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Fluid Properties and Fluid Statics
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Syllabus

• Density, specific weight, specific gravity, surface tension and
capillarity, Newton’s law of viscosity, incompressible and
compressible fluid, Hydrostatic forces on submerged bodies -
Pressure at a point, Pascal's law, pressure variation with
temperature and height, center of pressure plane, vertical and
inclined surfaces; Manometers - simple and differential
Manometers, inverted manometers, micro manometers,
pressure gauges, Buoyancy - Archimedes principle,
metacenter, Meta centric height calculations; Stability.
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Introduction

• Fluid mechanics is a study of the behavior of fluids, either at
rest (fluid statics) or in motion (fluid dynamics).

• The analysis is based on the fundamental laws of mechanics,
which relate continuity of mass and energy with force and
momentum.

• An understanding of the properties and behavior of fluids at
rest and in motion is of great importance in engineering.
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Fluid Mechanics

• Fluid: Fluids are substance which are capable of flowing and
conforming the shapes of container.

Fluids can be in gas or liquid states.

• Mechanics: Mechanics is the branch of science that deals with
the state of rest or motion of body under the action of forces.

• Fluid Mechanics: Branch of mechanics that deals with the
response or behavior of fluid either at rest or in motion.



Branches of Fluid Mechanics

• Fluid Statics: It is the branch of fluid mechanics which deals
with the response/behavior of fluid when they are at rest.

• Fluid kinematics: It deals with the response of fluid when
they are in motion without considering the energies and
forces in them.

• Hydrodynamics: It deals with the behavior of fluids when
they are in motion considering energies and forces in them.

• Hydraulics: It is the most important and
practical/experimental branch of fluid mechanics which deals
with the behavior of water and other fluid either at rest or in
motion.
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Significance of Fluid Mechanics

• Fluid is the most abundant available substance e.g., air, gases, 
ocean, river and canal etc.
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State of Matter
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Comparison Between Liquids and Gases

• Liquids have definite volume
at any particular temperature

• Liquids have free level surface

• Molecules of liquid are close
to each other

• Liquids have relatively more
molecular attraction

• Liquids are slightly
compressible

• Rate of diffusion of liquid is
less

• Gases do not have any definite
volume

• Gases do not have free level
surface

• Molecules of gases are far
apart

• Gases have less molecular
attraction

• Gases are highly compressible

• Gases have higher rate of
diffusion
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Comparison Between Liquids and Solids

• Liquid conform the shape of
any container

• Liquid can flow

• Molecules of liquid are
distinctly apart

• Liquid have relatively less
molecular attraction

• Liquid are slightly
compressible

• Liquids cannot sustain
shear forces

• Do not conform the shape
of container

• Solids cannot flow

• Molecules of solids are very
close to each other

• Solids have more molecular
attraction

• Solids are highly
incompressible

• Solids can sustain shear
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Dimension and Units

• System of Units
System International (SI)
• Fundamental dimensions: length, mass and time
• Units: (meter, kilogram and second)
British Gravitation System (BG)
• Fundamental dimension: length, force and time
• Units: (ft, slug and second)
CGS System
• Fundamental dimensions: length, mass and time
• Units: (centimeter, gram and second)
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Dimension and Units

• Dimension

Fundamental/Primary Dimension

length(L), mass (M) and time 
(T)

Derived/Secondary Dimensions

e.g., force, velocity, 
acceleration etc

Fundamental/Primary 
Dimension

12



Units of Some Dimensions in Different Systems

Fundamental Units

• length(L), mass (M) and time (T)

Derived Units

• e.g., force(F), velocity(L/T), acceleration (L/T/T) etc
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Conversions

Length

• 1m=1000mm=100cm

• 1ft=12inch

• 1m=3.281ft

• 1Mile=5280ft=_______km

Mass

• 1kg=1000g

• 1kg=2.204lb

• 1kg=9.81N

• 1N=_____lb ?

Time

• 1day=24hours

• 1 hour=60min

• 1 min=60s

Volume

• 1m3=1000liters =_______cm3

1m3=35.32ft3
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Properties of Fluids- Mass Density, Specific 
Weight, Relative Density, Specific volume
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Properties of Fluids

• The properties outlines the general properties of fluids which
are of interest in engineering.

• The symbol usually used to represent the property is specified
together with some typical values in SI units for common
fluids.
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Density

The density of a substance is the quantity of matter contained in
a unit volume of the substance. It can be expressed in three
different ways.

• Mass Density

• Specific Weight

• Relative Density
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Mass Density

• Mass Density: Mass Density, ρ , is defined as the mass of
substance per unit volume.

Units: Kilograms per cubic metre, (or )

Dimensions: ML-3

Typical values:

Water = 1000 kgm-3, Mercury = 13546 kgm-3, Air = 1.23 kgm-3,
Paraffin Oil = 800 kgm-3.

(at pressure =1.013x 10 -5 Nm-2 and Temperature = 288.15 K.)
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• Specific Weight: Specific Weight ω, (sometimes , and
sometimes known as specific gravity) is defined as the weight
per unit volume.

or

• The force exerted by gravity, g, upon a unit volume of the
substance.

The Relationship between g and ω can be determined by
Newton's 2ndLaw, since

weight per unit volume = mass per unit volume g

ω = ρg
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• Units: Newton's per cubic metre, N/m3 (or ) Nm-3

• Dimensions: ML-2T-2

Typical values:

• Water =9814 Nm-3

• Mercury = 132943Nm-3

• Air =12.07 Nm-3

• Paraffin Oil =7851 Nm-3
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• Relative Density : Relative Density,σ, is defined as the ratio of
mass density of a substance to some standard mass density.

• For solids and liquids this standard mass density is the
maximum mass density for water (which occurs at 4oC) at
atmospheric pressure.

• Units: None, since a ratio is a pure number.

• Dimensions: 1.

• Typical values: Water = 1, Mercury = 13.5, Paraffin Oil =0.8.
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• Specific volume: Specific volume is a property of materials,
defined as the number of cubic meters occupied by one
kilogram of a particular substance.

• The standard unit is the meter cubed per kilogram (m 3 /kg or
m 3 · kg -1 ).

• Specific volume is inversely proportional to density. If the
density of a substance doubles, its specific volume, as
expressed in the same base units, is cut in half. If the density
drops to 1/10 its former value, the specific volume, as
expressed in the same base units, increases by a factor of 10.
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Dynamic viscosity, Kinematic viscosity, 
Newtonian and Non-Newtonian Fluids
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Viscosity

• Viscosity, µ, is the property of a fluid, due to cohesion and
interaction between molecules, which offers resistance to
shear deformation. Different fluids deform at different rates
under the same shear stress. Fluid with a high viscosity such
as syrup, deforms more slowly than fluid with a low viscosity
such as water.

• All fluids are viscous, "Newtonian Fluids" obey the linear
relationship given by Newton's law of viscosity.
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• where τ is the shear stress,

• Units Nm-2; Kgm-1s-2

• Dimensions ML-1T-2.

• du/dy is the velocity gradient or rate of shear strain, 

• μ is the "coefficient of dynamic viscosity"
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Coefficient of Dynamic Viscosity

• Coefficient of Dynamic Viscosity The Coefficient of Dynamic
Viscosity,μ, is defined as the shear force, per unit area, (or
shear stress τ), required to drag one layer of fluid with unit
velocity past another layer a unit distance away.

• Units: Newton seconds per square metre, or Kilograms per
meter per second,.

26
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• (Although note that is often expressed in Poise, P, where 10 P
= 1kgm-1s-1.)

Typical values:

• Water =1.14x10-3 kgm-1s-1,

• Air =1.78x 10-5kgm-1s-1,

• Mercury=1.552kgm-1s-1 ,
Paraffin Oil =1.9kgm-1s-1 .
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Kinematic Viscosity

• Kinematic Viscosity :Kinematic Viscosity, ʋ , is defined as the
ratio of dynamic viscosity to mass density.

• Units: square metres per second, m2s-1

• (Although note that ʋ is often expressed in Stokes, St,
where 10 4St = 1m2s-1.)

• Dimensions: L2T-1.
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Typical values:

• Water =1.14 10-6 m2s-1

• Air =1.46 10-5 m2s-1

• Mercury =1.145 10-4 m2s-1

• Paraffin Oil =2.375 10-3 m2s-1
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 A fluid is a substance, which deforms continuously, or flows,
when subjected to shearing force

 In fact if a shear stress is acting on a fluid it will flow and if a
fluid is at rest there is no shear stress acting on it.

Fluid Flow Shear stress – Yes

Fluid Rest Shear stress – No



Shear stress in moving fluid

• If fluid is in motion, shear stress are developed if the particles
of the fluid move relative to each other. Adjacent particles
have different velocities, causing the shape of the fluid to
become distorted.

• On the other hand, the velocity of the fluid is the same at
every point, no shear stress will be produced, the fluid
particles are at rest relative to each other.
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Example:
Air
Water
Oil
Gasoline
Alcohol
Kerosene
Benzene
Glycerine

Fluid Newton’s law
of viscosity

Newtonian fluids 
obey refer

Newton’s’ law of viscosity is given by;

dy

du
 (1.1)

• The viscosity  is a function only of the condition of the fluid, particularly its
temperature.

• The magnitude of the velocity gradient (du/dy) has no effect on the magnitude of .

 = shear stress

 = viscosity of fluid

du/dy = shear rate, rate of strain or velocity gradient

Newtonian and Non-Newtonian Fluid
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Fluid Newton’s law

of viscosity

Non- Newtonian

fluids

Do not obey

•The viscosity of the non-Newtonian fluid is dependent on the 
velocity gradient as well as the condition of the fluid.

Newtonian Fluids
 a linear relationship between shear stress and the velocity gradient (rate 

of shear),
 the slope is constant
 the viscosity is constant

Non-newtonian fluids
 slope of the curves for non-Newtonian fluids varies

Newtonian and Non-Newtonian Fluid
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Bingham plastic : resist a small shear stress but flow easily under large shear 

stresses, e.g. sewage sludge, toothpaste, and jellies.

Pseudo plastic : most non-Newtonian fluids fall under this group. Viscosity 

decreases with increasing velocity gradient, e.g. colloidal 

substances like clay, milk, and cement.

Dilatants : viscosity decreases with increasing velocity gradient, e.g. 

quicksand. 



Viscosity Newtonian & Non Newtonian fluids
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1. If 5.6m3 of oil weighs 46800 N, what is the mass density in
kg/m3?

2. What is the relative density of the oil in question 1?

3. A fluid has absolute viscosity, μ, of 0.048 Pa s. If at point A,
75mm from the wall the velocity is measured as 1.125 m/s,
calculate the intensity of shear stress at point B 50mm from
the wall in N/m2. Assume a linear (straight line) velocity
distribution from the wall.

4. Calculate the specific weight, density and specific gravity of
one liter of a liquid which weighs 7N.

37
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1. 852 kg/m3

2. 0.852

3. 0.72 Pa

4. 7000N/m3, 713.5kg/m3,0.7135
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Surface Tension, Capillarity, Bulk Modulus 
(Compressibility)
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Surface Tension

• Below surface, forces act equally in all 
directions

• At surface, some forces are missing, 
pulls molecules down and together, 
like membrane exerting tension on 
the surface

• If interface is curved, higher pressure 
will exist on concave side 

• Pressure increase is balanced by 
surface tension, 

•  = 0.073 N/m (@ 20oC)

water

air

No net force

Net force

inward

Interface
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Surface Tension

● Molecular attraction forces in liquids:

– Cohesion: enables liquid to resist tensile stress

– Adhesion: enables liquid to adhere to another body

● Liquid-fluid interfaces:

– Liquid-gas interface: free surface

– Liquid-liquid (immiscible) interface

● At these interfaces, out-of-balance attraction forces forms 
imaginary surface film that exerts a tension force in the surface » 
surface tension

● Computed as a force per unit length
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● Surface tension of various liquids

– Cover a wide range

– Decrease slightly with increasing temperature

● Values of surface tension for water between freezing and 
boiling points

– 0.00518 to 0.00404 lb/ft or 0.0756 to 0.0589 N/m
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• Surface tension is responsible for the curved shapes of liquid 
drops and liquid sheets as in this example
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Surface Tension - Capillarity

● Property of exerting forces on fluids by fine tubes and porous 
media, due to both cohesion and adhesion

● Cohesion < adhesion, liquid wets solid, rises at point of contact

● Cohesion > adhesion, liquid surface depresses at point of 
contact

● Meniscus: curved liquid surface that develops in a tube
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Surface Tension - Meniscus

σ = surface tension,
θ = wetting angle,
γ = specific weight of liquid,
r = radius of tube,
h = capillary rise
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Surface Tension - Capillary Rise

• Equilibrium of surface tension force and gravitational pull on
the water cylinder of height h produces:
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Surface Tension

● Expression in previous slide calculates the approximate
capillary rise in a small tube

● The meniscus lifts a small amount of liquid near the tube walls,
as r increases this amount may become significant

● Thus, the equation developed overestimates the amount of
capillary rise or depression, particularly for large r.

● For a clean tube, θ = 0o for water, θ = 140o for mercury

● For r > ¼ in (6 mm), capillarity is negligible
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Surface Tension - Applications

● Its effects are negligible in most engineering situations.

● Important in problems involving capillary rise, e.g., soil water 
zone, water supply to plants

● When small tubes are used for measuring properties, e.g., 
pressure, account must be made for capillarity

● Surface tension important in:

– Small models in hydraulic model studies

– Break up of liquid jets

– Formation of drops and bubbles
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Elasticity (Compressibility)

• Deformation per unit of pressure change

• For water Ev = 2.2 G Pa, 

1 M Pa pressure change = 0.05% volume change

Water is relatively incompressible

 // d

dp

VdV

dp
E v 
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Compressibility

• Compressibility is the fractional change in volume per unit
increase in pressure. For each atmosphere increase in
pressure, the volume of water would decrease 46.4 parts per
million. The compressibility k is the reciprocal of the Bulk
modulus, B.
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Tutorials: Properties of Fluids

54



Numerical’s

• Determine the viscosity of a liquid having kinematic viscosity 6
stokes and specific gravity 1.9.

• The velocity distribution for flow over a flat plate is given by u
= 3/4y – y2 in which u is the velocity in metre per second at a
distance y metre above the plate. Determine the shear stress
at y = 0.15 m. Take Dynamic viscosity of fluid as 8.6 poise.

• If the velocity profile of a fluid over a plate is a parabolic with
the vertex 20cm from the plate, where the velocity is
120cm/sec. Calculate the velocity gradients and shear stresses
at a distance of 0, 10 and 20 cm from the plate, if the viscosity
of the fluid is 8.5 poise.
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Answers

• 11.40 poise

• 0.3825 N/m2

• 10.2 N/m2 ; 5.1 N/m2, 0 N/m2
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Numerical

• Determine the bulk modulus of elasticity of a liquid, if
pressure of the liquid is increased from 70 N/cm2 to 130
N/cm2. The volume of the liquid decreases by 0.15 percent.

• The surface tension of water in contact with air at 20oC is
0.0725 N/m. The pressure inside a droplet of water is to be
0.02 N/cm2 greater than the outside pressure. Calculate the
diameter of the droplet of water.

• Find the surface tension in a soap bubble of 40mm diameter
when the inside pressure is 2.5 N/m2 above atmospheric
pressure.
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• 4x 104 N/cm2

• 1.45 mm

• 0.0125 N/m

58

Answers



Numerical’s

• Calculate the capillary rise in a glass tube of 2.5 mm diameter
when immersed vertically in a (a) water and (b) mercury. Take
surface tension σ = 0.0725 N/m for water and σ = 0.52 N/m
for mercury in contact with air. The specific gravity for
mercury is 13.6 and angle of contact = 130o.

• Find out the minimum size of glass tube that can be used to
measure water level if the capillarity rise in the tube is to be
restricted to 2mm. Consider surface tension of water in
contact with air as 0.073575 N/m.
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Answers

• 1.18cm ; -0.4cm

• 1.5cm
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Viscosity

• Viscosity is defined as the property of
a fluid which offers resistance to the
movement of one layer of fluid over
another adjacent layer of the fluid.

• Viscosity is also defined as the shear
stress required to produce unit rate of
shear strain.

• Units of viscosity are(SI) Ns/m2.
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Density and Buoyant Force

• The buoyant force is the upward force exerted by a liquid on
an object immersed in or floating on the liquid.

• Buoyant forces can keep objects afloat.
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Buoyant Force

• For a floating object, the buoyant force equals the object’s
weight.

• The apparent weight of a submerged object depends on the
density of the object.

• For an object with density O submerged in a fluid of density f,
the buoyant force FB obeys the following ratio:

  

F
g
(object)

F
B




O


f
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Fluids statics

• The general rules of statics (as applied in solid mechanics)
apply to fluids at rest.

From earlier :

- a static fluid can have no shearing force acting on it, and that

- any force between the fluid and the boundary must be acting
at right angles to the boundary.

Pressure force normal to the boundary
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Pressure 

• Deep sea divers wear atmospheric diving suits to resist the
forces exerted by the water in the depths of the ocean.

• You experience this pressure when you dive to the bottom of
a pool, drive up a mountain, or fly in a plane.
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Pressure

• Pressure is the magnitude of the force on a surface per unit 
area.

• Pascal’s principle states that pressure applied to a fluid in a 
closed container is transmitted equally to every point of the 
fluid and to the walls of the container.

  

P 
F

A

pressure = 
force

area
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• The SI unit for pressure is the pascal, Pa.

• It is equal to 1 N/m2.

• The pressure at sea level is about 1.01 x 105 Pa.

• This gives us another unit for pressure, the atmosphere, 
where 1 atm = 1.01 x 105 Pa
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Pascal’s Principle

• When you pump a bike tire, you apply force on the pump that
in turn exerts a force on the air inside the tire.

• The air responds by pushing not only on the pump but also
against the walls of the tire.

• As a result, the pressure increases by an equal amount
throughout the tire.

69



• A hydraulic lift uses Pascal's
principle.

• A small force is applied (F1) to a
small piston of area (A1) and
cause a pressure increase on
the fluid.

• This increase in pressure (Pinc)
is transmitted to the larger
piston of area (A2) and the fluid
exerts a force (F2) on this
piston.

F1

F2

A1

A2

2

2

1

1

A

F

A

F
Pinc 

1

2
12

A

A
FF 
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• Pascal’s Law: Pascal’s law states the pressure intensity at a point, 
in a static fluid, is equal in all directions. It can be proved in the 
following way.

• Consider a tetrahedron of sides Δx, Δy and Δz inside a shown in 
fig. Let ‘O’ a point inside the fluid be the origin.

• Let area ABC = ΔA and pressure on ΔA equal to pn. The weight of
a fluid element in the tetrahedron = (γ. Δx. Δy. Δz)/6.

• The weight is proportional to the third order of magnitude of
very small quantities like Δx, Δy, Δz, whereas the pressure forces
are proportional to the second order of magnitude.

• Hence the weight can be neglected in comparison to the
pressures when Δx, Δy, Δz, tend to zero. Since the element is in
static condition, the net forces in the x, y and z directions are
zero.
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• The component of pn dA in the x direction = Pn. dA. cos(n,x), 
where cos(n,x) is the cosine of the angle between the normal 
to the surface and the x direction.

• Resolving forces in the x direction and equating the net force 
to zero, for static equilibrium conditions,

Pn. dA. cos(n,x) = Px1/2 dzdy.

But geometrically,

dAcos(n,x) = area OBC = 1/2dzdy.

So Pn = Px.

Similarily, resolving forces in the y and z directions and equating 
the net forces to zero for the static condition, it can be proved 
that Pn= Py and Pn= Pz .
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Figure of standard atmosphere variation
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– The standard atmosphere defines the temperature variation 
with altitude as shown

– Now need to find pressure and density as functions of either 
T or h

– Begin with the hydrostatic equation, divided by the equation 
of state for a perfect gas

dp / p=godh/RT

– Can integrate this equation for pressure when we know the P 
relationship between T and h

76
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Gradient Layers, T varies linearly with h

– Define a lapse rate, a, by: dT/dh = a

– Define the conditions at the layer base by h1, p1,
ρ1, and T1

– In previous equation, replace dh with dT/a and
integrate w.r.t. temperature to get:

P/P1= (T/T1)-go/aR

– And since p/p1 = (ρT)/(ρ1T1)

ρ/ρ1=(T/T1)-[(g
o
/aR)+1]
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• Isothermal Layers, T is constant

– Start at the base of the layer where we will define the 
conditions as h1, p1, ρ1, and T

– Integrate the previous equation W.R.T. h holding T Constant

P/P1= e− (go/RT)( h−h1)  = ρ/ρ1
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Variation of Pressure Vertically In A Fluid Under Gravity

Vertical elemental cylinder of fluid
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• In the previous slide figure we can see an element of fluid which is a
vertical column of constant cross sectional area, A, surrounded by
the same fluid of mass density ρ.

• The pressure at the bottom of the cylinder is p1 at level z1 , and at
the top is p2 at level z2.

• The fluid is at rest and in equilibrium so all the forces in the vertical
direction sum to zero. i.e. we have

• Force due to p1 on A (upward) =  p1 A

• Force due to p2 on A (downward) =  p2 A

• Force due to weight of element (downward) mg

ρgA(z2-z1) mass density volume

80
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• Taking upward as positive, in equilibrium we have

p1 A - p2 A = ρgA(z2 - z1)

p2 - p1 = - ρgA(z2 - z1)

• Thus in a fluid under gravity, pressure decreases with increase 
in height

z= (z2 - z1)
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Pressure and Head

• In a static fluid of constant density we have the relationship

• This can be integrated to give p = -ρgz + constant

• In a liquid with a free surface the pressure at any depth z
measured from the free surface so that z = -h
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Fig. Fluid head measurement in a tank

This gives the pressure p = ρgh + constant

• At the surface of fluids we are normally concerned with, the 
pressure is the atmospheric pressure, patmospheric. So

p = ρgh + patmospheric
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• As we live constantly under the pressure of the atmosphere, and
everything else exists under this pressure, it is convenient (and
often done) to take atmospheric pressure as the datum. So we
quote pressure as above or below atmospheric.

• Pressure quoted in this way is known as gauge pressure i.e.

• Gauge pressure is p = ρgh

• The lower limit of any pressure is zero - that is the pressure in a
perfect vacuum. Pressure measured above this datum is known as
absolute pressure i.e.

• Absolute pressure is p= ρgh + p absolute atmospheric

• Absolute pressure = Gauge pressure + Atmospheric pressure
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• As g is (approximately) constant, the gauge pressure can be
given by stating the vertical height of any fluid of density ρ

which is equal to this pressure.

p = ρgh

• This vertical height is known as head of fluid.

Note: If pressure is quoted in head, the density of the fluid must 
also be given.
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Problem:
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Simple and Differential Manometers

 Manometer: manometers are defined as the devices used
for measuring the pressure at a point in the fluid by
balancing the column of fluid by the same or another
column of the fluid.

 They are classified as
1.Simple manometer 2.Differential manometer

Simple manometer: simple manometer consist of a glass tube
having one of its ends connected to a point where pressure
is to be measured and other end remains open to
atmosphere.

Differential manometer: these are the devices used for
measuring the difference of pressures between two points
in a pipe or in two different pipes.

87



Pressure Measurement By Manometer

• The relationship between pressure and head is used to
measure pressure with a manometer (also know as a liquid
gauge).

1. Piezometer

2. U-tube Manometer

3. Single Column Manometer
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The Piezometer Tube Manometer

• The simplest manometer is a tube, open
at the top, which is attached to the top
of a vessel containing liquid at a
pressure (higher than atmospheric) to
be measured.

• An example can be seen in the figure
below. This simple device is known as a
Piezometer tube.

• As the tube is open to the atmosphere
the pressure measured is relative to
atmospheric so is gauge pressure.

89
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• Pressure at A = pressure due to column of liquid above A

pA= ρgh1

• Pressure at B = pressure due to column of liquid above B

pB= ρgh2

• This method can only be used for liquids (i.e. not for gases) 
and only when the liquid height is convenient to measure.
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The “U”-Tube Manometer
• Using a “U”-Tube enables the pressure of both liquids and

gases to be measured with the same instrument.

• The “U” is connected as in the figure and filled with a fluid
called the manometric fluid.

• The fluid whose pressure is being measured should have a
mass density less than that of the manometric fluid and the
two fluids should not be able to mix readily - that is, they
must be immiscible.
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Pressure in a continuous static fluid is the same at any horizontal level 
so,

pressure at B = pressure at C
pB =  pC

• A “U”-Tube manometer
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For the left hand arm

pressure at B = pressure at A + pressure due to height h of fluid 
being measured

pB = pA + ρgh1

For the right hand arm

pC = pAmospheric+ρgh2

As we are measuring gauge pressure we can subtract pAtmospheric

giving

pB =  pC

pA = ρman gh2 - ρgh1
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• If the fluid being measured is a gas, the density will probably
be very low in comparison to the density of the manometric
fluid i.e. ρman >> ρ.

• In this case the term ρgh1 can be neglected, and the gauge
pressure given by

pA = ρman gh2
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Single Column Manometer

• Modified form of a U Tube manometer in which a reservoir,
having a large cross-sectional area (about 100 times) as
compared to tube. Due to large cross-sectional area of the
reservoir, the change in the liquid level in this reservoir is
negligible and the reading in the limb is taken as the pressure.
The limb may be vertical or inclined

• When the fluid starts flowing in the pipe, the mercury level in
the reservoir goes down by a very small amount which causes
a large rise in the right limb.
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Equating the pressure at this point about YY, on the right and left limb

= ∆h (ρ2g - ρ1g ) + h2 ρ2g - ρ1gh1

PA + ρ1g (∆h+h1) = ρ2g(∆h+h2)

PA = ρ2g(∆h+h2) - ρ1g (∆h+h1)

As the volume of reservoir liquid remain
same, the fall of liquid volume in the
reservoir is equals to rise of liquid
volume in the limb

A∆h = a h2 So,  ∆h = (a/A) h2

as A is very large and a is very small, a/A is very small and hence may
be neglected

That means ∆h term is neglected So, PA=   h2 ρ2g – h1ρ1g
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PA=   h2 ρ2g – h1ρ1g  become

PA = L sinөρ2g – h1ρ1g

If, L= length of liquid on right limb above X-X

ө= Inclination of right limb to horizontal

h2= Vertical rise of liquid in right limb above X-X= L sinө

Inclined manometers are more sensitive to pressure variations, rise of
liquid in right limb will be more

Inclined Manometers 

97



A single column manometer is connected to a pipe containing a liquid of sp gravity 0.9,
center of the pipe is 20cm from the surface of mercury in the reservoir, which has 100 times
more area than that of tube. The mercury on the right limb is 40cm above the level of
mercury in the reservoir . Find the pressure in the pipe.

(A/a)=100

We have, PA=( a/A)h2( ρ2g - ρ1g) + h2ρ2g - h1ρ1g 

= (1/100)0.4[13.6X1000X9.81-900X9.81] + 0.4X13.6X1000X9.81 – 0.2X900X9.81

= 5.21N/cm2

Area=A

Area= a

h2

h1
PA

PA
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DIFFERENTIAL MANOMETERS

Differential manometers are used to measure pressure difference between any
two points. Common varieties of differential manometers are:

Two piezometers.
Inverted U-tube manometer.
U-tube differential manometers.
Micro manometers

•Two Piezometers

hB

Ih

hA

x A x B

The arrangement consists of two
pizometers at the two points
between which the pressure
difference is required. The liquid will
rise in both the piezometers. The
difference in elevation of liquid
levels can be recorded and the
pressure difference can be
calculated.
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Inverted U-tube Manometers

Inverted U-tube manometer is used to measure
small difference in pressure between any two
points. It consists of an inverted U-tube
connecting the two points between which the
pressure difference is required. In between there
will be a lighter sensitive manometric liquid.
Pressure difference between the two points can
be calculated by writing the gauge equations for
the system.

Let ‘PA’ and ‘PB’ be the pressure at ‘A’ and ‘B’

Pa – [(y1ρ1) + (x ρm) + (y2ρ2)]g = Pb

Pa – Pb =[ ρ1 y1 – ρm x – ρ2 y2]g

y1

y2

x
ρ1

ρ2

ρm

Pa

Pb
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Balancing the pressure on left and right limbs

101

Differential U Tube Manometer



A differential manometer is connected at the two points A and B of two pipes. Center of left
pipe, A, is 3m above the center of right pipe B. The mercury level in the left limb is 2m below
the center of right pipe. The height of mercury in the left limb is h m above the mercury
surface in the right limb. sA=1.5, sB=0.9. PA=1 bar and PB=1.80bar. Find the difference in Hg
level (h).

Balancing the pressures on left and right limbs 

Pressure on left limb=

Pressure on right limb=

Pressure on left limb = Pressure on right limb
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A differential manometer is connected at the two points A and B. PB = 9.81 N.cm2

(abs), find the absolute pressure at A. sA=0.9 and sB=1, sM=13.6. Center points of
pipe B is 30 cm above A and above this air is confined. Difference in mercury level
is 10cm in left limb. Fluid in the left limb is 20cm below the center of left pipe.

Pressure above XX at LEFT Limb

= 13.6X1000X9.81X0.1

= 13341.6+1765.8+PA

Pressure above XX at RIGHT Limb

=1000X9.81X0.6+PB

= 5886+98100=103986

EQUATING

103986=13341.6+1765.8+PA

PA=88876.8N/m2 = 8.88 N/cm2=absolute pressure at A

+900X9.81X0.2 +PA

103



Oil of sp gr 0.8

30cm

20cm

20cm

X X

30cm

B

A

Water

Water

Left side pipe center is 20cm above the 
right side pipe center.

Water occupies 30cm in the left limb
above its pipe center and in contact
with manometer liquid

Difference in manometer 
liquid is 20cm
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An inverted differential manometer is connected to two pipes A and B which convey water. The 
fluid in manometer is oil of specific gravity 0.8.  Left side pipe center is 20cm above the right 
side pipe center. Water occupies 30cm in the left limb above its pipe center and in contact with 
manometer liquid.  Difference in manometer liquid is 20cm. Find the differential pressure PA 
and PB



0.3
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Measurement Of Pressure Difference Using a “U”-Tube manometer
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• If the “U”-tube manometer is connected to a pressurized vessel at
two points the pressure difference between these two points can be
measured.

• If the manometer is arranged as in the figure above, then

Pressure at C = Pressure at D

pC = pD

pC = pA + ρgha

pD = pB + ρg(hb-h) + ρmangh

pA + ρgha = pB + ρg(hb-h) + ρmangh

Giving the pressure difference

pA - pB = ρg(hb-ha) + (ρman- ρ)gh

107



• Again, if the fluid whose pressure difference is being
measured is a gas and ρman >> ρ , then the terms involving ρ
can be neglected, so

pA - pB = ρmangh
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Total Pressure and Center Of Pressure

Total pressure:-It is defined as the force exerted by static fluid
when the fluid comes in contact with the surface.

 This force always acts at right angle or normal to the surface.

Center of pressure:- it is defined as the point of application of
the total pressure on the surface.

 The total pressure exerted by a liquid on the immersed the
surfaces may be :

1. Horizontal plane surface

2. Vertical plane surface

3. Inclined plane surface

4. Curved surface
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Pressure force on flat areas

• Pressure is force per unit area.

• Pressure p acting on a small area δA exerted force will be

F = pδA
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Horizontally Immersed Surface

• The total pressure on the surface, 

P = weight of the liquid above the immersed surface

= specific weight of liquid x Volume of fluid 

= specific weight of liquid x area of surface x depth of liquid 

=

= ρgh*A

111
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Vertically Immersed Surface
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Center of pressure
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The moments of inertia and other 
geometric properties of some 

plane surfaces
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Buoyant Force

• The raft and cargo are
floating because their
weight and buoyant force
are balanced.
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• Now imagine a small hole is
put in the raft.

• The raft and cargo sink
because their density is
greater than the density of
the water.

• As the volume of the raft
decreases, the volume of the
water displaced by the raft
and cargo also decreases, as
does the magnitude of the
buoyant force.

122



Buoyant Force and Archimedes’ Principle

• The Brick, when added will cause the water to be displaced 
and fill the smaller container.

• What will the volume be inside the smaller container?

• The same volume as the brick!
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• Archimedes’ principle describes the magnitude of a buoyant
force.

• Archimedes’ principle: Any object completely or partially
submerged in a fluid experiences an upward buoyant force
equal in magnitude to the weight of the fluid displaced by the
object.

FB = Fg (displaced fluid) = mfg
magnitude of buoyant force = weight of fluid displaced
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Buoyancy

Immersed Body in Static Fluid
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For example, for a hot air 

balloon 
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Buoyancy and Stability

• Buoyancy is due to the fluid displaced by a body. FB=fgV.

• Archimedes principle : The buoyant force = Weight of the fluid
displaced by the body, and it acts through the centroid of the
displaced volume.
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• Buoyancy force FB is equal
only to the displaced volume
fgVdisplaced.

• Three scenarios possible

1. body<fluid: Floating body

2. body=fluid: Neutrally buoyant

3. body>fluid: Sinking body



Stability of Immersed Bodies

• Rotational stability of immersed bodies depends upon relative 
location of center of gravity G and center of buoyancy B.
– G below B: stable

– G above B: unstable 

– G coincides with B: neutrally stable.



Stability of Floating Bodies

• If body is bottom heavy (G
lower than B), it is always
stable.

• Floating bodies can be
stable when G is higher
than B due to shift in
location of center buoyancy
and creation of restoring
moment.

• Measure of stability is the
metacentric height GM. If
GM>1, ship is stable.



Stability of Floating Bodies in Fluid 

• When the body undergoes an angular displacement about a
horizontal axis, the shape of the immersed volume changes
and so the centre of buoyancy moves relative to the body.

• As a result of above observation stable equilibrium can be
achieved, under certain condition, even when G is above B.
Figure illustrates a floating body -a boat, for example, in its
equilibrium position.

• Let the new line of action of the buoyant force (which is
always vertical) through B' intersects the axis BG (the old
vertical line containing the centre of gravity G and the old
centre of buoyancy B) at M. For small values of q the point M
is practically constant in position and is known as metacentre
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Floating body in Stable equilibrium
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Important points

• The force of buoyancy FB is equal to the weight of the body W

• Centre of gravity G is above the centre of buoyancy in the same
vertical line.
Figure b shows the situation after the body has undergone a small
angular displacement q with respect to the vertical axis.

• The centre of gravity G remains unchanged relative to the body
(This is not always true for ships where some of the cargo may shift
during an angular displacement).

• During the movement, the volume immersed on the right hand side
increases while that on the left hand side decreases. Therefore the
centre of buoyancy moves towards the right to its new position B'.
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• Hence the condition of stable equilibrium for a floating body 
can be expressed in terms of metacentric height as follows: 

GM > 0 (M is above G) Stable equilibrium 
GM = 0 (M coinciding with G) Neutral equilibrium 
GM < 0 (M is below G) Unstable equilibrium

• The angular displacement of a boat or ship about its 
longitudinal axis is known as 'rolling' while that about its 
transverse axis is known as "pitching".
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Numericals



Figure shows a tank full of water. Find;
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iii. From the results of i & ii it is observed that the total weight of water in the tank is much
less than the total pressure at the bottom of the tank. This is known as Hydrostatic Paradox.
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A trapezoidal channel 2m wide at the bottom and 1 m deep has slopes 1: 1.
Determine:
i. The total Pressure
ii. The Centre of pressure on the vertical gate closing the channel when it is full of 
water. 
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Where IG is given by formula



A concrete wall retains water and has a hatch blocking off an outflow
tunnel as shown. Find the total force on the hatch and position of the
Centre of pressure. Calculate the total moment about the bottom edge
of the hatch.
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Find the force required at the top of the circular hatch shown in order
to keep it closed against the water pressure outside. The density of the
water is 1030 kg/m3.
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A circular plate of diameter 1.2m placed vertically in water in such a way that the
center of the plate is 2.5m below the free surface of water. Determine : i) total
pressure on the plate. ii) Position of center of pressure.
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A rectangular plate 3 meters long and 1 m wide is immersed vertically in
water in such a way that its 3 meters side is parallel to the water surface and
is 1m below it. Find: i) Total pressure on the plate and ii) Position of center of
pressure.
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A rectangular plane surface is 2 m wide and 3m deep. It lies in vertical plane in water.
Determine the total pressure and position of centre of pressure on the plane surface
when its upper edge is horizontal and a) coincides with water surface, b) 2.5 m below
the free water surface.
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Case ii
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A cubical Tank has sides of 1.5m. It contains water for the lower 0.6 m 
depth. The upper remaining part is filled with oil of specific gravity 0.9. 
calculate the one vertical side of the tank:
a. Total Pressure , and b. Position of Centre of pressure.
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Kinematics 
of Fluids

UNIT 2

153
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Syllabus

Fluid Kinematics: Stream line, path line, streak line, stream
tube, classification of flows, steady, unsteady, uniform, non-
uniform, laminar, turbulent, rotational, irrotational flows,
one, two and three dimensional flows, Continuity equation in
3D flow, stream function, velocity potential function.
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Fluid kinematics

What is fluid kinematics?

• Fluid kinematics is the study on fluid motion in space and
time without considering the force which causes the fluid
motion.

• According to the continuum hypothesis the local velocity
of fluid is the velocity of an infinitesimally small fluid
particle/element at a given instant ‘t’. It is generally a
continuous function in space and time.
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Methods of Describing the Fluid Flow

• The fluid motion is described by two methods.

1. Lagrangian Method 

2. Eulerian Method
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Eularian and Lagrangian approaches 

• Eularian and Lagrangian approaches are of the two methods
to study fluid motion. The Eularian approach concentrates on
fluid properties at a point P (x,y,z,t). Thus it is a field approach.

• In the Lagrangian approach one identifies a particle or a group
of particles and follows them with time. This is bound to be a
cumbersome method. But there may be situations where it is
unavoidable. One such is the two phase flow involving
particles.
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Defined as particle moves (over time)

Defined instantaneously

Descriptions of Fluid Motion

– streamline
• has the direction of the velocity vector at each point

• no flow across the streamline

• steady flow streamlines are fixed in space

• unsteady flow streamlines move

– pathline
• path of a particle

• same as streamline for steady flow

– streakline
• tracer injected continuously into a flow

• same as pathline and streamline for steady flow

Streamlines
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Streamlines

Streamline definition
A streamline is one that drawn is tangential to the velocity vector at every point in the
flow at a given instant and forms a powerful tool in understanding flows.
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• The definition of streamline is the
fact that there cannot be a flow
across it; i.e. there is no flow
normal to it. Sometimes, as shown
in Fig. we pull out a bundle of
streamlines from inside of a
general flow for analysis. Such a
bundle is called stream tube and is
very useful in analyzing flows. If
one aligns a coordinate along the
stream tube then the flow through
it is one-dimensional.
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• Is the surface formed instantaneously by all the
streamlines that pass through a given closed curve in the
fluid.
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Pathlines

• Pathline is the line traced by a given particle. This is generated
by injecting a dye into the fluid and following its path by
photography or other means (Fig.)
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Streakline

Streakline concentrates on
fluid particles that have gone
through a fixed station or
point. At some instant of time
the position of all these
particles are marked and a line
is drawn through them. Such a
line is called a streakline (Fig.).
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Timeline

• Timeline is generated by drawing a line through adjacent
particles in flow at any instant of time.

• In a steady flow the streamline, pathline and streakline all
coincide. In an unsteady flow they can be different.
Streamlines are easily generated mathematically while
pathline and streaklines are obtained through experiments.
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Fluid Flow

• No real fluid has all the
properties of an ideal fluid, it
helps to explain the
properties of real fluids.

• Viscosity refers to the
amount of internal friction
within a fluid. High viscosity
equals a slow flow.

• Steady flow is when the
pressure, viscosity, and
density at each point in the
fluid are constant.
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Flow classifications

• Incompressible vs. compressible flow.
– Incompressible flow: volume of a given fluid particle does 

not change.
• Implies that density is constant everywhere.

• Essentially valid for all liquid flows.

– Compressible flow: volume of a given fluid particle can 
change with position.

• Implies that density will vary throughout the flow field.

• Compressible flows are further classified according to the value of 
the Mach number (M), where.

• M < 1 - Subsonic.

• M > 1 - Supersonic.
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• Single phase vs. multiphase flow.

– Single phase flow: fluid flows without phase change
(either liquid or gas).

– Multiphase flow: multiple phases are present in the
flow field (e.g. liquid-gas, liquid-solid, gas-solid).

• Homogeneous vs. heterogeneous flow.

– Homogeneous flow: only one fluid material exists in
the flow field.

– Heterogeneous flow: multiple fluid/solid materials are
present in the flow field (multi-species flows).



Types of flows

• Steady

• Unsteady

• Uniform

• Non-uniform

• Laminar

• Turbulent

• Rotational

• Irrotational

• One dimensional flows

• Two dimensional flows 

• Three dimensional flows
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Steady vs. Unsteady Flow

For steady flow, the velocity at a point or along a streamline 
does not change with time:

Any of the previous examples can be steady or unsteady,
depending on whether or not the flow is accelerating:
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Streamlines and Flow Patterns

• Streamlines are used for visualizing the flow. Several
streamlines make up a flow pattern.

• A streamline is a line drawn through the flow field such that
the flow vector is tangent to it at every point at a given instant
in time.
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Uniform vs. Non-Uniform Flow

Using s as the spatial variable along the path (i.e., along a 
streamline):

Flow is uniform if 

Examples of uniform flow:

Note that the velocity along different streamlines need not 
be the same!  (in these cases it probably isn’t).
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Examples of non-uniform flow:

a) Converging flow: speed increases along each streamline.

b) Vortex flow: Speed is constant along each streamline, but 
the direction of the velocity vector changes.
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Laminar Turbulent Flow

• Moving fluids can exhibit laminar (smooth) flow or turbulent
(irregular) flow.

Laminar 

Flow Turbulent Flow
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Flow inside a pipe:

Laminar                Turbulent

• Turbulent flow is nearly constant across a pipe.
• Flow in a pipe becomes turbulent either because of high

velocity, because of large pipe diameter, or because of low
viscosity.
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Flow around an 
airfoil

Partly laminar, i.e., flowing 
past the object in “layers” 
(laminar).

Turbulence forms mostly 
downstream from the 
airfoil.

(Flow becomes more 
turbulent with increased 
angle of attack.)

177



Turbulent flow in a jet

Turbulence is associated with intense mixing and unsteady flow.
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Rotational Vs Irrotational Flows

• Rotational flow is that
type of flow in which the
fluid particles while
flowing along stream lines
also rotate about their
own axis.

• Irrotational flow is that
type of flow in which the
fluid particles while
flowing along stream lines
also do not rotate about
their own axis.
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(a) Irrotational flow. (b) Rotational flow.

(c) Inviscid, irrotational flow about an airfoil.



Fluid Flow

• An ideal fluid is a fluid that has no internal friction or
viscosity and is incompressible.

• The ideal fluid model simplifies fluid-flow analysis
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1D,2D,3D flows

• One dimensional flow: Is that 
type of flow in which the flow 
parameter such as velocity is a 
function of time and one space 
co-ordinate only.

• Two Dimensional Flow: Is that 
type flow in which the velocity is 
a function of time and two 
rectangular space co-ordinates.

• Three Dimensional flow: Is that 
type of flow in which the 
velocity is a function of time and 
three mutually perpendicular 
directions.
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Principles of Fluid Flow

• The continuity equation results from conservation of mass.

• Continuity equation:

A1v1 = A2v2

Area  speed in region 1 = area  speed in region 2
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Principles of Fluid Flow

• The speed of fluid flow depends
on cross-sectional area.

• Bernoulli’s principle states that
the pressure in a fluid decreases
as the fluid’s velocity increases.
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Continuity Equation

• For a steady flow the stream-tube formed by a closed curved 
fixed in space is also fixed in space, and no fluid can penetrate 
through the stream-tube surface, like a duct wall.
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Considering a stream-tube of cylindrical cross sections                     

with velocities                      perpendicular to the cross sections                   

and densities                        at the respective cross sections                        

and assuming the velocities and densities are constant across the 

whole cross section                    , a fluid mass closed between cross 

section 1 and 2 at an instant t will be moved after a time interval dt

by                             to the cross section 1’ and 2’ respectively. 

Because the closed mass between 1 and 2 must be the same 

between 1’ and 2’, and the mass between 1’ and 2 for a steady flow 

can not change from t and t+dt, the mass between 1 and 1’ moved in 

dt,                   must be the same as the mass between 2 and 2’ 

moved in the same time dt,                     :

21
uandu

21
AandA

21
AandA21

 and

21
AandA

dtuanddtu 
21

dtuA
111



dtuA
222



21
AandA
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• Therefore the continuity equation of steady flow :

Interpretation : The mass flow rate 

through a steady stream-tube or a duct.

• For incompressible fluid with                   :

Interpretation : The volume flow rate

• From the continuity equation for incompressible 

fluid :

for a stream-tube.

222111
uAuA  

.constuAm  

21
 

2211
uAuA 

.constuAV 

1

2

2

1

A

A

u

u


(4.1)

(4.2)
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Continuity Equation - Multiple Outlets A piping system has a "Y"
configuration for separating the flow as shown in Figure. The diameter
of the inlet leg is 12 in., and the diameters of the outlet legs are 8 and
10 in. The velocity in the 10 in. leg is 10 ft/sec. The flow through the
main portion is 500 Kg.m/sec. The density of water is 62.4
kg/m3. What is the velocity out of the 8 in. pipe section
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Continuity Equation in three Dimensions
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Stream Function & Velocity Potential

 Stream lines/ Stream Function (Y)

• Rotation, vorticity

 Velocity Potential(f)

• Relationship between stream function and velocity potential

• Complex velocity potential
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Velocity Potential vs Stream Function

Stream Function (y) Velocity Potential (f)
only 2D flow all flows

viscous or non-viscous flows

Irrotational (i.e. Inviscid or 

zero viscosity) flow

Incompressible flow (steady or 

unsteady)

Incompressible flow (steady 

or unsteady state)

compressible flow (steady 

state only)

compressible flow (steady or 

unsteady state)

Exists 

for

 In 2D inviscid flow (incompressible flow or steady state
compressible flow), both functions exist
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UNIT III

Fluid Dynamics

• Surface and Body forces – Euler’s and Bernoulli’s

equation derivation, Navier-stokes equation

(explanation only) Momentum equation - applications,

vortex – Free and Forced. Forced vortex with free

surface
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Vortex flow

• Vortex flow is defined as the flow along a curved path or flow
of the rotating mass of a fluid is known a vortex flow

• The vertex flow is of two types:

1. Forced vortex flow

2. Free vortex flow
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Forced vertex flow

• Forced vertex flow is defined as that type of vertex flow, in
which some external torque is required to rotate the fluid
mass.

• The fluid mass in this type of flow, rotates at constant 
angular velocity, ω The tangential velocity of any fluid 
particle is given by v=ωr

• Examples for forced vertex flow are:

1. A vertex flow containing liquid which is rotated about its
central axis with a constant angular velocity ω.

2. Flow of liquid inside the impeller of a centrifugal pump.

3. Flow of water through the runner of a turbine.
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Forced Vortex Flow
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Free vortex flow

• When no external torque is required to rotate the fluid
mass, that type of flow is called free vortex flow.

• Examples of free vertex flow are:

1. Flow of liquid through a hole provided at the bottom of a
container.

2. Flow of liquid around a circular bend pipe.

3. A whirlpool in a river.

4. Flow of fluid in a centrifugal pump casing.
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• The relation between velocity and radius, in free vortex is
obtained by putting the value of external torque equal to
zero, or, the time rate of change of angular momentum, i.e.,
moment of momentum must be zero.

• Consider a fluid particle of mass 'm' at a radial distance r from
the axis of rotation, having a tangential velocity

• Angular momentum = Mass x Velocity = m x v

• Moment of momentum = Momentum x r = m x v x r

• Time rate of change of angular momentum : ∂/∂t (mvr)

• For free vortex ∂/∂t (mvr) = 0

• Integrating, we get mvr = Constant or vr = Constant

199



Equation of Motion for Vortex Flow
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• Consider a fluid element ABCD (shown shaded) Fig. rotating at
a uniform velocity in a horizontal plane about an axis
perpendicular to the plane of paper and passing through O.

• Let r = Radius of the element from O.

∆θ = Angle subtended by the element at O.

∆ r = Radial thickness of the element.

∆ A = Area of cross-section of element.

The forces acting on the element are :
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• In the equation above the pressure measured is in vertically 
upward direction. 
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Rotation and Vorticity , forced vertex with free surface

Rotation of a fluid element in a rotating tank of fluid
(solid body rotation).
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Rotation of fluid element in flow between moving and
stationary parallel plates

You can think of the “cruciforms” as small paddle wheels that 
are free to rotate about their center.

If the paddle wheel rotates, the flow is rotational at that 
point.
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As

And similarly 
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The net rate of 
rotation of the 
bisector is
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The rotation rate we just found was that about the z-axis; hence, 
we may call it

and similarly

The rate-of-rotation vector is

Irrotational flow requires               (i.e., for all 3 components)
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The property more frequently used is the vorticity
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Vortices

A vortex is the motion of many fluid particles around a common 

center.  The streamlines are concentric circles.

Choose coordinates such that z is perpendicular to flow.

In polar coordinates, the vorticity is 

(V is function of r, only)

Solid body rotation  (forced vortex):

or
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Vortex with irrotational flow (free vortex):

A paddle wheel does not rotate in a 

free vortex!
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Forced vortex (interior) and

free vortex (outside):

Good approximation to 

naturally occurring 

vortices such as

tornadoes.

Euler’s equation for any 

vortex:

Forced vertex with free surface
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We can find the pressure variation in different vortices

(let’s assume constant height z):

In general: 

1) Solid body rotation: 

2) Free vortex (irrotational):
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Application to forced vortex (solid body rotation):

with 

Pressure as function of

z and r

p = 0 gives free surface
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Surface and Body Forces Euler Equation

• Fluid element accelerating in l
direction & acted on by pressure 
and weight forces only (no friction)

• Newton’s 2nd Law

g

a
z

p

dl

d

a
dl

dz
g

dl

dp

lalppp

AalWAppAp

MaF

l

l

l

l

ll











)(

sin)(

sin)(








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Euler’s Equation

Flow along a streamtube of area A with no viscosity

p

p+dpds

mg

u

Forces along streamline: 0
dt

du
ρAdssρgcos(θ)AdAdp 

pressure + gravity + inertia (or F=ma)


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Euler’s equation (cont)

Dividing through by Ads:

0
dt

du

ds

dz
g

ds

dp

ρ

1


By the chain rule, the time derivative of u, which is a function
of both s and t, may be expressed as:

t

s

s

u

t

u

dt

du















s

u
u

t

u

dt

du











(We will come 
back to this 
equation later)
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Euler and Bernoulli

Euler’s equation is independent of time, so for 0




t

u

0
ds

du
u

ds

dz
g

ds

dp

ρ

1


For an incompressible fluid, integrating along the streamline,

constz
2g

u

ρg

p
2



Euler’s equation

Bernoulli’s equation
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Navier-Stokes equations

• So far we have separately considered flow

– in one dimension affected by pressure and gravity

– in one dimension affected by pressure and viscosity

• Need three dimensions and all forces in order to provide a
full solution for any general flow problem

• The following is not rigorous- see Bachelor for a rigorous
derivation
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Euler’s equation (reminder)

0
dt

du

ds

dz
g

ds

dp

ρ

1

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Navier-Stokes equations

Looking back to Euler’s equation with unsteadiness, the 
gravity term is simply the component of gravity, gs.
Introducing viscosity as well gives 3 similar equations:

dt

du
ρ

z

u

y

u

x

u
μ

x

p
ρg

2

2

2

2

2

2

x




































dt

dv
ρ

z

v

y

v

x

v
μ

y

p
ρg

2

2

2

2

2

2

y




































dt

dw
ρ

z

w

y

w

x

w
μ

z

p
ρg

2

2

2

2

2

2

z



































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Navier-Stokes equations

• There is no general solution to the N-S equations

• Some analytical solutions may be obtained by simplification

• The equations may be written in vector (div/grad) notation:

dt

ud
ρuμpgρ

2

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Channel flow

The n.s. equations therefore reduce to:

dx

dp

dy

ud
μ

2

2



Which may be solved as before.
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Applications

x
r 

For flow in a pipe, cylindrical polar coordinates x, r, , are
most useful.  

Consider steady laminar flow in a horizontal circular pipe
of radius, a.

a
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The Navier-Stokes equation:

dt

ud
ρuμpgρ

2


may be expressed as three components in x, r, , but for steady 

flow in the x-direction, we only need one component:

0
r

u
r

rr

1
μ

x

p
ρg

x
























(= 0 for steady flow

in a straight pipe)

And we will drop the gravitational term for a horizontal pipe.
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x

p

r

u
r

rr

1
μ






















Integrating twice wrt r, gives:

  BrA
x

p

4 μ

1
u

2





 lnr

The constant A must be zero, because at the centre of the pipe

ln(0) is infinite.  The bc at the wall, u=0 at r=a gives a value for B.

 22

x

p

4 μ

1
u ar 






Poisseuille

equation
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Momentum Equation
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UNIT - IV

Boundary Layer flows & Pipe Flows

Boundary layer- concepts, Prandtl contribution,
Characteristics of boundary layer along a thin flat plate,
laminar and turbulent Boundary layers, BL in transition,
separation of BL, control of BL separation, flow around
submerged objects, Drag and lift types of drag magnus

effect.
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The Boundary-Layer Concept

Details of Viscous flow Around an Airfoil.
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The Boundary-Layer Concept

Boundary Layer on a flat Plate(Vertical thickness exaggerated greatly)
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Boundary Layer Thicknesses

Boundary-Layer thickness Definitions
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Boundary Layer Characteristics

0




y

v
z

Momentum boundary Layer over a flat plate: Laminar-to-Turbulent Transition
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Boundary Layer Thicknesses

• Disturbance Thickness, d

Displacement Thickness, d*

Momentum Thickness, 
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Displacement thickness

There is a reduction in the flow 

rate due to the presence of the 

boundary layer

This is equivalent to having a 

theoretical boundary layer with 

zero flow

y

u

y

uU

U

dd
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Pressure Gradients in Boundary-Layer Flow

Boundary Layer flow with pressure gradient (Boundary layer 
thickness)
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Methods to Prevent Separation of Boundary Layer

• Suction of the slow moving fluid by a suction slot

• Supplying additional energy from the blower

• Providing a bypass in the slotted wing

• Rotating boundary in the direction of flow

• Providing small divergence in a diffuser

• Providing guide-blades in a bend

• Providing a trip-wire ring in the laminar region for the flow a
sphere.
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Lift force

FL = ½ CLρAPv2

FL is lift force,
CL is the coefficient of lift,
ρ is fluid density,
AP is the projected area of the body or surface area orientated
perpendicular to the fluid flow, and
v is relative velocity of the body with respect to the fluid.

Note: The size, shape and orientation of the body (angle of attack)
in the fluid are essential for generating lift force. The lift force
increases with the square of the flow of velocity similar to drag
force, but lift force increases are an advantage in sporting
activities.

240



241



The lift/drag ratio

• The aim in sport is to maximize lift force while reducing drag
force. The angle of attack of projected objects (a swimmer’s
hand) is constantly changing throughout the flight path, and
therefore, the lift/drag ratio changes as well.
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Drag

Drag Coefficient

with

or

244

Drag types:

• Pure Friction Drag: Flat Plate Parallel to the Flow

• Pure Pressure Drag: Flat Plate Perpendicular to the Flow

• Friction and Pressure Drag: Flow over a Sphere and Cylinder

• Streamlining



• Flow over a Flat Plate Parallel to the Flow: Friction 
Drag

Boundary Layer can be 100% laminar, partly laminar 
and partly turbulent, or essentially 100% turbulent; 
hence several different drag coefficients are available
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• Flow over a Flat Plate Parallel to the Flow: Friction 
Drag (Continued)

Laminar BL:

Turbulent BL:

… plus others for transitional flow
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• Flow over a Flat Plate Perpendicular to the 
Flow: Pressure Drag

Drag coefficients are usually obtained empirically
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• Flow over a Flat Plate Perpendicular to the 
Flow: Pressure Drag (Continued)
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• Flow over a Sphere and Cylinder: Friction and 
Pressure Drag
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Streamlining(control of boundary layer separation)
• Used to Reduce Wake and hence Pressure Drag
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Lift

• Mostly applies to Airfoils

Note: Based on planform area Ap
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• Examples: NACA 23015; NACA 662-215
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• Induced Drag

254



• Induced Drag (Continued)

Reduction in Effective Angle of Attack:

Finite Wing Drag Coefficient:
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• Induced Drag (Continued)

256



Robbins – Magnus effect

• When a spherical body (such as a ball) rotates as it moves
through the air, it carries with it a boundary layer of air.

• The object will seek the path of least resistance, (the side of
the ball that is rotating the same direction as the oncoming
air).

• The effect is to cause the ball to curve in the direction of this
low pressure air.

• Examples are tennis, golf, soccer, volleyball and football.
• These are top spin or backward spin (around horizontal axis).

Spin right or left known as a hook or slice is around the
vertical axis.

• Spin about the axis of the line of flight is called gyroscopic
action and acts to stabilize the object as it moves through the
air.
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1. A flat plate 1.5m x 1.5m moves at 50 km/hr in stationary air
of density 1.15kg/m3. If the coefficients of drag and lift are
0.15 and 0.75 respectively, determine

i. Lift force

ii. Drag force

iii. The resultant force and

iv. The power required to keep the plate in motion.
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2. An aircraft model is mounted in a wind tunnel for drag
determination. To decrease the drag contribution of the
mounting system, the 1m long column is streamlined into an
airfoil shape with a chord length of 10cm. At flow speed of
80m/s in the wind tunnel, estimate the error due to the drag on
the mounting column, if the variation of CD of the streamlined
column with Re given in table.
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CD Vs Re for Mounting Column

262

CD = 0.072 ReL
-1/5 – 1670/ReL

Re CD

3 x 10 5 0.0045

6 x 10 5 0.0055

1 x 10 6 0.0060

3 x 10 6 0.0065
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Introduction to Turbo machinery

Unit 5 
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Objectives

• Identify various types of pumps and
turbines, and understand how they work

• Apply dimensional analysis to design new
pumps or turbines that are geometrically
similar to existing pumps or turbines

• Perform basic vector analysis of the flow
into and out of pumps and turbines

• Use specific speed for preliminary design
and selection of pumps and turbines
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Categories

• Pump: adds energy to a 
fluid, resulting in an 
increase in pressure 
across the pump. 

• Turbine:  extracts 
energy from the fluid, 
resulting in a decrease 
in pressure across the 
turbine.



For gases, pumps are further broken down into
 Fans:  Low pressure gradient, High volume flow rate.  

Examples include ceiling fans and propellers.

 Blower:  Medium pressure gradient, Medium volume 
flow rate.  Examples include centrifugal and squirrel-
cage blowers found in furnaces, leaf blowers, and 
hair dryers.

 Compressor:  High pressure gradient, Low volume 
flow rate.  Examples include air compressors for air 
tools, refrigerant compressors for refrigerators and 
air conditioners.
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• Positive-displacement machines
– Closed volume is used to squeeze or suck fluid. 

– Pump:  human heart

– Turbine:  home water meter

• Dynamic machines
– No closed volume.  Instead, rotating blades supply or 

extract energy.

– Enclosed/Ducted Pumps:  torpedo propulsor 

– Open Pumps:  propeller or helicopter rotor

– Enclosed Turbines:  hydroturbine

– Open Turbines: wind turbine 
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Pump Head

• Net Head

• Water horsepower

• Brake horsepower

• Pump efficiency



Matching a Pump to a Piping System

• Pump-performance 
curves for a 
centrifugal pump

• BEP:  best efficiency 
point

• H*, bhp*, V*
correspond to BEP

• Shutoff head:  
achieved by closing 
outlet (V=0)$

• Free delivery:  no load 
on system (Hrequired = 
0)



• Steady operating point:

• Energy equation:



Pump Cavitation and NPSH

• Cavitation should be avoided 
due to erosion damage and 
noise.

• Cavitation occurs when P < Pv

• Net positive suction head

• NPSHrequired curves are created 
through systematic testing over 
a range of flow rates V.



Dynamic Pumps

• Dynamic Pumps include 

– centrifugal pumps:  fluid enters 
axially, and is discharged radially.

– mixed--flow pumps:  fluid enters 
axially, and leaves at an angle 
between radially and axially.

– axial pumps:  fluid enters and 
leaves axially.



Centrifugal Pumps

• Snail--shaped scroll 

• Most common type of 
pump: homes, autos, 
industry. 



Centrifugal Pumps: Blade Design



Side view of impeller blade. Vector analysis of leading 

and trailing edges.



Blade number affects efficiency and introduces circulatory 

losses (too few blades) and passage losses (too many blades)



Axial Pumps

Open vs. Ducted Axial Pumps



Open Axial Pumps

Propeller has radial twist to take into 

account for angular velocity (=r)

Blades generate thrust like wing 

generates lift. 



Ducted Axial Pumps

• Tube Axial Fan:  Swirl 
downstream

• Counter-Rotating Axial-
Flow Fan:  swirl removed.  
Early torpedo designs

• Vane Axial-Flow Fan:  swirl 
removed.  Stators can be 
either pre-swirl or post-
swirl.  



Ducted Axial Pumps:  Blade Design

Absolute frame of reference Relative frame of reference



Thank You 


