COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION

CONTENTS

Complex Functions And Differentiation
 Complex Integration
 Power Series Expansion Of Complex Function
 Single Random Variables
 Probability Distributions

TEXT BOOKS

- Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 10th Edition,2014.
- B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012

REFERENCES

- Churchill, R.V. and Brown, J.W, "Complex Variables and Applications", Tata Mc Graw-Hill, 8th Edition, 2012.
- A. K. Kapoor, "Complex Variables Principles and Problem Sessions", World Scientific Publishers, 1st Edition, 2011.
- <u>Murray Spiegel</u>, <u>John Schiller</u>, "Probability and Statistics", Schaum's Outline Series, 3rd Edition, 2010.

UNIT-I

Complex Functions And Differentiation

Derivative of a complex function

$$f(z) = u(x, y) + iv(x, y) \text{ for } z = x + iy$$
$$f'(z) = \lim_{\Delta z \to 0} \left[\frac{f(z + \Delta z) - f(z)}{\Delta z} \right] \text{ exists}$$

Its value does not depend on the direction.

Ex : Show that the function $f(z) = x^2 - y^2 + i 2xy$ is

differenti able for all values of z.

for $\Delta z = \Delta x + i \Delta y$ $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$ $= \frac{(x + \Delta x)^{2} - (y + \Delta y)^{2} + 2i(x + \Delta x)(y + \Delta y) - x^{2} + y^{2} - 2ixy}{(x + \Delta x)(y + \Delta y) - x^{2} + y^{2} - 2ixy}$ $\Delta x + i \Delta y$ $= 2x + i2y + \frac{(\Delta x)^2 - (\Delta y)^2 + 2i\Delta x\Delta y}{2}$ $\Delta x + i \Delta v$ (1) choose $\Delta y = 0, \Delta x \rightarrow 0 \Rightarrow f'(z) = 2x + i2y$

(2) choose $\Delta x = 0, \Delta y \rightarrow 0 \Rightarrow f'(z) = 2x + i2y$

** Another method :

$$f(z) = (x + iy)^{2} = z^{2}$$

$$f'(z) = \lim_{\Delta z \to 0} \left[\frac{(z + \Delta z)^{2} - z^{2}}{\Delta z} \right] = \lim_{\Delta z \to 0} \left[\frac{(\Delta z)^{2} + 2z\Delta z}{\Delta z} \right]$$

$$= \lim_{\Delta z \to 0} \Delta z + 2z = 2z$$

Ex : Show that the function f(z) = 2y + ix is not differenti able anywhere in the complex plane.

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{2y + 2\Delta y + ix + i\Delta x - 2y - ix}{\Delta x + i\Delta y} = \frac{2\Delta y + i\Delta x}{\Delta x + i\Delta y}$$

if $\Delta z \rightarrow 0$ along a line through z of slope $m \Rightarrow \Delta y = m \Delta x$

 $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta x, \Delta y \to 0} \left[\frac{2\Delta y + i\Delta x}{\Delta x + i\Delta y}\right] = \frac{2m + i}{1 + im}$ The limit depends on *m* (the direction) , so f(z)is nowhere differentiable. Ex : Show that the function f(z) = 1/(1-z) is analytic everywhere except at z = 1.

$$f'(z) = \lim_{\Delta z \to 0} \left[\frac{f(z + \Delta z) - f(z)}{\Delta z} \right] = \lim_{\Delta z \to 0} \left[\frac{1}{\Delta z} \left(\frac{1}{1 - z - \Delta z} - \frac{1}{1 - z} \right) \right]$$
$$= \lim_{\Delta z \to 0} \left[\frac{1}{(1 - z - \Delta z)(1 - z)} \right] = \frac{1}{(1 - z)^2}$$

Provided $z \neq 1$, f(z) is analytic everywhere such that

f'(z) is independen t of the direction.

Cauchy-Riemann relation

A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, there must be particular connection between u(x,y) and v(x,y)

$$L = \lim_{\Delta z \to 0} \left[\frac{f(z + \Delta z) - f(z)}{\Delta z} \right]$$

$$f(z) = u(x, y) + iv(x, y) \quad \Delta z = \Delta x + i\Delta y$$

$$f(z + \Delta z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y)$$

$$\Rightarrow L = \lim_{\Delta x, \Delta y \to 0} \left[\frac{u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - u(x, y) - iv(x, y)}{\Delta x + i\Delta y} \right]$$
(1) if suppose Δz is real $\Rightarrow \Delta y = 0$

$$\Rightarrow L = \lim_{\Delta x \to 0} \left[\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \right] = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
(2) if suppose Δz is imaginary $\Rightarrow \Delta x = 0$

$$\Rightarrow L = \lim_{\Delta y \to 0} \left[\frac{u(x, y + \Delta y) - u(x, y)}{i\Delta y} + i \frac{v(x, y + \Delta y) - v(x, y)}{i\Delta y} \right] = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \text{ Cauchy - Riemann relations}$$

Ex : In which domain of the complex plane is

$$f(z) = |x| - i |y|$$
 an analytic function?
 $u(x, y) = |x|, v(x, y) = -|y|$
(1) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \Rightarrow \frac{\partial}{\partial x} |x| = \frac{\partial}{\partial y} [-|y|] \Rightarrow$ (a) $x > 0, y < 0$ the fouth quatrant
(b) $x < 0, y > 0$ the second quatrant

(2)
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \Rightarrow \frac{\partial}{\partial x} [-|y|] = -\frac{\partial}{\partial y} |x|$$

 $z = x + iy \text{ and complex conjugate of } z \text{ is } z^* = x - iy$ $\Rightarrow x = (z + z^*)/2 \text{ and } y = (z - z^*)/2i$ $\Rightarrow \frac{\partial f}{\partial z^*} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z^*} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z^*} = \frac{1}{2}(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}) + \frac{i}{2}(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y})$ If f(z) is analytic , then the Cauchy - Riemann relations are satisfied. $\Rightarrow \partial f / \partial z^* = 0$ implies an analytic fonction of z contains the combinatio n of x + iy, not x - iy If Cauchy - Riemann relations are satisfied

(1)
$$\frac{\partial}{\partial x}(\frac{\partial u}{\partial x}) = \frac{\partial}{\partial x}(\frac{\partial v}{\partial y}) = \frac{\partial}{\partial y}(\frac{\partial v}{\partial x}) = -\frac{\partial}{\partial y}(\frac{\partial u}{\partial y}) \Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial^2 y^2} = 0$$

(2) the same result for function $v(x, y) \Rightarrow \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial^2 y^2} = 0$

$$\Rightarrow$$
 $u(x, y)$ and $v(x, y)$ are solutions of Laplace's equation in two dimension.

For two families of curves u(x, y) = conctant and v(x, y) = constant, the normal vectors correspond ing the two curves, respective ly, are

$$\bar{\nabla} u(x, y) = \frac{\partial u}{\partial x}\hat{i} + \frac{\partial u}{\partial y}\hat{j} \text{ and } \bar{\nabla} v(x, y) = \frac{\partial v}{\partial x}\hat{i} + \frac{\partial v}{\partial y}\hat{j}$$
$$\bar{\nabla} u \cdot \bar{\nabla} v = \frac{\partial u}{\partial x}\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} + \frac{\partial u}{\partial y}\frac{\partial u}{\partial x} = 0 \text{ orthogonal}$$

UNIT-II COMPLEX INTEGRATION

Singularities and zeros of complex function

Isolated singularit y (pole) : $f(z) = \frac{g(z)}{(z - z_0)^n}$

n is a positive integer, g(z) is analytic at all points in some neighborho od containing $z = z_0$ and $g(z_0) \neq 0$, the f(z) has a pole of order *n* at $z = z_0$.

** An alternate definition for that f(z) has a pole of

order *n* at $z = z_0$ is

$$\lim_{z \to z_0} \left[(z - z_0)^n f(z) \right] = a$$

f(z) is analytic and *a* is a finite, non - zero complex number

- (1) if a = 0, then $z = z_0$ is a pole of order less than n.
- (2) if a is infinite, then $z = z_0$ is a pole of order greater than n.
- (3) if $z = z_0$ is a pole of $f(z) \Rightarrow |f(z)| \Rightarrow \infty$ as $z \Rightarrow z_0$
- (4) from any direction, if no finite *n* satisfies the limit \Rightarrow essential singularit y

Ex : Find the singularit ies of the function

(1)
$$f(z) = \frac{1}{1-z} - \frac{1}{1+z}$$

 $\Rightarrow f(z) = \frac{2z}{(1-z)(1+z)}$ poles of order 1 at $z = 1$ and $z = -1$
(2) $f(z) = \tanh z$
 $= \frac{\sinh z}{\cosh z} = \frac{\exp z - \exp(-z)}{\exp z + \exp(-z)}$
 $f(z)$ has a singularit y when $\exp z = -\exp(-z)$
 $\Rightarrow \exp z = \exp[i(2n+1)\pi] = \exp(-z)$ n is any integer
 $\Rightarrow 2z = i(2n+1)\pi \Rightarrow z = (n+\frac{1}{2})\pi i$

Using l'Hospital' s rule

 $\lim_{z \to (n+1/2)\pi i} \{ \frac{[z - (n+1/2)\pi i] \sinh z}{\cosh z} \} = \lim_{z \to (n+1/2)\pi i} \{ \frac{[z - (n+1/2)\pi i] \cosh z + \sinh z}{\sinh z} \} = 1$ each singularit y is a simple pole (n = 1) Remove singularti es :

Singularit y makes the value of f(z) undetermined, but $\lim_{z \to z_0} f(z)$

exists and independen t of the direction from which z_0 is approached .

Ex : Show that $f(z) = \sin z / z$ is a removable singularit y at z = 0

Sol : $\lim_{z \to 0} f(z) = 0 / 0$ undetermin ed

$$f(z) = \frac{1}{z}\left(z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots\right) = 1 - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots$$

 $\lim_{z \to 0} f(z) = 1 \text{ is independen} \quad \text{t of the way } z \to 0, \text{ so}$

f(z) has a removable singularit y at z = 0.

- The behavior of f(z) at infinity is given by that of $f(1/\xi)$ at $\xi = 0$, where $\xi = 1/z$
- Ex : Find the behavior at infinity of (i) $f(z) = a + bz^{-2}$ (ii) $f(z) = z(1 + z^2)$ and (iii) $f(z) = \exp z$

(i)
$$f(z) = a + bz^{-2} \Rightarrow \text{set } z = 1 / \xi \Rightarrow f(1 / \xi) = a + b \xi^{2}$$

is analytic at $\xi = 0 \Rightarrow f(z)$ is analytic at $z = \infty$

(ii)
$$f(z) = z(1 - z^2) \Rightarrow f(1/\xi) = 1/\xi + 1/\xi^3$$
 has a pole of
order 3 at $z = \infty$

(iii)
$$f(z) = \exp z \Rightarrow f(1/\xi) = \sum_{n=0}^{\infty} (n!)^{-1} \xi^{-n}$$

f(z) has an essential singularit y at $z = \infty$

If $f(z_0) = 0$ and $f(z) = (z - z_0)^n g(z)$, if n is a positive integer, and $g(z_0) \neq 0$ (i) $z = z_0$ is called a zero of order n. (ii) if n = 1, $z = z_0$ is called a simple zero. (iii) $z = z_0$ is also a pole of order n of 1 / f(z)

Ex : Show that $f(z) = \sin z / z$ is a removable singularit y at z = 0

Sol : $\lim_{z \to 0} f(z) = 0 / 0$ undetermin ed

$$f(z) = \frac{1}{z}\left(z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots\right) = 1 - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots$$

 $\lim_{z \to 0} f(z) = 1 \text{ is independen} \quad \text{t of the way} \quad z \to 0, \text{ so}$

f(z) has a removable singularit y at z = 0.

Ex : Evaluate the complex integral of f(z) = 1/z, along the circle |z| = R, starting and finishing at z = R.

$$z(t) = R \cos t + iR \sin t, 0 \le t \le 2\pi$$

$$\frac{dx}{dt} = -R \sin t, \frac{dy}{dt} = R \cos t, f(z) = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2} = u + iv,$$

$$u = \frac{x}{x^{2} + y^{2}} = \frac{\cos t}{R}, v = \frac{-y}{x^{2} + y^{2}} = \frac{-\sin t}{R}$$

$$\int_{C_1} \frac{1}{z} dz = \int_0^{2\pi} \frac{\cos t}{R} (-R \sin t) dt - \int_0^{2\pi} (\frac{-\sin t}{R}) R \cos t dt$$

$$+ i \int_{0}^{2\pi} \frac{\cos t}{R} R \cos t dt + i \int_{0}^{2\pi} (\frac{-\sin t}{R})(-R \sin t) dt$$

= 0 + 0 + $i\pi$ + $i\pi$ = $2\pi i$

****** The integral is also calculated by

$$\int_{C_1} \frac{dz}{z} = \int_0^{2\pi} \frac{-R \sin t + iR \cos t}{R \cos t + iR \sin t} dt = \int_0^{2\pi} idt = 2\pi i$$

The calculated result is independen t of R.

Ex : Evaluate the complex integral of f(z) = Re(z) along the path C_1, C_2 and C_3 as shown in the previous examples.

(i)
$$C_1 : \int_0^{2\pi} R \cos t (-R \sin t + iR \cos t) dt = i\pi R^2$$

(ii) C₂:
$$\int_0^{\pi} R \cos t (-R \sin t + iR \cos t) dt = \frac{i\pi}{2} R^2$$

(iii)
$$C_3 = C_{3a} + C_{3b}$$
:

$$\int_0^1 (1-t)R(-R+iR)dt + \int_0^1 (-sR)(-R-iR)ds$$

$$= R^2 \int_0^1 (1-t)(-1+i)dt + R^2 \int_0^1 s(1+i)ds$$

$$= \frac{1}{2}R^2(-1+i) + \frac{1}{2}R^2(1+i) = iR^2$$

The integral depends on the different path.

Ex : Consider two closed contour C and γ in the Argand diagram, γ being sufficient ly small that it lies completely with C. Show that if the function f(z) is analytic in the region between the two contours then $\oint_C f(z)dz = \oint_{\gamma} f(z)dz$

the area is bounded by Γ , and f(z) is analytic

$$\oint_{\Gamma} f(z)dz = \mathbf{0}$$

$$= \oint_{C} f(z)dz + \oint_{\gamma} f(z)dz + \oint_{C_{1}} f(z)dz + \oint_{C_{2}} f(z)dz$$

If take the direction of contour γ as that of

contour $C \Rightarrow \oint_C f(z)dz = \oint_{\gamma} f(z)dz$

Morera' s theorem :

if f(z) is a continuous function of z in a closed domain R bounded by a curve C, for $\oint_C f(z)dz = 0 \Rightarrow f(z)$ is analytic.

Cauchy's integral formula

If f(z) is analytic within and on a closed contour C $1 \quad f(z)$

and z_0 is a point within C then $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$

$$I = \oint_C \frac{f(z)}{z - z_0} dz = \oint_{\gamma} \frac{f(z)}{z - z_0} dz$$

for
$$z = z_0 + \rho \exp(i\theta)$$
, $dz = i\rho \exp(i\theta)d\theta$

$$I = \int_{0}^{2\pi} \frac{f(z_{0} + \rho e^{i\theta})}{\rho e^{i\theta}} i\rho e^{i\theta} d\theta$$
$$= i \int_{0}^{2\pi} f(z_{0} + \rho e^{i\theta}) d\theta \stackrel{\rho \to 0}{=} 2\pi i f(z_{0})$$

The integral form of the derivative of a complex function :

$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

=
$$\lim_{h \to 0} \left[\frac{1}{2\pi i} \oint_C \frac{f(z)}{h} \left(\frac{1}{z - z_0 - h} - \frac{1}{z - z_0} \right) dz \right]$$

=
$$\lim_{h \to 0} \left[\frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0 - h)(z - z_0)} dz \right]$$

=
$$\frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

For nth derivative
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

UNIT-III POWER SERIES EXPANSION OF COMPLEX FUNCTION

Taylor and Laurent series

If f(z) is analytic inside and on a circle C of radius R centered on the point $z = z_0$, and z is a point inside C, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

f(z) is analytic inside and on C, so $f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z} d\xi$ where ξ lies on C

expand
$$\frac{1}{\xi - z}$$
 as a geometric series in $\frac{z - z_0}{\xi - z_0} \Rightarrow \frac{1}{\xi - z} = \frac{1}{\xi - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\xi - z_0}\right)^n$

$$\Rightarrow f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\xi - z_0} \right)^n d\xi = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(z - z_0 \right)^n \oint_C \frac{f(\xi)}{\left(\xi - z_0 \right)^{n+1}} d\xi$$
$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(z - z_0 \right)^n \frac{2\pi i f^{(n)}(z_0)}{n!} = \sum_{n=0}^{\infty} \left(z - z_0 \right)^n \frac{f^{(n)}(z_0)}{n!}$$

If f(z) has a pole of order p at $z = z_0$ but is analytic at every other point inside and on C. Then $g(z) = (z - z_0)^p f(z)$ is analytic at $z = z_0$ and expanded as a Taylor

series
$$g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$
.

00

Thus, for all z inside C f(z) can be exp anded as a Laurent s eries

$$f(z) = \frac{a_{-p}}{(z-z_0)^p} + \frac{a_{-p+1}}{(z-z_0)^{p-1}} + \dots + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2$$

$$a_n = b_{n+p}$$
 and $b_n = \frac{g^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint \frac{g(z)}{(z-z_0)^{n+1}} dz$

$$\Rightarrow a_{n} = \frac{1}{2\pi i} \oint \frac{g(z)}{(z-z_{0})^{n+1+p}} dz = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-z_{0})^{n+1}} dz$$

 $f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$ is analytic in a region R between

two circles C_1 and C_2 centered on $z = z_0$

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

(1) If f(z) is analytic at $z = z_0$, then all $a_n = 0$ for n < 0.

It may happen $a_n = 0$ for $n \ge 0$, the first non - vanishing term is $a_m (z-z_0)^m$ with m > 0, f(z) is said to have a zero of order m at $z = z_0$.

- (2) If f(z) is not analytic at $z = z_0$
 - (i) possible to find $a_{-p} \neq 0$ but $a_{-p-k} = 0$ for all k > 0

f(z) has a pole of order p at $z = z_0$, a_{-1} is called the residue of f(z)

(ii) impossible to find a lowest value of $-p \Rightarrow$ essential singularit y

Ex : Find the Laurent series of $f(z) = \frac{1}{z(z-2)^3}$ about the singularit ies

z = 0 and z = 2. Hence verify that z = 0 is a pole of order 1 and z = 2 is a pole of order 3, and find the residue of f(z) at each pole.

(1) point z = 0

$$f(z) = \frac{-1}{8z(1-z/2)^3} = \frac{-1}{8z} [1 + (-3)(\frac{-z}{2}) + \frac{(-3)(-4)}{2!}(\frac{-z}{2})^2 + \frac{(-3)(-4)(-5)}{3!}(\frac{-z}{2})^3 + ...]$$

$$= -\frac{1}{8z} - \frac{3}{16} - \frac{3}{16}z - \frac{5z^2}{32} - ... \quad z = 0 \text{ is a pole of order } 1$$
(2) point $z = 2 \Rightarrow \text{ set } z - 2 = \xi \Rightarrow z(z-2)^3 = (2+\xi)\xi^3 = 2\xi^3(1+\xi/2)$

$$f(z) = \frac{1}{2\xi^3(1+\xi/2)} = \frac{1}{2\xi^3} [1 - (\frac{\xi}{2}) + (\frac{\xi}{2})^2 - (\frac{\xi}{2})^3 + (\frac{\xi}{2})^4 - ...]$$

$$= \frac{1}{2\xi^3} - \frac{1}{4\xi^2} + \frac{1}{8\xi} - \frac{1}{16} + \frac{\xi}{32} - ... = \frac{1}{2(z-2)^3} - \frac{1}{4(z-2)^2} + \frac{1}{8(z-2)} - \frac{1}{16} + \frac{z-2}{32} - ...$$

$$z = 2 \text{ is a pole of order } 3 \text{ the residue of } f(z) \text{ at } z = 2 \text{ is } 1/8.$$

How to obtain the residue ?

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \dots + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

$$\Rightarrow (z - z_0)^m f(z) = a_{-m} + a_{-m+1}(z - z_0) + \dots + a_{-1}(z - z_0)^{m-1} + \dots$$

$$\Rightarrow \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)] = (m - 1)! a_{-1} + \sum_{n=1}^{\infty} b_n (z - z_0)^n$$

Take the limit $z \rightarrow z_0$

$$R(z_0) = a_{-1} = \lim_{z \to z_0} \{ \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)] \} \text{ residue } \text{ at } z = z_0$$

(1) For a simple pole $m = 1 \Rightarrow R(z_0) = \lim_{z \to z_0} [(z - z_0) f(z)]$

(2) If f(z) has a simple at $z = z_0$ and $f(z) = \frac{g(z)}{h(z)}$, g(z) is analytic and

non - zero at z_0 and $h(z_0) = 0$

$$\Rightarrow R(z_0) = \lim_{z \to z_0} \frac{(z - z_0)g(z)}{h(z)} = g(z_0) \lim_{z \to z_0} \frac{(z - z_0)}{h(z)} = g(z_0) \lim_{z \to z_0} \frac{1}{h'(z)} = \frac{g(z_0)}{h'(z_0)}$$

Ex : Suppose that f(z) has a pole of order m at the point $z = z_0$. By considering the Laurent series of f(z) about z_0 , deriving a general expression for the residue $R(z_0)$ of f(z) at $z = z_0$. Hence evaluate

the residue of the function
$$f(z) = \frac{\exp iz}{(z^2 + 1)^2}$$
 at the point $z = i$.

$$f(z) = \frac{\exp iz}{(z^2 + 1)^2} = \frac{\exp iz}{(z + i)^2 (z - i)^2} \text{ poles of order } 2 \text{ at } z = i \text{ and } z = -i$$

for pole at z = i:

$$\frac{d}{dz}[(z-i)^2 f(z)] = \frac{d}{dz}[\frac{\exp iz}{(z+i)^2}] = \frac{i}{(z+i)^2}\exp iz - \frac{2}{(z+i)^3}\exp iz$$
$$R(i) = \frac{1}{1!}[\frac{i}{(2i)^2}e^{-1} - \frac{2}{(2i)^3}e^{-1}] = \frac{-i}{2e}$$

Residue theorem

f(z) has a pole of order m at $z = z_0$

$$f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n$$
$$I = \oint_C f(z) dz = \oint_{\gamma} f(z) dz$$

set
$$z = z_0 + \rho e^{i\theta} \Rightarrow dz = i\rho e^{i\theta} d\theta$$

$$I = \sum_{n=-m}^{\infty} a_n \oint_C (z - z_0)^n dz = \sum_{n=-m}^{\infty} a_n \int_0^{2\pi} i \rho^{n+1} e^{i(n+1)\theta} d\theta$$

for
$$n \neq -1 \Rightarrow \int_0^{2\pi} i\rho^{n+1} e^{i(n+1)\theta} d\theta = \frac{i\rho^{n+1} e^{i(n+1)\theta}}{i(n+1)} \Big|_0^{2\pi} = 0$$

for
$$n = 1 \Rightarrow \int_0^{2\pi} id \theta = 2\pi i$$

 $I = \oint_C f(z)dz = 2\pi i a_{-1}$

f(z) is continuous within and on a closed contour C and analytic, except for a finite number of poles within C

$$\oint_C f(z) dz = 2\pi i \sum_j R_j$$

 $\sum_{j} R_{j}$ is the sum of the residues of f(z) at its poles within C

The integral I of f(z) along an open contour C

if
$$f(z)$$
 has a simple pole at $z = z_0$
 $\Rightarrow f(z) = \phi(z) + a_{-1}(z - z_0)^{-1}$
 $\phi(z)$ is analytic within some neighbour surroundin $g z_0$
 $|z - z_0| = \rho$ and $\theta_1 \le \arg(z - z_0) \le \theta_2$
 ρ is chosen small enough that no singularity of $f(z)$ except $z = z_0$
 $I = \int_C f(z)dz = \int_C \phi(z)dz + a_{-1}\int_C (z - z_0)^{-1}dz$
 $\lim_{\rho \to 0} \int_C \phi(z)dz = 0$
 $I = \lim_{\rho \to 0} \int_C f(z)dz = \lim_{\rho \to 0} (a_{-1}\int_{\theta_1}^{\theta_2} \frac{1}{\rho e^{i\theta}} i\rho e^{i\theta} d\theta) = ia_{-1}(\theta_2 - \theta_1)$

for a closed contour $\theta_2 = \theta_1 + 2\pi \Rightarrow I = 2\pi i a_{-1}$

Integrals of sinusoidal functions

 $\int_0^{2\pi} F(\cos \theta, \sin \theta) d\theta \quad \text{set } z = \exp i\theta \text{ in unit circle}$

$$\Rightarrow \cos \theta = \frac{1}{2}(z+\frac{1}{z}), \quad \sin \theta = \frac{1}{2i}(z-\frac{1}{z}), \quad d\theta = -iz^{-1}dz$$

Ex : Evaluate
$$I = \int_0^{2\pi} \frac{\cos 2\theta}{a^2 + b^2 - 2ab \cos \theta} d\theta$$
 for $b > a > 0$

$$\cos n\theta = \frac{1}{2}(z^{n} + z^{-n}) \Rightarrow \cos 2\theta = \frac{1}{2}(z^{2} + z^{-2})$$

$$\frac{\cos 2\theta}{a^{2} + b^{2} - 2ab \cos \theta} d\theta = \frac{\frac{1}{2}(z^{2} + z^{-2})(-iz^{-1})dz}{a^{2} + b^{2} - 2ab \cdot \frac{1}{2}(z + z^{-1})} = \frac{-\frac{1}{2}(z^{4} + 1)idz}{z^{2}(za^{2} + zb^{2} - abz^{2} - ab)}$$

$$= \frac{i}{2ab} \frac{(z^{4} + 1)dz}{z^{2}(z^{2} - z(\frac{a}{b} - \frac{b}{a}) + 1)} = \frac{i}{2ab} \frac{(z^{4} + 1)}{z^{2}(z - \frac{a}{b})(z - \frac{b}{a})} dz$$

$$I = \frac{i}{2ab} \oint_C \frac{z^4 + 1}{z^2 (z - \frac{a}{b})(z - \frac{b}{a})} dz \text{ double poles at } z = 0 \text{ and } z = a / b \text{ within the unit circle}$$

Residue :
$$R(z_0) = \lim_{z \to z_0} \{ \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)] \}$$

(1) pole at z = 0, m = 2

$$R(0) = \lim_{z \to 0} \left\{ \frac{1}{1!} \frac{d}{dz} \left[z^2 \frac{z^4 + 1}{z^2 (z - a / b)(z - b / a)} \right] \right\}$$
$$= \lim_{z \to 0} \left\{ \frac{4z^3}{(z - a / b)(z - b / a)} + \frac{(z^4 + 1)(-1)[2z - (a / b + b / a)]}{(z - a / b)^2 (z - b / a)^2} \right\} = a / b + b / a$$

(2) pole at z = a / b, m = 1

$$R(a / b) = \lim_{z \to a / b} \left[(z - a / b) \frac{z^4 + 1}{z^2 (z - a / b) (z - b / a)} \right] = \frac{(a / b)^4 + 1}{(a / b)^2 (a / b - b / a)} = \frac{-(a^4 + b^4)}{ab (b^2 - a^2)}$$

$$I = 2\pi i \times \frac{i}{2ab} \left[\frac{a^2 + b^2}{ab} - \frac{a^4 + b^4}{ab(b^2 - a^2)}\right] = \frac{2\pi a^2}{b^2(b^2 - a^2)}$$
Some infinite integrals

$$\int_{-\infty}^{\infty} f(x) dx$$

f(z) has the following properties :

tends to zero as $R \to \infty$.

Ex : Evaluate
$$I = \int_0^\infty \frac{dx}{(x^2 + a^2)^4}$$
 a is real

$$\oint_C \frac{dz}{(z^2 + a^2)^4} = \int_{-R}^R \frac{dx}{(x^2 + a^2)^4} + \int_\Gamma \frac{dz}{(z^2 + a^2)^4} \text{ as } R \to \infty$$

$$\Rightarrow \int_\Gamma \frac{dz}{(z^2 + a^2)^4} \to 0 \Rightarrow \oint_C \frac{dz}{(z^2 + a^2)^4} = \int_{-\infty}^\infty \frac{dx}{(x^2 + a^2)^4}$$
 $(z^2 + a^2)^4 = 0 \Rightarrow \text{ poles of order } 4 \text{ at } z = \pm ai,$
only $z = ai$ at the upper half - plane

set
$$z = ai + \xi, \xi \rightarrow 0 \Rightarrow \frac{1}{(z^2 + a^2)^4} = \frac{1}{(2ai\xi + \xi^2)^4} = \frac{1}{(2ai\xi)^4} (1 - \frac{i\xi}{2a})^{-4}$$

the coefficient of
$$\xi^{-1}$$
 is $\frac{1}{(2a)^4} \frac{(-4)(-5)(-6)}{3!} \left(\frac{-i}{2a}\right)^3 = \frac{-5i}{32a^7}$

$$\int_0^\infty \frac{dx}{\left(x^2 + a^2\right)^4} = 2\pi i \left(\frac{-5i}{32a^7}\right) = \frac{10\pi}{32a^7} \Rightarrow I = \frac{1}{2} \times \frac{10\pi}{32a^7} = \frac{5\pi}{32a^7}$$

For poles on the real axis:

Principal value of the integral, defined as $\rho \rightarrow 0$

$$P\int_{-R}^{R} f(x)dx = \int_{-R}^{z_{0}-\rho} f(x)dx + \int_{z_{0}+\rho}^{R} f(x)dx$$

for a closed contour C

$$\oint_C f(z)dz = \int_{-R}^{z_0 - \rho} f(x)dx + \int_{\gamma} f(z)dz + \int_{z_0 + \rho}^{R} f(x)dx + \int_{\Gamma} f(z)dz$$

$$= P \int_{-R}^{R} f(x)dx + \int_{\gamma} f(z)dz + \int_{\Gamma} f(z)dz$$
(1) for $\int_{\gamma} f(z)dz$ has a pole at $z = z_0 \Rightarrow \int_{\gamma} f(z)dz = -\pi i a_1$
(2) for $\int_{\Gamma} f(z)dz$ set $z = \operatorname{Re}^{i\theta} dz = i \operatorname{Re}^{i\theta} d\theta$

$$\Rightarrow \int_{\Gamma} f(z)dz = \int_{\Gamma} f(\operatorname{Re}^{i\theta})i \operatorname{Re}^{i\theta} d\theta$$

If f(z) vanishes faster than $1/R^2$ as $R \to \infty$, the integral is zero

Ex : Find the principal value of $\int_{-\infty}^{\infty} \frac{\cos mx}{x-a} dx$ a real, m > 0

Consider the integral $I = \oint_C \frac{e^{imz}}{z - a} dz = 0$ no pole in the

upper half - plane, and $/(z - a)^{-1}/ \rightarrow 0$ as $|z| \rightarrow \infty$

$$I = \oint_C \frac{e^{imz}}{z - a} dz$$

= $\int_{-R}^{a - \rho} \frac{e^{imx}}{x - a} dx + \oint_{\gamma} \frac{e^{imz}}{z - a} dz + \int_{a + \rho}^{R} \frac{e^{imx}}{x - a} dx + \int_{\Gamma} \frac{e^{imz}}{z - a} dz = 0$
As $R \to \infty$ and $\rho \to 0 \Rightarrow \int_{\Gamma} \frac{e^{imz}}{z - a} dz \to 0$

$$\Rightarrow P \int_{-\infty}^{\infty} \frac{e^{imx}}{x - a} dx - i\pi a_{-1} = 0 \text{ and } a_{-1} = e^{ima}$$

$$\Rightarrow P \int_{-\infty}^{\infty} \frac{\cos mx}{x-a} dx = -\pi \sin ma \text{ and } P \int_{-\infty}^{\infty} \frac{\sin mx}{x-a} dx = \pi \cos ma$$

Integral of multivalued functions

Multivalue d functions such as $z^{1/2}$, LnzSingle branch point is at the otigin. We let $R \to \infty$ and $\rho \to 0$. The integrand is multivalue d, its values along two lines AB and CD joining $z = \rho$ to z = Rare not equal and opposite.

Ex :
$$I = \int_0^\infty \frac{dx}{(x + a)^3 x^{1/2}}$$
 for $a > 0$

(1) the integrand $f(z) = (z + a)^{-3} z^{-1/2}, |zf(z)| \rightarrow 0 \text{ as } \rho \rightarrow 0 \text{ and } R \rightarrow \infty$

the two circles make no contributi on to the contour integral

(2) pole at
$$z = -a$$
, and $(-a)^{1/2} = a^{1/2}e^{i\pi/2} = ia^{1/2}$

$$R(-a) = \lim_{z \to -a} \frac{1}{(3-1)!} \frac{d^{3-1}}{dz^{3-1}} [(z+a)^3 \frac{1}{(z+a)^3 z^{1/2}}]$$
$$= \lim_{z \to -a} \frac{1}{2!} \frac{d^2}{dz^2} z^{-1/2} = \frac{-3i}{8a^{5/2}}$$

$$\int_{AB} dz + \int_{\Gamma} dz + \int_{DC} dz + \int_{\gamma} dz = 2\pi i \left(\frac{-3i}{8a^{5/2}} \right)$$

and $\int_{\Gamma} dz = 0$ and $\int_{\gamma} dz = 0$

along line AB \Rightarrow $z = xe^{i0}$, along line CD \Rightarrow $z = xe^{i2\pi}$

$$\int_{0,A \to B}^{\infty} \frac{dx}{(x+a)^3 x^{1/2}} + \int_{\infty,C \to D}^{0} \frac{dx}{(xe^{i2\pi}+a)^3 x^{1/2} e^{(1/2 \times 2\pi i)}} = \frac{3\pi}{4a^{5/2}}$$

$$\Rightarrow (1 - \frac{1}{e^{i\pi}}) \int_0^\infty \frac{dx}{(x + a)^3 x^{1/2}} = \frac{3\pi}{4a^{5/2}}$$

$$\Rightarrow \int_0^\infty \frac{dx}{(x+a)^3 x^{1/2}} = \frac{3\pi}{8a^{5/2}}$$

UNIT-IV SINGLE RANDOM VARIABLES

Basic Concepts

- An **experiment** is the process by which an observation (or measurement) is obtained.
- Experiment: Record an age
- Experiment: Toss a die
- Experiment: Record an opinion (yes, no)
- Experiment: Toss two coins

- A **simple event** is the outcome that is observed on a single repetition of the experiment.
 - The basic element to which probability is applied.
 - One and only one simple event can occur when the experiment is performed.
- A **simple event** is denoted by E with a subscript.

- Each simple event will be assigned a probability, measuring "how often" it occurs.
- The set of all simple events of an experiment is called the **sample space**, **S**.

Example

- The die toss:
- Simple events:

Sample space:

$$S = \{E_1, E_2, E_3, E_4, E_5, E_6\}$$

An event is a collection of one or more simple events.

• Two events are **mutually exclusive** if, when one event occurs, the other cannot, and vice versa.

- The probability of an event A measures "how often" we think A will occur. We write **P(A)**.
- Suppose that an experiment is performed n times. The relative frequency for an event A is

Number of times A occurs $= \frac{f}{n}$ • If we let *n* get infinitely large, $P(A) = \lim_{n \to \infty} \frac{f}{n}$ • P(A) must be between 0 and 1.

- If event A can never occur, P(A) = o. If event A always occurs when the experiment is performed, P(A) = 1.
- The sum of the probabilities for all simple events in S equals 1.

•The probability of an event A is found by adding the probabilities of all the simple events contained in A.

Finding Probabilities

- Probabilities can be found using
 - Estimates from empirical studies
 - Common sense estimates based on equally likely events.

Examples: -Toss a fair coin P(Head) = 1/2 -10% of the U.S. population has red hair. Select a person at random. P(Red hair) = .10

• Toss a fair coin twice. What is the probability of observing at least one head?

A bowl contains three M&Ms[®], one red, one blue and one green. A child selects two M&Ms at random. What is the probability that at least one is red?

Counting Rules

• If the simple events in an experiment are **equally likely**, you can calculate

$$P(A) = \frac{n_A}{N} = \frac{\text{number of simple events in A}}{\text{total number of simple events}}$$

• You can use **counting rules** to find *n_A* and *N*.

The mn Rule

- If an experiment is performed in two stages, with *m* ways to accomplish the first stage and *n* ways to accomplish the second stage, then there are *mn* ways to accomplish the experiment.
- This rule is easily extended to *k* stages, with the number of ways equal to

 $n_1 n_2 n_3 \dots n_k$

Example: Toss two coins. The total number of simple events is: $2 \times 2 = 4$

Examples

Example: Toss three coins. The total number of simple events is $2 \times 2 \times 2 = 8$

Example: Toss two dice. The total number of simple events is: $6 \times 6 = 36$

Example: Two M&Ms are drawn from a dish containing two red and two blue candies. The total number of simple every $4 \times 3 = 12$

Permutations

The number of ways you can arrange
 n distinct objects, taking them *r* at a time is

$$P_r^n = \frac{n!}{(n-r)!}$$

where n! = n(n-1)(n-2)...(2)(1) and $0! \equiv 1$.

Example: How many 3-digit lock combinations can we make from the numbers 1, 2, 3, and 4?

The order of the choice is important!

$$P_{3}^{4} = \frac{4!}{1!} = 4(3)(2) = 24$$

Combinations

• The number of distinct combinations of *n* distinct objects that can be formed, taking them *r* at a time is

$$C_r^n = \frac{n!}{r!(n-r)!}$$

Example: Three members of a 5-person committee must be chosen to form a subcommittee. How many different subcommittees could be formed?

The order of
the choice is
not important!
$$C_{3}^{5} = \frac{5!}{3!(5-3)!} = \frac{5(4)(3)(2)1}{3(2)(1)(2)1} = \frac{5(4)}{(2)1} = 10$$

Example

A box contains six M&Ms[®], four red
and two green. A child selects two M&Ms at random. What is the probability that exactly one is red?

Event Relations

 The union of two events, A and B, is the event that either A or B or both occur when the experiment is performed. We write

$\mathbf{A} \cup \mathbf{B}$

Event Relations The intersection of two events, A and B, is the event that both A and B occur when the experiment is performed. We write A ∩ B.

• If two events A and B are mutually exclusive, then $P(A \cap B) = 0$.

Event Relations

• The **complement** of an event **A** consists of all outcomes of the experiment that do not result in event A. We write **A**^C.

Calculating Probabilities for Unions and Complements

- There are special rules that will allow you to calculate probabilities for composite events.
- The Additive Rule for Unions:
- For any two events, A and B, the probability of their union, P(A ∪ B), is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Calculating Probabilities for Complements

- We know that for any event **A**:
 - $P(A \cap A^C) = o$

• Since either A or A^C must occur, $P(A \cup A^C) = 1$

• so that $P(A \cup A^C) = P(A) + P(A^C) = 1$

$$P(A^{c}) = 1 - P(A)$$

Calculating Probabilities for Intersections

In the previous example, we found P(A ∩ B) directly from the table. Sometimes this is impractical or impossible. The rule for calculating P(A ∩ B) depends on the idea of independent and dependent events.

Two events, **A** and **B**, are said to be **independent** if and only if the probability that event **A** occurs does not change, depending on whether or not event **B** has occurred.

Conditional Probabilities

 The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as

$$P(A | B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$

""given"

Defining Independence

We can redefine independence in terms of conditional probabilities:

Two events A and B are **independent** if and only if

P(A|B) = P(A) or P(B|A) = P(B)

Otherwise, they are **dependent**.

 Once you've decided whether or not two events are independent, you can use the following rule to calculate their intersection.

The Multiplicative Rule for

Intersections

• For any two events, **A** and **B**, the probability that both **A** and **B** occur is

$P(A \cap B) = P(A) P(B \text{ given that } A)$ occurred)= P(A)P(B|A)

• If the events A and B are independent, then the probability that both A and B occur is $P(A \cap B) = P(A) P(B)$

The Law of Total Probability

Let S₁, S₂, S₃, ..., S_k be mutually exclusive and exhaustive events (that is, one and only one must happen). Then the probability of another event A can be written as

$P(A) = P(A \cap S_1) + P(A \cap S_2) + ... + P(A \cap S_k)$ = $P(S_1)P(A|S_1) + P(S_2)P(A|S_2) + ... + P(S_k)P(A|S_k)$

$P(A) = P(A \cap S_1) + P(A \cap S_2) + ... + P(A \cap S_k)$ = P(S_1)P(A|S_1) + P(S_2)P(A|S_2) + ... + P(S_k)P(A|S_k)

The Law of Total Probability

Let S₁, S₂, S₃,..., S_k be mutually exclusive and exhaustive events with prior probabilities P(S₁), P(S₂),...,P(S_k). If an event A occurs, the posterior probability of S_i, given that A occurred is

$$P(S_{i} | A) = \frac{P(S_{i})P(A | S_{i})}{\sum P(S_{i})P(A | S_{i})} \text{ for } i = 1, 2,...k$$
Random Variables

- A quantitative variable *x* is a **random variable** if the value that it assumes, corresponding to the outcome of an experiment is a chance or random event.
- Random variables can be discrete or continuous.
- Examples:
 - $\checkmark x = SAT$ score for a randomly selected student
 - $\checkmark x =$ number of people in a room at a randomly selected time of day
 - $\checkmark x =$ number on the upper face of a randomly tossed die

UNIT-V PROBABILITY DISTRIBUTIONS

Probability Distributions for Discrete Random Variables

• The **probability distribution for a discrete random variable** *x* resembles the relative frequency distributions we constructed in Chapter 1. It is a graph, table or formula that gives the possible values of *x* and the probability *p*(*x*) associated with each value.

> We must have $0 \le p(x) \le 1$ and $\sum p(x) = 1$

Probability Distributions

- Probability distributions can be used to describe the population, just as we described samples in Chapter 1.
 - **Shape:** Symmetric, skewed, mound-shaped...
 - Outliers: unusual or unlikely measurements
 - Center and spread: mean and standard deviation. A population mean is called μ and a population standard deviation is called σ.

and Standard Deviation

The Mean

• Let *x* be a discrete random variable with probability distribution *p*(*x*). Then the mean, variance and standard deviation of *x* are given as

Mean :
$$\mu = \sum xp(x)$$

Variance : $\sigma^2 = \sum (x - \mu)^2 p(x)$
Standard deviation : $\sigma = \sqrt{\sigma^2}$

Example

Toss a fair coin 3 times and record x the number of heads.

X	p(x)	xp(x)	$(x-\mu)^2 p(x)$	_ 12
0	1/8	0	$(-1.5)^2(1/8)$	$\mu = \sum xp(x) = \frac{1.5}{8}$
1	3/8	3/8	$(-0.5)^2(3/8)$	
2	3/8	6/8	$(0.5)^2(3/8)$	$2 \sum \left(\sum \left(\sum \right)^2 \right)^2$
3	1/8	3/8	$(1.5)^2(1/8)$	$\sigma = \sum (x - \mu) p(x)$

$$\sigma^2 = .28125 + .09375 + .09375 + .28125 = .75$$

 $\sigma = \sqrt{.75} = .688$

Introduction

- Discrete random variables take on only a finite or countably number of values.
- Three discrete probability distributions serve as models for a large number of practical applications:

✓ The binomial random variable

✓ The Poisson random variable

• Many situations in real life resemble the coin toss, but the coin is not necessarily fair, so that $P(H) \neq 1/2$.

• Example: A geneticist samples 10 people and counts the number who have a gene linked to Alzheimer's disease.

The Binomial Experiment

- 1. The experiment consists of *n* identical trials.
- 2. Each trial results in **one of two outcomes**, success (S) or failure (F).
- 3. The probability of success on a single trial is p and **remains constant** from trial to trial. The probability of failure is q = 1 p.
- 4. The trials are **independent**.
- 5. We are interested in *x*, the number of successes in *n* trials.

Binomial or Not?

 Very few real life applications satisfy these requirements exactly.

- Select two people from the U.S. population, and suppose that 15% of the population has the Alzheimer's gene.
 - For the first person, p = P(gene) = .15
 - For the second person, p ≈ P(gene) = .15, even though one person has been removed from the population.

The Binomial Probability Distribution

• For a binomial experiment with *n* trials and probability *p* of success on a given trial, the probability of *k* successes in *n* trials is

$$P(x = k) = C_{k}^{n} p^{k} q^{n-k} = \frac{n!}{k!(n-k)!} p^{k} q^{n-k} \text{ for } k = 0, 1, 2, ..., n.$$

Recall $C_{k}^{n} = \frac{n!}{k!(n-k)!}$
with $n! = n(n-1)(n-2)...(2)1$ and $0! = 1$.

The Mean and Standard Deviation

 For a binomial experiment with *n* trials and probability *p* of success on a given trial, the measures of center and spread are:

> Mean : $\mu = np$ Variance : $\sigma^2 = npq$ Standard deviation : $\sigma = \sqrt{npq}$

Cumulative Probability Tables

You can use the cumulative probability tables to find probabilities for selected binomial distributions.

✓ Find the table for the correct value of n.

✓ Find the column for the correct value of p.

✓ The row marked "*k*" gives the cumulative probability, $P(x \le k) = P(x = 0) + ... + P(x = k)$

The Poisson Random Variable

• The Poisson random variable *x* is a model for data that represent the number of occurrences of a specified event in a given unit of time or space.

- Examples:
 - The number of calls received by a switchboard during a given period of time.
 - The number of machine breakdowns in a day
 - The number of traffic accidents at a given intersection during a given time period.

The Poisson Probability Distribution

Fo

de

Μ

• x is the number of events that occur in a period of time or space during which an average of μ such events can be expected to occur. The probability of *k* occurrences of this event is

$$P(x = k) = \frac{\mu^{k} e^{-\mu}}{k!}$$

For values of $k = 0, 1, 2, ...$ The mean and standard deviation of the Poisson random variable are
Mean: μ
Standard deviation:
 $\sigma = \sqrt{\mu}$

Cumulative Probability Tables

You can use the cumulative probability tables to find probabilities for selected Poisson distributions.

✓ Find the column for the correct value of μ .

✓ The row marked "*k*" gives the cumulative probability, $P(x \le k) = P(x = 0) + ... + P(x = k)$

Continuous Random Variables

• Continuous random variables can assume the infinitely many values corresponding to points on a line interval.

• Examples:

- Heights, weights
- length of life of a particular product
- experimental laboratory error

Continuous Random Variables • A **smooth curve** describes the probability distribution of a continuous random variable.

•The depth or density of the probability, which varies with *x*, may be described by a mathematical formula *f* (*x*), called the **probability distribution** or **probability density function** for the random variable *x*.

Properties of Continuous

Probability Distributions

- The area under the curve is equal to **1**.
- $P(a \le x \le b) = area under the curve between a and b.$

•There is no probability attached to any single value of x. That is, P(x = a) = 0.

Continuous Probability Distributions

- There are many different types of continuous random variables
- We try to pick a model that
 - Fits the data well
 - Allows us to make the best possible inferences using the data.
- One important continuous random variable is the normal random variable.

The formula that generates the normal probability distribution is:

 The shape and location of the normal curve changes as the mean and standard deviation change.

The Standard Normal Distribution

- To find P(a < *x* < b), we need to find the area under the appropriate normal curve.
- To simplify the tabulation of these areas, we standardize each value of *x* by expressing it as a *z*-score, the number of standard deviations σ it lies from the mean µ.

$$z = \frac{x - \mu}{\sigma}$$

The Standard Normal (z) Distribution

- Mean = 0; Standard deviation = 1
- When $x = \mu$, z = 0
- Symmetric about *z* = 0
- Values of *z* to the left of center are negative
- Values of *z* to the right of center are positive
- Total area under the curve is 1.

Finding Probabilities for the General Normal Random Variable

✓ To find an area for a normal random variable x with mean µ and standard deviation σ, standardize or rescale the interval in terms of z.
✓ Find the appropriate area using Table 3.

Example: *x* has a normal distribution with $\mu = 5$ and $\sigma = 2$. Find P(*x* > 7).

$$P(x > 7) = P(z > \frac{7-5}{2})$$
$$= P(z > 1) = 1 - .8413 = .1587$$

The Normal Approximation to the Binomial

- We can calculate binomial probabilities using
 - The binomial formula
 - The cumulative binomial tables
 - Java applets
- When *n* is large, and *p* is not too close to zero or one, areas under the normal curve with mean *np* and variance *npq* can be used to approximate binomial probabilities.

