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INTRODUCTION TO ELECTRO-STATICS



The Electrostatic_Field
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1.1 Introduction
1.2 Coulomb’s Law
1.3 The Electric Field

1.4 Continuous Charge Distribution
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1.1 Introduction
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“Source’ charges *Test™ charge

Figure 2.1
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Figure 2.2

The fundamental problem for electromagnetic to solve is to
calculate the interaction of charges in a given configuration.

That is, what force do they exert on another charge Q ?
The simplest case is that the source charges are stationary.

Principle of Superposition:

The interaction between any two charges is completely
unaffected by the presence of other charges.

E:E1+Ez+ﬁg+"'

—_

F.

IS the force on Q due to 4;

4



1.2 Coulomb’s Law——— —

The force on a charge Q due to a single point charge q is
given by Coulomb's law.

F. 8 R.¢ f-RA
drey R
C2
£, =8.85x10 "7




1.3 The Electric Field
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F s Fl + 2 + - : P (field point)
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the electric field of the source charge



1.4 Continuous Charge Distributions

P P d
°e
® q
N dl da
® Figure 2.5
Point charges, ¢; Line charge, A Surface charge, o Volume charge ,p

s . . e e L e

O line surface volume
s - - 1 R
= 1 s
E(P > R EfR )= j—zdz
4 2 4 2
0 Ry 0 i
= 1 R = 1 R
E(E )= — a4 E(P)= ——p d
( 4rre .‘- o 4 ( ) o J- Jo 0 A
surface



1.4 _—

A S s

——Example; - -
the test pointis afp = (x, y, z) the source point is at(x".y", ")

A

R:(x—x’)l+(y—y’)]+(z—z’)l€

2 2 21% ~ FE

F\;:{(X—X') +(y-v') +(z—z’)J R=—

(x—x’)f+(y—y')j+(z—z’)l€

E(X,y,z): 1 j s 2 0y dddyidz
472'80 : 2 : 2 : 2 9
volume [(X_X) +(y—y) +(Z_Z) ]
E(x,Yy,2) = 1 J' L,o(x’,y’,z’)dx’dy’dz'
47280 volume R2
A 1 J‘ LE (Xr’y/,zr)dxrdyrdzr
4rey Jvolume R2 R
- I L,o(x’,y’,z’)dx’dy’dz’
47[50 volume R3



1.4 e

AN Adac

= mw 2.1 Find the electric field a distance z above the midpoint
of a straight of length 2L, which carries a uniform line charge

Solution:
o 1 Adx

k=02 ( )cos@ 2 z !
Adre, R2

- T 27 \;4
E = -[o d X a

Are, (22+x2)3/2
L 2
R

ZAzl_ X 1

dx
= | 5 5 > | Ny — \'-«;L x
ey \/z F X Jo
= 1 2
47zeg Z\/22+L2
(1) z>>L 1 2L (2) oy

m
[12

L o> o E
4”50 Z2 drey 2



UNIT = I
CONDUCTORS AND DIELECTRICS
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2 Divergence and Curl-of-Electrostatic Fields

2.1 Field Lines and Gauss’s Law
2.2 The Divergence of E
2.3 Application of Gauss’s Law

2.4 The Curl of E

11



2.1 Fields lines and Gauss’s law T
. v
A single point charge g, situated at the origin

e 1
El ] qu

=

Because the field falls off like 1/r * the vectors get shorter as | go
father away from the origin,and they always point radially outward.
This vectors can be connect up the arrows to form the field lines.
The magnitude of the field is indicated by the density of the lines.

¥ y
3

strength length of arrow strength density of field line 12
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f e S
r—_ . =
1.Field lines emanate from a point charge symmetrically in all
directions.

2.Field lines originate on positive charges and terminate on
negative ones.

3.They cannot simply stop in midair, though they may extend
out to infinity.

4.Field lines can never cross.

Equal but opposite charges Figure 2.14 Equal charges Figure 2.15

13



e =
- e s
Since In this model the fields strength is proportional to the
number of lines per unit area, the flux & [€-da ) is
proportional to the the number of field lines passing through
any surface .

The flux of E through a sphere of radius r is:

mé-dézj = e e a0 f):iq

Adreg r2 £o
The flux through any surface enclosing the charge is q/¢,
According to the principle of superposition, the total field is

the sum of all the individual fields:

—_ n —_
P

. =0y
JIE da-> (fiE; da)=> ( q;)
y i=1 i=1 £0

A charge outside the surface would contribute nothing to the
total flux,since its field lines go in one side and out other.



2-1 /

e e A Adac

/ —_—
Gauss’s Law in integral form m E d3

Turn integral form into a differential one , by applying the
divergence theorem

i E.da = [ (V-E)dr

surface volume

1 1
:_Qenc 7 J (_p)dT

€0 €0
volume

Gauss’s law in differential form v = =

15



2.2 The Divergence of E

e : =
= Calculate the divergence of E directly

~N

R o s af
[V (—)p(rde R-F
dre g R )

vV -E

The r-dependence is contained irr

£ 1 R i
E (1) = L —oalde
472-80 all space
From -
R 3
e e
= 2
Thus
- 1 S o 1 i
Voo I47z5 (r —r)p(r)dz’'= —p(r)

4%80 £y



2.3 Application of Gauss’s Law s

5 / e
Example 2.2 Find the field outside a uniformly charged sphere
of radius a
Sol: . .
[ﬁ E -da = —Qenec
€0

surface

(a) E point radially outward ,as does da

i Edé:ﬂE\dé
surface

(b)E is constant over the Gaussian surface

Gaussian

surface Figure 2.18

i |Eka = [E| (f da = [E|4xr?
surface surface

- ‘E““”z:iq - - =

17



2.3 e
1. Spherical symmetry. Make your Gaussian surface a
concentric sphere (Fig 2.18)
2. Cylindrical symmetry. Make your Gaussian surface a
coaxial cylinder (Fig 2.19)
3. Plane symmetry. Use a Gaussian surface a coaxial
the surface (Fig 2.20)

Gaussian
pillbox

AR

Gat:sian/ E
surface Gaussian surface

Figure 2.18 Figure 2.19 Figure 2.20
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2.3 e
P Py —

/ . . . . . . .
— Example 2.3 Find the electric field inside the cylinder which
contains charge density as o = kr
Solution: 51
1

50 S ¥ M- LA T
surface
\ ei-m

The enclosed charge is E Figure 2.21

/Gaussian surface

r 2
Qenc = Ipdr = j(kr’)(r’dr’d¢ dz ) — 2k IJO I"zdl" = gﬂ'k'l’B

mé HE‘da—‘EHda—‘E‘anl (by symmetry)

thus

m
[
H
N

Elenrl = -

€0 3 350

19
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Example 2.4 An infinite plane carries a uniform surface charge.

Find its electric field.

Solution: Draw a "Gaussian pillbox
Apply Gauss’s law to this surface

i i iQenC

2

iqure 2.22
surface s

By symmetry, E points away from the plane
thus, the top and bottom surfaces yields

jé-da=2A\E\

(the sides contribute nothing)

: -
2AlE|= —0o A — | E

2¢&
80 0

qQ
o>

20



2.3 % _—
/ oo e
Example 2.5 Two infinite parallel planes carry equal but opposite
uniform charge densities ++ .Find the field in

each of the three regions.

/

Solution:
The field is (o/g0 ), and points to the right, between the
plane elsewhere it is zero.

_ (O o o
~—_ —~_ (Ago) +(A50) = 280)
X

Field of
(D (1) (11D g * left plate

Field of

. Ny .
N g right plate
) + O + O _ (O
/ / ( 250) ( 2(90)~ (;250)

+0 —0o +0

Figure 2.23 Figure 2.24
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2.4 The Curl of E e

= - 4
— A point charge at the origin. If we calculate »N
the line integral of this field from some point et ‘
a to some other point b : i ’
e :
I E-dl . ‘ Figure 2.29
a
In spherical coordinate
= - = 1 9
dl =drf+rd@ 6 +rsinfde ¢ E-dl = dr
b
b 1 b =7 1] 3
[ Edl jqdr: = 1
2] Adrreg ~ 2 o Arreg ¥ - Ameg \ Ty Ny )

a

This integral is independent of path. It depends on the
two end points

mé.dfzo (if ra=rp)

Apply by Stokes’ theorenv, x E = 0 -



2.4 e

= = =
The principle of superposition
E £
SO

Vxé:Vx(E1+ I§2+---):(VxIgl)+(VxI§2)+---:O

—_

VeveiE =0

must hold for any static charge distribution whatever.

23



2.5 Basic Properties of Conductors
. osey
= are free to move in a conductor

(1) E = o inside a conductor

otherwise, the free charges that produce E
will move to make E = 0 inside a conductor

(2) p = 0 inside a conductor

-,-V.ézi E ¢ =0

€0

(3) Any net charge resides on the surface
(4) V Is constant, throughout a conductor.
i i
V(b)—V(a):—I E.-dl =0
a

~V(b) =V (a)

\

\

++++++ + + + +

4

24



i e
- R e
~ (5) e is perpendicular to the surface, just outside a conductor.
Otherwis&,; will move the free charge to make éD =
In terms of energy, free charges staying on the surface have

a minimum energy.

A Energy =
207ey R

Eoocvae o) WL i)
in

25



2.6 _—
/ o LA e

Example : A point charge g at the center of a spherical conducting
shell. How much induced charge will accumulate there?

/

Solution :
- E;. =0 Q iInduced
2 / L 9
dra -0, = —( O-a__47z a2
charge conservation
1 g
2
41 b
E.. =0

In

Qenc = 0+ Qinduced = 0

Qinduecd = — G

26



2.7 Induced Charge e
= {ample 2.9 Within the cavity is a charge +q. What is the field
outside the sphere?

-q distributes to shield g and to make E; =0

l.e.,V = constant

surface

from charge conservation and symmetry.
+g uniformly distributes at the surface

E.dl =0 ab are arbitrary chosen

My

0

incavity —

.. aFaraday cage can shield out stray E

27



2.8 The Surface Charge on a Conductor

/ e L

=
O

—_

E = n

above Ebelow
€0

W E :0 or EbeIOW :O

In

; i O oV o
.._VV :Eabove:_n Or e

o
0 on €0

If we know V, we can get o.



2.8

e orce on a surface charge,
" 1 = =
F = GEaverage = ;G(Eabove + Epelow)

why the average?

2 2 Oy e - A
Eabove = Eother T K Epelow = Eother K
2¢ 2¢

- T : c—> 0 _
Eother = ;(Eabove + Epelow) " Eaverage
In case of a conductor electrostatic pressure

1 . ol

= g 02

29



2.9 Capacitors e

. Biien

Consider 2 conductors (Fig 2.53)

The potential difference

=

v vy —j(“))é . (V is constant.)

_|_ i,

1 r

aze. 72797 double p > double Q - double E - double V

E

Define the ratio between Q and V to be capacitance

= = geometrical quantity
Vv

iIn mks 1 farad(F)=1 Coulomb / volt

\_ : 10" °F :microfarad
Inconveniently large ;
—12

10 F : picofarad

30



2.9 ———

, R RS -
.

/

Example 2.10 Find the capacitance of a “parallel-plate capacitor’?

lution:
Solutio - o
E: prrrert
€0 Ago
V = E -d = Q d
Ago
Ag
c- Y

3



2.9 ——

.- o
Example 2.11 Find capacitance of two concentric spherical shells
with radiia and b .

=

-Q
Solution:

2 1
E = Q f

divi - a 1 1 1
vz—j E dl == R j dr = R {———\

b Areg b 2 47rgoka bJ

ab
C 222472'80
V (b—a)

32



RO A

2.9

- he work to charge up a capacitor‘

dwWw =Vdqg = (2—)dq

33



- 2.16—Conductors and Dielectrics

Conductors
e Current, current density, drift velocity, continuity
e Energy bands in materials
e Mobility, micro/macro Ohm’s Law
e Boundary conditions on conductors
e Methods of Images
Dielectrics
e Polarization, displacement, electric field
e Permittivity, susceptiblility, relative permittivity
e Dielectrics research
e Boundary conditions on dielectrics

34



Conductors and Dielectrics— =

Polarization
e Static alignment of charge in material
e Charge aligns when voltage applied, moves no further
e Charge proportional to voltage

Conduction
e Continuous motion of charge through material
e Enters one side, exits another
e Current proportional to voltage

35



~ 2.11-Current and current density

Basic definition of current C/s = Amps

d
;49
dt

Basic current density (J perp. surface)

Al = JyAS

Vector current density

1= [3-as
S

36



~ Current density aW

® Basic definition of current

- AQ p,Av pdSAx

: At At At =

* Combining with earlier expression

1= [3.as
S

N
* Gives current density _/ N\ d

/ > ) :j/,’ —» 7
I =pPp? AS/ | / T
. AS “ AL
_ )

37



Charge and current continui =

Current leaving any closed surface is time rate of change

of charge within that surface

dQ; d
1:3£J-ds LN
S dt dt vol

Using divergence theorem on left
d

Taking time derivative inside integral

P,
(V - Ddv = — dv
vol vol ot

Equating integrands

APy

(V-J)=—at

38



E

ple — charge and

Given spherically symmetric current density

Y
]:;e a,

Current increasing from r = 5m to r= 6m at t=1s

Xy 2 S 2
=85S = §€ 4m5° = 23.1A @ 5m, ge 4mwe- = 27.7@ 6m

Current density from continuity equation

Drift velocity is thus

39



2.12 Energy Band Structurein Three Material™
~ Types -

Empty
A conduction
band Empty
conduction
Empty band
conduction Energy gap
Energy 5] Energy gap
Filled Filled Filled
valence valence valence
band band band
Conductor Insulator Semiconductor
(a) ®) ()

Discrete quantum states broaden into energy bands in condensed materials with overlapping
potentials

« Valence band — outermost filled band
« Conduction band — higher energy unfilled band

Band structure determines type of material

a) Insulators show large energy gaps, requiring large amounts of energy to lift electrons into the
conduction band. When this occurs, the dielectric breaks down.

b)  Conductors exhibit no energy gap between valence and conduction bands so electrons move
freely

c) Semiconductors have a relatively small energy gap, so modest amounts of energy (applied

through heat, light,or an electric field) may lift electrons from valence to conduction bands. 5



2.13 Ohm’s Law (microscopic form)

»

/

/

/

Free electrons are accelerated by an electric field. The

applied force on an electron of charge Q = -e is
F=—-¢cE

But in reality the electrons are constantly bumping into
things (like a terminal velocity) so they attain an

equilibrium or drift velocity:

Vi = —lE

where g, Is the electron mobility, expressed in units of
m?/V-s. The drift velocity is used in the current density

through:

So Ohm’s Law in point
form (material property)

With the conductivity given as:

0 = —Pelle

J =pyvg = —pepc i = oE

J=0E

0 = —Pefhe T PnL

S/m (electrons/holes)

41



~_ Ohm'’s Law (macroscopi

« For constant electric field
L

IVab|=fE-dL=EL

b
»  Ohm’s Law becomes
| Vv
E :J{ e B 1 e GI
» Rearranging gives
a8§ a8
I = T'Lf' G = v siemens (conductance)
» Or
V = < | R = s h
as e e

« Variation with geometry
« (Conductance vs. Resistance

(resistance)

42
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214 Boundary conditions for conductors

* No electric field in interior
— Otherwise charges repel to the surface

* No tangential electric field at surface
s Et — O
— Otherwise charges redistribute along surface

* Normal electric field at surface
- &En = Dy = ps

— Displacement Normal equals Charge Density
(Gauss’s Law)

43



n——

~ Boundary Condition for Tangential Electric Field E

b c d a
Over the rectangular integration path, we use %E -dLL =0 or / —I—f + f + f =0
a b c d

To find:
EAW — En aps Al + En aas AR =0

- .
~—

These become negligible as Ah approaches zero.

dielectric

Therefore
Et — O
d
Aw More formally: E xn = O
S
conductor

44



Boundary Condition for the Normal Displacement D

Gauss’ Law is applied to the cylindrical surface shown below:

55 D-dS = f + J/ + =0
S top bottom sides

This reduces to: D N AS = Q — PSAS as Ah approaches zero

dielectric

D
- f\ Therefore
Dy Dy = ps
n
More formally:
Ps conductor D-n ¢ Ps

45



. __

1. The static electric field intensity inside a conductor is zero.

2. The static electric field intensity at the surface of a conductor is everywhere
directed normal to that surface.

3. The conductor surface is an equipotential surface.

Exn{S:O

Atthe surface: o n| = p,

Tangential E is zero

Normal D is equal to the surface charge density

46



—
Example - Boundary Conditions for Conductors

», Potential given by
V =100(x%—y?)

 Potential at (2,-1,3) is 300 V. Also 300 V
along entire surface where 1 z=13 plane

300 = 100(x2 — y?)

« Thus we can “insert” conductor in region 0 1
provided the conductor follow hyperbola x2_ 32 =3
S V=300V

« The Electric Field is at all times normal —1
to conducting surface

E =—-VV = —-200xa, + 200y a, /

 Electric field at point 2,-1,3) /

— Ex=-400 V/m, Ey = -200 V/m /
— Down and to left



n——

/Eﬁple — Streamlines of Electric Field

s, Slope of line equals electric field ratio

d_y_ﬂ_ZOOy_ y

dx E, —200 x s ) z=3 plane

 Rearranging

ax i€ ay =0 0 1
x y
x2_y2 =3
Inx +Iny = (¢, V=300V
xy = Cy =i
 Evaluate at P(2,-1,3)
/
xy =-2 2 /
[ xy=-2
/

48



pr6Dielectrics = — =

ric

Polar molecules are When an external The charged edges of the dielect
-andomly oriented in electric field is applied, can be modeled as an additional

the absence of an the molecules partially pair of parallel plates establishing
external elecrtric field. align with the field. an electric field Ei”d in the

=
direction opposite that of E.

+ - &
E — -
¥ + % an _ =" — N — -+
_55 — -
s o+ == — kB .= - =
- A — 4] =
| + 5 4 - 42
s = =Y & = 2¥ o = — TF — &L — e - l“ind +
+ - “+ A '
E, T Tinc 1 Tinc 1

Material has random oriented dipoles

Applied field aligns dipoles (negative at (+) terminal,
positive at (-) terminal

Effect is to cancel applied field, lower voltage
OR, increase charge to maintain voltage
Either increases capacitance C= Q/V

(| |

49



_ Review Dipole Moment -

» Define dipole moment

p=Qd

» Potential for dipole

d 6
V:Q COS

4 eqr?

*  Written in terms of dipole
moment and position

y = D&
4 egr?

* Dipole moment determines “strength” of polar molecule
amount of charge (Q) and offset (d) of charge

50



Polarization as of dipole moments
—(per volume)

Introducing an electric field may increase the charge separation in
each dipole, and possibly re-orient dipoles so that there is some
aggregate alignment, as shown here. The effect is small, and is

greatly exaggerated here!

n = charge/volume
p = polarization of individual dipole
P = polarization/volume

51



__Pelarization near electrodes — /

» From diagram

— Excess positive bound charge near top negative
electrode

— Excess negative bound charge near bottom
positive electrode

— Rest of material neutral

Excess charge in bound (red) volumes

AQ = nQd AS

Writing in terms of polarization

AQ = P AS

Writing similar to Gauss’s law

Qb=—fP-ds

(Note dot product sign, outward normal
leaves opposite charge enclosed)
b2



'Combining total, free, and bounc

» Tlotal, free, and bound charge

Qr = Qf + Qp
e Total

Q, = § E,E * ds
* Free
* Bound

Qb - _fp - ds
« Combining

D=¢E+P



e —————

. and E in Dielectric

D continuous
Polarization increases

E decreases

e D=¢,E+P

C/m?2

E“Eo | e
D =gy f) @i

P=0e

54



ChargeDensities ————— —

/

Taking the previous results and using the divergence theorem,
we find the point form expressions:

Bound Charge: Qb:/pde:—‘%P'dS — V'P:_pb
v S

Total Charge: () = pr dv =‘¢\€0E'ds —_— V. E()E = pr
v \)

Free Charge: Q:/ppdV :¢Dds — V.D:pv
v S

55



2.17 Electric Susceptibility and the Dielectric—
—Constant

A stronger electric field results in a larger polarization in the

medium. In a linear medium, the relation between P and E Is
linear, and is given P = ¢,y .E

where g, is the electric susceptibility of the medium.

We may now write: D = ¢yE + x.¢0E = (x. + 1)egE
where-the-dielectric-constant, or relative permittivity is defined as:

€ = Xe + 1
€ — €,€Q
Leading to the overall permittivity of the medium: | D = €E

56



~Permittivity of Materials

Typical permittivity for various solids and liquids.
e Teflon-2
e Plastics - 3-6
e Ceramics 8-10
e Titanates>100
e Acetone 21
o Water /8

Actual dielectric “constant” varies with:
e Temperature
e Direction
e Field Strength
e Fregquency
e Real & Imaginary components

B



~ Otherapplications

Other Applications

e Bio

e Liquid Crystal

e Composite polymers

e Titanates

e Wireless characterization

e MRI dyes

e Ground water monitoring

e QIl Drilling fluid characterization (GPR)

58



2.18 Boundary Condition for Tangential
~— ElectricFieldE

Since E is conservative, we setup line integral straddling both

dielectrics:
%E-dL:O Region 1

Left and right sides cancel, so

Et&ll'] 1 AW I EtanQ Aw J— O

Leading to Continuity for tangential E
Etanl — EtanZ

And Discontinuity for tangential D

Dtanl DtanZ
= Eun1 = Ewn2 =
€1 €2

E same, D higher in high permittivity material

59



- Boundary Condition for Normal Displacement D

Apply Gauss’ Law to the cylindrical volume straddling both,

dielectrics n

Q % - dS Re?::ml \‘ A _____
Flux enters and exits only through top { \ﬂ_.u
and bottom surfaces, zero on sides £

DN]AS — DNQAS = AQ = ,OSAS

Leading to Continuity for normal D (for pg = 0)

Dyy — Dy>2 = ps Dy1 = Dn>

And Discontinuity for normal E

— D same. E lower in high permittivity material
E1En1 = &2EN; i .

60



~_Bending of D at boundary

Boundary conditions
— Dy continuous

Dry _ &1

Dt3 £z

« Trigonometry

D
~ tan(,) = Di;

D
- tan(ez) — D_‘l:

« Eliminating D

tan(€1) _ D11 €1
tan(Bz) DTZ €2

61
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3 Electric potential

=

. =
3.1 Introduction to Potential

3.2 Comments on Potential

3.3 Poisson’s Equation and Laplace’s Equation

3.4 The Potential of a Localized Charge Distribution

3.5 Electrostatic Boundary Conditions

63



3.1 Introduction to potential R———
. T
Any vector whose curl Is zero Is equal to the gradient of some
scalar. We define a functlon

V(p)_—j E.dl

Where Is some standard reference point ; V depends only on
the point P. V is called the electric potential.

=,

Y —_

v(b)—v(a)=—j:é-df—[—j;é-dsz—jbE dl
a
The fundamental theorem for gradients

V(b)—V(a)zj:(VV)-df

g ity

Q j:(VV)-dfz—jaE-dl = e

-VV

64



=,

3.2 Comments on potential
- =

(1)The name Potential is not potential energy

E:qé:—qvv AU:E)Z

V: Joule/coulomb U : Joule

65



3.2 ——

—\ /

e gy

=

but E Is a vector guantity

V (r) E _E Xt E Vi FE 7

If you know V, you can easily get E: E vy

E,.Ey.E, are notindependent functions

- 0E, ®OEy aEZCf@Ey 0E, 9 E,
oy 0X oy 0z 02 0X

e - ¢ E . .- 0 T = 0 F

(2) Advantage of the potential formulation V is a scalar function,

e

aXEZ

66



3.2 _—=

/ o e _—
—(3)The reference point g

Changing the reference point amounts to adds a constant to
the potential

of 2 g - = SR B
V’(p):—jg’E-dI :—IS’E-dI —jg E-dl =K +V(p)

(Where K is a constant)

Adding a constant to V will not affect the potential difference
between two point:
Vi(b)-V'(a)=V (b)-V(a)

Since the derivative of a constant IS zeroyyy = vv '’
For the different V, the field E remains the same.

Ordinarily we set v (0)=0

67



3.2

e s
(4) Potential obeys the superposition principle

\ /

=

-

Dividing through by Q
-
Integrating from the common reference point to p ,
Vo=V Vs oo
(5) Unit of potential
Volt=Joule/Coulomb

F :newton F.x:Joule

qVv
E=QgqE —qVV > —
X

F - X

Vi _, Joule/Coulomb

q

68



o2 e
= . st
- Example 2.6 Find the potential inside and outside a spherical
shell of radius R, which carries a uniform surface

charge (the total charge is Q).

solution:
- =
Ein =0 out Arey 2
for r>R: r
o G
V(F)z—j Ed e
oS 4re r'OO dreg I
for r<R:
T % T g
V (R) = V(rYzV (R)=
()472'6‘0R () ()T47Z'80R
E 0
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3.3 Poisson’s Eq. & Laplace’s Eq.
. —

=

Poisson’s Eq. vy = £

o=0 v2, - ol Laplace’seq.




3.4 The Potential of a Locallzed Charge
——Distribution

o r
= vy V—Voo=—j Edr’ Vo0
r
dre Iw /2 Arey 1’ Aren ¥
0 r 0 : 0

« Potential for a point charge R
T =
V(P) = e
- 4rey R i ‘r rp‘ q
] u P
« Potential for a collection of charge /
n : Q2o / R
q -
V(P)=- - —L Ri:‘ri—rp‘ E s
472'80 Ri o 4i

=1



3.4 L

. . - = =
« Potential of a continuous distribution
for volume charge for a line charge for a surface charge
0q = pdr oq=A4d/ 0qg=ocda
1 % 1 A 1 o
V (P) = d V (P) = d¢  V(P)= da
P 47750er (R 472'80'[R LE) 4ﬂgojR
. Corresponding electric field [ v %: iz ]
R
- 1 ] - : - 1 f
E(P) = ' hdz E(PY= —2—[-14ds E(P)= o da
. 47[50'[R2p ) 4”50JR2 4”50IR2
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3.4

te 2.7 Find the poteﬁtial of a unifo
shell of radius R.

spherical

Solution:

1 o
V(r)= j da’, r?=R%+2°_2Rzc0S8’
4%50 r

sin@’'dd’'de’

ArxV (z) =
22 —2Rzcos@’

R2

i
\/R2 +
sin @'

T
'[0 \/R2+22—2ch039’

=27zR2c7 do'’

T

1
- 27R%0 (—\/R2 +2° - 2Rzcosd’)

Rz 0

:ﬂ(\/R2+22+2Rz —\/R2+22—2Rz)
Z

:M%[\/(R+z)2 —\/(R—z)z] -




3.4

/"/////hcr

V (z) =
2502
R

V)

2&q1Z

ey

—_—

RZG
[(R+2) - (z— R)] =

£
(c 0 & )] -

)

outside

Inside
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3.5 Electrostatic Boundary Condition —

Electrostatic problem @

*Superposition

Coulomb law

The above equations are differential or integral.
For a unique solution, we need boundary conditions. (e.d. , V(«)=0 )
(boundary value problem. Dynamics: initial value problem.) 75



3.5 —_

.C. at surface with charge
T
§ Eogan G o8
€0 €0
surface |l
Eiabove . ELbelow =
o
Evabove Eibilow -
&0

—_

[ﬂé-d[:O ('.'VXE:O)

E” above

/
/

E“ below

E|| above: E|| below

L+ |E L

N
€0 76

above Ebelow




3°9

P rotential B.C.

"V

above Vbelow =

Vv

above Vbelow

—_

i

above Ebelow

0
—V
on

above

o
on

O

Vbelow ol =

_\\
. b
—J' E-d/ >
a
= 0 E=-VV
&9

Figure 2.38
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Wétism and electricity have—r considered

distinct phenomena until Hans Christian Oersted conducted
an experiment that showed a compass deflecting In
proximity to a current carrying wire

H
o
e=Pie—=

(D

N

()

78



~Produced by = e -

-time varying electric fields

-permanent magnet (arises from guantum mechanical electron
spin/ can be considered charge in motion=current )

-steady electric currents

[H ]SI - -
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ma wire with current | in the presence of a magnetic field,
the charges in the conductor experience another force F,

z
'

1 )

ﬂ
N
’

i [~

ey

- H/

80



E. | B I | ¢
y7i
g —charge

u —velocity vector

B -strength of the field (magnetic flux density)
U, —relative permeability

U —absolute permeability

Uo-permeability of the free space

M=x.,H- Is the magnetization for linear and
homogeneous medium

81
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3.7-Relative permeabilities for a variety of

materials

Material

Ferrite U 60
Ferrite M33
Nickel (99% pure)
Ferrite N41

Iron (99.8% pure)
Ferrite T38
Silicon GO steel

supermalloy

p/(H m1)
1.00E-05
9.42E-04
7.54E-04
3.77E-03
6.28E-03
1.26E-02
5.03E-02

1.26

8

750

600

3000

5000

10000

40000

1000000

Application
UHF chokes
Resonant circuit RM cores

Power circuits
Broadband transformers
Dynamos, mains transformers

Recording heads
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~3.8Lorentz’s Force equation

E = =

NN

= =

Note: Magnetic force is zero for g moving in the direction of
the magnetic field (sin0=0)

-
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. O . . / .
YV(Mn/eleelrlc current Is passed through-a magnetic field a force Is

xerted on the wire normal to both the magnetic field and the current
direction. This force is actually acting on the individual charges
moving in the conductor.

<<

& dL_

(2) (b)

84



/
/I'ifmagnetic force Is exerting a torque on

the current carrying coll

Pivot point

85
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Fundamental Postulatesm:\Magne’tb‘statics in Free Spﬁze

/

87



cross section

88






.

/V

There are no magnetic flow sources, and the magnetic flux
lines always close upon themselves

920



-311 Ampere’s circuital law

The circulation of the magnetic flux density in free space around

any closed path is equal to MUy times the total current flowing
through the surface bounded by the path

91



Postulates of Magnetostatics
In Free Space

Differential Form

Integral Form

. fEOdgzO

- fB+al ¢ |

92



UNIT = IV
FORCE IN MAGNETIC FIELD AND
MAGNETIC POTENTIAL

93



4 Work-and Energy in Electrostatics

4.1 The Work Done in Moving a Charge
4.2 The Energy of a Point Charge Distribution
4.3 The Energy of a Continuous Charge Distribution

4.4 Comments on Electrostatic Energy

94



4.1 The Work Done in Moving a charge
o =

/

/

Atest charge Q feels a force Q £ (from the stationary source charges).

To move this test charge, we have to apply a force

The total work we do Is

b b —

W= E.diz_QjaE-dzzq[V(b)—V(a)]

W

V (b)-V (a)= 0

So, bring a charge from « to P, the work we do is

W =Q[V(P)-V(x)]=QV(P)
T
V(0)=0

E?—Qé
conservative

95



4.2 The Energy of a Point.Charge Distribution
> Bus
It takes no work to bring in first charges

=

W, -0  forg,

q,

Work needed to bring in g, Is :

Figure 2.40
1 U I 1 : 4
47[50 R12 47[50 R12

W, =q,]

Work needed to bring in g Is :

1 4 1 9 1
- - = = =
EE s A R Tég 13 23

4 q>

Work needed to bringinq, Is:

9 9 q

W4:
dre Ris  Rys Rgy 96




4.2 —

_Total work
W=W,+ W+ W, +W,

t 095 s 0 4 0 d g:0: )
4ﬂ€b R12 R13 R23 R14 R24 R34

- e 09 |
=
0 j=1j=1 U
le:le 1 4 % q|qJ 1 & ( ! qj
- % g 1 |
87¢, Z Z Ri; 22 q'LZ drey R; J
I=1 j=1 I=1 j=1 J
J#I J#I
n n q
1 - 1 J
0T - _247:50 R;;
i=1 I };%

Dose not include the first charge 97



4.3 The Energy of a Contlnuous Charge —
——Distribution

5q=T,OdT
W :;ijdr Volume charge density
p=60V-E V. (EV)=(V-E)V+E-(VV)
%’j(v.é)vm/g?o[jv-(év)dr+j|§-(VV)er
| FT.for v . I
J VE-da c
surface

:‘970( j VE-da+ [ E’dr)

surface volume

2

€0
surface > o = W = — .[ E“drt
2

all space




4.3 e

\ /

Example 2.8 Find the energy of a uniformly charged spherical
shell of total charge g and radius R

: di
Sol.1: q:47rR2c7 V = q
Adreg R
2
1 i 1 1 1
W:—IdeT:—jGVda:—jq qda: -
2 2 2° Adrey R 87ey R
1 q q2
B 2
Sol.2 1 E = = 0 E =
dreg r (dzmey) 1
& & outer q2 1
W :—OIEZdr:—O (rzsinededgodr)
2 2 SRR (g, g
2 2
| ol 1
= q2 2-27zj - dr -
321 80L Sor J 8zey R 99



4.4 Comments on Electrostatic Energy s

/ . . . .
7 (1) A perplexing inconsistent
Wi Eoode = knergy 0
2 “all space
or
W = —Z q;V (P;) %
=1
n n siasaEnergy sa0 g
W =

4ﬂ50i_1 = ”

j>i

Only for point charge

2
1 _q ;
=-q=> W = ( ) <0 (v9, andg,) are attractive
4%80 o

g =49, 0y

100



4.4 _
_ -
E
W ESds

2 “Jall space

IS more complete

the energy of a point charge itself,

2 2
o 1
i “0 S _"(q4)(rzsin Oded(pdr)z - I —2dr:oo
2(4rmey) r Sanc. Uy
1 n
W == q; V(F]) -V (P;) does notinclude 9
2 =1
v :ijp\,df » V(P) is the full potential
2
There Is no distinction for a continuous distribution,
because drs 0

d >0
p( f)p

101



/ e ——
(2)Where is the energy stored? In charge or in field ?
Both are fine in ES. But,it is useful to regard the energy

as being stored in the field at a density

E2

=

- = Energy per unit volume
(3)The superposition principle,not for ES energy

W

go o T 2
tot:_I(E1+E2) dz
2
€0 2 2 m
:—j(E1 +E, +2E,-E,)dr
2

=Wy +W, + ¢ [(E;-Ep)dr

102



4.5 Magnetic Fields in analogy with Electric
- Fields

Electric Field:

e Distribution of charge creates an electric field E(r) in the
surrounding space.

e Field exerts a force F=q E(r) on a charge g atr
Magnetic Field:

e Moving charge or current creates a magnetic field B(r)
In the surrounding space.

 Field exerts a force F on a charge moving g atr
e (emphasis this chapter is on force law)

103
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—

—4:6 Magnetic Fields and Magnetic Force

Magnetic Force on a moving charge
e proportional to electric charge
e perpendicular to velocity v
e proportional to speed v (for a given geometry)
e perpendicular to Magnetic Field B
e proportional to field strength B (for a given geometry)
F=qv B

104
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F=qv B l ;
F=|qg|vBsing g

=lglvB (v_LB)
F = B :

_qV B
F=|gl v, B :

Y
, 2

F=qv B
F=|glvB, B

105



4.7 Magnetic Fields =

Units of Magnetic Field Strength:
[B] = [Fl/([a]lv])
= N/(Cms?)
= Tesla
Defined in terms of force on standard current
CGS Unit 1 Gauss = 10 Tesla
Earth's field strength ~ 1 Gauss
Direction = direction of velocity which generates no force
Electromagnetic Force:
F=q(E+ v B)
= Lorentz Force Law

106



c Flux

—4.8Magnetic Field Lines and Magneti

Magnetic Field Lines
Mapped out with compass

Are not lines of force (F is not parallel to B)
Field Lines never intersect
Magnetic Flux

dF, =B -dA
do = B-dA
©, = [B-dA

f)é .dA =0 no magneti ccharge! (no monopo  les)

107



4.9 Motion of Charged Particles in a Magnetic

— Field

Charged Particle moving perpendicular to the Magnetic Field

— Circular Motion!

— (simulations)

X e X
X X X

X X =
PR

108



harged Particle mo

~ Charge
Field
F
R
(0]

mv

R

=lq|vB =

mv

|q|B
Y q|B

R m

= cyclotron

2

frequency

ving perpendicular to a uniform Magnetic

_.,.4/7

109
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= - e
~  Work done by the Magnetic Field on a free particle:
dW = F - dX
= (q\7 X Ig) v dt

- 0!

=> no change in Kinetic Energy!

Motion of a free charged particle in any magnetic field has
constant speed.

110
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411 Magnetic FormBrrent Carrying/Wire
- |

_n
Il
i bg
i
Il
1.m
o
_<l
X
o,

Ng v, x B = n-volume

nAdlq

Idrx

184
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41/'[o|cqueonaCurrent‘L‘0‘0p~(from—F— X B) —

Rectangular loop in a magnetic field (directed along z axis)
short side length a, long side length Db, tilted with short sides at an
angle with respect to B, long sides still perpendicular to B.

B

Forces on short sides cancel: no net force or torque.
Forces on long sides cancel for no net force but there is a
net torque.

112
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/

~_— Torque calculation: Side-view

moment 0 F, = IBb
arm >

- al2 sin' g

r=F,a2sin 8 +F,a/2sin 6

=labBsinéd =1ABsin @ 6, B
/A B 4 B -

Magnetic Dipole ~ Electric Dipote——
=—u B

Switch current direction every 1/2 rotation => DC
motor
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— — —y
4.13 Hall Effect ‘
Conductor in a uniform magnetic field /
f
. |

Magnetic force on charge carriers F=qv, B

F, =gvyB Charge accumulates on edges

114
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~_FEquilibrium: Magnetithric Force on bulk charge

carriers

=

A

B

ve. .. = - - -

G e

Charge accumulates on edges F, =0 =qv,B, + q E,

115



UNIT =V
TIME VARYING FIELDS AND FINITE
ELEMENT METHOD

116
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.= 5.1 Time-Varying Fields—
Stationary charges > electrostatic fields
Steady currents " magnetostatic fields
Time-varying currents " electromagnetic fields

Only in a non-time-varying case can electric and magnetic fields be
considered as Iindependent of each other. In a time-varying
(dynamic) case the two fields are interdependent. A changing
magnetic field induces an electric field, and vice versa.

8 b
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. The Continuity Equation——

118

Electric charges may not be created or destroyed (the principle of conservation of charge).

Consider an arbitrary volume V bounded by surface S. A net charge Q exists within this region. If a
net current | flows across the surface out of this region, the charge in the volume must decrease at a
rate that equals the current:

TR0 d d
o E
o 2 dt dt: = Y
Divergence theorem a Il;artial derivativeb
gy ecause may be a
{V A { ot ay function of both time
1 and space
This equation must hold regardless of the choice of V, therefore the integrands must be
equal; :
d - .3:_5/% s the e_quaytlon of
ot |__continuity
For steady currents W Kirchhoff s current law
vVv.-J=0I .
follows from this

that is, steady electric currents are divergences or solenoidal.



. Displacement Current —

For magnetostatic field, we recall that Yoo

Taking the divergence of this equation we have

V- (VxH)=0=v-J

However the continuity equation requires that

op,
ot

V-E:— = 0

Thus we must modify the magnetostatic curl equation to agree with the continuity equation. Let us
add a term to the former so that it becomes

Necosconmrezaodogenda

where & the conduction current density ,and = J:sEtEbe determined and defined.
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n u /
~__— Displacement-Current continued
— Taking the divergence we have

vilvxm oo vty iy ke g Sy

In order for this equation to agree with the continuity equation,
Gauss' law

v —_— v
2 v 5 s oD
V.Jg=-V -J= = (V-D)=v-—
ot ot ot
YY) . .
Js = — +—— displacement current density
ot
Vxﬁ=j+a—D
Ot
s v — D —
VxH-dS=J(J+6—Dj-dS — (@A E=1+ it xds
s s Ot i 2
t |

Stokes’ theorem
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% : e
~___— Displacement Current continued

A typical example of displacement current is the current through a
capacitor when an alternating voltage source is applied to its
plates. The following example illustrates the need for the
displacement current.

e o
Using an unmodified form of (fH e e
: dt
Ampere’ s law - (no conduction current
- $H dl = [3.d5 =1, =0 flows through s, (
[L s =@))

To resolve the conflict we need to include  in Ampere’ s law.
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~__— Displacement-Current continued

Charge -Q

Charge +Q The total current density is  J +.In the

first equation Js0-ib remains valid.
In the second equation so that
J=0
dt
L
A % Ve P e e _7
I Pbladl = g dS=d— D-dsS 1-0
S, tS2
d sl iy
S ae I jSD .dS =Q
dt
S, +S,
[D-ds =0

S,

So we obtain the same current for
either surface though it is conduction
currentin  and displacement
current in : s,

Surface S2
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/

. Faraday—s Law e

Faraday discovered experimentally that a current was induced in a
conducting loop when the magnetic flux linking the loop changed.
In differential (or point) form_this experimental fact is described by

the following equation oo 0
ot

Taking the surface integral of both sides over an open surface and
applying Stokes’ theorem, we obtain

Integral form > fE-d/:——.[B-dS:-—V/

where¢ Is the magnetic flux through the surface S.
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Faraday —s-Law - continued —

/

Time-varying electric field is not conservative.

i
B
Path L1
Path L2
A

The effect of electromagnetic induction. When
time-varying magnetic fields are present, the
value of the line integral of @ f#om A to B may
depend on the path one chooses.

Suppose that there is only one unique
voltage V., =V, -V, Then

However,

- = ===
§E-dl = [E-dl - [E o
L i L at

A U = 0

oy /ot =0
Thus Vv, can be unambiguously
defined only if .(in practice,
if than the-dimensions of
system in question)



/
. —Induetance o

A c_:ir%uig%rrying current | produces a magneﬁc fleld which causes
t"a flux “to pass through each turn of the circuit. If the medium

surrounding the circuit is linear, the flux IS proportional to the
current | producing it

e 9¥  (voltage induced

ot across coil)
—{)
X
ol ol
= Nk — =L —
I ! ot ot
Y 4

Magnetic field B produced by a circuit. : ; :
Self-inductance L is defined as the

ratio of the magnetic flux linkage ta
the current I.
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Indt@gce\continued S
/ =
— In an inductor such as a coaxial or a parallel-wire transmission line, the inductance
produced by the flux internal to the conductor is called the internal inductance L,, while
that produced by the flux external to it is called external inductance
Lext (L o L/‘n . Lex

Let us find L_.of a very long rectangular loop of wire for which R =0 a aadv
w << h . This geometry represents a parallel-conductor transmission line. Transmission
lines are usually characterized by per unit length parameters.

Wire radius = a T e
4%» I
S i
— S J
foas 0 h o

Finding the inductance per unit length of a parallel-conductor transmission line.
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~__—General Forms o

127

Differential

VDT,

In1 and 2, S is a closed surface enclosing the volume V
In 2 and 3, L is a closed path that bounds the surface S

Integral
QDxds= Qr, dv
S Vv

QB>ds=0
S

L ﬂt s
ST xdi = On D -
= i
@H Soé;] Mt o

e

Maxwell” s Equﬁtiohs

Remarks

Gauss’ Law

Nonexistence of
isolated magnetic

charge

Faraday' s Law

Ampere’ s circuital law




Electric fields can originate on positive charges and can end on

negative charges. But since nature has neglected to supply us with

magnetic charges, magnetic fields cannot begin or end; they can
Ls0nly form closed loops.



Sinusoidal Fields s

/

— ’Imnagnetics, information is usually transmitted by imposing amplitude, frequency, or phase

129

modulation on a sinusoidal carrier. Sinusoidal (or time-harmonic) analysis can be extended to most
waveforms by Fourier and Laplace transform techniques.

Sinusoids are easily expressed in phasors, which are more convenient to work with. Let us consider
the “curl H” equation.
e H=Ff(x,y,z,t)
t

Its phasor representation is

VxH=J+]oD=J+jakE
H is a vector function of position, but it is independent of time. The three scalar components of are
complex numbers; that is, if

H_(x,y,z,t)z f.(x,y,z)cos (a)t+¢1)e_x+ f,(x,y,z)cos (ot + ¢,)ey
NG NG J

then jr/,,/Jy; jr___,,__———43”

- % =y =
Hibeyiizl et brayiple e sar e iye ety




Point Form

—Sinusoidal Fields continued g

B ——

jot

Integral Form

V-D=r, QDds = O/, dv
VxE=-jwB O dl =- jwQBxds

OH »dl = d2+ sz:)) ds

H(x,y, z, t) = Regﬂ(x,y, Z) ejW’E
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— Maxwell’'s Equations continued /

%statics - “Y =8y Electrodynamics

Magnetostatics

: -Veuv
Free magnetic (b)
charge density (
) p7 =0

Electromagnetic flow diagram showing the relationship between the potentials and vector fields: (a)
electrostatic system, (b) magnetostatic system, (c) electromagnetic system. [Adapted with

permission from IEE Publishing Department]
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The Skin Effect

/vaarying fields are present in a material that has high conductivity, the fields and currents
tend to be confined to a region near the surface of the material. This is known as the “skin effect”

Skin effect increases the effective resistance of conductors at high frequencies.

Let us consider the vector wave equation (Helmholtz' s equation) for the electric field:

V'E = jau (o, + jos )E l (v2§=vzgxex+v2§yey+vzgzez)
X

If the material in question is a very good conductor, so that o, >>We can write
e \4 - E = jouo E E
- — __
Since e - j szWe also have e 2
Vil e )

Consider current flowing in the +x direction through a conductive material filling the
half-space z<0. The current density is independent of y and x, so that we have

823 y?2 1+j)z (1+j)z %0 1+j)z
bt ; e DR 7 g y=a+ ip
{1 (ot e e i S e ) - Lt 1 ° 4+ Be °?

2 B =X 1
oz Z o =p ==
Current density at surface J, .
_ Skin depth
(Air) Z>0 % y e Py 1
(Metal) Z<0 WUHO o _ f

Magnitude of current density decreases
exponentially with depth

1332
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J prns

—X

—_The Skin Effect continued

\

Ae

_.,.4/7

~(+j)z/s

+ Be

1+j)z/6 7 5
S e e

z 7 z z
S

As z —» —o, the first term increases and would give rise to infinitely large currents.
Since this is physically unreasonable, the constant A must vanish. From the condition

when z=0 we hbye J,

and S o
Fpyialeean
z<0
11 L
EOIN0 ! N
5 1000 ! ! 1 t {
s L N ]
SR RNUE
LTI IN
& ol ’ | | S
I | A
10° 10° 105 10 107 10* 10° 10 10"

f (Hz)

10mm
1mm
0.1mm

Skin depth osversus frequency for copper

133

Current density magnitude
decreases exponentially with
depth. Its phase changes as well.

At |z|:5
1

J |==3, =037J,
e

At |z|= =

J, =-0.043 J,

(10kHz — & = 0.6mm

y
/LGO Hz — 6 = 8.6mm



JleFSki\nwEbffe\ctco ntinued
/ =

Skin Depth and Surface Resistance for Metals

- RsE/”

Metal o (Qm)—l A B
E
Silver S 6.10 -10 2 2.41.10 '
Copper 5.91-10 ' 655407 i e
Gold 4.10 -10 7.86 -10 ° 3.10 .10
Aluminum 354 .10 8 46 .10 2 3.34 -10 '
Iron ;90 e o 1 1.58 -10 * P
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1:35

J (2)=13,e%e *, the total current per unit width is -

0 (1+j)z

0
Ly fidde = il oo

— 0

Az

1 1 e7j45°
B = =
° < 45" out of phase with Jo
1+ J 2

B

Since J, = 5_E We can write . ouc

o_0 1 Voltage per unit length
I_W o E EO :—EO / g p g
1+ j Z _
= Surface impedance
e . .
2o = S e R (R = Xg)
I_W GE5 2O-E

I
I

1 T G g G G S - 3 S W I  J yo  pr  r
-

A
,
w 4
4
y

1]

A
ool ool bl e o e e e e ol kel Lokl el ol ke e el o .

1
A
A

1

il

lllustrating the concept of “ohms per square”

[ZS]ZQ or

Direction of current flow

“ohms per square”

il W

\/_: EOI

V:: EOI i ZS(I_W

A \w )
If /I=w (a square surface)

Vv

S
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(ohms per square)

Surfnce resistance Rg

10!
1072
107
10~

1075

107

——Surface Impedance continued

k)

108 10 105 10° 107 10 10° 10" 10"

J/ (Hz)

Rs is equivalent to the dc
resistance per unit length of the
conductor having cross-sectional
area 1x &

For a wire of radius a,

W = 2ra
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Finding the resistance and internal inductance of a wire bond. The bond, a length of wire connecting two pads on an
IC, is shown in (a). (b) is a cross-sectional view showing skin depth. In (c) we imagine the conducting layer unfolded
into a plane.
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