
EMBEDDED SYSTEM DESIGN

IV BTECH I-R15- ECE

,

Mr. N Paparao

Assistant Professor

Mr. S Lakshmanachari

Assistant Professor

Mr. MD Khadir

Assistant Professor

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

1

2

Introduction:-

Definition

 It is an Electronic/Electro-mechanical system

designed to perform a specific function and is a

combination of both hardware & software.

OR

 A combination of hardware and software which

together form a component of a larger machine.

3

An example of an embedded system is a microprocessor that

controls an automobile engine.

 An embedded system is designed to run on its own without

human intervention, and may be required to respond to

events in real time. 4

5

History of Embedded Systems:-

 One of the very first recognizably modern embedded systems was the

Apollo Guidance Computer, developed by Charles Stark Draper at the MIT

Instrumentation Laboratory 6

1. The Apollo Guidance Computer was the first modern system to
collect and provide flight information, and to automatically
control all of the navigational functions of the Apollo spacecraft.

2. It was developed in the early 1960s for the Apollo program by the
MIT Instrumentation Lab under Charles Stark Draper.

3. "The guidance computer made the moon landings possible.
4. It was designed almost entirely by MIT faculty and alumni from

the Draper Lab (then called the Instrumentation Lab) and
contractors staffed by MIT alumni.

5. The man on the moon was a huge milestone in the history of
technology and of the Cold War, made possible entirely by MIT
ingenuity.

6. "The Apollo Guidance Computer (AGC) was the first recognizably
modern embedded system, used in real-time by astronaut pilots
to collect and provide flight information, and to automatically
control all of the navigational functions of the Apollo spacecraft.""

Apollo Guidance Computer:-

7

1. Small Scale Embedded System

2. Medium Scale Embedded System

3. Sophisticated Embedded System

8

 Single 8 bit or 16bit Microcontroller.

 Little hardware and software complexity.

 They May even be battery operated.

 Usually “C” is used for developing these system.

 The need to limit power dissipation when system is running
continuously.

Programming tools:
Editor, Assembler and Cross Assembler

9

 Single or few 16 or 32 bit microcontrollers or Digital

Signal Processors (DSP) or Reduced Instructions Set

Computers (RISC).

 Both hardware and software complexity.

Programming tools:

RTOS, Source code Engineering Tool,

Simulator, Debugger and Integrated Development

Environment (IDE).

10

 Enormous hardware and software complexity

 Which may need scalable processor or configurable

processor and programming logic arrays.

 Constrained by the processing speed available in their

hardware units.

Programming Tools:

For these systems may not be readily available at

a reasonable cost or may not be available at all. A compiler or

retargetable compiler might have to br developed for this.

11

Major Application Areas Of Embedded Systems

1. Consumer Electronics
 Camcorders, Cameras, etc…

2. Household Appliances
 Television, DVD Player, Washing machine, fridge, microwave oven, etc.

3. Home automation and security system
 Air conditioners, Sprinkler, intruder detection alarms, fire alarms, closed

circuit television cameras, etc

4. Automotive industry
 Anti-lock breaking system (ABS), engine control, ignition control,

automatic navigation system, etc..

5. Telecommunication
 Cellular telephones, telephone switches, Router, etc…

12

Continue…

6. Computer peripherals
 Printers, scanners, fax machines, etc…

7. Computer Networking systems
 Network routers, switches, hubs, firewalls, etc…

8. Health care
 CT scanner, ECG , EEG , EMG ,MRI, Glucose monitor, blood pressure

monitor, medical diagnostic device, etc.

9. Measurement & Instrumentation
 Digital multi meters, digital CROs, logic analyzers PLC systems, etc…

10. Banking & Retail
 Automatic Teller Machine (ATM) and Currency counters, smart vendor

machine, cash register ,Share market, etc..

11. Card Readers
 Barcode, smart card readers, hand held devices, etc…

13

Purpose Of Embedded Systems:-

Each Embedded system is designed to serve the purpose of any

one or a combination of the following tasks.

1. Data collection/Storage/Representation

2. Data communication

3. Data (Signal) processing

4. Monitoring

5. Control

6. Application specific user interface
14

1. Data collection/Storage/Representation
1. Data collection is usually done for storage, analysis,

manipulation and transmission.

2. The term ‚Data‛ refers all kinds of information, viz. text, voice,

image, electrical signals & other measurable quantities.

3. Data can be either analog (continues) or Digital (discrete).

4. Embedded system with analog data capturing techniques

collect data directly in the form of analog and converts the

analog to digital signal by using A/D converters and then

collect the binary equivalent of the analog data.

5. If the signal is digital it can be directly captured without any

additional interface by digital embedded system.

6. The collected data may be stored directly in the system or may

be transmitted to other systems or it may be processed by the

system or it may be deleted instantly after giving a meaningful

representation. 15

 A digital camera is a typical example of an embedded system

with data collection / storage / representation of data.

 Images are captured and the captured image may be stored

with in the memory of the camera. The captured image can

also be presented to the user through a LCD display unit.
16

2. Data communication

 Embedded data communication systems are developed in

applications ranging from complex satellite communication

systems to simple home networking systems.

Figure: - A wireless network router for data communication

17

3. Data (Signal) Processing

 The data collected by embedded system may be used for

various kinds of signal processing.

 A digital hearing aid is a typical example of an embedded

system employing data processing.

18

4. Monitoring

 All embedded products coming under the medical domain are

with monitoring functions only. They are used for determing

the state of some variables using input sensors.

 A very good example is the electro cardiogram (ECG) machine

for monitoring the heartbeat of patient.

Figure:- A patient monitoring system for monitoring for heartbeat 19

5. Control
 Embedded system with control functionalities impose control

over some variables according to the input variables.

 A system with control functionality contains both sensors and

actuators.

 Sensors are inputs ports for capturing the changes in

environment variables or measuring variable.

 Actuators are output ports are controlled according to the

changes in input variable.

Figure:- An Air conditioner for
controlling room temperature

20

6. Application specific user interface

 These are embedded systems with

application specific user interfaces like

buttons, switches, keypad, lights, bells,

display units, etc..

 Mobile phone is an example for this,

in mobile phone the user interface is

provided through the keyboard,

graphic LCD module, system speaker,

vibration alert, etc…
21

Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction, 2000

Introduction to Embedded Systems Setha Pan-ngum

 Programmable device used in a variety of
applications

– Also known as ―microprocessor‖

 Features

– Program memory

– General datapath with large register file
and general ALU

 User benefits

– Low time-to-market and NRE costs

– High flexibility

 ―Pentium‖ the most well-known, but there are
hundreds of others

IR PC

Register

file

General

ALU

DatapathController

Program

memory

Assembly

code for:

total = 0

for i =1 to …

Control

logic and

State

register

Data

memory

22

Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction, 2000

Introduction to Embedded Systems Setha Pan-ngum

 Digital circuit designed to execute exactly one

program

– a.k.a. coprocessor, accelerator or

peripheral

 Features

– Contains only the components needed to

execute a single program

– No program memory

 Benefits

– Fast

– Low power

– Small size

DatapathController

Control

logic

State

register

Data

memory

index

total

+

23

Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction, 2000

Introduction to Embedded Systems Setha Pan-ngum

 Programmable processor optimized for a

particular class of applications having common

characteristics

– Compromise between general-purpose

and single-purpose processors

 Features

– Program memory

– Optimized datapath

– Special functional units

 Benefits

– Some flexibility, good performance, size

and power

 DSP จัดอยู่ในประเภทนีด้ว้ย

IR PC

Registers

Custom

ALU

DatapathController

Program

memory

Assembly

code for:

total = 0

for i =1 to …

Control

logic and

State

register

Data

memory

24

Criteria General

Computer

Purpose Embedded system

Contents It is combination of generic

hardware and a general

purpose OS for executing a

variety of applications.

It is combination of special

purpose hardware and

embedded OS for executing

specific set of applications

Operating

System

It contains general

purpose operating system

It may or may not contain

operating system.

Alterations Applications are alterable by

the user.

Applications are non-alterable by

the user.

Key factor Performance”

factor.

is key Application specific

requirements are key factors.

Power

Consumpti

on

More Less

Response

Time

Not Critical Critical

applications

for some

25

QUALITY ATTRIBUTES OF EMBEDDED SYSTEM

These are the attributes that together form the deciding

factor about the quality of an embedded system.

There are two types of quality attributes are:-

•Operational Quality Attributes.

1.These are attributes related to operation or

functioning of an embedded system. The way an

embedded system operates affects its overall quality.

•Non-Operational Quality Attributes.

1.These are attributes not related to operation or

functioning of an embedded system. The way an

embedded system operates affects its overall quality.

2.These are the attributes that are associated with the

embedded system before it can be put in operation.

26

Operational Attributes
a) Response

• Response is a measure of quickness of the system.

•It gives you an idea about how fast your system is tracking

the input variables.

•Most of the embedded system demand fast response

which should be real-time.

b) Throughput

•Throughput deals with the efficiency of system.

• It can be defined as rate of production or process of a

defined process over a stated period of time.

• In case of card reader like the ones used in buses,

throughput means how much transaction the reader can

perform in a minute or hour or day.

27

Reliability

Reliability is a measure of how much percentage you rely

upon the proper functioning of the system .

Mean Time between failures and Mean Time To Repair are

terms used in defining system reliability.

Mean Time between failures can be defined as the average

time the system is functioning before a failure occurs.

Mean time to repair can be defined as the average time the

system has spent in repairs.

Maintainability

Maintainability deals with support and maintenance to the

end user or a client in case of technical issues and product

failures or on the basis of a routine system checkup

It can be classified into two types

I. Scheduled or Periodic Maintenance

II. Maintenance to unexpected failure

28

Security

•Confidentiality, Integrity and Availability are three

corner stones of information security.

•Confidentiality deals with protection data from

unauthorized disclosure.

•Integrity gives protection from unauthorized

modification.

•Availability gives protection from unauthorized user

•Certain Embedded systems have to make sure they

conform to the security measures.

•Ex. An Electronic Safety Deposit Locker can be used

only with a pin number like a password.

Safety

Safety deals with the possible damage that can happen

to the operating person and environment due to the

breakdown of an embedded system or due to the

emission of hazardous materials from the embedded

products.

29

Non Operational Attributes

Testability and Debug-ability

•It deals with how easily one can test his/her design,

application and by which mean he/she can test it.

•In hardware testing the peripherals and total

hardware function in designed manner

•Firmware testing is functioning in expected way

•Debug-ability is means of debugging the product as

such for figuring out the probable sources that create

unexpected behavior in the total system

Evolvability

For embedded system, the qualitative attribute

―Evolvability‖ refer to ease with which the

embedded product can be modified to take

advantage of new firmware or hardware technology.

30

Portability
•Portability is measured of ―system Independence‖.

•An embedded product can be called portable if it is capable of

performing its operation as it is intended to do in various

environments irrespective of different processor and or controller

and embedded operating systems.

Time to prototype and market
•Time to Market is the time elapsed between the conceptualization of

a product and time at which the product is ready for selling or use

•Product prototyping help in reducing time to market.

•Prototyping is an informal kind of rapid product development in

which important feature of the under consider are develop.

•In order to shorten the time to prototype, make use of all possible

option like use of reuse, off the self component etc.

Per unit and total cost
•Cost is an important factor which needs to be carefully monitored.

Proper market study and cost benefit analysis should be carried out

before taking decision on the per unit cost of the embedded product.

•When the product is introduced in the market, for the initial period

the sales and revenue will be low

•There won’t be much competition when the product sales and

revenue increase. 31

32

Core of the Embedded Systems:-

Embedded systems are domain and application specific and

are built around a central core. The core of the embedded system

falls into any one of the following categories.

1. General Purpose and Domain Specific Processors

1.1 Microprocessors

1.2 Microcontrollers

1.3 Digital Signal Processors

2. Application Specific Integrated Circuits (ASICs)

3. Programmable Logic Devices (PLDs)

4. Commercial Of The Shelf Component (COTS)
33

1. General Purpose and Domain Specific Processors

1.1 Microprocessors

1.2 Microcontrollers

1.3 Digital Signal Processors

 Almost 80% of Embedded systems are processor/Controller
based. The processor may be a Microprocessor or a Micro-
controller or a Digital signal Processor depending on domain
and application.

 Most of the embedded system in the industrial control and
monitoring applications make use of the commonly available
microprocessors or microcontrollers.

 where as domains which require signal processing such as
speech coding, speech reorganization, etc. make use of Digital
signal processors supplied by manufactures like Analog Devices,
Texas Instruments, etc.

34

2. Application Specific Integrated Circuits (ASICs)

 Application Specific Integrated Circuits (ASICs) is a

micro chip designed to perform a specific or unique

application.

 It is used as replacement to conventional general

purpose logic chips.

 It integrates several functions into a single chip and

there by reduce s the system development cost.

35

3.Programmable Logic Devices (PLDs)
 Logic devices provides specific functions, including device

to device interfacing, data communication, signal

processing, data display, timing & control operations, and

almost every other function a system must perform.

 Logic devices

 Fixed logic devices are permanent they perform one

function or set of functions once manufactured, they cannot

be changed.

 Programmable Logic devices offer customers a wide range

of logic capacity, features, speed, and voltage characteristics

and these devices can be re-configured to perform any

Fixed logic devices

Programmable Logic devices

36

4. Commercial Of The Shelf Component (COTS)

37

Sensors and Actuators

Sensor:-

A sensor is a transducer device that converts energy

from one form to another for any measurement or control

purpose.

Actuator:-

Actuator is a form of transducer device which

converts signals to corresponding physical action(motion).

Actuator act as output device

38

COMMUNICATION INTERFACES

For any embedded system, the communication interfaces can

broadly classified into:

Onboard Communication Interfaces
These are used for internal communication of the

embedded system i.e: communication between different

components present on the system.

Common examples of onboard interfaces are:

•Inter Integrated Circuit (I2C)

•Serial Peripheral Interface (SPI)

•Universal Asynchronous Receiver Transmitter

(UART)

•1-Wire Interface

•Parallel Interface
Example :Inter Integrated Circuit (I2C)

•It is synchronous

•Bi-directional, half duplex , two wire serial interface

bus

•Developed by Phillips semiconductors in 1980
39

Figure: I2C Bus Interfacing

40

External or Peripheral Communication

Interfaces
These are used for external communication of the

embedded system i.e: communication of different

components present on the system with external or

peripheral components/devices.

Common examples of external interfaces

are:
•RS-232 C & RS-485

•Universal Serial Bus (USB)

•IEEE 1394 (Firewire)

•Infrared (IrDA)

•Bluetooth

•Wi-Fi

•Zig Bee

•General Packet Radio Service (GPRS)

Example: RS-232 C & RS-485 41

The I/O Subsystem

 The I/O Subsystem of the embedded system facilitates the

interaction of the embedded system with the external world.

Interaction happens through the sensors and actuators

connected to the input and output ports respectively of the

embedded system.

 The sensors may not be directly interfaced with input ports,

instead they may be interfaced through signal conditioning

and translating like ADC, optocouplers, etc..

42

 It is an important output device for visual indications in any

embedded system.

 LED can be used as an indicator for the status of various

signals or situations.

 Typical examples are indicating the presence of power

conditions like ‘Device ON’, ‘Battery low’, or ‘ Charging of

Battery’ for battery operated handheld embedded devices.

LED (Light Emitting Diode):-

43

 It is an output device for displaying alpha numeric characters.

 It contains 8 light emitting diode (LED) segments arranged in a

special form.

 Out of 8 LED segments 7 are used for displaying alpha

numeric characters and 1 LED is used for representing ‘decimal

point’ in decimal numbers.

7 segment LED display:-

44

 It is solid state device to isolate two parts of a circuit
 It combines an LED and a photo-transistor in a single

housing (package).
 In electronic circuits an optocoupler is used for

suppressing interface in data communication, circuit
isolation, high voltage separation, etc..

 Optocouplers can be used in either in input circuit or
output circuits.

Optocoupler:-

Figure: Functional block diagram of Optocoupler 45

Communication Interface

1.On board Communication Interface or

(Device/Board level communication interface)

2.External Communication Interface or

(Product level communication interface)

46

1.On board Communication Interface or

(Device/Board level communication interface)

a) I2C Inter Integrated Circuit

b) SPI (Serial Communication Interface)

c) UART (Universal Asynchronous Rx and Tx)

d) 1-WIRE

e) Parallel Communication Interface
47

a) I2C Inter Integrated Circuit

48

b) SPI (Serial Communication Interface)

49

c) UART (Universal Asynchronous Rx and Tx)

50

d) 1-WIRE

51

e) Parallel Communication Interface

52

53

I. Secondary Memory
II.Primary Memory

a)RAM
i. SRAM

ii. DRAM

b)ROM
i. PROM

ii. EPROM

c)Hybrid
i. EEPROM

ii. NVRAM

iii. Flash Memory

d)Cache Memory

e)Virtual Memory

54

 The computer usually uses its input/output channels
to access secondary storage and transfers the desired
data using intermediate area in primary storage.
Secondary storage does not lose the data when the
device is powered down—it is non-volatile. Per unit, it
is typically also an order of magnitude less expensive
than primary storage.

 The secondary storage is often formatted according to
a file system format, which provides the abstraction
necessary to organize data into files and directories,
providing also additional information (called
metadata) describing the owner of a certain file, the
access time, the access permissions, and other
information. Hard disk are usually used as secondary
storage.

55

 Primary storage (or main memory or internal memory), often referred

to simply as memory, is the only one directly accessible to the CPU.

The CPU continuously reads instructions stored there and executes

them as required.

 Main memory is directly or indirectly connected to the CPU via a

memory bus. It is actually two buses (not on the diagram): an address

bus and a data bus. The CPU firstly sends a number through an

address bus, a number called memory address, that indicates the

desired location of data. Then it reads or writes the data itself using the

data bus.

 It is divided into RAM and ROM.

56

The RAM family includes two important memory devices:

static RAM (SRAM) and dynamic RAM (DRAM). The primary

difference between them is the lifetime of the data they store.

1) SRAM retains its contents as long as electrical power is

applied to the chip. If the power is turned off or lost

temporarily, its contents will be lost forever.

2) DRAM, on the other hand, has an extremely short data

lifetime-typically about four milliseconds. This is true even

when power is applied constantly. DRAM controller is used to

refresh the data before it expires, the contents of memory can

be kept alive for as long as they are needed. So DRAM is as

useful as SRAM after all.

57

Double Data Rate synchronous dynamic random access

memory or also known as DDR1 SDRAM is a class of

memory integrated circuits used in computers. The interface

uses double pumping (transferring data on both the rising and

falling edges of the clock signal) to lower the clock frequency.

One advantage of keeping the clock frequency down is that it

reduces the signal integrity requirements on the circuit board

connecting the memory to the controller.

58

DDR2 memory is fundamentally similar to DDR SDRAM. Still, while DDR

SDRAM can transfer data across the bus two times per clock, DDR2 SDRAM can

perform four transfers per clock. DDR2 uses the same memory cells, but

doubles the bandwidth by using the multiplexing technique.

The DDR2 memory cell is still clocked at the same frequency as DDR SDRAM

and SDRAM cells, but the frequency of the input/output buffers is higher with

DDR2 SDRAM (as shown in Fig. on next Slide). The bus that connects the

memory cells with the buffers is twice wider compared to DDR.

Thus, the I/O buffers perform multiplexing: the data is coming in from the

memory cells along a wide bus and is going out of the buffers on a bus of the

same width as in DDR SDRAM, but of a twice bigger frequency. This allows to

increase the memory bandwidth without increasing the operational frequency.

59

 The interface uses double

pumping (transferring data

on both the rising and falling

edges of the clock signal to

lower the clock frequency.

 One advantage of keeping the

clock frequency down is that it

reduces the signal integrity

requirements on the circuit

board connecting the memory

to the controller.

60

 Memories in the ROM family are distinguished by the methods

used to write new data to them (usually called programming), and the

number of times they can be rewritten.

 This classification reflects the evolution of ROM devices from

hardwired to programmable to erasable-and-programmable. A common

feature is their ability to retain data and programs forever, even during

a power failure.

 The contents of the ROM had to be specified before chip

production, so the actual data could be used to arrange the transistors

inside the chip.

61

 One step up from the masked ROM is the PROM (programmable

ROM), which is purchased in an unprogrammed state. If you were to

look at the contents of an unprogrammed PROM, the data is made up

entirely of 1's.

 The process of writing your data to the PROM involves a special

piece of equipment called a device programmer. The device

programmer writes data to the device one word at a time by applying

an electrical charge to the input pins of the chip.

 Once a PROM has been programmed in this way, its contents

can never be changed. If the code or data stored in the PROM must

be changed, the current device must be discarded. As a result,

PROMs are also known as one-time programmable (OTP) devices.

PROM

62

 An EPROM (erasable-and-programmable ROM) is programmed in

exactly the same manner as a PROM. However, EPROMs can be erased

and reprogrammed repeatedly.

 To erase an EPROM, you simply expose the device to a strong

source of ultraviolet light. (A window in the top of the device allows the

light to reach the silicon.)

 By doing this, you essentially reset the entire chip to its initial-un

programmed-state. Though more expensive than PROMs, their ability

to be reprogrammed makes EPROMs an essential part of the software

development and testing process.

EPROM

63

 As memory technology has matured in recent years, the line

between RAM and ROM has blurred. Now, several types of memory

combine features of both.

 These devices do not belong to either group and can be collectively

referred to as hybrid memory devices. Hybrid memories can be read and

written as desired, like RAM, but maintain their contents without electrical

power, just like ROM.

 Two of the hybrid devices, EEPROM and flash, are descendants of

ROM devices. These are typically used to store code. The third hybrid,

NVRAM, is a modified version of SRAM. NVRAM usually holds persistent

data.

64

 EEPROMS are electrically-erasable-and-programmable. Internally,

they are similar to EPROMs, but the erase operation is accomplished

electrically, rather than by exposure to ultraviolet light. Any byte within

an EEPROM may be erased and rewritten.

 Once written, the new data will remain in the device forever-or at least

until it is electrically erased. The primary tradeoff for this improved

functionality is higher cost, though write cycles are also significantly

longer than writes to a RAM. So you wouldn't want to use an EEPROM

for your main system memory.

65

 Flash memory combines the best features of the memory
devices described thus far. Flash memory devices are high
density, low cost, nonvolatile, fast (to read, but not to write), and
electrically reprogrammable. These advantages are overwhelming
and, as a direct result, the use of flash memory has increased
dramatically in embedded systems. From a software viewpoint,
flash and EEPROM technologies are very similar. The major
difference is that flash devices can only be erased one sector at a
time, not byte-by-byte. Typical sector sizes are in the range 256
bytes to 16KB. Despite this disadvantage, flash is much more
popular than EEPROM and is rapidly displacing many of the ROM
devices as well.

66

 The third member of the hybrid memory class is NVRAM (non-volatile

RAM). Non volatility is also a characteristic of the ROM and hybrid

memories discussed previously. However, an NVRAM is physically very

different from those devices. An NVRAM is usually just an SRAM with a

battery backup.

 When the power is turned on, the NVRAM operates just like any other

SRAM. When the power is turned off, the NVRAM draws just enough power

from the battery to retain its data. NVRAM is fairly common in embedded

systems.

 However, it is expensive-even more expensive than SRAM, because of the

battery-so its applications are typically limited to the storage of a few

hundred bytes of system-critical information that can't be stored in any

better way.

67

 A CPU cache is a cache used by the central processing unit of a computer

to reduce the average time to access memory. The cache is a smaller,

faster memory which stores copies of the data from the most frequently

used main memory locations. As long as most memory accesses are

cached memory locations, the average latency of memory accesses will be

closer to the cache latency than to the latency of main memory.

 When the processor needs to read from or write to a location in main

memory, it first checks whether a copy of that data is in the cache. If so,

the processor immediately reads from or writes to the cache, which is

much faster than reading from or writing to main memory

68

http://en.wikipedia.org/wiki/Central_processing_unit

The diagram on the right shows two memories. Each location in each

memory has a datum (a cache line), which in different designs ranges in

size from 8 to 512 bytes. The size of the cache line is usually larger than the

size of the usual access requested by a CPU instruction,

which ranges from 1 to 16 bytes.

 Each location in each memory also

has an index, which is a unique number

used to refer to that location.The index

for a location in main memory is called

an address.

 Each location in the cache

has a tag that contains the index of the

datum in main memory that has been

cached. In a CPU's data cache these entries

are called cache lines or cache blocks.

Cache Memory

69

It is a computer system technique which gives

an application program the impression that it has

contiguous working memory (an address space),

while in fact it may be physically fragmented and

may even overflow on to disk storage.

computer operating systems generally use

virtual memory techniques for ordinary

applications, such as word processors,

spreadsheets,multimedia,players accounting,

etc., except where the required hardware support

(memory management unit) is unavailable or

insufficient.

70

Type Volatile
?

Writeable? Erase
Size

Max Erase
Cycles

Cost (per Byte) Speed

SRAM Yes Yes Byte Unlimited Expensive Fast

DRAM Yes Yes Byte Unlimited Moderate Moderate

Masked
ROM

No No n/a n/a Inexpensive Fast

PROM No Once,
with a device
programmer

n/a n/a Moderate Fast

EPROM No Yes,
with a device
programmer

Entire
Chip

Limited (consult
datasheet)

Moderate Fast

EEPROM No Yes Byte Limited (consult
datasheet)

Expensive Fast to read, slow to
erase/write

Flash No Yes Sector Limited (consult
datasheet)

Moderate Fast to read, slow to
erase/write

NVRAM No Yes Byte Unlimited Expensive
(SRAM + battery)

UNIT III

EMBEDDED FIRMWARE

72

RTOS v/s General Purpose OS

1. Determinism

2. Task Scheduling

3. Preemptive kernel

4. Priority Inversion

5. Usage
73

Sophisticated Embedded System

Characteristics

(1) Dedicated functions

(2) Dedicated complex algorithms

(3)Dedicated (GUIs) and other user interfaces

for the application

74

(4) Real time operations— Defines the ways

in which the system works, reacts to the

events and interrupts, schedules the system

functioning in real time and executes by

following a plan to control the latencies and

to meet the deadlines.

75

(5) Multi-rate operations -Different

operations may take place at distinct rates.

For example, the audio, video, network data

or stream and events have the different rates

and time constraints to finish associated

processes..

Contd..

76

Constraints of an Embedded System Design

• Available system-memory

• Available processor speed

• Limited power dissipation when running

the system continuously in cycles of the

system start, wait for event, wake-up and run,

sleep and stop.

77

• Performance

• power

• size

• non-recurring design cost, and

manufacturing costs

78

•Processor is the heart of embedded system

• Processor has two essential units:

Control Unit(CU)

Execution Unit(EU)

79

• Program Flow and data path (CU) Control

Unit—includes a fetch unit for fetching

instructions from the memory.

80

• Execution Unit (EU) —includes circuits for

arithmetic and logical unit (ALU), and for

instructions for a program control task, say,

data transfer instructions, halt, interrupt, or

jump to another set of instructions or call to

another routine or sleep or reset.

81

A Processor is in the form of an IC or it

could be in core form in an Application

Specific Integrated Circuit (ASIC) or

System on Chip (SoC).

An embedded processor chip or core can be

one of the following:

82

1. General Purpose Processor (GPP) :

instruction set designed not specific to the

applications.

example: Microprocessor

83

• A Microprocessor is a single VLSI chip

that has a CPU and has some other units

such as caches, pipelining and super

scaling units.

• is an essential part of a computing system.

Intel 80x86 family, ARM, 68HCxxx family.

84

2. Application Specific Instruction-set

Processor (ASIP): is a processor with

instruction set designed for specific

applications on a VLSI chip.

Examples: micro controller

embedded micro controller

DSP and media processor

Network processor

IO processor or

domain-specific programmable processor
85

• A Microcontroller is an integrated chip

(IC) that has a processor, memory and

several other hardware units in it such as

timers, watchdog timer, interrupt controller,

ADC or PWM .

• is an essential component of a control or

communication circuit.

8051, 8051 MX, 68HC11xx, PIC18

86

Various functional circuits in a microcontroller chip:

87

3. Single Purpose Processors or additional

processors:

Examples:

• Coprocessors: used for graphic processing,

floating point processing, encrypting,

deciphering, discrete cosine transformation

and inverse transformation on TCP/IP

protocol stacking and networking connecting

functions.

88

• Accelerator: Java codes accelerator

• Controllers: for peripherals, direct

memory access and buses

89

4. GPP or ASIP cores integrated into either an

ASIC or VLSI circuit or a Field

Programmable Gate Array (FPGA) core

integrated with processor units in a VLSI

chip.

5. Application Specific system Processor

(ASSP)

6.Multi core processors or multi processors.

90

1. Power source

• A power supply source or charge pump is

essential in every system.

• The systems which do not have power

supply of their own are powered by the

use of charge pumps or they connect to

external power supply.

91

2. Clock Oscillator circuit and Clocking

units:

• the clock controls the time for executing an

instruction.

• also controls the various clocking

requirements of CPU, of system timers, CPU

machine cycles.

• A processor needs a clock oscillator circuit to

establish a reference frequency used for timing

purposes.
92

3. System timers and Real-Time

Clock(RTC):

• to schedule the various tasks and for real time

programming , an RTC or system clock is

needed.

• A timer circuit is configured as system clock ,

which ticks and generates interrupts

periodically.

93

4. Reset circuit , Power-up Reset and

Watchdog timer Reset :

• Reset circuit can change the Program

Counter (PC) to a power-up default value.

• A program that is reset and runs on a power-

up can be one of the following:

i) system program that executes from the

beginning.

ii) A system boot-up program

iii) A system initialization program

94

Reset:

Processor begins the processing of

instructions from a starting address.

The reset circuit can be activated by any one

of the following:

1. software instruction

2. time-out by a programmable timer known

as watchdog timer.

3. a clock monitor detecting a slow down

below certain frequencies.
95

Watchdog Timer:

A timing device that resets the system after a

predefined timeout.

Helps in rescuing the system if a fault

develops.

96

Memory:

a. Functions Assigned to the ROM or

EPROM or Flash

1. Storing 'Application' program from where

the processor fetches the instruction codes.

2. Storing codes for system booting,

initializing, Initial input data and Strings.

97

3. Storing Codes for RTOS.

4. Storing Pointers (addresses) of various

service routines.

98

b. Functions Assigned to the Internal, External

and Buffer RAM:

1. Storing the variables during program

run,

2. Storing the stacks,

3. Storing input or output buffers for

example,

for speech or image .

99

c. Functions Assigned to the EEPROM or

Flash :

• Storing non-volatile results of processing

10

0

d. Functions Assigned to the Caches:

1. Storing copies of the instructions, data and
branch-transfer instructions in advance
from external memories and

2. Storing temporarily the results in write
back caches during fast processing

10

1

e. Functions Assigned to Memory Stick:

It stores high definition video, images, songs,

Or speeches after a suitable format compression

And stores large persistent data.

in digital camera, mobile computing system

10

2

10

3

• Real Time Systems

• Real Time Operating Systems & VxWorks

• Application Development

• Loading Applications

• Testing Applications

10

4

• Real-time is the ability of the control

system to respond to any external or

internal events in a fast and

deterministic way.

• We say that a system is deterministic if

the response time is predictable.

10

5

• The lag time between the occurrence of

an event and the response to that event

is called latency

• Deterministic performance is key to

Real-time performance.

10

6

• High speed execution:

– Fast response

– Low overhead

• Deterministic operation:

– A late answer is a wrong answer.

10

7

Memory

Mgmt

Device

Drivers

Network

Stack

Kernel

10

8

• What is vxWorks ?

– vxWorks is a networked RTOS which

can also be used in distributed systems.

– vxWorks topics

• Hardware Environment Requirements

• Development tools

• Testing

10

9

• vxWorks runs on range of platforms

• MC680x0

• MC683xx

• Intel i960

• Intel i386

• R3000

• SPARC based systems

11

0

• A real time OS is a operating system

which will help implement any real

time system

11

1

• Multitasking

• Intertask communications

• Deterministic response

• Fast Response

• Low Interrupt Latency

11

2

• Sample Application

11

3

• One task controlling all the components is a

loop.
• arm ()

{

for (;;)

{

if (shoulder needs moving)

moveShoulder() ;

if (elbow needs moving)

moveElbow();

if (wrist need moving)

moveWrist();

. . . .

}

}
11

4

• Create a separate task to manipulate each

joint:

joint ()

{

for (;;)

{

wait; /* Until this joint needs moving */

moveJoint ();

}

}

11

5

• Task State Transition

Pending Ready Delayed

Suspended

taskInit()

11

6

11

7

• Manages tasks.

• Transparently interleaves task execution,

creating the appearance of many programs

executing simultaneously and

independently.

11

8

• Uses Task Control Blocks (TCBs) to keep track of

tasks.
– One per task.

– WIND_TCB data structure defined in taskLib.h

– O.S. control information

• e.g. task priority,

• delay timer,

• I/O assignments for stdin, stdout, stderr

– CPU Context information

• PC, SP, CPU registers,

• FPU registers FPU registers

11

9

• Task Context.
– Program thread (i.e) the task program counter

– All CPU registers

– Optionally floating point registers

– Stack dynamic variables and functionals calls

– I/O assignments for stdin, stdout and stderr

– Delay timer

– Timeslice timer

– Kernel control structures

– Signal handlers

– Memory address space is not saved in the context

12

0

• To schedule a new task to run, the kernel

must: :

– Save context of old executing task into

associated TCB.

– Restore context of next task to execute from

associated TCB.

• Complete context switch must be very fast

12

1

• Task Scheduling
– Pre-emptive priority based scheduling

– CPU is always alloted to the ―ready to run‖

highest priority task

– Each task has priority numbered between 0 and

255

– It can be augmented with round robin scheduling.

12

2

• Work may have an inherent precedence.

• Precedence must be observed when allocating

CPU.

• Preemptive scheduler is based on priorities.

• Highest priority task ready to run (not pended

or delayed) is allocated to the CPU

12

3

• Reschedule can occur anytime, due to:

– Kernel calls.

– System clock tick

12

4

Task t1

Task t2

Task t3

Task t2

Task t1

TIME

t3 completes

t2 completes

t2 preempts t1

t3 preempts t2

•Priority

12

5

• To allow equal priority tasks to preempt

each other, time slicing must be turned on:

– kernelTimeSlice (ticks)

– If ticks is 0, time slicing turned off

• Priority scheduling always takes

precedence.

– Round-robin only applies to tasks of the same

priority..

12

6

doCommFunc (int data)

{

……

}

• All task reside in a common address

space
Common Subroutine

tTaskA

TaskA() {

doComFunc(10)

}

tTaskB
TaskB() {

doComFunc(20)

}

10

TASK STACKS

20

12

7

text

data

bss

RAM
tTaskA

fooSet(10)

fooSet(10)

tTaskB

fooLib

int fooVal;

void fooSet(int x)

{

fooVal = x;

}

12

8

• All tasks run in privileged mode

12

9

• Controls many external components.

– Multitasking allows solution to mirror the

problem.

– Different tasks assigned to independent

functions.

– Inter task communications allows tasks to

cooperate.

13

0

• High speed execution

– Tasks are cheap (light-weight).

– Fast context switch reduces system overhead.

• Deterministic operations

– Preemptive priority scheduling assures

response for high priority tasks.

13

1

13

2

• Low level routines to create and manipulate

tasks are found in taskLib..

• A VxWorks task consists of:

– A stack (for local storage such as automatic

variables and parameters passed to routines).

– A TCB (for OS control).

13

3

• Code is not specific to a task.

– Code is downloaded before tasks are spawned.

– Several tasks can execute the same code (e.g.,

printf())

13

4

taskSpawn

Stack TCB

foo ()

{

….

}

13

5

int taskSpawn (name , priority, options,

stackSize, entryPt, arg1, … arg10)
 Task name

 Task priority (0-255)

 Task Options eg VX_UNBREAKABLE size of stack

to be allocated Address of code to execute (

initial PC

– name

– priority

– options

– stackSize

– entryPt
)

– arg1 … arg10 Arguments to entry point routine.

13

6

• Assigned by kernel when task is created.

• Unique to each task.

• Efficient 32 bit handle for task.

• May be reused after task exits.

• If tid is zero, reference is to task making

call (self).

13

7

• Relevant taskLib routines:

– taskIdSelf()

– taskIdListGet()

– taskIdVerifty()

Get ID of calling task

Fill array with Ids of all

existing tasks.

Verify a task ID is valid

13

8

• Provided for human convenience.

– Typically used only from the shell (during

development).

– Use task Ids programmatically.

• Should start with a t.

– Then shell can interpret it as a task name.

– Default is an ascending integer following a t.

13

9

• Doesn‘t have to be unique (but usually is).

• Relevant taskLib routines: routines:

– taskName() Get name from tid.

– taskNameToId() Get tid from task name.

14

0

• Range from 0 (highest) to 255 (lowest).

• No hard rules on how to set priorities. There

are two (often contradictory) ―rules of

thumb‖:

– More important = higher priority.

– Shorter deadline = higher priority.

• Can manipulate priorities dynamically with:

– taskPriorityGet (tid, &priority)

– taskPrioritySet (tid, priority)

14

1

taskDelete (tid)

• Deletes the specified task.

• Deallocates the TCB and stack.

14

2

exit (code)

 Analogous to a taskDelete() of self. of Code

parameter gets stored in the TCB field

exitCode.

 TCB may be examined for post mortem

debugging by:

– Unsetting the VX_DELLOC_STACK option or,

– Using a delete hook. Using a delete

14

3

• Contrary to philosophy of system resources

sharable by all tasks.

• User must attend to. Can be expensive.

• TCB and stack are the only resources

automatically reclaimed.

14

4

• Tasks are responsible for cleaning up after

themselves.

– Deallocating memory.

– Releasing locks to system resources.

– Closing files which are open.

– Deleting child/client tasks when parent/server

exists.

14

5

taskRestart (tid)

• Task is terminated and respawned with

original arguments and tid.

• Usually used for error recovery.

14

6

taskSuspend (tid)

• Makes task ineligible to execute.

• Can be added to pended or delayed state.

taskResume (tid)

• Removes suspension.

• Usually used for debugging and

development

14

7

• Shared Memory

• Semaphores: Timeout and queues

mechanism can be specified

– Binary Semaphore

– Mutual Exclusion Semaphores

– Counting Semaphores

14

8

foo.h

extern char buffer[512];

extern int fooSet();

extern char *fooGet();

foo.c

#include foo.h

char buffer[512];

fooSet

{

}

fooGet()

{

}

taskA()
{

…
fooSet();
….

}

taskB()
{

…
fooGet()
…

}

14

9

Int semTake (SEMID)

if a task calls this function

– this function will return if the semaphore is not taken already

– this function will block if the semaphore is taken already

Int semGive (SEMID)

if a task call this function and

– there is a task which blocked that task will continue

– if there is no task blocked the semaphore is free

15

0

taskA taskB

Semaphore

Time

15

1

• Message Queues

– Any task including the interrupt handler can

send message to message queues.

– Any task can get message from message

queues(excl. interrupt context).

– Full duplex communications between 2 tasks

requires two message queues

– Timeout can be specified for reading writing

and urgency of message is selectable

15

2

• Message Queues

– MSG_Q_ID msgQCreate (maxMsgs,

maxMsgLength, Options)

– maxMsgs

• max number of messages in the queue.

– maxMsgLength

• max size of messages

– options

• MSG_Q_FIFO or MSG_Q_PRIORITY

15

3

• STATUS msgQSend (msgQId, buffer,

nBytes, timeout, priority)

• int msqQReceive (msgQId, buffer, nBytes,

timeout)

• STATUS msgQDelete (msgQId);

15

4

• Pipes

– Named I/O device

– Any task can read from/write to a PIPE

– an ISR can write to a PIPE

– select () can used on a pipe

• N/W Intertask Communication

– Sockets (BSD 4.3)

– RPC

15

5

• Interrupt handling Capabilities

• Watchdog Timer

• Memory management

15

6

• Interrupt Service routines

– They can bound to user C code through

intConnect.

– intConnect takes I_VEC, reference to ISR and

1 argument to ISR

15

7

• All ISR use a common stack verify through

checkStack()

• Interrupts have no task control block and

they do not run in a regular task context.

15

8

• ISR must not invoke functions that might

cause blocking of caller like

– semTake(), malloc(), free(), msgQRecv()

– No I/O through drivers

• floating point co-processors are also

discouraged as the floating point registers are

not saved or restored.

15

9

• Stores the discriptions of the exception in a

special location in memory.

• System is restarted

• In boot ROM the presence of the exception

description is tested, if present it prints it

out.

• For re displaying ‗e‘ command in the boot

ROM can be used.

16

0

• ‗errno‘ is a global int defined as a macro in

―errno.h‖

• This return the last error status

• Default expection handler of the OS merely

suspends the task that caused it and displays

the saved state of the task in stdout

16

1

• ti and tt can be used to probe into the status

• Unix compatible signals() facility is used to

tackle exception other than that of the OS

16

2

• Mechanism that allows arbitary C functions

to be executed after specified delay

• function is executed as an ISR at the inrrupt

level of the system clock

• All restrictions of ISR applies

16

3

• Creation of a WD timer is through

wdCreate()

• Deletion of a WD timer through wdDelete()

• Start a WD timer through wdStart()

• Cancel a WD timer through wdCancel()

16

4

• Normally uses Internet protocol over

standard ethernet connections

• Transperency in access to other

vxWorks/Unix systems thro‘ Unix

compatible sockets

• Remote command execution

• Remote Login

16

5

• Remote Procedure calls

• Remote debugging

• Remote File access

• Proxy ARP

16

6

Development Host
Target Platform

Ethernet LAN

RS-232

16

7

• vxWorks routines are grouped into libraries

• Each library has corresponding include files

• Library

– taskLib

– memPartLib

– semLib

– lstLib

– sockLib

• Routine

– taskSpawn

– malloc

– semTake

– lstGet

– send

• Include files

– taskLib.h

– stdlib.h

– semLib.h

– lstLib.h

– types.h,

sockets.h,

sockLib.h

16

8

• Any workstation (could run Unix)

• OS should support networking

• Cross/Remote Development Software

• Unix platform

– Edit, Compile, Link programmes

– Debug using vxWorks Shell or gdb

16

9

• Any H/W which is supported by vxWorks.

• Could be Custom Hardware also.

• Individual object code (.o files)

downloaded dynamically.

• Finished application could be burnt into

ROM or PROM or EPROM.

17

0

• Global system symbol table

• Dynamic loading and unloading of object

modules

• Runtime relocation and linking.

17

1

• A single copy of code executed by multiple

tasks is called shared code

• Dynamic linking provides a direct

advantage

• Dynamic stack variables provide inherent

reentrancy. Each task has ints own task. Eg

linked list in lstLib

17

2

• Global and static variables that are

inherently non-reentrant, mutual exclusion

is provided through use of semaphores eg.

semLib and memLib

• Task variables are context specific to the

calling task. 4 byte task vars are added to

the task‘s context as required by the task.

17

3

• Command Line interpreter allows execution

of C language expressions and vxWorks

functions and already loaded functions

• Symbolic evaluations of variables

17

4

• -> x=(6+8)/4

– x=0x20ff378: value=12=0xc

• -> nelson = ―Nelson‖

• new symbol ―name‖ added to symbol table

• -> x

– x=0x20ff378: value=12=0xc

17

5

• Commands

-> lkup (―stuff‖)
stuff 0x023ebfffe bss
value = 0 = 0x0
-> lkup(―Help‖)
_netHelp 0x02021a90
_objHelp 0x02042fa0

text
text

value = 0 = 0x0

17

6

• Commands

* sp creates a task with default options

* td deletes a task

* ts/tr Suspend/resume a task

* b set/display break points

* s single step a task

* c continue a task

* tt Trace a tasks stack

* i/ti give (detailed) task information

* ld load a module

* unld unload a module

17

7

• Commands

* period

* repeat

* cd (―/u/team3‖); the quotes are required

* ll shows directory contents

* ls() same as ll

17

8

• Commands

Shell redirection

-> < script

shell will use the input as from the file

-> testfunc() > testOutput

shell will execute the function and the

output will be stored in a file

―testOutput‖

17

9

• vxWorks provides Source level debugging

• Symbolic disassembler

• Symbolic C subroutine traceback

• Task specific break points

• Single Stepping

• System Status displays

18

0

• Exception handlers in hardware

• User routine invocations

• Create and examine variable symbolically

18

1

• Shell based debugging commands

*b funcName() will set a break point in

the beginning of the function

funcName()

*b 0xb08909f will set a break point at

the address 0xb08909f

*bd funcName() will delete the breakpoint

at the beginning of the function

funcName()
* l will disassemble the code

18

2

• tUsrRoot

– 1st task to be executed by the kernel

• File: usrConfig.c

• Spawns tShell, tLogTask, tExecTask, tNetTask and

tRlogind

• tShell

– The Application development support task

18

3

• tLogTask

– Log message hander task

• tNetTask

– Network support task

• tTelnetd

– Telenet Support task

18

4

• tRlogind

– Rlogin support for vxWorks. Supports remote

user tty interface through terminal driver

• tPortmapd

– RPC Server support

• rRdbTask

– RPC server support for remote source level

debugging.

185

• Unix

– except QNX, most unices don‘t live up to the

expectation of Real Time situations

– Present day unix kernel scheduler do support

Realtime requirements

– So Unix kernel can prioritize realtime processes

– a flag to indicate a RT process is often provided

to this effect

18

6

• vxWorks does not provide resource

reclamation

– Deviation: user must write their own routine

when need.

• vxWorks has a smaller context switch and

restore

– Hence time taken to change context is much

smaller.

18

7

• vxWorks requires special care to be taken

when writing multitasking code

– Semaphore are used to achieve reentrancy

• vxWorks has a minimal interrupt latency

18

8

• vxWorks execute threads in a flat memory

architechure as part of OS

• vxWorks has no processes. The so-called

tasks are actually threads

• vxWorks scheduling could be on round-

robin time slicing or pre-emptive scheduling

with priorities.

18

9

• vxWorks networking is completely Unix

compatible. Portable to BSD4.2/4.3 Unix

supporting TCP/IP

• vxWorks support BSD sockets

• vxWorks does not distinguish between kernal

mode and user mode execution

– Hence minimal mode change overhead on a give

hardware

• vxWorks has Virtual memory model

19

0

• vxWorks is not ―Realtime Unix‖ OS or even

a variant of Unix

• vxWorks and Unix enjoy a symbiotic

relationship

• vxWorks can use Unix as application

development platform

191

