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Complex Functions And Differentiation
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ANALYTIC FUNCTION
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Cauchy-Riemann relation 

A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, there must 

be particular connection between u(x,y) and v(x,y)
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COMPLEX INTEGRATION



Singularities and zeros of  complex function
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Cauchy’s integral formula
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POWER SERIES EXPANSION OF 

COMPLEX FUNCTION



Taylor and Laurent series
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SINGLE RANDOM VARIABLES



Basic Concepts
 An experiment is the process by which an 

observation (or measurement) is obtained.

Experiment: Record an age

Experiment: Toss a die

Experiment: Record an opinion (yes, no)

Experiment: Toss two coins



A simple event is the outcome that is observed 
on a single repetition of the experiment. 

The basic element to which probability is 
applied.
One and only one simple event can occur 

when the experiment is performed.

A simple event is denoted by E with a 
subscript.



 Each simple event will be assigned a probability, 
measuring “how often” it occurs. 

 The set of all simple events of an experiment is called 
the sample space, S.



Example
 The die toss:
 Simple events: Sample space:

1

2

3

4

5

6

E1

E2

E3

E4

E5

E6

S ={E1, E2, E3, E4, E5, E6}

S
•E1

•E6
•E2

•E3

•E4

•E5



 An event is a collection of one or more simple 
events. 

•The die toss:
–A: an odd number

–B: a number > 2

S

A ={E1, E3, E5}

B ={E3, E4, E5, E6}

B
A

•E1

•E6
•E2

•E3

•E4

•E5



 Two events are mutually exclusive if, when one event 
occurs, the other cannot, and vice versa.

•Experiment: Toss a die

–A: observe an odd number

–B: observe a number greater than 2

–C: observe a 6

–D: observe a 3

Not Mutually 

Exclusive

Mutually 

Exclusive
B and  C?

B and D?



 The probability of an event A measures “how 
often” we think A will occur. We write P(A). 
 Suppose that an experiment is performed n

times. The relative frequency for an event A is 

Number of times A occurs f

n n


n

f
AP

n
lim)(




•If we let n get infinitely large, 



 P(A) must be between 0 and 1. 
 If event A can never occur, P(A) = 0. If event A always 

occurs when the experiment is performed, P(A) =1.

 The sum of the probabilities for all simple events in S 
equals 1.

•The probability of an event A is 

found by adding the probabilities of all 

the simple events contained in A. 



–10% of the U.S. population has red hair. 

Select a person at random.

Finding Probabilities
 Probabilities can be found using
 Estimates from empirical studies

 Common sense estimates based on equally likely 
events.

P(Head) = 1/2

P(Red hair) = .10

•Examples: 

–Toss a fair coin.



Example

Toss a fair coin twice. What is the 
probability of observing at least one head?

H

1st Coin     2nd Coin     Ei P(Ei)

H

T

T

H

T

HH

HT

TH

TT

1/4

1/4

1/4

1/4

P(at least 1 head) 

= P(E1) + P(E2) + P(E3)

= 1/4 + 1/4 + 1/4 = 3/4



Example
A bowl contains three M&Ms®, one red, one 

blue and one green. A child selects two M&Ms 
at random. What is the probability that at least 
one is red?

1st M&M     2nd M&M     Ei P(Ei)

RB

RG

BR

BG

1/6

1/6

1/6

1/6

1/6

1/6

P(at least 1 red) 

= P(RB) + P(BR)+ P(RG) + 

P(GR)

= 4/6 = 2/3

m

m

m

m

m

m

m

m

m
GB

GR



Counting Rules
 If the simple events in an experiment are equally 

likely, you can calculate

events simple ofnumber  total

Ain  events simple ofnumber 
)( 

N

n
AP

A

• You can use counting rules to find 

nA and N.



The mn Rule
 If an experiment is performed in two stages, 

with m ways to accomplish the first stage 
and n ways to accomplish the second stage, 
then there are mn ways to accomplish the 
experiment.

This rule is easily extended to k stages, with 
the number of ways equal to 

n1 n2 n3 … nk

Example: Toss two coins. The total number 

of simple events is:
2  2 = 4



Examples
Example: Toss three coins. The total 

number of simple events is:
2  2  2 = 8

Example: Two M&Ms are drawn from a dish 

containing two red and two blue candies. The 

total number of simple events is:

6  6 = 36

Example: Toss two dice. The total number of 

simple events is:

4  3 = 12



Permutations
 The number of ways you can arrange
n distinct objects, taking them r at a time is

Example: How many 3-digit lock 

combinations can we make from the 

numbers 1, 2, 3, and 4?

24)2)(3(4
!1

!44

3
P

The order of the choice is 

important!

.1!0 and )1)(2)...(2)(1(! where

)!(

!






nnnn

rn

n
P

n

r



Combinations
 The number of distinct combinations of n distinct 

objects that can be formed, taking them r at a time is

Example: Three members of a 5-person committee 

must be chosen to form a subcommittee. How many 

different subcommittees could be formed?

)!(!

!

rnr

n
C

n

r




10
1)2(

)4(5

1)2)(1)(2(3

1)2)(3)(4(5

)!35(!3

!55

3



CThe order of 

the choice is 

not important!



Example
A box contains six M&Ms®, four red 
 and two green. A child selects two M&Ms at 

random. What is the probability that exactly 
one is red?

The order of 

the choice is 

not important! Ms.&M 2 choose  toways

15
)1(2

)5(6

!4!2

!66

2
C

M.&Mgreen  1

 choose  toways

2
!1!1

!22

1
C

M.&M red 1

 choose  toways

4
!3!1

!44

1
C 4  2 =8 ways to 

choose 1 red and 1 

green M&M.

P( exactly one 

red) = 8/15



S

Event Relations
 The union of  two events, A and B, is the event that either 

A or B or both occur when the experiment is performed.  
We write 

A B

A BA B



S

A B

Event Relations
 The intersection of two events, A and B, is 

the event that both A and B occur when the 
experiment is performed. We write A B.

A B

• If two events A and B are mutually 
exclusive, then P(A B) = 0.



S

Event Relations
The complement of an event A consists 

of all outcomes of the experiment that do 
not result in event A.  We write AC.

A

AC



Calculating Probabilities for 
Unions and Complements
There are special rules that will allow you to 

calculate probabilities for composite events.
 The Additive Rule for Unions:

 For any two events, A and B, the probability of their 
union, P(A B), is

)()()()( BAPBPAPBAP 
A B



Calculating Probabilities 
for Complements
 We know that for any event A:

 P(A AC) = 0

 Since either A or AC must occur, 

P(A AC) =1

 so that P(A AC) = P(A)+ P(AC) = 1

P(AC) = 1 – P(A)

A

AC



Calculating Probabilities for 
Intersections

 In the previous example, we found P(A  B) 
directly from the table. Sometimes this is 
impractical or impossible. The rule for 
calculating P(A  B) depends on the idea of 
independent and dependent events.

Two events, A and B, are said to be 
independent if and only if the 
probability that event A occurs does 
not change, depending on whether or 
not event B has occurred.



Conditional Probabilities
 The probability that A occurs, given 

that event B has occurred is called the 
conditional probability of A given B 
and is defined as 

0)( if 
)(

)(
)|( 


 BP

BP

BAP
BAP

“given”



Defining Independence
 We can redefine independence in terms of conditional 

probabilities:

Two events A and B are independent if and 
only if

P(A|B) = P(A) or P(B|A) = P(B)

Otherwise, they are dependent.

• Once you’ve decided whether or not 

two events are independent, you can 

use the following rule to calculate their 

intersection.



The Multiplicative Rule for 
Intersections

 For any two events, A and B, the probability that both A
and B occur is

P(A B) = P(A) P(B given that A 
occurred)    = P(A)P(B|A)

• If the events A and B are independent, 
then the probability that both A and B
occur is

P(A B) = P(A) P(B) 



The Law of Total Probability

P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) 

= P(S1)P(A|S1) + P(S2)P(A|S2) + … + 
P(Sk)P(A|Sk)

 Let S1 , S2 , S3 ,..., Sk be mutually exclusive and exhaustive 
events (that is, one and only one must happen).  Then 
the probability of another event A can be written as



The Law of Total Probability

A
A Sk

A  S1

S2….

S1

Sk

P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) 

= P(S1)P(A|S1) + P(S2)P(A|S2) + … + 
P(Sk)P(A|Sk)



Bayes’ Rule

Let S1 , S2 , S3 ,..., Sk be mutually exclusive and 
exhaustive events with prior probabilities 
P(S1), P(S2),…,P(Sk). If an event A occurs, the 
posterior probability of Si, given that A 
occurred is

,...k,  i 
SAPSP

SAPSP
ASP

ii

ii

i
21for  

)|()(

)|()(
)|( 






Random Variables
A quantitative variable x is a random variable 

if the value that it assumes, corresponding to 
the outcome of an experiment is a chance or 
random event.
Random variables can be discrete or 

continuous.

• Examples: 
x = SAT score for a randomly selected 

student
x = number of people in a room at a 

randomly selected time of day
x = number on the upper face of a 

randomly tossed die



PROBABILITY DISTRIBUTIONS



Probability Distributions for Discrete 
Random Variables
 The probability distribution for a discrete random 

variable x resembles the relative frequency 
distributions we constructed in Chapter 1. It is a graph, 
table or formula that gives the possible values of x and 
the probability p(x) associated with each value.

1)( and 1)(0

havemust  We

 xpxp



Probability Distributions

 Probability distributions can be used to describe 
the population, just as we described samples in 
Chapter 1.

 Shape: Symmetric, skewed, mound-shaped…

Outliers: unusual or unlikely measurements 

Center and spread: mean and standard 
deviation. A population mean is called m and a 
population standard deviation is called .



The Mean 
and Standard Deviation

 Let x be a discrete random variable with probability 
distribution p(x). Then the mean, variance and standard 
deviation of x are given as

2

22

 :deviation Standard

)()( :Variance

)( :Mean



m

m







xpx

xxp



Example
Toss a fair coin 3 times and 

record x the number of heads.

x p(x) xp(x) (x-m)2p(x)

0 1/8 0 (-1.5)2(1/8)

1 3/8 3/8 (-0.5)2(3/8)

2 3/8 6/8 (0.5)2(3/8)

3 1/8 3/8 (1.5)2(1/8)

5.1
8

12
)(  xxpm

)()(
22

xpx m 

688.75.

75.28125.09375.09375.28125.
2











Introduction
Discrete random variables take on only a 

finite or countably number of values.
Three discrete probability distributions 

serve as models for a large number of 
practical applications: 

The binomial random variable

The Poisson random variable



The Binomial Random Variable
Many situations in real life resemble the 

coin toss, but the coin is not necessarily fair, 
so that P(H)  1/2.

• Example: A geneticist samples 10 

people and counts the number who 

have a gene linked to Alzheimer’s 

disease.

Person• Coin:

• Head:

• Tail:

• Number of

tosses:

• P(H):
Has gene

Doesn’t have gene

n = 10

P(has gene) = proportion 

in the population who 

have the gene.



The Binomial Experiment
1. The experiment consists of n identical 

trials.
2. Each trial results in one of two outcomes, 

success (S) or failure (F).
3. The probability of success  on a single trial is 

p and remains constant from trial to trial. 
The probability of failure is q = 1 – p. 

4. The trials are independent.
5. We are interested in x, the number of 

successes in n trials.



Binomial or Not?
Very few real life applications 

satisfy these requirements exactly.

• Select two people from the U.S. 
population, and suppose that 15% of 
the population has the Alzheimer’s 
gene.

• For the first person, p = P(gene) = .15

• For the second person, p  P(gene) = 
.15, even though one person has been 
removed from the population.



The Binomial Probability 
Distribution

For a binomial experiment with n trials and 
probability p of success on a given trial, the 
probability of k successes in n trials is
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The Mean and Standard Deviation

For a binomial experiment with n trials and 
probability p of success on a given trial, the 
measures of center and spread are:

npq

npq

np











m

 :deviation Standard

 :Variance

 :Mean

2



Cumulative Probability 
Tables

You can use the cumulative probability tables

to find probabilities for selected binomial 

distributions.

Find the table for the correct value of n.

Find the column for the correct value of p.

The row marked “k” gives the cumulative 

probability, P(x  k) = P(x = 0) +…+ P(x = k)



The Poisson Random Variable
 The Poisson random variable x is a model for data 

that represent the number of occurrences of a 
specified event in a given unit of time or space.

• Examples:

• The number of calls received by a 

switchboard during a given period of time.

• The number of machine breakdowns in a day

• The number of traffic accidents at a given 

intersection during a given time period.



The Poisson Probability 
Distribution
 x is the number of events that occur in a period 

of time or space during which an average of m
such events can be expected to occur. The 
probability of k occurrences of this event is

For values of k = 0, 1, 2, … The mean and standard 

deviation of the Poisson random variable are 

Mean: m

Standard deviation: 

!
)(

k

e
kxP

k mm 



m 



Cumulative Probability 
Tables

You can use the cumulative probability tables

to find probabilities for selected Poisson 

distributions.

Find the column for the correct value of m.

The row marked “k” gives the cumulative 

probability, P(x  k) = P(x = 0) +…+ P(x = k)



Continuous Random Variables
 Continuous random variables can assume the infinitely 

many values corresponding to points on a line interval.

 Examples:

 Heights, weights

 length of life of a particular product

 experimental laboratory error



Continuous Random Variables
A smooth curve describes the probability 

distribution of a continuous random variable.

•The depth or density of the probability, which 

varies with x,  may be described by a 

mathematical formula f (x ), called the 

probability distribution or probability density 

function for the random variable x.



Properties of Continuous
Probability Distributions
 The area under the curve is equal to 1.

 P(a  x  b) = area under the curve between a and b.

•There is no probability attached to any 

single value of x. That is, P(x = a) = 0.



Continuous Probability Distributions

 There are many different types of 
continuous random variables

 We try to pick a model that
 Fits the data well
 Allows us to make the best possible 

inferences using the data.
 One important continuous random 

variable is the normal random variable.



The Normal Distribution
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• The shape and location of the normal 

curve changes as the mean and standard 

deviation change. 

• The formula that generates the 

normal probability distribution is:



The Standard Normal Distribution

To find P(a < x < b), we need to find the area 
under the appropriate normal curve.

To simplify the tabulation of these areas, we 
standardize each value of x by expressing it 
as a z-score, the number of standard 
deviations  it lies from the mean m.



m


x
z



The Standard 
Normal (z) 
Distribution

Mean = 0; Standard deviation = 1

When x = m, z = 0

 Symmetric about z = 0

Values of z to the left of center are negative

Values of z to the right of center are positive

 Total area under the curve is 1.



Finding Probabilities for the General 
Normal Random Variable
To find an area for a normal random variable x

with mean mand standard deviation , standardize 

or rescale the interval in terms of z.

Find the appropriate area using Table 3.

Example: x has a normal distribution with 

m = 5 and  = 2. Find P(x > 7). 

1587.8413.1)1(

)
2
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The Normal Approximation to the 
Binomial
 We can calculate binomial probabilities using

 The binomial formula

 The cumulative binomial tables

 Java applets

 When n is large, and p is not too close to zero or one, areas 
under the normal curve with mean  np and variance npq 
can be used to approximate binomial probabilities. 


