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 A statement, or a proposition, is a declarative sentence
that is either true or false, but not both

 Uppercase letters denote propositions

 Examples:

 P: 2 is an even number (true)

 Q: 7 is an even number (false)

 R: A is a vowel (true)

 The following are not propositions:

 P: My cat is beautiful

 Q: My house is big
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 Definition: Methods of reasoning, provides rules  and 
techniques to determine whether an  argument is valid

 Theorem: a statement that can be shown to be  true (under 
certain conditions)

 Example: If x is an even integer, then x + 1 is  an odd integer

 This statement is true under the condition that x is an  
integer is true
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Truth value

 One of the values “truth” (T) or “falsity” (F)
assigned to a statement

Negation

The negation of P, written P, is the statement

P

T  

F

F  

T

P

obtained by negating statement P

Example:

 P: A is a consonant

P: it is the case that A is not a consonant

 Truth Table
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 Conjunction

 Let P and Q be statements.The conjunction of P and  Q, 
written P ^ Q , is the statement formed by joining  
statements P and Q using the word “and”

 The statement P ^ Q is true if both p and q are true;  
otherwise P ^ Q is false

 Truth Table for Conjunction:

P Q P ˄ Q

F F F

F T F

T F F

T T T
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 Disjunction

 Let P and Q be statements. The disjunction of P and  

Q, written P v Q , is the statement formed by joining  

statements P and Q using the word “or”

 The statement P v Q is true if at least one of the

statements P and Q is true; otherwise P v Q is false

 The symbol v is read “or”

 Truth Table for Disjunction:

P Q P ˅ Q

F F F

F T T

T F T

T T T



Mathematical Logic

7

 Implication

 Let P and Q be statements.The statement “if P then Q” is  
called an implication or condition.

 The implication “if P then Q” is written P  Q

 P is called the hypothesis, Q is called the conclusion

 Truth Table for Implication:

P Q P  Q

F F T

F T F

T F T

T T T
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 Implication

 Let P: Today is Sunday and Q: I will wash the car.

 P  Q :

If today is Sunday, then I will wash the car

 The converse of this implication is written Q  P

If I wash the car, then today is Sunday

 The inverse of this implication is P Q

If today is not Sunday, then I will not wash the car

 The contrapositive of this implication is Q P

If I do not wash the car, then today is not Sunday
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Biimplication

 Let P and Q be statements. The statement “P if and only if

Q” is called the biimplication or biconditional of P and Q

 The biconditional “P if and only if Q” is written P  Q

 “P if and only if Q”

 Truth Table for the Biconditional:

P Q P  Q

F F T

F T F

T F F

T T T
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 Precedence of logical  
connectives is:

 highest

^ second highest

 v    third highest

 → fourth highest

 ↔ fifth highest



• More complex propositional statements can be build from 

elementary statements using logical connectives. 

• Logical connectives: 

 
– Negation 

– Conjunction 

– Disjunction 

– Exclusive or 

– Implication 

– Biconditional 

Connectives



Negation 
 

Definition: Let p be a proposition. The statement "It is not the case that p." 

is another proposition, called the negation of p. The negation of p is denoted 

by ¬ p and read as "not p." 

Example: 

• Pitt is located in the Oakland section of Pittsburgh. 

 

• It is not the case that Pitt is located in the Oakland section of Pittsburgh. 

Other examples:  

– 5 + 2  8. 

– 10 is not a prime number. 

– It is not the case that buses stop running at 9:00pm. 

Connectives



Negation 
 

• Negate the following propositions: 

– It is raining today. 

• It is not raining today. 

– 2 is a prime number. 

• 2 is not a prime number 

– There are other life forms on other planets in the universe. 

• It is not the case that there are other life forms on other 

planets in the universe. 

Connectives



Conjunction 
 

• Definition: Let p and q be propositions. The proposition "p and q" 

denoted by p   q, is true when both p and q are true and is false 
otherwise. The proposition p   q is called the conjunction of p 
and q. 

• Examples: 
 

– Pitt is located in the Oakland section of Pittsburgh and 5 + 2 = 8 

– It is raining today and 2 is a prime number. 

– 2 is a prime number and 5 + 2  8. 

– 13 is a perfect square and 9 is a prime. 
  

Connectives



Disjunction 
 

• Definition: Let p and q be propositions. The proposition "p or q" 
denoted by p  q, is false when both p and q are false and is true 
otherwise. The proposition p  q is called the disjunction of p and q. 

 

• Examples: 

–   Pitt is located in the Oakland section of Pittsburgh or 5 + 2=8 

– It is raining today or 2 is a prime number. 

–   2 is a prime number or 5 + 2  8. 

– 13 is a perfect square or 9 is a prime. 

Connectives



 
Truth tables 

Conjunction and disjunction 

• Four different combinations of values for p and q 

p q p  q p  q 

T T T T 

T F F T 

F T F T 

F F F F 

 

• NB: p  q (the or is used inclusively, i.e., p  q is true when either 

p or q or both are true). 

Connectives



 
Exclusive or  

• Definition: Let p and q be propositions. The proposition "p 
exclusive or q" denoted by p   q, is true when exactly one of p 
and q is true and it is false otherwise. 

p q p  q 

T T F 

T F T 

F T T 

F F F 

 

Connectives



 
Implication 
 

• Definition: Let p and q be propositions. The proposition "p implies q" 
denoted by p  q is called implication. It is false when p is true and q 
is false and is true otherwise. 

 
• In p  q, p is called the hypothesis and q is called the 

conclusion. 

p q p  q 

T T T 

T F F 

F T T 

F F T 

 

Connectives



 
Biconditional 

• Definition: Let p and q be propositions. The biconditional p 
 q (read p if and only if q), is true when p and q have the same 

truth values and is false otherwise. 

p q p  q 

T T T 

T F F 

F T F 

F F T 

 
 
• Note: two truth values always agree. 



Definition:

 In mathematical logic, propositional logic and 
predicate logic, a well-formed formula, abbreviated 
WFF or wff, often simply formula, is a finite 
sequence of symbols from a given alphabet that is 
part of a formal language. A formal language can be 
identified with the set of formulas in the language.

Well formed formula



Atomic Formula
Definition:

In mathematical logic, an atomic formula (also known 
simply as an atom) is a formula with no deeper 
propositional structure, that is, a formula that contains 
no logical connectives or equivalently a formula that 
has no strict subformulas.

Well formed formula



Well formed formula



Well formed formula



Rules for constructing Wffs

Well formed formula



One way to check whether or not an Expression is an wff 
is to try to state it in English.

If you can translate it to an correct English sentence, 
then it is a wff.

Well formed formula



Example:

To express the fact that Tom is taller than John, we can 
use the atomic formula taller(Tom, John), which is a well 
formed formula. 

This wff can also be part of some compound statement 
such as taller(Tom,John)^~taller(John, Tom), which is also a 
wff.

Well formed formula



Well formed formula



Well formed formula



Well formed formula



Truth tables

Truth table

The truth value of a statement is the classification as  true or 

false which denoted by T or F.

 A truth table is a listing of all possible combinations of  the 
individual statements as true or false, along with  the resulting 
truth value of the compound statements.

 Truth tables are an aide in distinguishing valid and  invalid 

arguments



Truth tables

Conjunction

Disjunction

Negation

 Logical equivalence



Truth tables

Conjunction
Joining two statements with AND forms a  compound statement called a 
conjunction.

p Λ q Read as “p and q”

The truth value is determined by the possible  values of ITS sub statements.

To determine the truth value of a compound  statement we create a truth 
table

p q pq

0 0 0

0 1 0

1 0 0

1 1 1



Truth tables

Disjunction
Joining two statements with OR forms a  compound statement called a 
conjunction.

p V q Read as “p or q”

The truth value is determined by the possible  values of ITS sub statements.

To determine the truth value of a compound  statement we create a truth 
table

p q pVq

0 0 0

0 1 1

1 0 1

1 1 1



Truth tables
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Negation

Recall that the negation of a  statement is the denial of the  
statement.

If the statement p is true, the  negation of p, i.e. ~p is false.

If the statement p is false, then ¬p is true.

Note that since the statement p  could be true or false, we have 2  
rows in the truth table.

P

T  

F

F  

T

P
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 Implication

 Let P and Q be statements.The statement “if P then Q” is  
called an implication or condition.

 The implication “if P then Q” is written P Q

 P is called the hypothesis, Q is called the conclusion
 Truth Table for Implication:

P Q P  Q

F F T

F T F

T F T

T T T
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Biimplication

 Let P and Q be statements. The statement “P if and only if

Q” is called the biimplication or biconditional of P and Q

 The biconditional “P if and only if Q” is written P Q

 “P if and only if Q”

 Truth Table for the Biconditional:

P Q P  Q

F F T

F T F

T F F

T T T



Truth tables

Constructing Truth tables
Construct the truth table for the following compound 
proposition

(( p  q ) q )

p q pq q (( p  q ) q )

0 0 0 1 1

0 1 0 0 0

1 0 0 1 1

1 1 1 0 1



Truth tables

Applications
Truth tables are used to show/define the relationships 
between the truth values of

the individual propositions  and
the compound propositions based on them

p q pq pq pq pq pq

0 0 0 0 0 1 1

0 1 0 1 1 1 0

1 0 0 1 1 0 0

1 1 1 1 0 1 1



Definitions:

• Tautology – a logical expression that is true for all 
variable assignments. 

• Contradiction – a logical expression that is false for 
all variable assignments. 

• Contingent – a logical expression that is neither a 
tautology nor a contradiction. 

Tautology



Tautologies 
 

Since P  P is true for all variable assignments, it is a tautology. 
 
 
 
 

 

P Q P  Q (P  Q) (P  Q)  Q 
     

T T T F T 

T F F T T 

F T F T T 
 

P 

T 

F 

P 

F 

T 

P  P 

T 

T 

(P  P) 

F 

F 

Tautology



Tautological Derivation by 
Substitution 

 

Using schemas that are tautologies, we can get other tautologies 
by substituting expressions for schema variables. 

 
 

• Since A  A is a tautology, 

so are (PQ)  (PQ) 

and (PQR)  

(PQR) 
 

A B A  B A  (A  B) A  (A  B)  B 

T T T T T 

T F F F T 

F T T F T 

Tautology



Sound Reasoning 

• A logical argument has the form: 

A1  A2  …  An  B 

and is sound if when Ai = T for all i, B = 

T. (i.e. If the premises are all true, then 
the conclusion is also true.) 

• This happens when A1  A2  …  An  B is a 

tautology. 
 

Tautology



Intuitive Basis for Sound Reasoning 

 
If (A1  A2  …  An  B) is a tautology, and  Ai 

= T for all i then B must necessarily be true! 
 
 
 
 
 
 

 

B = T is the only possibility for the 
conclusion! 

 
 
 
 
 
 
 

A B A  B 

T ? T 

 

Tautology



Modus Ponens 
 
 

A B A  B 

T ? T 
 
 
 

A B (A  B) (A  B)  A (A  B)  A  B 

T T T T T 

T F F F T 

F T T F T 

F F T F T 
 
 

Hence, modus ponens is sound. 
 
 

A  B 
A 

B 

Tautology



Disjunctive Syllogism 
 
 
 
 
 
 
 
 

A B A  B A (A  B)  A (A  B)  A  B 

T T T F F T 

T F T F F T 

F T T T T T 

F F F T F T 
 
 
 

Hence, disjunctive syllogism is sound. 
 
 
 
 
 

A  B 
A 

B 

Tautology



Equivalence implication
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Implication
If p and q are propositions, then p → q is a conditional statement  or 
implication which is read as “if p, then q” and has this truth  table:

p q p→q

T T T

T F F

F T T

F F T

In p → q, p is the hypothesis (antecedent or premise) and q is the  
conclusion (or consequence).

Implication can be expressed by disjunction and negation:

p → q ≡ ¬p ∨ q

Equivalence implication



Understanding Implication

In p → q there does not need to be any connection between the  

antecedent or the consequent. The meaning depends only on the  

truth values of p and q.

This implication is perfectly fine, but would not be used in 

ordinary  English. “If the moon is made of green cheese, then I 

have more  money than Bill Gates.”

One way to view the logical conditional is to think of an 

obligation  or contract. “If I am elected, then I will lower taxes.”

48 / 21

Equivalence implication



Different Ways of Expressing p → q

if p, then q

if p, q

q unless ¬p

p implies q  p only if q  q when p

q whenever p
q follows from p
a necessary condition for p is qq if p

p is sufficient for q  q is 
necessary for p

a sufficient condition for q is p

Equivalence implication
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Converse, Contrapositive, and Inverse

q → p is the converse of p → q

¬q → ¬p is the contrapositive of p → q

¬p → ¬q is the inverse of p → q

Example: Find the converse, inverse, and contrapositive of  “It is 
raining is a sufficient condition for my not going to town.”  
Solution:
converse: If I do not go to town, then it is raining.  inverse: If it is 
not raining, then I will go to town.  contrapositive: If I go to town, 
then it is not raining.

Equivalence implication



List of Logical Equivalences 
 
 

pT  p; pF  p Identity Laws 

pT  T; pF  F Domination Laws 

pp  p; pp  p Idempotent Laws 

(p)  p 
 

Double Negation Law 
 

 

pq  qp; pq  qp Commutative Laws 
 

(pq) r  p (qr); (pq)  r  p  (qr) 

Associative Laws 

Equivalence implication



List of Equivalences 

p(qr)  (pq)(pr) Distribution Laws 

p(qr)  (pq)(pr) 

 
(pq)(p  q) De Morgan’s Laws 

(pq)(p  q) 

Miscellaneous 

p  p  T Or Tautology 

p  p  F And Contradiction 

(pq)  (p  q) Implication Equivalence 

 

pq(pq)  (qp) Biconditional Equivalence 

Equivalence implication



More Logical Equivalences

Equivalence implication



Disjunctive Normal form



Logical Operators
 - Disjunction
 - Conjunction
 - Negation
 - Implication      pq p  q
 - Exclusive or    (p  q)  (p  q) 
 - Biconditional   p  q 

(pq)  (qp) 
(p  q)  (q  p) 

Do we need all these?

Disjunctive Normal form 



Functionally Complete
A set of logical operators is called functionally complete
if every compound proposition is logically equivalent to 
a compound proposition involving only this set of 
logical operators.
, , and  form a functionally complete set of 
operators.

Disjunctive Normal form



Are (p(pq))
and (p  q) equivalent?

(p(pq))
p  (pq) DeMorgan
p  (pq) DeMorgan
p  (pq) Double Negation
(pp)(p q) Distribution
(pp)(p q) Commutative
F (p q) And Contradiction
 (p q)  F Commutative
 (p q) Identity

Disjunctive Normal form



Are (p(pq))
and (p  q) equivalent?

Even though both are expressed with only , , and , 
it is still hard to tell without doing a proof.
What we need is a unique representation of a 
compound proposition that uses , , and .
This unique representation is called the Disjunctive 
Normal Form.

Disjunctive Normal form



Disjunctive Normal FormA disjunction of conjunctions where every variable or its negation is 
represented once in each conjunction (a minterm)

each minterm appears only once

Example: DNF of pq is 
(pq)(pq).

Disjunctive Normal form



p q pq (pq)  (pq)

T T F F

T F T T

F T T T

F F F F

Truth Table

Disjunctive Normal form



Method to construct DNF

Construct a truth table for the proposition.
Use the rows of the truth table where the 
proposition is True to construct minterms

If the variable is true, use the propositional variable in the 
minterm
If a variable is false, use the negation of the  variable in the 
minterm

Connect the minterms with ’s.

Disjunctive Normal form



How to find the DNF of (p q)r
p q r (p q) r (p q)r
T T T T F F
T T F T T T
T F T T F F
T F F T T T
F T T T F F
F T F T T T
F F T F F T
F F F F T T

There are five sets of input that make the statement true.  
Therefore there are five minterms.

Disjunctive Normal form



p q r (p q) r (p q)r
T T T T F F
T T F T T T
T F T T F F
T F F T T T
F T T T F F
F T F T T T
F F T F F T
F F F F T T
From the truth table we can set up the DNF
(p q)r   (pqr)  (pqr)  (pqr) 

(pqr)  (pqr)

Disjunctive Normal form



Can we show that just  and  form a set of functionally 
complete operands?

It is sufficient to show that p q can be written in terms of 
and . Then using DNF, we can write every compound 
proposition in terms of  and .

(p  q)
 (p  q) Double negation (2)
(pq ) DeMorgan

Disjunctive Normal form



p q p  q

T T T

T F F

F T T

F F T

The DNF of  p  q is  (pq)  (p q)  (p q).  

Then, applying DeMorgan’s Law, we get that this is equivalent to

[(pq)  (p q)  (p q)]. 

Find an expression equivalent to p  q
that uses only conjunctions and negations.

How many minterms in the DNF?

Disjunctive Normal form



Now can we write an equivalent statement to p  q
that uses only disjunctions and negations?

pq
 [(pq)  (p q)  (p q)] From Before
[(pq)  (pq)  (p  q)] DeMorgan
[(pq)  (pq)  (pq)] Doub. Neg.
[(pq)  (pq)  (pq)] DeMorgan

Disjunctive Normal form



Normal Forms 

 Normal forms are standard forms, sometimes 
called canonical or accepted forms. 

 A logical expression is said to be in disjunctive 
normal form (DNF) if it is written as a disjunction, in 
which all terms are conjunctions of literals. 

 Similarly, a logical expression is said to be in 
conjunctive normal form (CNF) if it is written as 
a conjunction of disjunctions of literals. 

 

Conjunctive Normal form



Conjunctive Normal Form (CNF) 

A formula is in conjunctive normal  form  if it is a conjunction of one  or more clauses. 

Examples: 

• ¬p 

• p ∨ ¬q 

• (¬p ∨ q) ∧ (r ∨ ¬t ∨ ¬p) 

• (¬p ∨ q) ∧ (r ∨ ¬t ∨ ¬p) ∧ p 

Conjunctive Normal form



 

• A CNF formula c1 ∧ c2 ∧ . . . ∧ cn is valid if each of its clauses ci is 

valid. 

Examples: 

• ¬p ∨ q ∨ p ∨ r is valid 

• (¬p ∨ q ∨ p) ∧ (r ∨ ¬r) is valid 

• (¬p ∨ q ∨ p) ∧ (r ∨ s) is not valid 

Testing validity of a formula in CNF is particularly simple: 

Theorem: 

• A clause l1 ∨ l2 ∨ . . . ∨ ln is valid iff there exist i, j such that 

li = ¬lj. 

Conjunctive Normal form



 
Step  1:  Eliminate −→ 

Using the rule 

A −→ B  ≡  ¬A ∨ B 

we may eliminate all occurrences of −→. Example: 

p −→ ((q −→ r) ∨ ¬s) ≡ p −→ ((¬q ∨ r) ∨ ¬s) 

≡ ¬p ∨ ((¬q ∨ r) ∨ ¬s) 

Conjunctive Normal form



 
 
 

Step 2: Push negations down 

Using De Morgan’s Laws and the double negation rule 

¬(A ∨ B) ≡ ¬A ∧ ¬B 

¬(A ∧ B) ≡ ¬A ∨ ¬B 

¬¬A ≡ A 

we push negations down towards the atoms until we obtain a formula that is formed from literals 

using only ∧ and ∨. 

Conjunctive Normal form



 
 

Example: 

 

¬(¬p ∧ (q ∨ ¬(r ∧ s))) 

≡ ¬¬p ∨ ¬(q ∨ ¬(r ∧ s))) 

≡ p ∨ (¬q ∨ ¬¬(r ∧ s)) 

≡ p ∨ (¬q ∨ (r ∧ s)) 

Conjunctive Normal form



 

Step 3: Use distribution to convert to CNF 

Using the distribution rules 

A ∨ (B1 ∧ . . . ∧ Bn) ≡ (A ∨ B1) ∧ . . . ∧ (A ∨ Bn) 

(B1 ∧ . . . ∧ Bn) ∨ A ≡ (B1 ∨ A) ∧ . . . ∧ (Bn ∨ A) we obtain a CNF formula. 

Example: 

 

(p ∧ q) ∨ (p ∧ ¬q) 

≡ ((p ∧ q) ∨ p) ∧ ((p ∧ q) ∨ ¬q) 

≡ ((p ∨ p) ∧ (q ∨ p)) ∧ ((p ∨ ¬q) ∧ (q ∨ ¬q)) 

Conjunctive Normal form



 

and we take one more distribution step to convert each αi ∧ βi 

to CNF. 

Note: we use distribution from the “tips” of the parse tree, up to the 

root. Each tip is a literal, which is a CNF formula. 

If α and β are already in CNF then 

• α ∧ β is also in CNF 

• α ∨ β is converted to CNF as follows: 

1. If α and β are literals then α ∨ β is already in CNF 

2. If α = α1 ∧ . . . ∧ α1 then 

α ∨ β = (α1 ∨ β) ∧ . . . ∧ (α1 ∨ β) 

If β is a literal the RHS is in CNF, otherwise β = β1 ∧ . . . ∧ βk 

Conjunctive Normal form



A more complicated example: 
 

((p ∧ q) ∨ (r ∧ s)) ∨ (¬q ∧ (p ∨ t)) 

≡ (((p ∧ q) ∨ r) ∧ ((p ∧ q) ∨ s)) ∨ (¬q ∧ (p ∨ t)) 

≡ ((p ∨ r) ∧ (q ∨ r) ∧ (p ∨ s) ∧ (q ∨ s)) ∨ (¬q ∧ (p ∨ t)) 

≡ ((p ∨ r) ∨ (¬q ∧ (p ∨ t))∧ 

((q ∨ r) ∨ (¬q ∧ (p ∨ t))∧ 

((p ∨ s) ∨ (¬q ∧ (p ∨ t))∧ 

((q ∨ s) ∨ (¬q ∧ (p ∨ t)) 

≡ (p ∨ r ∨ ¬q) ∧ (p ∨ r ∨ p ∨ t)∧ (q ∨ r ∨ ¬q) ∧ (q ∨ r ∨ p ∨ 

t)∧ (p ∨ s) ∨ ¬q) ∧ (p ∨ s ∨ p ∨ t)∧ (q ∨ s ∨ ¬q) ∧ (q ∨ s ∨ 

p ∨ t) 

Conjunctive Normal form



Principle Disjunctive Normal form



Principle Disjunctive Normal form
 Let us assume A and B be two statement variables. 
 All possible formulas by using conjunction are given as follows. The 

total number of formulas for two variables A and B are 22 formulas. 
They are A ^ B,  A ^~ B, ~A ^B and ~A ^ ~ B.

 These are called minterms or Boolean conjunctions of A and B. The 
minterms (2n terms) are denoted by M0, M1, … ,M2

n
-1.

 A formula equivalent to a given formula consisting of the disjunction 
of minterms only is called Principal disjunctive normal form 
(PDNF) of the given formula.

Principle Disjunctive Normal form



Example 1: 

 

 Find the Principal disjunctive normal form of  p  q. 

 

Solution: 

 

p q   

[ ( )] [ ( )]p q q q p p         

( ) ( ) ( ) ( )p q p q q p q p            
( ) ( ) ( )p q p q p q           which is the required Principal disjunctive 

                                                     normal form. 

Principle Disjunctive Noraml form



Example 2: 

 

Obtain the principal disjunctive normal form of  

( ) ( )p q p r      . 

Solution: 

( ) ( )p q p r       
( ) ( )

( ( ) ( ) ( )

p q p r

p q p r

      

       
 

( ) ( )

( ( ) ) ( ( ) )

p q p r

p q r r p r q q

   

           

( ) ( ) ( ) ( )p q r p q r p r q p r q                 
Which is the required principal disjunctive normal form. 

Principle Disjunctive Normal form



Example 3: 

Obtain PDNF for P ((P Q   (~Q   P))).  

 

Solution:  
 

P ((P Q   (Q   P)))  P ((P Q  (P  Q)))

 P ((P P  Q))

 P ( P  (P  Q))

  P  ( P  (P  Q))

  P  (P  Q)

 ( P  (Q   Q))  (P  Q)

 ( P  Q)  ( P   Q)  (P  Q)

 ( P   Q)  ( P  Q)  (P  Q) 

 

Principle Disjunctive Normal form



Principle Disjunctive Normal form



Principle Conjunctive Normal form



Principle Conjunctive Normal form

Principle Conjunctive Normal form A statement formula which consists of a conjunction 
of maxterms only is called the principal conjunctive 
normal form.
 The duals of minterms are called maxterms. For a 

given number of variables the maxterm consists of 
disjunctions in which each variable or its negation, but 
not both, appears only once.
 Therefore for a given formula, an equivalent formula 

consisting of conjunctions of maxterms only is known 
as its principal conjunctive normal form. This is also 
called the product of sums canonical form.



Principle Conjunctive Normal form



Principle Conjunctive Normal form



Example 1: 

Obtain PCNF for A : (  P R)  ((Q P)  (P Q)).  

 

Solution:  

 

A  (P R) (( Q P) (  P Q))

 (P R (Q  Q))  (P Q (R   R))  (  P Q (R  R))

 (P Q R) (P   Q R) (P  Q R) (P  Q  R) ( P Q R) (  P Q  R)

 (P Q R)  (P  Q R)  (P   Q  R)  (  P Q R)  (  P Q  R)

  (0,2,3,4,5). 

Principle Conjunctive Normal form



Example 2:  

 

Obtain the product of sums canonical form of the formula A which is given by  

(P  Q  R)  ( P  Q  R)  ( P   Q   R). 

Solution:



 A  ( P   Q   R)  (P   Q   R)  (P  Q  R)

 (0,3,7).



 ( A)  consisting of missing maxterms

 (1,2,4,5,6)

 (P  Q   R)  (P   Q  R)  ( P  Q  R)  ( P  Q   R)  ( P   Q  R) .  

Principle Conjunctive Normal form



Example 3: 

Obtain the product-of-sums canonical form of the formula A, which is given by  

( P  Q  R   S)  (P   Q   R  S)  (P   Q  R   S)  ( P  Q   R  S)  (P  Q   R   S).  

 

Solution:



 A  (P   Q  R  S)  ( P  Q  R   S)  ( P  Q   R  S)  (P   Q  R   S)   

( P   Q  R  S)

 (P   Q  R   S)  (P   Q   R  S)  ( P  Q  R   S)  ( P  Q   R  S)   

( P   Q  R  S)

 (5, 6, 9, 10, 12).



 ( A)  consisting of missing maxterms

 (0,1,2,3,4,7,8,11,13,14,15)

 M0 M1 M2 M3 M4 M7 M8 M11 M13 M14 M15  

 (P  Q  R  S)  (P  Q  R   S)  (P  Q   R  S)  (P  Q   R   S)  (P   Q  R  S)  

 (P   Q   R   S)  ( P  Q  R  S)  ( P  Q   R   S)  ( P   Q  R   S)   

( P   Q   R  S)  ( P   Q   R   S).  

 

Principle Conjunctive Normal form



Example 4:  

 

Obtain the product of sums canonical form of (P  Q)  ( P  Q)  (P   Q).  

 

Solution:



 A  ( P   Q)  (P   Q)  ( P  Q)

 (P   Q)  ( P  Q)  ( P   Q)

 (1,2,3).



 ( A)  consisting of missing maxterms

 (0)

 M0

 P  Q. 

Principle Conjunctive Normal form



Predicate Calculus
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Predicate Logic
Predicate logic is an extension of propositional logic 
that permits concisely reasoning about whole classes
of entities.

E.g., “x>1”,  “x+y=10”
Such statements are neither true or false when the 
values of the variables are not specified.

Predicate Calculus



Applications of Predicate Logic

It is the formal notation for writing perfectly clear, 
concise, and unambiguous mathematical definitions, 
axioms, and theorems for any branch of mathematics.
Supported by some of the more sophisticated database 
query engines.
Basis for automatic theorem provers and many other 
Artificial Intelligence systems.
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Subjects and Predicates
The proposition 

“The dog is sleeping” 
has two parts:

“the dog” denotes the subject - the object or entity that the sentence is about.
“is sleeping” denotes the predicate- a property that the subject can have.

Predicate Calculus



Propositional Functions
A predicate is modeled as a function P(·) from objects to 
propositions.

P(x) = “x is sleeping” (where x is any object).
The result of applying a predicate P to an object x=a is the 
proposition P(a). 

e.g. if P(x) = “x > 1”,
then P(3) is the proposition “3 is greater than 1.”

Note: The predicate P itself (e.g. P=“is sleeping”) is not a 
proposition (not a complete sentence).
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Propositional Functions
Predicate logic includes propositional functions of any
number of arguments.

e.g. let P(x,y,z) = “x gave y the grade z”,   
x=“Mike”, y=“Mary”, z=“A”, 

P(x,y,z) = “Mike gave Mary the grade A.”
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Universe of Discourse

The collection of values that a variable x can take is 
called x’s universe of discourse.

e.g.,  let P(x)=“x+1>x”.  
we could define the course of universe as the set of 

integers. 
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Variables and quantifiers, Free and 
bound variables

97



Quantifier Expressions

Quantifiers allow us to quantify (count) how many
objects in the universe of discourse satisfy a given 
predicate:

- “” is the FORLL or universal quantifier.
x P(x) means for all x in the u.d., P holds.

- “” is the XISTS or existential quantifier.
x P(x) means there exists an x in the u.d. (that   

is, one or more) such that P(x) is true.
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Universal Quantifier : Example

Let P(x) be the predicate “x is full.”
Let the u.d. of x be parking spaces at UNR.
The universal quantification of P(x), 

x P(x), is the proposition:
“All parking spaces at UNR are full.” or
“Every parking space at UNR is full.” or
“For each parking space at UNR, that space is full.”
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The Universal Quantifier 

To prove that a statement of the form 
x P(x) is false, it suffices to find a counterexample

(i.e., one value of x in the universe of discourse such 
that P(x) is false)

e.g., P(x) is the predicate “x>0”
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Existential Quantifier  Example

Let P(x) be the predicate “x is full.”
Let the u.d. of x be parking spaces at UNR.
The universal quantification of P(x), 
x P(x), is the proposition:

“Some parking space at UNR is full.” or
“There is a parking space at UNR that is full.” or
“At least one parking space at UNR is full.”
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Quantifier Equivalence Laws

Definitions of quantifiers: If u.d.=a,b,c,… 
x P(x)  P(a)  P(b)  P(c)  … 
x P(x)  P(a)  P(b)  P(c)  …
We can prove the following laws:
x P(x) x P(x)
x P(x) x P(x)
Which propositional equivalence laws can be used to 
prove this?  
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More Equivalence Laws

x P(x) x  P(x) 
x P(x) x  P(x) 

x y P(x,y) y x P(x,y)
x y P(x,y) y x P(x,y)

x (P(x)  Q(x))  (x P(x))  (x Q(x))
x (P(x)  Q(x))  (x P(x))  (x Q(x))
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Scope of Quantifiers

The part of a logical expression to which a quantifier is 
applied is called the scope of this quantifier.

e.g., (x P(x))  (y Q(y))
e.g., (x P(x))  (x Q(x))
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Free and Bound Variables

An expression like P(x) is said to have a free variable x (meaning x is 
undefined).
A quantifier (either  or ) operates on an expression having one or 
more free variables, and binds one or more of those variables, to 
produce an expression having one or more bound variables.
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Examples of Binding

P(x,y) has 2 free variables, x and y.
x P(x,y) has 1 free variable, and one bound variable.  
[which is which?]
“P(x), where x=3” is another way to bind x.
An expression with zero free variables is an actual 
proposition.
An expression with one or more free variables is still 
only a predicate: x P(x,y)
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More to Know About Binding

x x P(x) - x is not a free variable in 
x P(x), therefore the x binding isn’t used.
(x P(x))  Q(x) - The variable x is outside of the scope
of the x quantifier, and is therefore free.  Not a 
proposition.
(x P(x))  (x Q(x)) - Legal because there are 2 
different x’s!
Quantifiers bind as loosely as needed:
parenthesize x   P(x)  Q(x)
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Nested Quantifiers

Exist within the scope of other quantifiers
Let the u.d. of x & y be people.
Let P(x,y)=“x likes y” (a predicate with 2 f.v.’s)
Then y P(x,y) = “There is someone whom x likes.” (a 
predicate with 1 free variable, x)
Then x (y P(x,y)) = “Everyone has someone whom 
they like.”
(A __________  with ___ free variables.)
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Order of Quantifiers Is Important!!
If P(x,y)=“x relies upon y,” express the following in unambiguous 
English:
x(y P(x,y))=
y(x P(x,y))=
x(y P(x,y))=
y(x P(x,y))=
x(y P(x,y))=

109

Everyone has someone to rely on.

There’s a poor overworked soul whom everyone relies 
upon (including himself)!

There’s some needy person who relies upon 
everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody, (including 
themselves)!

Variables and Quantifiers



Natural language is ambiguous!
“Everybody likes somebody.”

For everybody, there is somebody they like,
x y Likes(x,y)

or, there is somebody (a popular person) whom everyone likes?
y x Likes(x,y)
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Notational Conventions
Consecutive quantifiers of the same type can be 
combined: x y z P(x,y,z) 
x,y,z P(x,y,z)    or even    xyz P(x,y,z)
Sometimes the universe of discourse is restricted 
within the quantification, e.g.,

x>0 P(x) is shorthand for
“For all x that are greater than zero, P(x).”
x>0 P(x) is shorthand for
“There is an x greater than zero such that P(x).”
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Defining New Quantifiers

As per their name, quantifiers can be used to express that a 
predicate is true of any given quantity (number) of objects.
Define !x P(x) to mean “P(x) is true of exactly one x in the universe 
of discourse.”

!x P(x) x (P(x)  y (P(y)  y x))
“There is an x such that P(x), where there is no y such that P(y) and y
is other than x.”
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Some Number Theory Examples

Let u.d. = the natural numbers 0, 1, 2, … 
“A number x is even, E(x), if and only if it is equal to 2 
times some other number.”
x (E(x)  (y x=2y))
“A number is prime, P(x), iff it isn’t the product of two 
non-unity numbers.”
x (P(x)  (y,z x=yz  y1  z1))
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Calculus Example
Precisely defining the concept of a limit using quantifiers:
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Rules of Inference
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• Means to draw conclusions from other  assertions

• Rules of inference provide justification of  steps 

used to show that a conclusion follows  from a set 

of hypotheses

• The next several slides illustrate specific  rules of 

inference

Rules of inference



Addition
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A true hypothesis implies that the 
disjunction  of that hypothesis and another 
are true

p

----------

 p  q
or p  (p  q)

Rules of inference



Simplification
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If the conjunction of 2 propositions is 
true,  then each proposition is true

p  q

----------

 p

or (p  q)  p

Rules of inference



Conjunction
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If p is true and q is true, then p  q is
true

p  

q

----------

 p  q

or ((p)  (q))  p  q

Rules of inference



Modus Ponens
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If a hypothesis and implication are both 
true,  then the conclusion is true

p

p  q

-----------

 q

or (p  (p  q))  q

Rules of inference



Modus Tollens
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If a conclusion is false and its implication  
is true, then the hypothesis must be 
false
q

p q

-----------

p

or [q  (p  q)] p

Rules of inference



Hypothetical Syllogism
If an implication is true, and the implication  formed 
using its conclusion as the hypothesis is  also true, then 
the implication formed using the  original hypothesis 
and the new conclusion is  also true

p  q  q  r

-----------

 p  r or [(p  q)  (q  r)]  (p  r)

10

Rules of inference



Disjunctive Syllogism

If a proposition is false, and the disjunction of it  and another proposition is true, the 

second  proposition is true

12

2

p q

p

---------

 q

or [(p q)  p]  q

Rules of inference



Using rules of inference

12

3

• We can use the rules of inference to form  the 

basis for arguments

• A valid argument is an implication in  which, 
when all hypotheses are true, the conclusion is 
true:  (p1  p2  …  pn) q

• When several premises are involved,  several 

rules of inference my be needed to  show that 
an argument is valid

Rules of inference



Example
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Let p = “It is Monday” and
p  q = “If it is Monday, I have Discrete Math today”  
Since these statements are both true, then by Modus  
Ponens:
(p  (p  q))  q
we can conclude “I have Discrete Math today” (q)

Rules of inference



Another Example
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5

Let q = “I don’t have Discrete Math today” and
p  q = “If it is Monday, I have Discrete Math today”  
If both of the above are true, then by Modus Tollens:

[q  (p  q)] p

we can conclude “It is not Monday” (p)

Rules of inference



Fallacies
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6

A fallacy is an argument based on contingencies 
rather than tautologies; some examples:
– Fallacy of affirming the conclusion:  [(p  q)  q]  p

This is not a tautology because it’s false when p is false  and

q is true

– Fallacy of denying the hypothesis:  [(p  q) p] q

Like the previous fallacy, this is not a tautology  because it is 
false when p is false and q is true

Rules of inference



Rules of Inference for Quantified  Statements

12

7

• Universal instantiation:

xP(x)

----------

 P(c) if c  U

• Universal generalization:

P(c) for arbitrary c  U

-----------------------------

 xP(x) Note: c must be
arbitrary

Rules of inference



Rules of Inference for Quantified  Statements

20

• Existential instantiation:
xP(x)

----------

 P(c) for some c U

Note that value of c is not known; we only know  it 
exists

• Existential generalization:
P(c) for some c  U
------------------------
 xP(x)

Rules of inference



Example

12

9

Let P(x) = “A man is mortal”; then
xP(x) = “All men are mortal”

Assuming p = “Socrates is a man” is true, show that  
q =“Socrates is mortal” is implied

This is an example of universal instantiation:  
P(Socrates) = “Socrates is mortal”;
Since xP(x)

---------

 P(c)

Also, by modus ponens: (p  (p  q))  q

Rules of inference
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Proof Techniques:  Learning Objectives
Learn various proof techniques

Direct

Indirect

Contradiction

Induction

Practice writing proofs

CS:  Why study proof techniques?

Proof by contradiction



Proof Techniques

Statement that can be shown to be true (under certain 
conditions)

Typically Stated in one of three ways

As Facts

As Implications 

As Biimplications
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Validity of Arguments

Proof: an argument or a proof of a theorem consists of a finite 
sequence of statements ending in a conclusion 
Argument: a finite sequence 

of statements.

The final statement,       ,  is the conclusion, and the statements                                 
are the premises of the argument.
An argument is logically valid if the statement formula                                   
is a tautology.
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Proof
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A mathematical proof of the statement S is a sequence of 

logically valid statements that connect axioms, definitions, 

and other already validated statements into a demonstration 

of the correctness of S. The rules of logic and the axioms 

are agreed upon ahead of time.

At a minimum, the axioms should be independent and 

consistent. The amount of detail presented should be 

appropriate for the intended audience.

Proof by contradiction



Proof Techniques

Direct Proof or Proof by Direct Method
Proof of those theorems that can be expressed in the form ∀x 

(P(x) → Q(x)), D is the domain of discourse

Select a particular, but arbitrarily chosen, member a of the 

domain D  

Show that the statement P(a) → Q(a) is true. (Assume that P(a) 

is true

Show that Q(a) is true

By the rule of Choose Method (Universal Generalization), 

∀x (P(x) → Q(x)) is true
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Proof Techniques

Indirect Proof

The implication P → Q  is equivalent to the implication ( Q  
→ P) 

Therefore, in order to show that P → Q  is true, one can also 
show that the implication  ( Q →  P) is true

To show that ( Q  →  P) is true, assume that the negation of 
Q is true and prove that the negation of P is true
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Proof Techniques
Proof by Contradiction 

Assume that the conclusion is not true and then arrive at a 
contradiction
Example: Prove that there are infinitely many prime numbers
Proof:

Assume there are not infinitely many prime numbers, therefore they are listable, 
i.e. p1,p2,…,pn

Consider the number q = p1p2…pn+1. q is not divisible by any of the listed primes
Therefore, q is a prime. However, it was not listed.
Contradiction!  Therefore, there are infinitely many primes.  
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Proof by Contradiction

A – We want to prove p.

We show  that:

(1) ¬p  F (i.e.,   a False statement , say r ¬r)

(2) We conclude that ¬p is false since (1) is True and therefore p is True.

B – We want to show p  q

(1) Assume the negation of the conclusion, i.e., ¬q 

(2) Use show that (p  ¬q )  F

(3) Since ((p  ¬q )  F)  (p  q)    (why?)  we are done

Proof by contradiction
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Example:

Rainy days make gardens grow.
Gardens don’t grow if it is not hot.
When it is cold outside, it rains.

Prove that it’s hot.

Given: R  G
H G
H  R

Show: H

((R  G)  (H  G)  (H  R))  H

?

Example 1: Proof by Contradiction

Let 

R – Rainy day

G – Garden grows

H – It is hot

Hmm. We will assume “not Hot” ≡ “Cold”

Proof by contradiction



Example1:Proof by contradiction

 H 

Given: R  G 
H  G 
H  R 

Show: H 

Aside: we assume it‟s either Hot or it is not Hot. 

Called the “law of excluded middle”. In certain complex 

arguments, it‟s not so clearly valid. (hmm…) This led to 

“constructive mathematics” and “intuitionistic 

mathematics”. 

1. R  G Given 
2. H  G Given 
3. H  R Given 

4. H assume to the contrary 
 
 

5. R MP (3,4) 

6. G MP (1,5) 

7. G MP (2,4) 

8. G  G contradiction 

3 

Proof by contradiction



Automatic Theorem proving 
 

String of Formulas: A string of formulas is defined as follows. 

A) Any formula is a string of formulas 

B) If  and  are strings of formulas, then 

 ,  and  ,  are strings of  formulas. 

C) Only those strings which are obtained by steps (A) and (B) are 
strings of formulas, with the exception of empty string which is also a 
string of formulas. 

 

s 
  Sequents :  If  and  are strings of formulas, then     is called a 
sequent in which  is called antecedent and    is called consequent. 

Automatic Theorem proving



Sequents (Contd.,) 
 

D 

s 
  A sequent    is true if and only if either at least one of the  formulas 
of the antecedent is false or at least one of the formulas of the 
consequent is true. 

  Thus 

A, B, C   
s 

, E, F is true iff  (A  B  C) (D  E  F) is true . 

     
s
  means that  s  is true. 

Automatic Theorem proving



s 

Axioms –theorems -Rules 
 
 

 

  Ex:  A,B,C  P,B,R  is an axiom. 

If   s   is an axiom, then  s . 

  Theorem: The following sequents are theorems of our system. 

a) Every axiom is a theorem . 

b) If a sequent  is a theorem and a sequent  results from  through the 
use of one of the 10 rules of the system which are given below, then  is 
a theorem. 

c) Sequents obtained by (a) and (b) are the only theorems. 

  Rules: The following rules are used to combine formulas within strings by introducing connectives.Corresponding to each of the 
connectives there are two rules, one for introducing the connective in the antecedent and the other for its introduction in the 
consequent. 

Automatic Theorem proving



Rules for Automatic Theorem proving 
 

Antecedent rules: 
s s 

Rule   : If  ,    X ,  then   , X ,    
s s 

Rule   : If  X, Y,  ,    then   , X Y ,    
s s 

  Rule   : If X,  ,    and Y,  ,     , 
s 

then  , X  Y,    


s` s 
  Rule  : If Y,  ,    and  ,    X , 

s 
then  , X  Y,    



s s 
  Rule   : If X,Y, ,    and  ,   X, Y,

s 
then , XY,    

Automatic Theorem proving



Rules for Automatic Theorem proving (contd.,) 
 

  Y 

Consequent rules: 
s s 

Rule  : If X,    ,  then    , X ,

  Rule  : If  
s
X, ,  and  

s  
, , 

s 
then    , X  Y, 

s s 
  Rule  : If   X, Y, ,  then    , X  Y, 

 

s s 
  Rule  : If X ,   Y, ,  and     , X  Y, 

s s 
  Rule  : If X ,    Y, ,  and Y,   X, , 

s 
then   , XY, 

Automatic Theorem proving



Examples 
 
 
 
 

Ex: Using Automatic theorem proving, Show that PQ follows from P. 

  Solution: we need to show that 
s 

(1)   P (PQ ) 
s 

(1) if (2) P ( P  Q ) ( By the rule,  ) 
s 

(2) if (3) P   P , Q ( By the rule,   ) 
Now, (3) is an axiom 
Hence, the theorem (1) follows. 

Automatic Theorem proving



 

Ex: Using Automatic theorem proving, 
Show that  P  does not follow from  PQ. 

 
 

 

Solution: Assume 
s 

  (1)  (PQ ) P 
s 

(1) if (2) ( P  Q ) P ( By the rule,  ) 
s s 

(2) if (3) P  P and (4)  Q P ( By the rule,   ) 
Note that (3)is an axiom, but (4) is not. 

Hence,  P does not follow from PQ. 

Automatic Theorem proving



{P 

Ex: Using Automatic theorem proving, prove the following (a) 
{P(PQ)} R 

(b) R  {P  (P Q)} 
 

s 
  Solution: (a) To show  (1)   {P(PQ)} R 

s 
(1) if  (2)  {P(PQ)}  R ( By using the rule, , twice) 

s 
(2) if  (3)  {P,P,Q)}  R ( By the rule,   ) 

(3) if  (4)  {P,Q)}  
s
, R} ( By the rule,   ) Now (4) is 

an axiom , therefore the result follows. 
 

s 
  (b) To show  (1)   R  {P  (P Q)} 

s 
(1) if (2) R  {P  (P Q)} ( By the rule,  ) 

s 
(2) if (3) R  {P,P, Q)} ( By using the rule,   , twice) 

s 
(3) if (4) {R,P}  {P, Q)} ( By using the rule,  ) 
Now (4) is an axiom , therefore the result follows. 

Automatic Theorem proving



 

Ex: Using Automatic theorem proving, Show that 

 s  {Q  (P  Q)}  P 
 

 

s 
  Solution: (1)  {Q  (P  Q)}  P 

s 
  (1) if (2) {Q  (P  Q)}  P ( By the rule,  ) 

s 
(2) if (3) {Q , (P  Q)}  P ( By the rule,   ) 

  (3) if (4) (P  Q) 
s
P, Q ( By the rule,   ) 

s 
  (4) if (5) Q   P, Q and 

s 
(6)   P, P, Q ( By the rule,   ) 

s 
  (5) if (7) P, Q   Q ( By the rule,  ) 

s 
  (6) if (8) P  P, Q ( By the rule,  ) 

  Now (7) and (8) are axioms, hence the theorem (1) follows. 

Automatic Theorem proving



Relation

If we want to describe a relationship between elements of two sets A and  
B, we can use ordered pairs with their first element taken from A and their  
second element taken from B.
Since this is a relation between two sets, it is calleda
binary relation.
Definition: Let A and B be sets. A binary relation from A to B is a subset of  
A´B.
In other words, for a binary relation R we have R Í A´B. We use the  
notation aRb to denote that (a, b)ÎR
and aRb to denote that (a, b)ÏR.
When (a, b) belongs to R, a is said to be related to b by R.
Example: Let P be a set of people, C be a set of cars, and D be the relation  
describing which person drives which car(s).



P = {Carl, Suzanne, Peter, Carla}, C = {Mercedes, BMW, tricycle}
D = {(Carl, Mercedes), (Suzanne, Mercedes), (Suzanne, BMW), (Peter, tricycle)}  
This means that Carl drives a Mercedes, Suzanne drives a Mercedes and a  
BMW, Peter drives a tricycle, and Carla does not drive any of these vehicles.



Relations: Representation

• To represent a relation, we can enumerate every element of R

• Example

– Let A={a1,a2,a3,a4,a5} and B={b1,b2,b3}

– Let R be a relation from A to B defined as follows

R={(a1,b1),(a1,b2),(a1,b3),(a3,b1),(a3,b2),(a3,b3),(a5,b1)}

• We can represent this relation graphically

b1

b2

b3

A Ba1

a2

a3

a4

a5



Properties

• We will study several properties of relations

– Reflexive

– Symmetric

– Transitive

– Antisymmetric

– Asymmetric



Properties: Reflexivity

• In a relation on a set, if all ordered pairs (a,a) for every aA appears  
in the relation, R is called reflexive

• Definition: A relation R on a set A is called reflexive iff

aA (a,a)R

Example

• Recall the relations below, which is reflexive?

R1={ (a,b) | a  b }

R2={ (a,b) | a,bN, a/bZ }

R3={ (a,b) | a,bN, a-b=2 }

• R1 is reflexive since for every aN, a a

• R2 is reflexive since a/a=1 is aninteger

• R3 is not reflexive since a-a=0 for everyaN



Properties: Symmetry

• Definitions:
– A relation R on a set A is called symmetric if

a,bA ( (b,a)R  (a,b)R )

– A relation R on a set A is called antisymmetric if
a,bA [(a,b)R  (b,a)R  a=b]

• In a symmetric relation aRb  bRa
• In an antisymmetric relation, if we have aRb and bRa hold only when a=b
• An antisymmetric relation is not necessarily a reflexive relation
• A relation can be

– both symmetric and antisymmetric
– or neither
– or have one property but not the other

• A relation that is not symmetric is not necessarily asymmetric



Properties: Transitivity

• Definition: A relation R on a set A is called transitive if whenever  
(a,b)R and (b,c)R then (a,c)R for all a,b,c A

a,b,cA ((aRb) (bRc))  aRc

• Is the relation R={(x,y)R2| xy} transitive?

• Yes, it is transitive because xRy and yRz  xy and yz  xz
xRz

• Is the relation R={(a,b),(b,a),(a,a)} transitive?

No, it is not transitive because bRa and aRb but bRb



Equivalence

Let E be a relation on set A.

E is an equivalence relation if & only if it is:

Reflexive  

Symmetric  

Transitive.

Examples

a E b when a mod 5 = b mod 5. (Over N)

(i.e., a ≡ b mod 5 )

a E b when a is a sibling of b. (Over humans)



Equivalence Class

Let E be an equivalence relation on A.

We denote aEb as a ~ b. (sometimes, it is denoted a ≡ b )  

The equivalence class of a is { b | a ~ b }, denoted [a].

What are the equivalence classes of the example equivalence relations?  

For these examples:

Do distinct equivalence classes have a non-empty intersection?  

Does the union of all equivalence classes equal the underlying set?



Partition

A partition of set S is a set of nonempty subsets,

S1, S2, . . ., Sn, of S such that:

1. i j ( i ≠ j  Si ∩ Sj = Ø).

2. S = S1 U S2 U . . . U Sn.



Let E be an equivalence relation on S.

E’s equivalence classes partition S.

For any partition P of S, there is an equivalence relation on S  

whose equivalence classes form partition P.



Example: The relation “is equal to”, denoted “=”, isan  

equivalence relation on the set of real numbers since  

for any x, y, z ∈ R:

1. (Reflexivity) x = x,

2. (Symmetry) if x = y then y = x,

3. (Transitivity) if x = y and y = z then x =z.



A relation R on set A is said to be transitive relation if whenever  
(a,b)Rand(b,c)Rthen
(a,c )R for all (a,b,c)A.It follows that R is not transitive. if theirexists  
(a,b,c)R such that (a,b)R and (b,c)R but (a,c )R

example:
if we consider a set A={1,2,3} the relation  
R1={(1,1)(1,2)(2,3)(1,3)(3,1)(3,2)}  
R2={(1,2)(2,3)(1,3)(3,1)}
here in the above example R1 is transitive and R2 is nottransitive

Transitivity



Transitivity
A relation is transitive if, for every (a,b)R and (b,c)R,
then (a,c)R

If a < b and b < c, then a < c
Thus, < is transitive

If a = b and b = c, then a = c
Thus, = is transitive



Transitivity example

•Let A={1,2,3,4} determine the nature of the following relations onA  

R1={(1,1)(1,2)(2,1)(2,2)(3,3)(3,4)(4,3)(4,4)}  

R2={(1,2)(1,3)(3,1)(1,1)(3,3)(3,2)(1,4)(4,2)(3,4)}

Here in the above example R1 is transitive because {(1,2)(2,1)(1,1)}

And R2 is also transitive because{(1,3)(3,1)(1,1)}



Transitivity examples

Consider isAncestorOf()
Let Alice be Bob‟s parent, and Bob be Claire‟sparent
Thus,Alice is an ancestor of Bob, and Bob is an ancestor of Claire
Thus, Alice is an ancestor ofClaire
Thus, isAncestorOf() is a transitive relation

Consider isParentOf()
Let Alice be Bob‟s parent, and Bob be Claire‟sparent
Thus,Alice is a parent of Bob, and Bob is a parent of Claire
However, Alice is not a parent of Claire  
Thus, isParentOf() is not a transitiverelation



Consider an transitive relation: ≤
One which if a is related to b and b is related to c then a is related  
to c for all (a,b), (b,c) and (a,c)
Let A = { 1, 2, 3, 4, 5 }

1

5 3

4

2 • A digraph is transitive if, for there is a
edge from a to c when there is a edge
from a to b and from b to c



Partial Order

Definitions:

A relation R on a set S is called a partialorder if it is  

Reflexive

Antisymmetric  

Transitive

Aset S together with a partial ordering R is called a partially ordered set 

(poset, for short) and is denote (S,R)

Partial orderings are used to give an order to sets that may not have anatural  

one

In our renovation example, we could define an ordering such that (a,b)R if  

„a must be done before b can be done‟



Partial Orderings: Notation

• We use the notation:

– apb, when (a,b)R

– apb, when (a,b)R and ab

• The notation p is not to be mistaken for “less than” (p versus≤)

• The notation p is used to denote any partial ordering



Partial ordering examples

• Show that ≥ is a partial order on the set of integers

– It is reflexive: a ≥ a for all a  Z

– It is antisymmetric: if a ≥ b then the only way that
b ≥ a is when b = a

– It is transitive: if a ≥ b and b ≥ c, then a ≥ c

• Note that ≥ is the partial ordering on the set of integers

• (Z, ≥) is the partially ordered set, or poset



Anti symmetric:

• A relation R on set A is said to be Anti symmetric relation if  
whenever (a,b)€R and (b,a)€R then a=b

• It follows that R is not anti symmetric if their exists (a,b)€A such
that (a,b)€R and (b,a)€R then a≠b

Example
Let A={1,2,3}

R1={(1,1)(2,2)}
R2={(1,2)(2,1)(2,3)}

Solution:
R1 is both symmetric and anti symmetric
R2 is neither symmetric nor anti symmetric



Compatibility:

• A relation R on set A is said to be compatability relation  
which contains both reflecive and symmetric relation  
Reflexive: if (a,a)€R for all a€a

Symmetric:(b,a)€R whenever (a,b)€R for all (a,b)€A

Example  

R1={(1,1)(2,2)(3,3)(1,3)(3,1)}

R2={(1,1)(2,2)(1,2)(2,1)}

R3={(1,1)(2,2)(3,3)(1,2)(2,3)} are the relations on set  
A={1,2,3}



Solution:

R1 is compatibility relation because it is reflexive{(1,1)(2,2)(3,3)  
A}and symmetric

{(1,3)(3,1)€A}

R2 is not compatibility relation because R2 is symmetric but not
reflexive

R3 is reflexive but not symmetric so it is not compatibility



Hasse Diagrams

Hasse diagrams are meant to present partial order relations in  
equivalent but somewhat simpler forms by removing certain  
deducible ̀ `noncritical'' parts of the relations.. For better  
motivation and understanding, we'll introduce it through the  
following examples.



Hasse Diagrams

Definitions:
A relation R on a set S is called a partial order if it is

Reflexive

Antisymmetric

Transitive

A set S together with a partial ordering R is called a partially

ordered set (poset, for short) and is denote (S,R)

Partial orderings are used to give an order to sets that may not have a

natural one

In our renovation example, we could define an ordering such that

(a,b)R if „a must be done before b can be done‟



Hasse Diagram: Example

a1

a2

a4
a5

a3

a1

a2

a4
a5

a3
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Hasse Diagrams

• Consider the graph for a finite poset ({1,2,3,4},≤)

• When we KNOW it‟s a poset, we can simplify the graph

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

Called the 
Hasse  

diagram



Hasse Diagrams: Example (1)

• Of course, you need not always start with the complete relation in the  

partial order and then trim everything.

• Rather, you can build a Hasse Diagram directly from the partial order

• Example: Draw the Hasse Diagram

– for the following partial ordering: {(a,b) | a|b }

– on the set {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30,60}

– (these are the divisors of 60 which form the basis of the ancient

Babylonian base-60 numeral system)



1

3 5

15

30

10

60

12

4

2

6

20



Functions

Given any sets A, B, a function f from (or “mapping”) A to B

(f:AB) is an assignment of exactly one element f(x)B

to each element xA.



2

Graphical Representations

• Functions can be represented graphically in several ways:

•

A
B

a
•
b

f  

f
y

x

Plot
Graph

Like Venn diagrams

A
•
•
•
•
•

B
•
•
•

•



Some Function Terminology

• If f:AB, and f(a)=b (where aA & bB), then:

– A is the domain of f.

– B is the codomain of f.

– b is the image of a under f.

– a is a pre-image of b under f.

• In general, b may have more than one pre-image.

– The range RB of f is {b | a f(a)=b }.



Types of functions

One-to-One Function

• A function is one-to-one (1-1), or injective, or an injection, iff  

every element of its range has only one pre-image.

• Only one element of the domain is mapped to any given one

element of the range.

– Domain & range have same cardinality. What about  

codomain?



5

One-to-One Illustration

• Graph representations of functions that are (or not) one-to-

one:

•
•
•
•

•
•
•

•
•

One-to-one

•
•
•
•

•
•
•
•
•

Not one-to-one

•
•
•
•

•
•
•
•
•

Not even a  
function!



Onto (Surjective) Functions

• A function f:AB is onto or surjective or a surjection iff its

range is equal to its codomain (bB, aA: f(a)=b).

• An onto function maps the set A onto (over, covering) the

entirety of the set B, not just over a piece of it.

– e.g., for domain &codomain R, x3 is onto, whereas x2 isn‟t.  

(Why not?)
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Illustration of Onto

• Some functions that are or are not onto their co domains:

Onto
(but not 1-1)

•
•
•
•

•

•
•
•
•

•
•
•
•

•Not Onto  
(or 1-1)

•

• •
• •

• •
•

• •
• •

• •

• •

Both 1-1  
and onto

•
•
•
•
•

1-1 but  
not onto



Bijections

• A function f is a one-to-one correspondence, or a bijection, or

reversible, or invertible, iff it is both one-to-one and onto.



Inverse of a Function

For bijections f:AB, there exists an inverse of f, written

f 1:BA, which is the unique function such that:

f 1  f  I



Inverse Function

• EXAMPLE

{(2, 3), (5, 0), (-2, 4), (3, 3)}

Inverse = switch the x and y, (domain and  
range)

I = {(3, 2), (0, 5), (4, -2), (3, 3)}



{(4, 7), (1, 4), (9, 11), (-2, -1)}

Inverse = ?

I = {(7, 4), (4, 1), (11, 9), (-1, -2)}



• Given f(x) = 3x - 4, find its inverse (f-1(x)).  

y = 3x - 4

switch. x = 3y - 4  

solve for y. x + 4 = 3y  

y = (x + 4)/3



• Given h(x) = -3x + 9, find it’s inverse.  

y = -3x + 9

x = -3y + 9  

x - 9 = -3y

(x - 9) / -3 = y



Composite Functions

• Composite functions are functions that are formed from two functions  
f(x) and g(x) in which the output or result of one of the functions is  
used as the input to the other function. Notation ally we express  
composite functions

fog(x) or f(g(x)

In this case the result or output from g becomes the input to f.



Example 1

Given f x x3 gx x  2 the composite function

f gx f gx  f x2x23  x3 6x2 8x8

Replace g(x) with x+2

Replace the variable  
x in the f function  
with x+2

Expand



Problem 1

1

x
f x g x  3x 5 findFor the functions

f  gx
1

f g x  f 3x5 
3x5

g  f x

x
g  f x  g

 1 
 3

 1 
5 

3
5 x   x    



Breaking Composite Functions Apart

There are instances when we want to take a composite function and break it  
into its component parts. In this case we’ll be looking for an “inner” function  
and an “outer” function. To help you find the inner function look for  
expressions in parentheses, or under radical signs or in denominators.



Example 1

Break the composite function into two smaller functions

f x and g x so that

hx 5 4x2

Inner part Outer part

hx 5 4x2

hx  f g x

g x  5 4x  

f x  x2



Recursive function

• The term "recursive function" is often used informally to describe any  

function that is defined with recursion. There are several formal  

counterparts to this informal definition, many of which only differ in  

trivial respects.

• Kleene (1952) defines a "partial recursive function" of nonnegative  

integers to be any function that is defined by a noncontradictory system  

of equations whose left and right sides are composed from

• function symbols (for example, , , , etc.), (2) variables for nonnegative  

integers (for example, , , , etc.), (3) the constant 0, and (4) the  

successor function .

•



• defines to be the function that computes the product of and .

• Note that the equations might not uniquely determine the value of for  
every possible input, and in that sense the definition is "partial." If the  
system of equations determines the value of f for every input, then the  
definition is said to be "total." When the term "recursive function" is  
used alone, it is usually implicit that "total recursive function" is  
intended. Note that some authors use the term "general recursive  
function to mean partial recursive function, although others use it to  
mean "total recursive function."

• The set of functions that can be defined recursively in this manner is  
known to be equivalent to the set of functions computed by Turing  
machines and by the lambda calculus.



Some more examples of functions

Example:

Let f:R->R and g:R->R and h:R->R is defined as f(x)=2x+1 ∀
X€ R h(x)=2x-2 ∀ X€ R and g(x)=3x+2 then find

•fog

•gof

•fo(goh)

•fo(hog)

•go(foh)

•go(fof)

•ho(gof)



Solution
f(x)=2x+1  

g(x)=3x+2  

h(x)=2x-2  

fog(x)=f(g(x))

=f(3x+2)

=2(3x+2)+1

= 6x+4+1

= 6x+5



• 2.gof(x)=g(f(x))

=g(2x+1)

=3(2x+1)+2

=6x+3+2

=6x+5



3.fo(goh)=f(g(h(x)))

=f(g(2x-2))

=f(3(2x-2)+2)

=f(6x-4)

=2(6x-4)+1

=12x-8+1

=12x-7



fo(hog)=f(h(g(x)))

=f(h(3x+2))

=f(2(3x+2)-2)

=f(6x+4-2)

=f(6x+2)

=2(6x+2)+1

=12x+4+1

=12x+5



go(foh)=g(f(h(x)))

=g(f(2x-2))

=g(2(2x-2)+1)

=g(4x-4+1)

=g(4x-3)

=3(4x-3)+2

=12x-9+2

=12x-7



6. go(fof)=g(f(f(x))

=g(f(2x+1))

=g(2(3x+2)-2)

=g(6x+4-2)

=g(6x+2)

=2(6x+2)+1

=12x+4+1

=12x+5



7. ho(gof)=h(g(f(x)))

=h(g(2x+1))

=h(3(2x+1)+2)

=h(6x+3+2)

=h(6x+5)

=2(6x+5)-2

=12x+10-2

=12x+8



LATTICE

Lattice introduced as poset (p,≤) in which every pair has agreatest
lower bound(GLB) and least upper bound(LUP) is calledlattice.

GLB:-(greatest lower bound) : greatest lower bound of(a,b)=a*b(or)
a.b (or) gcd of a and b (or) a∩b

Example:
GLB of (2,3)=6
Gcd of (2,3) =6

LUB:-(least upper bound): least upper bound of(a,b)=a+b=a b=lcm of a
and b=aUb



EXAMPLE

1. Let p={2,3,6,12} then prove that (p,≤) this  
notation is lattice(or) not

Solution:

Given that p=(2,3,6,12}

Consider one pair(2,3) from set p

GLB of(2,3) =1 p means it is not GLB from set p  

LUB of (2,3)=6 p then (p,≤) is not a lattice



2. if A is finite set and p(a) is power set then prove that (p(a), ≤) is  
lattice for
i) A={a}
ii) A={a,b}

Solution:
A={a}

P(a)={{ᴓ},{a}}
GLB of (ᴓ,{a})=ᴓ∩{a}

=ᴓ p(a)



Therefore (ᴓ, {a}) has a GLB  

P(a)={{ᴓ},{a}}

LUB of (ᴓ,{a})=ᴓ∩{a}

={a} p(a)

Therefore (ᴓ, {a}) has a LUB

(p(a), ≤) is a lattice



A={a,b}

P(a)={{ᴓ},{a},{b},{a,b}}

GLB of (ᴓ,{a})=ᴓ∩{a}

=ᴓ p(a)

Therefore (ᴓ, {a}) has a GLB

LUB of (ᴓ,{a})=ᴓU{a}

={a} p(a)



Therefore (ᴓ, {a}) has a LUB

Therefore (ᴓ, {a}) has GLB and LUB-----1  

GLB of (ᴓ,{b})=ᴓ∩{b}

=ᴓ p(a)



Therefore (ᴓ, {b}) has a GLB  

LUB of (ᴓ,{b})=ᴓU{b}

={b} p(a)

Therefore (ᴓ, {b}) has a LUB

Therefore (ᴓ, {b}) has GLB and LUB-----2



GLB of (ᴓ,{a,b})=ᴓ∩{a,b}

=ᴓ p(a)  

Therefore (ᴓ, {a,b}) has a GLB

LUB of (ᴓ,{a,b})=ᴓU{a,b}

={a,b} p(a)

Therefore (ᴓ, {a,b}) has a LUB

Therefore (ᴓ, {a,b}) has GLB and LUB-----3



GLB of ({a},{b})={a}∩{b}

=(a,b} p(a)  

Therefore ({a}{b}) has a GLB

LUB of ({a},{b})={a}U{b}

={a,b} p(a)

Therefore ({a},{b}) has a LUB

Therefore ({a},{b}) has GLB and LUB-----4



GLB of ({b},{a,b})={b}∩{a,b}

=(b} p(a)  

Therefore has ({b},{a,b}) a GLB

LUB of ({b},{a,b})={b}U{a,b}

={a,b} p(a)

Therefore ({b},{a,b})has a LUB

Therefore ({b},{a,b}) has GLB and LUB-----5



GLB of ({b},{a,b})={a}∩{a,b}

={a} p(a)  

Therefore has ({a},{a,b}) a GLB

LUB of ({a},{a,b})={a}U{a,b}

={a,b} p(a)

Therefore ({a},{a,b})has a LUB

Therefore ({a},{a,b}) has GLB and LUB-----6

From equation 1,2,3,4,5,6 (p(a),≤) is lattice



PROPERTIES OF LATTICE



LATTICE AS ALGEBRAIC SYSTEM:







BOUNDED LATTICE









BOUNDED LATTICE

A Lattice (L,R) is said to be bounded lattice if it has greatestelement  
and least element

In the bounded lattice a greatest element is denoted by Iand
least element is denoted by O



DISTRIBUTIVE LATTICE

• A LATTICE (L,R) is said to be distributive if for any a,b,c L,the  
following distributive laws hold,



EXAMPLE



EXAMPLE



Algebraic structures: Algebraic Systems

N = {1,2,3,4,….. } = Set of all natural numbers.

Z = { 0,  1,  2,  3,  4 , ….. } = Set of all integers.

Q = Set of all rational numbers.  

R = Set of all real numbers.

Algebraic System: A set „A‟ with one or more binary(closed)
operations defined on it is called an algebraic system.

Ex: (N, + ), (Z, +, – ), (R, +, . , – ) are algebraic systems.



Algebraic Systems

Algebra is about operations on sets. You have met many

operations;

For Example:

 addition and multiplication of numbers;

 modular arithmetic;

 addition and multiplication of polynomials;

 addition and multiplication of matrices;

 union and intersection of sets;

 composition of permutations.



Algebraic Systems

 Many of these operations satisfy similar familiar laws.

 In all these cases, the “associative law” holds, while most (but  

not all!) also satisfy the “commutative law”.



Some Laws of Algebra

 a + 0 = a

 (-a) + a = 0

 a  1 = a

 a  0 = 0

 a + b = b + a

 a + (b+c) = (a+b) + c

 a(b+c) = ab + ac

{+ identity}

{+ complement}

{ identity}

{ null}

{+ commutative}

{+ associative}

{distributive law}



Theore
m

(-1)  (-1) = 1

(-1)  (-1)
= ((-1)  (-1)) + 0
= ((-1)  (-1)) + ((-1) + 1)
= (((-1)(-1)) + (-1)) + 1
= (((-1)(-1)) + (-1)1) + 1
= ((-1)((-1) + 1)) + 1
= ((-1)0) + 1
= 0 + 1
= 1 + 0
= 1

{+ id}
{+ comp}
{+ assoc}
{ id}
{dist law}
{+ comp}
{ null}
{+ comm}
{+ id}



Algebraic structures: Algebraic Systems

Binary Operations and General Properties

Let S- be a non-empty set and * (read as star) be an operation  

on S. The operation on the set is a rule, which assigns to each  

ordered pair of elements of the set, a unique element of S.  

Closure Property

Consider a binary operation, . The operation * is said to

be closed, if for all

The new element also belongs to S.

a,bS,abS



Examples and General
Properties

Example : A set of integers Z is closed with respect to the binary  

operations, namely, addition, multiplication and

subtraction but not with respect to division.

a,bZ, (ab)S,(ab)Z, (a /b)Z

Example: The set of odd integers is not closed with  

respect to addition, since sum of two odd integers is an  

even, which is not the member of the set.



Examples and General
Properties

Commutative Property

Commutative means that the order does not make any difference.  

a + b = b + a

a * b = b * a  

Examples

4 + 5 = 5 + 4

2 * 3 = 3 * 2

The commutative property does not work for subtraction or  

division.



Examples and General
Properties

Example The addition (+) and multiplication (.) are  Associative in

the following sets .

N = The set of natural numbers, I or Z = The set of  Integers,
Q = The set of Rational, R = The set of real,

C = The set of Complex numbers.  (a+b) + c = a+ (b+c) 

, (a.b) . c = a. (b.c)

Associative Property

Consider a binary operation *.

For any a, b, c S :(a *b)* c  a *(b * c)



Examples and General
Properties

Existence of Identity Element

Consider an element e , such that. Then the element is called the  

identity element of S with respect to the e  Sbinary operation .  

For example , 0 and 1 are the identity elements of Z with respect  

to the operations of addition and multiplication respectively.

Existence of Inverse:

Consider an element . The element , is called the inverse of a  

under the operation *. such that

a  a  1  a  1  a  e



Distributive Property

If „+‟ and „*‟ are two operations defined on set „A‟ such that

a  (b * c)  (a  b )* (a  c)

(b * c)  a  (b  a )* (c  a)

Examples and General
Properties



Semi Groups

A Semi group is an algebra which consists of a set and a binary

associative operation. There need not be an identity element nor

inverses for all elements.

A finite or infinite set „S′ with a binary operation „ο′(Composition) is

called semigroup if it holds following two conditions simultaneously.



Semi Groups

Closure Property:

For every pair (a,b)∈S,(aοb) has to be present in the set S.

Associative Property: For every element a,b,c∈S,(aοb)οc=aο(bοc)  

must hold.



Example

The set of positive integers (excluding zero) with addition  

operation is a semigroup.

For example:

S={1,2,3,…}

Here closure property holds as for every pair (a,b)∈S,(a+b)

is present in the set S.

For example:

1+2=3∈S

Associative property also holds for every element

a,b,c∈S,(a+b)+c=a+(b+c)  

For example:  

(1+2)+3=1+(2+3)=5



Semi Group

Let A be a set, with a binary function : A A → A defined on it.

1. <A, > is a semigroup if  is associative:

(ab)c = a(bc)

2. <A, > is a group if also:

(i) there exists some  such that for all a:

a = a = a

(ii) for all a, there is some -a such that:

 = a-a = -aa



Semi Group

Let S- be a nonempty set and is a binary operation on S, then the

algebraic system (S,*) is called a semi-group , if the operation * is

associative. The algebraic system is called semigroup.

a,b,cS, a*(b*c)(a*b)*c

It is to note that since the characteristic property of a binary operation

on a set S is the closure property, it is not necessary to mention it

explicitly when algebraic system is defined.



Monoid
s

A monoid is a semigroup with an identity element. The identity  

element (denoted by e or E) of a set S is an element such that  

(aοe)=a, for every element a∈S.

 An identity element is also called a unit element.

 So, a monoid holds three properties simultaneously − Closure,  

Associative, Identity element.



Example

The set of positive integers (excluding zero) with multiplication  

operation is a monoid.

S={1,2,3,…}

Here closure property holds as for every pair (a,b)∈S,(a×b) is present in  

the set S.

[For example, 1×2=2∈Sand so on]

Associative property also holds for every element

a,b,c∈S,(a×b)×c=a×(b×c)

[For example, (1×2)×3=1×(2×3)=6and so on]

Identity property also holds for every element a∈S,(a×e)=a

[For example, (2×1)=2,(3×1)=3 and so on].  

Here identity element is 1.



Monoid
s

Monoid: If a semi- group (M,*) has an identity element with respect  

to the operation * , then (M,*) is called a monoid. The algebraic  

system is called a monoid.

a,b,cM,a*(b*c)  (a*b)*c

 e  M , a * e  e * a  a

The set of positive even numbers is a semi-group with respect to the

binary operation addition and multiplication.



Example

Example: The set of negative integers is not a semi-group. Hence, the  

operation - is closed in Z. But the operation is not associative.

Consider a = 2 , b = 5, and c = 6  

(2-5) - 6 = -3 – 6 = - 9

2-(5 – 6) = 2 - (-1) = 3, which is not the element of Z

Example : The set of natural numbers N ={ 1,2,3,----} is a semi-group  

under the operation addition, but not a monoid, since the identity  

element does not exists i.e.,

0  N



Monoid
s

A semi-group is a set X with an operation which is associative,  

(xy)z=x(yz).

A semi-group with an identity 1 is called a monoid . The model  

for monoids is the composition of morphisms φ : X → X in  

any category (e.g. the functions XX ).

The ordered product of n -terms is associative (by induction),  

so can omit brackets x1….xn



Groups, Sub groups

Groups: A group is a monoid with an inverse element. The inverse  

element (denoted by I) of a set S is an element such that  

(aοI)=(Iοa)=a, for each element a∈S. So, a group holds four  

properties simultaneously - i) Closure, ii) Associative, iii) Identity  

element, iv) Inverse element. The order of a group G is the number  

of elements in G and the order of an element in a group is the least  

positive integer n such that a is the identity element of that group G.



Examples

 The set of N×N non-singular matrices form a group under

matrix multiplication operation.

 The product of two N×N non-singular matrices is also an N×N

non-singular matrix which holds closure property.

 Matrix multiplication itself is associative. Hence, associative  

property holds.

 The set of N×N non-singular matrices contains the identity  

matrix holding the identity element property.

 As all the matrices are non-singular they all have inverse  

elements which are also nonsingular matrices. Hence, inverse  

property also holds.



Abelian Group

An abelian group G is a group for which the element pair (a,b)∈G

always holds commutative law. So, a group holds five properties

simultaneously - i) Closure, ii) Associative, iii) Identity element,

iv) Inverse element, v) Commutative.

Example

 The set of positive integers (including zero) with addition

operation is an abelian group. G={0,1,2,3,…}

 Here closure property holds as for every pair (a,b)∈S,(a+b) is

present in the set S.

 [For example, 1+2=2∈S and so on]



Example

 Associative property also holds for every element a,b,c∈S,  

(a+b)+c=a+(b+c)

 [For example, (1+2)+3=1+(2+3)=6 and so on]

 Identity property also holds for every element a∈S,(a×e)=a

 [For example, (2×1)=2,(3×1)=3 and so on]. Here, identity

element is 1.

 Commutative property also holds for every element

a∈S,(a×b)=(b×a)

 [For example, (2×3)=(3×2)=3 and so on]



Cyclic Group and Subgroup

A cyclic group is a group that can be generated by a single

element. Every element of a cyclic group is a power of some

specific element which is called a generator. A cyclic group

can be generated by a generator „g‟, such that every other

element of the group can be written as a power of the

generator „g‟.

Example

 The set of complex numbers {1,−1,i,−i} under multiplication  

operation is a cyclic group.

 There are two generators − i and –i as i1=i,i2=−1,i3=−i,i4=1  

and also (–i)1=−i,(–i)2=−1,(–i)3=i,(–i)4=1 which covers all the  

elements of the group. Hence, it is a cyclic group.



Subgroup

 A subgroup H is a subset of a group G (denoted by H≤G) if it  

satisfies the four properties simultaneously − Closure,  

Associative, Identity element, and Inverse.

 A subgroup H of a group G that does not include the whole  

group G is called a proper subgroup (Denoted by H<G). A  

subgroup of a cyclic group is cyclic and a abelian subgroup is  

also abelian.

 Note : A cyclic group is always an abelian group but not every  

abelian group is a cyclic group. The rational numbers under  

addition is not cyclic but is abelian.



Examples

Let a group G={1,i,−1,−i}

Then some subgroups are H1={1},H2={1,−1}

This is not a subgroup − H3={1,i}  

because that (i)−1=−i is not in H3



Homomorphis
m

A homomorphism is a map between two algebric structures of the same  

type (that is of the same name), that preserves the operations of the  

structures.

This means a map f : A → B between two sets A, B equipped with the  

same structure such that, if ∗ is an operation of the structure, then

f ( x ∗ y ) = f ( x ) ∗ f ( y ) for every pair x, y of elements of A.

 If (G, ・) and (H, * ) are two groups, the function f :G → H is called a

group homomorphism if f (a ・ b) = f (a) * f (b) for all a, b ∈ G.
 We often use the notation f : (G, ・) → (H, *) for such a

homomorphism.

 Many authors use morphism instead of homomorphism.

 A group isomorphism is a bijective group homomorphism.



Isomorphis
m

Definition : Let (G,*) and (H,*) be the group and its subgroup then the

function f : G H is a homomorphism and the following relation holds, A

homomorphism is an isomorphism if it is bijective equivalently, if it has

an inverse.

f (x y)  f (x)  f (y) x, yG

If G and H are groups, G and H are isomorphic if there is an  

isomorphism.

f : G H . Isomorphic groups are the same as groups.

Note: Let (G,∗) be an arbitrary group and H = { e } ,then the function  

f : G H such that, f(x) – e for any x ∈ G is a homomorphism.



Isomorphis
m

Groups G and H are not isomorphic if they have different

orders, or if one satisfies the group property that the other

doesn't.

For example, two groups are not isomorphic if one is abelian

and the other is not; two groups are not isomorphic if the orders

of elements of one are not the same as the orders of elements of

the other.



Homomorphism,
Isomorphism

 In abstract algebra, an isomorphism is a bijective map f such

that both f and its inverse f −1 are homomorphisms, i.e.,

structure-preserving mappings. In the more general setting of

category theory, an isomorphism is a morphism f: X → Y in a

category for which there exists an "inverse" f −1: Y → X, with

the property that both f −1f = idX and f f −1 = idY.

 Informally, an isomorphism is a kind of mapping between

objects, which shows a relationship between two properties or

operations. If there exists an isomorphism between two

structures, we call the two structures isomorphic. In a certain

sense, isomorphic structures are structurally identical, if you

choose to ignore finer-grained differences that may arise from

how they are defined.



monoid
s

Semigroup homomorphism:

 Let (S, *) and (T, D) be any two semigroups. A mapping

g: S ® T such that any two elements a, b Î S , g(a * b) = g(a) D  

g(b) is called a semigroup homomorphism.

Monoid homomorphism:

 Let (M, *,eM) and (T, D,eT) be any two monoids. A mapping

g: M® T such that any two elements a, b Î M ,

g(a * b) = g(a) D g(b) and g(eM) = eT is called a monoid  

homomorphism.



Rings

Definition: A structure (R, +, ·) is a ring if R is a non-empty set  

and + and are binary operations: such that

+ : R × R → R, (a, b) ›→ a + b

. : R × R → R, (a, b) ›→ a · b

Addition: (R, +) is an abelian group, that is,

Associativity: For all a, b, c ∈ R we have  

a + (b + c) = (a + b) + c

 Zero element: There exists 0 ∈ R such that for all a ∈ R  

we have a + 0 = 0 + a = a

 Inverse: For any a ∈ R there exists −a ∈ R such that  

a + (−a) = (−a) + a = 0

 Commutativity: For all a, b ∈ R we have  

a + b = b + a



Rings

Multiplication:

 Associativity: For all a, b, c ∈ R we have a·(b·c) = (a·b)·c

Addition and multiplication together:

 For all a, b, c ∈ R,

a · (b + c) = a · b + a · c and (a + b) · c = a · b + b · c

 We sometimes say „R is a ring‟, taken it as given that the ring  

operations are denoted + and ·. As in ordinary arithmetic we  

shall frequently suppress · and write ab instead of a · b

 We do NOT demand that multiplication in a ring be  

commutative. As a consequence we must postulate  

distributivity as 2 laws, since neither follows from the other in  

general.



Examples of Rings

 All of Z, Q, R and C are commutative rings with identity (with

the number 1 as the identity).

 N is NOT a ring for the usual addition and multiplication.

These are binary operations and we do have a zero element,

namely 0, so axiom holds. However (existence of additive

inverses) fails: there is no n ∈ N for which 1+n=0, for

example.

coefficients, form a

the usual addition and

 Note: Polynomials, with real  

commutative ring with identity under  

multiplication; we denote this by R[x].



Calculation rules for rings

Assume that (R; +, ) is a commutative ring. Let a, b, c R.

i. If a + b = a + c then b = c.

ii. If a + a = a then a = 0.

iii. −(−a) = a.

iv. 0a = 0.

v. −(ab) = (−a)b = a(−b).

vi. (−1)a = −a. (Assume in addition that R has an identity 1 )

vii. If a ∈ R has a multiplicative identity a−1 then ab = 0 implies
b = 0.



Fields

Definition:

A field F is a set together with two binary operations + and ×,  

satisfying the following properties:

 (F,+) is a commutative group

 (F-{0},×) is a commutative group

 The distributive law holds in F:  

(a + b) × c = (a × c) + (b × c)

Note: A field is a commutative ring with identity where each  

non-zero element has a multiplicative inverse.



Principles

Combinatorics is the study of collections of objects. Specifically,  

counting objects, arrangement, derangement, etc. along with their  

mathematical properties.

Counting objects is important in order to analyze algorithms and  

compute discrete probabilities.

Originally, combinatorics was motivated by gambling: counting  

configurations is essential to elementary probability.

A simple example: How many arrangements are there of a deck of 52

cards?

 In addition, combinatorics can be used as a proof technique.

A combinatorial proof is a proof method that uses counting arguments  

to prove a statement



Fundamental Counting Principle

 Fundamental Counting Principle can be used to determine the

number of possible outcomes when there are two or more

characteristics .

 Fundamental Counting Principle states that if an event has m

possible outcomes and another independent event has n

possible outcomes, then there are m* n possible outcomes for

the two events together.



Fundamental Counting Principle

 Lets start with a simple example.

 A student is to roll a die and flip a coin. How many possible  

outcomes will there be?

1H 2H 3H 4H 5H 6H

1T 2T 3T 4T 5T 6T

6*2 = 12 outcomes  

12 outcomes



Fundamental Counting Principle

 For a college interview, Robert has to choose what to wear  

from the following: 4 slacks, 3 shirts, 2 shoes and 5 ties. How  

many possible outfits does he have to choose from?

4*3*2*5 = 120 outfits

 Example: If a password is 6,7,or 8 characters long; a character
is an uppercase letters or a digit, and the password is required
to include at least one digit - how many passwords can there
be?

 First, two most basic rules:

1. Sum rule

2. Product rule



Fundamental Counting Principle

 Let us consider two tasks:

– m is the number of ways to do task 1

– n is the number of ways to do task 2

– Tasks are independent of each other, i.e.,

Performing task 1 does not accomplish task 2 and vice
versa.

 Sum rule: the number of ways that “either task 1 or task 2 can  
be done, but not both”, is m + n.



Fundamental Counting Principle

 Let us consider two tasks:

– m is the number of ways to do task 1

– n is the number of ways to do task 2

– Tasks are independent of each other, i.e.,

Performing task 1does not accomplish task 2 and vice
versa.

 Product rule: the number of ways that “both tasks 1 and 2 can  
be done” in mn.



Permutations

A Permutation is an arrangement of items in a

particular order.

Notice, ORDER MATTERS!

To find the number of Permutations of n items, we

can use the Fundamental Counting Principle or

factorial notation.



Permutation
s

The number of ways to arrange the letters ABC:

3

3 2

3 2 1

Number of choices for first blank?  

Number of choices for second blank?  

Number of choices for third blank?

3*2*1 = 6 3! = 3*2*1 = 6

ABC ACB BAC BCA CAB CBA



Permutations

To find the number of Permutations of n items chosen  

r at a time, you can use the formula

where 0  r  n .
(n r)!

n pr 
	n!

5!
5 3

(5 3)! 2!


5!
 5* 4* 3  60p 



Permutation
s

Practice:

A combination lock will open when the right choice of

three numbers (from 1 to 30, inclusive) is selected.  

How many different lock combinations are possible  

assuming no number is repeated?

Answer Now



Permutations

Practice:

A combination lock will open when the right choice of

three numbers (from 1 to 30, inclusive) is selected.  

How many different lock combinations are possible  

assuming no number is repeated?

30!
30 3

(30 3)! 27!


30!
 30* 29* 28  24360p 



Permutations

Practice:

From a club of 24 members, a President,Vice  

President, Secretary, Treasurer and Historian  

are to be elected. In how many ways can the  

offices be filled?

Answer Now



Permutations

Practice:

From a club of 24 members, a President, Vice  

President, Secretary, Treasurer and Historian are to be  

elected. In how many ways can the offices be filled?

24 5

24* 23* 22* 21* 20  5,100,480

24!


24!


(24 5)! 19!
p 



Disarrangement
s

A derangement of {1,2,…,n} is a permutation i1i2…in of

{1,2,…,n} in which no integer is in its natural position:  

i11,i22,…,inn.

We denote by Dn the number of derangements of {1,2,…,n}.

Theorem: For n1,

1! 2! 3! n!
nD  n!(1 

1


1


1
 (1)n 1

)



Disarrangement
s

 Proof: Let S={1,2,…,n} and X be the set of all permutations

of S. Then |X|=n!.

 For j=1,2,…,n, let pj be the property that in a permutation, j is

in its natural position. Thus the permutation i1,i2,…,in of S has

property pj provided ij=j. A permutation of S is a derangement

if and only if it has none of the properties p1,p2,…,pn.

 Let Aj denote the set of permutations of S with property  

pj ( j=1,2,…,n).



Examples

Example:

 (1)Determine the number of permutations of

{1,2,3,4,5,6,7,8,9} in which no odd integer is in its natural

position and all even integers are in their natural position.

 (2) Determine the number of permutations of

{1,2,3,4,5,6,7,8,9} in which four integers are in their natural

position.



Examples

 Permutations with relative forbidden position

 A Permutations of {1,2,…,n} with relative forbidden position  
is a permutation in which none of the patterns i,i+1(i=1,2,…,n)  
occurs.

 We denote by Qn the number of the permutations of {1,2,…,n}
with relative forbidden position.



Examples

 Theorem : For n1,

Qn=n!-C(n-1,1)(n-1)!+C(n-1,2)(n-2)!-…+(-1)n-1 C(n-1,n-1)1!

 Proof: Let S={1,2,…,n} and X be the set of all permutations

of S.

Then |X|=n!.  

j(j+1), pj  

Aj: pj

Qn=Dn+Dn-1



Combinations

A Combination is an arrangement of items in which  

order does not matter.

ORDER DOES NOT MATTER!

Since the order does not matter in combinations, there are

fewer combinations than permutations. The combinations

are a "subset" of the permutations.



Combinations

To find the number of Combinations of n items chosen

r at a time, you can use the formula

n r
where 0  r  n .C 

r!(n  r)!

n!



Combinations

To find the number of Combinations of n items chosen

r at a time, you can use the formula

n r
where 0  r  n .C 

n!

r!(n r)!

5!
5 3

5* 4* 3* 2*1


5* 4


20
 10

3* 2*1* 2*1 2*1 2

3!(5 3)! 3!2!


5!
C 



Combinations

Practice:

To play a particular card game, each player is dealt five

cards from a standard deck of 52 cards. How many

different hands are possible?



Combinations

Practice:

To play a particular card game, each player is dealt five cards from

a standard deck of 52 cards. How many different hands are

possible?

52 5

52* 51* 50* 49* 48
 2,598,960

5* 4* 3* 2*1

52!


52!


5!(52 5)! 5!47!
C 



Combinations

Practice:

A student must answer 3 out of 5 essay questions on a test.

In how many different ways can the student select the

questions?



Combinations

Practice:

A student must answer 3 out of 5 essay questions on a test. In  

how many different ways can the student select the questions?

5 3

5!


5!


5*4 
 10

3!(5 3)! 3!2! 2*1
C 



Combinations

Practice:

A basketball team consists of two centers, five forwards, and  

four guards. In how many ways can the coach select a starting  

line up of one center, two forwards, and two guards?

Answer Now



Combinations

Practice:

A basketball team consists of two centers, five forwards, and four

guards. In how many ways can the coach select a starting line up of

one center, two forwards, and two guards?

1!1!

2!
2 1  2C 

Center:

5 2

5!


5*4
 10

2!3! 2*1
C 

4 2

4!


4* 3
 6

2!2! 2*1
C 

Forwards: Guards:

2 C1 * 5 C2 * 4 C2

Thus, the number of ways to select the starting line up

is 2*10*6 = 120.



Permutations with
Repetitions

The number of permutations of “n” objects, “r” of

which are alike, “s” of which are alike, ‘t” of which are  

alike, and so on, is given by the expression

n!

r !  s!  t ! ...



Permutations with
Repetitions

Example 1: In how many ways can all of the letters in the  

word SASKATOON be arranged?

Solution: If all 9 letters were different, we could arrange then in

9! Ways, but because there are 2 identical S‟s, 2 identical A‟s,

and 2 identical O‟s, we can arrange the letters in:

Therefore, there are 45360 different ways the letters can be

arranged.

n ! 9 !
  4 5 3 6 0

r !  s !  t ! ... 2 !  2 !  2 !



Permutations with
Repetitions

Example 2: Along how many different routes can one walk a total  
of 9 blocks by going 4 blocks north and 5 blocks east?

Solution: If you record the letter of the direction in which you  

walk, then one possible path would be represented by the  

arrangement NNEEENENE. The question then becomes one to  

determine the number of arrangements of 9 letters, 4 are N‟s  

and 5 are E‟s.

 Therefore, there are 126 different
9!

126 routes.
5!  4!



Circular and Ring Permutations

Circular Permutations Principle

“n” different objects can be arranged in circle in (n – 1)! ways.

Ring Permutations Principle

“n” different objects can arranged on a circular ring in ways.

( n  1 ) !

2



Circular and Ring Permutations

Example 1: In how many different ways can 12 football players  

be arranged in a circular huddle?

Solution: Using the circular permutations principle there are:  

(12 – 1)! = 11! = 39 916 800 arrangements

If the quarterback is used as a point of reference, then the other 11  

players can be arranged in 11! ways.



Circular and Ring Permutations

Example 2: In how many ways can 8 different charms be

arranged on a circular bracelet?

Solution: Using the ring permutation principle there are:

(n 1)!


(81)!


7!
 2520 ways

2 2 2



Combinations with
repetition

 A combination with repetition of objects from is a way of

selecting objects from a list of . The selection rules are:

 The order of selection does not matter (the same objects

selected in different orders are regarded as the same

combination);

 Each object can be selected more than once.

 Thus, the difference between simple combinations and

combinations with repetition is that objects can be selected

only once in the former, while they can be selected more than

once in the latter.



repetitio
n A more rigorous definition of combination with repetition  

involves the concept of multiset, which is a generalization of  

the notion of set.

 The difference between a multiset and a set is the following:  

the same object is allowed to appear more than once in the list  

of members of a multiset, while the same object is allowed to  

appear only once in the list of members of an ordinary set.

 Like sets, multisets are unordered collections of objects, i.e.

the order in which the elements of a multiset are listed does

not matter.

 A combination with repetition of objects from the objects , is  

one of the possible ways to form a multiset containing objects  

taken from the set .



1

Binomial Theorem

(a + b)4 = (a + b)(a + b)(a + b)(a + b)

4

0
=  a4

4

1 
+ a3b

2 2
4

 
+2 a b 4 

3 
+  ab3

4

4
+ b4

Binomial Theorem: Let x and y be variables, and let n be

any nonnegative integer. Then

(x  y )n

j0 

n n
j

x yn j j



(x  y )n

j0 

n n
j

x yn j j

What is the coefficient of a8b9 in the expansion of (3a +2b)17?

What is n?

What is j?

What is x?  

What is y?

17

9

3a  

2b

17 17
 (3a)8 (2b)9  3

829 a8b9

 9   9 



Binomial Coefficients

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +
b
4

What is coefficient  
of a9b3 in (a + b)12?

Pascal’s triangle

A. 36
B. 220
C. 15
D. 6
E. No clue

A.: 220



(x  y)n

j0 

n n 
j

x yn j j

Sum each row of Pascal’s Triangle:
Powers of 2

j 0 

n

 j 
n 

 2n

2n
Suppose you have a set of size

n. How many subsets does
it have?

How many subsets of size 0
does it have?

Cn 0

How many subsets of size 1
does it have?

nC1

How many subsets of size 2
does it have?

Cn 2

Add them up we have the result.



(x  y)
j0 

j
x yn j j

j 0 

n

  j 
n 

 2 n

j0 
j

1
n  n n j j1  (11)n

j0 
j
n n 

 2n

Alternative (clever) proof? Look at binomial
theoren mn…n  x and y are variables; can pick  

any numbers….

Pick x=1 and y=1 !



Multinomial Theorem

Theorem: In the expansion of

(a1 + … + ak)n,

the coefficient of a1
n1a2

n2…ak
nk is

n!  

n1!n2!nk!



Example: The Multinomial Theorem

 Expand (a + b + c + d)3.

 The terms are

a3, b3, c3, d3, with coefficient 3!/3! = 1.

a2b, a2c, a2d, ab2, b2c, b2d, ac2, bc2, c2d, ad2, bd2, cd2, with  

coefficient 3!/(1!2!) = 3.

abc, abd, acd, bcd, with coefficient 3!/(1!1!1!) = 6.



Example: The Multinomial Theorem

 Therefore,

(a + b + c + d)3 = a3 + b3 + c3 + d3 + 3a2b

+ 3a2c + 3a2d + 3ab2  + 3b2c +3b2d

+ 3ac2  + 3bc2  + 3c2d + 3ad2 + 3bd2

+ 3cd2 + 6abc + 6abd + 6acd + 6bcd.



Trinomial and Multinomial Coefficients

 Example: Suppose we want to form nine-letter words comprising  

4 x’s, 3 y’s, and 2 z’s. How many such words are there (words are

ways

to do this. Next there are 4! ways to assign subscripts to the x’s,

3! ways to do it for the y’s, and 2! ways to do it for the z’s. Thus

Dividing yields

 

 
different if they are visually distinct). Denote the number by 

4,3,2


9

Suppose for a moment that we distinguish the letters by  

attaching subscripts to them:x1, x2 , x3, x4 , y1, etc. Now there are 9!  

different nine-letter words using these nine symbols. We can  

count them in another way, however: First choose the positions


 

for the x’s, y’s, and z’s (without subscripts. There are 


4,3,2

9

9

 

 9
   .  4!3!2!9!.

4,3,2 4!3!2! 4,3,2 

  9!



Trinomial and Multinomial  
Coefficients

, we define the trinomial

• Definition: Given nonnegative integne, nrs1, n2 ,n3

withn1  n2  n3  n

coefficient by

1 2 1 2 3

n!n 
n , n ,n

 n !n !n ! 3 





Trinomial and Multinomial Coefficients

 Theorem : Under these circumstances, the trinomial

counts the number of words
1 2 3

n
coefficient 

n , n , n 
 

n !n !n ! 1 2 3

  n!

(sequences) of length n with n x’s,n2 y’s, andn3 z’s. Equivalently
1

it counts the ways to distribute n labeled balls among three

labeled urns such that the first gets n1
balls, the second gets n2

,

and the third getsn3 . (Think of the position numbers in the word  

corresponding to the balls and the letters x, y, and z being the  

labels on the urns).

 Proof: The above example illustrates the central idea.



Trinomial and Multinomial Coefficients

• Theorem : For nonnegative n, the sum of all

. That is,trinomial coefficients of order n is 3n


  n

n

n1n2n3n 
niN

  3
n , n ,n31 2

• Proof: Summing the trinomial coefficients counts  

every word of length n on x, y, and z. There are 3n

such words.



Trinomial and Multinomial Coefficients

 Theorem (The Trinomial Theorem): For nonnegative n we have

 Proof sketch: In expanding the nth power of the trinomial on the  

left, we get every word of length n on x, y, and z. Much as in the  

binomial case, the coefficient on a particular term is the number  

of words with the specified number of x’s, y’s, and z’s.

nn nn 1 2 z 3
n

  x y
n1n2 n3n n1,n2 ,n3 

niN

 
(x  y  z) 



Principle of Inclusion-Exclusion (PIE)

 Say there are two events, e1 and e2, for which there are n1 and

n2 possible outcomes respectively.

 Now, say that only one event can occur, not both

 In this situation, we cannot apply the sum rule. Why?

… because we would be over counting the number of possible

outcomes.

 Instead we have to count the number of possible outcomes of

e1 and e2 minus the number of possible outcomes in common

to both; i.e., the number of ways to do both tasks

 If again we think of them as sets, we have

|A1 A2| =|A1| + |A2| - |A1A2|



Principle of Inclusion-Exclusion (PIE)

• More generally, we have the following

• Lemma: LetA, B, be subsets of a finite set U. Then

1. |AB| = |A| + |B| - |AB|

2. |A  B|  min {|A|, |B|}

3. |A\B| = |A| - |AB|  |A|-|B|

4. |A| = |U| - |A|

5. |AB| =|AB|-|AB|= |A|+|B|-2|AB|= |A\B|+
|B\A|

6. |A  B| = |A||B|



PIE: Theorem

• Theorem: Let A1,A2, …,An be finite sets, then

|A1 A2 ...An|=i|Ai|

- i<j|Ai Aj|

+ i<j<k|Ai  Aj Ak|

- …

+(-1)n+1 |A1A2...An|

Each summation is over

• all i,

• pairs i,j with i<j,

• triples with i<j<k, etc.



PIE Theorem: Example 1

 To illustrate, when n=3, we have

|A1 A2 A3|= |A1|+ |A2| +|A3|

- [|A1A2|+|A1A3|+|A2A3|]

+|A1  A2 A3|



PIE Theorem: Example 2

 To illustrate, when n=4, we have

|A1A2A3A4|= |A1|+|A2|+|A3|+|A4|

- [|A1A2|+|A1A3|+|A1A4|

+|A2A3|+|A2A4|+|A3A4|]

+ [|A1A2A3|+|A1A2A4|

+|A1A3A4|+|A2A3A4|]

- |A1 A2 A3A4|



Application of PIE: Example A (1)

• How many integers between 1 and 300 (inclusive) are

– Divisible by at least one of 3,5,7?

– Divisible by 3 and by 5 but not by 7?

– Divisible by 5 but by neither 3 or 7?

• Let
A = {nZ | (1  n  300) (3|n)}

B = {nZ | (1  n  300) (5|n)}

C = {nZ | (1  n  300) (7|n)}

• How big are these sets? We use the floor function

|A| = 300/3 = 100

|B| = 300/5 = 60

|C| = 300/7 = 42



Application of PIE: Example A (2)

• How many integers between 1 and 300 (inclusive) are divisible by at least
one of 3,5,7?

Answer: |AB C|

• By the principle of inclusion-exclusion

|AB C|= |A|+|B|+|C|-[|AB|+|AC|+|BC|]+|ABC|

• How big are these sets? We use the floor function

|A| = 300/3 = 100

|B| = 300/5 = 60

|C| = 300/7 = 42

|AB| = 300/15 = 20

|AC| = 300/21 = 100

|BC| = 300/35 = 8

|ABC| = 300/105 = 2

• Therefore:

|AB C| = 100 + 60 + 42 - (20+14+8) + 2 = 162



Application of PIE: Example A (3)

• How many integers between 1 and 300 (inclusive) are divisible by 3 and by
5 but not by 7?

Answer: |(A  B)\C|

• By the definition of set-minus

|(A  B)\C| = |A  B| - |A  B  C| = 20 – 2 = 18

• Knowing that

|A| = 300/3 =100

|B| = 300/5 = 60

|C| = 300/7 = 42

|AB| = 300/15 = 20

|AC| = 300/21 =100

|BC| = 300/35 = 8

|ABC| = 300/105 = 2



GENERATING FUNCTIONS

• Consider a sequence of real numbers a0,a1,a2,…. Suppose there
exists a function

f(x)=a0+a1x+a2x2+…..an-1xn-1+…=

Then f(x) is the generating function for the sequence a0,a1,a2,….an

• Examples:

Since (1-x)-1=1+x+x2+x3…..=

f(x)= (1-x)-1 is a generating function for the sequence 1,1,1,1…..

• Similarly

Since (1+x)-1=1-x+x2-x3….. =

f(x)= (1+x)-1 is a generating function for the sequence 1,-1,1,-1….



GENERATING FUNCTIONS

Examples for finding Generating Functions:  

1) 1, 2, 3, 4…

Here a0=1, a1=2, a2=3, a3=4

So, f(x) = 1x0+2x1+3x2+4x3+…..

= 1+2x+3x2+4x3+……

= (1-x)-2

is the generating function for the given sequence.



GENERATING FUNCTIONS

Examples for finding Generating Functions:  

2) 1, -2, 3, -4…

Here a0=1, a1= -2, a2=3, a3= -4

f(x) = 1x0-2x1+3x2-4x3+…..

= 1-2x+3x2-4x3+……

= (1+x)-2

is the generating function for the given sequence.



GENERATING FUNCTIONS

= 0x0+1x1+2x2+3x3+…..

= x+2x2+3x3+4x4+……

= x (1+2x+3x2+4x3+……)

= x (1-x)-2

is the generating function for the given sequence.

Examples for finding Generating Functions:  

3) 0, 1, 2, 3, 4…

Here a0=0, a1=1, a2=2, a3=3

f(x)



GENERATING FUNCTIONS

= 0x0-1x1+2x2-3x3+…..

= - x+2x2-3x3+4x4+……

= -x(1-2x+3x2-4x3+……)

= -x (1+x)-2

is the generating function for the given sequence.

Examples for finding Generating Functions:  

4) 0, -1, 2, -3, 4…

Here a0=0, a1= -1, a2=2, a3= -3

f(x)



Calculating Co-efficient

We have formulas for Calculating Co-efficient

• (1+x)n =

• (1+x)-n =

• (1-x)n =

• (1-x) -n =



Calculating Co-efficient

Examples:

1) Determine the coefficient of X12 inx3(1-2x)10

• x3(1-2x)10 = x3

= xr+3

• Therefore the coefficient of X12 is

C12 = (-2)9

= -5210.



Calculating Co-efficient

Examples:

2) Determine the coefficient of X5 in(1-2x)-7

• (1-2x)-7 =

=

• Therefore the coefficient of X5 is

C5 = (2)5

= 14,784.



Calculating Co-efficient

Examples:

3) Determine the coefficient of X0 in(3x2-( )15

• We have (3x2-( (3x2)15(1 -) 15 = ) 15

=

=

(315 x30)

315 x30-3r

• Therefore the coefficient of X0 is  

C0 = (3)15

= 35*210*



Calculating Co-efficient

Examples:

4) Determine the coefficient of X10 in (x3-5x)/(1-x)3

• We have (x3-5x)/(1-x)3 = (x3-5x)(1-x)-3

= (x3-5x)

= (x3-5x)

• Therefore the coefficient of X0 is

C10 = -5

= -239.



Counting Technique

Suppose we wish to determine number of integer solutions of the

equation

x1+x2+x3+…….+xn = r, where n≥ r ≥ 0  

under constraints that

x1 can take integer values p11,p12,p13…..

x2 can take integer values p21,p22,p23…..

……
……

xn can take integer values pn1,pn2,pn3…..



Counting Technique

To solve this problem, we first define the functions f1(x), f2(x)…

fn(x) as follows

f1(x) = x p11+ x p12+  xp13+…..

f2(x) = x p21+ x p22+  xp23+…..

………….

fn(x) = x pn1+ x pn2+ x pn3+…..

We then consider

f(x) = f1(x) . f2(x) . f3(x)…. fn(x)

Here f(x) is generating function for the problem.



Counting Technique

Examples:

Using generating function find the number of

i. Non-negative

ii. Positive

integer solutions of the equation

x1+x2+x3+x4=25



Counting Technique

i) In case of Non-negative integer solutions, xi can take values

0, 1, 2, 3… Accordingly whose

for i=1, 2,3,4.fi(x) = x 0+ x 1+ x2+x3+…..

Therefore generating function is

f(x) = f1(x) . f2(x). f3(x).f4(x)

= (x 0+ x1+ x2+x3+…..)4

= ((1-x)-1)4

= (1-x)-4

=

• The coefficient of X25 in this is

= 3276.

• Thus the given equation has 3276 Non-negative integer solutions.



Counting Technique

• In case of Positive integer solutions, xi can take values 1, 2, 3… Accordingly
whose

fi(x) = x1+ x2+ x3+….. for i=1, 2,3,4.

Therefore generating function is

f(x) = f1(x) . f2(x). f3(x).f4(x)

= (x1+ x2+ x3+…..)4

=x4(1+x+ x2+ x3+…..)4

= x4 ((1-x)-1)4

= x4 (1-x)-4

= x4

• The coefficient of X25 in this is

= 2024.

• Thus the given equation has 2024 Positive integersolutions.



Counting Technique

2) Find the number of integer solutions of the equation

x1+x2+x3+x4+x5=30

under constraints xi>=0 for i=1,2,3,4,5 and further x2 is even and x3 is  
odd.

• So, We take

f1(x)= (x 0+ x1+ x2+ x3+…..) = (1-x)-1

f2(x)= (x 0+ x2+ x4+…..…..) = (1-x2)-1

f3(x)= (x + x3+ x5+….…..) = x(1-x2)-1

f4(x)= (x 0+ x1+ x2+ x3+…..) = (1-x)-1

f5(x)= (x 0+ x1+ x2+ x3+…..) = (1-x)-1



Counting Technique

• Therefore generating function is

f(x) = f1(x) . f2(x). f3(x).f4(x).f5(x)

= x (1-x2)-2 (1-x)-3

= x

• The coefficient of X25 in this is

C30 =

is required number.



Substitution Method

Recurrence Relation:

• A recurrence relation is an equation that defines a sequence based  
on a rule that gives the next term as a function of the previous  
term(s).

• A recurrence relation is an equation that recursively defines a  
sequence where the next term is a function of the previousterms  
(Expressing Fn as some combination of Fi with i<n)

• Examples: i) Fibonacci series Fn=Fn−1+Fn−2

ii) Tower of Hanoi Fn= 2Fn−1+1



Substitution Method

Solving Recurrence Relation by Substitution Method:

In this method we solve relations by substitutingvalues  
for n and from those results we can get solution for that  
recurrence relation.

Solving Recurrence Relation by Substitution Method Examples:

1) Solve Recurrence Relation an=an-1+n, n>=1 where a0=2 by
Substitution Method

• Given Recurrence Relation an=an-1+n

If n=1 then a1 = a1-1+1

= a0+1

= 2+1 = 3



Substitution Method

• If n=2 then a2 = a2-1+2

= a1+2

= (a0+1) +2

= 3+2 = 5

• If n=3 then a3 = a3-1+3

= a2+3

= (a1+2) +3

= (a0+1) +2+3

= 5+3 = 8

……

• So an = a0+1 +2+3+…. +n.

• Therefore an = a0 +

an = 2 +



Substitution Method

2) Solve Recurrence Relation an=an-1+n3, n>=1 where a0=5 by
Substitution Method

• Given Recurrence Relation an=an-1+n3

• If n=1 then a1

• If n=2 then

= a1-1+1

= a0+1

= a0+13  

a2 = a2-1+8

= a1+8

= (a0+1) +8

= a0+13+23

• So an = a0+13+23+33+…+n3

an = a0 + ∑ n3



Substitution Method
3) Solve Recurrence Relation an=an-1+n2, n>=1 where a0=4 by

Substitution Method

• Given Recurrence Relation an=an-1+n2

• If n=1 then a1

• If n=2 then

= a1-1+1

= a0+1

= a0+12

a2 = a2-1+4

= a1+4

= (a0+1) +4

= a0+12+22

• So an = 

a0+12+22+32+…+n2 an = 

a0 + ∑ n2



FIRST ORDER RECURRENCE RELATIONS

• We consider for solution recurrence relations of the form

an = can-1+f(n), for n≥1

• Where c is a constant and f(n) is a known function. Such a relation iscalled
recurrence relation of first order with constantcoefficient.

• The solution for this relation is

an = cna0

• If f(n)=0, the relation is called homogeneous, otherwise non- homogeneous
relation.

an = cna0• So, the solution for homogeneous relation where f(n)=0, is

• i.e. if the recurrence relation is of the form

an=can-1

• then solution for this is an = cna0



FIRST ORDER RECURRENCE RELATIONS

Examples:

1)Solve the recurrence relation an+1 = 4an for n>0 and a0=3

• Given recurrence relation is an+1 = 4an which ishomogeneous.

for n≥1.Its solution is an = 4na0

It is given that a0=3

So we get

an = 3.4n for n≥1 is the required solution.



FIRST ORDER RECURRENCE RELATIONS

Examples:

2)  Solve the recurrence relation an = 7an-1 for n≥1and a0=98

• Given recurrence relation can be written as an+1 = 7an for n≥0 which is
homogeneous.

for n≥1.Its solution is an = 7na0

It is given that a0=98  

So we get

an = 98.7n for n≥1 is the required solution.



FIRST ORDER RECURRENCE RELATIONS

Examples:

3) Solve the recurrence relation an = nan-1 for n≥1and a0=1

• From the given recurrence relation we findthat

a1 = 1* a0

a2 = 2* a1 = (2*1)a0

a3 = 3* a2 = (3*2*1) a0 and so on.

Its solution is an = n!a0 for n≥1.

It is given that a0=1

So we get

an = n! for n≥1 is the required solution.



FIRST ORDER RECURRENCE RELATIONS

4) If an is a solution of recurrence relation an+1 = k an for n≥0 and  
a3=153/49 and a5=1377/2401, what is k?

• The solution of relation is an = kna0 for n≥1

From this we get a3 = k3a0 and a5 = k5a0, so

that a5/ a3 = k2

Using the given values we get k2 =9/49.

Therefore k = ± 3/7.



Graphs: Basic concepts of graphs

Basic graph concepts

A graph is a mathematical object that is used to model different
situations – objects and processes:

• Linked list

• Tree

• Flowchart of a program

• Structure chart of a program

• Finite state automata

• City map

• Electric circuits

• Course curriculum



• Definition

A graph is a collection (nonempty set) of vertices andedges

Vertices: can have names and properties

Edges: connect two vertices, can be labeled, can be directed

Adjacent vertices: if there is an edge between them.

Example:

Vertices: A,B,C,D
Edges: AB, AC, BC, CD

Graph1:



• Directed graphs and undirected graphs

There are two basic types of graphs - directed and undirected.

In undirected graphs the edges are symmetrical, e.g. if A and B are
vertices,
A B and B A are one and the same edge.
Graph1 above is undirected.

In directed graphs the edges are oriented, they have a beginning and  
an end.
Thus A B and B A are different edges.
Sometimes the edges of a directed graph are called arcs.



Examples of directed graphs

Graph2: Graph3:

Graph2 and Graph3 are different graphs



Paths

A path is a list of vertices in which successive vertices are connectedby
edges

Examples

Some paths in Graph1 :

A B C D
A C B A C D
A B  
D C B  
C B A

Some paths in Graph2:

D A B
A D A C



Simple path No vertex is repeated.

Examples:

In Graph1, D C B A is a simple path, while D C B A C is not a simplepath

In Graph2, D A B is a simple path, while D A D B is not a simple path

Cycles

A cycle is a simple path with distinct edges, where the first vertex is
equal to the last.

Examples:

Cycles in Graph1: C A B C, C B A C, A B C A, A C B A, B A C B, B C AB
A B A is not a cycle, because the edge A B is the same as B A

Cycles in Graph3: A D A, D A B D

A graph without cycles is called acyclic graph



Loop

An edge that connects the vertex with itself

Connected graphs

Connected graph: There is a path between each two vertices

Graph1, Graph2 and Graph3 are connectedgraphs.

Disconnected graph: There are at least two vertices not connected by
a path.



Isomorphic graphs

Two graphs which contain the same number of graph
vertices connected in the same way are said to be isomorphic.
Formally, two graphs G and H with graph vertices Vn={1,2,…,n}
are said to be isomorphic if there is a permutation p of Vn such
that {u,v} is  in the  set of graph edges E(G) iff {p(u),p(v)} is in the
set of graph edges E(H) .

Two graphs G1 and G2 are said to be isomorphic if −

• Their number of components (vertices and edges) aresame.

• Their edge connectivity is retained.



Note − In short, out of the two isomorphic graphs, one is a tweaked  
version of the other. An unlabelled graph also can be thought of as  
an isomorphic graph.

There exists a function ‘f’ from vertices of G1 to vertices of G2  

[f: V(G1) ⇒ V(G2)], such that

Case (i): f is a bijection (both one-one and onto)

Case (ii): f preserves adjacency of vertices, i.e., if the edge {U, V} ∈ G1,
then the

edge {f(U), f(V)} ∈ G2, then G1 ≡G2.



Note

If G1 ≡ G2 then −

|V(G1)| = |V(G2)|

|E(G1)| = |E(G2)|

Degree sequences of G1 and G2 are same.

If the vertices {V1, V2, .. Vk} form a cycle of length K in G1, then the  
vertices {f(V1), f(V2),… f(Vk)} should form a cycle of length K inG2.



All the above conditions are necessary for the graphs G1 and G2 to be  
isomorphic, but not sufficient to prove that the graphs are  
isomorphic.

• (G1 ≡ G2) if and only if (G1− ≡ G2−) where G1 and G2 are simple
graphs.

• (G1 ≡ G2) if the adjacency matrices of G1 and G2 are same.

• (G1 ≡ G2) if and only if the corresponding subgraphs of G1 and  
G2(obtained by deleting some vertices in G1 and their images in  
graph G2) are isomorphic.



Example

Which of the following graphs are isomorphic?

In the graph G3, vertex ‘w’ has only degree 3, whereas all the other  
graph vertices has degree 2. Hence G3 not isomorphic to G1 or G2.



Taking complements of G1 and G2, you have −

Here, (G1− ≡ G2−), hence (G1 ≡G2).



Euler graph

• A closed walk in a graph G containing all the edges of G is called an
Euler line in G.

• A graph containing an Euler line is called an Euler graph. We know  
that a walk is always connected.

• Since the Euler line (which is a walk) contains all the edges of the  
graph, an Euler graph is connected except for any isolated vertices  
the graph may contain.

• As isolated vertices do not contribute anything to the  
understanding of an Euler graph, it is assumed now onwardsthat  
Euler graphs do not have any isolated vertices and are thus  
connected.



• Example Consider the graph shown in Figure. Clearly, v1 e1 v2 e2 v3
e3 v4 e4 v5 e5 v3 v6 e7 v1 in (a) is an Euler line, whereas the graph
shown in (b) is non-Eulerian.

Eulerian graph Non- Eulerian graph



• Eulerian Path is a path in graph that visits every edge exactly once.  
Eulerian Circuit is an Eulerian Path which starts and ends on the  
same vertex.







Eulerian Cycle

An undirected graph has Eulerian cycle if following two conditions  
are true.
….a) All vertices with non-zero degree are connected. We don’t care  
about vertices with zero degree because they don’t belong to  
Eulerian Cycle or Path (we only consider all edges).
….b) All vertices have even degree.



• Eulerian Path
An undirected graph has Eulerian Path if following two conditions
are true.
….a) Same as condition (a) for Eulerian Cycle
….b) If zero or two vertices have odd degree and all other vertices  
have even degree. Note that only one vertex with odd degree is not  
possible in an undirected graph (sum of all degrees is always even in  
an undirected graph)

• Note that a graph with no edges is considered Eulerian because  
there are no edges to traverse.



Hamiltonian graphs

A cycle passing through all the vertices of a graph is called a
Hamiltonian cycle. A graph containing a Hamiltonian cycle is called a
Hamiltonian graph. A path passing through all the vertices of a
graph is called a Hamiltonian path and a graph containing a
Hamiltonian path is said to be traceable. Examples of Hamiltonian
graphs are given in Figure.



If the last edge of a Hamiltonian cycle is dropped, we get a
Hamiltonian path. However, a non-Hamiltonian graph can have a
Hamiltonian path, that is, Hamiltonian paths cannot always be used
to form Hamiltonian cycles.

For example, in Figure, G1 has no Hamiltonian path, and so no
Hamiltonian cycle; G2 has the Hamiltonian path v1v2v3v4, but has
no Hamiltonian cycle, while G3 has the Hamiltonian cycle
v1v2v3v4v1.



• A multigraph or general graph is Hamiltonian if and only if its
underlying graph is Hamiltonian, because if G is Hamiltonian, then
any Hamiltonian cycle in G remains a Hamiltonian cycle in the
underlying graph of G.

• Conversely, if the underlying graph of a graph G is Hamiltonian,
then G is also Hamiltonian.



Let G be a graph with n vertices. Clearly, G is a subgraph of the
complete graph Kn. From G, we construct step by step supergraphs
of G to get Kn, by adding an edge at each step between two vertices
that are not already adjacent.



• Now, let us start with a graph G which is not Hamiltonian. Since the
final outcome of the procedure is the Hamiltonian graph Kn, we
change from a non-Hamiltonian graph to a Hamiltonian graph at
some stage of the procedure.

• For example, the non-Hamiltonian graph G1 above is followed by
the Hamiltonian graph G2. Since supergraphs of Hamiltonian graphs
are Hamiltonian, once a Hamiltonian graph is reached in the
procedure, all the subsequent supergraphs are Hamiltonian.



Planar graphs

A planar graph is an undirected graph that can be drawn on a plane
without any edges crossing. Such a drawing is called a planar
representation of the graph in the plane. Ex : K4 is a planar graph



Other planar representations of K4



Q3 is a planar graph



K1,n and K2,n are planar graphs for all n



Euler’s Planar Formula

Definition : A planar representation of a graph splits the plane into  
regions, where one of them has infinite area and is called the  
infinite region.

2 regions



Euler’s Planar Formula

Let G be a connected planar graph, and consider a planar  
representation of G.

Let V = # vertices, E = # edges, F = # regions.

V + F = E + 2.



Graph Coloring
• Graph coloring is the procedure of assignment of colors to each

vertex of a graph G such that no adjacent vertices get same color.

• The objective is to minimize the number of colors while coloring a
graph.

• The smallest number of colors required to color a graph G is called
its chromatic number of that graph.

• Graph coloring problem is a NP Complete problem.



Method to Color a Graph

The steps required to color a graph G with n number of vertices are as
follows −

Step 1 − Arrange the vertices of the graph in some order.

Step 2 − Choose the first vertex and color it with the first color.

Step 3 − Choose the next vertex and color it with the lowest numbered
color that has not been colored on any vertices adjacent to it. If all
the adjacent vertices are colored with this color, assign a new color
to it. Repeat this step until all the vertices are colored.



Example

In the above figure, at first vertex aa is colored red.

As the adjacent vertices of vertex a are againadjacent,
vertex bb and vertex dd are colored with different color, greenand
blue respectively.

Then vertex cc is colored as red as no adjacent vertex of cc is  
colored red. Hence, we could color the graph by 3 colors.Hence,  
the chromatic number of the graph is 3.



Applications of Graph Coloring

• Some applications of graph coloring include −

• Register Allocation

• Map Coloring

• Bipartite Graph Checking

• Mobile Radio Frequency Assignment

• Making time table, etc.



Graph Traversal
Graph traversal is the problem of visiting all the vertices of a graphin  

some systematic order. There are mainly two ways to traverse a  
graph.

• Breadth First Search

• Depth First Search

Breadth First Search

Breadth First Search (BFS) starts at starting level-0 vertex XX of the  
graph GG. Then we visit all the vertices that are the neighbors  
of XX.

After visiting, we mark the vertices as "visited," and place them into  
level-1. Then we start from the level-1 vertices and apply the same  
method on every level-1 vertex and so on.

The BFS traversal terminates when every vertex of the graph has been
visited.



BFS Algorithm

The concept is to visit all the neighbor vertices before visiting other
neighbor vertices of neighbor vertices.

• Initialize status of all nodes as “Ready”.

• Put source vertex in a queue and change its status to “Waiting”.

• Repeat the following two steps until queue is empty −

– Remove the first vertex from the queue and mark it as “Visited”.

– Add to the rear of queue all neighbors of the removed vertex
whose status is “Ready”. Mark their status as “Waiting”.



Applications of BFS

• Finding the shortest path

• Minimum spanning tree for un-weighted graph

• GPS navigation system

• Detecting cycles in an undirectedgraph

• Finding all nodes within one connected component



Depth First Search

• Depth First Search (DFS) algorithm starts from a vertex vv, then it  
traverses to its adjacent vertex (say x) that has not been visited  
before and marks as "visited" and goes on with the adjacentvertex  
of xx and so on.

• If at any vertex, it encounters that all the adjacent vertices are  
visited, then it backtracks until it finds the first vertex having an  
adjacent vertex that has not been traversed before. Then, it  
traverses that vertex, continues with its adjacent vertices until it  
traverses all visited vertices and has to backtrack again. In this way,  
it will traverse all the vertices reachable from the initial vertexvv.



DFS Algorithm

The concept is to visit all the neighbor vertices of a neighborvertex
before visiting the other neighbor vertices.

• Initialize status of all nodes as “Ready”

• Put source vertex in a stack and change its status to “Waiting”

• Repeat the following two steps until stack is empty −

– Pop the top vertex from the stack and mark it as “Visited”

– Push onto the top of the stack all neighbors of the removed
vertex whose status is “Ready”. Mark their status as “Waiting”.



Applications

• Detecting cycle in a graph

• To find topological sorting

• To test if a graph is bipartite

• Finding connected components

• Finding the bridges of a graph

• Finding bi-connectivity in graphs

• Solving the Knight’s Tour problem

• Solving puzzles with only one solution



Digraphs

• A graph in which each graph edge is replaced by a directed graph
edge, also called a digraph.

• A directed graph having no multiple edges or loops (corresponding
to a binary adjacency matrix with 0s on the diagonal) is called a
simple directed graph.

• A complete graph in which each edge is bidirected is called a
complete directed graph. A directed graph having no symmetric pair
of directed edges (i.e., no bidirected edges) is called an oriented
graph.

• A complete oriented graph (i.e., a directed graph in which each pair
of nodes is joined by a single edge having a unique direction) is
called a tournament.



• If is an undirected connected graph, then one can always direct  
the circuit graph edges of and leave the separating
edges undirected so that there is a directed path from any node to
another. Such a graph is said to be transitive if the adjacency  
relation is transitive.

• When drawing a directed graph, the edges are typically drawn as
arrows indicating the direction, as illustrated in the following figure.



A directed graph with 10 vertices (or nodes) and 13 edges
One can formally define a directed graph as G=(N,E)G=(N,E), consisting of the
set NN of nodes and the set EE of edges, which are ordered pairs of elements
of NN.



Directed acyclic graphs

• Directed acyclic graphs (DAGs) are used to model probabilities,
connectivity, and causality. A “graph” in this sense means a
structure made from nodes and edges.

• Nodes are usually denoted by circles or ovals (although technically
they can be any shape of your choosing).

• Edges are the connections between the nodes. An edge connects
two nodes. They are usually represented by lines, or lines with
arrows.



DAGs are based on basic acyclic graphs.

A tree with nodes A B C D E F and G.



An acyclic graph is a graph without cycles (a cycle is a complete circuit).
When following the graph from node to node, you will never visit
the same node twice.

This graph (the thick black line) is acyclic, as it has no cycles (complete  
circuits).



A connected acyclic graph, like the one above, is called a tree. If one or  
more of the tree “branches” is disconnected, the acyclic graph is a  
called a forest.

This graph has a complete circuit and so is not acyclic.



• A directed acyclic graph is an acyclic graph that has a directionas
well as a lack of cycles.

• The parts of the above graph are:

Integer = the set for the the Vertices.

Vertices set = {1,2,3,4,5,6,7}.

Edge set = {(1,2), (1,3), (2,4), (2,5), (3,6), (4,7), (5,7), (6,7)}.



• A directed acyclic graph has a topological ordering. This means that
the nodes are ordered so that the starting node has a lower value
than the ending node.

• A DAG has a unique topological ordering if it has a directed path
containing all the nodes; in this case the ordering is the same as the
order in which the nodes appear in the path.



Weighted digraphs

• We can assign numbers to the edges or vertices of a graph in order
to enable them to be used in physical problems. Such an
assignment is called the weight of the edges or vertices.

• Weighted graphs are defined as the quadruples (V, E, f, g) or the
triplets (V, E, f)or the triplets (V, E, g), where V is the set of vertices,
E is the set of domains, f is the function with domain V, which
assigns weights to vertices and g is the function with domain E,
which assigns weights to edges



Example

Following diagram is a weighted digraph which represents the
communication network among five individuals v1,v2,v3,v4,v5. The
number assigned for each directed edge gives the probability of
their communication.



Region graph

• Planarity – “A graph is said to be planar if it can be drawn on a  
plane without any edges crossing. Such a drawing is called a planar  
representation of the graph.”

• Important Note – A graph may be planar even if it is drawn with  
crossings, because it may be possible to draw it in a different way  
without crossings.



• For example consider the complete graph k4 and its two possible
planar representations –



Example – Is the hypercube Q3 planar?

Solution – Yes, Q3 is planar. Its planar representation-



Regions in Planar Graphs

The planar representation of a graph splits the plane into regions.
These regions are bounded by the edges except for one region that
is unbounded. For example, consider the followinggraph

”

There are a total of 6 regions with 5 bounded regions and 1 bounded  
region R6.



• Theorem – “Let G be a connected simple planar graph with e edges
and v vertices. Then the number of regions r in the graph is equal
to e-v+2.”

• Example – What is the number of regions in a connected planar
simple graph with 20 vertices each with a degree of 3?

• Solution – Sum of degrees of edges = 20 * 3 = 60. By handshaking
theorem, 2e=60 which gives e=30 .
By Euler’s theorem, the number of regions = e-v+2 which gives 12
regions.



An important result obtained by Euler’s formula is the following
inequality –

Note –“If G is a connected planar graph with e edges and v vertices,
where v>=3, then e<=ev-6. Also G cannot have a vertex of degree
exceeding 5.”

Example – Is the graph K5 planar?

Solution – Number of vertices and edges in K5 is 5 and 10 respectively.
Since 10 > 3*5 – 6, 10 > 9 the inequality e<=3v-6 is not satisfied.
Thus the graph is not planar.


