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All you need to be an inventor is a good 
imagination and a pile of junk. 

-Thomas Edison 

 



 

I = V / R 

Georg Simon Ohm (1787-1854)  

I = Current (Amperes) (amps) 
 
V = Voltage (Volts) 
 
R = Resistance (ohms) 



How you should be thinking about electric circuits: 

Voltage:  a force that pushes the current 

through the circuit (in this picture it would be 

equivalent to gravity) 



Resistance: friction that impedes flow of 

current through the circuit (rocks in the river) 

How you should be thinking about electric circuits: 



Current: the actual “substance” that is flowing 

through the wires of the circuit (electrons!) 

How you should be thinking about electric circuits: 











circuit diagram 

cell switch lamp wires 

Scientists usually draw electric circuits using symbols; 



 Series circuit 
 All in a row 

 1 path for electricity 

 1 light goes out and 
the circuit is broken 

 

 

 Parallel circuit 
 Many paths for 

electricity 

 1 light goes out and the 
others stay on 

 



1 

2 

3 



 Place two bulbs in parallel.  What do you 
notice about the brightness of the bulbs? 

 Add a third light bulb in the circuit.  What do 
you notice about the brightness of the bulbs? 

 Remove the middle bulb from the circuit.  
What happened? 



measuring current 

Electric current is measured in amps (A) using 

an ammeter connected in series in the circuit. 

A 



measuring current 

A A 

This is how we draw an ammeter in a circuit. 

SERIES CIRCUIT PARALLEL CIRCUIT 



measuring voltage 

The ‘electrical push’ which the cell gives to the current 

is called the voltage. It is measured in volts (V) on a 

voltmeter 

V 



measuring voltage 

V 

This is how we draw a voltmeter in a circuit. 

SERIES CIRCUIT PARALLEL CIRCUIT 

V 



 Measure the current and voltage across each circuit. 

 Use Ohm’s Law to compute resistance 

Series Circuit 

 
Voltage Current Resistance 

Voltage  Current Resistance 

Parallel Circuit 



measuring current 
SERIES CIRCUIT 

PARALLEL CIRCUIT 

•  current is the same 

   at all points in the  

   circuit. 

2A 2A 

2A 

•  current is shared 

   between the  
   components 

2A 2A 

1A 

1A 



 fill in the missing ammeter readings. 

? 

? 

4A 

4A 

4A 

3A ? 

? 

1A 

? 

3A 

1A 

1A 



The circuit is no longer complete, therefore current can not flow 

The voltage decreases because the current is decreased 
 
and the resistance increases. 



The current remains the same.  The total resistance drops in a 
parallel circuit as more bulbs are added 

The current increases. 



 Series Circuits 

 only one end of each component is connected 

 e.g. Christmas tree lights 

 

 Parallel Circuits 

 both ends of a component are connected 

 e.g. household lighting 

 



copy the following circuits and fill in the 
missing ammeter readings. 

? 

? 

4A 

4A 

4A 

3A ? 

? 

1A 

? 

3A 

1A 

1A 



Different cells produce different voltages. The 

bigger the voltage supplied by the cell, the bigger the 

current. 

measuring voltage 

Unlike an ammeter, a voltmeter is connected across 

the components 

Scientist usually use the term Potential Difference 

(pd) when they talk about voltage. 



V 

measuring voltage 

V 
V 

V 



series circuit 

1.5V 

•  voltage is shared between the components 

1.5V 

3V 



•  voltage is the same in all parts of the circuit. 

3V 

parallel circuit 

3V 

3V 



measuring current & voltage 

copy the following circuits on the next two 
slides. 

complete the missing current and voltage 
readings. 

remember the rules for current and voltage 
in series and parallel circuits. 



measuring current & voltage 

V V 

6V 
4A 

A 

A 

a) 



measuring current & voltage 

V 

V 

6V 
4A A 

A 

A 

b) 



answers 

3V 3V 

6V 

4A 4A 
6V 

6V 

6V 
4A 4A 

2A 

2A 

4A 

a) b) 



 One Volt is a Joule per Coulomb (J/C) 

 One Amp of current is one Coulomb per 
second (6.24 x10^18 electrons/second).  

 If I have one volt (J/C) and one amp (C/s), 
then multiplying gives Joules per second (J/s) 
 this is power: J/s = Watts 

 So the formula for electrical power is just: 

 

 

 More work is done per unit time the higher the 
voltage and/or the higher the current P = VI: power = voltage  current 



AP Physics B 



In a battery, a series of chemical 
reactions occur in which 
electrons are transferred from 
one terminal to another. There 
is a potential difference 
(voltage) between these poles. 

 

The maximum potential 
difference a power source can 
have is called the electromotive 
force or (EMF), e. The term isn't 
actually a force, simply the 
amount of energy per charge 
(J/C or V) 



All electric circuits have three main parts 
 

1. A source of energy  

2. A closed path  

3. A device which uses the energy  

 

If ANY part of the circuit is open the device will not work!  



Circuits are very similar to water flowing through a 
pipe  

A pump basically works on TWO 
IMPORTANT PRINCIPLES concerning 
its flow 
 

• There is a PRESSURE DIFFERENCE 
where the flow begins and ends  

• A certain AMOUNT of flow passes each 
SECOND.  
 

A circuit basically works on TWO 
IMPORTANT PRINCIPLES 
 

• There is a "POTENTIAL DIFFERENCE 
aka VOLTAGE" from where the charge 
begins to where it ends  

• The AMOUNT of CHARGE that flows 

PER SECOND is called  CURRENT.  
 



Current is defined as the rate at which charge 
flows through a surface. 

 

 

The current is in the same direction as the flow of 
positive charge (for this course) 

 

Note: The “I” stands 

for intensity 



DC = Direct Current - current flows in one direction 
 Example: Battery 

AC = Alternating Current- current reverses direction many times per second. 
This suggests that AC devices turn OFF and 
ON. Example: Wall outlet (progress energy) 



“The voltage (potential difference, emf) is directly related to 
the current, when the resistance is constant” 
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Since R=V/I, the resistance is the 
SLOPE of a V vs. I graph 



Resistance (R) – is defined as the restriction of electron 
flow. It is due to interactions that occur at the atomic 
scale. For example, as electron move through a 
conductor they are attracted to the protons on the 
nucleus of the conductor itself. This attraction doesn’t 
stop the electrons, just slow them down a bit and cause 
the system to waste energy. 

The unit for resistance is the 
OHM, W 



We have already learned that POWER is the rate at which work 
(energy) is done. Circuits that are a prime example of this as 
batteries only last for a certain amount of time AND we get 
charged an energy bill each month based on the amount of 
energy we used over the course of a month…aka  POWER.  



It is interesting to see how certain electrical 
variables can be used to get POWER. Let’s take 
Voltage and Current for example. 



These formulas can also be 
used! They are simply 
derivations of the 
POWER formula with 
different versions of 
Ohm's law substituted 
in. 



There are 2 basic ways to wire a circuit. Keep in 
mind that a resistor could be ANYTHING ( bulb, 
toaster, ceramic material…etc) 

Series – One after another 
Parallel – between a set of junctions and 
parallel to each other 



Before you begin to understand circuits you need to be able to 
draw what they look like using a set of standard symbols 
understood anywhere in the world 

For the battery symbol, the 
LONG line is considered to be 
the POSITIVE terminal and the 
SHORT line , NEGATIVE. 

The VOLTMETER and 
AMMETER are special devices 
you place IN or AROUND the 
circuit to measure the VOLTAGE 
and CURRENT. 



The voltmeter and ammeter cannot be 
just placed anywhere in the circuit. They 
must be used according to their 
DEFINITION. 

Since a voltmeter measures voltage or 
POTENTIAL DIFFERENCE it must be 
placed ACROSS the device you want 
to measure. That way you can measure 
the CHANGE on either side of the 
device. 

Voltmeter is drawn ACROSS the resistor 

Since the ammeter measures the current or FLOW 
it must be placed in such a way as the charges go 
THROUGH the device. 

Current goes THROUGH the ammeter 



When you are drawing a 
circuit it may be a wise 
thing to start by 
drawing the battery 
first, then follow along 
the loop (closed) 
starting with positive 
and drawing what you 
see.  



In in series circuit, the 
resistors are wired one 
after another. Since they 
are all part of the SAME 
LOOP they each 
experience the SAME 
AMOUNT of current. In 
figure, however, you see 
that they all exist 
BETWEEN the terminals 
of the battery, meaning 
they SHARE the potential 
(voltage). 
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Note: They may use the 
terms “effective” or 
“equivalent” to mean 
TOTAL! 



A series circuit is shown to the left.  

a) What is the total resistance? 

 

b) What is the total current? 

 

c) What is the current across EACH 
resistor?  
  

d) What is the voltage drop across 
each resistor?( Apply Ohm's law 
to each resistor separately)  

R(series) = 1 + 2 + 3 = 6W 

V=IR      12=I(6)     I = 2A 

They EACH get 2 amps! 

V1W(2)(1) 2 V V3W=(2)(3)= 6V V2W=(2)(2)= 4V  

Notice that the individual VOLTAGE DROPS add up to the TOTAL!! 



In a parallel circuit, we have 
multiple loops. So the 
current splits up among 
the loops with the 
individual loop currents 
adding to the total current 

It is important to understand that 
parallel circuits will all have some 
position where the current splits and 
comes back together. We call these 
JUNCTIONS.  
 
The current going IN to a junction will 
always equal the current going OUT of 
a junction.  
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Notice that the JUNCTIONS both touch the 
POSTIVE and NEGATIVE terminals of the 
battery.  That means you have the SAME 
potential difference down EACH individual 
branch of the parallel circuit. This means 
that the individual voltages drops are equal. 

This junction 
touches the 
POSITIVE 
terminal 

This junction 
touches the 
NEGATIVE 
terminal 
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To the left is an example of a parallel circuit.  
a) What is the total resistance?  
   
 
 
 
 
 
b) What is the total current?  
   
 
c) What is the voltage across EACH resistor?  
   
d) What is the current drop across each resistor? 
(Apply Ohm's law to each resistor separately)  

2.20 W 

3.64 A 

8 V each! 
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1.6 A 1.14 A 0.90 A 

Notice that the 
individual currents 
ADD to the total. 



Many times you will have series and parallel in the SAME circuit. 

Solve this type of circuit 
from the inside out. 
 
WHAT IS THE TOTAL 
RESISTANCE? 
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Suppose the potential difference (voltage) is equal to 120V. What is the total 
current? 

1.06 A 

What is the VOLTAGE DROP across the 80W resistor? 
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What is the VOLTAGE DROP across 
the 100W and 50W resistor? 

35.2 V Each! 
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What is the current across the 
100W and 50W resistor? 

0.352 A 

0.704 A 

Add to 
1.06A 



• Write and apply equations for calculating the inductive and 
capacitive reactances for inductors and capacitors in an ac circuit. 

• Describe, with diagrams and equations, the phase relationships for 

circuits containing resistance, capacitance, and inductance. 

• Describe the sinusoidal variation in ac current and voltage, and 
calculate their effective values. 



• Write and apply equations for calculating the impedance, the phase 
angle, the effective current, the average power, and the resonant 
frequency for a series ac circuit. 

• Describe the basic operation of a step-up and a step-down 
transformer. 

• Write and apply the transformer equation and determine the 
efficiency of a transformer. 



An alternating current such as that produced by a generator has no 
direction in the sense that direct current has. The magnitudes vary 
sinusoidally with time as given by: 

Emax 

imax 

time, t 
E = Emax sin q 

i = imax sin q 

AC-voltage and 
current 



q 

450 900 1350 

1800 2700 3600 

E 

R = Emax 

E = Emax sin q 

The coordinate of the emf at any instant is the value of Emax sin q. 

Observe for incremental angles in steps of 450.  Same is true for i. 

q 

450 900 1350 

1800 2700 3600 

E 

Radius = Emax 

E = Emax sin q 



imax 
The average current in a cycle is 
zero—half + and half -. 

But energy is expended, regardless of 
direction. So the “root-mean-square” 
value is useful. 

2

2 0.707
rms

I I
I  

I = imax 

The rms value Irms is sometimes 
called the effective current Ieff: 

The effective ac current: 

ieff = 0.707 imax 



One effective ampere is that ac current for which the power is the 
same as for one ampere of dc current. 

One effective volt is that ac voltage that gives an effective ampere 
through a resistance of one ohm. 

Effective current: ieff = 0.707 imax 

Effective voltage: Veff = 0.707 Vmax 



ieff = 0.707 imax Veff = 0.707 Vmax 

max

10 A

0.707 0.707

effi
i   max

120V

0.707 0.707

effV
V  

imax = 14.14 A Vmax = 170 V 

The ac voltage actually varies from +170 V to     -170 V and the current 
from 14.1 A to –14.1 A. 



A 

a.c. Source 

R 

V 

Voltage and current are in phase, and Ohm’s law applies for effective 
currents and voltages. 

Ohm’s law:  Veff = ieffR 

Vmax 

imax 

Voltage 

Current 



Time, t 

I 
i 

Current Rise 

t 

0.63I 

Inductor 

The voltage V peaks first, causing rapid rise in i current which then peaks as 
the emf goes to zero.  Voltage leads (peaks before) the current by 900. 
Voltage and current are out of phase. 

Time, t 

I 
i 

Current Decay 

t 

0.37I 

Inductor 



A 

L 

V 

a.c. 

Vmax 

imax 

Voltage 

Current 

The voltage peaks 900 before the current peaks. One builds as the other 
falls and vice versa. 

The reactance may be defined as the nonresistive opposition to the flow of ac 
current. 



A 

L 

V 

a.c. 

The back emf induced by a changing 
current provides opposition to 
current, called inductive reactance XL. 

Such losses are temporary, however, since the current changes direction, 
periodically re-supplying energy so that no net power is lost in one cycle. 

Inductive reactance XL is a function of both the inductance and the 
frequency of the ac current. 



A 

L 

V 

a.c. 

Inductive Reactance: 

2    Unit is the LX fL W

Ohm's law:  L LV iX

The voltage reading V  in the above circuit at the instant the ac current is i 
can be found from the inductance in H and the frequency in Hz. 

(2 )LV i fL Ohm’s law:  VL = ieffXL 



A 

L = 0.6 H 

V 

120 V, 60 Hz 

Reactance:  XL = 2fL 

XL = 2(60 Hz)(0.6 H) 

XL = 226 W 

120V

226 

eff

eff

L

V
i

X
 

W
ieff = 0.531 A 

Show that the peak current is Imax = 0.750 A 



Time, t 

Qmax 
q 

Rise in Charge 

Capacitor 

t 

0.63 I 

Time, t 

I 
i 

Current Decay 

Capacitor 

t 

0.37 I 

The voltage V peaks ¼ of a cycle after the current i reaches its maximum. 
The voltage lags the current.  Current i and V out of phase. 



Vmax 

imax 

Voltage 

Current A V 

a.c. 

C 

The voltage peaks 900 after the current peaks. One builds as the other falls 
and vice versa. 

The diminishing current i  builds charge on C which increases the back emf 
of VC. 



No net power is lost in a complete cycle, even though the capacitor does provide 
nonresistive opposition (reactance) to the flow of ac current. 

Capacitive reactance XC is affected by both the capacitance and the 
frequency of the ac current. 

A V 

a.c. 

C Energy gains and losses are also 
temporary for capacitors due to the 
constantly changing ac current. 



Capacitive Reactance: 

1
   Unit is the 

2
CX

fC
 W

Ohm's law:  VC CiX

The voltage reading V  in the above circuit at the instant the ac current is i 
can be found from the inductance in F and the frequency in Hz. 

2
L

i
V

fL


A V 

a.c. 

C 

Ohm’s law:  VC = ieffXC 



Reactance: 

XC = 1330 W 

120V

1330 

eff

eff

C

V
i

X
 

W
ieff = 90.5 mA 

Show that the peak current is imax = 128 mA 

A V 

C = 2 mF 

120 V, 60 Hz 

1

2
CX

fC

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1

2 (60Hz)(2 x 10 F)
CX






f 

R, X 

1

2
CX

fC
2LX fL

Resistance R  is constant and not affected by f. 

Inductive reactance XL varies directly 
with frequency as expected since E  

i/t. 

Capacitive reactance XC varies inversely with f  
since rapid ac allows little time for charge to 
build up on capacitors. 

R 

XL XC 



L 

VR VC 

C R 

a.c. 

VL 

VT 

A 

Series ac circuit 

Consider an inductor L, a capacitor C, and a resistor R all 
connected in series with an ac source. The instantaneous current 
and voltages can be measured with meters. 



The voltage leads current in an inductor and lags current in a capacitor. In 
phase for resistance R. 

q 

450 900 1350 

1800 2700 3600 

V 
V = Vmax sin q 

VR 

VC 

VL 

Rotating phasor diagram generates voltage waves for each element R, L, and 
C showing phase relations. Current i  is always in phase with VR. 



At time t = 0, suppose we read VL, VR and VC for an ac series circuit. What is the 
source voltage VT? 

We handle phase differences by finding the vector sum of these readings. 
VT = S Vi. The angle q is the phase angle for the ac circuit. 

q 

VR 

VL - VC 
 

VT 

Source voltage 

VR 

VC 

VL 

Phasor 
Diagram 



q 

VR 

VL - VC 
 

VT 

Source voltage 
Treating as vectors, we find: 

2 2( )T R L CV V V V  

tan L C

R

V V

V





Now recall that: VR = iR;   VL = iXL;  and VC = iVC 

Substitution into the above voltage equation gives: 

2 2( )T L CV i R X X  



 

R 

XL - XC 
 

Z 

Impedance 2 2( )T L CV i R X X  

Impedance Z  is defined: 

2 2( )L CZ R X X  

Ohm’s law for ac current and impedance: 

   or    T
T

V
V iZ i

Z
 

The impedance is the combined opposition to ac current consisting of both 
resistance and reactance. 



A 

60 Hz 

0.5 H 

60 W 

120 V 
8 mF 

1
2     and    

2
L CX fL X

fC



 

2 (60Hz)(0.6 H) = 226LX  W
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1
332

2 (60Hz)(8 x 10 F)
CX


  W

2 2 2 2( ) (60 ) (226 332 )L CZ R X X    W  W  W

Thus, the impedance is: Z = 122 W 



A 

60 Hz 

0.5 H 

60 W 

120 V 
8 mF 

XL = 226 W;  XC = 332 W; R = 60 W;  Z = 122 W 

120 V

122 

T
eff

V
i

Z
 

W

ieff = 0.985 A 

Next we find the phase angle: 

 

R 

XL - XC 
 

Z 

Impedance 
XL – XC = 226 – 332 = -106 W 

R = 60 W tan L CX X

R





Continued . . . 



-106 W 

 

60 W 

Z 

XL – XC = 226 – 332 = -106 W 

R = 60 W tan L CX X

R





106
tan

60


 W


W
 = -60.50 

The negative phase angle means that the ac voltage lags the current 
by 60.50. This is known as a capacitive circuit. 



Because inductance causes the voltage to lead the current and capacitance 
causes it to lag the current, they tend to cancel each other out. 

Resonance (Maximum Power) occurs when XL 

= XC 

R 

XC 

XL XL = XC 
 

2 2( )L CZ R X X R   

1
2

2
fL

fC





1

2
rf

LC


Resonant fr  XL = 
XC  



1

2
rf

LC

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1

2 (0.5H)(8 x 10 F
f




Resonant fr = 79.6 Hz 

At resonant frequency, there is zero reactance (only resistance) and the circuit has 
a phase angle of zero. 

A 

? Hz 

0.5 H 

60 W 

120 V 
8 mF 

Resonance XL = XC 



No power is consumed by inductance or capacitance. Thus power is a 
function of the component of the impedance along resistance: 

In terms of ac voltage: 

P = iV cos  

In terms of the resistance R: 

P = i2R 

 

R 

XL - XC 
 

Z 

Impedance 

P lost in R only 

The fraction Cos  is known as the power factor.  



The higher the power factor, the more efficient is the circuit in its use 
of ac power.  

A 

? Hz 

0.5 H 

60 W 

120 V 
8 mF 

Resonance XL = XC P = i2R = (0.0905 A)2(60 W) 

Average P = 0.491 W 

The power factor is: Cos 60.50  

Cos  = 0.492 or 49.2% 



A transformer is a device that uses induction and ac current to step 
voltages up or down. 

R 

a.c. 

Np Ns 

Transformer 

P PN
t


 


E S SN

t


 


E

Induced emf’s 
are: 

An ac source of emf  Ep is 

connected to primary coil with Np 

turns. Secondary has Ns turns and 
emf of Es. 



R 

a.c. 

Np Ns 

Transformer 

P PN
t


 


E

S SN
t


 


E

Recognizing that /t is the same in each coil, we divide first relation by 
second and obtain: 

The transformer equation: 
P P

S S

N

N


E

E



R 

a.c. 

Np Ns 

I = 10 A; Vp = 600 V 

20 
turns 

P P

S S

V N

V N


Applying the transformer 
equation: 

(20)(2400V)

600V

P S
S

P

N V
N

V
  NS = 80 turns 

This is a step-up transformer; reversing coils will make it a step-down 
transformer. 



There is no power gain in stepping up the voltage since voltage is increased by 
reducing current. In an ideal transformer with no internal losses: 

    or     SP
P P S S

s P

i
i i

i
 

E
E E

E

An ideal transformer: 

R 

a.c. 

Np Ns 

Ideal Transformer 

The above equation assumes no internal energy losses due to heat or flux 
changes.  Actual efficiencies are usually between 90 and 100%. 



VS = 2400 V  

R 

a.c. 

Np Ns 

I = 10 A; Vp = 600 V 

20 
turns 

12 W 
    P P

P P S S S

S

i
i i i 

E
E E

E
(600V)(10A)

2.50 A
2400V

Si  

Plost = i2R = (2.50 A)2(12 W) Plost = 75.0 W 

Pin = (600 V)(10 A) = 6000 W 

%Power Lost = (75 W/6000 W)(100%) = 1.25% 



Effective current: ieff = 0.707 imax 

Effective voltage: Veff = 0.707 Vmax 

Inductive Reactance: 

2    Unit is the LX fL W

Ohm's law:  L LV iX

Capacitive Reactance: 

1
   Unit is the 

2
CX

fC
 W

Ohm's law:  VC CiX



2 2( )T R L CV V V V   tan L C

R

V V

V





2 2( )L CZ R X X  

   or    T
T

V
V iZ i

Z
 

tan L CX X

R





1

2
rf

LC




In terms of ac voltage: 

P = iV cos  

In terms of the resistance R: 

P = i2R 

Power in AC Circuits: 

P P

S S

N

N


E

E
P P S Si iE E

Transformers: 



 Graph Theory in Circuit Analysis 

Suppose we wish to find the node voltages of the circuit below. 

We know how to do this by hand. 

For large-scale circuits, we may wish to do this via a computer 

simulation (i.e. PSpice).  We will need to express this circuit in 

a standard form for input to the program. 



Graph Theory in Circuit Analysis 

Whether the circuit is input via a GUI or as a text file, at some 

level the circuit will be represented as a graph, with elements 

as edges and nodes as nodes. 

For example, when entering a circuit into PSpice via a text file, 

we number each node, and specify each element (edge) in the 

circuit with its value and endpoints. 



Graph of a Circuit 

Here is a graph of the circuit.  It is simply the circuit without elements. 
 
We refer to the lines above as edges (and the nodes are nodes). 
 
The graph provides connectivity information.  To actually solve the 

circuit using this graph, the types of elements forming the edges would 

need to be provided. 

a 

b c 

d 
e f 

g 

h 



Trees and Co-Trees 

A tree is defined as any set of edges in a graph that touches 

every node without forming any closed paths. 
 
Also known as Hamiltonian path! 
 
Each tree has a co-tree, which is the set of edges not in the tree. 

a 

b c 

d 
e f 

g 

h 



Cut Set 

A cut set is a minimal set of edges that, when broken, breaks the 

graph into two completely separate parts (two groups of nodes. 

 

Minimal means that a cut set cannot contain another smaller cut 

set that would break the graph into the same two parts. 

a 

b c 

d 
e f 

g 

h 



Fundamental Cut Set 

Suppose I am given a tree. 
 
A fundamental cut set w.r.t. that tree is a cut set that only 

contains one branch of the tree. 
 
There may be many fundamental cut sets w.r.t. a given tree. 

a 

b c 

d 
e f 

g 

h 



Finding Fundamental Cut Sets Systematically 

1.  Redraw the graph with the tree in a straight line. 

2.  For each tree edge, form its fundamental cut set as follows: 

2a)  that tree edge is a member of this fundamental cut set 

2b)  cut that edge…what two groups of nodes are separated? 

2c)  the fundamental cut set also contains all edges in the co-tree 

that connect these two groups. 

1 4 2 5 3 

d 

a 

b 



 Identifying a tree for a circuit, and all of the 
fundamental cut sets that go with it, can be used in 
nodal analysis. 

 Here are the steps simulation software may take to 
perform nodal analysis: 

1. From user input, make a connectivity matrix (graph) 
and record the circuit element on each edge. 

2. Choose a tree using the following guidelines: 
a) Place an edge in the tree if it contains a voltage source, or if 

the voltage over the edge controls a dependent source. 

b) Place an edge in the co-tree if it contains a current source, 
or if the current in the edge controls a dependent source. 

3. Find all of the fundamental cut sets for this tree.   
 n nodes yields n-1 fundamental cut sets 
 



4. Each fundamental cut set breaks the circuit into two 
pieces:  two supernodes.  Write a KCL equation for 
one supernode in each fundamental cut set (in terms 
of node voltages).   

 The KCL equations for the two supernodes formed by a 
fundamental cut set will be the same. 

 This is where the circuit element info comes into play. 

 This yields n-1 equations in n node voltage variables. 

5. Set one node voltage to zero volts (ground) and solve 
. 



Notes 

 All of this can be done computationally. 

  Graph algorithms 

  Linear equation solution 

 This algorithm shows why nodal analysis always works:  you 

get n-1 independent linear equations in n-1 unknowns. 

 The fundamental cut sets ensure independence of the 

equations—unless the circuit has impossible elements. 

 Each fundamental cut set contains a unique element (edge) 

from the tree.  So each KCL equation provides new info. 

 The elements themselves could destroy the independence 

(redundant dependent source, shorted voltage source…) 

but this won’t happen in real life circuits. 



Example 

Find the node voltages using the graph method. 

120 V

20 W

40 W

5 W

10 W

0.75 I
X

I X

Circuit from Nilsson’s Electric Circuits, Addison-Wesley, 1993. 
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Magnetic and Electromagnetic Fields 
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Magnetic 
Materials 

Iron, Cobalt and Nickel and various other alloys and  
compounds made using these three basic elements 
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Electric Current and Magnetic 
Field 
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A Few Definitions Related to 
Electromagnetic Field 

 (Unit is Weber (Wb)) = Magnetic Flux Crossing a Surface of  
Area ‘A’ in m2. 

B (Unit is Tesla (T)) = Magnetic Flux Density = /A 

H (Unit is Amp/m) = Magnetic Field Intensity = 

m

B

m = permeability = mo mr 

mo = 4*10-7 H/m (H Henry) = Permeability of free space (air) 

mr = Relative Permeability 

mr >> 1 for Magnetic Material 
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Ampére’s Law 

 


idl.H

The line integral of the magnetic field intensity around a closed path is 
 equal to the sum of the currents flowing through the area enclosed by 
 the path.  

q


cosdlHdl.H
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Example of Ampére’s Law 
Find the magnetic field along a circular path around an infinitely long 
Conductor carrying ‘I’ ampere of current. 

900 

B,H 

r 
dl 

Since both   


dl


Hand are perpendicular to radius ‘r’ at any point ‘A’  

on the circular path, the angle q is zero between them at all points. Also since all 
the points on the circular path are equidistant from the current carrying 
conductor         is constant at all points on the circle 

H

Ir2HdlHdl.H 



or 

r2

I
H





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•They are basically ferromagnetic structures(mostly Iron, Cobalt, 
Nickel alloys and compounds) with coils wound around them 
 
•Because of high permeability most of the magnetic flux is confined 
within the magnetic circuit 

 
•Thus        is always aligned with 

 

•Examples: Transformers,Actuators, Electromagnets, Electric Machines 

Magnetic Circuits 



H )0(dl q

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l= mean length 

N 

I 

d 

w 

Magnetic Circuits (1) 
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F =NI= Magneto Motive Force or MMF = #  of turns * Current passing 
through it  

NI
B


m

lor NI
A


m


lor 

or 

)A/(

NI

m


l




NIor 

F = NI = Hl (why!) 

Magnetic Circuits (2) 

 = Reluctance of magnetic path 
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Analogy Between Magnetic and Electric 
 Circuits  

F =MMF is analogous to Electromotive force (EMF) =E 

 = Flux is analogous to I = Current 

  = Reluctance is analogous to R = Resistance 

P  = Permeance  




1
 = Analogous to conductance  

R

1
G 
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H 

B 
B 

H 

Linear 

knee 

saturation 

Magnetization curve 
(linear) (Ideal) 

Magnetization curve 
(non-linear) (Actual) 

(see also Fig. 1.6 in the text) 

 Magnetization  Curves 
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•One can linearize magnetic circuits by including air-gaps 
 

•However that would cause a large increase in ampere-turn  
requirements. 
 
Ex: Transformers don’t have air-gaps. They have very little 
magnetizing current (5% of full load) 
 
Induction motors have air-gaps. They have large magnetizing  
current (30-50%) 
 
Question: why induction motors have air –gap and  
transformers don’t? 

 Magnetization  Curves(2) 



122 

 Magnetization  Circuits with Air-
gap 

N 

i 

d 

w lc 

lg 

cc

c
c

A

l

m


gg

g

g
A

l

m


gc

Ni




ggcc lHlHNi  )( fringingNeglectingwdAA gc 
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N 

i 

w lc 

                        Fringing 

With large air-gaps, flux tends to leak outside the air –gap. This is 
called fringing which increases the effective flux area. One way to 
approximate this increase is: 

nngngngn dwAlddlww  ;;
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Example of Magnetic Circuits On 
Greenboard  
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Magnetization  Curves (for examples) 



126 

Inductance(L)  

Definition: Flux Linkage() per unit of current(I) in a magnetic circuit  

I

N

I
L










NI




2N
L

Thus inductance depends on the geometry of construction 



I N 
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Example of Inductances On 
Greenboard 
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How to find exact Inductances with 
magnetic circuit with finite thickness 
(say a torroid with finite thickness) 
 
  see problem 1.16 
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Faraday’s law of Electromagnetic  
Induction  

The EMF (Electromotive Force) induced in a magnetic circuit is 
Equal to the rate of change of flux linked with the circuit 
 

dt

d
N

dt

)N(d

dt

d
e










 NLi

dt

di
L

dt

dLi
e 
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Lenz’s Law  

The polarity of the induced voltage will be such as to oppose the very 
cause to which it is due 

dt

di
L

dt

dLi
e 

The polarity of the induced voltage is given by Lenz’s law 

Thus sometimes we  write 
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V = Vm Cos(t) 

 =m Sin(t) 

  

)t(CosV)t(CosE)t(CosN
dt

d
Ne mmm 




Ideally 

A precursor to Transformer 

)t(SinI
L

)t(SinN

L

N
i m

m 









i N 
 

 

e 
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A Precursor to Transformer(2) 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
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-50

0

50

100

e

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
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time 
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Example on excitation of magnetic 
circuit with sinusoidal flux On 
greenboard 
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Example on excitation of magnetic  
circuit with square flux on greenboard 
(Important for Switched Mode Power 
Supplies) 
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What will non-linearity in magnetic  
circuit lead to? 

•It would cause distortion in current waveforms since by Faraday’s 
 and Lenz’s law  the induced voltage always has to balance out the 
 applied voltage that happens to be sinusoidal 
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Sinusoidal voltage non-
sinusoidal current 
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Iron Losses in Magnetic Circuit 

There are two types of iron losses 
 
a) Hysteresis  losses 

 
b) Eddy Current Losses 

Total iron loss is the sum of these two losses 
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Hysteresis  losses 

Br 

B 

H 

Br = Retentive flux density (due to property of retentivity) 
Hc= Coercive field intensity (due to property of coercivity) 

B-H or Hysteresis loop  

1 2 1 2 

i 

t 3 

3 

0 

4 

4 

5 

5 

i 

saturation 

knee point 

Hc 

T

1
f 

f =frequency 
of sine source 

0 
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•The lagging phenomenon of B behind H is called hysteresis 
 

• The tip of hysteresis loops can be joined to obtain the  
magnetization characteristics 
 
•In each of the current cycle the energy lost in the core is 
proportional to the area of the B-H loop 
 
•Energy lost/cycle = Vcore                        

Hysteresis  losses (2) 

 HdB

• Ph = Hysteresis loss = f Vcore   HdB = khBn
maxf 

kh = Constant, n = 1.5-2.5, Bmax= Peak flux density 
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Eddy current  loss  

flux Current 
flux 

Because of time variation of flux flowing through the magnetic  
material as shown, current is induced in the magnetic material, 
following Faraday’s law. This current is called eddy current.  
The direction of the current is determined by Lenz’s law. This current  
can be reduced by using laminated (thin sheet) iron structure, with  
Insulation between the laminations. 

Laminations 

• Pe = Eddy current loss = keB
2
maxf 

Bmax= Peak flux density ke = Constant , 
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Permanent Magnets  

 
• Alloys of Iron, Cobalt and Nickle 

 
•Have large B-H loops, with large Br and –Hc 

 

•Due to heat treatment becomes mechanically hard and are thus 
 called HARD IRON 
 
•Field intensity is determined by the coercive field required to  
demagnetize it 
 
•Operating points defined by Bm,Hm in the second quadrant of 
the B-H loop 
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PM 

SOFT IRON 

SOFT IRON 

lm 
lg 

Using Permanent Magnets for 
providing  magnetic field  
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Designing Permanent Magnets 
•The key issue here is to minimize the volume Vm of  material 
required for setting up a required Bg in a given air gap 
 
•It can be shown that Vm =Bg

2Vg/μoBmHm (see derivation in text) 

where Vg= Aglg Volume of air-gap,lg = length of air-gap, Ag =area 
of air-gap 
 
•Thus by maximizing Bm, Hm product Vm can be minimized 

 
•Once Bm, Hm at the maximum Bm, Hm product point are known, lm =length of 
permanent magnet, Am =area of permanent magnet can be found as 

 
•lm=-lgHg/Hm (applying ampère’s law),  
•Am=BgAg/Bm (same flux flows through PM as well as air-gap) 
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Finding the maximum product point 

-1000 -800 -600 -400 -200 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

H(kA/m)

B
(T

e
s
la

)

Demagnetization curve for 
Neodymium-iron-boron magnet 
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B= mH+c, m and c are constants. 
 
To find  maximum BH product, we  need to differentiate  
                                   BH=mH2+cH; 
and set it equal to 0. Thus we get 
 
Hm=-c/2m. and Bm =c/2 

Finding the maximum product point (2)
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Finding the maximum product point (3)

Answer: 
 
Bm=0.64 T, Hm = -475 kA/m 



  This chapter introduces important 
fundamental theorems of network analysis. 
They are the 
Superposition theorem 

Thévenin’s theorem 

Norton’s theorem 

Maximum power transfer theorem  

Substitution Theorem 

Millman’s theorem 

Reciprocity theorem 



  Used to find the solution to networks with two 
or more sources that are not in series or parallel. 

  The current through, or voltage across, an 
element in a network is equal to the algebraic 
sum of the currents or voltages produced 
independently by each source. 

  Since the effect of each source will be 
determined independently, the number of 
networks to be analyzed will equal the number 
of sources. 

 



The total power delivered to a resistive element 
must be determined using the total current 
through or the total voltage across the element 
and cannot be determined by a simple sum of the 
power levels established by each source. 



Any two-terminal dc network can be 
replaced by an equivalent circuit consisting 
of a voltage source and a series resistor. 



  Thévenin’s theorem can be used to: 

Analyze networks with sources that are not in series or 
parallel. 

Reduce the number of components required to 
establish the same characteristics at the output 
terminals. 

Investigate the effect of changing a particular 
component on the behavior of a network without 
having to analyze the entire network after each change.  



 Procedure to determine the proper values of RTh and ETh  

  Preliminary 

1. Remove that portion of the network across which the 
Thévenin equation circuit is to be found. In the figure 
below, this requires that the load resistor RL be temporarily 
removed from the network. 



2. Mark the terminals of the remaining two-terminal 
network. (The importance of this step will become 
obvious as we progress through some complex 
networks.) 

 

RTh: 

3. Calculate RTh by first setting all sources to zero (voltage 
sources are replaced by short circuits, and current 
sources by open circuits) and then finding the resultant 
resistance between the two marked terminals. (If the 
internal resistance of the voltage and/or current sources 
is included in the original network, it must remain when 
the sources are set to zero.) 



ETh: 
4. Calculate ETh by first returning all sources to their 

original position and finding the open-circuit voltage 
between the marked terminals. (This step is invariably 
the one that will lead to the most confusion and errors.  
In all cases, keep in mind that it is the open-circuit 
potential between the two terminals marked in step 2.) 

 

 



  Conclusion: 
5. Draw the Thévenin 

equivalent circuit with 
the portion of the circuit 
previously removed 
replaced between the 
terminals of the 
equivalent circuit.  This 
step is indicated by the 
placement of the resistor 
RL between the terminals 
of the Thévenin 
equivalent circuit. 

Insert Figure 9.26(b) 



Experimental Procedures 

  Two popular experimental procedures for 
determining the parameters of the Thévenin 
equivalent network: 

 Direct Measurement of ETh and RTh 

 For any physical network, the value of ETh can be 
determined experimentally by measuring the open-
circuit voltage across the load terminals. 

 The value of RTh can then be determined by completing 
the network with a variable resistance RL. 



  Measuring VOC and ISC 

 The Thévenin voltage is again determined by 
measuring the open-circuit voltage across the terminals 
of interest; that is, ETh = VOC. To determine RTh, a short-
circuit condition is established across the terminals of 
interest and the current through the short circuit (Isc) is 
measured with an ammeter. 

Using Ohm’s law: 

RTh = Voc / Isc 



 Norton’s theorem states the following: 

 Any two-terminal linear bilateral dc network can be 
replaced by an equivalent circuit consisting of a 
current and a parallel resistor. 

 The steps leading to the proper values of IN and 
RN. 

 Preliminary steps: 

1. Remove that portion of the network across which the 
Norton equivalent circuit is found. 

2. Mark the terminals of the remaining two-terminal 
network. 



  Finding RN: 

3. Calculate RN by first setting all sources to zero (voltage 
sources are replaced with short circuits, and current 
sources with open circuits) and then finding the 
resultant resistance between the two marked terminals.  
(If the internal resistance of the voltage and/or current 
sources is included in the original network, it must 
remain when the sources are set to zero.)  Since RN = RTh 
the procedure and value obtained using the approach 
described for Thévenin’s theorem will determine the 
proper value of RN.  



  Finding IN : 

4. Calculate IN by first returning all the sources to their 
original position and then finding the short-circuit 
current between the marked terminals.  It is the same 
current that would be measured by an ammeter 
placed between the marked terminals. 

 Conclusion: 

5. Draw the Norton equivalent circuit with the portion 
of the circuit previously removed replaced between 
the terminals of the equivalent circuit. 



  The maximum power transfer 
theorem states the following: 

  A load will receive maximum power 
from a network when its total resistive 
value is exactly equal to the Thévenin 
resistance of the network applied to the 
load.  That is, 

RL = RTh  

 



  For loads connected directly to a dc 
voltage supply, maximum power will 
be delivered to the load when the 
load resistance is equal to the internal 
resistance of the source; that is, when: 
 

RL = Rint  



  Any number of parallel voltage sources can be 
reduced to one. 

  This permits finding the current through or voltage 
across RL without having to apply a method such as 
mesh analysis, nodal analysis, superposition and so 
on. 

1. Convert all voltage sources to current sources. 

2. Combine parallel current sources. 

3. Convert the resulting current source to a voltage source 
and the desired single-source network is obtained. 



  The substitution theorem states: 

 If the voltage across and the current through any 
branch of a dc bilateral network is known, this branch 
can be replaced by any combination of elements that 
will maintain the same voltage across and current 
through the chosen branch. 

 Simply, for a branch equivalence, the terminal 
voltage and current must be the same. 



  The reciprocity theorem is applicable only to 
single-source networks and states the following: 

 The current I in any branch of a network, due to a 
single voltage source E anywhere in the network, will 
equal the current through the branch in which the 
source was originally located if the source is placed in 
the branch in which the current I was originally 
measured. 

 The location of the voltage source and the resulting 
current may be interchanged without a change in current 
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Resonance In Electric Circuits 

 Any passive electric circuit will resonate if it has an inductor 
and capacitor. 

 Resonance is characterized by the input voltage and current 
being in phase.  The driving point impedance (or admittance)  
is completely real when this condition exists. 

 In this presentation we will consider (a) series resonance, and 
(b) parallel resonance. 
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Series Resonance 

Consider the series RLC circuit shown below. 

R L 

C 
+ 

_ I V 

V = VM 0 

The input impedance is given by: 

1
( )Z R j wL

wC
  

The magnitude of the circuit current is; 

2 2

| |
1

( )

mV
I I

R wL
wC

 

 
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Series Resonance 

Resonance occurs when, 

1
wL

wC


At resonance we designate w as wo and write; 

1
ow

LC


This is an important equation to remember.  It applies to both series 
And parallel resonant circuits. 
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Series Resonance 

The magnitude of the current response for the series resonance circuit 
is as shown below. 

mV

R

2

mV

R

w 

|I| 

wo w1 w2 

Bandwidth: 

BW = wBW = w2 – w1 

Half power point 
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Series Resonance 

The peak power delivered to the circuit is; 

2

mV
P

R


The so-called half-power is given when 
2

mV
I

R
 . 

We find the frequencies, w1 and w2, at which this half-power 
 occurs by using; 

2 21
2 ( )R R wL

wC
  
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Series Resonance 

After some insightful algebra one will find two frequencies at which 
the previous equation is satisfied, they are: 

2

1

1

2 2

R R
w

L L LC

 
    

 

an
d 

2

2

1

2 2

R R
w

L L LC

 
   

 

The two half-power frequencies are related to the resonant frequency by 

1 2ow w w
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Series Resonance 

The bandwidth of the series resonant circuit is given by; 

2 1b

R
BW w w w

L
   

We define the Q (quality factor) of the circuit as;  

1 1o

o

w L L
Q

R w RC R C

 
    

 

Using Q, we can write the bandwidth as; 

ow
BW

Q


These are all important relationships. 
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Series Resonance 

An Observation: 

If Q > 10, one can safely use the approximation; 

1 2
2 2

o o

BW BW
w w and w w   

These are useful approximations. 
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Series Resonance 

An Observation: 

By using Q = woL/R in the equations for w1and w2 we have; 

2

2

1 1
1

2 2
ow w

Q Q

 
 

    
  
 

2

1

1 1
1

2 2
ow w

Q Q

 
 

    
  
 

and 
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Series Resonance 

In order to get some feel for how the numerical value of Q influences 
the resonant and also get a better appreciation of the s-plane, we consider 
the following example. 

It is easy to show the following for the series RLC circuit. 

2

1

( ) 1

1( ) ( )

s
I s L

RV s Z s
s s

L LC

 

 

In the following example, three cases for the about transfer function 
will be considered.  We will keep wo the same for all three cases. 
The numerator gain,k, will (a) first be set k to 2 for the three cases, then 
(b) the value of k will be set so that each response is 1 at resonance.  
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Series Resonance 

An Example Illustrating Resonance: 

The 3 transfer functions considered are: 

Case 1: 

Case 2: 

Case 3: 

2 2 400

ks

s s 

2 5 400

ks

s s 

2 10 400

ks

s s 
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Series Resonance 

An Example Illustrating Resonance: 

The poles for the three cases are given below. 

Case 1: 

Case 2: 

Case 3: 

2 2 400 ( 1 19.97)( 1 19.97)s s s j s j      

2 5 400 ( 2.5 19.84)( 2.5 19.84)s s s j s j      

2 10 400 ( 5 19.36)( 5 19.36)s s s j s j      
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Series Resonance 

Comments: 

Observe the denominator of the CE equation. 

2 1R
s s

L LC
 

Compare to actual characteristic equation for Case 1: 

2 2 400s s 

2
400ow  20w 

2
R

BW
L

  10ow
Q

BW
 

rad/sec 

rad/sec 
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Series Resonance 

Poles and Zeros In the s-plane: 

s-plane 

jw axis 

 axis 

0 

0 

20 

-20 
x x 

x x x 

x 

( 3)           (2)      (1) 

( 3)           (2)      (1) 

-5 -2.5 -1 
Note the location of the poles 
for the three cases.  Also note 
there is a zero at the origin. 
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Series Resonance 

Comments: 

The frequency response starts at the origin in the s-plane. 
At the origin the transfer function is zero because there is a 
zero at the origin. 

As you get closer and closer to the complex pole, which  
has a j parts in the neighborhood of 20, the response starts 
to increase. 

The response continues to increase until we reach w = 20. 
From there on the response decreases. 

We should be able to reason through why the response 
has the above characteristics, using a graphical approach. 
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Series Resonance 

Matlab Program For The Study: 

  
  

  

% name of program is freqtest.m 
% written for 202 S2002, wlg 
%CASE ONE DATA: 
K = 2; 
num1 = [K 0]; 
den1 = [1 2  400]; 
  
num2 = [K 0]; 
den2 = [1 5 400]; 
  
num3 = [K 0]; 
den3 = [1 10 400]; 
  
w = .1:.1:60; 

 

grid 
H1 = bode(num1,den1,w); 
magH1=abs(H1); 
  
H2 = bode(num2,den2,w); 
magH2=abs(H2); 
  
H3 = bode(num3,den3,w); 
magH3=abs(H3); 
  
plot(w,magH1, w, magH2, w,magH3) 
grid 
xlabel('w(rad/sec)') 
ylabel('Amplitude') 
gtext('Q = 10, 4, 2') 
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Series Resonance 

Program Output 
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Series Resonance 

Comments: cont. 

From earlier work: 

2

1 2

1 1
, 1

2 2
ow w w

Q Q

 
 

    
  
 

With Q = 10, this gives; 

w1= 19.51 rad/sec,       w2 = 20.51 rad/sec 

Compare this to the approximation: 

w1 = w0 – BW = 20 – 1 = 19 rad/sec,    w2 = 21 rad/sec 

So basically we can find all the series resonant parameters 
if we are given the numerical form of the CE of the transfer  
function. 
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Series Resonance 

Next Case:  Normalize all responses to 1 at wo 
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Series Resonance 

Three dB Calculations: 

Now we use the analytical expressions to calculate w1 and w2. 

We will then compare these values to what we find from the  
Matlab simulation. 

Using the following equations with Q = 2, 























 1

2

1

2

1
,

2

21

Q
w

Q
www

oo



we find, 

w1 = 15.62 rad/sec 

w2 = 21.62 rad/sec 
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Series Resonance 

Checking w1 and w2 

   15.3000    0.6779 
   15.4000    0.6871 
   15.5000    0.6964 
   15.6000    0.7057 
   15.7000    0.7150 
   15.8000    0.7244 

 

w1 

   25.3000    0.7254 
   25.4000    0.7195 
   25.5000    0.7137 
   25.6000    0.7080 
   25.7000    0.7023 
   25.8000    0.6967 
   25.9000    0.6912 

 

w2 

This verifies the previous calculations. 

Now we shall look at Parallel Resonance. 

(cut-outs from the simulation) 
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Parallel Resonance 

Background 

Consider the circuits shown below: 

I R L C 

V 

I 

R L 

C V 











jwL
jwC

R
VI

11











jwC
jwLRIV

1



188 











jwL
jwC

R
VI

11










jwC
jwLRIV

1

We notice the above equations are the same provided: 

VI

R
R

1

CL

If we make the inner-change, 
then one equation becomes  
the same as the other. 
 
For such case, we say the one  
circuit is the dual of the other. 

Series Resonance 

Duality 

If we make the inner-change, 
then one equation becomes  
the same as the other. 
 
For such case, we say the one  
circuit is the dual of the other. 
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Parallel Resonance 

Background 

What this means is that for all the equations we have 
derived for the parallel resonant circuit, we can use  
for the series resonant circuit provided we make  
the substitutions: 

R
bereplacedR

1

LbyreplacedC

CbyreplacedL

What this means is that for all the equations we have 
derived for the parallel resonant circuit, we can use  
for the series resonant circuit provided we make  
the substitutions: 

What this means is that for all the equations we have 
derived for the parallel resonant circuit, we can use  
for the series resonant circuit provided we make  
the substitutions: 
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Parallel Resonance 

Parallel Resonance Series Resonance 

R

Lw
Q O

LC
w

O

1


LC
w

O

1


RCwQ
o



L

R
wwwBW

BW
 )(

12 RC
wBW

BW

1


w
21

,ww























LCL

R

L

R
ww

1

22
,

2

21

























LCRCRC
ww

1

2

1

2

1
,

2

21



21
,ww























 1

2

1

2

1
,

2

21

QQ
www

o

























 1

2

1

2

1
,

2

21

QQ
www

o


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 Resonance 

Example 1: Determine the resonant frequency for the circuit below. 

jwRCLCw

jwLLRCw

jwC
jwLR

jwC
RjwL

Z
NI











)1(

)(

1

)
1

(

2

2

At resonance, the phase angle of Z must be equal to zero. 
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jwRCLCw

jwLLRCw





)1(

)(
2

2

 Resonance 

Analysis 

For zero phase;   

LCw

wRC

LCRw

wL
22 1()( 




This gives; 

12222  CRwLCw

or 

)(

1
22CRLC

w
o



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Parallel Resonance 

Example 2: 

A parallel RLC resonant circuit has a resonant frequency admittance of 
2x10-2 S(mohs).  The Q of the circuit is 50, and the resonant frequency is 
10,000 rad/sec.  Calculate the values of R, L, and C.  Find the half-power 
frequencies and the bandwidth.   

First, R = 1/G = 1/(0.02) = 50 ohms.   

Second, from  
R

Lw
Q O , we solve for L, knowing Q, R, and wo to 

find L = 0.25 H. 

Third,  we can use  F
xRw

Q
C

O

m100
50000,10

50


A parallel RLC resonant circuit has a resonant frequency admittance of 
2x10-2 S(mohs).  The Q of the circuit is 50, and the resonant frequency is 
10,000 rad/sec.  Calculate the values of R, L, and C.  Find the half-power 
frequencies and the bandwidth.   

A series RLC resonant circuit has a resonant frequency admittance of 
2x10-2 S(mohs).  The Q of the circuit is 50, and the resonant frequency is 
10,000 rad/sec.  Calculate the values of R, L, and C.  Find the half-power 
frequencies and the bandwidth.   
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Parallel Resonance 

Example 2: (continued) 

Fourth: We can use  sec/200
50

101 4

rad
x

Q

w
w o

BW


and 

Fifth:  Use the approximations; 

w1 =  wo -  0.5wBW   =  10,000 – 100  =  9,900 rad/sec 

w2 =  wo  - 0.5wBW   =  10,000 + 100 =  10,100 rad/sec 
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Extension of Series Resonance 

Peak Voltages and Resonance: 

VS 

R L 

C 

+ 

_ I 

+ + 

+ 

_ _ 

_ 

VR VL 

VC 

We know the following: 

 
When w = wo = 1

LC
, VS and I are in phase, the driving point impedance  

is purely real and equal to R. 

 A plot of |I| shows that it is maximum at w = wo.  We know the standard 
equations for series resonance applies: Q, wBW, etc. 
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Extension of Series Resonance 

Reflection: 

A question that arises is what is the nature of VR, VL, and VC?  A little  
reflection shows that VR is a peak value at wo.  But we are not sure 
about the other two voltages.  We know that at resonance they are equal 
and they have a magnitude of QxVS. 

 

 

 

max 2

1
1

2
ow w

Q
 

The above being true, we might ask, what is the frequency at which the  
voltage across the inductor is a maximum?   

We answer this question by simulation 

Irwin shows that the frequency at which the voltage across the capacitor 
is a maximum is given by; 
Irwin shows that the frequency at which the voltage across the capacitor 
is a maximum is given by; 
Irwin shows that the frequency at which the voltage across the capacitor 
is a maximum is given by; 
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Extension of Series Resonance 

Series RLC Transfer Functions: 

The following transfer functions apply to the series RLC circuit. 

2

1

( )

1( )

C

S

V s LC
RV s

s s
L LC



 

2

2

( )

1( )

L

S

V s s

RV s
s s

L LC



 

2

( )

1( )

R

S

R
s

V s L
RV s

s s
L LC



 
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Extension of Series Resonance 

Parameter Selection: 

We select values of R, L. and C for this first case so that Q = 2 and  
wo = 2000 rad/sec.   Appropriate values are; R = 50 ohms, L = .05 H,  
C = 5mF.  The transfer functions become as follows: 

6

2 6

4 10

1000 4 10

C

S

V x

V s s x


 

2

2 61000 4 10

L

S

V s

V s s x


 

2 6

1000

1000 4 10

R

S

V s

V s s x


 
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Extension of Series Resonance 

Matlab Simulation: 

% program is freqcompare.m 
% written for 202 S2002, wlg 
  
numC = 4e+6; 
denC = [1 1000 4e+6]; 
  
numL = [1 0 0]; 
denL = [1 1000 4e+6]; 
  
numR = [1000 0]; 
denR = [1 1000 4e+6]; 
  
w = 200:1:4000; 
  
grid 
HC = bode(numC,denC,w); 
magHC = abs(HC); 
 

  
grid 
HC = bode(numC,denC,w); 
magHC = abs(HC); 
  
HL = bode(numL,denL,w); 
magHL = abs(HL); 
  
HR = bode(numR,denR,w); 
magHR = abs(HR); 
  
plot(w,magHC,'k-', w, magHL,'k--', w, magHR, 'k:') 
grid 
  
xlabel('w(rad/sec)') 
ylabel('Amplitude') 
title(' Rsesponse for RLC series circuit, Q =2') 
  
gtext('VC') 
gtext('VL') 
gtext(' VR') 
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Simulation Results 

Q = 2 
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Exnsion of Series Resonance 

Analysis of the problem: 

VS 

R=50 W L=5 
mH 

C=5 mF 

+ 

_ I 

+ + 

+ 

_ _ 

_ 

VR VL 

VC 

Given the previous circuit.  Find Q, w0, wmax, |Vc| at wo, and |Vc| at wmax 

Solution: sec/2000
1051050

11
62

rad
xxxLC

w
O




2
50

105102 23


xxx

R

Lw
Q O
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Exnsion of Series Resonance 

Problem Solution: 

oOMAX
w

Q
ww 9354.0

2

1
1

2


)(212|||| peakvoltsxVQwatV
SOR



( ))066.2
968.0

2

4

1
1

||
||

2

peakvolts

Q

VQx
watV S

MAXC






Now check the computer printout. 
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Exnsion of Series Resonance 

Problem Solution (Simulation): 

 
 
  1.0e+003 * 

 

   1.8600000       0.002065141 

   1.8620000       0.002065292 

   1.8640000       0.002065411 

   1.8660000       0.002065501 

   1.8680000       0.002065560 

   1.8700000       0.002065588 

   1.8720000       0.002065585 

   1.8740000       0.002065552 

   1.8760000       0.002065487 

   1.8780000       0.002065392 

   1.8800000       0.002065265 

   1.8820000       0.002065107 

   1.8840000       0.002064917 

Maximum 
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Extension of Series Resonance 

Simulation Results: 
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Exnsion of Series Resonance 

Observations From The Study: 

 

 

 

 

The voltage across the capacitor and inductor for a series RLC circuit 
is not at peak values at resonance for small Q (Q <3). 

Even for Q<3, the voltages across the capacitor and inductor are 
equal at resonance and their values will be QxVS. 

For Q>10, the voltages across the capacitors are for all practical  
purposes at their peak values and will be QxVS. 

Regardless of the value of Q, the voltage across the resistor  
reaches its peak value at w = wo.   

 
For high Q, the equations discussed for series RLC resonance 
can be applied to any voltage in the RLC circuit.  For Q<3, this 
is not true. 
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Extension of Resonant Circuits 

Given the following circuit: 

I 

+ 

_ 

+ 

_ 

V C 

R 

L 

  

 

We want to find the frequency, wr, at which the transfer function 
for V/I will resonate. 

The transfer function will exhibit resonance when the phase angle 
between V and I are zero. 
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Extension of Resonant Circuits 

The desired transfer functions is; 

(1/ )( )

1/

V sC R sL

I R sL sC




 

This equation can be simplified to; 

2 1

V R sL

I LCs RCs




 

With s jw 

2(1 )

V R jwL

I w LC jwR




 
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Extension of Resonant Circuits 

Resonant Condition: 

For the previous transfer function to be at a resonant point, 
the phase angle of the numerator must be equal to the phase angle 
of the denominator. 

num demq q 

1tannum

wL

R
q   

  
 

or,  

1

2
tan

(1 )
den

wRC

w LC
q   

  
 

, . 

Therefore; 

2(1 )

wL wRC

R w LC



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Extension of Resonant Circuits 

Resonant Condition Analysis: 

Canceling the w’s in the numerator and cross multiplying gives, 

2 2 2 2 2(1 )L w LC R C or w L C L R C   

This gives, 
2

2

1
r

R
w

LC L
 

Notice that if the ratio of R/L is small compared to 1/LC, we have 

1
r ow w

LC
 
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Extension of Resonant Circuits 

Resonant Condition Analysis: 

What is the significance of wr and wo in the previous two equations? 
Clearly wr is a lower frequency of the two.  To answer this question, consider 
the following example. 

Given the following circuit with the indicated parameters.  Write a  
Matlab program that will determine the frequency response of the  
transfer function of the voltage to the current as indicated.  

I 

+ 

_ 

+ 

_ 

V C 

R 

L 
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Extension of Resonant Circuits 

Resonant Condition Analysis: Matlab Simulation: 

We consider two cases: 

Case 1: 

R = 3 ohms 
C = 6.25x10-5 F 
L = 0.01 H 
 

Case 2: 

R = 1 ohms 
C = 6.25x10-5 F 
L = 0.01 H 
 

wr= 2646 rad/sec wr= 3873 rad/sec 

For both cases, 

wo = 4000 rad/sec 
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Extension of Resonant Circuits 

Resonant Condition Analysis: Matlab Simulation: 

The transfer functions to be simulated are given below. 

8 2 7

0.001 3

6.25 10 1.875 10 1

V s

I x s x 




 

Case 1: 

Case 2: 

8 2 5

0.001 1

6.25 10 6.25 10 1

V s

I x s x 




 
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Extension of Resonant Circuits 
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Extension of Resonant Circuits 

What can be learned from this example? 

 

 

 

wr does not seem to have much meaning in this problem. 
What is wr if R = 3.99 ohms? 

Just because a circuit is operated at the resonant frequency 
does not mean it will have a peak in the response at the  
frequency. 

For circuits that are fairly complicated and can resonant, 
It is probably easier to use a simulation program similar to 
Matlab to find out what is going on in the circuit. 
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End of Lesson  

Basic Laws of Circuits 

Resonant Circuits  

Circuits 


