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Introduction

Electrostatics can be defined as the study of electric charges at rest. Electric
fields have their sources in electric charges.

( Note: Almost all real electric fields vary to some extent with time. However,
for many problems, the field variation is slow and the field may be
considered as static. For some other cases spatial distribution is nearly same
as for the static case even though the actual field may vary with time. Such
cases are termed as quasi-static.)

In this chapter we first study two fundamental laws governing the
electrostatic fields, viz, (1) Coulomb's Law and (2) Gauss's Law. Both these
law have experimental basis. Coulomb's law is applicable in finding electric
field due to any charge distribution, Gauss's law is easier to use when the
distribution is symmetrical.



Unit |
Coulomb’s Law



Coulomb's Torsion Balance

[y suspension

head This dial allows L
..... L) you to adjust and ~ 'liefinn!

measure the
| torque In the fibre
and thus the force |
restraining the
charge

This scale allows you to read
the separation of the charges



Coulomb’s Experiments




Coulomb's Law

* Coulomb determined
— Force is attractive if charges are opposite sign

—Force proportional to the product of the charges g,
and g, along the lines joing them

—Force inversly proportional square of the distance
. le.

— |Fy,| o |Qq 1Qy] / 52

— Or
—|F|=k[Q4] [Q,] / I,



Coulomb's Law

* Units of constant can be determined from Coulomb's

Law
* Colomb (and others since) have determined this

constant which (in a vacuum) in Sl units Is
— k =8.987.5x10° Nm2C-

® kis normally expressed as k = 1/4ng,
— where Is the permittivity of free space



Coulomb's Law

The equation for the magnitude of the Coulomb force between two point charges (), and
(J; in a vacuum is given by

where
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the magnitude of the charge ¢}; in coulomts (C)

the magnitude of the charge (); in coulomts (C)

the electrical force acting on the charge (); due to charge (); in newtons (N
the distance between the point charges (), and () in metres (m)

the permittivity of free space in C* N™' m™*

the Conlomh constant in N m?® (2,

The direction of the force Fi3 is determined by the sign of the charges; the force is
attractive if the charges have opposite signs, and repulsive if the charges have the same

sign.



Vector form of Coulomb’s Law
Fp,




Force from many charges

Superposition



Force from many charges

Force on charge is

Principle of
superposition

Q vector sum of forces
04 from all charges

F o=k + kg +Fy



Coulomb’s Law
vs Newton’s Law of Gravity

F:iz 1 (:hﬁ:?z i F:lz = —(5 m,m, I

2 2 12
47[80 ‘ r.12 ‘ r12
* Attractive or repulsive  * Always attractive
o 1/r2 * 1/r g2
. — >>-Gm*°
* Vvery strong very weak  grg

* Important on very
large scales, planets,
the Universe

* only relevant
relatively local scales




The Electric Field



Electric Field

Physicists did not like the concept of

“action at a distance” i.e. a force that They preferred to think

was “caused” by an object a long

distance away

of an object producing
a “field” and other

Thus rather than ...

@
@

objects interacting with

that field

N
¢ rey-hketNothink...

*

S S/



Electric Field

Electric Field E Is defined as the force
acting on a test particle divided by the
charge of that test particle

Thus Electric Field
from a single
charge Is

-+ Q3

4, | rff




Electric Field of a single charge

Q/-

Note: the Electric Field is defined
everywhere, even if there is no test
charge is not there.



Charged particles in electric field
Using the Field to determine the force




Vector & Scalar Fields

The Electric Field



Electric Field as a vector field

The Electric Field Is one example
of a \Vector Field

A “field” (vector or scalar) is defined
everywhere

A vector field has direction as well as size

The Electric Field has units of N/C




Other examples of fields: Elevation
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Other examples of fields:
Slope

SR ¥ P ,‘ | War Mem
g )Y i e (L e
¥ Slope IS a Vector field Slope IS deflned evemNhere
fc R . (on the earth)

| = A8 pilh. = mAt T

Slope has a size (though no dlmensmn) l.e. 10%, 1 in 10, 2°

AN *'“‘.- lm

-’

{ R is Acontourdlagram
\e« Slope does have a
% direction
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Representation of the Electric
Field

Electric Field Lines



Representation of the Electric
Field

It would be difficult to represent the electric field by
drawing vectors whose direction was the direction of the
field and whose length was the size of the field

everywhere




Representation of the Electric
Field

Instead we choose to represent the electric field with
lines whose direction indicates the direction of the field

Notice that as we
move away from the
charge, the density of
lines decreases

These are called |
Electric Field Lines




Drawing Electric Field Lines

The lines must begin on positive charges (or
Infinity)

The lines must end on negative charges (or
Infinity)

The number of lines leaving a +ve charge
(or approaching a -ve charge) Is
proportional to the magnitude of the charge
electric field lines cannot cross



Electric Field Lines

E field lines E field lines

(a) (b)

E field lines

Field is not zero here

Field is zero at midpoint

(a) (b) ()



Field lines for a conductor

E field lines




Drawing Electric Field Lines:
Examples




Electric Field Lines

since I\Ilines oC Q

"4

Q we know

wrt e - X

O ocC

. i drg, | rl?
The number density of field lines is

[Elcp



Interpreting Electric Field Lines

* The electric field vector, E, Is at a tangent
to the electric field lines at each point along
the lines

* The number of lines per unit area through a
surface perpendicular to the field is
proportional to the strength of the electric
field in that region



Superposition & Electric Field



Superposition & Electric Field
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Electric Flux



Electric Flux;
Field Perpendicular

For a constant field perpendicular to a surface A

Electric Flux is
defined as

® = E|A




For a constant field

Electric Flux: o e
Non perpend|cu|ar to a surface A

Electric Flux is
defined as

d =|E| AcosO




Electric Flux:
Relation to field lines

= E|A

Field line p o E|
density

Field line density ~ pAoc| E| A
x Area

_ Number of flux lines N oc @



Gauss’s Law

Relates flux through a closed surface
to

charge within that surface



Flux through a sphere from a
point charge

The electric field |
around a point charge

Thus the
fluxona @
sphere isE

X Area

Cancelling o Q
we get £,




Flux through a sphere froma
pointcharge

Now we Change the e
radius of sphere

1 Q
|4ﬂ:§|r2|2

xdr |1, °

The flux is 0
the same DO,=0, =
as before €9




Flux lines & Flux

Just what we would expect because the Nocd @DocN
number of field lines passing through each
sphere Is the same

and number of lines passing Q
. O, =0,=0, ==
through each sphere is the same &

In fact the number of flux
lines passing through any
surface surrounding this

charge Is the same
even when a line
passes in and out
of the surface it
CrosseSesilgnce
more than in




Principle of superposition:

What is the flux from two charges?

Since the flux is related to the

number of field lines passing D % n &
through a surface the total flux is > €y &
the total from each charge

In general

Q;

@ (I)S = ZS_ For
0

any

@ O surface




Quiz
What flux Is passing through each of

these surfaces?
D,

) Qlgy 0 +Qley  +2Qle0

®, o
D3

s,/




What is Gauss’s Law?

Gauss’s Law does not tell us anything new,
It 1Is NOT a new law of physics, but another
way of expressing Coulomb’s Law

Gauss’s Law IS sometimes easier to use than
Coulomb’s Law, especially if there is lots of
symmetry in the problem



Examples of using Gauss’s Law



Example of using Gauss’s Law 1

ve just forgotten Coulomb’

< Not to worry | remember G@

consider spherical surface O Q
centred on charge g,

By symmetry E Is L to surface

O-E|A=L HE4nrz=Q

€0 €o
~_ 1 @
|E|: 1 Q — 1 Q 4TCr2 80
Z
4rer e 4frcso 2 o

2 <Phew!)



Example of using Gauss’s Law 2

e What’s the field around a charged spherical —
shell?

Again consider spherical
surface centred on
charged shell

o, =2

Outside out £,
out Soaseg.l1 gt Q
drg, r°

Inside

charge within surface =0

@, =0 E=0




Examples




Properties of Conductors

Using Gauss’s Law



Properties of Conductors

For a conductor In electrostatic equilibrium

1.E 1s zero within the conductor

2.Any net charge, Q, Is distributed on surface
(surface charge density c=Q/A)

3. E immediately outside is L to surface
4.c 1S greatest where the radius of curvature

IS smaller
G, >>0C



1. E 1s zero within conductor

If there 1s a field in the conductor, then the
free electrons would feel a force and be
accelerated. They would then move and
since there are charges moving the
conductor would not be In electrostatic
equilibrium

hus E=0




2. Any net charge, Q, Is
distributed on surface

Consider surface S below surface of conductor

I Since we are in a conductor In
equilibrium, rule 1 says E=0, thus ®=0

Gauss’s Law ®=EA=) qls,

So, net charge within

qi/ &,=0 .
thus 2.9 /2 the surface is zero

N | As surface can be drawn
arbitrarily close to surface of
conductor, all net charge must
be distributed on surface




3. E immediately outside is L to

E

A~

surface

Consider a small cylindrical surface at the surface
of the conductor

If E,>0 it would cause surface charge g to move thus
it would not be in electrostatic equilibrium, thus E =0

cylinder is small enough that E is constant

Gauss’s Law ‘ ®=EA=q/¢

E=q/As




Electromagnetic Fields

UNIT-I



* Electric Potential
contents



ELECTRIC POTENTIAL



ELECTRIC POTENTIAL

* Suppose we wish to move a point charge
Q from point A to point B in an electric field
E some work is done in displacing the
charge by dl Given by

dW=-F «dl=-QE - dl
Where E Is the Electric field intensity.

The negative sign indicates that the work is
being done by an external agent.



* Thus the total work
done, or the potential
energy required, In
moving Q from Ato B
IS

b
v-o['ea

A




Potential Difference

* The potential difference between points A
and B.

B
Vag = =—[ E - dl
A

Li4
Q




Note

In determining VAB, A is the initial point while B
IS the final point.

If V .z IS negative, there is a loss in potential
energy in moving Q from A to B; this implies that
the work is being done by the field. However, if
Vg IS positive, there Is a gain in potential energy
INn the movement; an external agent performs the
work.

V .z IS Independent of the path taken (to be

shown a little later).

V .z IS measured In joules per coulomb,
commonly referred to as volts (V).



Electric Potential Due to Point
Charge

« Suppose a point charge Q located at the
origin, Then




 Thusif VA=0 as r, —> «, the potential

« at any point r, —> r due to a point charge
Q located at the origin is

vo_ Y

e r




Super position Principle

* For n point charges Qu Q2,. * * ,Qn
located at points with position vectors r,,

r,..., I, the potential atr is
V(I‘} — :Q] + QI +oo 4 Qﬂ
dre,ir — 1| dmer — 1y dre,lr — 1,
l L Q‘: r
Vipy= — 3 ——
(r) bmey & I — 1] (point charges)



(line charge)

(surface charge)

(volume charge)



al al al

VI'= Eax -~ gay - Eaz (cartesian)
] 1 aF al L,
VI —a—paﬁ. +EEH¢. + == (cylindrical)
kb 1 aF 1 al .
VI = —a, 4 =—y + —— —1, (spherical)




Relation Between E & V

* The potential difference between points A

and B Is independent of the path taken is
given by

Vaa = —Vap
° |.e
VBA -+ VAB: @E'dl:()

 Therefore

%E-dl:O




Stroke’s Theorem

jLE-dIZJ(VXE)wiS:O

VXE=O0




E=-Grad V

dV=-E-dl = —E.dx — E,dy ~ E, dz

i dV dV
V=—d+—dy+—d
s dx 0y 0z
g o— _2V e 9V o AV



Electric Dipole

* An electric dipole Is formed when two
point charges of equal magnitude but

opposite sign are separated by a small
distance.






» Consider an electric dipole, the potential at

point p 'ng’ré(ﬁ'frj?é Potential
vy @ (1 1] g [rn-r
- Adme, [ dre, Fits

-

r = I‘-Iiwrz_-ilpi = dEDSﬂ',f‘zn ”—"!"E



O} dcos ¢

*fl-#E'u ,.r‘:"

'i...i"_

Since dcos § = d - a,, where d = da_, if we define

p=¢0d
iﬂr
V=
4mer
vy = 2= 1)

d7e,|T — r’|3




av 1 aVv
E=-VV=—-|—a, +—
|:ﬂr r&ﬂﬂﬂ}

- Qd,:.;.sﬂa N Qd sin 8

3 I 3
2wer de_ r

dy

I 7 (2 cos f a, + sin 0 a,)

dre, r




* Electric Charges in motion Constitute

CIREHITENTR: Current Density

dQ
(il
The increment of current Af crossing an incremental surface AS normal to
the current density 1s

Al = JyAS

Al =J+ AS



Total current 1s obtained by integrating,

f=j.l-dE
5




CONDUCTORS

* A conductor has abundance of charge that
IS free to move.

* A perfect conductor cannot contain an
electrostatic field within it.

* A conductor Is called an equipotential
body, implying that the potential is the
same everywhere in the conductor.

E=0, p,=0, V,=0 msdeaconductor







When an external electric field Ee is applied, the
positive free charges are pushed along the same
direction as the applied field, while the negative
free charges move in the opposite direction.

This charge migration takes place very quickly.
The free charges do two things.

First, they accumulate on the surface of the
conductor and form an induced surface charge.

Second, the induced charges set up an internal
iInduced field E,, which cancels the externally
applied field Ee.



UNIT -1l

- Static Magnetic Fields, Biot-Savart's Law

- Oesterd's Experiment

-~ Magnetic Field Intensity

~ MFI due to a straight current carrying
conductor

= MFI due to square and solenoid currents
=~ DivB =0



Oesterd's Experiment

~ An electrostatic field is produced by static or
stationary charges.

- If the charges are moving with constant
velocity, a static magnetic (or magnetostatic)
field is produced.

~ A magnetostatic field is produced by a
constant current flow (or direct current).



Biot-Savart's Law

Two major laws governing magnetostatic fields:
(1) Biot-Savart's law and

(2) Ampere's circuit law.



Biot-Savart's Law - Definition

The magnetic field intensity dH.produced at a
point P as shown in Figure by the differential
current clement Idl is proportional to the
product Idl and the sine of the angle « between
the clement and the line joining P to the
element and is inversely proportional to the
square of the distance R between P and the
element.




I dl sin o

dH

R2
JH = kld;szina
k= 1/,
M{_f@ﬁﬁﬁ

47R-



Idi}i Tdl = R
|dH— | dg _ —
4rﬁ‘ drR

b r—mium = S

dH {imward )




() (bi

Determination of direction of dH



Different current distributions: line current,
surface current, and volume current as shown
in Figure .

K as the surface current density
and
] as the volume current density.

Then
I1dl=KdS = ]Jdv



The magnetic field produced by the current
element I dl does not exert force on the element
itself just as a point charge does not exert force
on itself.

The B field that exerts force on I dl must be due
to another element.

If instead of the line current element I dl. we
have surface current elements K dS or a volume
current element | dv, Then

dF=KdSXB Or dF=JdvXB



\
K

[ W

f
)

(1) (b) (c

Current distributions:
(a) line current.

(b) surface current.
(c) volume current.



[ 1d] X ag
41R*

(line current)

" K dS X ag
4R’

(surface current)

[ J dy X ap
4R’

(volume current)



MFI due to a straight

filamentary,¢OUSHI9% 1o Bio.

: Savart's Caw

The contribution

dH at P due to an

8Ierr)1ent dlat (O,
, Z).

Idl xR
dH =

dwR’

H (into the page)




Butdl =dza.andR = pa, = za,,

dl X R =pdra,

lp dz
J 'E:I-‘.'I'I._[ﬂz + E.?

H - ]y:- dy

Letting z = pcot ox, dfz = —p cosec” o deo.

=

1 (™ p? cosec” a de
. P cosec o
! .
= —4— [ s1n ¢ e
u iy J

Ly



I .

i f
H=—1(cosa; — CO% o, ), |
dap .

|
When the conductor is semiinfinite (with

respect to P) so that point A is now at O(0, 0, 0)
while Bis at (0,0, a); al= 90° a2 = 0°.

!
H=——
47p o



When the conductor is infinite in length.
point A is at (0, 0, -a) while B is at (0,
0,& ); al= 180° a2= 0°

[
H =
27p 2ap ¢

a(b:agxap




MFI Due to a Triangular loop

v Cos oy = cos 907 = (),
2
CO8 0y = ——,
V29




| il
H) = — (oo - cosfa, = —
i ()

= =).1a, mAlm

(1)
— =

S



MFI due to Circular Loop of
Current

z

- IdIXR

dH
e

PO, O, k)

where dl = pdgag, R = (0,0,h) = (x,,0)= —pa, + ha,

la, a, a_ |
dl =X R = |0} gdd )
-1 —p 1) fr

= phdpa, + o deb a,



[ -;
dH = ————(phdpa, + p dd a,
dﬂ-l:p‘" .I.ﬁ"l.w [lCII ¢ i IﬂI ¢| ,]

= dH,a, + dH_a,

Ip~ dep a, Ip 12_ T

H_[dH-ﬂ~= - 5 459 . . ™ -
- o Jrr dalp® + R1Y® 4w + KPF

I.-':.*_E_El‘.




MFI due to Solenoid Current

Cross sectional view of a solenoid.



Z

The contribution to the magnetic field H at P
by an element of the solenoid of length dz is

H 1dla* la'n dz

z[ﬂ’." n 32]3."'2 ?,[::IZ + EEJHE

where dl = ndz; = (NH) dz.

dH. =

tan & = al;

2 + 2132
dr = —acosect § df = —'lz jﬂ] sin 0 df
{




il

dif. = —— sin 6 d@
2
LB
o= J sin 8 6
I 2 .
nf
H = EY (cos f, — cos ) a,

Substituting n = N/ gives

NI
H=—(cosf, — cosf,)a,

2



At the center of the solenoid,

0s f e cos f
C = -
L+ )" |

In{
H=— - q.
2a” + €442

[£€ > qorf, = 0°,8, = 180°,




Ampere's Circuital Law

Ampere's circuit law states that the line
integral of the tangential component of H

around a closed path is the same as the net
current I enclosed by the path.

enc

In other words, the circulation of H equals [, ; that i,

b

|
. |

HH.M:;M




|

L. %H*dl: {(VXH).dS
I S

I = JJ-dS
S

VXH=]




The magnetic flux density B is similar to the
electric flux density D.

The magnetic flux density B is related to the
magnetic field intensity H according to

B:uoﬂl

Where p is a constant known as the permeability

of free space. The constant is in henrys/meter (H/
m) and has the value of

[

u, = 47 X 107 H/m ‘




Magnetic flux lines

b

5.
b




closed surface, ¥ =
closed surface, ¥ =0




The Total Flux through a closed Surface
in a magnetic field must be zero

%B-dS=O

jlgB-dSZJV*BdV:O
S y

V-B=0




MFI due to infinite sheet of
eurrent and a long current
carrying conductor

Point form of Ampere's Law

Field due to circular IooP,
rectangular and square loops.



MFI Due to Infinite line
Current

= Consider an infinitely long filamentary
current /along the z-axis as in Figure.

-~ We choose a concentric circle as the
Amperian path in view of ampere's law,
which shows that H is constant provided .is
constant.



— Iy

Amperian path

Ampere's law applied to an infinite filamentary
line current.



Since this path encloses the whole current
[, according to Ampere's law

I = jH¢a¢*pd¢a¢

=H¢J.0d¢




MFI Due to Infinite Sheet of
Current

?’

Amperian path




dH

dH,

dH,

= 2

dH,

dH

dH,



Consider an infinite current sheetinthez = 0

plane.

[f the sheet has a uniform current density K =
K a.A/m

y 'y
Applying Ampere's law to the rectangular

closed path gives

%H' dl = Ienc — Kvb

the resultant dH has only an x-component.
Also, H on one side of the sheet is the
negative of that on the other side.



Due to the infinite extent of the sheet, the sheet
can be regarded as consisting of such
filamentary pairs so that the characteristics of H
for a pair are the same for the infinite current
sheets, that is,

H:{Hﬂax z>0

—H_ a, z <0

Evaluating the line integral of H along the
closed path in Figure gives

prea=([e o[ s



= 0(~a) + (—Hy)(—b) + O(a) + H,(b)
= 2H b

1

EKyax, z>0
H = 1
——2-Kyax, z<0
H : K X
— — a,
2




Infinitely Long Coaxial

Considpraggrijisidiellyikeng
transmlssm 1Ne COHSIS’[In of two

concentric ¢ Ilnders havmg their
axes along the z-axis.

The cross section of the line Is
shown In Figure, where the z-axis
IS out of the page. The Inner
conductor has radius a and carries
current | while the outer conductor
has inner radius b and thickness t



Cross section of the transmission line, the
positive - direction is out of the page.



O=p=aga=p=bb=p=b+1
andp = b + t.

For region 0 =< p < a, we apply Ampere’s law to path L, giving

ff H-di=1I,= fJ-dS
L

1

1

2
Td

J = a,, dS = pdo dp a,

| I
]em:jJ'dSZ—ZJde¢dp=7WpQZT

ma A a



.......




1

H, = —
¢ 27p

Forregion b < p =< b + t, we use path L, getting

ﬁgH-dl:Hé-Qwé:Im

1+ [ 108



/
x[(b + O — b7 ?

<



B ] p2 L b2 ]
2o | t* + 2bt_

H,

For region p = b + (, we use path L4, getting

j( H-dl=1-1=0
L

i |






2qra

b b+t

Plot of H against p.

)






%H-dl';lm-?H*Z'zrp:NI

NI
H.H_

= , for p, —a <p <p, + a
2Tp

NI NI
HH rox —
by 270, 4



Ampere' Circuital Law

* Ampere'scircuit law  states that the line
integral of the tangential component of H
around a dosed path is the same as the net
current I .IK. enclosed by the path.

e



il

dif. = —— sin 6 d@
2
LB
o= J sin 8 6
I 2 .
nf
H = EY (cos f, — cos ) a,

Substituting n = N/ gives

NI
H=—(cosf, — cosf,)a,

2



At the center of the solenoid,

0s f e cos f
C = -
L+ )" |

In{
H=— - q.
2a” + €442

[£€ > qorf, = 0°,8, = 180°,




Ampere's Circuital Law

Ampere's circuit law states that the line
integral of the tangential component of H

around a closed path is the same as the net
current I enclosed by the path.

enc

In other words, the circulation of H equals [, ; that i,

b

|
. |

HH.M:;M




|

L. %H*dl: {(VXH).dS
I S

I = JJ-dS
S

VXH=]




Electric Field inside a dielectric

Material

Dielectric- Conductor And
Dielectric — Dielectric Boundary
Conditions

Capacitance
Current Density
Ohm's Law

Equation of Continuity



consife}@ptriofofald didedriqas consisting

positivadl G gt ML, Fgure




= When electric field E is applied, the

a
gquilibrium position in the direction of E by

theigvee Fema@Ewhile the pegatig chagge is
displaced in the opposite directiofrohy the
force F_ =-QE

= A dipole results from the displacement of the
charges and the dielectric is said to be
polarized.

> p:Qd



Qid; + Oody + - - -+ Oydy = 2 Qrdy

lim » Q.d,

Av—>0 =1

Av

The major effect of the electric field E on a
dielectric is the creation of dipole moments that
align themselves in the direction of E.
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V' - fA=fV-A+A- VY,
P'aR .P V"P

1| P 1 )
sz vV - V' -Pldv

P-a C_Vy' . P
V= J An g5 + dv’
.




ppszP'an
ppp =~V P

The total positive bound charge on surface S
bounding the dielectric is

P

0, = {P-ds= 0ps dS

o

while the charge that remains inside S is

—Q, = Jppvdv: —J V:-Pdv

Vv Vv



Thus the total charge of the dielectric material
remains zero, that is,

Total charge = j£ Pps AS + fppv dv=0p,— =0
s

v

We now consider the case in which the dielectric
region contains free charge. If P IS the free

charge volume density, the total volume charge
density p, is given by

pr=py T pp = V- gE



pv:V'SGE_ppv
V- (cE + P)
= V-D

D=¢E+P

We would expect that the polarization P would
vary directly as the applied electric field E. For

some dielectrics, this is usually the case and we
have

P = x.¢eE




DIELECTRIC CONSTANT AND
STRENGTH

D =&l + x.) E = g8, E




e is called the permittivity of the dielectric, € is

the permittivity of free space, as approximately
10°/36n F/m, and € is called the dielectric

r

constant or relative permittivity.

The dielectric strength is the maximum electric
field that a dielectric can tolerate or
withstand without breakdown.

A dielectric material is linear if € does not
change with applied E field. homogeneous if ¢
does not change from point to point, and
isotropic if € does not change with direction.






BOUNDARY CONDITIONS

Dielectric-Dielectric Boundary Conditions

Consider the E field existing in a region consisting

of two different dielectrics characterized by 3

=eg€ and € =e¢ as shown in Figure.E and E in
0 ril 2 0 r2 1 2

media 1 and 2, respectively, can be decomposed
as

EI —~ Elt + Eln
E, =E, + E,,












AQ — pSAS — D]n AS — DZH AS

Dln IR D2n — Ps
Dln — DZH
gk, = &k,

EI Sin 91 — Elr = EZI = Ez Sin 82



El sin 61 — Eg S1n 62
e, cos0, = D,, = D,, = &FE,cosb,
81E1 COS 91 = 82E2 COS 92

tanf, tan?,
€1 €7

|

tan 91 €1

tan 6, &




Conductor-Dielectric Boundary
Conditions

dielectric

_——=aE (3 = 30'91:)




dielectric




Ak A Ah - Ah
0=0-Aw+0- ==+ === - dw = Fp == 0=

2 2
As Ah > 0,
E, =0

AQ =D, - AS — 0 AS

AQ
AS

Dn = Ps

Dn:pS~



1. No electric field may exist within a conductor; that is,

p,=0, E=0 (3.70)

2. Stnce E = —VV = (), there can be no potential difference between any two points
in the conductor; that 1s, a conductor is an equipotential body.
3. The electric field E can be external to the conductor and normal to its surface; that is

Dr . 8cmert = 0: Dn = Boern = Ps (571)




Capacitance

C

v

Q e¢9KE-dS

[E - dl

v

1
VI_VQZ—'J E - dl
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Coaxial Capacitor
Q=8§E*ds= eE 27pL

o
2wepl P

- - mn

| a E
V=-| E-dl =
J Jb Ei‘i’f‘p.r ‘ % B,
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Q=sj£E-dS=8Er47rr2

E-—2
- 4mer
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Current And Current Density

£

7
il

Al = J0yAS

Al =J-AS







Continuity of Current
I :E J-dsS = — ﬁ

J g (¥
+ J - idS I (V- J)du
J g J vl
| Ny
Veldo=——| g du
Jval ':” Jvol




' di,
(VJ)dy = — —
vl J w0l i
a .,
(% «.J0) Aw _ 2P AR S
i
v,

(V) = ——




Resistance & Ohm's Law

I —eE
Vg = — . E
‘ A — e i E ‘

J = ok



‘ 0O = — Pafle \

I_J JdsS=J5§
5

1

2
F&__—JZEuﬂ“_—E+J:ﬂ“_—E+Lm
B B

—~E-Ly

V' = EL









UNIT - VI

- Magnetic force
- Charges Movement in magnetic field

-~ Lorentz Force equation
- Force on current carrying elements

- Magnetic Dipoles

= Torque on a current carrying loop in
magnetic field.



FORCES DUE TO
MAGNETIC
FIELDS

~ There are at least three ways in which force
due to magnetic fields can be experienced.

1.Due to a moving charged particle ina B
field.

2.0n a current element in an external B field.

3. Between two current elements.



Force on a Charged Particle

The electric force Fe on a stationary or moving
electric charge Q in an electric field is given by
Coulomb’'s experimental law and is related to
the electric field intensity E as

F.=QE

This shows that if F.is positive, F and E have the
same direction.



A magnetic field can exert force only on a
moving charge.

From experiments, it is found that the magnetic
force Fm experienced by a charge Q moving
with a velocity u in a magnetic field B is

F,.=Qu X B
F is perpendicular to both u and B.



Lorentz Force equation

For a moving charge Q in the presence of both
electric and magnetic fields, the total force on
the charge is given by

F = Fe+ Fm
Or
F= Q(E +uXB)

This equation is known as Lorentz Force
equation.



It relates mechanical force to electrical force.

[f the mass of the charged particle moving in E
and B fields is m, by Newton's second law of

motion. ]
_m au
F=m G

= X BO

The solution to this equation is important in
determining the motion of charged particles in

E and B fields.



Force on a Current Elemen.

To determine the force on a current element I di
of a current-carrying conductor due to the
magnetic field B

J =l

We know that
| dl=K dS=J dv

Then
| dl {dv=dQu



Hence
| dl=dQu

The force acting on an elemental charge dQ
moving with velocity u is equivalent to a
conduction current element | dl in a magnetic

field B.
dF =1 dl XB

If the current is through a closed path L or
circuit, the force on circuit is given by

F=¢ IdlXB



The magnetic field produced by the current
element I dl does not exert force on the element
itself just as a point charge does not exert force
on itself.

The B field that exerts force on I dl must be due
to another element.

If instead of the line current element I dl. we
have surface current elements K dS or a volume
current element | dv, Then

dF=KdS X B Or dF =J dvXB



Then
F:gS K dSX B

and
F=gS Jdv XB



Force between Two Current
Elements

et us now consider the force between two
elements I1 dl1 and I2 dlz.

According to Biot-Savart's law, both current
elements produce magnetic fields.

So we may find the force d(dF ]on element I
dl due to the field dB2 produced by elementl

al
: d MF,0=1,dl, X dB,



From Biot-Savart's law

|.dl, X a
dBZ:QZ 2 2R21
4 R,
|.dl. XO.,dl, Xa, O
dl:UF1|:|=O 14Yt1 242 R ,,

4R,,°

ol 1, P dl X DI, X ag O

Fy
4 R2,



fotdly

P4



MAGNETIC TORQUE AND
MOMENT

The torque T (or mechanical moincnl of force)
on ihe loop is the vector product of the force F
and the moment arm r.

Thatis T= rX F




Consider a rectangular loop of length | and
width w placed in a uniform magnetic field B as
shown in Figure

fm—— axis of rotation



3 1

F=I [,di X 81l [dIXB
F=I [ dza, X B IJ'dza X B

Or
F=F,-F,=0

Thus F = Bil. Thus no force is exerted on the
loop as a whole. However Fo and -Fo act at
different points on the loop, there by creating
a couple.



The torque on the loop is

ITI=IF wsinLC
Or T=BllwsinC
But lw = S, the area of the loop
T=BISsinC

We define the quantity
m=1S a,
m is defined as the magnetic dipole moment.

Units are A/m-.



Magnetic Dipole Moment

The magnetic dipole moment is the product
of current and area of the loop.

[ts direction is normal to the loop.

Torque on a magnetic loop placed in Magnetic
field is

T= mXB

This is applicable only when the magnetic field
is uniform in nature.



Field due to a Magnetic Dipole
A Bar magnet or a small _
flamentary current loap is usually
referred to'as a magnetic dipole.

Consider a current carrying loop
carrying a current of | amps, the
the magnetic field due this at any
arbitrary point P(r,0,¢) due the
loop Is calculated as follows.



The magnetic Vector Potential at P is

P(r, 8, ¢)
i A dla  °sinla;
| -
= 4r°
|
g | or
i -y
G oo |
A _nXa,




The magnetic Flux density B is determined as

B=V XA
Therefore

[
413

B= [12cos a,sin [3{]



Force Experienced Dby a

A rectangular
loop carrying
current ] 1s

T
placed parallel

to an infinitely I, b
long h

filamentary Y
wire carrying ) or

current 11 as

shown in Figure



The force acting on loop is

Fi=FFIFLF,
Fi=1,¢dl,X B

—a F; Wwhere F1’ FZ, F3, and F

are respectively, the

forces exerted on sides
of the loop labeled 1,
2, 3, and 4 in Figure

4



Due to the infinitely long wire

o,
2 0

B, dp

Then
F.=1,$dl, X B,

b
|
|:1:|2950|zazx2O La,
z=0

0

=_Q|1|2b
1 7

a (Attractive)



Fo=1,dl, X B,
Fi=1, ¢ dza, X ——2>—a,
z=0

2 O,

|.b
F.= ZQIE;:I; a (Repulsive)

0a I
F,=1, ¢ da quﬁl a
=7 0

F, - '12'2 nd®__ . (Parallel)
0




|
F,=| da X 1 3
4 2=£ ijo O

il

F,=
2

112 |n|]0|a—|]51Z (Parallel)
0

The Total Force

|
F|:

s 1
2 o LA



Magnetization in Materials

=~ The magnetization M (in amperes/meter) is
the magnetic dipole moment per unit volume.

= If there are .atoms in a given volume Av and
the k" atom has a magnetic moment m. .
N
My
M= lim “t—
lvO \Y

= A medium for which M is not zero everywhere
is said to be magnetized.



dA= dv*
4 R?
X R
dA= M dv?
4 R3
R -1 1
R® v R
Hence

_ 0 I
A= jllev = dv



But

vixm-vixM

M X V*
R

0 -

1
R
Substituting the above equation in A

VXM
i | T

Applying the Vector Identity

dv1—4°— J' V!X %dvl

[ v, xFdv'=— [ FX dS
v St



[ M X a,

0 1 1
A= dv-| dS
A:Efjvl V M dvtlé—@ M, ds*

46 v ‘]b R . 0 4Kb81 . R

Comparing the equations
J,=V XM
Ky=M Xa,
]i) is the bound volume current density

or magnetizing volume current density.

K. is the bound surface current density.
b



In free Space 5
VXH=J, oOor VXO FJ,

0
] is the free current volume density
f

In a medium where M is not equal to zero, then
vV X ELB—I]:JfIJ =] =V XBIVXM

of B=0,[H MO

For linear materials, M depends linearly on H
such that

M 4]H



ln is called Magnetic susceptibility of
the medium.

B=[1,(TIH

B=0,0H
Where

[HI = ]

0
is called as the permeability of the material

[is called as the relative permeability of the
material






‘Scalar and Vector Magnetic
Potentials

-VVector Potentials due to simple
:configurations Self and Mutual
Inductances

Determination of

Inductance Energy



Magnetic Potential

- we can define a potential associated with
magnetostatic field B.

-~ The magnetic potential could be scalar or
vector



Scalar Magnetic Potential

- We define the magnetic scalar potential Vm.

H=-VV,

J=VXH=VX(—VV,) =0

Thus the magnetic scalar potential V is only

m

defined in a region where ] = 0



Vector Magnetic Potential

for line current

Azfuoldl
L47rR

uK dS
A = for surface current
< 47R




J pod dv
47R

B=VXA

for volume current



Proof

e We Know that

o, [1dl' X R
B=”—J :
R

47
R=[r—r|=[ac—x)+ G-y +c-N]"

1

V(—) B (x—xDa, +(y~ y’)ay +(z — 7')a, _ R
K (=X + (=) + @ - )" R’

— ——




(x, ¥, 2)




B = — ’u“’jldl’xV()
47rL R

VX (fF)=fVXF+ (V) XF

| I
ax 5(2) = Tosear v (M)
R R R




PZJB*dSZJ(VXA)*dS'—*fﬁA'dl
S S L



¥

faa
L




We Know that
VX VXA=VV- A —- VA

pol dl' ol
47R  4x

.y

L

. 1 _
B=-’f—°—ljg —de1'+(\7_)xd1'
LR R d

ngx —dl’,
R

47



=[x =XV + -y + -

1
R
-
R.

v _ (x — x")a, + v — yf)ay + (2 — z’)az _ _ag
(=X + o =yV+ - K
(
B = pol i dl ><2 ap
| ir /. R

VXB=V(V-A) - VA

V-A=0




V'A=—u VXH

VA = —u )

This equation is called vector Poisson's equation.
In Cartesian form these can be written as

VzAx = _p'o-]x
2 _
VA, = —pol;

VzAz — __MOJZ






Flux Linkages

= A circuit (or closed conducting path) carrying
current /produces a magnetic field B which
causes a flux = | B ¢ dS to pass through
each turn of the circuit as shown in Figure.

= If the circuit has N identical turns, we define
the flux linkage 4 as

A =Ny

- If the medium surrounding the circuit is
linear, the flux linkage X is proportional to the
current I producing it.



Inductance

Inductance L of an inductor as the ratio of the
magnetic flux linkage A to the current I
through the inductor

The unit of inductance is the henry (H) which
is the same as webers/ampere.



Inductance is a measure of how much magnetic
energy is stored in an inductor.



The magnetic energy (injoules) stored in an
inductor is expressed as

1% *-—luz
mo 9

i oW,
[ =

| ]2




Mutual Inductance

- If instead of having a single circuit we have
two circuits carrying current I1 and I2 as

shown in Figure, a magnetic interaction exists
between the circuits.

- Four component fluxeS and dare
P LIj11'L|J12'L|j21 L|122

produced.
. The flux ¢ , for example, is the flux passing
12
through circuit 1 due to current | in circuit 2.

2
[f B2 in the field due to I2 and S1 is the area of

circuit 1, then



circuit 1

circuit 2



]Plz: J Bzds
)

v ]

We define the mutual inductance M . as the

ratio of the flux linkage A = N v on circuit
1

2

1 to current | , that is
2

A N>V,
lez_g": 2 I
4 4

M, = My,



We define the self-inductance of circuits 1 and 2, respectively, as

AN MY
Ly=—=—
I I
}!. ¥ =
Lj — 22 — NE‘P'
/- /-

e —

W, = W, - W, + W,

1 s



Magnetic Energy

Just as the potential energy in an electrostatic field was derived as

([ ] .
We=—=— | D-Edv=— | eE dv
g 2J 1[

 AY  uH Ax Az
Al Al

AL

1 I

AW, = AL Al* = 5 uH? Ax Ay Az
1 2

AW, = ‘ipLH Av



conducting
sheets







Inductance of a Solenoid

For an infinitely long solenoid, the magnetic flux
inside the solenoid per unit length is

B = uH = uln
¥ = BS = ulnS
A
)\’=?=n¥”=un2[S
L’ L_X °S
= — = = UH
¢ 1 "



- 7



H/m



Co-Axial Cable

(&) z—axis

Cross section of the
coaxial cable: for
region 1,

0< p<a,




(b) forregion 2, a<p < Db



We first find the internal inductance Lin by
considering the flux linkages due to the inner

conductor. From Figure, the flux leaving a
differential shell of thickness dp is

/

2Ta
I,
d)\] =dY)1-——d‘P] p
! 7ra2
uwlp dp dz  p

d)\l —

>
2Ta a’



For length | of the cable,

\ - J F wlo’ dp dz i€
= _ e
o=0 "z=0

2ra’ 87T

_ M _ut
1n 1 871'

The internal inductance per unit length, given by

r Li[‘l
Lh1:: —

Nal
¢ 8T

H/m




the external inductance L. by considering the

ext

flux linkages between the inner and the outer

conductor as in Figure. For a differential shell of
thickness dp.

o
b €
I do dz I b
b || R
p=a =0 P n
_ N _pt b
Loy 7 —27r1na



L = Lin + Lext

ut

27

The inductance per length is

L.'

L
{

T}

27

H/m



Maxwell’s Equations

» \We have been examining a variety of
electrical and magnetic phenomena

 James Clerk Maxwell summarized all of
electricity and magnetism in just four
equations

« Remarkably, the equations predict the
existence of electromagnetic waves



Maxwell’s Equations

N Partial differential Int 'f
ame A ntegral form
Gauss's law: V:D= P f D - dA = Qena
A
Gauss's law for magnetism: V-B=0 % B-dA =0
A
Faraday's law of induction: V x E = _% fSE = —d;I)—tB
Ampere's law + Maxwell's oD o dPp
extension: VXH=J+W£H.CIS_I@C+ dt




Maxwell’s Equations

e The first is Gauss’s Law which is an
extended form of Coulomb’s Law

» The second is the equivalent for magnetic
fields, except that we know that magnetic
poles always occur in pairs (north & south)



Maxwell’s Equations

* The third is Faraday’s Law that a changing
magnetic field produces an electric field

* The fourth Is that a changing electric field
produces a magnetic field

* The latter is a bit of a stretch. We knew that
a current produces a magnetic field



Maxwell’s Equations

o Start with Ampere’s Law ZB Al =gl

Surface 2

Closed
path

/

-

Surface |

Earlier, we just went on a
closed path enclosing
surface 1. Butaccording to
Ampere’s Law, we could
have considered surface 2.
The current enclosed is the
same as for surface 1. We
can say that the current
flowing into any volume
must equal that coming out.



Maxwell’s Equations
« Suppose we have a charged
capacitor and It begins to
discharge

Surface 1 works but
surface 2 has no
current passing
Closed path ~ through the surface yet
there Is a magnetic
1 field inside the
surface.

++++

+++ o+ ++

Surface |

B | i |
SRR MRS
RERRRRERRRRY
4 Fhoht
!
i o e T S

+ + + 4+



Maxwell’s Equations

Same problem here.
Closed path Surface 1 works,

- +
- T Ii Surtace | but no frl]'lrrenL
-— THF 1 passes throug
e B iE I :
e BIY. - surface two which
-~ 3+ iy encloses a magnetic
% IFTE field. What is

- +

happening???

Surface 2



Maxwell’s Equations

While the capacitor Is discharging, a current
flows

The electric field between the plates of the
capacitor Is decreasing as current flows

Maxwell said the changing electric field Is
equivalent to a current

He called it the displacement current



Maxwell’s Equations

D BAl=py(lc +15)
Q=CV - go(éj(Ed) — &, AE

A A

®_ = AE

g A0
At




