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Learning Objectives

]
1. Types of Channels

2. Types of Flows

3. Velocity Distribution

4. Discharge through Open Channels
5. Most Economical Sections



Learning Objectives

6. Specific Energy and Specific Energy Curves
/. Hydraulic Jump (RVF)

8. Gradually Varied Flow (GVF)




Types of Channels

» Open channel flow Is a flow which has a free
surface and flows due to gravity.

» Pipes not flowing full also fall into the
category of open channel flow

» In open channels, the flow Is driven by the
slope of the channel rather than the pressure




Open Channel

A4 v
Natural Channel Artificial Channel
Irregular shape Regular shape
i.e : river, hillsides i.e : drains, culverts,
rivulets, tidal etuaries sewer, tunnels




Types of Flows

1. Steady and Unsteady Flow
2. Uniform and Non-uniform Flow

3. Laminar and Turbulent Flow

4. Sub-critical, Critical and Super-critical Flow



1. Steady and Unsteady Flow

» Steady flow happens if the conditions (flow rate,
velocity, depth etc) do not change with time.

» The flow is unsteady if the depth is changes with

time




2. Uniform and Non-uniform Flow

» If for a given length of channel, the velocity of
flow, depth of flow, slope of the channel and cross
section remain constant, the flow is said to be
Uniform

» The flow is Non-uniform, if velocity, depth, slope
and cross section is not constant




2. Non-uniform Flow

Types of Non-uniform Flow
1. Gradually Varied Flow (GVF)

If the depth of the flow in a channel changes gradually over a
length of the channel.

2. Rapidly Varied Flow (RVF)

If the depth of the flow in a channel changes abruptly over a
small length of channel
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3. Laminar and Turbulent Flow

Both laminar and turbulent flow can occur in open channels
depending on the Reynolds number (Re)

Re = pVR/M

Where,

p = density of water = 1000 kg /m3

M = dynamic viscosity

R = Hydraulic Mean Depth = Area / Wetted Perimeter




_ V 1s the average velocity of the fluid.
R e — P VR/ K R is the hydraulic radius of the channel.

*
0‘0

Laminar flow: Re <500
¢ Transitional flow: Re >500 & Re < 1000
Turbulent flow: Re > 1000

*
G’f



4. Sub-critical, Critical and Super-critical Flow

The flow an open channel is said to be sub-critical if the Froude number (F,) is less than 1.0.

v

JsD
where V' = Mean velocity of flow
D = Hydraulic depth of channel and is equal to the ratio of wetted area to the top width of channel

The Froude number is defined as : F_ =

= % where T = Top width of channel.

Sub-critical flow 1s also called tranquil or streaming flow. For sub-critical flow, F, < 1.0.
The flow s called eritical if £, = 1.0. And if F, > 1.0, the flow is called super critical or shooting
or rapid or torrential.



subcritical

supercriticsl

Sp>85. ~

(a) Subcritical to supereritical

supercritical

subcritical

Sp= 8
(b} Supercritical to suhcritit;ﬂ

Figure of transition from sup to super-critical flow



Velocity Distribution

» Velocity is always vary across channel
because of friction along the boundary

» The maximum velocity usually found just
below the surface



Lines of Centerline

constant velocity v
velocity profiles
.\' —
X . A >
—_—
0-_/ u u
l
(a)
Actual
=== Uniform

1, = shear stress
distribution

()

Typical velocity and shear stress distributions in an open channel:
(a) velocity distribution throughout the cross section. (b) shear
stress distribution on the wetted perimeter.



Discharge through Open Channels

1. Chezy’'s C
2. Manning's N

3. Bazin’'s Formula

4. Kutter’'s Formula



p 16.3 DISCHARGE THROUGH OPEN CHANNEL BY CHEZY'S FORMULA

Forces acting on the water between sections 1-1 & 2-2
1. Component of weight of Water = W sini =2
2. Friction Resistance = f P L V2 &

- e | where
_ iy Mgl®), W = density x volume
. W/ = w (AL) = wAL
1 h "i"» — “
R I 5‘;’4 | Equate both Forces:
“ DATUM LINE A fPLV?2 = wALsini

Fig.16.2 Uniform flow in open channel.



Chezy’s Formula, v=CJmi

\V = / \/Asm|—>1

ﬁ =m = Hydraulic Radius — 2

\g=C=Chezys Constant — 3




Chezy’s Formula, v=CJmi
]

substituteEgn. 2 & 3in Egn. 1,

V =C+v/m.sini
for small values of I, siIn1=tani1 =1




1. Manning’'s N

Chezy’s formula can also be used with Manning's Roughness

C={(1/n) R/

Coefficient

where
R = Hydraulic Radius
n = Manning’s Roughness Coefficient




2. Bazin’s Formula

Chezy’s formula can also be used with Bazins’ Formula

where
k = Bazin’s constant
m = Hydraulic Radius




Values of K in Bazin's Formula

ol I

Surface of channel

Smooth cement plaster or planed wood
Concrete, brick, or unplaned wood
Smooth rubble masonry or poor brickwork
Earth channels in very good condition
Earth channels in rough condition
Dredged earth channels, average condition

Bazin's constant (K)
0-11
0-21
0-83
1-54
317
2:36



3. Kutter’s Formula

Chezy’s formula can also be used with Kutters’ Formula

1
23+ 0.00155+ —

N
0.00155} N
i Jm
where
N = Kutter’s constant

m = Hydraulic Radius, i = Slope of the bed



Values of N in the Manning's & Kutter's Formula

No.  Surface of channel N (Kutter’s/Manning's constant)
1.  .Smooth cement plaster or planed wood 0-010
2. Very smooth concrete and planed timber 0011
3. Smooth concrete 0-012
4. Glazed brickwork | 0-013
5. Vitrified clay 0-014
6. Brick surface lined with cement mortar 0-015
7 A Earth channels in best condition 0017
8. Straight unlined earth channels in good condition 0-020
9. Rivers and earth channels in fair condition 0-025

10. Canal and river of rough surface with weeds 0-030



Problems

1. Find the velocity of flow and rate of flow of water through a
rectangular channel of 6 m wide and 3 m deep, when it is
running full. The channel is having bed slope as 1 in 2000.
Take Chezy’s constant C = 55

2. Find slope of the bed of a rectangular channel of width 5m
when depth of water is 2 m and rate of flow is given as 20
m3/s. Take Chezy’s constant, C = 50



Problems

3. Find the discharge through a trapezoidal channel of 8 m
wide and side slopes of 1 horizontal to 3 vertical. The depth
of flow is 2.4 m and Chezy’s constant C = 55. The slope of
bed of the channel is 1 in 4000

4. Find diameter of a circular sewer pipe which is laid at a
slope of 1 in 8000 and carries a discharge of 800 litres/s
when flowing half full. Take Manning’'s N = 0.020



Problems

5. Find the discharge through a channel show in fig. 16.5.
Take the value of Chezy’s constant C = 55. The slope of
bed of the channel is 1 in 2000




Most Economical Sections

1. Cost of construction should be minimum
2. Discharge should be maximum

Types of channels based on shape:
1. Rectangular

2. Trapezoidal
3. Circular




Most Economical Sections

Q=AV=ACJmi

Q:Ki where K=ACVAI

JP

If P1s minimum, Q will be maximum







Rectangular Section

| for most economical section,

................................ ‘

] | o
¢ Pshouldbe minimum
e |

.

=0

Fig. 16.9 Rectangular channel, d(d)



/hmd:bzg—ﬂ

P:b+2d:EA+2d — 2

for most economical seciton, P should be minimum

4P d[§+2d} A
T 0= =0=>——+2=0=A=2d° = bd = 2d°
d(d) d(d) d
|b=2dord="h/2|
A  bd 2d° d
m=—= = =—

P bs2d 2d+2d 2







Trapezoidal Section

e ~ for most economical section,
Y.
R ’ P should be minimum

10

d FH .
\\~ : ’,'
e A\g-.. 'G /z“
E----L- TRIrY Yy rrrr e’
o= dete—— b ——e{ dP — 0
Fig. 16.11




‘Az(b+nd)d‘:>b=%—nd—>1

WP:b+2d\/n2+1‘:%—nd+2d\/n2+1 — 2

for most economicalseciton,P shouldbe minimum

d é—nd+2d n2+1
dP d b+2nd

@ 0 d(d) 2

d|a O‘
m=—Rand 0 =60
2

dvn?+1




Circular Section

for Max. Velocity,

d

'y
i for Max.Discharge, — = =0

Circular channel.



‘A:RZ(G—SmZB)-»l

2 |
IP:2R9|—>2
S_A_R (0_sm20)_)3
P 20

for max. velocity, d— —0:119 128045“ d = 0. 81[|>|m 0. 3[|)

3
Q=AC/m ACW/ 1/A—l C and i are constants

A3
P

for max. discharge, — P = =0 :|> 0= 1541I d= 0.9513

d




Problems

1. Atrapezoidal channel has side slopes of 1 horizontal and 2
vertical and the slope of the bed is 1 in 1500. The area of
cross section is 40m?. Find dimensions of the most

economical section. Determine discharge if C=50

Hint:

» Equate Half of Top Width = Side Slope (condition 1) and find b in terms of d
» Substitute b value in Area and find d

» Find m = d/2 (condition 2)
» Find V and Q




Problem 16.16 A rrapezoidal channel has side slopes of 1 horizontal to 2 vertical and the slope of

the bed is 1 in 1500. The area of the section is 40 m*. Find the dimensions of the section if it is most

economical. Determine the discharge of the most economical section if C = 50.
Solution. Given :

Horizontal 1
Side slope, n= i i
—~ pe Vertical 2 i
Bed slope, i= ! '
1500 S aant L
Areca of section, A =40 m? }
Chezy's constant, C=50 Fig. 16.12

For the most economical section, using equation (16.11)

b+ 2nd b+2x4xd 2
=d\n® +1| or 5 =d"(-}) +1

>
oF b+d=d‘fl+l=l.118d
> 3

or b=2x1.118d— d=1236d D)
But area of trapezoidal section| A = "*“’; 2nd) cam(b+nd) d
=(1.236d+ ¥ d) d (+ b=1236dandn= %)

= 1.736 4°



But A =40 m’ (given)

40 = 1.736 &°
40

d= . |—— = 4.80 m. Ans.
1.736

Substituting the value of d in equation (i), we get
b=1.236 x 4.80 = 5933 m. Ans.
Discharge for most economical section. Hydraulic mean depth for most economical section is

m:-‘—’-:isi)- =240 m
2| 2
Discharge Q = ACmi =40 x 50 x JZAOXI—;E

= 80 m’/s. Ans.



Problems

2. Arectangular channel of width 4 m is having a bed slope of
1 in 1500. Find the maximum discharge through the

channel. Take C=50

3. The rate of flow of water through a circular channel of
diameter 0.6m is 150 litres/s. Find the slope of the bed of
the channel for maximum velocity. Take C=50



Non-uniform Flow

In Non-uniform flow, velocity varies at each section of the
channel and the Energy Line is not parallel to the bed of the
channel.

This can be caused by

Differences in depth of channel and

Differences in width of channel.

Differences in the nature of bed

Differences in slope of channel and

Obstruction in the direction of flow

bk owhE



Specific Energy

v 2

Total Energy of flowing fluid, E =z + h + g
9

where z = Height of bottomof channel above datus,

If thechannel bottomis taken as datum,

v2

Es=h+ g which is called as Specific Energy
9



Specific Energy

Q

_ _Q_
Q=AV=V=—<=

bh

If discharge per unit width, g =% = constant

_Q_q
bh h
2 2
“Es=h+Y —h4+ 3

<

Modified Equation
to plot Specific Energy Curve

|
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for CriticalDepth, — =0
dh
2
q
where, E=h +
291
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MinimumS pecificEnergy intermsof Critical Depth; E=h+ d 5
] 20h“
when specificenergyisminimum,Depth of flow iscritical

2 2 |2 2
3
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Hydrau

Water Surface | gat
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Specific Energy Curve
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Problems

1. The specific energy for a 3 m wide channel is to be 3 kg-m/kg. What
would be the max. possible discharge

2. The discharge of water through a rectangular channel of width 6 m, is
18 m3/s when depth of flow of water is 2 m. Calculate: i) Specific Energy
i) Critical Depth iii) Critical Velocity iv) Minimum Energy

3. The specific energy for a 5 m wide rectangular channel is to be 4 Nm/N.
If the rate of flow of water through the channel us 20 m3/s, determine the
alternate depths of flow.



Hydraulic Jump

Hydraulic
jump

Froude Mumbers and Fluid Depths across
a Hydraulic Jump

Flow under a sluice gate accelerates from subcritical to critical
to supercritical and then jumps back to subcritical flow



Hydraulic Jump

The hydraulic jump is defined as the rise of water
level, which takes place due to transformation of the

unstable shooting flow (super-critical) to the stable Supercritical i 'Subcritical
o . Flow i Hlﬁfdrau“.: [ Flow
streaming flow (sub-critical). Fro=1) | ump L (Fry < 1)

When hydraulic jump occurs, a loss of energy due to

eddy formation and turbulence flow occurs.

Froude Mumbers and Fluid Depths across
a Hydraulic Jump




Hydraulic Jump

The most typical cases for the location of hydraulic

jump are:
. . . I !
Below control structures like weir, sluice are used Supercritical ! 'Subcritical
: Flow 1 Hydraulic — + Flow
in the channel (Fry>1) | ﬂump ' {Frp< 1)
e e

when any obstruction is found in the channel,
when a sharp change in the channel slope takes

(2)

place.
At the toe of a spillway dam

Froude Mumbers and Fluid Depths across
a Hydraulic Jump




Hydraulic Jump

2 2 Supercritical ! 'Subcritical
do= -1, |91 29 interms of q pow. o Hydaule o Flow
2 5 4 g4 (Fry=1) | Jump . (Fro=1)
1 i T 2)
2 2 :
d d 2v1 d i !
do=— 1,191, 2Y1 91 . intermsof V1 " d2

2 4 d1

d / )
do = ?1( 1+8|:ez—1j — interms of Fe

d1

Froude Mumbers and Fluid Depths across
a Hydraulic Jump



Hydraulic Jump

Loss of Energy : Supercritical 'Subcritical
) _ Flow 1 Hydraulic  + Flow
3 (Fry=1) | Jump s (Fra=1)
[d 2~ dl] ' l @)
hL=E1-E2~=
4dqdo . d2

Length of jump=5to7 timesof (do —d1) ¢

Froude Mumbers and Fluid Depths across

Hydrual IC Jump = d2 —d1 a Hydraulic Jump



Problems

1. The depth of flow of water, at a certain section of a
rectangular channel of 2 m wide is 0.3 m. The discharge
through the channel is 1.5 m3/s. Determine whether a
hydraulic jump will occur, and if so, find its height and loss
of energy per kg of water.

2. A sluice gate discharges water into a horizontal rectangular
channel with a velocity of 10 m/s and depth of flow of 1 m.
Determine the depth of flow after jump and consequent loss
In total head.



Gradually Varied Flow (GVF)

GVF. —-l~—nur-'
w GV.F uurranm FLO \
T L _.r_
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Gradually Varied Flow (GVF)

In GVF, depth and velocity vary slowly, and the free surface is stable

The GVF is classified based on the channel slope, and the magnitude of flow depth.

Steep Slope (S): S,> S, orh<h,

Critical Slope (C): S, =S, orh=h_

Mild Slope (M): S, <S. orh>h_

Horizontal Slope (H): S,=0 _H,

Adverse Slope(A): S, = Negative Honzon“l
M

where =21

So : the slope of the channel bed, M:ld

Sc : the critical slope that sustains a given discharge as uniform flow at the critical depth (hc).



Gradually Varied Flow (GVF)

Mild

A
bed ¢




Flow Profiles

The surface curves of water are called flow profiles (or water surface profiles).

Depending upon the zone and the slope of the bed, the water profiles are classified
into 13 types as follows:

1. Mild slope curves M1, M2, M3
2. Steep slope curves 31, S2,S3

3. Critical slope curves C1, C2, C3
4. Horizontal slope curves H2, H3

5. Averse slope curves A2, A3

In all these curves, the letter indicates the slope type and the subscript indicates the
zone. For example S2 curve occurs in the zone 2 of the steep slope



M, Normal Depth Line

=
N Dt gl noL. M2
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Flow Profiles in Mild slope

L0 < Critical Depth Line g

Flow Profiles in Steep slope
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(a) (b)
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(a) (b)
Flow Profiles in Horizontal slope
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Flow Profiles in Adverse slope




Gradually Varied Flow (GVF)

Equation of GVF : S, or 1, Energy Line Slope
S, or 1. Bed Slope

dh |b — ie - -

= — in termsof Velocity Jer—
dx V 2 7  New water surface /

1-— $h1
gh

dh in—I

=T b e2"—>in termsof Fe < R
= b’  _E2.E1
dh ib-ie

where— representsthe variation of waterdepth along the bottom of the channel
dx



Gradually Varied Flow (GVF)

If dh/dx = O, Free Surface of water is S, or i, Energy Line Slope
parallel to the bed of channel S, or i, Bed Slope

Backwater curve
If dh/dx > 0O, Depth increases in the 7___New water surface /

direction of water flow (Back Water Curve) $h1

If dh/dx < O, Depth of water decreases in
the direction of flow (Dropdown Curve)

E2-E
L _E2-E1

dh ib-lie
where— representsthe variation of waterdepth along the bottom of the channel
dx



Problems

1. Find the rate of change of depth of water in a rectangular
channel of 10 m wide and 1.5 m deep, when water is
flowing with a velocity of 1 m/s. The flow of water through
the channel of bed slope in 1 in 4000, is regulated in such a
way that energy line is having a slope of 0.00004

2. Find the slope of the free water surface in a rectangular
channel of width 20 m, having depth of flow 5 m. The
discharge through the channel is 50 m3/s. The bed of
channel is having a slope of 1 in 4000. Take C=60



DIMENSIONAL ANALYSIS

(OPEN CHANNEL FLOW AND HYDRAULIC MACHINERY)

UNIT - I

IARE I Dr.G. Venkata Ramana Professor& HOD Civil Engineering



Learning Objectives

|
1. Introduction to Dimensions & Units

2. Use of Dimensional Analysis

3. Dimensional Homogeneity

4. Methods of Dimensional Analysis
5. Rayleigh’s Method



Learning Objectives

6. Buckingham’s Method
/. Model Analysis

8. Similitude
9. Model Laws or Similarity Laws

10. Model and Prototype Relations



Introduction

» Many practical real flow problems in fluid mechanics can be solved by using equations
and analytical procedures. However, solutions of some real flow problems depend heavily
on experimental data.

» Sometimes, the experimental work in the laboratory is not only time-consuming, but also
expensive. So, the main goal is to extract maximum information from fewest experiments.

> In this regard, dimensional analysis is an important tool that helps in correlating analytical
results with experimental data and to predict the prototype behavior from the
measurements on the model.



Dimensions and Units

In dimensional analysis we are only concerned with the nature of the dimension i.e. its
quality not its quantity.

» Dimensions are properties which can be measured.
Ex.: Mass, Length, Time etc.,

» Units are the standard elements we use to quantify these dimensions.
Ex.: Kg, Metre, Seconds eftc.,

The following are the Fundamental Dimensions (MLT)
» Mass kg M
» Length m L
» Time S T



Secondary or Derived Dimensions

Secondary dimensions are those quantities which posses more than one
fundamental dimensions.
1. Geometric

a) Area m? |2
b) Volume m3 L3
2. Kinematic
a) Velocity m/s L/T L.T?

b) Acceleration m/s? L/T? L.T2

3. Dynamic
a) Force N ML/T M.LTH?
b) Density kg/m3  M/L3 M.L3



Problems

Find Dimensions for the following:
. Stress / Pressure
. Work
. Power
. Kinetic Energy
. Dynamic Viscosity

1

2

3

4

5

6. Kinematic Viscosity
7. Surface Tension

8. Angular Velocity
9. Momentum

1

O.Torque



Use of Dimensional Analysis

—

. Conversion from one dimensional unit to another
2. Checking units of equations (Dimensional
Homogeneity)
3. Defining dimensionless relationship using
a) Rayleigh’s Method
b) Buckingham’s m-Theorem
4. Model Analysis



Dimensional Homogeneity

Dimensional Homogeneity means the dimensions in each
equation on both sides equal.

Let us consider the equation, V = \[2gH

Dimension of L.H.S. =V= -; =LT"

N L S ,
Dimension of R.H.S. = ,/ZgH = =3 XL= =3 = T = LT
Dimension of L.H.S. = Dimension of RH.S. = LT

Equation V= \/ZgH is dimensionally homogeneous. So it can be used in any system of units.



Problems

Check Dimensional Homogeneity of the following:
1. Q=AV
2. E.=v?/2g



Rayeligh’s Method

To define relationship among variables

This method Is used for determining the
expression for a variable which depends upon
maximum three or four variables only.




Rayeligh’s Method

Methodology:

Let X is a function of X; X,, X; and mathematically it can be written as
X = f(X;, X,, X3)

This can be also written as
X =K (X;9, X,P, X5¢) where K is constant and a, b and ¢ are arbitrarily powers

The values of a, b and ¢ are obtained by comparing the powers of the fundamental
dimension on both sides.




Rayeligh’s Method

Problem: Find the expression for Discharge Q in a open channel flow when Q is depends
on Area A and Velocity V.

Solution:
Q = K.A2Ve 2 1
where K is a Non-dimensional constant

Substitute the dimensions on both sides of equation 1
MOL3T! =K. (L?).(LT-")P

Equating powers of M, L, T on both sides,

Power of T, -1 =-b = b=1

Power of L, 3=2a+b = 2a=2-b=2-1 =1
Substituting values of a, b, and ¢ in Equation Tm

Q=K. A. V' =VA




Problem : Find the equation for the power developed by a pump if it depends on
head H discharge (Q and specific weight y of the fluid.

Solution:

P=K. Ha ; Qb ; _rrc Head = LM”T“
(P)=(H]"- [Q]"- [3] Discharge  =L'M'T"
[LEMT-E_I = [LMCITD]a . [L_"I MDT-IJh . [L-EMT"E]L" Spe':ific WE]‘ght = L-_MT'-_

Equating the powers of M, L and T on both sides,

Faowwer of M, 1=c
Fower of T, -3=-b-2 or b=-2+3 0" b=1
Fower of L, 2=a+3b-2c Or 2=a+3-2 0Or a=1

Substituting the values of a, b and ¢
P=K-lH|.QI|*fI

P=K-H-Q-y When, K=1 P=H-Q-y



Problem 3: Find an expression for drag force R on a smooth sphere of diameter D
moving with uniform velocity V in a fluid of density p and dynamic viscosity p..

Solution:

R=1f(D,V,p, p) Force =LMT™
R=K- -D* V".p, p? Diameter = LM°T"
[R1=[DI"- [VI"- [pI* [u]® Velocity  =LMT"
[LMT?] = [LM°T°F - [LM°T'P°- [LMT° - [L'MT?)¢ | Mass density = L'MT®

Equating the powers of M, L and T on both sides,

Foweer of M, 1=c+d or e=1-d
Fower of T, Z2=-b-dor b=2-d
Fower of L, l=a+b-3c—-d or l=a+2-d-3(1-d)—-d

l=a+2-d-3+3d-d or a=2-d
Substituting teh walues of a, b, and ¢

R=K.D*. v¥.pHd

d
R 7 2 pVD
.=K-pV‘D‘L = pV'D ¢ | — =pV'D q;[ ]
pVD pVD



Buckingham’s T-Theorem

This method of analysis is used when number of variables are more.

Theorem:
If there are n variables in a physical phenomenon and those n variables contain m dimensions, then
variables can be arranged into (n-m) dimensionless groups called @ terms.

Explanation:
If £ (X, Xo X3, eennnnne. X.) = 0 and variables can be expressed using m dimensions then
f (1T, Ty, T3, ceveenen m,...) =0 where, T, T, TT,, ... are dimensionless groups.

Each T term contains (m + 1) variables out of which m are of repeating type and one is of non-repeating

type.
Each TT term being dimensionless, the dimensional homogeneity can be used to get each 1T term.

T denotes a non-dimensional parameter



Buckingham’s m-Theorem

Selecting Repeating Variables:

1. Avoid taking the quantity required as the repeating variable.

2. Repeating variables put together should not form dimensionless group.

3. No two repeating variables should have same dimensions.

4. Repeating variables can be selected from each of the following properties.
» Geometric property = Length, height, width, area
» Flow property = Velocity, Acceleration, Discharge
» Fluid property = Mass density, Viscosity, Surface tension



Problem 12.11 The pressure difference Ap in a pipe of diameter D and length | due to viscous
flow depends on the velocity V, viscosity 1 and density p. Using Buckingham's n-theorem, obtain an
expression for Ap.

Solution.
Apisafunctionof D, L, V, ,,por Ap=fiD, I, V, u, p)
or fi(Ap, D, I, V,u,p)=0 (i)

Total number of variables, n=6
Number of fundamental dimension, m =3
Number of nt-terms =n-3=6-3=3
Hence equation (i) is written as f,(;, ©,, n3) =0 (i)
Each m-term contains m + 1 variables, i.e., 3 + 1 = 4 variable. Out of four variables, three are
repeating variables.
Choosing D, V, p as repeating variables, we have nt-terms as
R, =D".Vh.u . Ap
“3 = D“) .Vb2 .u" -l

Ry = D" .Vb’ .],l" -p



First m-term R, =D".Vh.u% . Ap
Substituting the dimensions on both sides,

ML =% . (LT . (ML'T ) . MLT'T
Equating the powers of M, L, T on both sides,

Power of M, O=c, +1, oo =-1
Power of L, O=a,+by~c;~1, SayE=-bhrorl=l-1+1=1
Power of T, O0=-b,-¢,-2, Sbhy=--2=1-2=-1
Substituting the values of a,, b, and ¢, in x,,
n'=Dl-V—l-u-l- =D£-
w
Second m-term my=D%. V2 pe |

Substituting the dimensions on both sides,
MLOT = 1% (LT . (ML T | L.
Equating the powers of M, L, T on both sides

Power of M, 0=c,, Soe=0
Power of L, 0=02+b2-'02+l. o az=-b2+C2"'l=-l
Power of T, 0=~by-cy, S o by=—cy=0

Substituting the values of a,, b, and ¢, in 7,,

1t2=D".V°.u°.l=%.



Third n-term my=D" .V pus.p
Substituting the dimension on both sides,

MLOTO = 1o (LT . (ML TS . ML,
Equating the powers of M, L, T on both sides

Power of M, O=cy+1, Sog=-1
Power of L, O=ay+b;-c;-3, SoayE—-bytoy+d=—1-1+3=]|
FQWCI'UrT, U=—b3—(‘3. ae b_1|=—£‘3=—[—”=1
Substituting the values of a;, b, and ¢; in 7,
V -
:':,=D'.V'.u".p=2%—.

Substituting the values of m;, ®, and =, in equation (i), _
D I pbV D [ pDV V. |1l pDV
ﬁ( ﬂfl LS p ]:D or ﬂ=¢[_'—P“—] or ép: l'l_¢[_ p_]

w'n’ uv D
Experiments show that the pressure difference Ap is a linear function -é— Hence S can be taken

out of the functional as

. Ans.
D i

Expression for difference of pressure head for viscous flow

s L[]




Model Analysis

For predicting the performance of the hydraulic structures (such as dams, spillways etc.) or
hydraulic machines (such as turbines, pumps etc.) before actually constructing or
manufacturing, models of the structures or machines are made and tests are conducted on
them to obtain the desired information.

Model is a small replica of the actual structure or machine

The actual structure or machine is called as PrOtOtype

Models can be smaller or larger than the Prototype

Model Analysis is actually an experimental method of finding solutions of complex
flow problems.



Similitude or Similarities

Similitude is defined as the similarity between the model and prototype in every
aspect, which means that the model and prototype have similar properties.

Types of Similarities:

1. Geometric Similarity = Length, Breadth, Depth, Diameter, Area, Volume etc.,
2. Kinematic Similarity = Velocity, Acceleration etc.,

3. Dynamic Similarity = Time, Discharge, Force, Pressure Intensity, Torque, Power



Geometric Similarity

The geometric similarity is said to be exist between the model and prototype if the
ratio of all corresponding linear dimensions in the model and prototype are equal.

L, B. D,
L. B, D, -

P 2 Vp 3
ﬁm ~Lr Vv, L

where | _,is Scale Ratio



Kinematic Similarity

The kinematic similarity is said exist between model and prototype if the ratios of
velocity and acceleration at corresponding points in the model and at the
corresponding points in the prototype are the same.

A\ ar
V. Vi . dr

where \/, is Velocity Ratio where g is Acceleration Ratio

Also the directions of the velocities in the model and prototype should be same



Dynamic Similarity

The dynamic similarity is said exist between model and prototype if the ratios of

corresponding fO FCES acting at the corresponding points are equal

Fe
Fm

:Fr

where [, is Force Ratio

It means for dynamic similarity between the model and prototype, the

dimensionless numbers should be same for model and prototype.



Types of Forces Acting on Moving Fluid
I

1. Inertia Force, F,

> |t is the product of mass and acceleration of the flowing fluid and acts in the direction
opposite to the direction of acceleration.

> It always exists in the fluid flow problems



Types of Forces Acting on Moving Fluid
I

1. Inertia Force, F,

2. Viscous Force, F,

> It is equal to the product of shear stress due to viscosity and surface area of the flow.

» |t is important in fluid flow problems where viscosity is having an important role to play



Types of Forces Acting on Moving Fluid
I

1. Inertia Force, F,

2. Viscous Force, F,
3. Gravity Force, F_

» It is equal to the product of mass and acceleration due to gravity of the flowing fluid.

> |t is present in case of open surface flow




Types of Forces Acting on Moving Fluid
I

1. Inertia Force, F,
2. Viscous Force, F,
3. Gravity Force, F,
4

Pressure Force, F_

> It is equal to the product of pressure intensity and cross sectional area of flowing fluid

» It is present in case of pipe-flow



Types of Forces Acting on Moving Fluid
I

1. Inertia Force, F,
2. Viscous Force, F,
3. Gravity Force, F,
4. Pressure Force, F

5. Surface Tension Force, F,

> It is equal to the product of surface tension and length of surface of the flowing fluid



Types of Forces Acting on Moving Fluid
I

Inertia Force, F,
Viscous Force, F,
Gravity Force, F,
Pressure Force, F,
Surface Tension Force, F,

Elastic Force, F

S e o e

e

> |t is equal to the product of elastic stress and area of the flowing fluid



Dimensionless Numbers

Dimensionless numbers are obtained by dividing the inertia force by viscous force or
gravity force or pressure force or surface tension force or elastic force.

InertiaForce  pVL or VD

1. Reynold’s number, R, =

Viscous Force 7 7
2. Froude’s number, F, = InertiaForce _ _V
Gravity Force /Lg
3. Euler’s number,E, = \/'ne"t'aForce _V
Pressure Force plp
4. Weber's number, W, = \/ InertiaForce v
Surface TensionForce ./o/ pL

5.  Mach’s number, M = \/InertiaForce Vv
ElasticForce C




12.8.1 Reynold’s Number (R,). Itis defined as the ratio of inertia force of a flowing fluid
and the viscous force of the fluid. The expression for Reynold’s number is obtained as

Inertia force (F;) = Mass X Acceleration of flowing fluid
Velocity 3V 2L 2 2
= p x Volume x = — = —V =
P Time PL T PL T PLV
=pA“’2 ---“2.“]‘
Viscous force (F)) = Shear stress X Area [ = %E . Force=1Xx An:a}
y
=TXA
4
(12 xamp. £ xa . Y
dy L dy L
By definition, Reynold’s number,
p= il BAV__pWE
¢ F V IJ.
= XA
v L
-t YRS { E = v = Kinematic -.rismsit;.r}
(u/p) v p

In case of pipe flow, the linear dimension L is taken as diameter, d. Hence Reynold's number for
pipe flow,

- Vxd of de'
18

R

4

(12.12)




12.8.2 Froude’s Number (F,). The qudc's-numbcr is defined as the square root of the ratio
of inertia force of a flowing fluid to the gravity force. Mathematically, it is expressed as

where F, from equation (12.11) = pAV?

and F_ = Force due to gravity
= Mass x Acceleration due to gravity
=pxVolumexg=pxLixg {~» Volume =L?}
=pxIL*xLxg=pxAxLxg { L?*=A=Area)

F_ |pAV? ‘F’ v
F‘ - — — = |——= een 12.13)
J;: qu-s g JLg (




12.8.3 Euler’'s Number (E,). Itis defined as the square root of the ratio of the inertia force of
a flowing fluid to the pressure force. Mathematically, it is expressed as

E,= ’i
FP

where F, = Intensity of pressure X Area = p X A

and F,;=pAV?
pAV? \/ V2 v
E, = = = «.(12.14)
\’pr plp  Jplp




12.8.4 Weber's Number (W,). Itis defined as the square root of the ratio of the inertia force
of a flowing fluid to the surface tension force. Mathematically, it is expressed as

Weber's Number, W, = J—;_’i'

where F, = Inertia force = pAV?
and F, = Surface tension force
= Surface tension per unit length X Length = o x L

2 2 2
W, = pAV = pxL xV (~+ A=I3)
oxL oxL

pLx V? v? Vv
= = : -(12.1
J ] JoIpL 1;?olpL (1242)

12.8.5 Mach’s Number (M). Mach's number is defined as the square root of the ratio of the
inertia force of a flowing fluid to the elastic force. Mathematically, it is defined as

W {lnenia force ” \[z
VE

- \' Elastic force

where F, = pAV?
and  F,_ = Elastic force = Elastic stress X Area

=KxA=KxL? (- K = Elastic stress)

i IpAV2 _ jpxIxy: (v ¥
TVkx2 T\ KkxP T \Klp  JKip

= C = Velocity of sound in the fluid

But

® [olx
al<

..(12.16)




Model Laws

The laws on which the models are designed for dynamic similarity are called model
laws or laws of similarity.

1.  Reynold’s Model

Models based on Reynolds’s Number includes:
a) Pipe Flow

b) Resistance experienced by Sub-marines, airplanes, fully immersed bodies etc.



Model Laws

The laws on which the models are designed for dynamic similarity are called model
laws or laws of similarity.

1. Reynold’s Model
2. Froude Model Law

Froude Model Law is applied in the following fluid flow problems:
a) Free Surface Flows such as Flow over spillways, Weirs, Sluices, Channels etc.,

b) Flow of jet from an orifice or nozzle
c) Where waves are likely to formed on surface
d) Where fluids of different densities flow over one another




Model Laws

The laws on which the models are designed for dynamic similarity are called model
laws or laws of similarity.

1. Reynold’s Model
2. Froude Model Law
3. Euler Model Law

Euler Model Law is applied in the following cases:
a) Closed pipe in which case turbulence is fully developed so that viscous forces are
negligible and gravity force and surface tension is absent

b) Where phenomenon of cavitations takes place



Model Laws

The laws on which the models are designed for dynamic similarity are called model
laws or laws of similarity.

Reynold’s Model
Froude Model Law
Euler Model Law
Weber Model Law

Weber Model Law is applied in the following cases:

howb =

a) Capillary rise in narrow passages

b) Capillary movement of water in soil

c) Capillary waves in channels

d) Flow over weirs for small heads



Model Laws

The laws on which the models are designed for dynamic similarity are called model

laws or laws of similarity.

Reynold’s Model
Froude Model Law
Euler Model Law
Weber Model Law
Mach Model Law

LA Sl

Mach Model Law is applied in the following cases:
a) Flow of aero plane and projectile through air at supersonic speed ie., velocity more

than velocity of sound
b) Aero dynamic testing, c) Underwater testing of torpedoes, and

d) Water-hammer problems




Reynold’s Model Law

If the viscous forces are predominant, the models are designed for dynamic
similarity based on Reynold’s number.

L Velocity, V = Length/Time = T = L/V
r

[Re]m - [Re]p t = Time Scale Ratio =

r

P VoL _ P PVP L, a, = Acceleration Scale Ratio = V.,
H, 4, L

Acceleration, a = Velocity /Time = L = V/T




Problem 6.15 A pipe of diameter 1.5 m is required to transport an oil of sp. gr. 0.90 and viscosity
3 x 107 poise at the rate of 3000 litre/s. Tests were conducted on a 15 cm diameter pipe using water
at 20°C. Find the velocity and rate of flow in the model. Viscosity of water at 20°C = 0.0] poise.
(Delhi University, 1992)
Solution. Given :

Dia. of prototype. Dp=15m

Viscosity of fluid. 1, =3 x 107 poise

Q for prototype, Qp = 3000 liv/s = 3.0 m’/s

Sp. gr. of oil. Sp=09

~. Density of oil, pp =S, % 1000 = 0.9 x 1000 = 900 kg/m’

Dia. of the model, D,=15ecm=0.15m

Viscosity of water at 20°C = .01 poise = 1 x 1072 poise or p,, = 1 X 1072 poise
Density of water or P, = 1000 kg/m’,

For pipe flow, the dynamic similarity will be obtained if the Reynold’s number in the model and
prototype are equal



pm Hqu - pPVPD.F
,"lm pf’
Vi _Pr Dp Ky

VP pri'r - Dn'r ' u'm'

Hence using equation (6.17),

{ For pipe, linear dimension is D}

_ 900 » 1.5 xlxlﬂ: _ 900 xlel ~30
1000 015 3x107 1000 3
But V. = Rate of flow in prototype _ 30 3.0
4 4
= 30X3 697 mis
nx2

V, =30 x V, =30 x 1.697 = 5.091 m/s. Ans.

Rate of flow through model. @, =A,, %XV, = g- (D, xV, = :— (0.15)* % 5.091 m'/s

= 0.0899 m/s = 0.0899 x 1000 lit/s = 89.9 lit/s. Ans.



Problems

1.  Water flowing through a pipe of diameter 30 cm at a velocity of 4 m/s. Find the
velocity of oil flowing in another pipe of diameter 10cm, if the conditions of dynamic
similarity is satisfied between two pipes. The viscosity of water and oil is given as 0.01
poise and 0.025 poise. The specific gravity of oil is 0.8.



Froude Model Law

If the gravity force is predominant, the models are designed for dynamic similarity
based on Froude number.

[Fe]m = [Fe]p = \/erI“_ = \/gv|p_ Vr=VeIocityScaIeRatio:\/E

Tr=ScaIeRatioforTime:,/|_r =y

T, =ScaleRatiofor Acceleration=1

l

ScaleRatio for Force = Lr3

r

ScaleRatio for Pressure Intensity = L,

5

. ] 25
Qr = ScaleRatio for Discharge= |_r

. 3.
I)r = ScaleRatio for Power = Lr




Velocity Ratio: According to Froude Model

{F ].lmm‘rf {F )prrm:rmr (ﬁ' | 8}

JEJI

If lhe tests on the model are performed on the same place where prototype is to operate, then g, = ¢,
and equation (6.18) becomes as

Vr

HI

- (6.19)

ﬁ

or

where L, = Scale ratio for length



(«) Scale ratio for time

Length
Velocity '
then ratio of time for prototype and model is

As time =

[ Lp
TF_[‘}:)P_VF Ly V.,
T, [_{:] CLeoL, Y
Ve Va



(b) Scale ratio for acceleration

) Vv
Acceleration = -?_‘

§ ar:ﬂ'p= Tp=Vpr“=VPXTm
a, [_‘f’_] Vv, V, T,
T
| V
=1|JLr X-‘-,—f_— {'_- i:'l: }Lr‘%-=1i£.;}

=1, ..(6.22)



(c) Scale ratio for discharge

L r
= A 1"’:]'_,1 _— e
@=Ax *T°T
rL_a]
T LY (T, l
0, 2=FL, ‘°=[L:] X{E)z 3><JL—=L,” .(12.23)
7).

(d) Scale ratio for force

As Force = Mass x Acceleration = pL’ x —_1'-; =pL?, = = V= pLIVJ

o 2 2

V
Ratio for force, F, = F,.:ppL;l’,;:pP | Le| x| Y] .
Fo PunluVm Pm L v

If the fluid used in model and prototype is same, then

—=1 or Pp=Pm

2 2
and hence F, = [&] X ( %] =L x(JL, )2 =L>. L=L° ..(224)



(e) Scale ratio for pressure intensity

* Force _pL*V*
As p= Area = p LI — p}"z
. 2
Pressure ratio, p, =L = p,V,;
If fluid is same, then Pp=Pm
Y
Ve (V
p,= --‘Z— = [—F] = Lr,
VI‘I VI

() Scale ratio for work, energy, torque, moment etc.
Torque = Force X Distance = F X L

T, * (FKI)
1 5 *- F - 'F
IDI'I]UE ratio Ir = *—( )

=F xL =L xL =L>"

..(12.25)

..(12.26)



(g) Scale ratio for power

As Power = Work per unit time
_FxL
T
Fp X Lp
. pp T, Fp Ly 1
Power ratio, pr:p.,-’_'-@:_z-m-F,,.xL.,xIL
T, T,

s (1227



Problems

1. In 1 in 40 model of a spillway, the velocity and discharge are 2 m/s and 2.5 m3/s.
Find corresponding velocity and discharge in the prototype

2. Ina 1 in 20 model of stilling basin, the height of the jump in the model is observed to
be 0.20m. What is height of hydraulic jump in the prototype? If energy dissipated in
the model is 0.1kW, what is the corresponding value in prototype?

3. A 7.2 mheight and 15 m long spillway discharges 94 m3/s discharge under a head
of 2m. If a 1:9 scale model of this spillway is to be constructed, determine the model
dimensions, head over spillway model and the model discharge. If model is
experiences a force of 7500 N, determine force on the prototype.



Problems

4. A Dam of 15 m long is to discharge water at the rate of 120 cumecs under a head of
3 m. Design a model, if supply available in the laboratory is 50 Ips

5. A 1:50 spillway model has a discharge of 1.5 cumecs. What is the corresponding
discharge in prototype?. If a flood phenomenon takes 6 hour to occur in the prototype,
how long it should take in the model
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Introduction
N
Analysis and Design of Hydraulic Machines (Turbines and
Pumps) is essentially based on the knowledge of forces
exerted on or by the moving fluids.

Learning Objective:

Evaluation of force, both in magnitude and direction, by free

jets (constant pressure throughout) when they impinge upon
stationary or moving objects such as flat plates and vanes of
different shapes and orientation.



Force exerted by the jet on a stationary plate
.,

Impact of Jets
The jet is a stream of liquid comes out from nozzle with a high velocity under
constant pressure. When the jet impinges on plates or vanes, its momentum is changed
and a hydrodynamic force is exerted. Vane is a flat or curved plate fixed to the rim of the
wheel
1. Force exerted by the jet on a stationary plate

a) Plate is vertical to the jet

b) Plate is inclined to the jet

c) Plateis curved
2. Force exerted by the jet on a moving plate

a) Plate is vertical to the jet

b) Plate is inclined to the jet

c) Plateis curved



Impulse-Momentum Principle

From Newton's 2" Law:
F=ma=m(V;-V,)/t

Impulse of a force is given by the change in momentum caused by the force
on the body.

Ft = mV,; — mV, = Initial Momentum — Final Momentum

Force exerted by jet on the plate in the direction of jet, F=m (V,—V,) / t
= (Mass / Time) (Initial Velocity — Final Velocity)

= (pQ) (v, - V) = (paV) (V, = V,)



Force exerted by the jet on a stationary plate

Plate is vertical to the jet

PIPE
F = paV? Ry
-H';_i—:;éi =
If Plate is moving at a velocity of ‘U’ m/s, f%u_;__; |i| PLATE
e Il

o

— 2
— pal v-
v
Force exerted by jet on vertical plate.

7 JET OF WATER li



Problems:

1. A jet of water 50 mm diameter strikes a flat plate held normal to the direction of jet.
Estimate the force exerted and work done by the jet if

a. The plate is stationary
b. The plate is moving with a velocity of 1 m/s away from the jet along the line of jet.

The discharge through the nozzle is 76 Ips.

2. A jet of water 50 mm diameter exerts a force of 3 kKN on a flat vane held
perpendicular to the direction of jet. Find the mass flow rate.



Force exerted by the jet on a stationary plate

Plate is inclined to the jet

F, = paV? sin 6

F =F, Sin®

X

T
Il

Fy COs ©

Jet striking stationary inclined plate.



Force exerted by the jet on a moving plate
]

Plate is inclined to the jet /

F, = pa(V-U)? sin 6

— e =

- -
- —  — — — -

F.=F, sin 0 -

X

F =F, cos©

PLATE
Jet striking stationary inclined plate.



Problems:

1. Ajet of data 75 mm diameter has a velocity of 30 m/s. It strikes a flat plate inclined
at 459 to the axis of jet. Find the force on the plate when.

a. The plate is stationary

b. The plate is moving with a velocity of 15 m/s along and away from the jet.

Also find power and efficiency in case (b)

2. A75 mm diameter jet having a velocity of 12 m/s impinges a smooth flat plate, the
normal of which is inclined at 60° to the axis of jet. Find the impact of jet on the plate
at right angles to the plate when the plate is stationery.

a. What will be the impact if the plate moves with a velocity of 6 m/s in the direction
of jet and away from it.

b. What will be the force if the plate moves towards the plate.



Force exerted by the jet on a stationary plate
]

Plate is Curved and Jet strikes at Centre

F = paV?(1+ cos 0)

Fig. 17.3 Jet striking a fixed curved plate at centre.



Force exerted by the jet on a moving plate
-5

Plate is Curved and Jet strikes at Centre V-u)  (V-u)sin®

V- \
S pa(V-U)2 (1+ COS 9) Vo — u_:*
JET/;F WATER 7 /'
%
MOVING CURVED

PLATE



Problems:

1. A jet of water of diameter 50 mm strikes a stationary, symmetrical curved plate
with a velocity of 40 m/s. Find the force extended by the jet at the centre of plate
along its axis if the jet is deflected through 120° at the outlet of the curved plate

2. A jet of water from a nozzle is deflected through 60° from its direction by a curved
plate to which water enters tangentially without shock with a velocity of 30m/s
and leaver with a velocity of 25 m/s. If the discharge from the nozzle is 0.8 kg/s,
calculate the magnitude and direction of resultant force on the vane.



Force exerted by the jet on a stationary plate

(Symmetrical Plate)
]

Plate is Curved and Jet strikes at tip

F_ = 2paV?cos 0

Fig. 17.4 Jet striking curved fixed plate at one end.



Force exerted by the jet on a stationary plate

(Unsymmetrical Plate)
]

Plate is Curved and Jet strikes at tip

F._ = paV?(cos 0 + cos ¢)

Jet striking curved fixed plate at one end.



Problems:

1. A jet of water strikes a stationery curved plate tangentially at one end at an angle
of 30° . The jet of 75 mm diameter has a velocity of 30 m/s. The jet leaves at the
other end at angle of 20°to the horizontal. Determine the magnitude of force exerted

along 'x’ and ‘y’ directions.



Force exerted by the jet on a moving plate

Considering Relative Velocity,

If B < 900°
F, =paV,, (V,;cos 6+ V,cos ¢)

OR
F, = paV,, (Vw1 + Vo)

Jet striking a moving curved vane at one of the tips.



Force exerted by the jet on a moving plate

Considering Relative Velocity,

If B =90°
F, =paV,, (V,;cos 6-V,,cos ¢)
OR

|:x = pavrl (VW1)




Force exerted by the jet on a moving plate

Considering Relative Velocity,

If B =90°
F, =paV,, (V,;,cos 6-V,,cos ¢)
OR

F, = paV,; (Vwi—Vwo)




Impact of jet on a series of flat vanes mounted radially on the periphery of a

circular wheel

F = paV (V-U)

.-z ,—-

JET OF WATER
Jet striking a series of vanes.



Impact of jet on a series of flat vanes mounted radially on the periphery of a
circular wheel

F =paV (V-U) (1+ cos 0)




Problems:

1. A jet of water of diameter 75 mm strikes a curved plate at its centre with a velocity
of 25 m/s. The curved plate is moving with a velocity of 10 m/s along the direction of
jet. If the jet gets deflected through 165° in the smooth vane, compute.

a) Force exerted by the jet.

b) Power of jet.

c) Efficiency of jet.

2. A jet of water impinges a curved plate with a velocity of 20 m/s making an angle of
200 with the direction of motion of vane at inlet and leaves at 130°to the direction of
motion at outlet. The vane is moving with a velocity of 10 m/s. Compute.

1) Vane angles, so that water enters and leaves without shock.

i) Work done per unit mass flow rate



Force exerted by the jet on a moving plate (PELTON WHEEL)

Considering Relative Velocity,
X = pavrl (Vrl o Vr2 COS (I))
OR vf:

Uy —m V. e

Fy = paVi (Vi = Vo) e
- .
Ae G e ee e f‘::\! _____
Work done / sec = F.U t Uy eV,
vﬂ
Power =F. U
Efficiency = U

2 mV?



Problems:

1. A jet of water having a velocity of 35 m/s strikes a series of radial curved vanes
mounted on a wheel. The wheel has 200 rpm. The jet makes 20° with the tangent to
wheel at inlet and leaves the wheel with a velocity of 5 m/s at 130° to tangent to the
wheel at outlet. The diameters of wheel are 1 m and 0.5 m. Find

1) Vane angles at inlet and outlet for radially outward flow turbine.

i) Work done

i) Efficiency of the system



Applications to Radial Flow Turbines
Vw1 =V,;cos0 & V,, =V,,c0S ¢
Considering Angular Momentum Principle,
Torque (T) = Rate of Change of Angular Momentum

T=pQ (Vw1 R1- Vw1 Ry)

)

Power (P) = Torque x Angular Velocity \

\

P=T.o
If B < 90° .

P =pQ [Vy; (R1- ®) =V, (R, )) WHEEL

P=pQ (Vy U=V, Uy)
If B =900

P=pQ (Vw; Uy) u—aiC 0
If B > 909 MY, .

P=pQ (Vy,U;+ Vy, U,) Series of radial curved vanes mounted on a wheel.



Layout of Hydropower Installation

]

H, = Gross Head Tesnoy Z///i ''''''''''''''''''''''''

h; = Head Loss due to Friction L / -
3

- 4Xf 3 1. Vz 7//-747-//77

0

Where

V = Velocity of Flow in
Penstock GR‘?ﬁf)”m

L = Length of Penstock
D = Dia. of Penstock

3

H = Net Head
- Hg' hf

Layout of a bydro-eletric power plant.



Efficiencies of Turbine
TR,

1. Hydraulic Efficiency Power delivered to runner _ RP
Power supplied atinlet ~ W.P.

Power at the shaft of the turbine _ S.P.
Power delivered by water to the runner  R.P.

Volume of water actually striking the runner
Volume of water supplied to the turbine

o 0= Volume available at the shaft of the turbine _ Shaft power
4. Overall Efficiency “ Power supplied at the inlet of theturbine ~ Water power

Ny =

2. Mechanical Efficiency n,, =

3. Volumetric Efficiency n, =

s S.P. SP RP _ S.P.x R.P. SP
“WP WP RP. RP. WP Y
=nmxnh and R P —‘11.

W.P.
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Topics
N
1. Classification of Turbines
2. Selection of Turbines
3. Design of Turbines - Pelton, Francis, Kaplan
4. Draft Tube
5. Surge Tanks
6. Governing of Turbines
7. Unit Speed, Unit Discharge, Unit Power
8. Characteristic Curves of Hydraulic Turbines
9. Similitude or Model Anlysis
10. Cavitations



Classification of Turbines

1. According to type of energy at Inlet
a) Impulse Turbine - Pelton Wheel
Requires High Head and Low Rate of Flow
a) Reaction Turbine - Fancis, Kaplan
Requires Low Head and High Rate of Flow
2. According to direction of flow through runner
a) Tangential Flow Turbine - Pelton Wheel
b) Radial Flow Turbine - Francis Turbine
c) Axial Flow Turbine - Kaplan Turbine
d) Mixed Flow Turbine - Modern Francis Turbine
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turbine

Reaction
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Turbine | turbine
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Impulse Turbine ~ Reaction Turbine

Moving

buckets

Fixed Rotating
nozzle nozzle
Moving ;
buckets Rotating

nozzle

Fixed
nozzle




Classification of Turbines

—
3. According to Head at Inlet of turbine
a) High Head Turbine - Pelton Wheel
b) Medium Head Turbine - Fancis Turbine
c) Low Head Turbine - Kaplan Turbine

4. According to Specific Speed of Turbine
a) Low Specific Speed Turbine - Pelton Wheel
b) Medium Specific Speed Turbine -Fancis Turbine
c) High Specific Speed Turbine -  Kaplan Turbine



Classification according to Specific Speed of Turbines

Specific speed

Slow 10 to 20
Pelton Normal 20 to 28
Fast 28 to 35
Slow 60 to 120
Francis Normal 120 to 180
Fast 180 to 300

Kaplan - 300 to 1000



Classification of Turbines

5. According to Disposition of Turbine Shatft
a) Horizontal Shaft - Pelton Wheel
b) Vertical Shaft - Fancis & Kaplan Turbines
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PELTON WHEEL WITH MULTILE JETS




Design of Pelton Wheel

—
Guidelines:
1. Jet Ratio = Pitch Diameter of wheel / Dia. of Jet = D/d
2. Speed Ratio = Velocity of Wheel / Velocity of Jet = u/V

: U=Uy=UHy= e
Velocity of Wheel, =% s S P

Overall Efficiency , Ng=m,xXn; or M,
Water Power, W.P. = ¥2amV?2 = pgQH
Shaft Power, S.P. = paV|[V, +V, 1xu=pQ[V, +V, 1xu
No. of Buckets = (0.5 x Jet Ratio) + 15

~ WP

N O 0k W



Design of Pelton Wheel

Problems:

1. A Pelton wheel has a mean bucket speed of 10 m/s with a jet of water flowing at
the rate of 700 Ips under a head of 30 m. The buckets deflect the jet through an
angle of 160°. Calculate the power given by water to the runner and the
hydraulic efficiency of the turbine. Assume the coefficient of nozzle as 0.98.

2. A Pelton wheel has to develop 13230 kW under a net head of 800 m while
running at a speed of 600 rpm. If the coefficient of Jet C y = 0.97, speed ratio is
0.46 and the ratio of the Jet diameter is 1 /16 of wheel diameter. Calculate
1) Pitch circle diameter
i) the diameter of jet
i) the quantity of water supplied to the wheel



Design of Pelton Wheel

Problems:

3. Design a Pelton wheel for a head of 80m. and speed of 300 RPM. The Pelton
wheel develops 110 kW. Take co-eficient of velocity= 0.98, speed ratio= 0.48 and
overall efficiency = 80%.

4. A double jet Pelton wheel develops 895 MKW with an overall efficiency of 82%
under a head of 60m. The speed ratio = 0.46, jet ratio = 12 and the nozzle

coefficient = 0.97. Find the jet diameter, wheel diameter and wheel speed in
RPM.




FRANCIS TURBINE



| FRANCIS TURBINE

b

-\,

5
\



FRANCIS TURBINE



Design of Francis Turbine

]
e |
Gwdellne_s.. DN puy
1. Velocity of Wheel, u=u,=u,= o~
o0 zizh [
£ Opef .
2. Work done per second or Power, GUDE 01— Gupe

VANES

=paVi[V, u, £V, w] =pQlV, u £V, u,]

3. Velocity of Wheel, u, - 221XN , _ "D XN

= g " :
m w MOVING VANES

GUIDE VANES

4. Discharge, Q= nD,B,V, =nD,B,V,

Inward radial flow turbine.



Design of Francis Turbine

Problems:

1. Areaction turbine works at 450 rpm under a head of 120 m. Its diameter at inlet
is 1.2 m and the flow area is 0.4 m? . The angle made by the absolute and
relative velocities at inlet are 20° and 60° respectively with the tangential
velocity. Determine
() the discharge through the turbine
(i) power developed (i) efficiency.

Assume radial discharge at outlet.

2. A Francis turbine has inlet wheel diameter of 2 m and outlet diameter of 1.2 m.
The runner runs at 250 rpm and water flows at 8 cumecs. The blades have a
constant width of 200 mm. If the vanes are radial at inlet and the discharge is
radially outwards at exit, make calculations for the angle of guide vane at inlet
and blade angle at outlet




KAPLAN TURBINE
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Design of Kaplan Turbine

Guidelines:
1. Velocity of Wheel, #1=u:=

nD, x N
60

D, + D,
2

where Mean diameter, D, =

2. Work done per second = paV [V, +V, Ixu=pQ[V, +V, Ixu
3. Velocity of Flow at Inlet and Outlet are equal V; =V,
4. Discharge, @=3(0}-D})xv,

Vv
5. Flow Ratio = :fi';ff
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Design of Kaplan Turbine

Problems:

1. A Kaplan turbine develops 9000 kW under a net head of 7.5 m. Overall
efficiency of the wheel is 86% The speed ratio based on outer diameter is 2.2
and the flow ratio is 0.66. Diameter of the boss is 0.35 times the external
diameter of the wheel. Determine the diameter of the runner and the specific
speed of the runner.

2. A Kaplan turbine working under a head of 25 m develops 16,000 kW shaft
power. The outer diameter of the runner is 4 m and hub diameter is 2 m. The
guide blade angle is 35°. The hydraulic and overall efficiency are 90% and 85%
respectively. If the velocity of whirl is zero at outlet, determine runner vane
angles at inlet and outlet and speed of turbine.




Selection of Turbine

Turbine Application Chart

1 10 Flow (m¥s) 100 1000



Draft Tube

The water after working on the turbine, imparts its energy to the vanes and
runner, there by reducing its pressure less than that of atmospheric Pressure. As
the water flows from higher pressure to lower Pressure, It can not come out of the
turbine and hence a divergent tube is Connected to the end of the turbine.

Draft tube is a divergent tube one end of which is connected to the outlet Of the
turbine and other end is immersed well below the tailrace (Water level).

The major function of the draft tube is to increase the pressure from the inlet to
outlet of the draft tube as it flows through it and hence increase it more than
atmospheric pressure. The other function is to safely Discharge the water that
has worked on the turbine to tailrace.



Stop valve

Power house

Generator /
\

Tailwater

Penstock

Draft Tube




Types of Draft Tube

()-8

(b) Simple elbow type (c) Elbow type with
varying cross-section

(a) Straight type



Surge Tanks

Surge tank (or surge chamber) is a device introduced within a hydropower water
conveyance system having a rather long pressure conduit to absorb the excess
pressure rise in case of a sudden valve closure. The surge tank is located
between the almost horizontal or slightly inclined conduit and steeply sloping
penstock and is designed as a chamber excavated in the mountain.

It also acts as a small storage from which water may be supplied in case of a
sudden valve opening of the turbine.

In case of a sudden opening of turbine valve, there are chances of penstock
collapse due to a negative pressure generation, if there is no surge tank.
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Governing of Turbines
-Governing means Speed Regulation.

Governing system or governor is the main controller of the hydraulic turbine. The
governor varies the water flow through the turbine to control its speed or power
output.

1. Impulse Turbine
a) Spear Regulation
b) Deflector Regulation
c) Combined

2. Reaction Turbine
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Performance of Turbines under unit quantities
.,

The unit guantities give the speed, discharge and power for a particular
turbine under a head of 1m assuming the same efficiency. Unit quantities
are used to predict the performance of turbine.

1. Unit speed (N,) - Speed of the turbine, working under unit head

M=

%=

2. Unit power (P,) - Power developed by a turbine, working under a unit head
Ou =

SIS

3. Unit discharge (Q,) - The discharge of the turbine working under a unit head
P

FPu=

A
NN



Unit Speed, Unit discharge and Unit Power i1s definite characteristics of a
turbine.

If for a given turbine under heads #;, 5;, 53 . the corresponding speeds
are MN;, N, Mz ., the corresponding discharges are O;, O, (s . . and the

powers developed are F;, P, Ps ... Then

: N M N
Unit speed = N, = “-="2_=__
AN 2

& &) s

Unit Discharge =0, = === ===

| A P 2 B B P
Unit Power =R =—L—=—2_= 2 _orf=—1 =—2-=—>
HaﬂlHl quull Hz H HS H]_;E HE»'E Hj"?

Thus 1f speed, discharge and power developed by a turbine under a certain
head are known, the corresponding quantities for any other head can be

determined.



Specific Speed of Turbine

]
Specific Speed of a Turbine (V)

The specific speed of a turbine 1s the speed at which the turbine will run

when developing unit power under a unit head. This 1g the type
characteristics of a turbine. For a set of geometrically similar turbines the

specific speed will have the same value.

NN’E

5 H%



Unit Quantities & Specific Speed

Problems:

1. Suggest a suitable type of turbine to develop 7000 kW power under a head
of 20m while operating at 220 rpm. What are the considerations for your
suggestion.

2. Aturbine is to operate under a head of 25m at 200 rpm. The discharge is 9
m3/s. If the efficiency is 90%, determine:

1) Power generated ii) Speed and Power at a head of 20m



Characteristics Curves of Turbine
S

These are curves which are characteristic of a particular turbine which helps in
studying the performance of the turbine under various conditions. These
curves pertaining to any turbine are supplied by its manufacturers based on actual
tests.

The characteristic curves obtained are the following:
a) Constant head curves or main characteristic curves
b) Constant speed curves or operating characteristic curves
c) Constant efficiency curves or Muschel curves



Constant head curves or main characteristic curves
T

Constant head curves:

Maintaining a constant head, the speed of the turbine is varied by admitting different
rates of flow by adjusting the percentage of gate opening. The power P developed is
measured mechanically. From each test the unit power Pu, the unit speed Nu, the
unit discharge Qu and the overall efficiency are determined.

The characteristic curves drawn are
a) Unit discharge vs unit speed
b) Unit power vs unit speed
c) Overall efficiency vs unit speed
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Main Characteristic curves of a Pelton turbine



Constant speed curves or operating characteristic curves
N

Constant speed curves:

In this case tests are conducted at a constant speed varying the head H and
suitably adjusting the discharge Q. The power developed P is measured
mechanically. The overall efficiency is aimed at its maximum value.

The curves drawn are

F Ve ./

Ng VS @,
o Ve Fy
Nomax VE % Full load
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Constant efficiency curves or Muschel curves
N

Constant efficiency curves:

These curves are plotted from data which can be obtained from the constant
head and constant speed curves. The object of obtaining this curve is to determine
the zone of constant efficiency so that we can always run the turbine with

maximum efficiency.

This curve also gives a good idea about the performance of the turbine at
various efficiencies.



: P tor full gate opening

N

Constant Efficiency curves for Reaction turbine



Similitude of Turbines

Dimensionless Numbers:

o gH P
No¢ Wip? oD’

Where
Q = Discharge
N = Speed of Wheel
D = Dia. of Wheel
H = Head
P = Shaft Power



Similitude of Turbines - Problems
I

Problems:

1. A hydraulic turbine develops 120 KW under a head of 10 m at a speed of
1200 rpm and gives an efficiency of 92%. Find the water consumption and
the specific speed. If a model of scale 1: 30 is constructed to operate under a
head of 8m what must be its speed, power and water consumption to run
under the conditions similar to prototype.

2. A model turbine 1m in diameter acting under a head of 2m runs at 150 rpm.
Estimate the scale ratio if the prototype develops 20 KW under a head of 225
m with a specific speed of 100.



Cavitations
R

If the pressure of a liquid in course of its flow becomes equal to its vapour pressure
at the existing temperature, then the liquid starts boiling and the pockets of vapour
are formed which create vapour locks to the flow and the flow is stopped. The
phenomenon is known as cavitation.

To avoid cavitation, the minimum pressure in the passage of a liquid flow, should
always be more than the vapour pressure of the liquid at the working temperature.
In a reaction turbine, the point of minimum pressure is usually at the outlet end of
the runner blades, i.e., at the inlet to the draft tube.



Methods to avoid Cavitations

() Runner/turbine may be kept under water.
i) Cavitation free runner may be designed.

iy By selecting materials that can resist better the
cavitation effect.

iv) By polishing the surfaces.

vy By selecting a runner of proper specific speed for
given load.
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Topics

Introduction

Classification of Pumps

Pump Installation Detalils

Work done by Pump — Velocity Triangles at Inlet & Outlet
Heads and Efficiencies

Minimum Starting Speed

Specific Speed of Pump

Model Analysis of Pumps

Cavitations in Pumps



Introduction

A pump is a hydraulic machine which converts mechanical energy into hydraulic
energy or pressure energy.

A centrifugal pump works on the principle of centrifugal force.
In this type of pump the liquid is subjected to whirling motion by the rotating
impeller which is made of a number of backward curved vanes. The liquid enters

this impeller at its center or the eye and gets discharged into the casing enclosing
the outer edge of the impeller.

Generally centrifugal pumps are made of the radial flow type only (o = 909)



Classification of Pumps

1. According to No. of Impellers
a) Single Stage Pump
b) Multistage Pump
2. According to Disposition of Shaft
a) Vertical Shaft Pump
b) Horizontal Pump
3. According to Head
a) Low Head Pump - H<15m
b) Medium Head Pump - 15m < H < 40m
c) High Specific Speed Turbine - H > 40m




A centrifugal pump containing two or more impellers is called a multistage
centrifugal pump.

a) For higher pressures at the outlet, impellers can be connected in series.

b) For higher flow output, impellers can be connected parallel.

e
I
I
l Shaft
N d W : / \‘
A 4 & 3
i l _
First | Second First Second
impeller | impeller impeller impeller
-

MULTI-STAGE PUMPS
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Main parts of a centrifugal pump.
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Components of Centrifugal Pump

™

Delivery pipe

Static head = hg+hg

Centrifugal
il Pumpg

h, = Suction Head
hy = Delivery Head
H, = Static Head

= hS + hS
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Components of Pump

Strainer and Foot Valve
Suction Pipe and its fittings
Pump

Delivery Valve

Delivery Pipe and its fittings







Manometric Head

Manometric head (H_):
It is the total head developed by the pump.

This head is slightly less than the head generated by the impeller due
to some losses in the pump.

H_ = Suction Head + Delivery Head + Head Loss + Velocity Head in Delivery Pipe
=h,+h,+h +V,/2g



Since o= 90° Q = Area X Velocity of flow = nD\B, x V, =nD,B, XV,

Head Imparted by Impeller to Water = Work done per Second

= Vi, U
pPQ(Vy, Uy) t: s ]
Head Imparted by Impeller to Unit Weight of Water . Vou ="
= Work done per Second per Unit Weight of Water '
= pQ(Vw, Uy) I mg BRSPS, | A
=Vw U, /g IMPELLER AT
OUTLET
TANGENT TO

: . IMPELLER AT
Manometric Efficiency: INLET :
Nman = Manometric Head / Head Imparted by Impeller to Water ™

= Hy I {(Vw2 Uy) 1 ]

= gH,/VyU, ~ Velocity triangles at inlet and outlet.
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Velocity Triangles at Inlet and Outlet



Minimum Starting Speed of Pump
A centrifugal pump will start delivering liquid only if the head developed
by the impeller is more than the manometric head (# ). If the head
developed is less than //_ no discharge takes place although the impeller
is rotating. When the impeller is rotating, the liquid in contact with the
impeller is also rotating. This is a forced vertex, in which the increase in
head in the impeller is given by

2 2
T U Y
Head rise in impeller - Do Do
Discharge takes place only when & °&
2 .2
o BB
2g 2g
substituting for » , , and H_ in Equation (10.13), we obtain
v 120m,,, D;
#(D; - D)

which is the minimum speed for the pump to discharge liquid.



Specific Speed of Pump

The specific speed of a centrifugal pump is defined as the speed of a geometrically similar pump
which would deliver one cubic metre of liquid per second against a head of one metre. It is denoted by

_NJO

.r
HJH



Model Analysis of Pump

Before manufacturing the large sized pumps, their models which are in complete similarity with the
actual pumps (also called prototypes) are made. Tests are conducted on the models and performance of
the prototypes are predicted. The complete similarity between the model and actual pump (prototype)
will exist if the following conditions are satisfied :

1. Specific speed of model = Specific speed of prototype

(N)n =(N,), or (..‘“.’__J?_,] = [HJE}
m P

H,?: 4 H::d



Cavitations in Pump
.,

Cavitation is the formation of bubbles or cavities in liquid, developed in areas of relatively low
pressure around an impeller. The imploding or collapsing of these bubbles trigger intense
shockwaves inside the pump, causing significant damage to the impeller and/or the pump
housing.

If left untreated, pump cavitations can cause:

a) Failure of pump housing

b) Destruction of impeller

C) Excessive vibration leading to premature seal and bearing failure
d) Higher than necessary power consumption

Precaution: NPSHA > NPSHR
Where  NPSHA = Net Positive Suction Head Available
NPSHR = Net Positive Suction Head Required



