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INTRODUCTION TO   ELECTRO-STATICS
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The Electrostatic  Field 

1.1 Introduction

1.2 Coulomb’s Law

1.3 The Electric Field

1.4 Continuous Charge Distribution
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1.1  Introduction

The fundamental problem for electromagnetic to solve is to 

calculate the interaction of charges in a given configuration.

That  is, what force do they exert on another charge Q ? 

The simplest case is that the source  charges are stationary.

Principle of  Superposition:                                                    

The interaction between any two charges is completely 

unaffected   by the presence of other charges.

1 2 3F F F F   
   



R


is the force on Q due to  iq
iF

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1.2  Coulomb’s  Law

The force on a charge Q due to a single point charge q is

given by Coulomb`s law.
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1.3  The Electric Field
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1.4  Continuous  Charge  Distributions
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1.4 

Example 2.1 Find the electric field a distance z above the midpoint 

of a straight of length 2L, which carries a uniform line charge   
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UNIT – II       

CONDUCTORS AND DIELECTRICS
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2 Divergence and Curl of Electrostatic Fields

2.1 Field Lines and Gauss’s Law

2.2 The Divergence of E

2.3 Application of Gauss’s Law

2.4 The Curl of E
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A single point charge q, situated at the origin

2.1 Fields lines and Gauss’s law
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Because the field falls off like        ,the vectors get shorter as I go 

father away from the origin,and they always point radially outward. 

This vectors can be connect up the arrows to form the field lines.

The magnitude of the field is indicated by the density of the lines.
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1.Field lines emanate from a point charge symmetrically in all 

directions.

2.Field lines originate on positive charges and terminate on 

negative ones.

3.They cannot simply stop in midair, though they may extend 

out to infinity.

4.Field lines can never cross.

2.1 
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Since in this model the fields strength is proportional to the 

number of lines per unit area, the flux of     (             )  is 

proportional to the the  number of field lines passing through 

any surface .

The flux of E through a sphere of radius r is:

2
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 



The flux through any surface enclosing the charge is            

According to the principle of superposition, the total field is 

the sum of all the individual fields: 
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2.1 

E


A charge outside the surface would contribute nothing to the

total flux,since its field lines go in one side and out other.
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Turn integral form into a differential one , by applying the 

divergence theorem
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2.2 The Divergence of E
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2.3 Application of Gauss’s Law
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Example 2.2    Find the field outside a uniformly charged sphere 
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1. Spherical symmetry.    Make your Gaussian surface a 

concentric sphere (Fig 2.18)

2. Cylindrical symmetry.  Make your Gaussian surface a 

coaxial cylinder (Fig 2.19)

3. Plane symmetry.         Use a Gaussian surface a coaxial 

the surface (Fig  2.20)

2.3 
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Example 2.3  Find the electric field inside the cylinder which

contains charge density as 

Solution:

k r 
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(by symmetry)
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Example 2.4  An infinite plane carries a uniform surface charge.      

Find its electric field.  



Solution:  Draw a ”Gaussian pillbox

Apply Gauss’s law to this surface

0

1

s u r fa c e

e n cE d a Q


 
 



By symmetry, E points away from the plane

thus, the top and bottom surfaces yields

2E d a A E 
 
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Example 2.5  Two infinite parallel planes carry equal but opposite 

uniform charge densities        .Find the field in 

each of the three regions. 

2.3 

Solution:   

The field is (σ/ε0 ), and points to the right, between the

plane elsewhere it is zero. 
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2.4 The Curl of E

A point charge at the origin. If we calculate 

the line integral of this field from some point 

to some other point b :
b
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This integral is independent of path. It depends on the 

two end points

0E d l 
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Apply by Stokes’ theorem, 0E  
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2.4

The principle of superposition 

1 2E E E  
  



1 2 1 2( ) ( ) ( ) 0E E E E E              
    

 

so

must hold for any static charge distribution whatever. 

0E  

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2.5 Basic Properties of Conductors

e
 are free to move in a conductor 

E


otherwise, the free charges that produce 

will move to make 0E 


inside a conductor

( ) ( ) 0

( ) ( )

b

a
V b V a E d l

V b V a

    

 




0

E



  


 0 0E   



0E 


inside a conductor(1)

(2) ρ = 0 inside a conductor

(3) Any net charge resides on the surface

(4) V is constant, throughout a conductor.

24



(5)     is perpendicular to the surface,  just outside a conductor.

Otherwise,      will move the free charge to make

in terms of energy, free charges staying on the surface have

a minimum energy.

uniform 

0inE  0inW 

2
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8
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0inE  0W
in



2

0

3

2 0

q
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R 


2.5

E


E 



0E 



25



0

0

in

e n c in d u c e d

in d u e c d

E

Q q q

q q



  

 

Example :  A point charge q at the center of a spherical conducting 

shell. How much induced charge will accumulate there? 

charge conservation

2 24 4b ab a     
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   



2

1

4
a

q

a




 

Q       induced

Solution :

2.6
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2.7 Induced Charge

Example 2.9   Within the cavity is a charge +q. What is the field 

outside  the sphere? 

-q distributes to shield q and to make 0inE 

i.e., 
su r fa ceV co n s ta n t

from charge conservation and symmetry.
+q uniformly distributes at the surface
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1
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q
E P r
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 
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a,b are arbitrary chosen
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0
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E d l
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 











0in c a v ityE 


 a Faraday cage can shield out stray E

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2.8  The Surface Charge on a Conductor

0
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 
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or
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why the average?
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2.8
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  

Force on a surface charge,
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2.9 Capacitors

Consider 2 conductors (Fig 2.53)

The potential difference

 

 
V V V E d l
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 
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 
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Define the ratio between Q and V to be capacitance

Q
C

V
 a geometrical quantity

in mks   1 farad(F)= 1   Coulomb / volt

inconveniently large ;  

6

1 2

1 0 :

1 0 :

F m ic r o fa r a d

F p ic o fa r a d





    Q E V   


d o u b le d o u b le d o u b le d o u b le

(V is constant.)
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Example 2.10 Find the capacitance of a “parallel-plate capacitor”? 

0 0
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 
 
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Q
V E d d
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2.9

+Q

-Q
Ad 

Solution:
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Example 2.11 Find capacitance of two concentric spherical shells

with radii a and b . 
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2.9

Solution:
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The work to charge up a capacitor

( )
q

d W V d q d q
C

 

2
2

0

1 1 1
( )

2 2 2

Q Qq
W d q Q V C V

C C
   

2.9
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2.10   Conductors and Dielectrics

 Conductors

 Current, current density, drift velocity, continuity

 Energy bands in materials

 Mobility, micro/macro Ohm’s Law

 Boundary conditions on conductors

 Methods of Images

 Dielectrics

 Polarization, displacement, electric field

 Permittivity, susceptibility, relative permittivity

 Dielectrics research

 Boundary conditions on dielectrics
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Conductors and Dielectrics

 Polarization

 Static alignment of charge in material

 Charge aligns when voltage applied, moves no further

 Charge proportional to voltage

 Conduction

 Continuous motion of charge through material

 Enters one side, exits another

 Current proportional to voltage
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2.11 Current and current density

 Basic definition of current C/s = Amps

 Basic current density (J perp. surface)

 Vector current density

n
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Current density and charge velocity


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Charge and current continuity 

 Current leaving any closed surface is time rate of change 

of charge within that surface

 Using divergence theorem on left

 Taking time derivative inside integral

 Equating  integrands

Qi(t)
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Example – charge and current continuity

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2.12 Energy Band Structure in Three Material

Types

Discrete quantum states broaden into energy bands in condensed materials with overlapping 

potentials

• Valence band – outermost filled band

• Conduction band – higher energy unfilled band

Band structure determines type of material

a) Insulators show large energy gaps, requiring large amounts of energy to lift electrons into the 

conduction band.  When this occurs, the dielectric breaks down.

b) Conductors exhibit no energy gap between valence and conduction bands so electrons move 

freely

c) Semiconductors have a relatively small energy gap, so modest amounts of energy (applied 

through heat, light,or an electric field) may lift electrons from valence to conduction bands. 
40



2.13 Ohm’s Law (microscopic form)

Free electrons are accelerated by an electric field.  The

applied force on an electron of charge Q = -e is

But in reality the electrons are constantly bumping into 

things (like a terminal velocity) so they attain an

equilibrium or drift velocity:

where e is the electron mobility, expressed in units of

m2/V-s.  The drift velocity is used in the current density

through:

With the conductivity given as:

So Ohm’s Law in point

form (material property)

S/m (electrons/holes)
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Ohm’s Law (macroscopic form)


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2.14 Boundary conditions for conductors

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Boundary Condition for Tangential Electric Field E

conductor

dielectric

n

Over the rectangular integration path, we use

To find:

or

These become negligible as h approaches zero.

Therefore

More formally:

44



Boundary Condition for the Normal Displacement D

n

dielectric

conductor
s

Gauss’ Law is applied to the cylindrical surface shown below:

This reduces to: as h approaches zero

Therefore

More formally:
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2.15 Summary

At the surface:
Tangential E is zero

Normal D is equal to the surface charge density
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Example - Boundary Conditions for Conductors

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Example – Streamlines of Electric Field


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2.16 Dielectrics

 Material has random oriented dipoles

 Applied field aligns dipoles (negative at (+) terminal, 

positive at (-) terminal

 Effect is to cancel applied field, lower voltage

 OR, increase charge to maintain voltage

 Either increases capacitance C= Q/V
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Review Dipole Moment


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Polarization as sum of dipole moments 

(per volume)

E

Introducing an electric field may increase the charge separation in

each dipole, and possibly re-orient dipoles so that there is some

aggregate alignment, as shown here.  The effect is small, and is

greatly exaggerated here!

The effect is to increase P.

n =  charge/volume

p =  polarization of individual dipole

P  = polarization/volume 
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Polarization near electrodes



neutral

positive

negative

E
- - - - - - - - - - -

- - - - -

+ + + + + + + + + + + + +
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Combining total, free, and bound charge



neutral

positive

negative

E
- - - - - - - - - - -

- - - - -

+ + + + + + + + + + + + +
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D, P, and E in Dielectric


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Charge Densities

Taking the previous results and using the divergence theorem, 

we find the point form expressions:

Bound Charge:

Total Charge:

Free Charge:
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2.17 Electric Susceptibility and the Dielectric 

Constant

A stronger electric field results in a larger polarization in the 

medium.  In a linear medium, the relation between P and E is 

linear, and is given    

where e is the electric susceptibility of the medium.  

We may now write:

where the dielectric constant, or relative permittivity is defined as:

Leading to the overall permittivity of the medium:
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Permittivity of Materials

 Typical permittivity for various solids and liquids.

 Teflon – 2

 Plastics - 3-6

 Ceramics 8-10

 Titanates>100

 Acetone 2 1

 Water 78

 Actual dielectric “constant” varies with:

 Temperature

 Direction

 Field Strength

 Frequency

 Real & Imaginary components 57



Other applications

 Other Applications

 Bio

 Liquid Crystal

 Composite polymers

 Titanates

 Wireless characterization

 MRI dyes

 Ground water monitoring

 Oil Drilling fluid characterization (GPR)
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2.18 Boundary Condition for Tangential

Electric Field E

Since E is conservative, we setup line integral straddling both 

dielectrics:

Left and right sides cancel, so 

Leading to Continuity for tangential E

E same, D higher in high permittivity material 

And Discontinuity for tangential D
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Boundary Condition for Normal Displacement D

n

Apply Gauss’ Law to the cylindrical volume straddling both

dielectrics

Flux enters and exits only through top 

and bottom surfaces, zero on sides

s

D same. E lower in high permittivity material

Leading to Continuity for normal D (for ρS = 0)

And Discontinuity for normal E 
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Bending of D at boundary



high

low
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UNIT – III      

MAGNETOSTATICS
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3 Electric potential

3.1 Introduction to Potential

3.2 Comments on Potential

3.3 Poisson’s Equation and Laplace’s Equation

3.4 The Potential of a Localized Charge Distribution

3.5 Electrostatic Boundary Conditions    
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3.1  introduction to potential

Any vector whose curl is zero is equal to the gradient of some

scalar. We define a function:

Where     is some standard reference point ; V depends only on

the  point P. V is called the electric potential. 

The fundamental theorem for gradients  

( ) ( ) ( )
b

a
V b V a V d l   



( )
b b

a a
V d l E d l     

 so

( )
p

V p E d l


  


( ) ( )
b a b

a
V b V a E d l E d l E d l

 

 
          

 
  

    

E V  


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3.2  Comments on potential

(1)The name Potential is not potential energy   

F q E q V   
 

U F X  
 

V :  Joule/coulomb      U : Joule
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(2) Advantage of the potential formulation V is a scalar function,   

but E is a vector quantity

( )V r ˆ ˆ ˆ
x y zE E x E y E z  



If you know V, you can easily get E: .E V  


0E  


so

3.2 

, ,x y zE E E are not independent functions

, ,
y yx xz z

E EE EE E

y x y z z x

   
  

     

2

       y z x z y x z x y x z y x y z y x z z x x zE E E E E E E E                   

1 3

21 3
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Adding a constant to V will not affect the potential difference 

between two point:

(3)The reference point 

Changing the reference point amounts to adds a constant to

the potential 

( ) ( )
p p

V p E d l E d l E d l K V p


   
            

    

(Where K is a constant)

3.2 

( ) ( ) ( ) ( )V b V a V b V a   

Since the derivative of a constant is zero:

For the different V, the field E remains the same. 

Ordinarily we set

V V   

( ) 0V  
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3.2 

(4) Potential obeys the superposition principle

1 2F F F F Q E   
    



1 2E E E  
  



Dividing through by Q

,

Integrating from the common reference point to p ,

1 2V V V   

(5) Unit of potential

Volt=Joule/Coulomb

:

: :

q V

X

F X
V

q

F n e w to n F x J o u le

F q E q V






   

Joule/Coulomb
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solution:

 
0 0

1 1

4 4

r
r q q

V r E d
r r   



    


 


for r>R:

for r<R:

0inE 


2
0

1

4
ˆ

q

o u t
r

E r
 




   
0

1

4

q
V r V R

R 
 


 

0

1

4

q
V R

R 


0inE 


3.2 

Example 2.6   Find the potential inside and outside a spherical 

shell of  radius R, which carries a uniform surface

charge (the total charge is q).                       

_
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3.3 Poisson’s Eq. & Laplace’s Eq.

 
0

2
E V V




          



E V  


Laplace’s eq.0 

Poisson’s Eq.
0

2
V




  

2
0V 

70



pR r r 
 

i i pR r r 
 

0
1

1
( )

4

n

i

i
i

q
V P

R 


 

3.4 The Potential of a Localized Charge

Distribution

• Potential for a point charge

• Potential for a collection of charge

E V  
 r

V V E d r


    0V  

2
0 0 0

1 1 1
( )

4 4 4

r
r q q q

V r d r
r rr     



   




R

Ri

0

1
( )

4

q
V P

R 

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• Potential of a continuous distribution

for volume charge     for a line charge         for a surface charge          

0

1
( )

4
V P d

R




 
 

0

1
( )

4
V P d

R



 
  

0

1
( )

4
V P d a

R



 
 

q d   q d   q d a 

2
0

1 ˆ
( )

4

r
E P d

R

 
 

 


2
0

ˆ1

4
( )

r
d

R

E P 
 

  


2
0

ˆ1

4
( )

r
d a

R

E P 
 

 


• Corresponding electric field 
2

ˆ1 R

R R

  [ ]

3.4 
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3.4 

Example 2.7 Find the potential of a uniformly charged spherical

shell of radius R.

0

1
( ) ,

4
V r d a

r



 
 

r2 2 2
2 co sr R z R z    

2

2 2

2

2 20

2 2 2

0

2 2 2 2

2 2

s in
4 ( )

2 c o s

s in
2

2 c o s

1
2 2 c o s

2
2 2

2
( ) ( )

( )

( )

[ ]

R d d
V z

R z R z

R d

R z R z

R R z R z
R z

R
R z R z R z R z

z

R
R z R z

z





  
 




  



  

 

 

  


 




 

  

     

  





Solution:

73



2

0 0

0 0

( ) [ ( ) ( ) ] ,
2

( ) [( ) ( ) ] ,
2

R R
V z R z z R o u ts id e

z z

R R
V z R z R z in s id e

z

 

 

 

 

    

    

3.4 
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3.5 Electrostatic Boundary Condition

Electrostatic problem 

The above equations are differential or integral. 

For a unique solution, we need boundary conditions. (e.q. , V()=0  )

(boundary value problem. Dynamics: initial value problem.)

•Superposition

•Coulomb law 
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3.5  

B.C. at surface with charge  

0 0

en cQ A

su r fa ce

E d a


 
  

 


a b o v e b e lo wE A E A   

0
a b o v e b e lo wE E




  

=



∥:

0E d l 


  0E  




E‖ above= E‖ below

 +∥
0

ˆ
a b o v e b e lo wE E n




 

 

:
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Potential B.C. 

3.5 

0
0

b

a b o v e b e lo w
a

a b
V V E d


       

 
 

0

ˆ
a b o v e b e lo wE E n




 

 
 E V  


ˆV V n

n


  



0
a b o v e b e lo wn n

V V



 

 
  

a b o ve b e lo wV V
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3.6 Magnetism and electricity have not been considered

distinct phenomena until Hans Christian Oersted conducted

an experiment that showed a compass deflecting in

proximity to a current carrying wire
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Produced by

-time varying electric fields 

-permanent magnet (arises from quantum mechanical electron 

spin/ can be considered charge in motion=current )

-steady electric currents

 
m

A
H

SI

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If we place a wire with current I in the presence of a magnetic field,

the charges in the conductor experience another force Fm
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Fm ~ q, u, B

q –charge

u –velocity vector

B -strength of the field (magnetic flux density)

μr –relative permeability

μ –absolute permeability

μ0-permeability of the free space

M=χmH- is the magnetization for  linear and

homogeneous medium

BH


1

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3.7 Relative permeabilities for a variety of

materials

Material μ/(H m-1) μr Application

Ferrite U 60 1.00E-05 8 UHF chokes

Ferrite M33 9.42E-04 750 Resonant circuit RM cores

Nickel (99% pure) 7.54E-04 600 -

Ferrite N41 3.77E-03 3000 Power circuits

Iron (99.8% pure) 6.28E-03 5000 -

Ferrite T38 1.26E-02 10000 Broadband transformers

Silicon GO steel 5.03E-02 40000 Dynamos, mains transformers

supermalloy 1.26 1000000 Recording heads
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BuqF

EqF

m

e





FFF
me



)( BuEqF 

3.8 Lorentz’s Force equation

Note: Magnetic force is zero for q moving in the direction of 

the magnetic field (sin0=0)
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When electric current is passed through a magnetic field a force is

exerted on the wire normal to both the magnetic field and the current

direction. This force is actually acting on the individual charges

moving in the conductor.
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nmm
aFrFr  sin

The magnetic force is exerting a torque on 

the current carrying coil
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3.9 Cross product
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JB

B

0

0





0 J

Fundamental Postulates of Magnetostatics in Free Space
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0
s

sdB

3.10 Law of conservation of magnetic flux
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There are no magnetic flow sources, and the magnetic flux
lines always close upon themselves
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3.11 Ampere’s circuital law

 









c

ss

IldB

sdJsdB

0

0

          



The circulation of the magnetic flux density in free space around

any closed path is equal to μ0 times the total current flowing

through the surface bounded by the path
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Differential Form                                  Integral Form

Postulates of Magnetostatics

in Free Space 

JB

B

0

0













c

s

IldB

sdB

0

0



92



UNIT – IV      

FORCE IN MAGNETIC FIELD AND 

MAGNETIC POTENTIAL
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4 Work and Energy in Electrostatics   

4.1 The Work Done in Moving a Charge

4.2 The Energy of a Point Charge Distribution

4.3 The Energy of a Continuous Charge Distribution

4.4 Comments on Electrostatic Energy
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4.1 The Work Done in Moving a charge

A test charge Q feels a force Q E


(from the stationary source charges).

To move this test charge, we have to apply a force 

conservative

F Q E 
 

The total work we do is

   
b b

a a
W F d Q E d Q V b V a       

  
   

 

   
W

V b V a
Q

 

So, bring a charge from  to P, the work we do is

 ( ) ( ) ( )W Q V P V Q V P   

( ) 0V   95



4.2  The Energy of a Point Charge Distribution

It takes no work to bring in first charges 

1 0W 

Work needed to bring in q2 is :

1 1
2 2 2

0 1 2 0 1 2

1 1
[ ] ( )

4 4

q q
W q q

R R   
 

1 2 1 2
3 3 3

0 1 3 0 2 3 0 1 3 2 3

1 1 1
[ ] ( )

4 4 4

q q q q
W q q

R R R R     
   

Work needed to bring in q3 is :

Work needed to bring in q4 is :

31 2
4 4

0 1 4 2 4 3 4

1
[ ]

4

qq q
W q

R R R 
  

for q1
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4.2  

Total work

W=W1+ W2+ W3 +W4

1 3 2 3 3 41 2 1 4 2 4

0 1 2 1 3 2 3 1 4 2 4 3 4

1

4

q q q q q qq q q q q q

R R R R R R 

 
      

 

 
0

1

1

4

n
j

i
i j

j

q
V P

R 


 

j i

0
1 1

1

4

n n
i j

i j
i j

q q

R 
 

  

ij jiR R

0
1 1

1 1

2 4

n n
j

i
i j

i j

q
q

R 
 

 

 
 
 

 
0

1 1

1

8

n n
i j

i j
i j

q q

R 
 

 

 
1

1

2

n

i i

i

W q V P



 

Dose not include the first charge

j i j i
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4.3 The Energy of a Continuous Charge

Distribution

0ρ E  


q d  

Volume charge density

     0 0
τ

2 2
E V d E V d E V d

 
          

   
  

su r fa c e

V E d a
 



20
( )

2
s u r fa c e v o lu m e

V E d a E d


   
 

 

F.T.for  

E


1
τ

2
W V d 

su r fa ce  
20

 

τ
2

a ll s p a c e

W E d


 

     E V E V E V       
  
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4.3 

0

1

4

q
V

R 


2
4q R Sol.1：

2

0 0

1 1 1 1 1

2 2 2 4 8

q q q
W V d V d a d a

A R R
  

   
     

Example 2.8  Find the energy of a uniformly charged spherical 

shell of total charge q and radius R

Sol.2：
2

0

1
ˆ

4

q
E r

r 


 2
2

2 4

0( 4 )

q
E

r 



 
2

2 20 0

2 4

1
s in

2 2 ( 4 )

o u te r

s p a c e
o

q
W E d r d d d r

r

 
   

 

  

2 2

2 2
00

1 1
2 2

83 2 R

q q
d r

Rr


  

 
  

 
 


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4.4 Comments on Electrostatic Energy

 1 A perplexing inconsistent

20
E n e rg y 0

2 a ll sp a c e
W E d


  
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1
( )

2
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i i
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W q V P
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 

0 1 1
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i j
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j i
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

  
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Only for point charge
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

      1 2(            )q q

E n e rgy 0 or 0  

and      are attractive 
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20
τ

2 a ll sp a c e
W E d


  is more complete

the energy of a point charge itself,

 
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2 4 20
00

1
( ) s in θ θ φ
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qq
W r d d d r d r

r r
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
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2
W V d  

is the full potential

4.4

There is no distinction for a continuous distribution,

because 0

( ) 0

d

d
p



 



( )V P,
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(2)Where is the energy stored?     In charge or in field ?

Both are fine in ES. But,it is useful to regard the energy 

as being stored in the field at a density
2

0
2

E
  Energy per unit volume

4.4 

(3)The superposition principle,not for ES energy

20
1 1

2
W E d


 
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2 2 τ

2
W E d


 
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2 20
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E E E E d


   

 
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4.5 Magnetic Fields in analogy with Electric

Fields

Electric Field:

 Distribution of charge creates an electric field E(r) in the 

surrounding space.

 Field exerts a force F=q E(r) on a charge q at r

Magnetic Field:

 Moving charge or current creates a magnetic field B(r) 

in the surrounding space.

 Field exerts a force F on a charge moving q at r

 (emphasis this chapter is on force law)
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4.6  Magnetic Fields and Magnetic Forces

Magnetic Force on a moving charge

 proportional to electric charge

 perpendicular to velocity v

 proportional to speed v (for a given geometry)

 perpendicular to Magnetic Field B

 proportional to field strength B (for a given geometry)

F = q v ´ B
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F = q v ´ B

F = |q| v B sin
= |q| v B    (v  B) v

B

F

+

F = q v ´ B

F = |q| v B
v

B

F

+

v

F = q v ´ B

F = |q| v B
v

B

F

+ B
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4.7 Magnetic Fields

Units of Magnetic Field Strength:

[B] =  [F]/([q][v])

=  N/(C m s-1)

=  Tesla

Defined in terms of force on standard current

CGS Unit 1 Gauss = 10-4 Tesla

Earth's field strength ~ 1 Gauss

Direction  = direction of velocity which generates no force

Electromagnetic Force:

F = q ( E +  v ´ B )

= Lorentz Force Law 
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4.8 Magnetic Field Lines and Magnetic Flux

Magnetic Field Lines

Mapped out with compass

Are not lines of force (F is not parallel to B)

Field Lines never intersect

Magnetic Flux

dFB = B . dA

d B d A

B d A

B d A

B

B





 

 

 





 

 

 
0 no magneti c charge! (no monopo les)
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4.9 Motion of Charged Particles in a Magnetic

Field 

Charged Particle moving perpendicular to the Magnetic Field

– Circular Motion!

– (simulations)

+
+

v
F

F

v
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Charged Particle moving perpendicular to a uniform Magnetic

Field

+

+

v

vF q vB
mv

R

R
mv

q B

v

R

q B

m

 



 



| |

| |

| |

2



cyclotron frequency

R
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Work done by the Magnetic Field on a free particle:

=> no change in Kinetic Energy!

Motion of a free charged particle in any magnetic field has 

constant speed.

 

dW F d x

q v B v dt

 

  



 

  

0!
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4.11 Magnetic Force on a Current Carrying Wire

vd

I

dl

B

Fi

A

F F q v B

Nq v B n volume q v B

nAdlq v B J Adl B

Id l B RHR

i i i

d d

d

  

     

   

 

 
 

   

   

 
( )
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4.12 Torque on a Current Loop  (from F =  I l x B )

Rectangular loop in a magnetic field (directed along z axis)

short side length a, long side length b, tilted with short sides at an

angle with respect to B, long sides still perpendicular to B.

B

Fa

Fa

Fb

Fb

Forces on short sides cancel: no net force or torque.  

Forces on long sides cancel for no net force but there is a

net torque.   

112



Torque calculation: Side view

Fb = IBb

Fb

moment 

arm

a/2 sin 

  = Fb a/2 sin    Fb a/2 sin  

 Iab B sin  = I A B sin  

 I A ´B     ´B 

Magnetic Dipole ~ Electric Dipole

U =    .B

Switch current direction every 1/2 rotation => DC 

motor



magnetic 

moment


B
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4.13 Hall Effect

Conductor in a uniform magnetic field
x

y

Magnetic force on charge carriers F = q vd ´ B

Fz = qvdB   Charge accumulates on edges

Jx

                                                       

           


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Equilibrium: Magnetic Force = Electric Force on bulk charge

carriers
B

z

Charge accumulates on edges Fz = 0 = qvdBy + q Ez

E
y

v
E

B

J nqv nq
E

B

nq
J B

E

d

z

y

x d

z

y

x y

z

 

  




Hall EMF   V E w

I J tw

nq
IB

V t

H z

x

y

H








w

t Jx

                                                       

           
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UNIT – V      

TIME VARYING FIELDS AND FINITE 

ELEMENT METHOD
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5.1 Time-Varying Fields

Stationary charges electrostatic fields

Steady currents   magnetostatic fields

Time-varying currents electromagnetic fields

Only in a non-time-varying case can electric and magnetic fields be

considered as independent of each other. In a time-varying

(dynamic) case the two fields are interdependent. A changing

magnetic field induces an electric field, and vice versa.
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The Continuity Equation
Electric charges may not be created or destroyed (the principle of conservation of charge). 

Consider an arbitrary volume V bounded by surface S. A net charge Q exists within this region. If a 

net current I flows across the surface out of this region, the charge in the volume must decrease at a 

rate that equals the current:

Divergence theorem

This equation must hold regardless of the choice of V, therefore the integrands must be 
equal:

For steady currents

that is, steady electric currents are divergences or solenoidal. 

0 J

Kirchhoff’s current law

follows from this

)/(
3

mA
the equation of

continuity

Partial derivative 
because     may be a 
function of both time 
and space



JH 

  JH  0

0





t
J

V


119

Displacement Current

For magnetostatic field, we recall that

Taking the divergence of this equation we have

However the continuity equation requires that

Thus we must modify the magnetostatic curl equation to agree with the continuity equation. Let us 

add a term to the former so that it becomes

where     is the conduction current density             , and     is to be determined and defined. 

dJJH 

J EJ
E

 dJ
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Displacement Current continued

  dJJH  0 JJ d 

 
t

D
D

tt
JJ

V
d


















t

D
J d






Ñ´H = J +
¶D

¶t

ÑxH ×ds =
S

ò J +
¶D

¶t

æ

è
ç

ö

ø
÷

S

ò ×ds H ×dl = I +
¶D

¶tS

ò ×ds
L

ò

Taking the divergence we have

In order for this equation to agree with the continuity equation,

displacement current density

Stokes’ theorem

Gauss’ law
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A typical example of displacement current is the current through a

capacitor when an alternating voltage source is applied to its

plates. The following example illustrates the need for the

displacement current.

To resolve the conflict we need to include      in Ampere’s law. 

Displacement Current continued

Using an unmodified form of 

Ampere’s law
(no conduction current 
flows through (   
=0))J

0
d

J



dJJ 

0dJ

0J
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  

22
SL S

d
SdD

dt

d
SdJldH

I
dt

dQ


Displacement Current continued

The total current density is         .In the 
first equation          so it remains valid. 
In the second equation        so that

So we obtain the same current for 
either surface though it is conduction 
current in     and displacement 
current in  . 

dt

Dd
J d 

Q

Charge +Q

Charge -Q

I Surface S1

Path L

Path L

Surface S2

1
S

2S

0J

I

Charge +Q

Charge -Q






21
SS

QSdD

 

1

0

S

SdD
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Faraday’s Law

Faraday discovered experimentally that a current was induced in a

conducting loop when the magnetic flux linking the loop changed.

In differential (or point) form this experimental fact is described by

the following equation

Taking the surface integral of both sides over an open surface and 

applying Stokes’ theorem, we obtain

where    is the magnetic flux through the surface S. 

Integral form
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BAAB
VVV 

0
ABAB
VV



Time-varying electric field is not conservative.

Suppose that there is only one unique 
voltage                   .              Then           

Faraday’s Law continued

However,

Thus        can be unambiguously 
defined only if                .(in practice, 
if         than the dimensions of 
system in question)

Path L1

B

A

Path L2

The effect of electromagnetic induction. When 
time-varying  magnetic fields are present, the 
value of the line integral of     from A to B may 
depend on the path one chooses.

E
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Inductance

A circuicarrying current I produces a magnetic field which causes

t a flux to pass through each turn of the circuit. If the medium

surrounding the circuit is linear, the flux is proportional to the

current I producing it .

Self-inductance L is defined as the 
ratio of the magnetic flux linkage to 
the current I. 

t
NV








t

I
L

t

I
Nk











II

N
NkL






, H (henry)

Magnetic field B produced by a circuit.

-+

I I

(voltage induced 
across coil)
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Inductance continued

In an inductor such as a coaxial or a parallel-wire transmission line, the inductance 
produced by the flux internal to the conductor is called the internal inductance Lin while 
that produced by the flux external to it is called external inductance

Let us find      of a very long rectangular loop of wire for which        ,           and         
. This geometry represents a parallel-conductor transmission line. Transmission 

lines are usually characterized by per unit length parameters. 

extin
LLL 

0R wa 

hw 

h

w

Wire radius = a

I

Finding the inductance per unit length of a parallel-conductor transmission line.

(                 )
ext
L

1

S



Ñ×D = rV D
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Ñ×B = 0
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General Forms of Maxwell’s Equations

Differential Integral Remarks

Gauss’ Law

Nonexistence of 
isolated magnetic 
charge

Faraday’s Law

Ampere’s circuital law

In 1 and 2, S is a closed surface enclosing the volume V

In 2 and 3, L is a closed path that bounds the surface S

B
S

ò ×ds = 0

ÑxE = -
¶B

¶t
E ×dl

L

ò = -
¶

¶t
B ×ds

s

ò

ÑxH = J +
¶D

¶t
H ×dl

L

ò = J +
¶D

¶t

æ

è
ç

ö

ø
÷

s

ò ×ds

1

2

3

4
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Electric fields can originate on positive charges and can end on

negative charges. But since nature has neglected to supply us with

magnetic charges, magnetic fields cannot begin or end; they can

only form closed loops.



t

D
JH




  tzyxfH ,,,

EjJDjJH  

129

Sinusoidal Fields

In electromagnetics, information is usually transmitted by imposing amplitude, frequency, or phase

modulation on a sinusoidal carrier. Sinusoidal (or time-harmonic) analysis can be extended to most

waveforms by Fourier and Laplace transform techniques.

Sinusoids are easily expressed in phasors, which are more convenient to work with. Let us consider 

the “curl H” equation.

Its phasor representation is

is a vector function of position, but it is independent of time. The three scalar components of    are 

complex numbers; that is, if

H

H
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Sinusoidal Fields continued

Point Form Integral Form

Ñ×D = rV

Ñ×B = 0

Ñ´E = - jwB

Ñ´H = J + jwD

D ×ds = rV dvòò

B ×ds = 0ò

E ×dl =ò - jw B ×dsò

H ×dl = J + jwD( )ò ×dsò

tj
e


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Maxwell’s Equations continued

Electrostatics

Magnetostatics

Electrodynamics

Electromagnetic flow diagram showing the relationship between the potentials and vector fields: (a) 
electrostatic system, (b) magnetostatic system, (c) electromagnetic system. [Adapted with 
permission from IEE Publishing Department]

(a)

(b)

(c)

Free magnetic 
charge density (            
)
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The Skin Effect

When time-varying fields are present in a material that has high conductivity, the fields and currents 

tend to be confined to a region near the surface of the material. This is known as the “skin effect”. 

Skin effect increases the effective resistance of conductors at high frequencies. 

Let us consider the vector wave equation (Helmholtz’s equation) for the electric field: 

If the material in question is a very good conductor, so that              , we can write

Consider current flowing in the +x direction through a conductive material filling the 
half-space z<0. The current density is independent of y and x, so that we have
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Since              we also have

Magnitude of current density decreases 
exponentially with depth

(Air) Z>0

(Metal) Z<0

Current density at surface J0
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The Skin Effect continued

As              , the first term increases and would give rise to infinitely large currents. 
Since this is physically unreasonable, the constant A must vanish. From the condition           
when z=0 we have ox
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BeBeJ
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At

At

Skin depth    versus frequency for copper

Current density magnitude 
decreases exponentially with 
depth. Its phase changes as well.
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Copper
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Aluminum

Iron
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The Skin Effect continued

Skin Depth and Surface Resistance for Metals
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Surface Impedance
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“ohms per square”

Illustrating the concept of “ohms per square”

If l=w (a square surface)
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If                      , the total current per unit width is 

Since                we can write
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RS is equivalent to the dc 
resistance per unit length of the 
conductor having cross-sectional 
area
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Surface Impedance continued

For a wire of radius a,

Copper
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Wire (copper) bond

Plated metal connections

Substrate

z=?

(a)

(b) (c)

Finding the resistance and internal inductance of a wire bond. The bond, a length of wire connecting two pads on an 
IC, is shown in (a). (b) is a cross-sectional view showing skin depth. In (c) we imagine the conducting layer unfolded 
into a plane.

100 μm

δ = 0.6 μm

x 100 μm
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Thickness of current layer = 0.6 

μm = δ

(Internal inductance)

int
LX 



THANK YOU

138


