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Complex Functions And Differentiation
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ANALYTIC FUNCTION
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Cauchy-Riemann relation 

A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, there must 

be particular connection between u(x,y) and v(x,y)
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COMPLEX INTEGRATION



Singularities and zeros of  complex function
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POWER SERIES EXPANSION OF 

COMPLEX FUNCTION



Taylor and Laurent series
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How to obtain the residue ?

001

1

10

0

0

1

101

1

1

01010

2

02010

0

1

0

at  residue  )]}()[(
)!1(

1
{lim)(

limit  the Take

)()!1()]()[( 

...)(.......)()()( 

...)()(
)(

......

)(

)(

0

zzzfzz

dz

d

m
azR

zz

zzbamzfzz

dz

d

zzazzaazfzz

zzazzaa
zz

a

zz

a
zf

m

m

m

zz

n

n

n

m

m

m

m

mm

m

m

m












































)(

)(

)(

1
lim)(

)(

)(
lim)(

)(

)()(
lim)( 

0)( and at  zero-non     

and analytic is )( ,
)(

)(
)( and at  simple a has )( If (2)

)]()[(lim)(1 pole simple aFor  (1)

0

'

0

'0

0

0

0

0

00

0

00

000

0

zh

zg

zh

zg
zh

zz
zg

zh

zgzz
zR

zhz

zg
zh

zg
zfzzzf

zfzzzRm

zzzzzz

zz





















.point  theat  

)1(

exp
)( function the of residue the

evaluate Hence .at  )( of )( residue thefor  expression

general a deriving ,about  )( of seriesLaurent  the gconsiderin

By .point  theat  order  of pole a has )(that  Suppose :Ex

22

00

0

0

iz

z

iz
zf

zzzfzR

zzf

zzmzf











e

i
e

i

e

i

i
iR

iz

iz

iz

iz

i

iz

iz

dz

d
zfiz

dz

d

iz

iziz

iziz

iz

z

iz
zf

2
]

)2(

2

)2(

[
!1

1
)(

exp

)(

2
exp

)(

]

)(

exp
[)]()[(

:at  polefor 

 and at  2order  of poles   

)()(

exp

)1(

exp
)(

1

3

1

2

322

2

2222
































Residue theorem



















































C

nin

nin

nin

mn

n

n

C
mn

n

ii

C

n

mn

n

iadzzfI

iidn

ni

ei
dein

deiadzzzaI

deidzezz

dzzfdzzfI

zzazf

zzmzf

1

2

0

2

0

)1(1

)1(
2

0

1

)1(
2

0

1

0

0

0

0

2)(

2  1for 

0|
)1(

  1for 

)(

  set 

    )()(

)()(         

at  order  of pole a has )(




























C within poles itsat  )( of residues the of sum the is 

2)(                           

C within poles ofnumber  finite afor except  analytic, and

Ccontour  closed a on and within continuous is )(

zfR

Ridzzf

zf

j

j

j

j
C



  



Ccontour  open an along )( of  integral The zfI

112

1211
00

0

1

01

0

2010

0

1

01

0

2  2contour  closed afor 

)()
1

(lim)(lim

0)(lim

)()()(

except  )( of ysingularit nothat  enough small chosen is 

)arg(   and   ||

 gsurroundinneighbour  some within analytic is )(

)()()( 

at  pole simple a has )( if

2

1




































 

iaI

iadei

e

adzzfI

dzz

dzzzadzzdzzfI

zzzf

zzzz

zz

zzazzf

zzzf

i

iC

C

CC C





















 






Integrals of sinusoidal functions
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SINGLE RANDOM VARIABLES



Basic Concepts
 An experiment is the process by which an 

observation (or measurement) is obtained.

Experiment: Record an age

Experiment: Toss a die

Experiment: Record an opinion (yes, no)

Experiment: Toss two coins



A simple event is the outcome that is observed 
on a single repetition of the experiment. 

The basic element to which probability is 
applied.
One and only one simple event can occur 

when the experiment is performed.

A simple event is denoted by E with a 
subscript.



 Each simple event will be assigned a probability, 
measuring “how often” it occurs. 

 The set of all simple events of an experiment is called 
the sample space, S.



Example
 The die toss:
 Simple events: Sample space:

1

2

3

4

5

6

E1

E2

E3

E4

E5

E6

S ={E1, E2, E3, E4, E5, E6}

S
•E1

•E6
•E2

•E3

•E4

•E5



 An event is a collection of one or more simple 
events. 

•The die toss:
–A: an odd number

–B: a number > 2

S

A ={E1, E3, E5}

B ={E3, E4, E5, E6}

B
A

•E1

•E6
•E2

•E3

•E4

•E5



 Two events are mutually exclusive if, when one event 
occurs, the other cannot, and vice versa.

•Experiment: Toss a die

–A: observe an odd number

–B: observe a number greater than 2

–C: observe a 6

–D: observe a 3

Not Mutually 

Exclusive

Mutually 

Exclusive
B and  C?

B and D?



 The probability of an event A measures “how 
often” we think A will occur. We write P(A). 
 Suppose that an experiment is performed n

times. The relative frequency for an event A is 

Number of times A occurs f

n n


n

f
AP

n
lim)(




•If we let n get infinitely large, 



 P(A) must be between 0 and 1. 
 If event A can never occur, P(A) = 0. If event A always 

occurs when the experiment is performed, P(A) =1.

 The sum of the probabilities for all simple events in S 
equals 1.

•The probability of an event A is 

found by adding the probabilities of all 

the simple events contained in A. 



–10% of the U.S. population has red hair. 

Select a person at random.

Finding Probabilities
 Probabilities can be found using
 Estimates from empirical studies

 Common sense estimates based on equally likely 
events.

P(Head) = 1/2

P(Red hair) = .10

•Examples: 

–Toss a fair coin.



Example

Toss a fair coin twice. What is the 
probability of observing at least one head?

H

1st Coin     2nd Coin     Ei P(Ei)

H

T

T

H

T

HH

HT

TH

TT

1/4

1/4

1/4

1/4

P(at least 1 head) 

= P(E1) + P(E2) + P(E3)

= 1/4 + 1/4 + 1/4 = 3/4



Example
A bowl contains three M&Ms®, one red, one 

blue and one green. A child selects two M&Ms 
at random. What is the probability that at least 
one is red?

1st M&M     2nd M&M     Ei P(Ei)

RB

RG

BR

BG

1/6

1/6

1/6

1/6

1/6

1/6

P(at least 1 red) 

= P(RB) + P(BR)+ P(RG) + 

P(GR)

= 4/6 = 2/3

m

m

m

m

m

m

m

m

m
GB

GR



Counting Rules
 If the simple events in an experiment are equally 

likely, you can calculate

events simple ofnumber  total

Ain  events simple ofnumber 
)( 

N

n
AP

A

• You can use counting rules to find 

nA and N.



The mn Rule
 If an experiment is performed in two stages, 

with m ways to accomplish the first stage 
and n ways to accomplish the second stage, 
then there are mn ways to accomplish the 
experiment.

This rule is easily extended to k stages, with 
the number of ways equal to 

n1 n2 n3 … nk

Example: Toss two coins. The total number 

of simple events is:
2  2 = 4



Examples
Example: Toss three coins. The total 

number of simple events is:
2  2  2 = 8

Example: Two M&Ms are drawn from a dish 

containing two red and two blue candies. The 

total number of simple events is:

6  6 = 36

Example: Toss two dice. The total number of 

simple events is:

4  3 = 12



Permutations
 The number of ways you can arrange
n distinct objects, taking them r at a time is

Example: How many 3-digit lock 

combinations can we make from the 

numbers 1, 2, 3, and 4?

24)2)(3(4
!1

!44

3
P

The order of the choice is 

important!

.1!0 and )1)(2)...(2)(1(! where

)!(

!






nnnn

rn

n
P

n

r



Combinations
 The number of distinct combinations of n distinct 

objects that can be formed, taking them r at a time is

Example: Three members of a 5-person committee 

must be chosen to form a subcommittee. How many 

different subcommittees could be formed?

)!(!

!

rnr

n
C

n

r




10
1)2(

)4(5

1)2)(1)(2(3

1)2)(3)(4(5

)!35(!3

!55

3



CThe order of 

the choice is 

not important!



Example
A box contains six M&Ms®, four red 
 and two green. A child selects two M&Ms at 

random. What is the probability that exactly 
one is red?

The order of 

the choice is 

not important! Ms.&M 2 choose  toways

15
)1(2

)5(6

!4!2

!66

2
C

M.&Mgreen  1

 choose  toways

2
!1!1

!22

1
C

M.&M red 1

 choose  toways

4
!3!1

!44

1
C 4  2 =8 ways to 

choose 1 red and 1 

green M&M.

P( exactly one 

red) = 8/15



S

Event Relations
 The union of  two events, A and B, is the event that either 

A or B or both occur when the experiment is performed.  
We write 

A B

A BA B



S

A B

Event Relations
 The intersection of two events, A and B, is 

the event that both A and B occur when the 
experiment is performed. We write A B.

A B

• If two events A and B are mutually 
exclusive, then P(A B) = 0.



S

Event Relations
The complement of an event A consists 

of all outcomes of the experiment that do 
not result in event A.  We write AC.

A

AC



Calculating Probabilities for 
Unions and Complements
There are special rules that will allow you to 

calculate probabilities for composite events.
 The Additive Rule for Unions:

 For any two events, A and B, the probability of their 
union, P(A B), is

)()()()( BAPBPAPBAP 
A B



Calculating Probabilities 
for Complements
 We know that for any event A:

 P(A AC) = 0

 Since either A or AC must occur, 

P(A AC) =1

 so that P(A AC) = P(A)+ P(AC) = 1

P(AC) = 1 – P(A)

A

AC



Calculating Probabilities for 
Intersections

 In the previous example, we found P(A  B) 
directly from the table. Sometimes this is 
impractical or impossible. The rule for 
calculating P(A  B) depends on the idea of 
independent and dependent events.

Two events, A and B, are said to be 
independent if and only if the 
probability that event A occurs does 
not change, depending on whether or 
not event B has occurred.



Conditional Probabilities
 The probability that A occurs, given 

that event B has occurred is called the 
conditional probability of A given B 
and is defined as 

0)( if 
)(

)(
)|( 


 BP

BP

BAP
BAP

“given”



Defining Independence
 We can redefine independence in terms of conditional 

probabilities:

Two events A and B are independent if and 
only if

P(A|B) = P(A) or P(B|A) = P(B)

Otherwise, they are dependent.

• Once you’ve decided whether or not 

two events are independent, you can 

use the following rule to calculate their 

intersection.



The Multiplicative Rule for 
Intersections

 For any two events, A and B, the probability that both A
and B occur is

P(A B) = P(A) P(B given that A 
occurred)    = P(A)P(B|A)

• If the events A and B are independent, 
then the probability that both A and B
occur is

P(A B) = P(A) P(B) 



The Law of Total Probability

P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) 

= P(S1)P(A|S1) + P(S2)P(A|S2) + … + 
P(Sk)P(A|Sk)

 Let S1 , S2 , S3 ,..., Sk be mutually exclusive and exhaustive 
events (that is, one and only one must happen).  Then 
the probability of another event A can be written as



The Law of Total Probability

A
A Sk

A  S1

S2….

S1

Sk

P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) 

= P(S1)P(A|S1) + P(S2)P(A|S2) + … + 
P(Sk)P(A|Sk)



Bayes’ Rule

Let S1 , S2 , S3 ,..., Sk be mutually exclusive and 
exhaustive events with prior probabilities 
P(S1), P(S2),…,P(Sk). If an event A occurs, the 
posterior probability of Si, given that A 
occurred is

,...k,  i 
SAPSP

SAPSP
ASP

ii

ii

i
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Random Variables
A quantitative variable x is a random variable 

if the value that it assumes, corresponding to 
the outcome of an experiment is a chance or 
random event.
Random variables can be discrete or 

continuous.

• Examples: 
x = SAT score for a randomly selected 

student
x = number of people in a room at a 

randomly selected time of day
x = number on the upper face of a 

randomly tossed die



PROBABILITY DISTRIBUTIONS



Probability Distributions for Discrete 
Random Variables
 The probability distribution for a discrete random 

variable x resembles the relative frequency 
distributions we constructed in Chapter 1. It is a graph, 
table or formula that gives the possible values of x and 
the probability p(x) associated with each value.

1)( and 1)(0

havemust  We

 xpxp



Probability Distributions

 Probability distributions can be used to describe 
the population, just as we described samples in 
Chapter 1.

 Shape: Symmetric, skewed, mound-shaped…

Outliers: unusual or unlikely measurements 

Center and spread: mean and standard 
deviation. A population mean is called m and a 
population standard deviation is called .



The Mean 
and Standard Deviation

 Let x be a discrete random variable with probability 
distribution p(x). Then the mean, variance and standard 
deviation of x are given as

2

22

 :deviation Standard

)()( :Variance

)( :Mean
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m
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Example
Toss a fair coin 3 times and 

record x the number of heads.

x p(x) xp(x) (x-m)2p(x)

0 1/8 0 (-1.5)2(1/8)

1 3/8 3/8 (-0.5)2(3/8)

2 3/8 6/8 (0.5)2(3/8)

3 1/8 3/8 (1.5)2(1/8)

5.1
8

12
)(  xxpm

)()(
22

xpx m 

688.75.

75.28125.09375.09375.28125.
2











Introduction
Discrete random variables take on only a 

finite or countably number of values.
Three discrete probability distributions 

serve as models for a large number of 
practical applications: 

The binomial random variable

The Poisson random variable



The Binomial Random Variable
Many situations in real life resemble the 

coin toss, but the coin is not necessarily fair, 
so that P(H)  1/2.

• Example: A geneticist samples 10 

people and counts the number who 

have a gene linked to Alzheimer’s 

disease.

Person• Coin:

• Head:

• Tail:

• Number of

tosses:

• P(H):
Has gene

Doesn’t have gene

n = 10

P(has gene) = proportion 

in the population who 

have the gene.



The Binomial Experiment
1. The experiment consists of n identical 

trials.
2. Each trial results in one of two outcomes, 

success (S) or failure (F).
3. The probability of success  on a single trial is 

p and remains constant from trial to trial. 
The probability of failure is q = 1 – p. 

4. The trials are independent.
5. We are interested in x, the number of 

successes in n trials.



Binomial or Not?
Very few real life applications 

satisfy these requirements exactly.

• Select two people from the U.S. 
population, and suppose that 15% of 
the population has the Alzheimer’s 
gene.

• For the first person, p = P(gene) = .15

• For the second person, p  P(gene) = 
.15, even though one person has been 
removed from the population.



The Binomial Probability 
Distribution

For a binomial experiment with n trials and 
probability p of success on a given trial, the 
probability of k successes in n trials is

.1!01)2)...(2)(1(!
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The Mean and Standard Deviation

For a binomial experiment with n trials and 
probability p of success on a given trial, the 
measures of center and spread are:

npq

npq

np











m

 :deviation Standard

 :Variance

 :Mean

2



Cumulative Probability 
Tables

You can use the cumulative probability tables

to find probabilities for selected binomial 

distributions.

Find the table for the correct value of n.

Find the column for the correct value of p.

The row marked “k” gives the cumulative 

probability, P(x  k) = P(x = 0) +…+ P(x = k)



The Poisson Random Variable
 The Poisson random variable x is a model for data 

that represent the number of occurrences of a 
specified event in a given unit of time or space.

• Examples:

• The number of calls received by a 

switchboard during a given period of time.

• The number of machine breakdowns in a day

• The number of traffic accidents at a given 

intersection during a given time period.



The Poisson Probability 
Distribution
 x is the number of events that occur in a period 

of time or space during which an average of m
such events can be expected to occur. The 
probability of k occurrences of this event is

For values of k = 0, 1, 2, … The mean and standard 

deviation of the Poisson random variable are 

Mean: m

Standard deviation: 

!
)(

k

e
kxP

k mm 



m 



Cumulative Probability 
Tables

You can use the cumulative probability tables

to find probabilities for selected Poisson 

distributions.

Find the column for the correct value of m.

The row marked “k” gives the cumulative 

probability, P(x  k) = P(x = 0) +…+ P(x = k)



Continuous Random Variables
 Continuous random variables can assume the infinitely 

many values corresponding to points on a line interval.

 Examples:

 Heights, weights

 length of life of a particular product

 experimental laboratory error



Continuous Random Variables
A smooth curve describes the probability 

distribution of a continuous random variable.

•The depth or density of the probability, which 

varies with x,  may be described by a 

mathematical formula f (x ), called the 

probability distribution or probability density 

function for the random variable x.



Properties of Continuous
Probability Distributions
 The area under the curve is equal to 1.

 P(a  x  b) = area under the curve between a and b.

•There is no probability attached to any 

single value of x. That is, P(x = a) = 0.



Continuous Probability Distributions

 There are many different types of 
continuous random variables

 We try to pick a model that
 Fits the data well
 Allows us to make the best possible 

inferences using the data.
 One important continuous random 

variable is the normal random variable.



The Normal Distribution

deviation. standard andmean  population  theare  and 

1416.3       7183.2

for   
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e

xexf
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• The shape and location of the normal 

curve changes as the mean and standard 

deviation change. 

• The formula that generates the 

normal probability distribution is:



The Standard Normal Distribution

To find P(a < x < b), we need to find the area 
under the appropriate normal curve.

To simplify the tabulation of these areas, we 
standardize each value of x by expressing it 
as a z-score, the number of standard 
deviations  it lies from the mean m.



m


x
z



The Standard 
Normal (z) 
Distribution

Mean = 0; Standard deviation = 1

When x = m, z = 0

 Symmetric about z = 0

Values of z to the left of center are negative

Values of z to the right of center are positive

 Total area under the curve is 1.



Finding Probabilities for the General 
Normal Random Variable
To find an area for a normal random variable x

with mean mand standard deviation , standardize 

or rescale the interval in terms of z.

Find the appropriate area using Table 3.

Example: x has a normal distribution with 

m = 5 and  = 2. Find P(x > 7). 

1587.8413.1)1(

)
2

57
()7(
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The Normal Approximation to the 
Binomial
 We can calculate binomial probabilities using

 The binomial formula

 The cumulative binomial tables

 Java applets

 When n is large, and p is not too close to zero or one, areas 
under the normal curve with mean  np and variance npq 
can be used to approximate binomial probabilities. 


