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Introduction 
 Electrostatics can be defined as the study of electric charges at rest. Electric 
fields have their sources in electric charges. 
( Note: Almost all real electric fields vary to some extent with time. However, 
for many problems, the field variation is slow and the field may be 
considered as static. For some other cases spatial distribution is nearly same 
as for the static case even though the actual field may vary with time. Such 
cases are termed as quasi-static.) 
In this chapter we first study two fundamental laws governing the 
electrostatic fields, viz, (1) Coulomb's Law and (2) Gauss's Law. Both these 
law have experimental basis. Coulomb's law is applicable in finding electric 
field due to any charge distribution, Gauss's law is easier to use when the 
distribution is symmetrical. 



       Unit I 

             Coulomb’s Law 



Coulomb's Torsion Balance 
This dial allows  

you to adjust and  

measure the  

torque in the fibre  

and thus the force  

restraining the  

charge 

This scale allows you to read  

the separation of the charges 



Coulomb’s Experiments 

r 

F 

Line Fr-2 



Coulomb's Law 

• 

• 

Coulomb determined 

– Force is attractive if charges are opposite sign 

–Force proportional to the product of the charges q1  

and q2  along the lines joing them 

–Force inversly proportional square of the distance  

I.e. 

– |F12|  |Q1| |Q2| / r12
2 

– or 
– |F12|= k |Q1| |Q2| / r12 2 



Coulomb's Law 

• 

• 

Units of constant can be determined from Coulomb's  

Law 

Colomb (and others since) have determined this  

constant which (in a vacuum) in SI units is 

– k = 8.987.5x109  Nm2C-2 

• k is normally expressed as k = 1/40 

– where is the permittivity of free space 



Coulomb's Law 



Vector form of Coulomb’s Law 
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Force from many charges 

Superposition 



Force from many charges 

+ 

F41 

F31 

F21 

Q1 

- 

Q2 

+ 

Q4 

- Q3 

Force on charge is  

vector sum of forces  

from all charges 

F1  F21   F31   F41 

Principle of  

superposition 



Always attractive 

1/r2 

very weak 

• 

• 

• 

• important on very  
large scales, planets,  
the Universe 

Coulomb’s Law 

vs Newton’s Law of Gravity 
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Attractive or repulsive 

1/r2 

very strong  

only relevant 

relatively local scales 
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The Electric Field 

Van de Graaf  

Generator and  

thread 

Van de Graaf Generator  

and many threads 



Electric Field 

Physicists did not like the concept of  

“action at a distance” i.e. a force that  

was “caused” by an object a long  

distance away 

They preferred to think  

of an object producing  

a “field” and other  

objects interacting with  

that field Thus rather than ... 

+ 

- they liked to think... 

+ 

- 



Electric Field 

r̂ 
0 

1 Q 

4   | r |2 
E  

F 
E  

Thus Electric Field  

from a single  

charge is 

Q 

r 

Q0 

r̂ 

Electric Field E is defined as the force  

acting on a test particle divided by the  

charge of that test particle 
F 

E 

+Q0 



Electric Field of a single charge 

+ 

r 

+Q0 

+Q0 

E 
+Q0 

Note: the Electric Field is defined  

everywhere, even if there is no test  

charge is not there. 

+Q0 

Electric field  

from test  

particles 

Electric Field  

from isolated  

charges  

(interactive) 



E 
F  QE 

F  QE 

+Q 

-Q 

Charged particles in electric field 

Using the Field to determine the force 



Vector & Scalar Fields 

The Electric Field 



Electric Field as a vector field 

The Electric Field is one example  

of a Vector Field 

A “field” (vector or scalar) is defined  

everywhere 

 

A vector field has direction as well as size  

The Electric Field has units of N/C 



Other examples of fields: 

Elevation above sea level is a scalar field 

Elevation is defined everywhere (on the earth)  

Elevation has a size (and unit), i.e. length, measured in m 

A contour diagram 
Elevation does not have 

a direction 

100m 
50m 

Elevation 



Other examples of fields:  

Slope 

Slope is a vector field Slope is defined everywhere  

(on the earth) 

Slope has a size (though no dimension), i.e. 10%, 1 in 10, 2º 

Slope does have a  

direction 

A contour diagram 



Representation of the Electric  

Field 

Electric Field Lines 



Representation of the Electric  

Field 
It would be difficult to represent the electric field by  

drawing vectors whose direction was the direction of the  

field and whose length was the size of the field  

everywhere 



Representation of the Electric  

Field 

Instead we choose to represent the electric field with  

lines whose direction indicates the direction of the field 

 

 

Notice that as we  

move away from the  

charge, the density of  

lines decreases 

 
 

These are called  

Electric Field Lines 



Drawing Electric Field Lines 

• The lines must begin on positive charges (or  
infinity) 

• The lines must end on negative charges (or  
infinity) 

• The number of lines leaving a +ve charge  
(or approaching a -ve charge) is  
proportional to the magnitude of the charge 

• electric field lines cannot cross 



Field is zero at midpoint 

Field is not zero here 

Electric Field Lines 



Field lines for a conductor 



Drawing Electric Field Lines:  

Examples 

From Electric field  

vectors to field lines 

 

 
Field lines  

from all angles 

Field lines  

representation 



Electric Field Lines 

A 
  

N lines Define   N    
4  r 2 

Q 

4  r 2 
  

N lines  Q since 

2 

1 Q 

4     0  | r | 
| E | 

we know 

The number density of field lines is 

| E |  



Interpreting Electric Field Lines 

• The electric field vector, E, is at a tangent  

to the electric field lines at each point along  

the lines 

• The number of lines per unit area through a  

surface perpendicular to the field is  

proportional to the strength of the electric  

field in that region 



Superposition & Electric Field 



Superposition & Electric Field 
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Electric Flux 



Electric Flux: 

A       | E | A 

Field Perpendicular 
For a constant field perpendicular to a surface A 

Electric Flux is  

defined as 

E 



Electric Flux: 

Non perpendicular 

For a constant field  

NOT perpendicular  

to a surface A 

Electric Flux is  

defined as 

      | E | A cos A 

E 

 



Electric Flux:  

Relation to field lines 

      | E | A 

  | E | 

      A  | E | A 

Number of flux lines N   

A 

E 

Field line  

density 

Field line density 

× Area 
 

FLUX 



Gauss’s Law 

Relates flux through a closed surface  

to 

charge within that surface 



Flux through a sphere from a  

point charge 

2 | r1 | 

1 Q 

4     0 

| E | 

1 

0 1 
4  | r |2 

 4 | r |2   
1 Q 

   0 

  
Q 

r 
1 

The electric field  

around a point charge 

Thus the  

flux on a  

sphere is E 

× Area 

Area E 

Cancelling  

we get 



Now we change the  

radius of sphere 

2 

1 Q 

4    0 | r2 | 
| E | 

2 

0 2 

 2      
2 
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| 4  | r | 

1 Q 

0 
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 
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1 2 
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Q 

   0 

   

Flux through a sphere from a  

point charge 

2 

1 Q 

4  0  | r1 | 
| E | 

1 

0      1 4       | r |2 
                         

1 Q   
   4   | r |2 

                    
Q 

 0 

r 1 

The electric field  

around a point charge 

Thus the  

flux on a  

sphere is E 

× Area 

E Area 

Cancelling  

we get 

The flux is  

the same  

as before 



Flux lines & Flux 

N     N 

and number of lines passing  

through each sphere is the same 

 1 

2  

 

In fact the number of flux  

lines passing through any  

surface surrounding this  

charge is the same 
even when a line 

passes in and out 

of the surface it  

crosses out once  

more than in 

out 
in 

s out 

2 
  0 

Q 
S                               1   

Just what we would expect because the  

number of field lines passing through each  

sphere is the same 



Principle of superposition: 
What is the flux from two charges? 

s  

Q1 

Q2 

   0    0 

Q1 Q2 

S    

   
   0 

S 

Qi 

For  

any 
surface  

Gauss’s Law 

Since the flux is related to the  

number of field lines passing  

through a surface the total flux is  

the total from each charge 

In general 



Quiz 

-Q/ 0 0 +Q/ 0 +2Q/ 0 

 1 

 2 

 3 

2  
Q1 

 1 

3  

What flux is passing through each of  

these surfaces? 



What is Gauss’s Law? 

Gauss’s Law does not tell us anything new,  

it is NOT a new law of physics, but another  

way of expressing Coulomb’s Law 

 

 
Gauss’s Law is sometimes easier to use than  

Coulomb’s Law, especially if there is lots of  

symmetry in the problem 



Examples of using Gauss’s Law 



r2 

Q 

  0 

  
Q 

Example of using Gauss’s Law 1 
oh no! I’ve just forgotten Coulomb’s Law! 

 

Not to worry I remember Gauss’s Law 

By symmetry E is  to surface 

consider spherical surface  

centred on charge 

  | E | A  
Q 

 | E | 4 r 2   
Q 

   0   0 

r 2 4  r 2   4  
0 0 

1 Q  
 

1 Q 
| E | 0 

1 qQ 

4 r 2  
F  F=qE 

q 

Phew! 

Using the Symmetry 



Example of using Gauss’s Law 2 
What’s the field around a charged spherical  

shell? 

Q 

0 

out 
 

 
Q 

 

Again consider spherical  

surface centred on  

charged shell 

2 

1 Q 

4     0  r 
| E | 

E  0 

Outside 

out  in  
So as e.g. 1 

Inside 

in            0 

charge within surface = 0 



Examples 

Gauss’s Law  

and a line of  

charge 

Gauss’s Law  

and a uniform  

sphere 

Gauss’s Law around  

a point charge 



Properties of Conductors 

 
Using Gauss’s Law 



Properties of Conductors 

1.E is zero within the conductor 

2.Any net charge, Q, is distributed on surface  

(surface charge density =Q/A) 

3. E immediately outside is  to surface 

4. is greatest where the radius of curvature  

is smaller 

For a conductor in electrostatic equilibrium 

                                                                                                                                                                                                                                  1 
2  

21 
                                  1                 



1. E is zero within conductor 

If there is a field in the conductor, then the  

free electrons would feel a force and be  

accelerated. They would then move and  

since there are charges moving the  

conductor would not be in electrostatic  

equilibrium 

Thus E=0 



2. Any net charge, Q, is  

distributed on surface 

qi 

As surface can be drawn  

arbitrarily close to surface of  

conductor, all net charge must  

be distributed on surface 

Consider surface S below surface of conductor 

Since we are in a conductor in  

equilibrium, rule 1 says E=0, thus =0 

              EA              q /    0 Gauss’s Law 

 qi  /    0           0 thus 
So, net charge within  

the surface is zero 



3. E immediately outside is  to  

surface 
Consider a small cylindrical surface at the surface  

of the conductor 

  EA     q /  Gauss’s Law 

cylinder is small enough that E is constant 

E 
 

E|| 

If E|| >0 it would cause surface charge q to move thus 

|| 
it would not be in electrostatic equilibrium, thus E =0 

thus E              q / A 

E   /  



Electromagnetic Fields 

UNIT-II 



Contents 

• Electric Potential 



ELECTRIC POTENTIAL 



ELECTRIC POTENTIAL 

• Suppose we wish to move a point charge  
Q from point A to point B in an electric field  
E some work is done in displacing the  
charge by dl Given by 

dW = - F • dl = -QE • dl  

Where E is the Electric field intensity. 

The negative sign indicates that the work is  
being done by an external agent. 



• Thus the total work  
done, or the potential  
energy required, in  
moving Q from A to B  
is 



Potential Difference 

• The potential difference between points A 
and B. 



• 

• 

• 

• In determining VAB, A is the initial point while B 
is the final point. 

If VAB is negative, there is a loss in potential  
energy in moving Q from A to B; this implies that  
the work is being done by the field. However, if  
VAB is positive, there is a gain in potential energy  
in the movement; an external agent performs the  
work. 

VAB is independent of the path taken (to be  
shown a little later). 

VAB is measured in joules per coulomb,  

commonly referred to as volts (V). 

Note 



Electric Potential Due to Point  
Charge 

• Suppose a point charge Q located at the  
origin, Then 



• Thus if VA = 0 as rA  —> ∞, the potential 

• at any point rB  —> r due to a point charge 

Q located at the origin is 



Super position Principle 

• For n point charges Qu Q2,. • • ,Qn  

located at points with position vectors r1,  

r2,. . ., rn, the potential at r is 







Relation Between E & V 

• The potential difference between points A  
and B is independent of the path taken is  
given by 

 
• i.e 

 
• Therefore 



Stroke’s Theorem 



E = -Grad V 



Electric Dipole 

• An electric dipole is formed when two  
point charges of equal magnitude but  
opposite sign are separated by a small  
distance. 





Electric Potential 

• Consider an electric dipole, the potential at  
point p is given by 







Current & Current Density 

• Electric Charges in motion Constitute  
electric current. 





CONDUCTORS 

• A conductor has abundance of charge that  
is free to move. 

• A perfect conductor cannot contain an  
electrostatic field within it. 

• A conductor is called an equipotential  
body, implying that the potential is the  
same everywhere in the conductor. 





• When an external electric field Ee is applied, the  
positive free charges are pushed along the same  
direction as the applied field, while the negative  
free charges move in the opposite direction. 

• This charge migration takes place very quickly.  
The free charges do two things. 

• First, they accumulate on the surface of the  
conductor and form an induced surface charge. 

• Second, the induced charges set up an internal  
induced field E,, which cancels the externally  
applied field Ee. 



UNIT - III 

➢ 

➢ 

➢ 

➢ 

➢ 

➢ 

Static Magnetic Fields, Biot-Savart's Law  

Oesterd's Experiment 

Magnetic Field Intensity 

MFI due to a straight current carrying  
conductor 

MFI due to square and solenoid currents  

Div B =  0 



Oesterd's Experiment 

➢ 

➢ 

➢ 

An electrostatic field is produced by static or  
stationary charges. 

If the charges are moving with constant  
velocity, a static magnetic (or magnetostatic)  
field is produced. 

A magnetostatic field is produced by a  
constant current flow (or direct current). 



Biot-Savart's Law 

Two major laws governing magnetostatic fields: 

(1) Biot-Savart's law and 

(2) Ampere's circuit law. 



The  magnetic  field  intensity  dH l    produced  at  a  
point P , as shown in Figure by the differential  
current   clement   Idl      is   proportional  to   the 
product Idl  and the sine of the angle α   between 
the clement and the line  joining P  
element and  is inversely proportional 

to the 
to the 

square of the distance R between P and the  
element. 

Biot-Savart's Law - Definition 







Determination of direction of dH 



Different current distributions: line current,  
surface current, and volume current as shown  
in Figure .  

K as the surface current density  

and 

J as the volume current density. 

Then 



The magnetic field produced by the current  
element I dl does not exert force on the element  
itself just as a point charge does not exert force  
on itself. 

The B field that exerts force on I dl l must be due  
to another element. 

If instead of the line current element I dll,  we  
have surface current elements K dS or a volume  
current element J dv, Then 

dF = K dS X B Or dF = J dv X B 



Current distributions: 
(a) line current. 
(b) surface current. 
(c) volume current. 





MFI due to a straight  
filamentary conductor. 

According to Biot-
Savart's  Law 
The contribution 
dH at P  due to an 
element dl at  (0, 
0, z), 





When the conductor is semiinfinite (with  
respect to P) so that point A is now at O(0, 0, 0)  
while B is at (0, 0, ά); α1= 90° α2 =  0°. 



When the conductor is infinite in length.  
point A is at (0, 0, -ά)  while B is at (0,  
0,ά ); α1= 180°, α2= 0° 



MFI Due to a Triangular loop 





MFI due to Circular Loop of  
Current 





MFI due to Solenoid Current 

Cross sectional view of a solenoid. 



H =  nIa 

z 

The contribution to the magnetic field H at P  
by an element of the solenoid of  length dz is 







Ampere's Circuital Law 

Ampere's circuit law states that the line 
integral of the tangential component of H  
around a closed path is the same as the net  
current I    enclosed by the path. 

enc 





The magnetic flux density B is similar to the  
electric flux density D. 
The magnetic flux density B is related to the  
magnetic field intensity H according to 

Where μ is a constant known as the permeability 
o 

of free space. The constant is in henrys/meter  (H/ 
m) and has the value of 







The Total Flux through a closed Surface  
in a magnetic field must be zero 



➢ 

➢ 

➢ 

MFI due to infinite sheet of 
current and a  long current 
carrying conductor 

Point form of Ampere's Law 
Field due to circular loop, 
rectangular and  square loops. 



MFI Due to Infinite line  
Current 

➢ 

➢ 

Consider an infinitely long filamentary  
current /         along the z-axis as in Figure. 

We choose a concentric circle as the  
Amperian path in view of ampere's law,  
which shows that H is constant provided p is  
constant. 



Ampere's law applied to an infinite filamentary  
line current. 



Since this path encloses the whole current  
I, according to Ampere's law 



MFI Due to Infinite Sheet of  
Current 





Consider an infinite current sheet in the z =  0  
plane. 
If the sheet has a uniform current density K  =  
K a .  A/m 

y y 

Applying Ampere's law to the rectangular  
closed path gives 

the resultant dH has only an x-component.  
Also, H on one side of the sheet is the  
negative of that on the other side. 



Due to the infinite extent of the sheet, the sheet  
can be regarded as consisting of such  
filamentary pairs so that the characteristics of H  
for a pair are the same for the infinite current  
sheets, that is, 

Evaluating the line integral of H along the  
closed path in Figure gives 





Infinitely Long Coaxial  
Transmission Line 

➢ 

➢ 

Consider an infinitely long 
transmission line  consisting of two 
concentric cylinders having  their 
axes along the z-axis. 

The cross section of the line is 

shown in  Figure, where the z-axis 

is out of the page.  The inner 

conductor has radius a and carries  

current I while the outer conductor 

has inner  radius b and thickness t 
and carries return  current - I. 



Cross section of the transmission line, the  
positive - direction is out of the  page. 















Plot of H against ρ. 
φ 



Toroid 





● Ampere's circuit law states that the  line  
integral of the tangential component of H 
around a dosed path is the same as the net  
current I  .IK. enclosed by the path. 

enc 

Ampere' Circuital Law 







Ampere's Circuital Law 
Ampere's circuit law states that the line 
integral of the tangential component of H  
around a closed path is the same as the net  
current I    enclosed by the path. 

enc 





➢ 

➢ 

➢ 

➢ 

➢ 

➢ 

Electric Field inside a dielectric 

Material 
Dielectric- Conductor And 
Dielectric –  Dielectric Boundary 
Conditions 
Capacitance  
Current Density  
Ohm's Law 

Equation of Continuity 



Electric Field inside a  
Dielectric Material 

consider an atom of the dielectric as consisting  
of a negative charge -Q (electron cloud) and a  
positive charge +Q(nucleus) as in Figure 



➢ When

 a

n 

electric field E is applied, the 

positive charge is displaced
 from 

its 

➢ 

equilibrium position in the direction of E by  
the force F  =  QEwhile the negative charge is 

+  

displaced in the opposite direction by the  
force F_ =-QE 

A dipole results from the displacement of the  
charges and the dielectric is said to be  
polarized. 

➢ 



The major effect of the electric field E on a  
dielectric is the creation of dipole moments that  
align themselves in the direction of E. 









The total positive bound charge on surface  S 
bounding the dielectric is 

while the charge that remains inside S is 



Thus the total charge of the dielectric material  
remains zero, that is, 

 
Total charge =  

We now consider the case in which the dielectric 
region contains free charge. If p is the free 

v 

charge volume density, the total volume charge  
density p, is given by 



We would expect that the polarization P would  
vary directly as the applied electric field E. For  
some dielectrics, this is usually the case and we  
have 



DIELECTRIC CONSTANT AND  
STRENGTH 



ε is called the permittivity of the dielectric,  ε is 
o 

the permittivity of free space, as approximately 
10-9/36π F/m, and ε is called the dielectric 

r 

constant or relative permittivity. 

 
The dielectric strength is the maximum electric  
field that a dielectric can tolerate or 
withstand without breakdown. 
 

A dielectric  material  is linear if ε does  not  
change with applied E field. homogeneous if ε  
does not change from point to point, and  
isotropic if ε does not change with  direction. 





BOUNDARY CONDITIONS 
Dielectric-Dielectric Boundary Conditions  

Consider the E field existing in a region  consisting 
of two different dielectrics characterized by ε 

l 

= ε ε and ε = ε ε as shown in Figure.E and E in 
0 r1 2 0 r2 1 2 

media 1 and 2, respectively, can be decomposed  
as 













Conductor-Dielectric Boundary  
Conditions 









Capacitance 





Parallel-Plate Capacitor 









Coaxial Capacitor 





Spherical Capacitor 









Current And Current  Density 





Continuity of Current 





Resistance & Ohm's Law 









UNIT - VI 
➢ 

➢ 

➢ 

➢ 

➢ 

➢ 

Magnetic force 

Charges Movement in magnetic field  

Lorentz Force equation 

Force on current carrying elements  

Magnetic Dipoles 

Torque on a current carrying loop in  
magnetic field. 



FORCES DUE TO 
MAGNETIC  
FIELDS 

➢ There are at least three ways in which force  
due to magnetic fields can be experienced. 

1.Due to a moving charged particle in a B  
field. 

2.On a current element in an external B field. 

3. Between two current elements. 



Force on a Charged Particle 
The electric force Fe on a stationary or moving  
electric charge Q  in an electric field is given by  
Coulomb's experimental law and is related to  
the electric field intensity E as 

Fe=QE 

This shows that if F Q is positive, F and E have the  
same direction. 



A magnetic field can exert force only on a  
moving charge. 

From experiments, it is found that the magnetic  
force Fm experienced by a charge Q  moving  
with a velocity u in a magnetic field B  is 

Fm=Qu X B 

F is perpendicular to both u and B. 
m 



For a moving charge Q  in the presence of both  
electric and magnetic fields, the total force on  
the charge is given by 

F =  Fe +  Fm 

Or 

F =  Q(E +  u X B) 

This equation is known as Lorentz Force  
equation. 

Lorentz Force equation 



It relates mechanical force to electrical force. 

If the mass of the charged particle moving in E  
and B fields is m, by Newton's second law of  
motion. 

dt 

The solution to this equation is important in  
determining the motion of charged particles in  
E and B fields. 

F =m 
du 

=Q  E u X B  



Force on a Current Element 

To determine the force on a current element I dl  
of a current-carrying conductor due to the  
magnetic field B 

J =v u 

We know that 

I dl =K dS = J dv 

Then 
I dl =u dv=dQ u 



Hence 

I dl =dQ u 

The force acting on an elemental charge dQ  
moving with velocity u is equivalent to a  
conduction current element I dl in a magnetic  
field B. 

dF = I  dl X B 

If the current is through a closed path L or  
circuit, the force on circuit is given by 

F =∮ I dl X B 



The magnetic field produced by the current  
element I dl does not exert force on the element  
itself just as a point charge does not exert force  
on itself. 

The B field that exerts force on I dl l must be due  
to another element. 

If instead of the line current element I dll,  we  
have surface current elements K dS or a volume  
current element J dv, Then 

dF = K dS X B Or dF =J dv X B 



Then 

and 

F =∮ K dS X B 

F =∮ J dv X B 



Force between Two Current  
Elements 

Let us now consider the force between two  
elements I dl and I dl .  

1 1 2 2 

According to Biot-Savart's law, both current  
elements produce magnetic fields. 

So we may find the force d(dF ) on element I 
1 1 

dl due to the field dB2 produced by  elementI 
1 2 

dl 
2 

1 1 1 d  dF =I dl X dB 2 



From Biot-Savart's law 

dB2= 
0 I 2 dI 2 X a R 

21 

4  R21 

2 

d  dF 1 = 21 
0 I 1 dI 1 X  I 2 dI 2 X a R  

4  R21 

2 

F 1= 
4  

0 I 1 I 2 ∯ dI 1 X  dI 2 X aR21 
 

21 
R2 





MAGNETIC TORQUE AND  
MOMENT 

The torque T (or mechanical moincnl of force)  
on ihe loop is the vector product of the force F  
and the moment arm r. 

That is  T =  r X F 



Consider a rectangular loop of length l and  
width w placed in a uniform magnetic field B as  
shown in Figure 



Or 

Thus F =  Bil. Thus no force is exerted on the 
loop as a whole. However Fo and -Fo act at  
different points on the loop, there by creating  
a couple. 

4 

3 1 

F = I  ∫ dl X B                        I ∫ dl X B 2l l 

F = I  ∫ dz az X B                                        I ∫ dz az X B 
0 0 

F =F 0− F 0=0 



The torque on the loop is 

Or 

∣T∣=∣F 0∣w sin  

T =BIlw sin  

But lw =  S ,  the area of the loop 

T =BIS sin  

We define the quantity 

m=IS an 

m is defined as the magnetic dipole moment.  

Units are A/m2. 



Magnetic Dipole Moment 

 
The magnetic dipole moment is the product  
of current and area of the loop. 

Its direction is normal to the  loop. 

Torque on a magnetic loop placed in Magnetic  
field is 

T =  m X B 
 
 

This is applicable only when the magnetic field  
is uniform in nature. 



Field due to a Magnetic Dipole 

● 

● 

A Bar magnet or a small 
filamentary current  loop is usually 
referred to as a magnetic  dipole. 

Consider a current carrying loop 

carrying a  current of I amps, the 

the magnetic field due  this at any 

arbitrary point P(r,θ,φ) due the  

loop is calculated as follows. 



The magnetic Vector Potential at P is 

0 I dl 
A= 

4  ∮ r 

A= 

2 

0 I  a sin  a  

4  r2 

or 

A= 
0 m X ar 

4  r2 



The magnetic Flux density B is determined as 

B= ∇ X A 

Therefore 

B= 
0 m 

4  r3 
2 cos  ar sin  a  



Force Experienced by a

 square

 loop 

A rectangular  
loop carrying  
current I  is 

2 

placed parallel  
to an infinitely  
long  
filamentary 
wire carrying  
current I as 

1 

shown in Figure 



The force acting on loop is 

 
F l  =F 1  F 2 F 3 F 4 

F l = I 2∮ dI 2  X B 

where F ,  F ,  F ,  and F 
1 2 3 4 

are respectively, the  
forces exerted on sides  
of the loop labeled 1,  
2, 3, and 4 in Figure 



Due to the infinitely long wire 

1 B = 
0 I 1 

2   0 

a  

Then 
F 1= I 2∮ dI 2 X B1 

1 F = I 2 ∮ 
z= 0 

b 

z dz a X 
 I 0 1 

2   0 

a  

F 1=− 
0 I 1 I 2 b 

2  0 

a (Attractive) 



F 3= I 2∮ dI 2 X B1 

3 F = I 2 ∮ 
z =0 

b 

z dz a X 
 I 0 1 

0 2  a  
a  

3 F = 
0 I 1 I 2 b 

0 2  a  
a (Repulsive)  

F 2= 
 I 1 I 2 

2  
ln  

0a 

 0 

 az 

F 2=I 2 

= 0 

0 a 

∮  d  a X 
 I 0 1 

0 2  a  
a  

(Parallel) 



F 4= I 2 

0 

∮ 
= 0 a 

 d  a X 
 I 0 1 

0 2  a  
a  

F 4= 
−           I 1 I 2 

2  
ln  

0 a 

 0 

 az 
(Parallel) 

The Total Force 

F l  = 
 I 1 I 2 b 1  

0 

[ − 
  1  

0 2    a  ] − a  



Magnetization in Materials 
➢ 

➢ 

➢ A medium for which M is not zero everywhere  
is said to be magnetized. 

M = lim 
 v  0 

The magnetization M (in amperes/meter) is  
the magnetic dipole moment per unit volume. 

If there are N atoms in a given volume Δv and  
the kth  atom has a magnetic moment m .  

K 

N 

∑ mk 

k =1  

 v 



dA= 
0 M X a R 

dv 
1 

dA= 

4  R2 

0 M X R 

4  R3 
dv1 

 R 

R3 =∇ 
1  1 

R 

Hence 

0 
A= 

4  
1 1 

∫ M X ∇ 
R 

dv 
1 



But 

 
M X ∇1  1 

=
 1 

∇ 1 X M − ∇ 1 X 
M  

R R  R 

Substituting the above equation in A 

0 ∫ 
∇1 X M 

R 

1 0 
A= 

4  
dv − 

4  
1 M ∫ ∇ X 

R 
dv 

1 

Applying the Vector Identity 

1 

1 
∇ X F dv =− ∫ ∫ 

v1 S 1 

F X dS 



0 
A= 

4  
∫ 

v1 

∇ 1 X M 1 
dv  ∮ 

S 1 

0 M X an 
dS 

1 

A= 
4  ∫ 

v1 

J b 

R 

1 
dv  

0 

4  
∮ 
S 1 R 

dS 
1 

0 

A= 
4
0 
 ∫ 

v 
1 

1 
∇ RX M 

R 
dv1  

40 
4  

∮ 
Kb S 

1 

M RX an 

R 
dS1 

Comparing the equations 

J b=∇ X M  

Kb=M X an 

J. is the bound volume current density 
b 

or magnetizing volume current density. 

K. is the bound surface current density. 
b 



In free Space 

∇ X H = J f Or 
 B 

 
∇ X  = J f 

0 

J is the free current volume density 
f 

In a medium where M is not equal to zero,  then 

0 
f b ∇ X  

B 
= J  J =J  =∇ X B ∇  X M 

or 
B= 0   H  M  

For linear materials, M depends linearly on H  
such that 

M =m H 



m is called Magnetic susceptibility of  
the medium. 

B= 0  1 m H 

B= 0   r H 

Where 
  

r=1 m=  
 

0 

 is called as the permeability of the  material 

r is called as the relative permeability of the  
material 





➢ 

➢ 

➢ 

➢ 

➢ 

Scalar and Vector Magnetic 

Potentials 

Vector Potentials due to simple 

configurations  Self and Mutual 

Inductances 

Determination of 

inductance  Energy 



Magnetic Potential 

➢ 

➢ 

we can define a potential associated with  
magnetostatic field B. 

The magnetic potential could be scalar or  
vector 



Scalar Magnetic Potential 

➢ We define the magnetic scalar potential Vm. 

Thus the magnetic scalar potential V is only 
m 

defined in a region where J =  0 



Vector Magnetic Potential 





Proof 

● We Know that 











Vector Poisson's Equations 

We Know that 





This equation is called vector Poisson's equation.  
In Cartesian form these can be written as 





Flux Linkages 

➢ 

➢ 

➢ 

A circuit (or closed conducting path) carrying  
current / produces a magnetic field B which  
causes a flux ψ =  ∫ B • dS to pass through  
each turn of the circuit as shown in  Figure. 

If the circuit has N identical turns, we define 
the flux linkage λ  as 

λ  = Nψ  

If the medium surrounding the circuit is  
linear, the flux linkage X is proportional to the  
current I producing it. 



Inductance 

Inductance L of an inductor as the ratio of the  
magnetic flux linkage λ  to the current I  
through the inductor 

The unit of inductance is the henry (H) which  
is the same as webers/ampere. 



Inductance is a measure of how much magnetic  
energy is stored in an inductor. 



The magnetic energy (in joules) stored in an  
inductor is expressed as 



Mutual Inductance 

➢ 

➢ 

➢ 

If instead of having a single circuit we have  
two circuits carrying current I and I as 

1 2 

shown in Figure, a magnetic interaction exists  
between the circuits. 

Four component fluxes ψ ,ψ ,ψ and ψ are 
11 12 21 22 

produced. 

The flux ψ , for example, is the flux passing 
12 

through circuit 1 due to current I in circuit 2. 
2 

If B in the field due to I and S  is the area of 
2 2 1 

circuit 1, then 





We define the mutual inductance M as the 
12 

ratio of the flux linkage λ =  N ψ on circuit 
12 1 12 

1 to current I , that is 
2 





Magnetic Energy 







Inductance of a Solenoid 

For an infinitely long solenoid, the magnetic flux  
inside the solenoid per unit length is 







Co-Axial Cable 

Cross section of the  
coaxial cable: for  
region 1, 
0 <  p < a, 



(b) for region 2, a < p < b 



We first find the internal inductance Lin by 
due to considering the flux linkages  

conductor.  From Figure, the flux 
the inner  
leaving a 

differential shell of thickness dp is 



For length l of the cable, 

The internal inductance per unit length, given by 



the external inductance L by considering the 
ext 

flux linkages between the inner and the outer  
conductor as in Figure. For a differential shell of  
thickness dρ. 



The inductance per length is 



Maxwell’s Equations 

• We have been examining a variety of  
electrical and magnetic phenomena 

• James Clerk Maxwell summarized all of  
electricity and magnetism in just four  
equations 

• Remarkably, the equations predict the  
existence of electromagnetic waves 



Maxwell’s Equations 



Maxwell’s Equations 

• The first is Gauss’s Law which is an  
extended form of Coulomb’s Law 

• The second is the equivalent for magnetic  
fields, except that we know that magnetic  
poles always occur in pairs (north & south) 



Maxwell’s Equations 

• The third is Faraday’s Law that a changing  
magnetic field produces an electric field 

• The fourth is that a changing electric field  
produces a magnetic field 

• The latter is a bit of a stretch. We knew that  
a current produces a magnetic field 



Maxwell’s Equations 

• Start with Ampere’s Law B ||l   0 I 

Earlier, we just went on a  
closed path enclosing  
surface 1. But according to  
Ampere’s Law, we could  
have considered surface 2. 

The current enclosed is the  
same as for surface 1. We  
can say that the current  
flowing into any volume  
must equal that coming out. 



Maxwell’s Equations 
• Suppose we have a charged 

capacitor and it  begins to 
discharge 

Surface 1 works  but 
surface 2 has  no 
current  passing 
through  the surface yet  
there is a  magnetic 
field  inside the  
surface. 



Maxwell’s Equations 

Same problem here.  
Surface 1 works,  
but no current  
passes through  
surface two which  
encloses a magnetic  
field. What is  
happening??? 



Maxwell’s Equations 

• While the capacitor is discharging, a current  
flows 

• The electric field between the plates of the  
capacitor is decreasing as current flows 

• Maxwell said the changing electric field is  
equivalent to a current 

• He called it the displacement current 



Maxwell’s Equations 

  B | |  l                                               0  I    C  I    D 
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 Q 

 t 
0 

 t 
  A 

 E 
 I 

D 

E   A E 

I    D    0 
  E 

 t 

                                           0    0 
  

E 
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