LECTURE NOTES

ON
 ELECTRONIC CIRCUITS

II B. Tech II semester (JNTUH-R15)
Ms Anusha.N, Asst. Professor

ELECTRONICS AND COMMUNICATION ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING

UNIT-I(a):
 Single Stage Amplifiers Design And Analysis

Contents:

> Introduction
> Transistor as an amplifier
> Components of an amplifier
> Classification of amplifiers
> Transistor hybrid model
> The h-parameters
> Analysis of a transistor amplifier circuit using H parameters
> Simplified Common Emitter hybrid model

Introduction

What is Amplifier?

What is the need of an amplifier?

What are the applications of amplifier?

Transistor as an amplifier

> To make the transistor work as an amplifier, it is to be bjased tc operate in the active region.
> When only one transistor with associated circuitry is used for amplifying a weak signal, the circuit is known as "Single tage Transistor Amplifier".

Components of an amplifier

Classification of amplifiers

Based on the active device.

- BJTAmplifier
- FETAmplifier

Based on the transistor configuration.

- Common Emitter amplifier
- Common Collectoramplifier
- Common Base amplifier

Based on input.

- Small signal amplifiers
- Large signal amplifiers

Based on the output.

- Voltageamplifier
- Power amplifier

Based on the number of stages.

- Single stage amplifier
- Multistage amplifier

Based on the Q-point (Operating conduction)

- ClassAAmplifier
- Class BAmplifier
- Class ABAmplifier
- Class CAmplifier

Based on the frequency response.

- Audio frequency amplifier
- Intermediate frequency amplifier
- Radio frequency amplifier

Based on the bandwidth.

- Narrow band amplifier
- Wide band amplifier

Bipolar junction transistors (BJTs)

Construction of Bipolar junction transistors

NPN BJT shown

- 3 terminals: emitter, base, and collector
- 2 junctions: emitter-base junction (EBJ) and collector-base junction (CBJ)
- These junctions have capacitance (high-frequency model)
- BJTs are not symmetric devices
-doping and physical dimensions are different for emitter and collector

Bipolar junction transistors (BJTs)

Construction of Bipolar junction transistors

6.1 Bipolar junction transistors (BJTs)

Standard bipolar junction transistor symbols

npn

pnp

Depending on the biasing across each of the junctions, different modes of operation are obtained - cutoff, active and saturation

MODE	EBJ	CB.J
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward

Bipolar junction transistors (BJTs)

BJT in Active Mode

Two external voltage sources set the bias conditions for active mode

- EBJ is forward biased and CBJ is reverse biased

Bipolar junction transistors (BJTs)

BJT in Active Mode

$I_{E}=I_{E N}+I_{E P} \approx I_{E N}$

Forward bias of EBJ injects electrons from emitter into base (small number of holes injected from base into emitter)

Bipolar junction transistors (BJTs)

BJT in Active Mode

- Most electrons shoot through the base into the collector across the reverse bias junction
- Some electrons recombine with majority carrier in (P-type) base region

Bipolar junction transistors (BJTs)

BJT in Active Mode

$$
I_{\mathrm{C}}=I_{\mathrm{CN}}+I_{\mathrm{CBO}}
$$

Electrons that diffuse across the base to the CBJ junction are swept across the CBJ depletion region to the collector.

6.1 Bipolar junction transistors (BJTs)

BJT in Active Mode

Bipolar junction transistors (BJTs)

BJT in Active Mode

$$
\begin{array}{rll}
I_{\mathrm{E}}=I_{\mathrm{EN}}+I_{\mathrm{EP}} \approx I_{\mathrm{EN}} & I_{\mathrm{B}}=I_{\mathrm{BN}}+I_{\mathrm{EP}} & \\
\alpha \approx \frac{I_{\mathrm{C}}=I_{\mathrm{CN}}+I_{\mathrm{CBO}}}{I_{E}} \longrightarrow I_{\mathrm{E}}= \\
& & \\
& \text { Let } \left.\quad \beta=\frac{\alpha}{1-\alpha} \longrightarrow \alpha\right)=\alpha I_{\mathrm{B}}+I_{\mathrm{CBO}} & \longrightarrow I_{C}=\beta I_{B}+(1+\beta) I_{C B O}
\end{array}
$$

Beta: $\beta \approx \frac{I_{C}}{I_{B}}$---common-emitter current gain

$$
\left\{\begin{array}{l}
I_{E}=I_{C}+I_{B} \approx(1+\beta) I_{B} \\
I_{C}=\beta I_{B}+I_{C E O}=\beta I_{B} \\
I_{C}=\alpha I_{E}
\end{array}\right.
$$

Bipolar junction transistors (BJTs)

C-E Circuits I-V Characteristics

Base-emitter Characteristic(Input characteristic)

$$
i_{B}=\left.f\left(v_{B E}\right)\right|_{v_{C E=C}}
$$

Bipolar junction transistors (BJTs)

C-E Circuits I-V Characteristics

Collector characteristic (output characteristic) $\quad i_{C}=\left.f_{\left(V_{C E}\right)}\right|_{i_{B}=C}$

Bipolar junction transistors (BJTs)

C-E Circuits I-V Characteristics

Collector characteristic

Saturation occurs when the supply voltage, V_{CC}, is across the total resistance of the collector circuit, R_{C}.

$$
I_{\mathrm{C}(\text { sat })}=V_{\mathrm{CC}} / R_{\mathrm{C}}
$$

Once the base current is high enough to produce saturation, further increases in base current have no effect on the collector current and the relationship $I_{\mathrm{C}}=\beta I_{\mathrm{B}}$ is no longer valid. When V_{CE} reaches its saturation value, $V_{\mathrm{CE}(\text { sat) }}$, the base-collector junction becomes forward-biased.

Bipolar junction transistors (BJTs)

C-E Circuits I-V Characteristics

Collector characteristic

When $I_{\mathrm{B}}=0$, the transistor is in cutoff and there is essentially no collector current except for a very tiny amount of collector leakage current, I_{CEO}, which can usually be neglected. $I_{\mathrm{C}} \approx 0$.

In cutoff both the base-emitter and the base-collector junctions are reverse-biased.

Bipolar junction transistors (BJTs)

DC Load Line and Quiescent Operation Point

DC load line
$\left.\begin{array}{c}10 \\ \text { Base-emitter loop: } \\ V_{B E}(v) \\ R_{b}\end{array} I_{C C}-V_{B E}\right) \frac{V_{C C}}{R_{b}}=40(\mu A)$
Collector-emitter loop: $v_{C E}=V_{C C}-i_{C} R_{C}=10-i_{C} \times 4 k$

Single-Stage BJT Amplifiers

C-E Amplifiers

To operate as an amplifier, the BJT must be biased to operate in active mode and then superimpose a small voltage signal $v_{b e}$ to the base.

Single-Stage BJT Amplifiers

C-EAmplifiers

Single-Stage BJT Amplifiers

C-E Amplifiers

$$
i_{B}=I_{B}+i_{b}
$$

Apply a small signal input voltage and see i_{b}

$$
v_{B E}=v_{i}+V_{B E}
$$

Single-Stage BJT Amplifiers

C-EAmplifiers
See how i_{b} translates into $v_{c e}$

- $v_{i}=0 \rightarrow I_{\mathrm{B}}, ~ I_{\mathrm{C}} \quad V_{\mathrm{CE}}$

$$
v_{i} \neq 0 \quad i_{B}=I_{B}+i_{b}
$$

$$
i_{C}=I_{C}+i_{C}
$$

$$
\left.v_{C E}=V_{C E}+v_{c e}\right)
$$

- $V_{Q M} \gg V_{M}$
$f_{(o)}=f_{(i)}$
- v_{o} out of phase with v_{i}

Single-Stage BJT Amplifiers

C-EAmplifiers
Considering V_{C} (all the capaertors are replaced by open circuits)

Considering V_{i} (all the capaertors are replaced by short circuits)

Single-Stage BJT Amplifiers

C-EAmplifiers
Considering V_{C} (all the capaertors are replaced by open circuits)

Considering V_{i} (all the capaertors are replaced by short circuits)

Single-Stage BJT Amplifiers

Graphical Analysis

- Can be useful to understand the operation of BJT circuits.
- First, establish DC conditions by finding I_{B} (or $V_{B E}$)
- Second, figure out the DC operating point for I_{C}

Can get a feel for whether the BJT will stay in active region of operation - What happens if R_{C} is larger or smaller?

Single-Stage BJT Amplifiers

GraphicalAnalysis

$$
v_{c e}=-i_{c}\left(R_{C} / / R_{L}\right)=-i R_{L}^{\prime}
$$

$$
V_{C C}^{\prime}=V_{C E Q}+I_{C Q} R_{L}{ }^{\prime}
$$

Single-Stage BJT Amplifiers

GraphicalAnalysis
Q-point is centered on the ac load line:

Single-Stage BJT Amplifiers

GraphicalAnalysis
Q-point closer to cutoff:

Single-Stage BJT Amplifiers

GraphicalAnalysis
Q-point closer to saturation:

Clipped at cutoff (saturation distortion)

Single-Stage BJT Amplifiers

GraphicalAnalysis

Transistor hybrid model

Two Port Network

Types of Parameters:

i) Z - Parameters (or) Impedance Parameters
ii) Y - Parameters (or) Admittance Parameters
iii) H - Parameters (or) Hybrid Parameters

Z - Parameters (or) Impedance Parameters

Here i_{1} and i_{2} are taken as independent variables. The voltages V_{1} and V_{2} are given by the equations.

$$
\begin{aligned}
& V_{1}=Z_{11} i_{1}+Z_{12} i_{2} \\
& V_{2}=Z_{21} i_{1}+Z_{22} i_{2}
\end{aligned}
$$

These four impedance parameters Z_{11}, Z_{22}, Z_{12} and Z_{21} are defined as follows.
$Z_{11}=V_{1} / i_{1}$ with $i_{2}=0 \quad$ Input impedance with Output port open circuited.
$Z_{22}=V_{2} / i_{2}$ with $i_{1}=0 \quad$ Output impedance with Input port open circuited.
$Z_{12}=V_{1} / i_{2}$ with $i_{1}=0 \quad$ Reverse Transfer impedance with port1 open circuited.
$Z_{21}=V_{2} / i_{1}$ with $i_{2}=0 \quad=$ Forward Transfer impedance with port2 open circuited.

Y - Parameters (or) Admittance

 the equations.

$$
\begin{aligned}
& i_{1}=Y_{11} V_{1}+Y_{12} V_{2} \\
& i_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{aligned}
$$

Y_{11}, Y_{12}, Y_{21} and Y_{22} are called short circuited admittance parameters and that ar defined as follows.
$Y_{11}=i_{1} / V_{1}$ with $V_{2}=0 \quad=$ Input Admittance with port 2 short circuited.
$Y_{22}=i_{2} / V_{2}$ with $V_{1}=0=$ Output Admittance with port 1 short circuited.
$Y_{12}=i_{1} / V_{2}$ with $V_{1}=0=$ Reverse Transfer Admittance with port 1 short circuited.
$Y_{21}=i_{2} / V_{1}$ with $V_{2}=0 \quad$ = Forward Transfer Admittance with port 2 short circuited.

H - Parameters (or) Hybrid Parameters

If the input current i_{1} and the output voltage V_{2} are taken as independent variables, the input voltage V_{1} and output current i_{2} can be written as

$$
\begin{aligned}
& V_{1}=h_{11} i_{1}+h_{12} V_{2} \\
& i_{2}=h_{21} i_{1}+h_{22} V_{2}
\end{aligned}
$$

The four hybrid parameters h_{11}, h_{12}, h_{21} and h_{22} are defined as follows. $h_{11}=V_{1} / i_{1}$ with $V_{2}=0 \quad$ Input impedance with output port short circuited. $h_{22}=i_{2} / V_{2}$ with $i_{1}=0 \quad$ O Otput Admittance with input port open circuited. $\mathrm{h}_{12}=\mathrm{V}_{1} / \mathrm{V}_{2}$ with $\mathrm{i}_{1}=0 \quad=$ Reverse Voltage Transfer ratio with input port open circuited.
$h_{21}=i_{2} / i_{1}$ with $V_{2}=0 \quad=$ Forward current gain with output port short circuited.

Notation:

When h - parameters are applied to transistors, first subscript,
i - input;
o - output;
f - forward transfer;
r - reverse transfer
Second subscript to designate the type of configuration, e - common emitter;
b - common base;
c - common collector.

The Hybrid model for two - port network
 $$
\begin{aligned} & V_{1}=h_{i} i_{1}+h_{r} V_{2} \\ & i_{\imath}=h_{f} i_{1}+h_{n} V_{\imath} \end{aligned}
$$

Hybrid model for two-port network

Hybrid models for the transistor in three different

 configu

Typical Values

Parameters	CE	CC	CB
hi	$1,100 \Omega$	$1,100 \Omega$	21.6Ω
hr	2.5×10^{-4}	1	2.9×10^{-4}
hf	50	-51	-0.98
ho	$25 \mu \mathrm{~A} / \mathrm{v}$	$25 \mu \mathrm{~A} / \mathrm{v}$	$0.49 \mu \mathrm{~A} / \mathrm{v}$
$1 / \mathrm{h} 0$	40 K	40 K	$2.04 \mathrm{M} \Omega$

Conversion Table:

CC	CB
$\mathrm{h}_{\mathrm{ic}}=\mathrm{h}_{\mathrm{ie}}$	$h i b=$hie $1+h f e$ $\mathrm{~h}_{\mathrm{rc}}=1$
$\mathrm{~h}_{\mathrm{fc}}=-\left(1+\mathrm{h}_{\mathrm{fe}}\right)$	$h r b=$hiehoe $1+h f e$ hre
$\mathrm{h}_{\mathrm{oc}}=\mathrm{h}_{\mathrm{oe}}$	$h f b=$$-h f e$ $1+h f e$ hoe $1+h f e$

Analysis of a Transistor Amplifier Circu

Ilcino h_ Daramotorc

Basic Amplifier circuit

Transistor amplifier in its h-parameter model

Current Gain:

$$
A_{I}=\frac{-h_{f}}{1+h o Z_{L}}
$$

Voltage Gain:

$$
\therefore A_{V}=\frac{A_{I} Z_{L}}{Z_{i}}
$$

Input Impedance:

$$
Z_{i}=h i-\frac{h_{f} h_{r}}{Y_{L}+h o}
$$

Output Admittance:

Power Gain:

$$
\begin{aligned}
& \therefore Y_{0}=h_{0}-\frac{h_{f} h_{r}}{h_{i}} \\
& A_{P}=A_{I}^{2}\left(\frac{R_{L}}{R_{i}}\right)
\end{aligned}
$$

Current Gain With Source Resistance:

Voltage Gain With Source Resistance:

Input Impedance With Source Resistance:

Output Admittance With Source Resistance:

$$
A_{I S}=A_{V S} \cdot \frac{R_{S}}{Z_{L}}
$$

$$
\therefore A_{V S}=\frac{A_{I} Z_{L}}{Z_{i}+R_{S}}
$$

$$
Z_{\text {is }}=R_{s}+Z_{i}
$$

$$
\therefore Y_{0}=h_{0}-\frac{h_{f} h_{r}}{R_{S}+h_{i}}
$$

Analysis of CE amplifier using h-parame model:

Analysis of CB amplifier using h-parame

 model

Analysis of CC amplifier using h-parame

 model

Common Collector Amplifiers

Simplified CE hybrid model:

Exact CE hybrid model

Approximate CE hybrid model

Analysis of CE amplifier using approximate m

Current Gain (A_{I}):

 $\therefore A_{I}=-h_{f e}$Input Impedance $\left(Z_{i}\right)$:
$\therefore Z_{i}=h_{i e}$

Voltage Gain (A_{V}):
$\therefore A_{V}=\frac{-h_{f e} Z_{L}}{h_{i e}}$
Output Impedance (Z_{0}):
$Y_{0}=0$
$Z_{0}=\infty$

Characteristics of CBAmplifier:
i) Current gain of less than unity.
ii) High voltage gain.
iii) Power gain approximately equal to voltage gain.
iv) No phase shift for current (or) voltage.
v) Small input impedance.
iv) Large output impedance.

Applications:

1) Matching a very low impedance source.
2) As a non-inverting amplifier with voltage gain exceeding unity.
3) For driving a high impedance load.
4) As a constant current source.

Characteristics of CC Amplifier:

1) High current gain.
2) Voltage gain of approximately unity.
3) Power gain approximately equal to current gain.
4) No current (or) voltage phase shift.
5) Large input impedance.
6) Small output impedance.

Applications:

The CC amplifier is widely used as a buffer stage between a high impedance source and a low impedance load. The CC amplifier is called the emitter follower

Characteristics of CE amplifier:

1. Large current gain.
2. Large voltage gain.
3. Large power gain.
4. Voltage phase shift of 180°.
5. Moderate input impedance.
6. Moderate output impedance.

Applications:

Of the three configurations CE amplifier alone is capable of providing both voltage gair and current gain. The input resistance \mathbf{R}_{i} and the output resistance Ro are moderatel, high.

Hence the CE amplifier is widely used for amplification purpose.

Single-Stage BJT Amplifiers

Small-Signal Models Analysis

Steps for using small-signal models

1. Determine the DC operating point of the BJT

- in particular, the collector current

2. Calculate small-signal model parameters: $r_{b e}$
3. Eliminate DC sources

- replace voltage sources with shorts and current sources with open circuits

4. Replace BJT with equivalent small-signal models
5. Analysis

Single-Stage BJT Amplifiers
Small-Signal Models Analysis

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}=\left(\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}\right) \mathrm{R}+\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{b}}+\mathrm{V}_{\mathrm{BE}}+\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{e}} \\
& \rightarrow I_{B}=\frac{V_{C}-V_{B E}}{R_{b}+(1+\beta)\left(R+R_{e}\right)} \\
& I_{C} \approx \beta I_{B} \\
& I_{E}=I_{C}+I_{B}=(1+\beta) I_{B} \\
& V_{C E}=V_{C}-I_{C} R_{C}-I_{E}\left(R+R_{e}\right)
\end{aligned}
$$

Single-Stage BJT Amplifiers

Small-Signal Models Analysis
Example 1

Single-Stage BJT Amplifiers

Small-Signal Models Analysis

Example 2

Single-Stage BJT Amplifiers

Small-Signal Models Analysis

There are three basic configurations for single-stage BJT amplifiers:

- Common-Emitter
- Common-Base
- Common-Collector

(a)
$V_{E}<V_{B}<V_{C}$

(b)
$V_{E}<V_{B}<V_{C}$

(c)
$V_{E}<V_{B}<V_{C}$

Single-Stage BJT Amplifiers

Common-CollectorAmplifier

$$
\begin{gathered}
V_{C C}=I_{B} R_{b}+V_{B E}+I_{E} R_{e}=I_{B} R_{b}+V_{B E}+(1+\beta) I_{B} R_{e} \\
I_{B}=\frac{V_{C C}-V_{B E}}{R_{b}+(1+\beta) R_{e}} \approx \frac{V_{C C}}{R_{b}+(1+\beta) R_{e}} \\
I_{C}=\beta I_{B} \\
V_{C C}=V_{C E}+I_{E} R_{e} \approx V_{C E}+I_{C} R_{e} \\
V_{C E} \approx V_{C C}-I_{C} R_{e}
\end{gathered}
$$

Note : \dot{V}_{o} is slightly less than \dot{V}_{i} due to the voltage drop introduced by $V_{B E}$

$$
A_{V} \cong 1
$$

Frequency Response

Basic Concepts

The drops of voltage gain (output/input) is mainly due to:
1, Increasing reactance of \quad (at low f)
2, Porasitic capacetine dem ent sof the net work (at high f)
3, Dissappearance of changing current(for trasformer coupled amp)

Classification of Amplifiers

- Amplifiers can be classified as follows
> Based on the transistor configuration
a)CE b) CB c)CC
> Based on the active device a)FET b)BJT
> Based on the Q-point
a)Class A b)class B c)class AB d)class C
$>$ Based on the No.of stages a) Single stage b) Multi stage
$>$ Based on the output a)Voltage amplifier b)Current amplifier
$>$ Based on the frequency response a) AF b) IF c)RF
> Based on the Bandwidth a)Narrow band b)Wide band

DISTORTION IN AMPLIFIER

- If the output wave shape is not an exact replica of input then it is called as distortion
- There are three important distortions occurs inamplifiers
- 1.Frequency distortion : The gain of an amplifier is constantover a certain range of frequency band and reduces sharply in the lowand high frequencies this causes distortion of the output signal called frequency distortion
- 2. Phase or Delay distortion: phase distortionis said to occur if the phase relationship between output and input is notsame.
- The time of transmission or delay introduced by the amplifier is different for various frequencies.
- Harmonic or Amplitude distortion :this type of distortion is said to occur when the output contains new frequency components that are not present in the input signal.

CE,CB,CC Amplifiers comparison

- Property
- Ri Low(about 100 $)$ Moderate(about 750Ω) High(about750k Ω)
- Ro High (about $450 \mathrm{k} \Omega$) Moderate(about $45 \mathrm{k} \Omega$) Low(about 25Ω)
- Ai
- Av about 150
- Phase shift b/w i/p \& o/p
(Degrees)
0 or 360
180
0 or 360
- Applications:
for high frequency circuits, for AF circuits, for impedance matedhing

Unit-1 (b)
 FEEDBACK AMPLIFIERS

Agenda

> Introduction
> Need of Feedback
> Types of Feedback
> Classification of Feedback
> Working and Analysis
> Results
> Applications

Feedback

For negative feedback: $\beta A>0$; For positive feedback: $\beta A<0$

Advantages of Negative feedback

- Negative feedback can reduce the gain of the amplifier, but it has many advantages, such as gain stabilization, reduction of nonlinear distortion and noise, control of input and output impedances, and extension of bandwidth.

Gain stabilization

$$
A_{f}=\frac{A}{(1+\beta A)} \quad \frac{d A_{f}}{A}=\frac{1}{(1+\beta A)^{2}} \quad \frac{d A_{f}}{A_{f}}=\frac{1}{(1+\beta A)} \frac{d A}{A}
$$

Therefore percentage change in A_{f} (due to variations in some circuit parameter) is reduced by $(1+\beta A)$ times compared to without feedback.|

Introduction

> A portion the output signal is fed back to the input of the is called "Feedback Amplifier".
> Feedback is very useful in amplifiers in electronics.

Need of Feedback

> Practical realization of precision VLSI circuits is complicated

Why---

1. physical circuit components deviate from nominal values due to temperature, process variation
2. circuit performance changes with frequency, load variations

There are two types of feedbacks.

\author{

1. Positive feedback
 Source signal +feedback Signal \rightarrow circuit
}
2. Negative feedback

Source signal - feedback Signal input \rightarrow circuit

Positive Feedback

> If the feedback signal X_{f} is in phase with input signal Xs, then the type of feedback is said to be positive (or) regenerative feedback.

For positive feedback, $\mathrm{Xi}=\mathrm{X}_{\mathrm{s}}+\mathrm{X}_{\mathrm{f}}$

$$
X_{s}=X_{i}-X_{f}
$$

Gain of the amplifier with feedback,

$$
A_{f}=\frac{A}{1-A \beta}
$$

> The product of the open loop gain and the feedback factor is called the Loop gain $=A B$.
> Gain is Infinity.
> Positive feedback increases the instability of amplifier, reduces the bandwidth and increases distortion and noise.

Negative Feedback

> If the feedback signal X_{f} is out of phase with input signal Xs , then the type of feedback is said Negative (or) de-generative feedback.

Therefore, for Negative feedback, $\quad X_{i}=X_{s}-X_{f}$

$$
\mathrm{X}_{\mathrm{s}=}=\mathrm{X}_{\mathrm{i}}+\mathrm{X}_{\mathrm{f}} \quad A_{f}=\frac{A}{1+A \beta}
$$

Gain of the amplifier with feedback,
> If $|A \beta| \gg 1 \quad$ then $_{A_{f}} \approx 1 / \beta \quad$ where B is a feedback ratio. The gain may be made to depend entirely the feedback network.
> If the feedback network contains only stable passive elements, the gain of the amplifier using Negative feedback is also stable.

Effects of the product $A B$

- If $A B$ is negative
- If $A B$ is negative and less than $1,(1+A B)<1$
- In this situation G > A and we have positive feedback
- If $A B$ is positive
- If $A B$ is positive then $(1+A B)>1$

In this situation G < A and we have negative feedback

- If $A B$ is positive and $A B \gg 1$
gain is inde $\quad G=\frac{A}{1+A B} \approx \frac{A}{A B}=\frac{1}{B}$ in A

Negative Feedback Properties

- Negative feedback takes a sample of the output signal and applies it to the input to get several desirable properties. In amplifiers, negative feedback can be applied to get the following properties
- Desensitized gain : gain less sensitive to component variations
Gain of the amplifier with feedback, $\quad A_{f}=\frac{X_{0}}{X_{s}}=\frac{A X_{i}}{X_{i}+X_{f}}=\frac{A X_{i}}{X_{i}+\beta X_{0}}=\frac{A X_{i}}{X_{i}+A \beta X_{i}}=\frac{A}{1+A \beta}$

$$
A_{f}=\frac{A}{1+A \beta}
$$

Differentiate on both sides then, we get

$$
\frac{d A_{f}}{A_{f}}=\frac{d A}{A} \cdot \frac{1}{(1+A \beta)}
$$

Sensitivity $\quad \frac{d A_{f}}{A_{f}}=\frac{1}{\frac{d A}{A}}=\frac{1}{1+A \beta}$

The Effects of Negative Feedback

- Effects on Gain
- negative feedback produces a gain given by

$$
\mathrm{G}=\frac{A}{1+A B}
$$

- there, feedback reduces the gain by a factor of $1+A B$
- this is the price we pay for the beneficial effects of negative feedback

- Effects on frequency response

- from earlier lectures we know that all amplifiers have a limited frequency response and bandwidth
- with feedback we make the overall gain largely independent of the gain of the active amplifier
- this has the effect of increasing the bandwidth, since the gain of the feedback amplifier remains constant as the gain of the active amplifier falls
- however, when the open-loop gain is no longer much greater than the closed-loop gain the overall gain falls
- therefore the bandwidth increases as the gain is reduced with feedback
- in some cases the gain x bandwidth $=$ constant

- Effects on input and output resistance
- Negative feedback can either increase or decrease the input or output resistance depending on how it is used.
-if the output voltage is fed back this tends to make the output voltage more stable by decreasing the output resistance
- if the output current is fed back this tends to make the output current more stable by increasing the output resistance
- if a voltage related to the output is subtracted from the input voltage this increases the input resistance
- if a current related to the output is subtracted from the input current this decreases the input resistance
- the factor by which the resistance changes is $(1+A B)$
- Effects on distortion and noise
- many forms of distortion are caused by a non-linear amplitude response
- that is, the gain varies with the amplitude of the signal
- since feedback tends to stabilise the gain it also tends to reduce distortion - often by a factor of ($1+A B$)
- noise produced within an amplifier is also reduced by negative feedback - again by a factor of ($1+A B$)
- note that noise already corrupting the input signal is not reduced in this way - this is amplified along with the signal

Contd...

Extend bandwidth of amplifier

1. The product o voltage gain and bandwidth of an amplifier without feedback and with feedback remains the same.i.e., $\mathrm{A}_{\mathrm{f} .}\left(\mathrm{B} . \mathrm{W}_{\mathrm{f}}\right)=\mathrm{A}$. (B.W)

Contd...

- Reduce nonlinear distortion : output proportional to input (constant gain independent of signal level)
- Reduce effect of noise
- Control input and output impedances by applying appropriate feedback topologies

Application of Negative Feedback

Tyoltage sampling networks network

Current (loop)

Types of Mixers

Ideal Single-Loop Feedback Amplifie

Comparator

Classification of Amplifiers

> Based on the magnitudes of the of the input and output impedance, amplifiers are divided into four type

1. Voltage Amplifier
2. Current Amplifier
3. Transconductance Amplifier
4. Transresistance Amplifier

Voltage Amplifier

Transconductance Amplifier

Current Amplifier

Transresistance Amplifier

Basic Feedback Topologies

Depending on the input signal (voltage or current) to be amplified and form of the output (voltage or current), amplifiers can be classified into four categories. Depending on the amplifier category, one of four types of feedback structures should be used.
(Type of Feedback)
(1) Series (Voltage)
(2) Series (Voltage)
(3) Shunt (Current)
(4) Shunt (Current)
(Type of Sensing)
Shunt (Voltage) (Voltage Amplifier)
Series (Current) (TransconductanceAmplifier)
Shunt (Voltage) (Transresistance Amplifier)
Series (Current) (CurrentAmplifier)

The four basic feedback topologies: (a) voltage-sampling series mixing (series-shunt) topology; (b) current-sampling shunt mixing (shunt-series) topology; (c) current-sampling serieess-mixing (series-series) topology; (d) voltage-sampling shunt-mixing (shunt-shunt) topology.

Gain without feedback	A	$\frac{V_{o}}{V_{t}}$	$\frac{V_{o}}{I_{t}}$	$\frac{I_{o}}{V_{I}}$	$\frac{I_{o}}{I_{t}}$
Feedback	β	$\frac{V_{f}}{V_{o}}$	$\frac{I_{f}}{V_{o}}$	$\frac{V_{f}}{I_{o}}$	$\frac{I_{f}}{I_{o}}$
Gain with feedback	A_{f}	$\frac{V_{o}}{V_{s}}$	$\frac{V_{o}}{I_{s}}$	$\frac{I_{o}}{V_{s}}$	$\frac{I_{o}}{I_{s}}$

Type of feedback	Input impedance $(1+A \beta)$	Output impedance $(1+A \beta)$
Voltage Series	Increased	Decreased
Voltage Shunt	Decreased	Decreased
Current Shunt	Decreased	Increased
Current Series	Increased	Increas ed

Feedback Amplifier

Feedback amplifier	Source signal	Output signal	Transfer function	Input Resistance	Output Resistance
Series-Shunt (voltage amplifier)	Voltage	Voltage	$A_{v f}=\frac{A_{v}}{1+\beta_{v} A_{v}}$	$\left(1+\beta_{v} A_{v}\right) R_{i}$	$\frac{R_{o}}{\left(1+\beta_{v} A_{v}\right)}$
Shunt-Series (current amplifier)	Current	Current	$A_{i f}=\frac{A_{i}}{1+\beta_{i} A_{i}}$	$\frac{R_{i}}{\left(1+\beta_{i} A_{i}\right)}$	$\left(1+\beta_{i} A_{i}\right) R_{o}$
Series-Series (transconductance amplifier)	Voltage	Current	$A_{g f}=\frac{A_{g}}{1+\beta_{g} A_{g}}$	$\left(1+\beta_{g} A_{g}\right) R_{i}$	$\left(1+\beta_{g} A_{g}\right) R_{o}$
Shunt-Shunt (transresistance amplifier)	Current	Voltage	$A_{z f}=\frac{A_{z}}{1+\beta_{z} A_{z}}$	$\frac{R_{i}}{\left(1+\beta_{z} A_{z}\right)}$	$\frac{R_{o}}{\left(1+\beta_{z} A_{z}\right)}$

Voltage Series Feedback Amplifier(Practical)

99

Fig: Transient response

Fig: Frequency Response

Current Shunt Feedback Amplifier(Practical)

Fig: Transient Response

Fig: Frequency Response

Methodology

Step 1: Identify topology. (Type of feedback).

To find the type of sampling network

- By shorting the output i.e., $\mathrm{Vo}=0$, if feedback signal $\left(\mathrm{X}_{\mathrm{f}}\right)$ becomes zero then we can say that it is "Voltage Sampling".
- By opening the output loop i.e., lo=0, if feedback signal $\left(X_{f}\right)$ becomes zero then we can say that it is "Current Sampling".

To find the type of mixingnetwork.

- If the feedback signal is subtracted from the input voltage source, then wecan say that it is "Series Mixing".
- If the feedback signal is subtracted from the input current source, then we can say that it is "Shunt Mixing".

Step 2: To find the input circuit.

For voltage sampling $\mathrm{Vo}=0$
For current sampling $\mathrm{lo}=0$

Step 3: To find the output circuit.

For series mixing $\mathrm{l}_{\mathrm{i}}=0$
For shunt mixing $\mathrm{V}_{\mathrm{i}}=0$

Step 4: Replace the active device by its h-parameter model at low frequency.

Step 5: Find the open loop gain (without feedback), ' A ' of the amplifier. Step 6: Indicate X_{f} and X_{o} on the circuit and evaluate.
Step 7: From ' A ' and ' B ' find $A_{f}, R_{i f}, R_{o f}$.

Feedback

For negative feedback: $\beta A>0$; For positive feedback: $\beta A<0$

Advantages of Negative feedback

> Negative feedback can reduce the gain of the amplifier, but it has many advantages, such as gain stabilization, reduction of nonlinear distortion and noise, control of input and output impedances, and extension of bandwidth.

Gain stabilization

$$
A_{f}=\frac{A}{(1+\beta A)} \quad \frac{d A_{f}}{A}=\frac{1}{(1+\beta A)^{2}} \quad \frac{d A_{f}}{A_{f}}=\frac{1}{(1+\beta A)} \frac{d A}{A}
$$

Therefore percentage change in A_{f} (due to variations in some circuit parameter) is reduced by $(1+\beta A)$ times compared to without feedback.|

UNIT-II:
 BJT \& FET Frequency Response

BJT and FET Frequency Response Characteristics:

- Logarithinssumd Decibels:

Logarithms takento the base 10 arerefefredto as common logarithms, while logarithms taken to the base eare efefred to as naturad logarithms. Ins summary. Some eelationships hold true for logarithms to anybase

Common logarithm: $x=\log _{10} a$

Natural logarithm: $y=\log _{e} a$
The two are related by

$$
\log _{e} a=2.3 \log _{10} a
$$

Some eelationships hold true for logarithms to any base

The background surrounding the term decibel(dB) has its origin in the established fact that power and audio levels are e elated on a logarithmic basis.
[
That is, an increase in power level, say 4 to 16 W , does not tesult in an audiolevel increase by a factor of $16 / 4=4$. It will inctease by a factor of 2 as derived from the power of 4 in the following manner: (4) ${ }^{2}=16$.

The term bel was derived from the sumame of Alexander Graham Bell. For standardization, the bel (B) was defined by the following equation to relate power levels P_{1} and P_{2} :

$$
G=\log _{10} \frac{P_{2}}{P_{1}}
$$

bel!

There exists a second equation for decibels that is applied frequently. It can be best described through the system with $R i$, as an inputresistance.

$$
G_{\mathrm{dB}}=10 \log _{10} \frac{P_{2}}{P_{1}}=10 \log _{10} \frac{V_{2}^{2} / R_{i}}{V_{1}^{2} / R_{i}}=10 \log _{10}\left(\frac{V_{2}}{V_{1}}\right)^{2}
$$

and

$$
G_{\mathrm{dB}}=20 \log _{10} \frac{V_{2}}{V_{1}}
$$

$$
\mathrm{dB}
$$

One of the advantages of the logarithmic relationship is the manner in which it can be applied to cascaded stages. In words, the equation states that the decibel gain of a cascaded system is simply the sum of the decibel gains of each stage.

General Frequency Considerations:

$>$ The frequency of the applied signal can have a pronounced effect on the response of a single-stage or multistage network. The analysis thus far has been for the mid frequency spectrum.
$>$ At low frequencies, we shall find that the coupling and bypass capacitors can no longer be replaced by the short-circuit approximation because of the increase in reactance of these elements.
$>$ The frequency-dependent parameters of the small-signal equivalent circuits and the stray capacitive elements associated with the active device and the network will limit the high-frequency response of the system.
$>$ An increase in the number of stages of a cascaded system will also limit both the high- and low-frequency responses.
>For any system, there is a band of frequencies in which the magnitude of the gain is either equal or relatively close to the mid band value.
> To fix the frequency boundaries of relatively high gain, 0.707 Avirid was chosen to be the gain at the cutoff levels.
> The corresponding frequencies $f 1$ and $f 2$ are generally called the corner, cutoff, band, break, or half-power frequencies.
$>$ The multiplier 0.707 was chosen because at this level the output power is half the mid band power output, that is, at mid frequencies.
> The bandwidth (or pass band) of each system is determined by f i and $f 2$, that is, bandwidth (BW) $=f_{2}-f_{1}$
$>$ For applications of a communications nature (audio, video), a decibel plot of the voltage gain versus frequency is more useful.
> Before obtaining the logarithmic plot, however, the curve is generally normalized as shown n this figure, the gain at each frequency is divided by the mid band value. Obviously, the mid band value is then 1 as indicated. At the half-power frequencies, the resulting level is $0.707=1 / .2$

$>$ Fig. Normalized gain versus frequency plot.

$>$ Fig. Decibel plot of the normalized gain versus frequency plot

General Frequency Considerations

The frequency respansee of an amplifier refers to the frequency range in which the amplifier will operate with negligible effects from capacitors and device internal capacitance. This range of frequencies can be called the midr-namge

- At frequencies above and below the midrange, capacitance and any inductance will affect the gain of the amplifier.
- At low frequencies the coupling and bypass capacitors lower the gain.
- At high frequencies stray capacitances associated with the active device lower the gain.
- Also, cascading amplifiers limits the gain at high and low frequencies.

Bode Plot

A Bode plot indicates the frequency response of an amplifier.

The horizontal scale indicates the frequency (in Hz) and the vertical scale indicates the gain (in dB).

Cutoff Frequencies

The mid-range frequency range of an amplifier is called the bandwidth of the amplifier.

The bandwidth is defined by the lower and upper cutoff frequencies.

Cutoff- any frequency at which the gain has dropped by $\mathbf{3 d B}$.

BJT Amplifier Low-Frequency Resporse

At low frequencies, coupling capacitor $\left(\mathrm{C}_{\mathrm{S}}, \mathrm{C}_{\mathrm{C}}\right)$ and bypass capacitor $\left(\mathrm{C}_{\mathrm{E}}\right)$ reactances affect the circuit impedances.

Coupling Capacitor (C_{S})

The cutoff frequency due to C_{S} can be calculated by

$$
f_{L s}=\frac{1}{2 \pi\left(R_{s}+R_{i}\right) C_{s}}
$$

where

$$
\mathbf{R}_{\mathbf{i}}=\mathbf{R}_{1}\left\|\mathbf{R}_{2}\right\| \boldsymbol{\beta} \mathbf{r}_{\mathbf{e}}
$$

Coupling Capacitor (\mathbf{C}_{C})

The cutoff frequency due to C_{C} can be calculated with

$$
f_{L C}=\frac{1}{2 \pi\left(R_{0}+R_{L}\right) C_{c}}
$$

where

$$
\mathbf{R}_{\mathbf{0}}=\mathbf{R}_{\mathbf{C}} \| \mathbf{r}_{\mathbf{0}}
$$

Bypass Capacitor ($\mathrm{C}_{\text {E }}$)

The cutoff frequency due to C_{E} can be calculated with

$$
f_{L E}=\frac{1}{2 \pi R_{e} C_{E}}
$$

where

$$
\mathbf{R}_{\mathrm{e}}=\mathbf{R}_{\mathbf{E}} \|\left(\frac{\mathbf{R}_{\mathbf{s}}^{\prime}}{\boldsymbol{\beta}}+\mathbf{r}_{\mathrm{e}}\right)
$$

and

$$
\mathbf{R}_{\mathrm{s}}^{\prime}=\mathbf{R}_{\mathrm{s}}\left\|\mathbf{R}_{\mathbf{1}}\right\| \mathbf{R}_{\mathbf{2}}
$$

BJT Amplifier Low-Frequency Respo

The Bode plot indicates that each capacitor may have a different cutoff frequency.

It is the device that has the highest lower cutoff frequency (f_{L}) that dominates the overall frequency response of the
 amplifier.

Roll-Off of Gain in the Bode Plo!

The Bode plot not only indicates the cutoff frequencies of the various capacitors it also indicates the amount of attenuation (loss in gain) at these frequencies.

The amount of attenuation is sometimes referred to as roll-off.

The roll-off is described as dB loss-per-octave or dB loss-per-decade.

Roll-off Rate (-dB/Decade

=dib/decade refers to the attenuation for every 10 -fold change in frequency.

For attenuations at the lowfrequency end, it refers to the loss in gain from the lower cutoff frequency to a frequency that is one-tenth the cutoff value.

In this example:
$\mathrm{f}_{\mathrm{LS}}=9 \mathrm{kHz}$ gain is 0 dB
$\mathrm{f}_{\mathrm{LS}} / 10=.9 \mathrm{kHz}$ gain is $\mathbf{- 2 0 \mathrm { dB }}$ Thus the roll-off is $20 \mathrm{~dB} /$ decade The gain decreases by $\mathbf{- 2 0 d B} /$ decade

Roll-Off Rate (-dB/Octave)

=dB/octave refers to the attenuation for every 2-fold change in frequency.
For attenuations at the lowfrequency end, it refers to the loss in gain from the lower cutoff frequency to a frequency one-half the cutoff value.

In this example:
$\mathrm{f}_{\mathrm{LS}}=9 \mathrm{kHz}$ gain is 0 dB
$f_{L S} / 2=4.5 \mathrm{kHz}$ gain is -6 dB
Therefore the roll-off is $\mathbf{6 d B} / o c t a v e$.

This is a little difficult to see on this graph because the horizontal scale is a logarithmic scale.

FET Amplifier Low-Frequeney Re po ose

At low frequencies, coupling capacitor $\left(\mathrm{C}_{\mathrm{G}}\right.$, C_{C}) and bypass capacitor $\left(\mathrm{C}_{\mathrm{s}}\right)$ reactances affect the circuit impedances.

Coupling Capacitor ($\mathbf{C}_{\mathscr{G}}$)

The cutoff frequency due to C_{G} can be calculated with

$$
f_{L C}=\frac{1}{2 \pi\left(R_{s i g}+R_{i}\right) C_{G}}
$$

where

$$
\mathbf{R}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Coupling Capacitor ($\mathbf{C}_{\mathbf{C}}$)

The cutoff frequency due to C_{C} can be calculated with

$$
f_{L C}=\frac{1}{2 \pi\left(R_{0}+R_{L}\right) C_{C}}
$$

where

$$
\mathbf{R}_{\mathbf{0}}=\mathbf{R}_{\mathbf{D}} \| \mathbf{r}_{\mathbf{d}}
$$

Bypass Capacitor (C_{8})

The cutoff frequency due to C_{S} can be calculated with

$$
\mathbf{f}_{\mathrm{LS}}=\frac{1}{2 \pi R_{\mathrm{eq}} C_{S}}
$$

where

$$
\mathbf{R}_{\mathrm{eq}}=\mathbf{R}_{\mathrm{S}} \|\left.\frac{1}{\mathbf{g}_{\mathrm{m}}}\right|_{\mathbf{r}_{\mathrm{d}} \cong \infty \Omega}
$$

FET Amplifier Low-Frequency Reppose

The Bode plot indicates that each capacitor may have a different cutoff frequency.

The capacitor that has the highest lower cutoff frequency (f_{L}) is closest to the actual cutoff frequency of the amplifier.

Miller Capacitance

Any p - n junction can develop capacitance. In a BJT amplifier, this capacitance becomes noticeable across:

- The base-collector junction at high frequencies in common-emitter BJT amplifier configurations
- The gate-drain junction at high frequencies in commonsource FET amplifier configurations.

These capacitances are represented as separate input and output capacitances, called the Miller Capmaitances.

Miller Input Capacitance (\mathbf{C}_{M})

$$
\mathbf{C}_{\mathbf{M i}}=\left(1-\mathbf{A}_{\mathbf{v}}\right) \mathrm{C}_{\mathbf{f}}
$$

Note that the amount of Miller capacitance is dependent on interelectrode capacitance from input to output (C_{f}) and the gain $\left(\mathrm{A}_{\mathrm{v}}\right)$.

Miller Output Capacitance ($\mathbf{C}_{\mathrm{Ma}_{\mathrm{w}}}$)

If the gain $\left(\mathrm{A}_{\mathrm{v}}\right)$ is considerably greater than 1 , then

$$
\mathrm{C}_{\mathrm{Mo}} \cong \mathrm{C}_{\mathrm{f}}
$$

BJT Amplifier High-Frequency Response

Capacitances that affect the high-frequency response are

- Junction capacitances $\mathrm{C}_{\text {be }}$, $\mathrm{C}_{\mathrm{bc}}, \mathrm{C}_{\mathrm{ce}}$
- Wiring capacitances
$\mathrm{C}_{\text {wi }}, \mathrm{C}_{\text {wo }}$
- Coupling capacitors $\mathrm{C}_{\mathrm{S}}, \mathrm{C}_{\mathrm{C}}$

- Bypass capacitor
C_{E}

Input Network ($f_{\text {Hi }}$) High-Frequency Cutiff

$$
f_{H i}=\frac{1}{2 \pi R_{T h i} C_{i}}
$$

where

$$
\mathbf{R}_{\mathbf{T h i}}=\mathbf{R}_{\mathbf{s}}\left\|\mathbf{R}_{\mathbf{1}}\right\| \mathbf{R}_{\mathbf{2}} \| \mathbf{R}_{\mathbf{i}}
$$

and

$$
\begin{aligned}
\mathbf{C}_{i} & =\mathbf{C}_{\mathrm{Wi}}+\mathbf{C}_{\mathrm{be}}+\mathbf{C}_{\mathrm{Mi}} \\
& =\mathbf{C}_{\mathrm{wi}}+\mathbf{C}_{b e}+\left(\mathbf{1}-\mathbf{A}_{\mathrm{v}}\right) \mathbf{C}_{\mathrm{bc}}
\end{aligned}
$$

Output Network ($f_{\text {Ho }}$) High-Freq Cutoff

$$
f_{H 0}=\frac{1}{2 \pi R_{T h o} C_{0}}
$$

where
$\mathbf{R}_{\mathbf{T h o}}=\mathbf{R}_{\mathbf{C}}\left\|\mathbf{R}_{\mathbf{L}}\right\| \mathbf{r}_{\mathbf{o}}$
and

$$
C_{0}=C_{W o}+C_{c e}+C_{M o}
$$

$\mathbf{h}_{\text {fe }}($ or β) Variation

BJT Amplifier Frequency Respus:

Note the highest lower cutoff frequency (f_{L}) and the lowest upper cutoff frequency $\left(f_{H}\right)$ are closest to the actual response of the amplifier.

FET Amplifier High-Frequency Response

Capacitances that affect the high-frequency response are

- Junction capacitances

$$
\mathrm{C}_{\mathrm{gs}}, \mathrm{C}_{\mathrm{gd}}, \mathrm{C}_{\mathrm{ds}}
$$

- Wiring
capacitances
$\mathrm{C}_{\text {wi }}, \mathrm{C}_{\text {wo }}$

- Coupling capacitors
$\mathrm{C}_{\mathrm{G}}, \mathrm{C}_{\mathrm{C}}$
- Bypass

$$
\text { capacitor } \mathrm{C}_{\mathrm{S}}
$$

Input Network ($\mathbf{f}_{\text {in }}$) High-Frequency Cutoff

$$
\begin{aligned}
& f_{H i}=\frac{1}{2 \pi R_{T h i} C_{i}} \\
& \mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{Wi}}+\mathrm{Cgs}_{\mathrm{g}}+\mathrm{C}_{\mathrm{Mi}} \\
& \mathbf{C}_{\mathbf{M i}}=\left(\mathbf{1}-\mathrm{A}_{\mathbf{v}}\right) \mathbf{C}_{\mathbf{g d}} \\
& \mathbf{R}_{\mathbf{T h i}}=\mathbf{R}_{\text {sig }} \| \mathbf{R}_{\mathbf{G}}
\end{aligned}
$$

Output Network ($f_{\text {HO }}$) High-Frequency Cutoff

$$
\begin{aligned}
f_{H o} & =\frac{1}{2 \pi R_{\text {Tho }} C_{0}} \\
C_{0} & =C_{W_{0}}+C_{d s}+C_{M o} \\
C_{M o} & =\left(1-\frac{1}{A_{v}}\right) C_{C_{g d}} \\
R_{T h o} & =R_{D}\left\|R_{L}\right\| r_{d}
\end{aligned}
$$

Multistage Frequency Effect:

Each stage will have its own frequency response, but the output of one stage will be affected by capacitances in the subsequent stage. This is especially so when determining the high frequency response. For example, the output capacitance (C_{0}) will be affected by the input Miller Capacitance $\left(C_{M i}\right)$ of the next stage.

Multistage Amplifier Frequency

Once the cutoff frequencies have been determined for each stage (taking into account the shared capacitances), they can be plotted.

Note the highest lower cutoff frequency (f_{L}) and the lowest upper cutoff frequency $\left(f_{H}\right)$ are closest to the actual response of the amplifier.

Square wave Testing:

$>$ Experimentally, the sense for the frequency response can be determined by applying a square wave signal to the amplifier and noting the output response.
> The reason for choosing a square-wave signal for the testing process is best described by examining the Fourier series expansion of a square wave composed of a series of sinusoidal components of different magnitudes and frequencies.
> The summation of the terms of the series will result in the original waveform. In other words, even though a waveform may not be sinusoidal, it can be reproduced by a series of sinusoidal terms of different frequencies and magnitudes.
$>$ Since the ninth harmonic has a magnitude greater than 10% of the fundamental term, the fundamental term through the ninth harmonic are the major contributors to the Fourier series expansion of the square-wave function.

In order to determine the frequency response of an amplifier by experimentation, you must apply a wide range of frequencies to the amplifier.

One way to accomplish this is to apply a square wave. A square wave consists of multiple frequencies (by Fourier analysis: it consists of odd harmonics).

Square Wave Response Waveform.

If the output of the amplifier is not a perfect square wave then the amplifier is 'cutting' off certain frequency components of the square wave.

UNIT-III(a): Multivibrators

> A MULTIVIBRATOR is an electronic circuit that generates square, rectangular, pulse waveforms, also called nonlinear oscillators or function generators.
> Multivibrator is basically a two amplifier circuits arranged with regenerative feedback.

There are three types of Multivibrator:
> Astable Multivibrator: Circuit is not stable in either state—it continuously
> Monostable Multivibrator: One of the state is stable but the other is not. (Application in Timer)
$>$ Bistable Multivibrator: Circuit is stable in both the state and will remain in either state indefinitely. The circuit can be flipped from one state to the other by an external event or trigger. (Application in Flip flop)

Multivibrators

A multivibrator is used to implement simple two-state systems such as oscillators, timers and flip-flops.

Three types:
-Astable - neither state is stable.
Applications: oscillator, etc.

- Monostable - one of the states is stable, but the other is not; Applications: timer, etc.
-Bistable - it remains in either state indefinitely.
Applications: flip-flop, etc.

Astable Multivibrator

- Consists of two amplifying devices cross-coupled by resistors and capacitors.
- Typically, $R_{2}=R_{3}, R_{1}=R_{4}, C_{1}=C_{2}$ and $R_{2} \gg R_{1}$.
- The circuit has two states
- State 1: $\mathrm{V}_{\mathrm{C} 1}$ LOW, $\mathrm{V}_{\mathrm{C} 1} \mathrm{HIGH}, \mathrm{Q}_{1} \mathrm{ON}$ (saturation) and $\mathrm{Q}_{2} \mathrm{OFF}$.
- State 2: $\mathrm{V}_{\mathrm{C} 1} \mathrm{HIGH}, \mathrm{V}_{\mathrm{C} 2}$ LOW, Q_{1} OFF and $\mathrm{Q}_{2} \mathrm{ON}$ (saturation).
- It continuously oscillates from one state to the other.

Basic Mode of Operation

State 1:

- $V_{B 1}$ charges up through R_{3} from below ground towards $V_{C C}$.
- When $\mathrm{V}_{\mathrm{B} 1}$ reaches V_{ON} (of $\mathrm{V}_{\mathrm{BE},} \approx 1 \mathrm{~V}$), Q_{1} turns on and pulls $\mathrm{V}_{\mathrm{C} 1}$ from $V_{C C}$ to $V_{\text {CESat }} \approx 0 \mathrm{~V}$.
- Due to forward-bias of the $B E$ junction of $Q_{1}, V_{B 1}$ remains at $1 V$.

Basic Mode of Operation

State 1 (cont'd):

- As C_{1} 's voltage cannot change instantaneously, $\mathrm{V}_{\mathrm{B} 2}$ drops by V_{CC}.

Basic Mode of Operation

State 1 (cont'd):

- Q_{2} turns off and $V_{C 2}$ charges up through R_{4} to $V_{C C}$ (speed set by the time constant $\mathrm{R}_{4} \mathrm{C}_{2}$).
- $V_{B 2}$ charges up through R_{2} towards $V_{C C}$ (speed set by $R_{2} C_{1}$, which is slower than the charging up speed of $\mathrm{V}_{\mathrm{C} 2}$).

Basic Mode of Operation

State 2:

- When $\mathrm{V}_{\mathrm{B} 2}$ reaches $\mathrm{V}_{\mathrm{ON}}, \mathrm{Q}_{2}$ turns on and pulls $\mathrm{V}_{\mathrm{C} 2}$ from V_{CC} to OV .
- $\mathrm{V}_{\mathrm{B} 2}$ remains at V_{ON}.

Basic Mode of Operation

State 2 (cont'd):

- As C_{2} 's voltage cannot change instantaneously, $\mathrm{V}_{\mathrm{B} 1}$ drops by V_{CC}.

Basic Mode of Operation

State 2 (cont'd):

- Q_{1} turns off and $V_{C 1}$ charges up through R_{1} to $V_{C C}$, at a rate set by $\mathrm{R}_{1} \mathrm{C}_{1}$.
- $V_{B 2}$ charges up through R_{3} towards $V_{C C}$, at a rate set by $R_{3} C_{2}$, which is slower.

Basic Mode of Operation

Back to state 1:

- When $\mathrm{V}_{\mathrm{B} 1}$ reaches Von, the circuit enters state 1 again, and the process repeats.

Initial Power-Up

- When the circuit is first powered up, neither transistor is ON.
- Parasitic capacitors between B and E of Q_{1} and Q_{2} are charged up towards $V_{C C}$ through R_{2} and R_{3}. Both $V_{B 1}$ and $V_{B 2}$ rise.
- Inevitable slight asymmetries will mean that one of the transistors is first to switch on. This will quickly put the circuit into one of the above states, and oscillation will ensue.

Multivibrator Frequency

$$
\begin{aligned}
v_{B 1} & =\left(V_{o N}-V_{C C}\right)+\left(2 V_{C C}-V_{o n}\right)\left(1-e^{-t / R_{B} C_{2}}\right) \\
& \approx-V_{c C}+2 V_{c C}\left(1-e^{-t / R_{1} C_{2}}\right) \quad \text { for } V_{o N} \ll V_{c C}
\end{aligned}
$$

At $t=\mathrm{T} / 2, \mathrm{~V}_{\mathrm{B} 1}=\mathrm{V}_{\mathrm{ON}}: \quad V_{O N}=-V_{C C}+2 V_{C C}\left(1-e^{-T / 2 R_{3} C_{2}}\right)$

Multivibrator Frequency

$$
\begin{aligned}
& V_{O N}=-V_{C C}+2 V_{C C}\left(1-e^{-T / 2 R_{G} C_{2}}\right) \\
& \therefore V_{C C} \approx 2 V_{C C}\left(1-e^{-T / 2 R_{B} C_{2}}\right) \quad \text { for } V_{o v} \ll V_{C C} \\
& \therefore 1=2\left(1-\mid e^{-T / 2 R_{3} C_{2}}\right) \\
& \therefore e^{-T / 2 R_{3} C_{2}}=0.5 \\
& \therefore-\frac{T}{2 R_{3} C_{2}}=-\ln 2 \\
& \therefore T=2(\ln 2) R_{3} C_{2} \\
& \text { or } f=\frac{1}{2(\ln 2) R_{3} C_{2}} \quad \begin{array}{l}
\text { For the above component values, } \\
f=1.53 \mathrm{kHz} .
\end{array}
\end{aligned}
$$

Switching time \& Frequency for Astable Multivibrators

- Time period of wave depends only upon the discharge of capacitors C_{1} and C_{2}.
- Consider $\mathrm{V}_{\mathrm{B} 2}$ during discharge of $\mathrm{C}_{2}: V_{B 2}=V_{C C}-i_{C 1} R_{2}$
- Since the capacitor C_{1} charged up to V_{CC}, the initial discharge current will be

$$
\left.\begin{array}{l}
i_{C 1}=\frac{V_{C C}+V_{C C}}{R_{2}} \quad \text { Current decays exponentially with a time constant of } \mathrm{R}_{2} \mathrm{C}_{1}
\end{array} V_{B 2}=V_{C C}-2 V_{C C}\left(e^{-t / R_{2} C_{1}}\right) \quad \begin{array}{l}
\text { Transistor will switch when } \mathrm{V}_{\mathrm{B} 2}=0 \mathrm{~V} \text { (actually } \\
\left.0.7 \mathrm{~V} \text { for Si which is small compare to } \mathrm{V}_{\mathrm{cc}}\right)
\end{array}\right] \quad 2 e^{-t / R_{2} C_{1}}=1 \quad t=T_{2}=R_{2} C_{1} \ln (2) .
$$

where $T 2$ is the off time for transistor Q_{2}

Switching time \& Frequency for Astable Multivibrators

- Similarly off time for transistor Q_{1} can be obtained.

$$
t=T_{1}=R_{3} C_{2} \ln (2)
$$

> Total time period T :

$$
T=T_{1}+T_{2}=\left[R_{3} C_{2}+R_{2} C_{1}\right] \ln (2)=0.694\left(R_{3} C_{2}+R_{2} C_{1}\right)
$$

- If $\mathrm{R} 2=\mathrm{R} 3=\mathrm{R}, \mathrm{C} 1=\mathrm{C} 2=\mathrm{C}$ then $T=1.4 R C$
- Frequency of oscillation is given by

$$
f=\frac{1}{T}=\frac{0.7}{R C}
$$

Mono-stable Multivibrator

- Capacitive path between $\mathrm{V}_{\mathrm{C} 2}$ and $\mathrm{V}_{\mathrm{B} 1}$ removed.
- Stable for one state (state 2 here)
- Q_{1} OFF and $Q_{2} O N$
- $\mathrm{V}_{\mathrm{C} 1}$ High, $\mathrm{V}_{\mathrm{C} 2}$ Low
- When $V_{B 2}$ is momentarily pulled to ground by an external signal
- $V_{C 2}$ rises to $V_{C C}$
- Q_{1} turns on
- $\mathrm{V}_{\mathrm{C} 1}$ pulled down to OV
- Enter state 1 temporarily
- When the external signal goes high
- $V_{B 2}$ charges up to $V_{C C}$ through R_{2}
- After a certain time $T, V_{B 2}=V_{O N}, Q_{2}$ turns on
- $\mathrm{V}_{\mathrm{C} 2}$ pulled to $0 \mathrm{~V}, Q_{1}$ turns off
- Enters state 2 and remains there
- Can be used as a timer

Bi-stable Multivibrator

- Both capacitors removed

- Stable for either state 1 or 2
- Can be forced to either state by Set or Reset signals
- If Set is low,
- Q_{1} turns off
- $\mathrm{V}_{\mathrm{C} 1}\left(\mathrm{~V}_{\text {out }}\right)$ and $\mathrm{V}_{\mathrm{B} 2}$ rises towards V_{CC}
- Q_{2} turns on
- $\mathrm{V}_{\mathrm{C} 2}$ ($\mathrm{N}_{\text {out }}$) pulled to OV
- $\mathrm{V}_{\mathrm{B} 1}$ is latched to OV
- Circuit remains in state 2 until Reset is low
- If Reset is low
- Similar operation
- Circuit remains in state 1 until Set is low
- Behave as an RS flip-flop

UNIT-3(b)
 CLIPPERS AND CLAMPERS

UNIT-3.B
 CLIPPERS AND CLAMPERS

Non-Linear Wave Shaping

Definition: The process where by the form of a signal is changed by transmission through a non-linear network is called Non-linear Wave Shaping.

Types:
i. Clippers.
ii. Clampers.

Clippers and Clampers

- Diodes can be used in wave shaping circuits.
- Either:
* Limit or "clip" signal portions.

Clippers

- Shift the dc voltage level of a signal.

Clampers

Clippers

- Eliminate signal portions that are above or below a specified level.
- Application:

Limit input voltage to an electronic circuit to prevent component damage.

Let's again consider piecewise linear diode model

Forward bias

Reverse bias

Positive Shunt clipping with zero reference

 voltage

Iransfer characteristics equations:

$$
\begin{aligned}
& \left.\begin{array}{l}
V_{o}=0 \text { for } V_{i}>0 \\
V_{o}=V_{i} \text { for } V_{i}<0
\end{array}\right\} \quad \text { [Ideal] } \\
& V_{o}=V_{\gamma} \text { for } V_{i}>V_{\gamma} \\
& V_{o}=V_{i} \text { for } V_{i}<V_{\gamma}
\end{aligned} \quad \text { D - ON } \begin{aligned}
& \text { OFF }
\end{aligned}
$$

Positive Shunt clipping with positive

Iransfer characteristics equations:

$$
\begin{array}{lll}
& \mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\gamma} & \mathrm{D}-\mathrm{OFF} \\
=\mathrm{V}_{\mathrm{i}} & \mathrm{~V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\gamma} & \mathrm{D}-\mathrm{ON} \\
\mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\gamma} &
\end{array}
$$

Positive Shunt clipping with negative refere

 voltage

Iransfer characteristics equation:
$\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\gamma}-\mathrm{V}_{\mathrm{R}}$
D - ON
$\mathrm{V}_{\mathrm{O}}=$
$V_{\gamma}-V_{R}$
$\mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\gamma}-\mathrm{V}_{\mathrm{R}}$
D - OFF
$\mathrm{V}_{\mathrm{O}}=$ V_{i}

Negative Shunt clipping with zero referen

 voltage ${ }_{\text {Min }}^{\text {R }}$Iransfer characteristic equations:
$\mathrm{V}_{\gamma} \mathrm{V}_{\mathrm{i}}>-\mathrm{V} \gamma$
$D-$ OFF $\quad V_{O}=$
$V_{i}<-V_{\gamma}$
D - ON
V_{o}
$=-V_{\gamma}$

Negative Shunt clipping with positive

Iransfer characteristics equations:
$\mathrm{V}_{\gamma} \quad \mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\mathrm{R}^{-}} \mathrm{V}_{\gamma} \mathrm{D}-\mathrm{ON} \quad \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{R}^{-}}$

$$
V_{i}>V_{R}-V_{\gamma} D-O F F \quad V_{O}=V_{i}
$$

Negative Shunt clipping with negative

Iransfer characteristic equations:

$$
\begin{aligned}
\left.V_{R}\right) & V_{i}<-\left(V_{\gamma}+V_{R}\right) \\
& D-O N
\end{aligned} V_{0}
$$

Negative Series clipper with zero reference

Transfer characteristic equations:

$\left.\begin{array}{lll}\begin{array}{ll}\mathrm{V}_{\mathrm{i}}<0 & \mathrm{D}-\mathrm{OFF}\end{array} & \mathrm{V}_{0}=0 \\ \mathrm{~V}_{\mathrm{i}}>0 & \mathrm{D}-\mathrm{ON} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{i}}\end{array}\right\}$ Ideal Diode

CLIPPING 触 TWO INDEPENDENT LEVELS

Transfer characteristic equations:

Input (Vi)	Diode State	Output (Vo)
$\mathrm{V}_{\mathrm{i}} \leq \mathrm{V}_{\mathrm{R}_{1}}$	$\mathrm{D}_{1}-\mathrm{ON}, \mathrm{D}_{2}-\mathrm{OFF}$	
$\mathrm{V}_{\mathrm{R}_{1}}<\mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\mathrm{R}_{2}}$	$\mathrm{D}_{1}-$ OFF, $\mathrm{D}_{2}-$ OFF	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{R}_{1}}$
$\mathrm{~V}_{\mathrm{i}} \geq \mathrm{V}_{\mathrm{R}_{2}}$	$\mathrm{D}_{1}-$ OFF, $\mathrm{D}_{2}-\mathrm{ON}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{i}}$

CLAMPING CIRCUIT

- The need to establish the extremity of the positive (or) negative signal excursion at some reference level. When the signal is passed through a capacitive coupling network suc has lost its d.c. component. The clamping circuit introduces the d.c. components at the outside, for this reason the coupling circuits are referred to as d.c. restore (or) d.c. reinserter.
" Def : "A clamping circuit is one that takes an input waveform and provides an output i.e., faithful replica of its shape, but has one edge clamped to the zero voltage reference point.

There are two types of clamping circuits.

1) Negative clamping circuit.

- 2) Positive clampingcircuit.

Diode :- Clamper Positive Clamper

The circuit for a positive clamper is shown in the figure. During the negative half cycle of the input signal, the diode conducts and acts like a short circuit. The output voltage $V_{0} \Rightarrow 0$ volts . The capacitor is charged to the peak value of input voltage V_{m}. and it behaves like a battery. During the positive half of the input signal, the diode does not conduct and acts as an open circuit. Hence the output voltage $\mathrm{V}_{\mathrm{o}} \Rightarrow \mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{m}}$ This gives a positively clamped voltage.

Positive Clamper

$$
V_{o} \Rightarrow V_{m}+V_{m}=2 V_{m}
$$

Positive Clamper

Negative Clamper

During the positive half cycle the diode conducts and acts like a short circuit. The capacitor charges to peak value of input voltage V_{m}. During this interval the output V which is taken across the short circuit will be zero During the negative half cycle, the diode is open. The output voltage can be found by applying KVL.

Negative Clamper

Biased Clamper

Biased Positive Clamper

CLAMPING CIRCUIT THEOREM

Therefore the charge acquired by the capacitor during the forward interval

$$
\therefore \frac{A_{f}}{A_{r}}=\frac{R_{f}}{R}
$$

Consider a square wave input is applied to a clamping circuit under steady state condition If $\mathrm{V}_{\mathrm{f}}(\mathrm{t})$ is the output waveform in the forward direction, then from below figure the capacitor charging current is

$$
\mathrm{i}_{\mathrm{f}}=\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{f}}}
$$

Therefore the charge acquired by the capacitor during the forward interval

$$
\begin{equation*}
\int_{0}^{\mathrm{T}_{\mathrm{f}}} \mathrm{i}_{\mathrm{f}} \mathrm{dt}=\frac{1}{\mathrm{R}_{\mathrm{f}}} \int_{0}^{\mathrm{T}_{\mathrm{l}}} \mathrm{~V}_{\mathrm{f}} \mathrm{dt}=\frac{\mathrm{A}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{f}}} \tag{1}
\end{equation*}
$$

- Similarly if $\mathrm{V}_{\mathrm{f}}(\mathrm{t})$ is the output voltage in the reverse then the current which discharges by the capacitor is

$$
\begin{align*}
& \mathrm{i}_{\mathrm{r}}=\frac{\mathrm{V}_{\mathrm{r}}}{\mathrm{R}} \\
& \mathrm{~T}_{2} \\
& \int \mathrm{i}_{\mathrm{r}} \mathrm{dt}=\frac{1}{\mathrm{R}} \int \mathrm{~V}_{\mathrm{r}} \mathrm{dt}=\frac{\mathrm{A}_{\mathrm{r}}}{\mathrm{R}} \tag{2}\\
& \mathrm{~T}_{1}
\end{align*}
$$

In the steady-state the net charge acquired by the capacitor must be zero.
Therefore from equation (1) \& (2) $\frac{A_{f}}{R_{f}}=\frac{A_{Y}}{R} \quad$ this equation says that for any input waveform the ratio of the area under the output voltage curve in the forward direction to the reverse direction is equal to the ratio

$$
\frac{R_{f}}{R}
$$

- Transistors as switches

- both FETs and bipolar transistors make good switches
- neither form produce ideal switches and their characteristics are slightly different
- both forms of device take a finite time to switch and this produces a slight delay in the operation of the gate
- this is termed the propagation delay of the circuit
- The bipolar transistor as a logical switch

(a) Circuit

(b) Waveforms
- when the input voltage to a bipolar transistor is high the transistor turns ON and the output voltage is driven down to its saturation voltage which is about 0.1 V
- however, saturation of the transistor results in the storage of excess charge in the base region
- this increases the time taken to turn OFF the device an effect known as storage time
- this makes the device faster to turn ON than OFF
- some switching circuits increase speed by preventing the transistors from entering saturation
- Timing considerations
- all gates have a certain propagation delay time, $\boldsymbol{t}_{P D}$
- this is the average of the two switching times

Unit-4(a)
 Large Signal Amplifiers

Power Amplifier (Class A)

- Induction of PowerAmplifier
- Power and Efficiency
- Amplifier Classification
- Basic Class AAmplifier
- Transformer Coupled Class AAmplifier
- Push pull amplifier
- Complementary Symmetry circuits
- Phase inverters
- Power amplifiers are used to deliver a relatively high amount of power, usually to a low resistance load.
- Typical load values range from 300W (for transmission antennas) to 8W (for audio speaker).
- Although these load values do not cover every possibility, they do illustrate the fact that power amplifiers usually drive lowresistance loads.
- Typical output power rating of a power amplifier will be 1 W or higher.
Ideal power amplifier will deliver 100\% of the power it draws from the supply to load. In practice, this can never occur. The reason for this is the fact that the components in the amplifier will all dissipate some of the power that is being drawn form the supply.

Amplifier Power Dissipation

The total amount of power being dissipated by the amplifier, $\boldsymbol{P}_{\boldsymbol{t o t}}$, is

$$
P_{t o t}=P_{1}+P_{2}+P_{C}+P_{T}+P_{E}
$$

The difference between this total value and the total power being drawn from the supply is the power that actually goes to the load - i.e. output power.
\Rightarrow Amplifier Efficiency $\boldsymbol{\eta}$

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{I}_{1}^{2} \mathrm{R}_{1} \\
& \mathrm{P}_{2}=\mathrm{I}_{2}^{2} \mathrm{R}_{2}
\end{aligned}
$$

Amplifier Efficiency η

A figure of merit for the power amplifier is its efficiency, η. Efficiency (η) of an amplifier is defined as the ratio of ac output power (power delivered to load) to dc input power.

- By formula :

$$
\eta=\frac{a c \text { output power }}{d c \text { input power }} \times 100 \%=\frac{P_{o}(a c)}{P(d c)} \times 100 \%
$$

As we will see, certain amplifier configurations have much higher efficiency ratings than others.
This is primary consideration when deciding which type of power amplifier to use for a specific application.
\Rightarrow Amplifier Classifications

Amplifier Classifications

- Power amplifiers are classified according to the percent of time that collector current is nonzero.
- The amount the output signal varies over one cycle of operation for a full cycle of input signal.

Efficiency Ratings

- The maximum theoretical efficiency ratings of class-A, B, and C amplifiers are:

Amplifier	Maximum Theoretical Efficiency, $\eta_{\text {max }}$
Class A	25%
Class B	78.5%
Class C	99%

Class AAmplifier

- Voutput waveform \rightarrow same shape $\rightarrow v_{\text {input }}$ waveform + π phase shift.

The collector current is nonzero 100% of the time. \rightarrow inefficient, since even with zero input signal, Ica is nonzero
(i.e. transistor dissipates power in the rest, or quiescent, condition)

Basic Operation

Common-emitter (voltage-divider) configuration (RC-coupled amplifier)

Typical Characteristic Curves for ClassA Operation

Typical Characteristic

Previous figure shows an example of a sinusoidal input and the resulting collector current at the output.
The current, Ica, is usually set to be in the center of the ac load line. Why?
(DC and AC analyses \rightarrow discussed in previous sessions)

DC Input Power

amplifier draws from the power supply:

$$
\begin{aligned}
& P_{i}(d c)=V_{c c} I_{c c} \\
& I_{c c}=I_{c Q}+I_{1} \\
& I_{C C} \approx I_{C Q} \quad\left(I_{C Q} \gg I_{1}\right) \\
& P_{i}(d c)=V_{c c} I_{c Q}
\end{aligned}
$$

Note that this equation is valid for most amplifier power analyses. We can rewrite for the above equation for the idealamplifier as

$$
P_{i}(d c)=2 V_{C E Q} I_{C Q}
$$

AC Output Power

Above equations can be used to calculate the maximum possible value of ac load power. HOW??

Disadvantage of using class-A amplifiers is the fact that their efficiency ratings are so low, $\eta_{\max } \approx \mathbf{2 5 \%}$.
Why?? A majority of the power that is drawn from the supply by class-A amplifier is used up by the amplifieritself.

$$
\begin{aligned}
& P_{o}(a c)=\left(\frac{V_{C E Q}}{\sqrt{2}}\right)\left(\frac{I_{C Q}}{\sqrt{2}}\right)=\frac{1}{2} V_{C E Q} I_{C Q}=\frac{V_{P P}^{2}}{8 R} \\
& \eta=\frac{P_{o(a)}^{2}}{P_{i(d)}} \times 100 \%=\frac{\frac{1}{2} V_{C E Q} I_{C Q}}{2 V_{C E Q} I_{C Q}} \times 100 \%=25 \%
\end{aligned}
$$

Limitation

(a) Limited by saturation

(b) Limited by cutoff

(c) Centered Q-point

Example

Calculate the input power $\left[P_{i}(d c)\right]$, output power $\left[P_{o}(a c)\right]$, and efficiency $[\eta]$ of the amplifier circuit for an input voltage that results in a base current of 10 mA peak.

$$
\begin{aligned}
& I_{B Q}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{1 \mathrm{k} \Omega}=19.3 \mathrm{~mA} \\
& I_{C Q}=\beta I_{B}=25(19.3 \mathrm{~mA})=482.5 \mathrm{~mA} \cong 0.48 \mathrm{~A} \\
& V_{C C Q}=V_{c C}-I_{c} R_{C}=20 \mathrm{~V}-(0.48 \mathrm{~A})(20 \Omega)=10.4 \mathrm{~V} \\
& I_{c(\text { sat })}=\frac{V_{C C}}{R_{C}}=\frac{20 \mathrm{~V}}{20 \Omega}=1000 \mathrm{~mA}=1 \mathrm{~A} \\
& V_{C E(\text { uatof })}=V_{C C}=20 \mathrm{~V} \\
& I_{C(p a a t)}=\beta I_{b(\text { paeat })}=25(10 \mathrm{~mA} \text { peak })=250 \mathrm{~mA} \text { peak } \\
& P_{o(a c)}=\frac{I_{C(\text { peak })}^{2}}{2} R_{C}=\frac{\left(250 \times 10^{-3} \mathrm{~A}\right)^{2}}{2}(20 \Omega)=0.625 \mathrm{~W} \\
& P_{i(d c)}=V_{C C} I_{C Q}=(20 \mathrm{~V})(0.48 \mathrm{~A})=9.6 \mathrm{~W} \\
& \eta=\frac{P_{o(a c)}}{P_{i(d c)}} \times 100 \%=6.5 \%
\end{aligned}
$$

Transformer-Coupled Class-A Amplifier

A transformer-coupled class-A amplifier uses a transformer to couple the output signal from the amplifier to the load.

The relationship between the primary and secondary values of voltage, current and impedance are summarized

$$
\begin{aligned}
& \frac{N_{1}}{N_{2}}=\frac{V_{1}}{V_{2}}=\frac{I_{2}}{I_{1}} \\
& \left(\frac{N_{1}}{N_{2}}\right)^{2}=\frac{Z_{1}}{Z_{2}}=\frac{Z_{1}}{R_{L}}
\end{aligned}
$$

$\mathrm{N}_{1}, \mathrm{~N}_{2}=$ the number of turns in the primary and secondary
$\mathrm{V}_{1}, \mathrm{~V}_{2}=$ the primary and secondary voltages
$\mathrm{I}_{1}, \mathrm{I}_{2}=$ the primary and secondary currents
$\mathrm{Z}_{1}, \mathrm{Z}_{2}=$ the primary and seconadary impedance $\left(\mathrm{Z}_{2}=\mathrm{R}_{\mathrm{L}}\right)$

Transformer-Coupled Class-A Amplifier

An important characteristic of the transformer is the ability to produce a counter emf, or kick emf.

- When an inductor experiences a rapid change in supply voltage, it will produce a voltage with a polarity that is opposite to the original voltage polarity.
- The counter emf is caused by the electromagnetic field that surrounds the inductor.

Counter emf

This counter emf will be present only for an instant.
As the field collapses into the inductor the voltage decreases in value until it eventually reaches 0 V .

The dc biasing of a transformer-coupled class-A amplifier is very similar to any other class-A amplifier with one important exception :
\rightarrow the value of $\mathrm{V}_{\mathrm{CEQ}}$ is designed to be as close as possible to V_{CC}.
indicating that $\mathrm{V}_{\text {CEQ }}$ will be approximately equal to $V_{C C}$ for all the values of I_{C}.

The nearly vertical load line of the transformercoupled amplifier is caused by the extremely low dc resistance of the transformer primary.

$$
V_{C E Q}=V_{C C}-I_{C Q}\left(R_{C}+R_{E}\right)
$$

The value of R_{L} is ignored in the dc analysis of the transformer-coupled class-A amplifier. The reason for this is the fact that transformer provides dc isolation between the primary and secondary. Since the load resistance is in the secondary of the transformer it dose not affect the dc analysis of the primary circuitry

Determine the maximum possible change in $V_{C E}$ - Since V_{CE} cannot change by an amount greater than $\left(V_{C E Q}-0 V\right), \quad v_{c e}=V_{C E Q}$.
2. Determine the corresponding change in I_{C}
-Find the value of Z_{1} for the transformer: $Z_{1}=$ $\left(N_{1} / N_{2}\right)^{2} Z_{2}$ and $i_{c}=v_{c e} / Z_{1}$
3.Plot a line that passes through the Q-point and the value of $I_{C(\text { max })}$.

$$
{ }^{-} I_{C(\max)}=I_{C Q}+i_{c}
$$

4.Locate the two points where the load line passes through the lies representing the minimum and maximum values of I_{B}. These two points are then used to find the maximum and minimum values of I_{C} and $V_{C E}$

Maximum load power and efficiency

The Power Supply for the amplifier : $\boldsymbol{P}_{\boldsymbol{S}}=\boldsymbol{V}_{\boldsymbol{C}} \boldsymbol{I}_{\boldsymbol{C C}}$
Maximum peak-to-peak voltage across the primary of the transformer is approximately equal to the difference between the values of $V_{C E(\max)}$ and $V_{C E(\text { min })}: V_{P P}=V_{C E(\max)}-V^{0_{C E(m i n)}}$
Maximum possible peak-to-peak load voltage is found by

$$
V_{(P-P)_{\max }}=\left(N_{2} / N_{l}\right) V_{P P}
$$

The actual efficiency rating of a transformer-coupled class-A amplifier will generally be less than $\mathbf{4 0 \%}$.

There are several reasons for the difference between the practical and theoretical efficiency ratings for the amplifier :

The derivation of the $\eta=50 \%$ value assumes that $\mathrm{V}_{\text {CEQ }}=\mathrm{V}_{\text {CC }}$. In practice, $\mathrm{V}_{\text {CEQ }}$ will always be some value that is less the V_{CC}.
2. The transformer is subject to various power losses. Among these losses are couple loss and hysteresis loss. These transformer power losses are not considered in the derivation of the $\eta=50 \%$ value.

- One of the primary advantages of using the transformer-coupled class-A amplifier is the increased efficiency over the RC-coupled class-A circuit.
- Another advantage is the fact that the transformer-coupled amplifier is easily converted into a type of amplifier that is used extensively in communications :- the tuned amplifier.
- A tuned amplifier is a circuit that is designed to have a specific value of power gain over a specific range of frequency.

B Amplifier

In class B, the transistor is biased just off. The AC signal turns the transistor on.

The transistor only conducts when it is turned on by onehalf of the AC cycle.

In order to get a full AC cycle out of a class B amplifier, you need two transistors:

- An npn transistor that provides the negative half of the AC cycle
- A pnp transistor that provides the positive half.

Class B Amplifier

Since one part of the circuit pushes the signal high during one half-cycle and the other part pulls the signal low during the other half cycle, the circuit is referred to as a push-pull circuit

Input DC power

- The power supplied to the load by an amplifier is drawn from the power supply
- The amount of this DC power is calculated using

$$
P_{i(d c)}=V_{C C} I_{d c}
$$

- The DC current drawn from the source is the average value of the current delivered to the load

Input DC power

- The current drawn from a single DC supply has the form of a full wave rectified signal, while that drawn from two power supplies has the form of half-wave rectified signal from each supply
- On either case the average value for the current is given by $I_{d c}=\frac{2}{\pi} \times I_{p}$
- The input power can be written as

$$
P_{\text {f(du) }}=\frac{2}{\pi} V_{C C} I_{p}
$$

Output AC power

- The power delivered to the load can be calculated using the following equation

$$
P_{o(a c)}=\frac{V_{L(p-p)}}{8 R_{L}}=\frac{V_{L(p)}}{2 R_{L}}
$$

- The efficiency of the amplifier is given by
- Not that

$$
\% \eta=\frac{P_{o}(\mathrm{ac})}{P_{i}(\mathrm{dc})} \times 100 \%
$$

- Therefore the efficiency can be re-expressed as

$$
\% \eta=\frac{P_{o}(\mathrm{ac})}{P_{i}(\mathrm{dc})} \times 100 \%=\frac{V_{L}^{2}(\mathrm{p}) / 2 R_{L}}{V_{C C}[(2 / \pi) I(\mathrm{p})]} \times 100 \%=\frac{\pi}{4} \frac{V_{L}(\mathrm{p})}{V_{C C}} \times 100 \%
$$

Output AC power

- The maximum efficiency can be obtained if

$$
\bar{V}_{L}(\mathrm{p})=V_{C C}
$$

- The value of this maximum efficiency will be

$$
\text { maximum efficiency }=\frac{\pi}{4} \times 100 \%=78.5 \%
$$

Power dissipated by the output transistors

- The power dissipated by the output transistors as heat is given by $P_{2 Q}=P_{i}(\mathrm{dc})-P_{o}(\mathrm{ac})$
- The power in each transistor is given by

$$
P_{Q}=\frac{P_{2 Q}}{2}
$$

Example

Example 1: For class B amplifier providing a $20-\mathrm{V}$ peak signal to a $16-\Omega$ speaker and a power supply of $V_{c C}=30 \mathrm{~V}$, determine the input power, output power and the efficiency
Solution:
The input power is given by

$$
P_{i(d c)}=\frac{2}{\pi} V_{C C} I_{p}
$$

The peak collector load current can be found from

$$
I_{L}(\mathrm{p})=\frac{V_{L}(\mathrm{p})}{R_{L}}=\frac{20 \mathrm{~V}}{16 \Omega}=1.25 \mathrm{~A}
$$

Example

Solution:

The input power is $P_{i(d)}=\frac{2}{\pi} 30(1.25)=23.9 \mathrm{~W}$

The output power is given by

The efficiency is

$$
P_{o}(\mathrm{ac})=\frac{V_{L}^{2}(\mathrm{p})}{2 R_{L}}=\frac{(20 \mathrm{~V})^{2}}{2(16 \Omega)}=12.5 \mathrm{~W}
$$

$$
\% \eta=\frac{P_{o}(\mathrm{ac})}{P_{i}(\mathrm{dc})} \times 100 \%=\frac{12.5 \mathrm{~W}}{23.9 \mathrm{~W}} \times 100 \%=52.3 \%
$$

Maximum power dissipated by the output transistors

- The maximum power dissipated by the two transistors occurs when the output voltage across the load is given by

$$
V_{L}(p)=0.636 V_{C C} \quad\left(=\frac{2}{\pi} V_{c c}\right)
$$

- The maximum power dissipation is given by

$$
\operatorname{maximum} P_{2 Q}=\frac{2 V_{C C}^{2}}{\pi^{2} R_{L}}
$$

Example

Example 2: For class B amplifier using a supply of $V_{C C}=30 V$ and driving a load of $16-\Omega$, determine the input power, output power and the efficiency

Solution:

The maximum output power is given by

$$
\operatorname{maximum} P_{o}(\mathrm{ac})=\frac{V_{C C}^{2}}{2 R_{L}}=\frac{(30 \mathrm{~V})^{2}}{2(16 \Omega)}=28.125 \mathrm{~W}
$$

The maximum input power drawn from the supply is

$$
\operatorname{maximum} P_{i}(\mathrm{dc})=\frac{2 V_{C C}^{2}}{\pi R L}=\frac{2\left(30 \mathrm{~V}^{2}\right.}{\pi(16 \Omega)}=35.81 \mathrm{~W}
$$

Example

Solution:

The efficiency is given by

$$
\text { maximum } \% \eta=\frac{P_{o}(\mathrm{ac})}{P_{i}(\mathrm{dc})} \times 100 \%=\frac{28.125 \mathrm{~W}}{35.81 \mathrm{~W}} \times 100 \%=78.54 \%
$$

The maximum power dissipated by each transistor is

$$
\operatorname{maximum} P_{Q}=\frac{\text { maximum } P_{2 Q}}{2}=0.5\left(\frac{2 V_{C C}^{2}}{\pi^{2} R_{L}}\right)=0.5\left[\frac{2(30 \mathrm{~V})^{2}}{\pi^{2} 16 \Omega}\right]=5.7 \mathrm{~W}
$$

Class B Amplifier circuits

A number of circuit arrangements can be used to realize class B amplifier
We will consider in this course two arrangements in particular

1. The first arrangement uses a single input signal fed to the input of two complementary transistors (complementary symmetry circuits)
2. The second arrangement uses two out of phase input signals of equal amplitudes feeded to the input of two similar NPN or PNP transistors (quasi-complementary pushpull amplifier)

Complementary symmetry circuits first arrangement

This circuit uses both npn and pnp transistor to construct class B amplifier as shown to the left
One disadvantage of this circuit is the need for two separate voltage supplies

Complementary symmetry circuits

another disadvantage of this circuit resulting cross over distortion

Cross over distortion can be eliminated the D biasing the transistors in class $A B$ operation where the transistors are biased to be on for slightly more than half a cycle

Class AB biasing to solve crossover distortion

Complementary symmetry circuits

- A more practical version of a push-pull circuit using complementary transistors is shown to the right
This circuit uses to complementary Darlington transistors to achieve larger current driving and lower output impedance

Second arrangement

- As stated previously the second arrangement which uses two equal input signals of opposite phase has to be preceded by a phase inverting network as shown below

Quasi-complementary push pull amplifier second arrangement

In practical power amplifier circuit preferable to uses npn for both transistors
Since the push pull connection requires complementary devices, a pnp high power transistor must be used.
This can be achieved by using the shown

Example

Example: For the circuit shown, calculate the input power, output power and the power handled by each transistor and the efficiency if the input signal is $12 \mathrm{~V}_{\mathrm{rm}}$:
Solution:
The peak input voltage is
$V_{(}(\mathrm{p})=\sqrt{2} V_{i}(\mathrm{mms})=\sqrt{2}(12 \mathrm{~V})=16.97 \mathrm{~V} \approx 17 \mathrm{~V}$
The outbut Dower is

$$
P_{o}(\mathrm{ac})=\frac{V_{L}^{2}(\mathrm{p})}{2 R_{L}}=\frac{(17 \mathrm{~V})^{2}}{2(4 \Omega)}=36.125 \mathrm{~W}
$$

Example

Solution:

The peak load current is $I_{L}(\mathrm{p})=\frac{V_{L}(\mathrm{p})}{R_{L}}=\frac{17 \mathrm{~V}}{4 \Omega}=4.25 \mathrm{~A}$
The dc current can be found from the peak as

$$
I_{\mathrm{dc}}=\frac{2}{\pi} I_{L}(\mathrm{p})=\frac{2(4.25 \mathrm{~A})}{\pi}=2.71 \mathrm{~A}
$$

$$
\% \eta=\frac{P_{o}}{P_{t}} \times 100 \%=\frac{36.125 \mathrm{~W}}{67.75 \mathrm{~W}} \times 100 \%=53.3 \%
$$

Crossover Distortion

If the transistors Q_{1} and $Q_{2} d o$ not turn on and off at exactly the same time, then there is a gap in the output voltage.

Class B Amplifier Push-Pull Operation

- During the positive half-cycle of the $A C$ input, transistor \mathbf{Q}_{1} ($n p n$) is conducting and $Q_{2}(p n p)$ is off.
- During the negative half-cycle of the AC input, transistor \mathbf{Q}_{2} (pnp) is conducting and $Q_{1}(n p n)$ is off.

Each transistor produces one-half of an AC cycle. The transformer combines the two outputs to form a full AC cycle.

This circuit is less commonly used in modern circuits

Amplififier Distortion

If the output of an amplifier is not a complete AC sine wave, then it is distorting the output. The amplifier is non-linear.

This distortion can be analyzed using Fourier analysis. In Fourier analysis, any distorted periodic waveform can be broken down into frequency components. These components are harmonics of the fundamental frequency

Harmonics

Harmonics are integer multiples of a fundamental frequency.
If the fundamental frequency is $5 \mathbf{k H z}$:

$1^{\text {st }}$ harmonic	$1 \times 5 \mathrm{kHz}$
$2^{\text {nd }}$ harmonic	$2 \times 5 \mathrm{kHz}$
$3^{\text {rd }}$ harmonic	$3 \times 5 \mathrm{kHz}$
$4^{\text {th }}$ harmonic	$4 \times 5 \mathrm{kHz}$

Note that the $1^{\text {st }}$ and $3^{\text {rd }}$ harmonics are called odd harmonics and the $2^{\text {nd }}$ and $4^{\text {th }}$ are called even harmonics

Harmonic Distortion

According to Fourier analysis, if a signal is not purely sinusoidal, then it contains harmonics.

Harmonic Distortion Calculations

Harmonic distortion (D) can be calculated:

$$
\% \text { nth harmonic distortion }=\% D_{n}=\left|\frac{A_{n}}{A_{1}}\right| \times 100
$$

where
A_{1} is the amplitude of the fundamental frequency A_{n} is the amplitude of the highest harmonic

The total harmonic distortion (THD) is determined by:

$$
\% ~ T H D=\sqrt{D_{2}^{2}+D_{3}^{2}+D_{3}^{2}+\square \times 100}
$$

Calculate the harmonic distortion components for an output signal having fundamental amplitude of 2.5 V , second harmonic amplitude of 0.25 V , third harmonic amplitude of 0.1 V , and fourth harmonic amplitude of 0.05 V .

Solution

Using Eq. (16.30) yields

$$
\begin{aligned}
& \% D_{2}=\frac{\left|A_{2}\right|}{\left|A_{1}\right|} \times 100 \%=\frac{0.25 \mathrm{~V}}{2.5 \mathrm{~V}} \times 100 \%=\mathbf{1 0 \%} \\
& \% D_{3}=\frac{\left|A_{3}\right|}{\left|A_{1}\right|} \times 100 \%=\frac{0.1 \mathrm{~V}}{2.5 \mathrm{~V}} \times 100 \%=\mathbf{4 \%} \\
& \% D_{4}=\frac{\left|A_{4}\right|}{\left|A_{1}\right|} \times 100 \%=\frac{0.05 \mathrm{~V}}{2.5 \mathrm{~V}} \times 100 \%=\mathbf{2 \%}
\end{aligned}
$$

Calculate the total harmonic distortion for the amplitude components given in Example 16.13.

Solution

Using the computed values of $D_{2}=0.10, D_{3}=0.04$, and $D_{4}=0.02$ in Eq. (16.31),

$$
\begin{aligned}
\% \mathrm{THD} & =\sqrt{D_{2}^{2}+D_{3}^{2}+D_{4}^{2}} \times 100 \% \\
& =\sqrt{(0.10)^{2}+(0.04)^{2}+(0.02)^{2}} \times 100 \%=0.1095 \times 100 \% \\
& =\mathbf{1 0 . 9 5} \%
\end{aligned}
$$

Power Transistor Derating Curve

Power transistors dissipate a lot of power in heat. This can be destructive to the amplifier as well as to surrounding components

Unit -4(b)
 LINEAR WAVE SHAPING

Wave Shapin

Definition: It is the process of changing the shape of input signal with linear / non-linear circuits.

Types:
i. Linear Wave Shaping
ii. Non-linear Wave Shaping

Linear Wave Shaping

Definition: The process where by the form of a non-sinusoidal sign changed by transmission through a linear network is called Linear Shaping.
Types:
i. High Pass RC Circuit.
ii. Low Pass RC Circuit.

Non-sinusoidal wave forms

1) Step
2) Pulse
3) Square wave
4) Ramp
5) Exponential wave forms.

Step Waveform

A step voltage is one which maintains the value zero for all times $t<0$ and maintains the value V for all times $\mathrm{t}>0$.

Pulse

The pulse amplitude is ' V ' \mathbf{v},

Square Wave

* A wave form which maintains itself at one constant level v^{1} for a time T_{1} and at other constant Level V^{11} for a time T_{2} and which is re with a period $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$ is called a square-wave.

Ramp

A waveform which is zero for $t<0$ and which increases linearly with time for $t>0$.

Exponential

- The exponential waveform input is given by the exponential input
where T is the time constant of

High pass RC circuit

If $\mathrm{f}=$ low, X_{c} becomes high
C act as open circuit, so the $\mathrm{V}_{\mathrm{o}}=0$.
If $f=$ high, X_{c} becomes low
C acts as short circuit, so we get the output.
The higher frequency components in the input/signal appear at the output with less attenuation due to this behavior the circuit is called "High Pass Filter".

Sinusoidal input

For Sinusoidal input, the output increases in amplitude with increasing frequency.

$$
\begin{gathered}
V_{o}=i R \\
i=\frac{V_{\text {in }}}{R-j X_{C}}=\frac{V_{\text {in }}}{R-\frac{j}{2 \pi f C}} \\
i=\frac{V_{\text {in }}}{R\left[1-\frac{j}{2 \pi f R C}\right]} \\
V_{0}=i R=\frac{V_{\text {in }} \times R}{R\left[1-\frac{j}{2 \pi f R C}\right]}=\frac{V_{\text {in }}}{1-\frac{j}{2 \pi f R C}}
\end{gathered}
$$

$$
\begin{aligned}
& V_{0}=\frac{V_{\text {in }}}{1-j \frac{f_{1}}{f}} \text { where } f_{1}=\frac{1}{2 \pi R C} \\
& \frac{V_{0}}{V_{\text {in }}}=\frac{1}{1+j\left(-\frac{\mathrm{fl}}{f}\right)} \\
& \frac{\left.\frac{V_{0}}{V_{\text {in }}} \right\rvert\, \overline{1}}{\overline{1}} \sqrt{1+\left(\frac{f_{1}}{f}\right)^{2}} \\
& \theta=-\tan ^{-1}\left(\frac{-f_{1}}{f}\right)=\tan ^{-11}\left(\frac{f_{1}}{f}\right)
\end{aligned}
$$

At the frequency $\mathrm{f}=\mathrm{f}_{1}$

$$
\left|\frac{V_{0}}{V_{\mathbf{i}}}\right|=\frac{1}{\sqrt{1+1}}=\frac{1}{\sqrt{2}}=0007
$$

At $\mathrm{f}=\mathrm{f}_{1}$ the gain is 0.707 or this level corresponds to a signal reduction of 3 decibels(dB).
$\therefore \mathrm{f}_{1}$ is referred to as Lower $3-\mathrm{dB}$ frequency.

Square wave input

Percentage Tilt (Tilt) \%
Tilt is defined as the decay in the amplitude of the output voltage wave due to the input voltage maintaining constant level

$$
\begin{array}{r}
P=\frac{V_{1}-V_{1}^{1}}{V / 2} X 100 \\
\mathrm{~V}_{1}^{\prime}=\mathrm{V}_{1} \cdot \mathrm{e}^{-\mathrm{T} / 2 / \mathrm{RC}} \longrightarrow \\
\mathrm{~V}_{2}^{\prime}=\mathrm{V}_{2} \cdot \mathrm{e}^{-\mathrm{T}_{2} / \mathrm{RC}} \longrightarrow \\
\mathrm{~V}_{1}^{\prime}-\mathrm{V}_{2}=\mathrm{V} \longrightarrow \\
\mathrm{~V}_{1}-\mathrm{V}_{2}^{\prime}=\mathrm{V} \longrightarrow
\end{array}
$$

A symmetrical square wave is one for which $\mathrm{T}_{1}=\mathrm{T}_{2}=T / 2 \&$ because of symmetry

$$
V_{1}=-V_{2}
$$

By substituting these in above equation (3)

$$
v_{1}^{\prime}=-v_{2}^{\prime}
$$

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{1}^{\prime}-\mathrm{V}_{2} \\
& \text {-TRE - } \\
& \mathrm{V}=\mathrm{V}_{1} . \mathrm{e} \mathrm{~V}_{2} \\
& { }_{-}^{-\mathrm{TRPC}_{+}} \\
& \mathrm{V}=\mathrm{V}_{1} \text {. } \mathrm{V}_{1} \\
& \text { TRRC } \\
& \mathrm{V}=\mathrm{V}_{1}(1+\mathrm{e}) \\
& \mathrm{V}_{1}=\frac{\mathrm{V}}{1+\mathrm{e}^{-T / 2 \mathrm{RC}}} \longrightarrow 1
\end{aligned}
$$

Equation (1) $\quad v_{1}^{\prime}=v_{1} \cdot e^{-\frac{T}{2 R C}}$

$$
\begin{gathered}
v_{1}^{\prime}=\frac{V}{1+e^{-T / 2 R C}} \times e^{-T / 2 R C}=\frac{V}{1+e^{T / 2 R C}} \\
V_{1}^{\prime}=\frac{V}{1+e^{T / 2 R C}}
\end{gathered}
$$

ForRS $>T / 2$ theequition (I)\&(II) beomesas

$$
\mathrm{v}_{1} \cong \frac{V}{2}\left(1+\frac{T}{4 R C}\right) \& V_{1}^{i} \cong \frac{V}{2}\left(1-\frac{T}{4 R C}\right)
$$

$$
\text { The percentage tilt'P' is defined by } \mathrm{P}=\frac{\mathrm{V}_{1}-\mathrm{V}_{1}^{1}}{\mathrm{~V} / 2} \times 100
$$

$$
\begin{aligned}
P & =\frac{V}{1+e^{-T / 2 R C}}-\frac{V}{1+e^{T / 2 R C}} \\
P / 2 & =\left[\frac{1}{1+e^{-T / 2 R C}}-\frac{1}{1+e^{T / R R C}}\right] \times 200 \\
P & =\left[\frac{1}{1+e^{-T / 2 R C}}-\frac{e^{-T / 2 R C}}{1+e^{T / 2 R C}}\right] \times 200 \\
P & =\frac{1-e^{-T / 2 R C}}{1+e^{-T / 2 R C}} \times 200 \%
\end{aligned}
$$

High Pass RC circuit acts as differentiator:-

* The time constant of high pass RC circuit in very small in comparison within the time required for the input signal to make an appreciat change, the circuit is called a "differentiator".
- Under this circumstances the voltage drop across R will be very snall in comparison with the drop across C. Hence we may consider that the total input V_{i} appears acros $\$ \mathrm{C}$, so that the current is determined entire by the capacitance.

Then the current is $\mathrm{i}=\mathrm{C} \quad$ dlạand the output signal across R is

$$
\begin{aligned}
& \mathrm{V}_{0}=\mathrm{iR} \quad \overline{d t} \\
& \mathrm{~V}_{0}=\mathrm{RC}
\end{aligned}
$$

* hence the output is proportional to the derivative of the input.

$$
X_{C}=\frac{1}{2 \Pi \mathscr{} C}
$$

If $\mathrm{f}=$ low, X_{c} becomes high
C act as open circuit, so we get the output.
If $\mathrm{f}=$ high, X_{c} becomes low
C acts as short circuit, so $\mathrm{V}_{\mathrm{o}}=0$.
As the lower frequency signals appear at the output, it is called as "Low pass RC circuit".

Sinusoidal input

$$
\begin{aligned}
& V_{o}=\frac{1}{C S} i \\
& \mathrm{~V}_{\mathrm{O}}=\frac{\mathrm{V}_{\mathrm{in}} \times \frac{\mathrm{X}_{\mathrm{C}}}{\mathrm{j}}}{\mathrm{R}+\frac{\mathrm{X}_{\mathrm{C}}}{\mathrm{j}}} \\
& \text { wh } \\
& \mathrm{V}_{\mathrm{O}}=\frac{\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}}{\mathrm{R}+\frac{1}{\mathrm{j} \omega \mathrm{C}}} \mathrm{l} \\
& \mathrm{~V}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{n}}}{\mathrm{j} \omega \mathrm{C} \mathrm{C}+1}=\frac{\mathrm{V}_{\mathrm{n}}}{1+\mathrm{j} 2 \pi \mathrm{fC}}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{in}}}{1+\mathrm{j} \frac{\mathrm{f}}{\mathrm{f}_{2}}} \quad \text { where } \mathrm{f}_{2}=\frac{1}{2 \pi R \mathrm{RC}} \\
\mathrm{~A}=\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\text {in }}}=\frac{1}{1+\mathrm{j} \underline{\mathrm{f}}}
\end{gathered}
$$

$$
|A|=\sqrt{\sqrt{1+\left(\frac{\mathrm{f}}{\left.\mathrm{f}_{2}\right)^{2}}\right.}} \quad \text { and } \theta=-\tan ^{-1}\left(\frac{\mathrm{f}}{\mathrm{f}_{2}}\right)
$$

At the frequency $\mathrm{f}=\mathrm{f}_{2}$

$$
\left|\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{i}}}\right|=\frac{1}{\sqrt{1+1}}=\frac{1}{\sqrt{2}}=0,07
$$

$$
|A|=0.707
$$

At $\mathrm{f}=\mathrm{f}_{2}$ the gain is 0.707 or this level corresponds to a signal reduction of 3 decibels(dB).
$\therefore \mathrm{f}_{2}$ or f_{h} is referred to as upper $3-\mathrm{dB}$ frequency.

Square wave input

- Rise Time (t_{r}):

The time required for the voltage to rise from 10 to 90 of the fina $\%$ steady value is called "Rise Time".

$$
t_{r}=2.2 R C
$$

$$
\Rightarrow \mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{f}}+\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{f}}\right) \mathrm{e}^{\frac{-\mathrm{t}}{\mathrm{RC}}}
$$

The output voltage $V_{01} \& V_{02}$ is given by

$$
\begin{aligned}
& \mathrm{V}_{01}=V^{1}+\left(\mathrm{V} 1-V^{1}\right) \cdot \mathrm{e}^{-\mathrm{T}_{1} / \mathrm{RC}} \\
& \mathrm{~V}_{02}=V^{11}+\left(\mathrm{V} 2-V^{11}\right) \cdot \mathrm{e}^{-\mathrm{T}_{2} / \mathrm{RC}} \\
& \mathrm{~V}_{01}=\mathrm{V}_{2} \text { at } \mathrm{t}=\mathrm{T}_{1} \\
& \mathrm{~V}_{02}=\mathrm{V}_{1} \text { at } \mathrm{t}=\mathrm{T}_{1}+\mathrm{T}_{2} \\
& \mathrm{~V}_{2}=V^{1}+\left(\mathrm{V} 1-V^{1}\right) \mathrm{e}^{-\mathrm{T}_{1} / \mathrm{RC}} \\
& \mathrm{~V}_{1}=V^{11}+\left(\mathrm{V} 2-V^{11}\right) \mathrm{e}^{-\mathrm{T}_{2} / \mathrm{RC}}
\end{aligned}
$$

Since the average across R is zero then the d.c voltage at the output is same as that of the input. This average value is indicated as Vd.c.
Consider a symmetrical square wave with zero average value, so that

$$
\begin{aligned}
& \mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T} / 2 \\
& V^{1}=-V^{11}=V / 2 \& V_{1}=-V_{2} \\
& V_{2}=\frac{V}{2}+\left(-V_{2}-\frac{V}{2}\right) e^{-\frac{T}{2 R C}} \\
& V=\frac{V}{2}\left[\frac{V_{2}}{1-e^{-T / 2 R C}}\left[1+e^{-\frac{T}{2 R C}}\right]=\frac{V}{2}\left[1-e^{-\frac{T}{2 R C}}\right]\right. \\
& V_{2}=\frac{V}{2}\left[\left.\frac{e^{T / 2 R C}-1}{\left[e^{T / 2 R C}+1\right.} \right\rvert\,\right] \\
& \mathrm{V}_{2}=\frac{\mathrm{V}}{2} \cdot \frac{\mathrm{e}^{2 \mathrm{x}}-1}{\mathrm{e}^{2 \mathrm{x}}+1} \text { where } \mathrm{x}=\frac{\mathrm{T}}{4 \mathrm{RC}} \\
& \mathrm{~V}_{2}=\frac{\mathrm{V}}{2} \tanh \mathrm{x}
\end{aligned}
$$

Low pass RC circuit acts as an integrat

* The time constant is very large in comparison with the time required for the input signal to make an appreciable change, the circuit is called an "Integrator".
- As $\mathrm{RC} \gg \mathrm{T}$ the voltage drop across C will be very small in comparison to the voltage drop across R and we may consider that the total input V_{i} appear and across R , then

$$
\begin{aligned}
\mathrm{V}_{\mathrm{i}} & =\mathrm{i} \mathrm{R} \\
\mathrm{i} & =\frac{V_{\mathrm{i}}}{\mathrm{R}}
\end{aligned}
$$

For low pass RC circuit the output voltage V_{0} is given by

$$
\begin{aligned}
V_{O} & =\frac{1}{C} \int i d t \\
V_{O} & =\frac{1}{C} \int \frac{V_{i}}{R} d t \\
V_{O} & =\frac{1}{R C} \int V_{i} d t
\end{aligned}
$$

Advantages of Integrator over differenti

- Integrators are almost invariably preferred over differentiators in analog computer applications for the following reasons.
- The gain of the integrator decreases with frequency where as the gain of the differentiator increases linearly with frequency. It is easier to stabilize the former than the latter with respect to spurious oscillations.
- As a result of its limited band width an integrator is less sensitive to noise voltages than a differentiator.
- If the input wave form changes very rapidly, the amplifier of a differentiator may over load.

It is more convenient to introduce initial conditions in an integrator.

UNIT-V:

Switching Characteristics of Devices

SWITCHING CHARACTERISTICS OF DEVICE

> DIODE AS ASWITCH

> The diode readily conducts when forward-biased and the bias voltage is greater than the cut-in voltage.
> There is no conduction through the device, when it is reverse biased.
> The forward resistance of an ideal diode is zero, and the reverse resistance is infinitely large.
> A diode conducts when forward-biased and blocks conduction when reverse-biased, it can function as an electronic switch.
> When it is conducting, it is ON, and when it is not conducting it is OFF.

Diode as a Switch

- If a forward bias voltage $\mathrm{Vf}>\mathrm{V} 1$ is applied the diode readily conducts and a forward current If flows. V1=Barrier potential
- Hence a forward-biased diode acts as a switch.

* When the reverse bias is applied to the diode, diode does not conduct.
* Hence the reverse biased diode analogous to open switch

CIRCUIT REPRESENTATION OF DIODE

Reverse biased open circuit

Conducting state short circuit

Ideal diode Model

Useful for circuits with more than one diode
(1) Assume a state for each diode, either "on" or "off" -2^{n} combinations
(2)Assume a short circuit for diode "on" and an open circuit for diode "off"
(3)Check to see if the result consistent with the assumed for each diode (current must the forward direction for dio de "on" and the voltage across the dio assumed to be "off" must be positive at the cathode-reverse bias)
(4)If the results are consistent with the assumed states, the analysis is finished. Otherwise return to step
(1) and choose a different combination of diode states.

CIRCUIT REPRESENTATION OF DIODE - Piecewise Linear Model

Reverse biased open circuit
$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\boldsymbol{\gamma}}$ for diode to turn on.
Hence during conductingstate:

Represented as

a battery of
voltage $=\mathrm{V}_{\gamma}$

CIRCUIT REPRESENTATION OF DIODE - Piecewise Linear Model

$\mathrm{V}_{\mathrm{D}} \geq \mathrm{V}_{\boldsymbol{\gamma}}$ for diode to turn on.
Hence during conducting state:

Represented as a battery of voltage $=$ $\mathrm{V}_{\boldsymbol{\gamma}}$ and forward resistance, \mathbf{r}_{f} in series

Transistor as a switch

- A transistor can be used as a switch.
- It has three regions of operation
- When both EB junction and CB junction are reverse biased, the transistor operates in the cut-off region.
- When the EB junction is forward biased and CB junction reverse biased, it operates in the active region and acts as amplifier.
- When both the EB junction and CB junctions are forward biased it operates in the saturation region and acts as a closed switch.
- When Q is saturated it is like a closed switch from C to E.
* When Q is cut-off it is like an open switch from C to E .
" $\mathrm{Ic}=\mathrm{Vcc}-\mathrm{V}_{\mathrm{CE}} / \mathrm{R}_{\mathrm{L}}$ and $\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{BE}} / \mathrm{R}_{\mathrm{B}}$
- Referring to the output characteristics, the region below the $\mathrm{b}=0$ curve is the cut-off region.
- The intersection of the load line with $\mathrm{Ib}=0$ curve is the cutoffnnint

- The intersection of the load line with the $\mathrm{Ib}(\mathrm{sat})$ curve is called the saturation point.
- At this point the base current is Ib (sat) and the collector current is maximum.
- $\quad \mathrm{Ic}(\mathrm{sat})=\mathrm{Vcc} / \mathrm{R}_{\mathrm{L}}$
- Ib (sat) represents the minimum base current required to bring the transistor into saturation.
- For $0<\mathrm{Ib}<\mathrm{Ib}$ (sat), the transistor operates in the active region.
- If the base current is greater than $\mathrm{Ib}(\mathrm{sat})$,
- Ic $\approx \approx \mathrm{Vcc} / \mathrm{Rc}$ and transistor appears like a closed switch.

Breakdown voltage of a Transistor

- The maximum reverse biasing voltage which may be applied before breakdown between the collector and base terminal of the transistor(BVCBO)i.e the emitter lead be open circuited.
- The breakdown occurs because of the avalanche multiplication of the current Ico that crosses the collector junction.
- As the multiplication the current becomes Mico.
- $\mathrm{M}=1 / 1-\left(\mathrm{V}_{\mathrm{CB}} / \mathrm{BV}_{\mathrm{CBO}}\right)^{\mathrm{n}} \quad \mathrm{M}=$ Multiplication factor
- The parameter n lies in the range 2 to 10 .
- Below Fig. shows the CB characteristics in the breakdown region. The curve for $\mathrm{Ie}=0$ is function of Vcb .Ic has magnitude $\mathrm{M} \dot{\alpha} \mathrm{I}_{\mathrm{E}}$.

(a) CB characteristics extended into the breakdown region and (b) idealized CE characteristics extended into the breakdown region.

The transistor switch in saturation

- In the fast switching circuits, R_{L} must be kept small.
- In saturation the transistor current is normally $\mathrm{Vcc} / \mathrm{R}_{\mathrm{L}}$.
- The total voltage swing at the transistor switch is Vcc-Vce(sat).

- At $\mathrm{Ib}=-0.15 \mathrm{~mA}$ the transistor is in saturation and $\mathrm{Vce}=-175 \mathrm{mv}$
- At $\mathrm{Ib}=-0.35 \mathrm{~mA}$ Vce has dropped to 100 mv
- For a transistor operating in the saturation region a quantity of interest is the ratio Vce(sat)/Ic. This parameter is called the common emitter saturation resistance, Rce(sat).
- The saturation voltage Vce(sat) depends not only on the operating point but also on the semiconductor material.
- In the saturation region hfe is a useful parameter and is supplied by the manufacturer.
* Once we know $\operatorname{Ic}\left(\mathrm{Vcc} / \mathrm{R}_{\mathrm{L}}\right)$ and hfe, the amount of base curre $\mathrm{Ib}=\mathrm{Ic} / \mathrm{hfe}$ needed to saturate the transistor can be found.

Design of Transistor switch

- The transistor that acts as a switch is driven between cut-off and saturation.
* For low input vi $=0$ the transistor is kept at cut-off, so the output is Vcc or 1.
- For high input, the transistor is driven into saturation. So the output i.e $\operatorname{Vce}($ sat $)=0$. Thus the transistor acts as a switch.
* To improve the transient response of the inverter the capacitor C is used across the resistor R1.
- This helps in removing minority carrier charges in the base when the signal changes between logic states.

- Design: when vi=0 the open circuit base voltage is
- $\mathrm{Vb}=-\mathrm{Vbb}(\mathrm{R} 1 / \mathrm{R} 1+\mathrm{R} 2)$. This voltage should be less tha Vbe(cutoff).
- When vi=1, the transistor is in saturation.
- $\mathrm{Ic}=(\operatorname{Vcc}-\operatorname{Vce}(\mathrm{sat})) / \operatorname{Rc}$ and $\mathrm{Ib}(\mathrm{min})=\mathrm{Ic} /$ hfe(min)
- The current through the resistance R1 is $\mathrm{I} 1=(\mathrm{V}(1)-\mathrm{Vbe}$ (sat)
* The current throhgh the resistor R 2 is $\mathrm{I} 2=[\mathrm{Vbe}(\mathrm{sat})-(-\mathrm{Vbb})] / \mathrm{R} 2$
- $\mathrm{Ib}=\mathrm{I} 1-\mathrm{I} 2$
- This current Ib must be equal to Ic/hfe $=$ Vcc-Vce(sat)/Rc.hfe
- $\mathrm{Rc}=[\mathrm{Vcc}-\mathrm{Vce}(\mathrm{sat})] / \mathrm{Ic}$
* Assuming the values of $\mathrm{Vbe}(\mathrm{sat})$ and $\mathrm{Vce}(\mathrm{sat})$.
- \quad Select R1 and R2 such that I1-I2 $=$ Ib

Diode switching Times

- Above Fig. shows the switching times of a diode
- Up to $t=t 1$ vi=vf, the resistance RL is assumed large so that the drop across RL is large compared with the voltage across the diode. $\mathrm{i}=\mathrm{vf} / \mathrm{RL}$
* At the time $\mathrm{t}=\mathrm{t} 1$, the input voltage reverses abruptly to the value vi $=-\mathrm{VR}$, the current reverses $\mathrm{I}=-\mathrm{VR} / \mathrm{RL}=-\mathrm{IR}$
* Storage time: the interval from t1 to t2 for the minority charge to become zero is called the storage time ts.
* Transition time : the time which elapses between t2 and the time when the diode has nominally recovered is called the transition time $t_{\text {t. }}$
* Reverse recovery time : ts $+\mathbf{t}_{\mathrm{t}}$.

Transistor switching Times

* When the transistor acts as a switch , it is either in cut-off or in saturation.
- To consider the behavior of the transistor as it makes transition from one state to the other.

- The pulse waveform makes the transitions between the voltage levels V2 and V1. At V2 the transistor is at cut-off and at the transistor is in saturation.
- The input waveform vi is applied between the base and the emitter through a resistor R_{B}.
- The collector current does not immediately respond to the input signal.
- Delay time(td) : The interval of time between the application of the base current and the commencement of collector current is termed as delay time(td)
- Rise time(tr) : The time required for the collector current to rise from 10% to 90% of the maximum level.
- Turn-on time $\mathrm{t}_{\mathrm{ON}}=\mathbf{t d}+\mathbf{t r}$
- Storage time(ts) : There is a time lag between the instant $\mathrm{Ib}=0$ and the instant at which Ic begins to decrease. This interval is termed as storage time.
- Fall time $\left(\mathbf{t}_{\mathrm{f}}\right)$: The time required to fall from 90% to 10% of maximum value is termed as fall tome.
- Turn-off time $\mathbf{t}_{\mathbf{O F F}}=\mathbf{t s}+\mathbf{t}_{\mathbf{f}}$
- Decay time : The collector current falls from 10% to level o Icbo. It is very small.

