

1B 

L C 

 

 

R io 

i m 

-im 

0 

i 0 

t 

i i 

i 

•The projection of i  
along the vertical  
axis is negative here. 
• no way jose 

(b) (c) 
       

•The sign of i is  
correct at t=0. 
•However, it soon  
will become 
negative! 
• nope 

 

•This one looks just  
right!! 
•  = -30  



Resonance 
• For fixed R,C,L the current im  will be a maximum at the resonant frequency 0 

which makes the impedance Z purely resistive. 

the frequency at which this condition is obtained is given from: 

• Note that this resonant frequency is identical to the natural  
frequency of the LC circuit by itself! 

• At this frequency, the current and the driving voltage are in 
phase! 

ie: 
Z 

im    m   m    

R2  XL  XC 
2 

reaches a maximum when: XL  XC 

o 
oC 

 L 
  1  

  o 
LC 


  1  

R 
tan  

XL  XC  0 



Resonance 
The current in an LCR circuit depends on the values of the elements and  
on the driving frequency through the relation 

Z 
im    m   m    

R2  XL  XC 
2 

i 
R R 

m 
 

m  1 

1 tan2  
 

m cos 

im 

0
0  o 

 

m 

R0  
R=Ro 

 
R=2Ro 

Suppose you plot the current versus , the  
source voltage frequency, you would get: 



Power in LCR Circuit 
• The power supplied by the emf in a series LCR circuit depends on the frequency . 

It will turn out that the maximum power is supplied at the resonant frequency 0. 

• To evaluate the average on the right, we first expand the sin(t-)  
term. 

• The instantaneous power (for some frequency, ) delivered at time t 
is given by: 

Remember what  
this stands for 

 

 

• The most useful quantity to consider here is not the instantaneous  
power but rather the average power delivered in a cycle. 



Power in LCR Circuit 

• Expanding, 

• Taking the averages, 

• Generally: 

sintcost 

t  

0 

+1 

-1 
0 

sin2t 

t  

0 

+1 

-1 
0 

• Putting it all back together again, 

(Product of even and odd function = 0) 

0 1/2 



Power in LCR Circuit 

• This result is often rewritten in terms of rms values: 

 rms  
1 m 
2 

irms  
1 im 
2 

P(t)    rmsirms cos 

l Power delivered depends on the phase,  the “power factor” 

 
l phase depends on the values of L, C, R, and  

l therefore... 



Power in RLC 
P(t)    rmsirms cos 

 
• Power, as well as current, peaks at  =  0. The sharpness of the resonance depends  

on the values of the components. 

• Recall: 

• Therefore, 

We can write this in the following manner (you can do the algebra): 

…introducing the curious factors Q and x... 

o 

x  
 

R 
Q  

Lo 



The Q factor 
A parameter “Q” is often defined to describe the sharpness of resonance peaks  
in both mechanical and electrical oscillating systems. “Q” is defined as 

where Umax is max energy stored in the system and U is the energy dissipated  
in one cycle 

period 
For RLC circuit, Umax  is (e.g.) 

 
And losses only in R, namely 

This gives 

And for completeness, note 



Power in RLC 

<P> 

0 
0 

o 

 

2
rms 

R0 

R=Ro 

R=2Ro 

Q=3 

FWHM 

For Q > few, 
fw hm  

 
res Q   



Conceptual Question 2 
• Consider the two circuits shown where CII  = 2 CI. 

– What is the relation  
between the quality factors,  
QI and QII  , of the two 

(ac)irQcui<ts?Q (b) Q = Q II I II  I II (c) Q > Q I 

•What is the relation between PI and PII , the power delivered by the  
generator to the circuit when each circuit is operated at its resonant  
frequency? 

(a) PII < PI (b) PII = PI (c) PII  > PI 

2B 

2A 

L 

 

 

R 

CI L 

 

 

R 

CII 



Lecture 21, ACT 2 
• Consider the two circuits shown where CII  = 2 CI. 

– What is the relation  
between the quality factors,  
QI and QII  , of the two 

(ac)irQcui<ts?Q (b) Q = Q II I II  I II (c) Q > Q I 

2A 

L 

 

 

R 

CI L 

 

 

R 

CII 

• We know the definition of Q: 
R 

Q  
0L 

• At first glance, it looks like Q is independent of C. 
• At second glance, we see this cannot be true, since the resonant frequency o 

depends on C! 

1 
0  

LC 
Doubling C decreases o  by sqrt(2)! 

 Doubling C decreases Q by sqrt(2)! 

Doubling C increases the width of the resonance! 



Lecture 21, ACT 2 
• Consider the two circuits shown where CII  = 2 CI. 

– What is the relation  
between the quality factors,  
QI and QII  , of the two 

(ac)irQcui<ts?Q II  I (b) QII = QI (c) QII  > QI 

•What is the relation between PI and PII , the power delivered by the  
generator to the circuit when each circuit is operated at its resonant  
frequency? 

(a) PII < PI (b) PII = PI (c) PII  > PI 

2A 

2B 

L 

 

 

R 

CI L 

 

 

R 

CII 

•At the resonant frequency, the impedance of the circuit is purely resistive. 
•Since the resistances in each circuit are the same, the impedances at the resonant  
frequency for each circuit are equal. 
• Therefore, The power delivered by the generator to each circuit is identical. 



Power Transmission 
 

 
 

es? How can we transport power from power stations to homes?  Why do we use “high tension” lin 

– At home, the AC voltage obtained from outlets in this country is 120V at  
60Hz. 

– Transmission of power is typically at very high voltages ( eg ~500  
kV) 

– Transformers are used to raise the voltage for transmission and lower the 
voltage for use. We’ll describe these next. 

But why? 

– Calculate ohmic losses in the transmission lines: 
– Define efficiency of transmission: 

in 
2 V 

P R 

iVin Pin  

 
    in    1 in  

Vin    Vin 

iR  V P iV  i2R 
   out     in  1 

– Note for fixed input power and line resistance, the inefficiency  1/V2 

Example: Quebec to Montreal 
1000 km  R= 220 

suppose MW 

With Vin=735kV,  = 80%. 
The efficiency goes to zero quickly if Vin were  
lowered! 

Keep R 
small 

Make Vin  

big 





Transformers 

N
1 

(primary) 

N
2 

(secondary) 

• AC voltages can be stepped up or  
stepped down by the use of  
transformers. 

iron 

• The AC current in the primary circuit creat

es a  

time-varying magnetic field in the iron 

• The iron is used to maximize the mutual inductance. We assume  
that the entire flux produced by each turn of the primary is trapped  
in the iron. 

V 2 
V1 

l This induces an emf on the secondary  
windings due to the mutual inductance of the  
two sets of coils. 



Ideal Transformers (no load) 

• The primary circuit is just an AC voltage source in series with  
an inductor. The change in flux produced in each turn is given  
by: 

 

N
1 

(primary) 

N
2 

(secondary) 

iron 

V2 
 V1 

dt N1 

 
V1 dturn 

•The change in flux per turn in the secondary coil is the same as  
the change in flux per turn in the primary coil (ideal case). The  
induced voltage appearing across the secondary coil is given by: 

• Therefore, 
• N2 > N1  secondary V2 is larger than primary  V1 (step-up) 
• N1 > N2  secondary V2 is smaller than primary V1   (step-down) 

 

•Note: “no load” means no current in secondary. The primary current, termed “the  
magnetizing current” is small! 

dt 
2 2 

N1 
1 V  N 

dturn   
N2 V 

resistance losses All flux contained in iron Nothing connected on secondary 



Ideal Transformers 

 

N
1 

(primary) 

N
2 

(secondary) 

iron 

V2 
 V1 R 

i 
R 

2  
V2 

N1 
1 2 i  

N2 i 

with a Load 

• What happens when we connect a resistive load to  
the secondary coil? 

– Flux produced by primary coil  
induces an emf in secondary 

ç  emf in secondary produces current i2 

ç This current produces a flux in the secondary  
coil  N2i2 which opposes the original flux -- 
Lenz’s law 

 

ç This changing flux appears in the primary circuit  
as well; the sense of it is to reduce the emf in  
the primary... 

ç  However, V1 is a voltage source. 

ç Therefore, there must be an increased current i1  

(supplied by the voltage source) in the primary  
which produces a flux  N1i1 which exactly  
cancels the flux produced by i2. 



Transformers with a Load 
• With a resistive load in the secondary, the primary current 

is given by: 

 

N
1 

(primary) 

N
2 

(secondary) 

iron 

V2 
 V1 R 

This is the equivalent resistance seen by the source. 

2 1 

    1 

N 2 

N 2 

i 

V 
eq 

 R  1   R 



Lecture 21, ACT 3 
• The primary coil of an ideal transformer is connected to an AC 

voltage source as shown. There are 50 turns in the primary 
and 200 turns in the secondary. 

– If V1 = 120 V, what is the  
potential drop across the resistor  
R ? 

3A 

 

N
1 N

2 

(primary) (secondary) 

(c) 480 V 

iron 

V  V1 2 R 

3B 

(a) 30 V (b) 120 V 

 
If 960 W are dissipated in the resistor  

R, what is the current in the primary ? 

(a) 8 A (b) 16 A (c) 32 A 



Lecture 21, ACT 3 
• The primary coil of an ideal transformer is connected to an AC 

voltage source as shown. There are 50 turns in the primary 
and 200 turns in the secondary. 

– If V1 = 120 V, what is the  
potential drop across the resistor  
R ? 

3A 

 

N
1 

(primary) 

N
2 

(secondary) 

iron 

V  V1 2 R 

(a) 30 V (b) 120 V (c) 480 V 

 
The ratio of turns, (N2/N1) = (200/50) = 4 

The ratio of secondary voltage to primary voltage is equal to the ratio of turns, 
(V2/V1) = (N2/N1) 

Therefore, (V2/V1) = 480 V 



Lecture 21, ACT 3 
• The primary coil of an ideal transformer is connected to an AC 

voltage source as shown. There are 50 turns in the primary 
and 200 turns in the secondary. 

– If V1  = 120 V, what is the 
potential drop across the resistor 

(Ra)? 30 V (b) 120 V (c) 480 V 

3A 

  

N
1 

(primary) 

N
2 

(secondary) 

iron 

V2 
V1 R 

The ratio of turns, (N2/N1) = (200/50) = 4 
The ratio (V2/V1) = (N2/N1).  Therefore, (V2/V1) = 480 V 

ç  If 960 W are dissipated in the resistor R, what is 
the current in the primary ? 

(a) 8 A (b) 16 A (c) 32 A 

3B 

Gee, we didn’t talk about power yet…. 

But, let’s assume energy is conserved…since it usually is around here  

Therefore, 960 W should be produced in the primary 

P1 = V1 I1 implies that 960W/120V = 8 A 



Transformers with a Load 

 

N
1 

(primary) 

N
2 

(secondary) 

iron 

V2 
 V1 R 

•To get that last ACT, you had to use a general  
philosophy -- energy conservation. 

•An expression for the RMS power flow looks like  
this: 

rms  V i 1rms 1rms P  V i  
N1 V 
N2 

N2 i 2rms  N1 
2rms 2rms 2rms 

Note: This equation simply says that all power delivered by the generator is 
dissipated in the resistor ! Energy conservation!! 



Chap. 4 Circuit Theorems 

• Introduction 

• Linearity property 

• Superposition 

• Source transformations 

• Thevenin’s theorem 

• Norton’s theorem 

• Maximum power transfer 

Circuit Theorems 195 Eastern Mediterranean  
University 



4.1 Introduction 

Circuit Theorems 196 

A large 
complex circuits 

Simplify 
circuit analysis 

Circuit Theorems 

‧Thevenin’s theorem 
‧Circuit linearity 
‧source transformation 

‧ Norton theorem 
‧ Superposition 
‧ max. power transfer 

Eastern Mediterranean  
University 



4.2 Linearity Property 

197 

Homogeneity property (Scaling) 

i  v  iR 

ki  kv  kiR 

Additivity property 

i1   v1   i1R  

i2   v2  i2 R 

i1   i2   (i1  i2 )R  i1R  i2 R  v1   v2 

Eastern Mediterranean Circuit Theorems  
University 



• A linear circuit is one whose output is linearly  
related (or directly proportional) to its input 

• Fig. 4.1 

Circuit Theorems 198 

V0 
I0 

i 

Eastern Mediterranean  
University 



• Linear circuit consist of 

– linear elements 

– linear dependent sources 

• 

Circuit Theorems 199 

vs   1V  i  0.2A 

vs  5mV  i 1mA 

vs   10V  i  2A 

R 
: nonlinear 

– indepenvd2ent sources 
p i2 R  

Eastern Mediterranean  
University 



Example 4.1 

• For the circuit in fig 4.2 find I0 when vs=12V  
an d vs=24V. 

Circuit Theorems 200 Eastern Mediterranean  
University 



Example 4.1 

Eqs(4.1.1) and (4.1.3) we get 

Circuit Theorems 201 

• KVL12i1    4i2   vs  0 

 4i1  16i2  3vx  vs  0 

vx  2i1 

(4.1.2) becomes 

10i1  16i2  vs  0 

(4.1.1) 

(4.1.2) 

(4.1.3) 

2i1  12i2  0  i1   6i2 

Eastern Mediterranean  
University 



Eq(4.1.1), we gEetxample 4.1 

Circuit Theorems 202 

76 

vs  76i2  vs  0  i2  

76 
2 0 

 
12 

A I  i 
s 

Whenv  12V 

Showing that0 whe2 n t7h6e source value is doubled,  
I0 doubles. 

 
24 

A I  i 

 24V Whenvs 

Eastern Mediterranean  
University 



Example 4.2 

• Assume I0 = 1 A and use linearity to find the  
actual value of I0  in the circuit in fig 4.4. 

Circuit Theorems 203 Eastern Mediterranean  
University 



Example 4.2 

Circuit Theorems 204 

I1   v1 / 4  2A, 

If I0  1A, then v1   (3  5)I0  8V 

I2  I1  I0  3A 

7 
3 2 

 2A  
V2  8  6  14V, I V2  V1   2I 

I4  I3  I2  5A  IS  5A 

I0  1A  IS  5A 

 15A I0  3A  IS 

Eastern Mediterranean  
University 



4.3 Superposition 

• The superposition principle states that the  
voltage across (or current through) an  
element in a linear circuit is the algebraic  
sum of the voltages across (or currents  
through) that element due to each  
independent source acting alone. 

• Turn off, killed, inactive source: 
– independent voltage source: 0 V (short 

circuit) 

– independent current source: 0 A (open circuit) 
Eastern Mediterranean Circuit Theorems  205 

•UniveDrsityependent sources are left intact. 



• Steps to apply superposition principle: 

1. Turn off all independent sources except one  
source. Find the output (voltage or current)  
due to that active source using nodal or  
mesh analysis. 

2. Repeat step 1 for each of the other  
independent sources. 

3. Find the total contribution by adding 
algebraically all the contributions due to the 

206 Eastern Mediteirrnandeanependent souCirrcucit eThseo.rems  

University 



How to turn off independent sources 

• Turn off voltages sources = short voltage  
sources; make it equal to zero voltage 

• Turn off current sources = open current  
sources; make it equal to zero current 

Circuit Theorems 207 Eastern Mediterranean  
University 



• Superposition involves more work but simpler  
circuits. 

• Superposition is not applicable to the effect  
on power. 

Circuit Theorems 208 Eastern Mediterranean  
University 



Example 4.3 

in the • Use the superposition theorem to find  
circ uit in Fig.4.6. 

Circuit Theorems 209 Eastern Mediterranean  
University 



Since there are Etwxoamsopurlcees4,.3 
let 

Voltage division to get 

Current division, to get 

Hence 

And we find 

Circuit Theorems 210 

V  V1   V2 

4 
1 

(6)  2V 
4  8 

V  

8 
3 

(3)  2A 
4  8 

i  

v2  4i3  8V 

2 1 
v  v  v  2  8  10V 

Eastern Mediterranean  
University 



Example 4.4 

cuit in Fig.4.9 using • Find I0 in the cir  
superposition. 

Circuit Theorems 211 Eastern Mediterranean  
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Example 4.4 

Circuit Theorems 212 

Fig. 4.10 

Eastern Mediterranean  
University 



Example 4.4 

Circuit Theorems 213 

Fig. 4.10 

Eastern Mediterranean  
University 



4.5 Source Transformation 

• A source transformation is the process of 

replacing a voltage source vs in series with a  
resistor R by a current source is in parallel  
with a resistor R, or vice versa 

Circuit Theorems 214 Eastern Mediterranean  
University 



Fig. 4.15 & 4.16 

R 
s s s 

v  i R or i  
vs 

Circuit Theorems 215 Eastern Mediterranean  
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Equivalent Circuits 
 

 

 
v  iR  vs  

i  
v 

 
vs 

R R 

Circuit Theorems 216 

i i 

- 

+ 

v 

- 

+ 

v 

v 

i 

vs 
-is 

Eastern Mediterranean  
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• Arrow of the current source 
positive terminal of voltage source 

• Impossible source Transformation 

– ideal voltage source (R = 0) 

– ideal current source (R=) 

Circuit Theorems 217 Eastern Mediterranean  
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Example 4.6 

• Use source transformation to find vo in the  
circuit in Fig 4.17. 

Circuit Theorems 218 Eastern Mediterranean  
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Example 4.6 

Circuit Theorems 219 

Fig 4.18 

Eastern Mediterranean  
University 



Example 4.6 

and 

Circuit Theorems 220 

we use current divi2sion in Fig.4.18(c) to get 

2  8 
i  (2)  0.4A 

vo  8i  8(0.4)  3.2V 

Eastern Mediterranean  
University 



Example 4.7 

• Find 
tran 

vx  in Fig.4.20 using source 
sformation 

Circuit Theorems 221 Eastern Mediterranean  
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Example 4.7 

Applying KVL around the loop in Fig 4.21(b) 
gives 

(4.7.1) 

Appling KVL to the loop containing only the 3V 

222 

 3  5i  vx 18  0 

1 

x  x 

Circuit Theorems 

voltage sourc3e,t1hie v r0esistvor,a3nd ivx yields 
Eastern Mediterranean  
University 



Example 4.7 

thus 

Circuit Theorems 223 

Substitutin1g5 th5isi   in3toE0q.(4i.7.1)4,.5wAe  obtain 

 
Alternativvely 4i  v 18  0  i  4.5A 

x x 

vx  3  i  7.5V 

Eastern Mediterranean  
University 



4.5 Thevenin’s Theorem 

• Thevenin’s theorem states that a linear two-  
terminal circuit can be replaced by an  
equivalent circuit consisting of a voltage 
source VTh  in series with a resistor RTh where 

VTh is the open circuit voltage at the terminals  

and RTh is the input or equivalent resistance  
at the terminals when the independent 
source are turn off. 

Circuit Theorems 224 Eastern Mediterranean  
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Property of Linear Circuits 

Circuit Theorems 225 

i 

i 

 
 

Any two-terminal 
Linear Circuits 

+ 

v 

- 

Vth 

Isc 

Slope=1/Rth 

v 

Eastern Mediterranean  
University 



Fig. 4.23 
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How to Find Thevenin’s Voltage 

Circuit Theorems 227 

• Equivalent circuit: same voltage-current  
rVeTlhatiovnoca:t  thopeetnercmircinuaitlsv.oltageat  a  b 

• 

Eastern Mediterranean  
University 



How to Find Thevenin’s Resistance 

• 

Circuit Theorems 228 

RTh  Rin  : 

input  resistance of thedeadcircuit at a  b. 

 a  b open circuited 

 Turn off allindependent sources 

Eastern Mediterranean  
University 



CASE 1 

• If the network has no dependent sources: 

– Turn off all independent source. 

– RTH: can be obtained via simplification of  
either parallel or series connection seen from  
a-b 

Circuit Theorems 229 Eastern Mediterranean  
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Fig. 4.25 
CASE 2 

• If the network has dependent  
sources 

– Turn off all independent  
sources. 

a-b 

o source i at a-b 230 

o 

o 
– Apply a voltage vsource vo at 

R  
i 

Th 

o 
Circuit Theorems 

– Alternatively, apTph ly ia current 
R  

vo 

Eastern Mediterranean 
University 



• The Thevenin’s resistance may be negative,  
indicating that the circuit has ability providing  
power 

Circuit Theorems 231 Eastern Mediterranean  
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Fig. 4.26 
Simplified circuit 

Voltage divider 

Circuit Theorems 232 

L 

L 
R  R 

I  
Th 

VTh 

Th 
R 

L 

RL 

L L L 

V 
R Th 

V  R I  

Eastern Mediterranean  
University 



Example 4.8 

• Find the Thevenin’s equivalent circuit of the  
circuit shown in Fig 4.27, to the left of the 
t gh 

R 
erminals a-b. Then find the current throu 

L  = 6,16,and 36 . 

Circuit Theorems 233 Eastern Mediterranean  
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Find Rth 

Circuit Theorems 234 

: 32V voltagesource short RTh 

2Acurrent source open 

16 
Th 

R  4 || 12  1  
4 12 

 1  4 

Eastern Mediterranean  
University 



Find Vth 

Circuit Theorems 235 

Th 
V : 

(1) Mesh analysis 

 32  4i1  12(i1  i2 )  0 , i2  2A 

i1   0.5A 

 12(i1  i2 )  12(0.5  2.0)  30V VTh 

(2) Alternatively, Nodal Analysis 

(32 VTh ) / 4  2  VTh  /12 

 30V VTh 

Eastern Mediterranean  
University 



Example 4.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Circuit Theorems 
236 

Fig. 4.29 

(3) Alternatively, source transform 

4 

 30V  VTH 

12 

 24  VTH 96  3VTH 

 2  
VTH 

32  VTH 

Eastern Mediterranean  
University 



Example 4.8 

Circuit Theorems 237 

Toget iL : 

L  i  
R  R 4  R 

30 

Th L L 

VTh 

 30/10  3A 

 30 / 20  1.5A 

 30/ 40  0.75A 

RL  6 IL 

RL  16IL  

RL  36IL 

Eastern Mediterranean  
University 



Example 4.9 

• Find the Thevenin’s equivalent of the circuit  
in Fig. 4.31 at terminals a-b. 
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Example 4.9 

(independent + d 

Circuit Theorems 239 

: Fig(a)ependent source case) • Tofind RTh 

independent source0  

dependent source  intact 

vo  1V, 
o o 

vo  1 
RTh 

  
i i 

Eastern Mediterranean  
University 



Example 4.9 

Circuit Theorems 240 

 i1   i2 • Fo2rvlxoop2(1i1,  i2 )  0 or vx 

But  4i  vx  i1   i2 

 i1   3i2 
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Example 4.9 

Circuit Theorems 241 

Loop 2and3 : 

4i2   2(i2   i1 )  6(i2   i3 )  0 

6(i3  i2 )  2i3  1  0 

Solving these equations gives 

i3  1/ 6A. 

6 
But i  i  

1 
A 

o  3 

Th 
io 

 R  
1V 

 6 
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Example 4.9 
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TogetVTh :Fig(b) Mesh analysis 

VTh  voc  6i2  20V 

i1   5 

 2vx  2(i3   i2 )  0  vx  i3   i2 

4(i2   i1 )  2(i2   i1 )  6i2  0 12i2  4i1  2i3  0 

But 4(i1  i2 )  vx 

i2  10 / 3. 
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Example 4.10 
 

in’s • Determine the Theven  
equivalent circuit in  
Fig.4.35(a). 

• Solution 

Circuit Theorems 243 

(dependent sourceonlycase) 
v 

R   o 

io 

Th Th 
V  0 

Nodalanaysis : 

io   ix  2ix   vo / 4 
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Example 4.10 
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2 2 
x 

i   
vo  

0  vo But 

4 2 4 4 
o  x 

  
vo 

 vo i  i  
vo   

vo or vo  4io 

io 

vo Thus RTh   4: Supplying power 
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Example 4.10 
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Example 4.10 
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4.6 Norton’s Theorem 

• Norton’s theorem states that a linear two-  
terminal circuit can be replaced by equivalent  
circuit consisting of a current source IN in  
parallel with a resistor RN where IN is the  
short-circuit current through the terminals  
and RN is the input or equivalent resistance  
at the terminals when the independent  
source are turn off. 
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Fig. 4.37 
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i 

Slope=1/RN 

v 

Vth 

-IN 
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How to Find Norton Current 
• Thevenin and 

Norton resistances 
are equal: 

• Short circuit current 
from a to b : 

Circuit Theorems 249 

RN  RTh 

RTh 

N sc 
 

VTh I  i 
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Thevenin or Norton equivalent circuit : 

Circuit Theorems 250 

V T h  

R T h  

R T h      R N  

• The open circuit voltage voc  across terminals 

a and b 

• The short circuit current isc  at terminals a and 

b 

• The equivalent or input resistance Rin at  

terminals a and VbTwh   hevno c  all independent  
source are turn oIfNf. i s c  
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Example 4.11 

• Find the Norton equivalent circuit of the  
cir cuit in Fig 4.39. 
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Example 4.11 

Circuit Theorems 252 

Fig4.40(a) : 

25 

RN  5 ||(8  4  8) 

 5 || 20  
20  5 

 4 

Tofind RN 
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Example 4.11 
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Tofind iN (Fig.4.40(b)) 

short  circuit terminals a and b. 

Mesh : i1   2A, 20i2   4i1  i2  0 

i2  1A  isc  IN 
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Ex ample 4.11 
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Alternative methodfor IN 

RTh 

VTh 
IN  

VTh: open  circuit voltage across terminals a and b 

(Fig 4.40(c)) : 
 

Mesh analysis : 

i3    2 A, 25i4    4i3 12   0 

  i4    0.8A 

voc VTh  5i4  4V 
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Example 4.11 
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Hence, 
 4 / 4  1A 

RTh 

VTh 
IN  
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Example 4.12 

• Using Norton’s theorem, find RN and IN of the  
circuit in Fig 4.43 at terminals a-b. 
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Example 4.12 

Circuit Theorems 257 

Tofind RN Fig .4.4 4(a ) 

vo / 5  1/ 5  0.2 Hence, ix   

 4resistorshorted 

 5 ||vo || 2ix :Parallel 

 5 
1 

io  0.2 
 RN   

vo  
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Example 4.12 

Cir 
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Tofind IN  Fig .4.44(b) 

 4 ||10v || 5|| 2ix :Parallel 

4 
x 

i  
10  0 

 2.5A, 

5 
x  x sc 

i  i  2i  
10 

 2(2.5)  7 A 

 IN  7A 
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4.8 Maximum Power Trandfer 
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L 

2 

 
L 

TH 

VTH 

L  

 
R 

 


 
 

R  R 

 
 

p  i2 R 

Fig 4.48 
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Fig. 4.49 

• Maximum power is transferred to the load  
when the load resistance equals the 

in resistance as seen the loa d (RL = Theven 

RTH). 
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TH 

TH 

TH L 

L TH 
TH 

L TH L 
dR 

4R 

V 2 

max 

V 2 

2 

p  

RL  RTH 

 RL )  RL   2RL )  (RTH 0  (RTH 

 0  
 

 
 (R  R )3 

(R  RL   2R ) 
 

 
 

TH  
 (R  R )4 

 RL )  RL )  2RL (RTH dp 
 V 2 (RTH 
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Example 4.13 

• Find the value of RL for maximum power  
transfer in the circuit of Fig. 4.50. Find the  
maximum power. 
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Example 4.13 
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18 
TH 

R  2  3  612  5  
6 12 

 9 
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V 2 2 

TH  13.44W 
4RL 4  9 

 
22 

pmax  

 22V 

1 2 2 

12  6ii1  3i2   2(0)  VTH  0  VTH 

RL  RTH  9 

12  18i E12xia,miple24A.13 

Eastern Mediterranean  
University 



265 

Extension of Resonant Circuits 

What can be learned from this example? 

 

 

 

wr does not seem to have much meaning in this problem.  
What is wr if R = 3.99 ohms? 

Just because a circuit is operated at the resonant frequency  
does not mean it will have a peak in the response at the  
frequency. 

For circuits that are fairly complicated and can resonant,  
It is probably easier to use a simulation program similar to  
Matlab to find out what is going on in the circuit. 


