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Derivative of a complex function

f(z)=u(x,y)+1iv(x,y) for z=x+ 1y

f(z)= lim [””AZ)_ f(Z)] exists
Az—> 0 Az

Its value does not depend on the direction.



Ex :Show that the function f(z)= x° =y’ +i2xy is
differenti able for all values of z.
for Az = AX + iAy
f(z+Az)- f(z2)

lim
Az—> 0 Az

f (2)

(x+Ax)2 —(y+Ay)2+ 21(X + AX)(y + Ay) — x2+ y2 — 2ixy

AX + 1Ay

(Ax)2 - (Ay)2 + 21IAXAY

Y O o A
AX + iAy

(1) choose Ay

D = f'(z)=2x+i2y

(2) choose AX

0,Ay > 0= f'(z)=2x+i2y



~ ** Another

method
e
- : (z+Az)2—z2 : (Az)2+22Az
f (z)= lim [ ]= lim [
Az— 0 Az Az— 0 Az

lim Az+2z=2z
Az—> 0
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— Ex :Show that the function f(z)= 2y + ix is not

differenti able anywhere in the complex plane.

f(z+Az)- f(z) 2y+2Ay+iIX+IiIAX—-2Yy—-1IX 2Ay + iIAX

Az AX + 1Ay AX + 1Ay

if Az—> 0along a line thriugh zof slope m => Ay = mAX

: : f(z+Az)- f(2) ; 2AYy + 1AX 2m + |
f (z)= lim = ]=

Az 0 Az Ax,Ay—>0 AX + IAY 1+ Im
The limit depends on m (the direction) ,so f(z)

is nowhere differenti able.



Ex :Show that the function f(z)=1/(1- z)is analytic everywhere
except at z=1.
. : f(z+Az)- f(2) ; 1 i 1
f (z)= lim [ v 1R A e )]
Az 0 Az Ly o By G ety
1 1

= lim [ 1=
Az0 (1-z2-Az)(1-2) (1—2)2

Provided z # 1, f(z)is analytic everywhere such that

f'(z) is independen t of the direction.



Cauchy-Riemann relation

A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, there must
be particular connection between u(x,y) and v(X,y)

- [f(z+Az)— f(z)]
Az 0 Az

f(z)=u(x,y)+1iv(X,y) Az =AX+ 1Ay
f(z+Az)=u(X+AX,y+ Ay)+ iv(X+ AX,y+ Ay)
[u(x+Ax,y+Ay)+ V(X + AX,y+ Ay)—u(x,y)—iv(x,Vy)

e S8 A lim
AX,Ay— 0 AX + iAy

(1) if suppose Azisreal = Ay =0

: u(xX+AXx,y)—u(x,y) Vv(xX+AXx,y)—v(x,VY) ou oV
o T B oq B + i 1= + i

AX— 0 A X A X O X O X

(2) if suppose Az is imaginary = Ax =0

: u(x,y+Ay)—u(x,y) Vv(X,y+Ay)—v(x,VY) ~ou oV
:>L=I|m[ + 1 ]=_|_+_
Ay— 0 1Ay Ay oy oy

ou oV oV ou ; :
—=— and —=-—— Cauchy - Riemann relations
oX oy o X oy
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Ex : In which domain of the complex plane is
f(z)=|x]|—1]y|an analytic function?
u(x,y)=[x| v(x,y)=-1y|
ou ov 0 0
(1) = =5 | Xx|=—[-|Yyl|]]= (@ x>0,y <0 the fouth quatrant
0 X oy O X oy
(b) x <0,y >0 the second quatrant
oV ou 0 0
@) e e s e = X
0 X oy 0 X oy

z = X+ 1y and complex conjugate of zis e 1y

e iy

of of 0Ox B TS e R F g g gl
= + S
oY 6z 2 0x oy 2 00X 0y

: *_ *
0z 0X 9z

If f(z)is analytic ,then the Cauchy - Riemann relations
are satisfied. = 8f /82 =0 implies an analytic fonction

the combinatio n of x + iy, not x — iy

of z contains
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If Cauchy - Riemann relations are satisfied

diion ipiav e oy o au P g
Sl e e s s
O0X OX O0X 0Y 0y OX oy oY OX o7y
2 Y 8°v

(2) the same result for function v(x,y)= + =)
2 2505
oX oy

= u(x,y)and v(x,y)are solutions of Laplace' s

equation in two dimension.

For two families of curves u(x,y)= conctant and v(Xx,y) = constant,

the normal vectors correspond ing the two curves, respective ly, are

Oou » Ou oV ~ OV .
Vu(x ) e e i Vv(x TR RE e B e

0 X oy O X oy
- - ou ov  0du ov ou ou Ou ou
Vu:-Vv = + = — + = 0 orthogonal

T R S L R C i@ LD
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; . g(z)
Isolated singularit vy (pole) : f(z) =
(z—25)"

N is a positive integer, g (z) is analytic at all points

in

some neighborho od containing z=125and g(z,)=# 0,

the f (z) has a pole of order nat z = z.

** An alternate definition for that f (z) has a pole of

order nat z=12,Iis

lim [(z-2,)" f(2)]=a

1—> 7,

f (z)is analytic and a is a finite, non -zero complex number
(1) if a=0,then z =z, is a pole of order less than n.

(2) if a is infinite, then z = z, is a pole of order greater than n.
(3)if z=z,isapole of f(z)=]|f(z)|> wasz—> z,

(4) from any direction, if no finite n satisfies the limit = essential

singularit

y
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Ex :Find the singularit ies of the function

1 1

(1) f(z)= =
l-z 1+12z

exvfiCz)y= poles of order lat z=1and z = -1
(1-2z2)(1+ 2)

(2) f(z)=tanh z

sinh z exp z — exp( =)

cosh z exp z+exp( —2)

f (z) has asingularit y when exp z = —exp( —2)

= exp z=exp[ i(2n+ 1)z ]=-exp( —z)n is any integer
= 2z=i(2n+1)r = z=(n+ —)xi

Using I' Hospital' s rule

_ [z—-(n+1/2)xi]sinh z ; [z—(n+1/2)zmi]cosh z + sinh z
lim { Foz lim { Yl
2> (n+1/2)7i cosh z z—> (n+1/2)7i sinh z

each singularit vy is asimple pole (n =1)



Remove singularti es :

Singularit y makes the value of f (z)undetermin ed, but Iim f (z)
7I—> Z0

exists and independen tof the direction from which z, is approached

Ex :Show that f(z)=sin z/zis aremovable singularit yat z=20

Sol :lim f(z)=0/0 undetermin ed

z—> 0

3 5 3 5
YA Z YA VA
Tl e e e
z Sl 31 5

lim f(z)=1 is independen tof the way z —» 0,so0
z—> 0

f (z) has a removable singularit y at z = 0.
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The behavior of f(z)at infinity is given by that of
f(l/&)at &£ =0,where & =1/z2

Ex :: Find the behavior at infinity of (i) f (z) = a + bz
(ii) f(z)= z(L+ z%)and (iii) f(z) = exp z

(i) f(z)=a+bz ° = setz=1/& = f((1/&)=a+be&?
is analytic at & = 0 = f (z) is analytic at 'z ="o0

(i) f(z)=2z(1—2°)= f((1L/&)=1/& +1/&° has a pole of
order 3 at z = oo

(ii) f(z) = exp z = f(1/§)=§(n!)_1§_”

Nn=0

f (z) has an essential singularit AVIRE D RIS )
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Ex

Sol

If f(zy) = O and f(z)=(z—zo)ng(z),ifnis

a positive integer, and g(zgy) = O

@) z = z, is called a zero of order N.

(i) if n =1, z = z, is called a simple zero.

(iii) z = z,5 is also a pole of order o P o % e g diady ol i 40

:Show that f(z)=sin z/zis aremovable singularit yat z=20

:lim f(z)=0/0 undetermin ed
z—> 0

3 5 3 5
YA Z YA VA
Tl e e e
z Sl 31 5

lim f(z)=1 is independen tof the way z —» 0,so0
z—> 0

f (z) has a removable singularit y at z = 0.
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Ex : Bwaluate the complex integral of f(z)=1/z,along

the circle |zl = R, starting and finishing at z = R.

z(t)=Rcos t+iRsint,0<t< 27

dx ; dy 1 X — 1y :
SOt o 0001 | 8 Ul Bt 204 » 50010 00 W00 od (v 22 = U+ iv,
dt dt X + 1y x2+ y2
X cos t -y —sin t
X"+ y R X"+ y R
1 27z cos t : 2z —sin t
j —dz =I (- R sin t)dt —j ( )R cos tdt
C,7z 0 R 0
L e A e ;
+ |j R cos tdt + |I ( )(— R sin t)dt
0 R 0
=0+0+izx +ix = 27i
** The integral is also calculated by
dz 2z — Rsin t+ iR cos t 2T :
_[ — = dtz_[ idt = 27i
C, z 0 R cos t + iR sin t 0

The calculated result is independen tof R.
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Ex : Bwaluate the complex integral of f (z)= Re( z) along

the path C,,C, and C, as shomn in the previous  examples.
i) C, :IO R cos t(— R sin t + iR cos t)dt = izR°

2 % : ; iz 5
(i) C, :Io RO PR e I R R T T e S e
2
(iii) C; =C, +Cy
1 1
j (1-t)R(-=R + iR )dt +j (-sR )(-=R = iR )ds
0 0
5:gl . 2 ol :
= R I(l—t)(—1+|)dt+R js(1+|)ds
0 0
1 1
= ~R*(-1+i)+ —R’(1+i)=iR?
2 2

The integral depends on the different path.
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Ex :Consider two closed contour C and y in the Argand diagram, y being
sufficient ly small that it lies completely with C.Show that if the function

f (z) is analytic in the region between the two contours then f f(z)dz =P f(z)dz
C V7

the area is bounded by I',and

f (z) is analytic
f f(z)dz =0
r
= fc f(z)dz + fy f(z)dz + f01 f(z)dz + Pcz f (z)dz
If take the direction of contour y as that of

contour C = f f (z)dz =f f (z)dz
c 27

Morera® s theorem

if f(z)is acontinuous function of zin aclosed domain R

bounded by acurve C, for f f(z)dz = 0= f(z)is analytic.
.
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Cauchy’s integral formula

If f(z)is analytic within and on a closed contour C

f
g (z) o

and z, is a point within C then f(z,) = P
g

27l Z-1,

) = 1)

Z— 1, }’Z—Zo

|_§>C

for z=1z,+ pexp(i@), dz =ipexp( i6)déo

s i6 :
=|jo f(zy+ pe  )dO = 2zif (z,)
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The integral form of the derivative of a complex

. 1 f(z)
f (z5) = dz
2 i C(Z—ZO)2

R M

f'(zo)=rllim0 -
= lim [ - j’> f(z)( - - )dz ]
AR ROARR e T Tl § PR A A
=|im[1 f ) dz ]
h0 271 “C (=2, =h)(Z2=174)
1 f(z2)

= dz
2rxi °C (Z 2 20)2

n! f(2)

f

For nth derivative (") (z,)=
C n+1
(Z:=25)

27l

function






Taylor and Laurent series

If f(z)is analytic inside and on acircle C of radius R centered

on the point z = z,,and zis a point inside C, then

o i e f(n)(ZO) :
f(z)= Zan(z—zo) = Z—(z—zo)
n=0 n=0 n!
. o 1 f (&) .
f (z)is analytic inside and on C, so f(z) = f d& where & lies on C
i
1 _ e ik S
expand as a geometric series in = = Z ( )
E -1 EomiZn E -1 §—zon=0§—zo
i f SRR R i 2 f
> f(2)=—+§ s e 3. SRRy
2a1 NG G e e 2L (3(5_2())"‘Jr
1 v i i
= 2 i EO(Z_ZO) n! _EO(Z_ZO) n!
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If f(z)has apole of order pat z =z, but is analytic at every other point inside

and on C.Then g(z)=(z- zo)p f (z)is analytic at z =z, and expanded as a Taylor

n

series g(z) = Z b, (z-2,)
n=0

Thus , for all zinside C f(z) canbe exp andedasa Laurents eries

a_ a_ 4
f(z)= > 4 I0+1_1+ ....... + = +a0+a1(z—zo)+az(z_zo)2
(g (py’ z -1
(n)
z 1 z
ac=he v and bn=g ) f S
n! 2 i (Z_ZO)”+1
1 z 1 f(z
= f 9i2) dz = f () dz
2 i (Z_Zo)n+1+p 2 i (Z—Zo)n+1

e Z a,(z- zo)n is analytic in a region R between
n=—oo

two circles C, and C, centered on z =z,



Pz daate—u)
Nn=—oo
(1) If f(z)is analytic at z=z,,then all a, = 0for n < 0.

It may happen a, = 0for n > 0, the first non - vanishing

term is a, (zz,)" with m >0, f(z)is said to have a zero

ST T e

(2) If f(z)is not analytic at z = z,

(i) possible to find a_ _ # 0 but dipiis O for all k>0

P

f(z)has apole of order pat z=1z,,a_, iscalled the residue of f(z)

(i1) impossible  to find a lowest value of — p = essential singularit vy



.

Ex :Find the

z=0and z = 2. Hence

pole of order

(1) point z=20

f(z)

fi7)

Laurent

series of f (z)=

i

z(z—2)3

3, and find the residue of f (z)at each pole.

about the singularit ies

verify that z = 01is a pole of order l1and z=2is a

4 Sy L sy e o e
- [+ (=3)( )+( )( )( )2+( )(—4)( )( 3
8l fo)S By 2 21 2 3! 2
e e e L _
- - - z - S z=01is apole of order 1
8z 16 16 32
a2 e e
1 1
- = e
PET N E D)0 2 2 2
1 P e 1 1 1 g
—~ + —~ + S — + — +
R e ) A By 18D

IS

a pole of order

3, the residue

of f(z)at z=2is1/8.
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How to obtain the residue ?

diice a_, .

f(z)=—+ ...... + +a0+a1(z_zo)+a2(z_zo) A
(z—zo)rn (z:=24)

= (z2-24) f(2)=a_, +a_ . ,(2=2p)+ ccorrns e zo)m_1 qav

m-1
n

= [z =250 Bl = tm=1fla e Sebaas vy

n=1

m-1

dz

Take the limit z —» z,

m-=1

1

R(zy)=a_; = lim {

[(z-2,)" f(2)]} residue at z = gz,
2>z, (m —1)! ¢z

m-1

(1) For asimple pole m =1= R(z,)= lim [(z-2,) f(z)]

Z—)Z0
: g(z) _ :
(2) If f(z)bhas asimple at z=2z,and f(z)= , g(z) is analytic and
h(z)
non -zero at z;and h(z,)=10
(z-124)9(2) (2t 1 9(zp)

= R(zy) = lim = g(z,) lim =g{zg)lim ==
1>z, h(z) z—»>z, h(z) om et Ve G AV e L A
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Ex :Suppose that f (z)has a pole of order m at the point z = z,.By
considerin g the Laurent series of f (z)about z,,deriving a general

expression for the residue R(z,)of f(z)at z=z,.Hence evaluate

exp iz
the residue of the function f(z)= %at the point z =1i.
(z"+1)
exp iz exp iz ; _
) Y By R 5 = 5 > poles of order 2at z=1iand z = —i
G Ay (z+i) (z-1)
for pole at z = i:
d o d exp iz i : 2 :
—[(z=1)" f(z2)]= [ 2]= ; EXp 12 — —————exp Iz
dz dz (z +1i) (2040 (z+1)
1 i % 2 % — i
Rl o e gy e

1 (2i)° (2i)° 2e
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Residue theorem

f (z)has apole of order mat z =z,

Elay = ety

n=-m

| = fc f (z)dz =fy f (z)dz

setz.= zo+pei0 e A ipemde

| = Z anPC (Z A Zo)ndz — Z anIO ipn+1e|(n+l)0d9
N=—m N=—m
i n+1ei(n+1)0

oo = L
i(n+1)

n+1 i(n+1)8
e( )

27
for n¢—1:>I ip
0

27
for n=1:>j idg = 2xi
0

= Pc Ptide =2



f (z)is continuous within and on a closed contour C

and analytic, except for a finite number of poles within C

PC f(z)dz = 2niz R
J

Z Rj is the sum of the residues of f(z)at its poles within C
i



p

The integral | of f

(z) along an open contour C

if f(z)has asimple pole at z = z,

= f(z)=¢(z)+a_,(z-124)""

¢ (z) is analytic within

|z-25|= p and @,

some neighbour surroundin g z,

<arg( z-1245)<2 46,

p is chosen small enough that no singularit y of f (z) except

| = jc f (z)dz =IC¢(

lim j #(z)dz =0

p—>0 C

I = i f(z)dz =
pITOIC (z)dz

for a closed contour

z)dz + a‘ljc (2= zo)_ldz

1
i0

0, :
lim (a_, | ipe'®do)=ia_ (0, -6,)

p—>0 1 pe

0,=0,+2x = | =2xia_,

2. =1y
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Integrals of sinusoidal functions

2z
I F (cos @,sin 0)d@ set z =exp i€ in unit circle
0

1 1 i =
e A 0 LA SOt A0 U SO U it v SN ) MO o 1) RO b v o
2 74 21 Z
2 cos 260
Ex : Bwluate I=I : > d@ for b>a>0
s Ao TN e 2 Y

1 3 ik %
coS n¢9=—(zn+z n):> COoS 29=—(22+z 2)
2 2

T = :
cos 20 - 2(2 +z )(—-iz ")dz — 2(z + 1)idz
2 2 % 1 e 2 2 2
a +b - 2abcos @ a2+b2—2ab-—(z+z_1) VD AR A P | i Y
2
i P L i G
2ab 2

22(22 — z(a—+b)+1)

= =
a b

a
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I z +1 S
| = f dz double poles at z=0and z = a/b within
ab dCis a b
zale il
b a
1 m-1
Residue : R(z,) = lim { [(z—zo)rn f(z)]

2>z, (m —=1)! ¢z Mt
(1) pole at z=0,m = 2

: Tvadiras s
ROy =iyt

>0 11 dz S R N R

1}

the unit circle

_ 47° (z* +1)(=1)[2z-(a/b+b/a)]
= lim { + 5 ; }=al/b+bl/a
:>0 (z-a/b)(z-b/a) (z—alb)’(z-bla)
(2) pole at z=a/b,m =1
: 2t 41 (alb)* +1 _(at+b")

R(a/b)= Ilim [(z-a/b) 5 1= 5 = 5 5

z->a/b L e i

: A b A b 27a’

| = 27i x [ % ]=

2ab ab ab(bz—az) bz(bz—az)



Some infinite integrals

0

j_ f (x)dx

f(z) has the following properties
(1) f(z) is analytic in the upper half - plane, Im z > 0, except for
a finite number of poles, none of which is on the real axis.
(2) on a semicircle I of radius R, R times the maximum  of
| f |on I' tends to zero as R — o (a sufficient condition

Is that zf (z) > 0 as |z |[»> ®).

0 e
(3)[ f (x)dx and jo f (x)dx both exist
:j f(x)dx = 2zi) R,
j

for |I f(z)dz |£ 22R x (maximum of | f | on I'), the integral along T
r

tends to zero as R — .
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© dx

Ex : Evaluate I=I a is real
0 2 2
G G e e
dz R
f 2 24=I +I e R
Cilridas) R o
dz o dx
:I i 2 24=I 2 2.4
LAty e ey S e
2 2.4 :
(z"+a ) = 0= poles of order 4at z = xai,

only z = ai at the upper half - plane

: 1 1 1 i&
setz=a +§,{ »> 0= ; S S 4(1_—)
(z" + a’) (2aié + &) (2ai &) 2a
- 42 -4)(=5)(-6) - i — 5i
the coefficien tof & s > Gt )( )3 = -
(2a) 3! 2a 32a
0 dx e 10 # 1 10 7 Sz
I 2 Fve S P e i
SR ey 32a 32a diEn e 32a



For poles on the real axis:

Principal value of the integral, defined as p —» 0

R Z,=p ’
PI_R f(x)dx = I_R f (x)dx +_[ f (x)dx

Z,+p

for a closed contour C
R

fc f(z)dz = I_Z°R_p f(x)dx + L f (z)dz +I f(x)dx + jr f (z)dz

Z,+p

2 PJ‘_RR f(x)dx + Iy f(z)dz + IF f(z)dz

(1) for .'y f(z)dz has apole at z = z, = J‘y f(z)dz = —7zia,
: i0 -
(2) for [ f(z)dz setz=Re dz = iRe'’ds
Jr
= [ f)de = { f(Re "YYire '’ do
T T

If f(z) vanishes faster than 1/ Rt o, the integral is zero
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_ S © COS MX
Ex :Find the principal value ofJ‘ x areal,b m > 0
-® X —a
eimz
Consider the integral | = j‘) dz = 0 no pole in the
Cz-a
upper half - plane, and |(z — a)_ll — Oas |z » o
imz
e

I =P A

Gragiany
imx imz imx imz
a-p e e R e
=I 4dx+f4dz+ —dx + dz =
Ay A B Yz - a gpiine g 'z - a
eimz
ASR—>ooandp—>0:>J‘4dz—)0
'z - a
imx

AR : ima

= Pj ks ipa a0 and a2 e
-® X — a
© CO0S MmX 7 © Sin mXx

= PI ——dx = —x sin ma and PI ———dx = # cos ma
-® X —a -

X —a

0
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Integral of multivalued functions

: ; ifed
Multivalue d functions such as z . Lnz

Single branch point is at the otigin. We let R > o
and p — 0. The integrand is multivalue d, its values
along two lines AB and CD joining z = ptoz = R

are not equal and opposite.

o dx
Ex:I=J' for a > 0

e
Ay

1/

(1) the integrand f(z) = (z + a)_3z_ 2,|zf (z)] > 0Oas p > 0and R -

the two circles make no contributi on to the contour integral

(2) pole at z = —a, and (—a)ll2 e L
: e : 1
R(-a) = Ilim 5 1[(z+a) 2 1/2]
zersa3slyhadyy (e iz
e — 3i
s Y g =
7> -a 2!d22 8a5/2
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IAB dz + Ir dz + IDC dz + J‘y dz = 27zi(8a5/i2)

and Irdz=0and _[dz=0
y

? i0 : i2
along line AB = z = xe , along line CD = z = xe °”
) dx 0 dx 3z
J £ -
<R e i2 3_1/2 (1/2x2xi 5/2
S aimate T A ©,C>D (yg!27 | gy3yti2,(72x2m) 44
1 o dx 3x
=0 =
iz 0 o Jon i 5/2
e (x + a) x 4a
o dx 3z
:>I -
i) 5/2
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Basic Concepts

* An experiment is the process by which an
observation (or measurement) is obtained.

* Experiment: Record an age
* Experiment: Toss a die
* Experiment: Record an opinion (yes, no)

* Experiment: Toss two coins



* A simple event is the outcome that is observed
on a single repetition of the experiment.

e The basic element to which probability is
applied.

e One and only one simple event can occur
when the experiment is performed.

* A simple event is denoted by E with a
subscript.



Each simple event will be assigned a probability,
measuring “how often” it occurs.

The set of all simple events of an experiment is called
the sample space, S.



/ """ e —
Example
* The die toss:
» Simple events: Sample space:
1 E
2 El S ={E1, Ez E3 E4 Es, Eg}
2
T S
K 3 = ‘E,
B E, =
2 E5 .EZ 'E4 .EG
6 | E,




* An event is a collection of one or more simple
events.

‘The die toss:

—A: an odd number
—B: a number > 2

A={E,, E;, E}
B :{Eg, E E EG}




* Two events are mutually exclusive if, when one event
occurs, the other cannot, and vice versa.

: : Not Mutuall
Experiment: Toss a die
_A: observe an odd number \2

—B: observe a number greater than
—C: observe a 6 |
—D: observe a 3

Band C?
B and D?




The probability of an event A measures “how
often” we think A will occur. We write P(A).

Suppose that an experiment is performed n
times. The relative frequency for an event A is

Number of times A occurs  f

n n
| we let n get Infinitely large,
f
P(A) = lim —
n—>o [




/\/

* P(A) must be between o and 1.

e If event A can never occur, P(A) = o. If event A always
occurs when the experiment is performed, P(A) =1.

* The sum of the probabilities for all simple events in S
equals 1.

*The probability of an event A Is
found by adding the probabilities of all
the simple events contained in A.




inding Probabilities =

* Probabilities can be found using
e Estimates from empirical studies

e Common sense estimates based on equally likely
events.

Examples:

—Toss a fair coin lEGEEN R

—10% of the U.S. population has red hair.

Select a person at random. REECRETIERNI




Xxample

* Toss a fair coin twice. What is the
probability of observing at least one head?

1st Coin  2nd Coin _E. P(E)

H HH 1/4 | P(atleast 1 head)

T HT 1/4 | = P(E) *+ P(E) + P(Ey)
=1/4 + 1/4 + 1/4 = 3/4

H

H TH 1/4
T 1/4

A




~ Example S s

* A bowl contains three M&Ms", one red, one
blue and one green. A child selects two M&Ms
at random. What is the probability that at least
one is red?

1stM&M  2nd M&M _E,  P(E)

s 2 B
@ RG 1/6 P(at least 1 red)
= P(RB) + P(BR)+ P(RG) +

@<g B 16 B
BG =4/6 = 2/3

1/6

@<® . 5

GR
¢ 1/6
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¢ If the simple events in an experiment are equally
likely, you can calculate

number of simple events In A

number

n
P(A)= =2 =
N

total of simple events

* You can use counting rules to find
n, and N.



~Themn e ———

[f an experiment is performed in two stages,
with m ways to accomplish the first stage
and n ways to accomplish the second stage,
then there are mn ways to accomplish the
experiment.

This rule is easily extended to k stages, with
the number of ways equal to

n;

<

n,n,n,..

Example: Toss two coins. The total number

of simple events Isj




Xxamples

Example: Toss three coins. The total

number of simple events is 2% 2x2=8

Example: Toss two dice. The total number of
simple events Is: 6x6 =236

Example: Two M&Ms are drawn from a dish
containing two red and two blue candies. The

total number of simple eve 4 %3 =12




W
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* The number of ways you can arrange
n distinct objects, taking them r at a time is

n!

(n—r)!
where n!l=n(n-1)(n-2)...(2)(1) and 0!=1.

Example: How many 3-digit lock
combinations can we make from the
numbers 1, 2, 3, and 4?

41

The order of the choice is p4_  _ 4(3)(2) = 24

3
1!

Important!




/ inations * *

* The number of distinct combinations of n distinct
objects that can be formed, taking them r at a time is

n!

G =
r‘'(n—-r)!

Example: Three members of a 5-person committee
must be chosen to form a subcommittee. How many
different subcommittees could be formed?

T
The order of (ol > _ >(4)(3)(2)1 — >(4) —
3(2)(1)(2)1 (2)1

10

the choice Is
not important!

* 31(5 - 3)




* A box contains six M&Ms", four red

* and two green. A child selects two M&Ms at
random. What is the probability that exactly

one is red?

21
6! 6(5 c?_-
C, =——-= 2 s Yo
P 2w 2 =

ways to choose

The order of

the choice Is
not important! ALY choose 2 M & Ms.

1green M & M.

cf:i: 4 x 2 =8 ways to

— 1 —lchooselredand1 | —LF(exactly one
ways to choose green M&M. red) = 8/15
lred M & M,




* The union of two events, A and B, is the event that either
A or B or both occur when the experiment is performed.
We write

AuUB

AU B




~—Event Relations

* The intersection of two events, A and B, is
the event that both A and B occur when the
experiment is performed. We write A N B.

S

AAB

* |f two events A and B are mutually
exclusive, then P(A N B) = 0.



~—Event Relations *

* The complement of an event A consists
of all outcomes of the experiment that do
not result in event A. We write A¢.

AC.




_ Calculating Proba
Unions and Complements

* There are special rules that will allow you to
calculate probabilities for composite events.
* The Additive Rule for Unions:

* For any two events, A and B, the probability of their
union, P(A U B), is

‘P(Au B)=P(A)+ P(B)-P(AN B)I




Cal
- for Complements

* We know that for any event A:
e PANAS =0
e Since either A or A must occur,
P(AuU AC) =1
esothat P(AUASY =P(A)+P(AS) =1

P(AC) = 1 — P(A)




/CaICUIatin
: Intersections

obabilities for

* In the previous example, we found P(A m B)
directly from the table. Sometimes this is
impractical or impossible. The rule for
calculating P(A m B) depends on the idea of
independent and dependent events.

Two events, A and B, are said to be
independent if and only if the
probability that event A occurs does

not change, depending on whether or
not event B has occurred.




/CEnditioW

* The probability that A occurs, given
that event B has occurred is called the
conditional probability of A given B
and is defined as

P(A|B) = P(PA(;)B) if P(B) =0

“orven”



L“ - HAOEPE denc <

* We can redefine independence in terms of conditional
probabilities:

Two events A and B are independent if and
only if

P(AIB) = P(A) or P(B|A)=P(B)
Otherwise, they are dependent.

* Once you've decided whether or not
two events are independent, you can

use the following rule to calculate their
Intersection.



The Multiplicative Rule for
~Intersections |

* For any two events, A and B, the probability that both A
and B occur is

P(AnB)=P(A) P(B given that A
occurred) = P(A)P(B|A)

* If the events A and B are independent,
then the probability that both A and B

OCCUL-IS
P(AnNnB)=P(A) P(B)




~~The Law of Total Probability

° LetS,,S,,S,,..., Sy be mutually exclusive and exhaustive

12 —2)

events (that is, one and only one must happen). Then
the probability of another event A can be written as

P(A)=P(ANS,)+PANS,)+..+PANS,)

= P(S)P(A|S,) + P(S)P(A|S,) + ... +
P(SK)P(A[S))




P(A)=P(ANS,)+P(ANS,)+..+PANS)
= P(S)P(AIS,) + P(S)P(AIS,) * ... +

P(S)P(A[S,)




~Bayes’ Rule

LetS,,S,, S;,..., S, be mutually exclusive and

e i

exhaustive events with prior probabilities
P(S,), P(S,),...,P(S,). If an event A occurs, the
posterior probability of S, given that A
occurred is

P(S;)P(A[S)) .
P(S. |A)= for1 =1, 2,.k
2 P(S)P(A]S))




* A quantitative variable x is a random variable
if the value that it assumes, corresponding to
the outcome of an experiment is a chance or
random event.

* Random variables can be discrete or
continuous.

« Examples:
v'X = SAT score for a randomly selected
student
v'X = number of people in a room at a
randomly selected time of day
v'X = number on the upper face of a
randomly tossed die






~_ Probability DMW

Random Variables

* The probability distribution for a discrete random
variable x resembles the relative frequency
distributions we constructed in Chapter 1. It is a graph,
table or formula that gives the possible values of x and
the probability p(x) associated with each value.

We must have

0< p(x)<land X2 p(x)=1



~Probability Distributions

Probability distributions can be used to describe
the population, just as we described samples in
Chapter 1.

e Shape: Symmetric, skewed, mound-shaped...
e OQutliers: unusual or unlikely measurements

e Center and spread: mean and standard
deviation. A population mean is called p and a
population standard deviation is called o.



Al E———
~—and Standard Deviation
* Let x be a discrete random variable with probability

distribution p(x). Then the mean, variance and standard
deviation of x are given as

Mean :u = 2 Xp (X)

Variance o’ = 2. (X — y)2 p(X)

Standard deviation o = Ao ;




pPoanple = ———

—~

*Toss a fair coin 3 times and
record x the number of heads.

p(x) | Xp(X) | (X-p)=p(x) 12

18 |0 (L5 | [# == P (x)=—7=13
318|318 |(-0.5)2(3/8)

38 [68  |(05)238) |7 = 7 0
s [3:8 [@5)2ws8) LLI

7/

WINPT O | X

(0-2:.28125 +.09375 +.09375 +.28125 = .75

o =+.75 = .688




~ —Introduction

Discrete random variables take on only a
finite or countably number of values.

Three discrete probability distributions
serve as models for a large number of
practical applications:

v'The binomial random variable

v'The Poisson random variable




e Binomial Ran ari

. Many situations in rea?lrine reseinm

le
e the

coin toss, but the coin is not necessarily fair,

so that P(H) = 1/2.

« Example: A geneticist samples 10
people and counts the number who
have a gene linked to Alzheimer’s

disease.

« Coin: « Number of

SSSY
KK
Q&K

BT

 Head: tosses: P(has gene) = proportion

- Tail: [y © P

In the population who
have the gene.




“The Binomial Experiment
The experiment consists of n identical

trials.

Each trial results in one of two outcomes,
success (S) or failure (F).

The probability of success on a single trial is
%_and remains constant from trial to trial.
he probability of failureis g =1 - p.

The trials are independent.

We are interested in x, the number of
successes in n trials.




* Very few real life applications &5&3&5 &5
satisty these requirements exactly. && :& :&:

» Select two people from the U.S.
population, and suppose that 15% of
the population has the Alzheimer’s
gene.

* For the first person, p = P(gene) = .15

* For the second person, p = P(gene) =
.15, even though one person has been
removed from the population.



T/@inomi abilit

~ Distribution

* For a binomial experiment with n trials and
probability p of success on a given trial, the
probability of k successes in n trials is

n k n-Kk n! k n-Kk
P(x=k)=C_pq = P q for k =0,1,2,...n.
k!(n — k)!

n!
Recall C, =
k!(n — k)!
with n'=n(n-1)(n - 2)...(2)1and 0!=1.
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- The Mean and Standard Deviation

For a binomial experiment with n trials and
probability p of success on a given trial, the
measures of center and spread are:

Mean :©u = np

Variance :o° = npg

Standard deviation o = 4/NpQ




~Cumulative Probability =

Tables

You can use the cumulative probability tables
to find probabilities for selected binomial
distributions.

v'Find the table for the correct value of n.
v'Find the column for the correct value of p.

v'The row marked “K” gives the cumulative
probability, P(x < k) = P(x =0) +...+ P(x = k)




e Poisson Ran riable

—~

* The Poisson random variable x is a model for data
that represent the number of occurrences of a
specified event in a given unit of time or space.

« Examples:

« The number of calls received by a
switchboard during a given period of time.

« The number of machine breakdowns in a day

« The number of traffic accidents at a given
Intersection during a given time period.




)ﬂp oisson PW

Distribution

x is the number of events that occur in a period
of time or space during which an average of p
such events can be expected to occur. The
probability of k occurrences of this event is

Ka—u
e
P(x=k) =~ X
For values of k = 0, 1, 2, ... The mean and standard
deviation of the Poisson random variable are

Mean: u

Standard deviation:




/CumulatiW

Tables

You can use the cumulative probability tables
to find probabilities for selected Poisson
distributions.

v'Find the column for the correct value of 1.

v'The row marked “K” gives the cumulative
probability, P(x <k) = P(x=0) +...+ P(x = k)




~Continuous Random Variables

* Continuous random variables can assume the infinitely
many values corresponding to points on a line interval.

e Examples:
e Heights, weights
e length of life of a particular product

e experimental laboratory error



“Continuous Random Variables

* A smooth curve describes the probability
distribution of a continuous random variable.

fix)

"

*The depth or density of the probabillity, which
varies with x, may be described by a
mathematical formula f (x ), called the
probability distribution or probability density
function for the random variable x.




Properti Continuous
robability Distributions

* The area under the curve is equal to 1.
* P(a<x <b) = area under the curve between a and b.

X

a b

*There Is no probability attached to any
single value of x. That is, P(x =a) = 0.



Continuous Pr

eofje (] [ [ ] s
I (x)
X

* There are many different types of
continuous random variables

*  Wetry to pick a model that
e Fits the data well

e Allows us to make the best possible
inferences using the data.

*  One important continuous random
variable is the normal random variable.



mutlon = A

. at at generates the
normal probability distribution is:

for — c< X <

f(x) = ~__ e 2
o\N2rx

e =2.7183 7 = 3.1416

u and o are the population mean and standard deviation.

* The shape and location of the normal
curve changes as the mean and standard
deviation change.



The Standard Normal Distribution L

To find P(a < x < b), we need to find the area
under the appropriate normal curve.

To simplity the tabulation of these areas, we
standardize each value of x by expressing it
as a z-score, the number of standard
deviations o it lies from the mean p.

X — u

/ =

O



g E—_

The Standard
Normal (z)
- | Distribution

o 0 ()

Mean = o; Standard deviation =1
Whenx=y,z=0

Symmetric about z = o

Values of z to the left of center are negative
Values of z to the right of center are positive
Total area under the curve is 1.



y—

v'To find an area for a normal random variable X
with mean p and standard deviation o, standardize
or rescale the interval in terms of z.

v'Find the appropriate area using Table 3.

Example: x has a normal distribution with
u=5and o = 2. Find P(x > 7).

P(x>7)=P(z> 7;5)

=P(z>1)=1-.8413 =.1587




}eucrma

Binomial

* We can calculate binomial probabilities using
e The binomial formula
e The cumulative binomial tables
e Java applets

* When n is large, and p is not too close to zero or one, areas
under the normal curve with mean np and variance npq
can be used to approximate binomial probabilities.




