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Derivative of a complex function

f(z)=u(x,y)+iv(x,y) forz=x+1y

f'(z)= i [f(z+Az)— f(2)
Az—0 Az
Its value does not depend on the direction.

] exists



Ex : Show that the function f(z)= x%—y?+i2xyis
differenti able for all values of z.
for Az = AX+ 1Ay

- (x+Ax)2 —(y+Ay)2 + 21(X+ AX)(y + Ay) — - y2 — 2IXy
= AX + 1Ay
(AX)? — (Ay)? + 2iAXAy

AX + 1Ay

=2X+12y+

(1) choose Ay =0,AX - 0= f (z)=2x+i2y
(2) choose Ax =0,Ay —» 0= f (z)=2x+i2y
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—%* Another method - =

f(2)=(x+iy)* = z°

2 2 2
L0) lim [(z+Az) 4 1 i [(Az) + 27Az
Az—0 Az Az—0 Az

= lim Az+2z =27
Az—0

]
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—Ex : Show that the function f(z)= 2y + ix is not
differenti able anywhere in the complex plane.

f(z+Az)- 1(z) 2y+2Ay+IiX+IAX-2y—IX 2Ay+IAX

Az AX + 1Ay = AT IAY
If Az— Oalong aline thriugh z of slope m = Ay = mAX

f(z)= lim T(z+A2)-1(2) o [2Ay+iAx _2m+i

AZ—0 A7 AxAy—0 AX+IAy ©  1+im
The limit depends on m (the direction),so f (z)
IS nowhere differenti able.



_ ANALYTIC FUNCTION

—

Ex : Show that the function f(z)=1/(1-2)Isanalytic everywhere
exceptatz=1.

f'(z)= Iim[f(z+Az)—f(z)]= Iim[l 1 - 1 N
Az—0 Az At—>0 Az 1-72-Az 1-z2
1 1

= AI;TO[(].— Z2-Az)(1- z)] - (1- z)2

Provided z #1, f(z)isanalytic everywhere such that

f (z)isindependent of the direction.
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Cauchy-Riemann relation

A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, there must
be particular connection between u(x,y) and v(x,y)

Lo [f(z+Az)— f(z)]
Az—0 Az
f(z)=u(x,y)+iv(X,y) Az=AX+IAy
f(z+Az)=uU(X+AX, Y+ Ay)+ IV(X+ AX, Y+ Ay)
e [u(x+Ax, y+ Ay) + |v(x+Ax,_y+Ay)—u(x, y)—1v(X,y)
AX,Ay—0 AX + 1Ay
(1) if suppose Azisreal= Ay =0

- [u(x+Ax, y)—u(x, y)_|_i V(X + AX, y)—V(X, y)]= ou — ov
AX—0 AX AX OoxX  OX

(2) if suppose Az is imaginary = Ax=0

]

o Lo fim UV A UK Y) VX Y +AY) V(X y), U v
Ay—0 iAy 1Ay oy oy
O oV oy Ol Cauchy - Riemann relations

ox oy ox oy



EXx : In which domain of the complex plane is
f(z)=| x|—i]| y|an analytic function?

u(x, y)=| x|, v(x,y)==1y|

(1) 6u=6v:> 2 |x|=i[—|y|]:>(a)x>0, y < 0 the fouth quatrant
OX oy oOX 0
(b) x< 0,y >0 the second quatrant
ov oL e 0
2) —=——>=>—|[- =——1/X
e =

z = x+iy and complex conjugate of zisz = x—iy

= x=(z+2)/2and y=(z—2)/2i

Lof ot oty 1ou av iav au
Oz akpT O a2

RRRRRAAAS _(__|_
oXx oy 2 ox oy
If f(z)isanalytic ,then the Cauchy - Riemann relations

are satisfied. = of /8z° = 0implies an analytic fonction of z contains
the combinatio nof x+ iy, not x—1iy
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If Cauchy - Riemann relations are satisfied

a0 g oo & &l du o

O sy o vy ol o

o°v - o°v

ox2  92y2

= u(X, y)and v(x, y)are solutions of Laplace's
eqguation in two dimension.

(2) the same result for function v(x, y) = =0

For two families of curves u(Xx, y) = conctant and v(Xx, y) = constant,
the normal vectors correspond ing the two curves, respectively, are

ou oV~ OV~

Vu(x, ——|+— and Vv(X,y)=—1I +—

(X,y) ~ ayJ (X,Y) — ayJ
o ou ov 6u6v _Oudu du 6u=0 oithoaonl

+
OX 6x oy 6y 6x6y oy OX
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—Singularities and zeros of complex function

9(2)
(z—12zp)"
N is a positive integer, g(z) is analytic at all points in
some neighborho od containing z =z, and g(zy) # 0,
the f (z) has apole of order nat z = z,.

Isolated singularit y (pole) : f(z) =

** An alternate definition for that f (z) has a pole of
order nat z=1z41Is

lim[(z—2z,)" f(z)] =a

21,
f (z) is analytic and a is a finite, non - zero complex number

(1) if a=0,then z =z, is apole of order lessthan n.

(2) if ais infinite, then z =z, is a pole of order greater than n.

(3)if z=zyisapole of f(z)=| f(z)|>wasz— z,

(4) from any direction, if no finite nsatisfiesthe limit = essentialsingularit y



Ex : Find the singularit ies of the function
i} 1
1) f(z)= —
Li 1-z 14z
217
= = olesof order latz=1and z=-1
e
(2) f(z)=tanh z
_sinhz  expz-—exp(-z)
"~ coshz  expz+exp(-z)
f (z) has asingularit y when expz = —exp(-z)

=>expz=exp[i(2n+1)z]=exp(—z) nisany integer

=>22=i(2n+1)7r=>z=(n+%)ni

Using I' Hospital' s rule
lim {[z—(n+1/2)7z1]smh z}= lim [z—(n+1/2)@]coshz+3|nh Z
z—(N+1/2)7i coshz z—>(N+1/2)7i sinh z

eachsingularit y is asimple pole (n =1)

}=1




Remove singularti es:

Singularit y makes the value of f(z)undetermin ed, but lim f(z)
12,

existsand independen t of the direction from which z; is approached .

Ex :Show that f(z)=sinz/zisaremovable singularityatz=0

Sol : lim f(z)=0/0 undetermin ed

z—>0

1 : :
f(2))=—(z2——+——........ =1l-—+—-
(2) z( JLabl ) Jlibl
lim f(z)=1 isindependent of the way z — 0, so0
z—0

f (z) has a removable singularity at z=0.
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The behavior of f(z)at infinity is given by that of
f(l/&at&=0,where £=1/z

Ex : Find the behavior at infinity of (i) f(z)=a+ bz 2
(i) f(z)=z(1+ z?)and (iii) f(z)=expz

(i) f(z)=a+bz 7% =setz N By e S L R B e e i b§2
iIs analytic at &£ =0 = f (z)is analytic at z = oo

(i) fF(2)=z(1—2%)= f@A/&E)=1/&E+1/ &3 has a pole of
order 3at z = oo

(iii) f(z)=expz= fA/&)= i(n!)—lg—”
Nn=0

T (z) has an essentialsingularit y at z = oo
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If f(zp)=0and f(z)=(z—2z,)"g(2),if nis
a positive integer, and g(zp) = O

(i) z = zy iscalled a zero of order n.

(i) ifn=1, z =z is called asimple zero.
(if1) z = zg iIs also a pole of order nof 1/ f (z)

Ex :Show that f(z)=sinz/zisaremovable singularityatz=0

Sol : lim f(z)=0/0 undetermin ed

z—>0

1 : :
f(2))=—(z2——+——........ =1l-—+—-
(2) z( JLabl ) Jlibl
lim f(z)=1 isindependent of the way z — 0, so0
z—0

f (z) has a removable singularity at z=0.



Ex : Evaluate the complex integral of f(z)=1/z,along
the circle |z| = R, starting and finishing at z = R.
Z(t)=Rcost+iRsint,0<t<2r
d—x=—Rsint,d—y= Rcost, f(z)= o
dt X+iy x%+ y2

X cost -y —sint

u= = , V= =

x2+y2 R x2+y2 R

=Uu+lv,

1 27 COSt 27 —sint
—dz_jo ——(-Rsint)dt - j (

)R costdt
C, z

27 COSt —sint
1]

R Rcostdt+|j' (

)(—Rsint)dt

=0+0+iz+inm=2n
**The integral Is also calculated by
dz j-27z— Rsint+iRcost

Rcost+iRsint
The calculated result is independentof R.

dt=j02”idt=2zzi



Ex : Evaluate the complex integral of f(z)= Re(z)along
the path C,, C, and C5 as shown in the previous examples.

(i) C; :_"02” Rcost(—Rsint +iRcost)dt = izR?
(i) C, :_|‘(;chost(—Rsint+iRcost)dt=%R2
(|||) C3 =C3a+C3b ?
[[1-OR(-R+iR)dt+ [ (~sR)(-R~iR)ds
- szol(l—t)(—1+ i)dt + szols(1+ i)ds
1o N
=§R (—1+|)+§R (1+1)=IR

The integral depends on the different path.
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Ex : Consider two closedcontour C and y in the Argand diagram, y being
sufficient ly small that it lies completely with C. Show that if the function

f (z) is analytic in the region between the two contours then §c f(z)dz= §7 f(z)dz

the areais bounded by I', and
f (z) is analytic

§F f(z)dz=0

= §C f(z)dz+§7 f(z2)dz + §Cl f(z)dz+§C2 f(2)dz
If take the direction of contour y as that of
contour C = fc f(2)dz = §7 f(2)dz

Morera's theorem:
If f(z)isacontinuous function of z inacloseddomain R

bounded by acurve C, for ifc f(z2)dz=0= f(z)isanalytic.
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Cauchy’s integral formula

If f(z)isanalytic within and on aclosedcontour C

: : i 1 f(2)
and z, is a point within C then f(z,) = d
0 p (z9) i fc 72

|_§ t(2) _§ 1@,

Cz-1z, Y7-1
for z=1z, +pexp(|0) dz=ipexp(i@)do

2z F(zg+0e'%). _ig
I_Io pe'e e "dé
p—0

- ijoz” f(z9+ e'9)d0 = 27if(z9)



The integral form of the derivative of a complex function :

. f(2)
Fz0)=o_ §C (z—zo)zdz

f(zo+h)-1(2)

@) i h
= lm[>f, 1:ﬁf)(z_zlo_h—Z_lzo)clz]
= .
= 2;' f (zi(zzo))zdz

|
For nth derivative (™ (z9)=-"§ D) 0z
27 9C (z2—z75)™
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Taylor and Laurent series

If f(z)isanalytic inside and on acircle C of radius R centered
on the point z = zy, and z is a point inside C, then

00 o ¢£(Nn)
f(2)= T an(z-20)" = X — Bz )"

f (z) is analytic inside and on C,so f(z) = 1 ic ;(f)dg where & lieson C

e
expand 1 geometric seriesin 0 = Z(
c—1 =2 é‘ Z 5 Zo

z—zo

e Zo
= f(g)=f, by L loyngg .Z(z 20) §C(§f(§))n+1d

2m 9C & — Zonof Zo

(n) (n)
=2—ﬂi2(z‘z o 27f (M (z) Z(Z—Zo) f (zo)
n=0

n!
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If f(z)hasapole of order patz =z, but is analytic at everyother point inside

and on C. Then g(z) = (z—-z,)" f(z) is analytic at z = z, and expanded as a Taylor

series g(z) = Y b, (z-2)".
n=0
Thus, for all zinside C f(z) can be expanded as a Laurent series

a_ g a
f(z)= B e s el 0 oA )

(z-25)° (z-25)" z—2g

0 Lg 9@
(

4 g(2) 3 f(2)
o S35 PR —— dZ = dZ
n 2 7 § (Z— ZO)n+1+p 2 7 f (Z ZO)n+1

f(z)= D a,(z-2)" is analytic in aregion R between
N=—o00

two circles C, and C, centeredon z = z;



(@)= Yanz-2))"

N=—co0

(1) If f(z)isanalytic atz=zy,thenall a, =0for n<0.
It may happen a,, = 0for n = 0, the first non - vanishing

term is a,, (z-zo)™ with m > 0, f(z) is said to have a zero
of order mat z = z;.

(2) If f(z)Iisnot analytic at z = z,
() possible tofind a_, #0but a_,_, =0forallk >0

f (z) has a pole of order patz =zy,a_; is called the residue of f(z)
(i) impossible to find a lowest value of — p = essentialsingularit y



Ex : Find the Laurent seriesof f(z)= ﬁabout the singularit ies
2(z—

z=0and z= 2. Hence verify that z=0isapole of order 1land z=2isa
pole of order 3, and find the residue of f(z)ateachpole.

(1) point z=0
L (3=t =20 E8)AND) =2 5
= - = [+ (D + R B Ry
=—l—3—3z—522—... z=0isapole of order 1
8z 16 16 32
(2) point z=2:setz—2=§:z(z—2)3 =(2+&E)E3=2E3(1+£12)
1 S\, (5)2_ (513, (544
ftz2)= — - =) —...
(2)= 2531+ £12) 25[ G () () e
1 1 T T 1 0 e

i we e + = : S -——+
2&6° 4 88 16 32 2(z-2)° 4(z-2)° 8(z-2) 16 32
z=2isapole of order 3, the residue of f(z)atz=2is1/8.
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How to obtain the residue ?
a a
f(2)=—""—+ ..+ +ag+ay(2—2p)+a(2—2)° +..
(25 75) (2—-12p)

=(z-2))" f(2)=a_p +a_n(Z=29)+ .o +a_g(z2—2p)" " +...

m-1 00
jzm_l (2-2)" f@=(M-D'ay+ Lon2-2)

=
Take the limit z — z;

m-1
R(Zo)=a_1 == I|m{ 1 d

L e [(z—25)™ f (2)]} residue at z =z

(1) For asimple pole m=1= R(zy) = lim [(z-Zzj) f (2)]

(2) If f(z)hasasimple atz=zyand f(z)= % g(z) is analytic and
non - zero at zy and h(zy) =0
(2—24)9(2) (2—1p) b 9(2o)

= R(zo) = lim

717, h(z) v g(ZO)ZIE;n = 0(zp) Iim

2, h(z) 57 hiz) hi(zy)



Ex : Suppose that f (z) has a pole of order m at the point z = z,. By
considering the Laurent seriesof f(z)about z,, deriving a general
expressionfor the residue R(zy)of f(z)atz=z,. Hence evaluate

the residue of the function f(z)= % at the point z = 1.
(2l
expiz expiz ; :
f(z)= = olesof order 2atz=1and z = —i
(2) el i) b
forpoleatz—i'
expiz i 2 :
—[(z—=1)° f(2)]= explz— explz
[( i)2 f(2)]= dz[(z+|)] -
2 —i
R(i) == 1=—

e et "z



/ e —
Residue theorem

f (z) has a pole of order mat z = z,
f(2)= Y an(z-2)"
N=—Mm
| = §C f(z2)dz =§7 f(2)dz
setz=zy+pe'? = dz=ipe'?d6
| = Zan§c (z- zo)”dZ = Zanj'oz” ipn+1ei(n+1)0d9
Nn=—m Nn=—m

n+1e|(n+1)0

n+gi(n+1)8 4 g _ Ip _
i(n+1)

2
for n;e—l:_foﬂip

for n=1:_[()2”id0= 27

I = §C f(z)dz = 2xia_,

" =0



f (z) is continuous within and on a closedcontour C
and analytic, exceptfor afinite number of poles within C

fc f(z)dz=27cizj: R;

Z R; Is the sum of the residues of f(z)at its poles within C
j



The integral | of f(z)along an open contour C

if f(z)hasasimple pole atz =z,

= f(2)=¢(2)+a_4(z-2,)"

¢(z) is analytic within some neighbour surroundin g z,
|z—Zyl=p and O, <arg(z—-z;)<6,

p Is chosensmall enough that no singularit y of f(z)exceptz =z,
| = jC f(z2)dz = jC $(2)dz +a_, jc o)

/I)iino jC #(2)dz =0

. . gt .
| = Llino jC f(2)dz = Llino(a_l Iel F|,oe'6’d49) =ia_1(6,—6,)

for aclosedcontour 8, =6, + 27 = | =2na_,
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Integrals of sinusoidal functions
_[02” F(cos@,sin@)d@ setz=expid in unit circle
:c030=%(z+%), sin0=%(z—%), dg =—izdz

2
Ex : Evaluate | =J'Oﬂ <as 20 d@ forb>a>0

a’+b? —2abcosé

cosn9=%(zn +z‘”):>(303215'=%(z2 £7%)

1 v i 1 /
oS 20 2(22+z 2)(—|z 1Ydz —2(z4+1)|dz
B 46 = W 2 2
a‘ +b*—2abcos@ a2+b2—2ab-1(z+z‘1) 7 o v o o)
i (z4+1)dz i (2 4D

dz

"~ 2ab 7 (7 —z(——+ )+1) " 2ab 2(Z—*)(Z—*)



- 4
I I §c E dz double polesat z=0and z=a/bwthin the unit circle
2

" 2ab e
Z (Z_b)(z_a)

d m-1

Residue: R(zp)= lim{ [(z—25)™ f(2)]

z—z, (M—=1)! gzM-1
()poleatz=0,m=2
1d e

o 2
s

1}

3 4 o =
—lim{ 47 +(z + 1)( 1)[2; (a/b+5/a)]}=a/b+b/a
z—0 (z—alb)(z-b/a) (z—al/b)(z-b/a)
(2)poleatz=a/b,m=1
7t (a/b)* +1 = (atyh)
R(a/b)= lim [(z—a/b)—; = . = —
z—alb 2°(z—alb)(z—b/a) (a/b)*(a/b—b/a) ab(b®—a“)
o 4 2
~ [a +b a’+b ] 27ma

2ab” ab _ab(bz—az)_bz(bz—az)
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Some infinite integrals

j_°°w f (x)dx
f(z) has the following properties :
(1) f(z) is analytic in the upper half - plane, Imz > 0, except for
a finite number of poles, none of which is on the real axis.
(2)on a semicircle I' of radius R, R times the maximum of
| f]on I' tends to zero as R — o (a sufficient condition
is that zf(z) > 0 as | z |»> o).

e
:I dx_ZmZR

f(x)dx and j f(x)dx both exist

for | Ir f(z)dz |< 22R x (maX|mum of | f|onr), the integral along T'

tends to zero as R » .



lo's) X: .
Ex :Evaluate | =I d ais real

e faeyt
dz R dx dz
= + asR — o
§C (22 + a2)4 .[_R (X2 + a2)4 .[[' (22 o a2)4

=>I dz e § dz L dx
I (22 + a2)4 @ (22 e a2)4 —00 (X2 % a2)4

(z° + a®)* = 0= poles of order 4at z = +ai,
only z = ai at the upper half - plane
T .
2 ea%Y izt a2
1 A58 T,

setz=ai+&,& > 0> a)_4

the coefficient of £~ is

¢ (2a)* 3l (Za) 3247
J‘oo dx - (—5I)_ :I_lxloﬂ_ S5m
0= a%) 32a 32a’ 2209l 9oyt
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For poles on the real axis:

Principal value of the integral, definedas p — 0

P" fodx = [7 Fogdx + [ F(x)dx

7 Zytp
for aclosedcontour C

Zy

§C f(z)dz = j_R‘p f (x)dx + L f(z)dz + j:w f (x)dx + jr f(z)dz
—p j_RR £ (x)dx + L f(2)dz + [ f(2)az
(1) for L f(z)dz hasapoleatz = 75 = L f(2)dz = —mia,

@for [ f(2)dz setz = Re"” dz = iRe' do
= jr f(z)dz = jr f(Re')i Re'? dg

If f(z)vanishes fasterthan 1/ R?as R — oo, the integral is zero



mX
Ex :Find the principal value of_[ Cos—adx arealbm>0
© X

imz

Consider the integral | = § dz = 0no pole in the

Cz-a
upper half - plane, and |(z - a)™}| > Oas|z] &

—dz
Cz-—a
a-p e imz
_f —dx+§—dz+‘[ —dx+ dz=0
R x-a YyzZ—a atp X —a 'z—a
AsR—>wandp—>O:_[r—dz—>O
Z—a
= P —dx—mal i =
-0 X — g
o COS MX © SIN MX
Pj' ———dX = =z sinma and P_[ —dx = #cosma
© X —a © X —a
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Integral of multivalued functions
M ultivalue d functions such as z1/?, Lnz

Single branch point is at the otigin. We let R — oo
and p — 0. The integrand is multivalue d, its values
along two lines AB and CD joining z = ptoz = R
are not equal and opposite.

Ex:I=_|'oo ox fora> 0

0 (x +a)3x!/?

(1) the integrand f(z) = (z + a)3z7%/2,|zf (z)) > Oas p » 0and R -
the two circles make no contributi on to the contour integral

(2)pole at z = —a,and (-a)*/? = al/%'7/2 = jal/?
. e 3 1
R(-a) = lim 7+ a
o) z—-a (3 = 1)! gz3-1 1 ) (z + a‘)321/2:I
., =

7—>—a 2! dz2 85[5/2



y v

IAde+jrdz+_[DCdz+Ld =

and j'rdz =0 and Ldz =0

along line AB= z = el along lineCD= z = yales

j-oo dx +J-0 dx 3z
0,A>B (X + a)3 1/2 0,C—D (xe n a)3 1/26(1/2><2ﬂi) o 4a5/2
1 o0 dx 37
=(1- =
el? -[o (X+a)3 Th2e e 512
J'OO dx i 3z
0 (x+a)3 1/2 — g45/2






Basic Concepts

* An experiment is the process by which an
observation (or measurement) is obtained.

* Experiment: Record an age
* Experiment: Toss a die
* Experiment: Record an opinion (yes, no)

* Experiment: Toss two coins



* A simple event is the outcome that is observed
on a single repetition of the experiment.

e The basic element to which probability is
applied.

e One and only one simple event can occur
when the experiment is performed.

* A simple event is denoted by E with a
subscript.



Each simple event will be assigned a probability,
measuring “how often” it occurs.

The set of all simple events of an experiment is called
the sample space, S.
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Example
* The die toss:
* Simple events: Sample space:
s O
2 El S ={E1, Ey E3 E4 Es, Eg}
2
N C S
K 3 =1 ‘E,
B E, =0
2 E5 .EZ 'E4 .EG
6 | E,




* An event is a collection of one or more simple
events.

*The die toss:

—A: an odd number
—B: a number > 2

A={E,, E; E:}
B—{E., E, E. E¢}




* Two events are mutually exclusive if, when one event
occurs, the other cannot, and vice versa.

Not Mutually
Exclusive

Experiment: Toss a die

—A: observe an odd number
—B: observe a number greater than

:

—C: observe a 6
—D: observe a 3

B and C?
B and D?




The probability of an event A measures “how
often” we think A will occur. We write P(A).

Suppose that an experiment is performed n
times. The relative frequency for an event A is

/

Number of times A occurs  f

n n

o|f we let n get infinitely large,
f
P(A) = lim —
n—o |




/X/

* P(A) must be between o and 1.

e If event A can never occur, P(A) = o. If event A always
occurs when the experiment is performed, P(A) =1.

* The sum of the probabilities for all simple events in S
equals 1.

*The probability of an event A Is
found by adding the probabilities of all
the simple events contained in A.




inding Probabilities |
* Probabilities can be found using '

e Estimates from empirical studies

e Common sense estimates based on equally likely
events.

Examples:

—Toss a fair coin EGEEY R

—10% of the U.S. population has red hair.

Select a person at random. RHEECRETIENI



~~ Example * =
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* Toss a fair coin twice. What is the
probability of observing at least one head?

IstCoin 2ndColn. E. P(E;)

H HH 1/4 | P(at least 1 head)

T HT 1/4 | = P(E) + P(E;) + P(E;)
= 1/4 + 1/4 + 1/4 = 3/4

H

H TH | 1/4

T 1/4

AN




“Example T

* A bowl contains three M&Ms", one red, one
blue and one green. A child selects two M&Ms
at random. What is the probability that at least
one is red?

st M&M 2nd M&M  E; P(E;)

e 2 W
@ RG 1/6 P(at least 1 red)
= P(RB) + P(BR)+ P(RG) +

@<g BR|  1/6 |P@R)
BG =4/6 = 2/3

1/6

®<® . 1

GR
¢ 1/6




Counting Rules

¢ If the simple events in an experiment are equally
likely, you can calculate

n, number of simple events in A
P(A) =—"- = :
N  total number of simple events

* You can use counting rules to find
n, and N.



Jn%mn RME\/

[f an experiment is performed in two stages,
with m ways to accomplish the first stage
and n ways to accomplish the second stage,
then there are mn ways to accomplish the
experiment.

This rule is easily extended to k stages, with
the number of ways equal to

n;

<

n,n,n,..

Example: Toss two coins. The total number

of simple events Isj



A
A,

Xamples

Example: Toss three coins. The total

number of simple events is 2% 2x2=8

Example: Toss two dice. The total number of
simple events Is: 6x6 =236

Example: Two M&Ms are drawn from a dish
containing two red and two blue candies. The

total number of simple eve Ax3=12



W

* The number of ways you can arrange
n distinct objects, taking them r at a time is

|
pr _ n!
(n—r)!

where n!=n(n-1)(n—2)...(2)(1) and 0!'=1.

Example: How many 3-digit lock
combinations can we make from the
numbers 1, 2, 3, and 47

The order of the choice Is p34 _ 4l — 4(3)(2) =i

1

Important!




/ inations *

* The number of distinct combinations of n distinct
objects that can be formed, taking them r at a time is

|
cr = n!
r'(n—r)!

Example: Three members of a 5-person committee
must be chosen to form a subcommittee. How many
different subcommittees could be formed?

—— Ic5= 5 _54)E3)@1_5@) _,,
> 31(5-3)! 32021 (21

the choice is
not important!




~ Example

* A box contains six M&Ms", four red
* and two green. A child selects two M&Ms at
random. What is the probability that exactly

one is red?

The order of

the choice Is
not important!

|
co = 6! _ 6(5) 15
L0240 20
ways to choose 2 M & Ms.

|
Clet 4
L0 13

ways to choose
lred M & M.

4 x 2 =8 ways to

+—tchoose 1 red and 1 —

green M&M.

2!
=
Vvays to choose
1green M & M.

C? 2

P(exactly one

red) = 8/15




vent Relations

* The union of two events, A and B, is the event that either
A or B or both occur when the experiment is performed.
We write

AuUB

AU B




" Event Relations *

* The intersection of two events, A and B, is
the event that both A and B occur when the
experiment is performed. We write A N B.

S

ASB

* |f two events A and B are mutually
exclusive, then P(AnB) = 0.



vent Relations

* The complement of an event A consists
of all outcomes of the experiment that do
not result in event A. We write A,

AC.




P iculating Proba e
Unions and Complements

* There are special rules that will allow you to
calculate probabilities for composite events.
* The Additive Rule for Unions:

* For any two events, A and B, the probability of their
union, P(A U B), is

'P(AUB)=P(A)+P(B) - P(Ar B)I




Cal : B
- for Complements

* We know that for any event A:
e PANAY =0
e Since either A or A must occur,
P(AuU AC) =1
esothat P(AuUAS =P(A)+P(A) =1

P(AC) = 1 — P(A)




Calculatir

/

/ Intersections

obabilitiesfor —

* In the previous example, we found P(A m B)
directly from the table. Sometimes this is
impractical or impossible. The rule for
calculating P(A m B) depends on the idea of
independent and dependent events.

Two events, A and B, are said to be
independent if and only if the
probability that event A occurs does

not change, depending on whether or
not event B has occurred.




/ﬁnditioW

* The probability that A occurs, given
that event B has occurred is called the
conditional probability of A given B
and is defined as

P(AN B)

P(A|B) = o)

if P(B)=0

“orven”



~Defining Independence

* We can redefine independence in terms of conditional
probabilities:

Two events A and B are independent if and
only if

P(AB) = P(A) or P(B|A)=P(B)
Otherwise, they are dependent.

* Once you've decided whether or not
two events are independent, you can

use the following rule to calculate their
Intersection.



The Multiplicative Rule for
~Intersections

* For any two events, A and B, the probability that both A
and B occur is

P(AnB)=P(A) P(B given that A
occurred) = P(A)P(B|A)

* If the events A and B are independent,
then the probability that both A and B

OCCULIS
P(A nB) = P(A) P(B)




" “The Law of Total Probability

LetS,,S,, S, ,..., Sy be mutually exclusive and exhaustive

12 —2)

events (that is, one and only one must happen). Then
the probability of another event A can be written as

P(A)=P(ANS,)+PANS)+..+PANS,)

= P(S)P(A|S,) + P(S))P(A|S,) + ... +
P(Sk)P(A[S))




I v D
,‘/’; vv .  JLC f—\_' . o . E S

P(A)=P(ANS)+P(ANS,)+...+P(ANS,)
= P(S)P(AIS,) + P(S)P(AIS,) * ... +

P(S)P(A[S,)



“Bayes’ Rule

LetS,,S,, S;,..., S, be mutually exclusive and

| et

exhaustive events with prior probabilities
P(S,), P(S,),...,P(S,). If an event A occurs, the
posterior probability of S, given that A
occurred is

— ri=1 2.k
2 P(S)P(A[S;)




* A quantitative variable x is a random variable
if the value that it assumes, corresponding to
the outcome of an experiment is a chance or
random event.

* Random variables can be discrete or
continuous.

 Examples:
v'X = SAT score for a randomly selected
student
v'X = number of people in a room at a
randomly selected time of day
v'X = number on the upper face of a
randomly tossed die






~ Probability Distﬁbuﬁﬂnsiow%ﬁé{

Random Variables

The probability distribution for a discrete random
variable x resembles the relative frequency
distributions we constructed in Chapter 1. It is a graph,
table or formula that gives the possible values of x and
the probability p(x) associated with each value.

We must have
0< p(x)<land 2 p(x)=1




/

~Probability Distributions

Probability distributions can be used to describe
the population, just as we described samples in
Chapter 1.

e Shape: Symmetric, skewed, mound-shaped...
e OQutliers: unusual or unlikely measurements

e Center and spread: mean and standard
deviation. A population mean is called p and a
population standard deviation is called o.



il ———

~—and Standard Deviation

Let x be a discrete random variable with probability
distribution p(x). Then the mean, variance and standard
deviation of x are given as

Mean : 1 = 2. Xp(X)
Variance : o =Y. (X— 1)° p(x)

Standard deviation : ¢ =+/o°




—

Prample = — — —mmml b

*Toss a fair coin 3 times and
record x the number of heads.

p() [ xp(X) | (X-1)*P(X) 12
s [0_|(Lopws)||[#=2XP(X)="g=15

3/8 3/8 (-0.5)%(3/8)

38 |6/8 |(05)(38) |7 .
18 |a/8 | (1.5)2(1/8) {O' = 2.(X— ) p(x)I

/

WIN PO | X

( o? = 28125+ .09375+.09375+.28125 = .75
o =+/.75 = .688




~ —Introduction

Discrete random variables take on only a
finite or countably number of values.

Three discrete probability distributions
serve as models for a large number of
practical applications:

v'The binomial random variable

v'The Poisson random variable




e Binomial Ran ?
Many 51tuat10ns 1n rea fe reseim

coin toss, but the coin is not necessarily fair,
so that P(H) L1

« Example: A geneticist samples 10 & g& &
people and counts the number who & S & &
have a gene linked to Alzheimer’s § § § &
disease.

- Coin: » Number of
e Head: tosses: P(has gene) = proportion

In the population who

. e P(H):
. Tail: 1




g e /
" The Binomial Experiment
The experiment consists of n identical

trials.

Each trial results in one of two outcomes,
success (S) or failure (F).

The probability of success on a single trial is
%and remains constant from trial to trial.
he probability of failure is g =1 - p.

The trials are independent.

We are interested in x, the number of
successes in n trials.




N
s 8

N\
N\
A

inomial or Not? S8

* Very few real life applications & & Y
satisfy these requirements exactly. | & & & E

AL
AL
'S
NS

S
AN

A
AL
O
A\

» Select two people from the U.S.
population, and suppose that 15% of
the population has the Alzheimer’s
gene.

* For the first person, p = P(gene) = .15

* For the second person, p = P(gene) =
.15, even though one person has been
removed from the population.



 The Binomial Probability. =

Distribution

For a binomial experiment with n trials and
probability p of success on a given trial, the
probability of k successes in n trials is

P(x=k)=Cp“q"* = N p“q"* fork =0.1,2,..n
kl( _k)| = =y oeat Ug
l
Recall C; = L
kI(n —k)!

withnl=n(n-1)(n-2)...(2)1and 0!=1




- The Mean and Standard Deviation
For a binomial experiment with n trials and

probability p of success on a given trial, the
measures of center and spread are:

Mean: 1z =np
Variance: o° = npg

Standarddeviation: o = /npq




/CumulativW

Tables

You can use the cumulative probability tables
to find probabilities for selected binomial
distributions.

v'Find the table for the correct value of n.
v'Find the column for the correct value of p.

v'The row marked “k” gives the cumulative
probability, P(x < k) = P(x =0) +...+ P(x = k)




, e Poisson Rando riable

* The Poisson random variable x is a model for data
that represent the number of occurrences of a
specified event in a given unit of time or space.

« Examples:

* The number of calls received by a
switchboard during a given period of time.

» The number of machine breakdowns in a day

* The number of traffic accidents at a given
Intersection during a given time period.




- The Poisson PW

Distribution

x is the number of events that occur in a period
of time or space during which an average of p
such events can be expected to occur. The
probability of k occurrences of this event is

Ka—#
e
P(x=k) =2 X
For values of k =0, 1, 2, ... The mean and standard
deviation of the Poisson random variable are

Mean: p

Standard deviation:




/C&mulatiW

Tables

You can use the cumulative probability tables
to find probabilities for selected Poisson
distributions.

v'Find the column for the correct value of 1.

v'The row marked “k” gives the cumulative
probability, P(x < k) =P(x=0) +...+ P(x = k)
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* Continuous random variables can assume the infinitely
many values corresponding to points on a line interval.
e Examples:
e Heights, weights
e length of life of a particular product

e experimental laboratory error



“Continuous Random Variables

* A smooth curve describes the probability
distribution of a continuous random variable.

| fix)

*The depth or density of the probability, which
varies with x, may be described by a
mathematical formula f (x ), called the
probability distribution or probability density
function for the random variable x.



Properti Continuous
robability Distributions

® The area under the curve is equal to 1.
* P(a<x<Db) = area under the curve between a and b.

*There 1s no probability attached to any
single value of x. That is, P(x =a) = 0.



Continuous Pr

* There are many different types of
continuous random variables

*  We try to pick a model that
e Fits the data well

e Allows us to make the best possible
inferences using the data.

* One important continuous random
variable is the normal random variable.



W*

. ula at generates the
normal probability distribution is:

_1(X—_ﬂj2
1 2\ o
e for — oc< X <oc

f(X) =

() o271
e=2.7183 7 =3.1416
uand o are the population mean and standard deviation.

* The shape and location of the normal
curve changes as the mean and standard
deviation change.



The Standard Normal Distribution L

To find P(a < x < b), we need to find the area
under the appropriate normal curve.

To simplify the tabulation of these areas, we
standardize each value of x by expressing it
as a z-score, the number of standard
deviations o it lies from the mean .

_X—p
O

/




.

The Standard
Normal (z)
Distribution

Mean = o; Standard deviation =1
Whenx=y,z=0

Symmetric about z = o

Values of z to the left of center are negative
Values of z to the right of center are positive
Total area under the curve is 1.
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- Normal Random Variable

v'To find an area for a normal random variable x
with mean u and standard deviation o, standardize
or rescale the interval in terms of z.

v'Find the appropriate area using Table 3.

Example: x has a normal distribution with
u=5and o =2. Find P(x > 7).

P(x>7)=P(z >7—;5)

— P(z >1) =1-.8413 =.1587




~ The Norm:

Binomial

* We can calculate binomial probabilities using
e The binomial formula
e The cumulative binomial tables
e Java applets

* When n is large, and p is not too close to zero or one, areas
under the normal curve with mean np and variance npq
can be used to approximate binomial probabilities.




