

 Principles and Paradigms by Rajkumar Buyya,
James Broberg and Andrzej M. Goscinski,
Wiley, 2011.

 Distributed and Cloud Computing, Kai
Hwang, Geoffery C.Fox, Jack J.Dongarra,
Elsevier, 2012

I need to grow
my

infrastructure,
but I do not

know for how
long…

I cannot invest
in

infrastructure,
I just started

my business….

I want to focus on
application logic

and not
maintenance and
scalability issues

I want to access
and edit my

documents and
photos from
everywhere..

I have a surplus of
infrastructure that

I want to make
use of

I have a lot of
infrastructure that
I want to rent …

I have
infrastructure and
middleware and I

can host
applications

I have
infrastructure and

provide
application

services

10

Manjrasoft

Compute

Storage

Applications

Development and
Runtime Platform

Public Clouds

Subscription-Oriented Cloud Services:
X{compute, apps, data, ..}

as a Service (..aaS)

Clients

Other
Cloud Services

Govt.
Cloud Services

Private
Cloud

Cloud
Manager

Compute

Storage

Application
s

Development
and Runtime

Platform

Private
Resources

Cloud Manager

Private
Cloud

Private Cloud
(Government)

Public Clouds

Government
Agencies

Organization Personnel

All users, on any device

Private/Enterprise
Clouds

* A public Cloud model
within a company’s
own Data Center /
infrastructure for
internal and/or
 partners use.

 Public/Internet
Clouds

* 3rd party,
multi-tenant Cloud

infrastructure
& services:

 * available on

subscription basis to all.

Hybrid/Inter
Clouds

* Mixed usage of
private and public

Clouds: Leasing public
cloud services

when private cloud
capacity is
insufficient

IT
outsourcing

Pay as you
go

No capital
investments

Quality of
Service

Security

Billing

Cloud
Computin
g?

Runtime Environment for Applications

Development and Data Processing Platforms

Examples: Windows Azure, Hadoop, Google AppEngine, Aneka

Platform as a
Service

Virtualized Servers

Storage and Networking

Examples: Amazon EC2, S3, Rightscale, vCloud

Infrastructure as a
Service

End user applications

Scientific applications

Office automation, Photo editing,

CRM, and Social Networking

Examples: Google Documents, Facebook, Flickr, Salesforce

Software as a Service Web 2.0
Interface

s

1950 1960 1970 1980 1990 2000 2010

Mainframes

Clusters

1999: Grid Computing

Grids

Clouds

1966: Flynn’s Taxonomy
SISD, SIMD, MISD, MIMD

1969: ARPANET

1970: DARPA’s TCP/IP

1984: DEC’s
VMScluster

1984: IEEE 802.3
Ethernet & LAN

1975: Xerox
PARC

Invented
Ethernet

1990: Lee-Calliau
WWW, HTTP, HTML

2004: Web 2.0

2005: Amazon
AWS (EC2, S3)

1960: Cray’s
First

Supercomputer

2010:
Microsoft

Azure

1997: IEEE
802.11 (Wi-Fi)

1989: TCP/IP
IETF RFC 1122

2007: Manjrasoft Aneka

2008: Google
AppEngine

1951: UNIVAC I,
First Mainframe

Compilers, PVM, MPI, ….

Parallel Programming
Environments

Cluster Middleware:
Single System Image and Availability

Infrastructure

Network Interface HW

Operating System

Common
SW & Applications

PC /
Workstation

Network Interface HW

Operating System

Common
SW & Applications

PC /
Workstation

Network Interface HW

Operating System

Common
SW & Applications

PC /
Workstation

Network Interface HW

Operating System

Common
SW & Applications

PC /
Workstation

High speed network connection

Sequential
Applications

ParallelApplications

Computer and network hardware

Hardware

Support for heterogeneous resource sharing,
communication, and programming environments for

application development

Middleware

User interface for presentation

Applications

D
is

tr
ib

u
te

d
 S

y
s
te

m

S
ta

c
k

Execution platform including network connectivity
services

Operative
System

Paradigms /
Architectural

Models

Message
Based

Communicati
on

MPI Programming,
JMS, MSMQ, MQS

1940 1950

Applications Parallel Era

Sequential Era Compilers

Architectures

1960 1970 1980 1990 2000 2010 2020 2030

Applications

Problem Solving Environments

Compilers

Architectures

Problem Solving Environments

Processor

Data
Input

Data
Output

Instruction
Stream

Processor
N

Data Output
N

 Single Instruction Stream

Processor
2

Processor
1

Data Input
1

Data Input
2

Data Input
N

Data Output
2

Data Output
1

Processor
N

Instruction
Stream 1

Processor
2

Processor
1

 S

in
g
le

 D
a
ta

 I
n
p
u
t

S
tr

e
a
m

 S

in
g
le

 D
a
ta

 O
u
tp

u
t

S
tr

e
a
m

Instruction
Stream 2

Instruction
Stream N

Processor
N

Instruction
Stream 1

Processor
2

Processor
1

Instruction
Stream 2

Instruction
Stream N

Data Input
1

Data Input
2

Data Input
N

Data Output
1

Data Output
2

Data Output
3

Core 2

Cache L1 Cache L1

Processor
1

Global System Memory

Memory
Bus

Processor
2

Processor
N

Processor
1

Local
Memory

Memor
y Bus

Processor
2

Local
Memory

Memor
y Bus

Processor
2

Local
Memory

Memor
y Bus

IPC
Channel

IPC
Channel

+

Large Level
(Processes,

Tasks) Task 1 Task 2 Task N

Function 1 Function 2 Function J

Statements Statements Statements

x
loa
d

function f1()

{…}

function f2()

{…}

function fJ()

{…}

a[0] = …

b[0] = …

a[1] = …

b[1] = …

a[k] = …

b[k] = …

Shared
Memory

Shared
Memory

Messag
es IPC

Messag
es IPC

Medium Level
(Threads,
Functions)

Fine Level
(Processor,

Instructions)

Very Fine Level
(Cores, Pipeline,

Instructions)

Hardware

Operating
System

Middleware

Applications

Networking
and Parallel
Hardware

IPC primitives
for control and

data.

Frameworks for
distributed

programming

Hardware and OS
(IaaS)

Middleware (PaaS)

Applications
(SaaS)

Social Networks,
Scientific

Computing,
Enterprise

Applications

Virtual hardware,
networking, OS

images, and storage.

Frameworks for
Cloud

Application
Development

clien
t

Server/clie
nt serve

r

Server/clie
nt

serve
r

clien
t Server/client

serve
r

clien
t

serve
r

request

respons
e

Two Tier
(Classic
Model)

Three Tier

N Tier

peer

peer

peer

peer

peer

peer

peer

RPC Service

Main Procedure

Procedure
A

Procedure
B

Procedure C:Node
B

RPC Library

Node A

Program A (RPC
Client)

Procedure C

Node B

Program C (RPC
Server)

Procedure
Registry

Parameters
Marshaling and
Procedure Name

Return Value
Marshaling

Parameters
Unmarshaling and
Procedure Name

Return Value
Unmarshaling

Network

Instance

Object Proxy

Remote Reference
Module

Node A

Application
A

Node B

Application B

Network

Remote Reference
Module

Object Skeleton

Remote
Instance

2 3

7 8 12
13

18 19

1: Ask for
Reference

4 6 9

5: Object
Activation

10

11
14

15

16

17 20

21

Application

WS Client

Web
Server

UDDI Registry

WSDL(s)

Web
Server

WSDL

Web Service

Application

WSDL

Web Service

Application

WS Client

Web Service Flow

Service Discovery

Service Description

XML-based
Messaging

Network

S
e
c
u
ri

ty

Service Publication

Q
u
a
li
ty

 o
f

S
e
rv

ic
e

M
a
n
a
g
e
m

e
n
t

WSDL

SOAP

HTTP, FTP,e-mail, MQ, IIOP, ….

Direct  UDDI

Static  UDDI

WSFL

POST /InStock HTTP/1.1

Host: www.stocks.com

Content-Type: application/soap+xml; charset=utf-8

Content-Length: <Size>

<?xml version=“1.0”>

<soap:Envelope xmlns:soap=“http//www.w3.org/2001/12/soap-envelope”

 soap:encondingStyle=“http//www.w3.org/2001/12/soap-encoding”>

 <soap:Header></soap:Header>

 <soap:Body xmlns:m=http://www.stocks.org/stock>

 <m:GetStockPrice>

 <m:StockName>IBM<m:StockName>

 </m:GetStockPrice>

 </soap:Body>

</soap:Envelope>

Envelope

Header: Metadata &
Assertions

Body: Method Call

POST /InStock HTTP/1.1

Host: www.stocks.com

Content-Type: application/soap+xml; charset=utf-8

Content-Length: <Size>

<?xml version=“1.0”>

<soap:Envelope xmlns:soap=“http//www.w3.org/2001/12/soap-envelope”

 soap:encondingStyle=“http//www.w3.org/2001/12/soap-encoding”>

 <soap:Header></soap:Header>

 <soap:Body xmlns:m=http://www.stocks.org/stock>

 <m:GetStockPriceResponse>

 <m:Price>34.5<m:Price>

 </m:GetStockPriceResponse>

 </soap:Body>

</soap:Envelope>

Envelope

Header: Metadata &
Assertions

Body: Execution Result

Virtualization Layer

Virtual
Hardware

Virtual
Networking

Virtual Storage

Software Emulation

Host
Physical

Hardware
Physical
Storage

Physical
Networking

Guest Applications Applications Virtual Image

Operative
Systems

E
x
e
c
u
ti

o
n
 S

ta
c
k

Hardware - level
Virtualization

Hardware

Programming
Languages

Applications

OS- level
Virtualization

Programming
Language level
Virtualization

Application - level
Virtualization

Aggregati
on

Sharing Emulation Isolation Virtualization

Physical
Resources

Virtual
Resources

Virtualizati
on

Execution
Environme

nt

Storage

Network

….

Emulation

High-Level VM

Multiprogrammin
g

Hardware-
assisted

Virtualization

Process Level

System Level

Paravirtualization

Full Virtualization

How it is
done?

Technique
Virtualization

Model

Application

Programming
Language

Operating
System

Hardware

Partial
Virtualization

Libraries

API

ABI

Hardware

Operative System

ISA

Applications

Operative
System

Hardware

Libraries

Applications

API calls

System calls

ISA

User
ISA

User
ISA

Ring 3

Ring 2

Ring 1

Ring 0

Least privileged mode
(user mode)

Privileged modes

Most privileged mode
(supervisor mode)

Host

VMM

Virtual
Machine

binary translation
instruction mapping

interpretation
……

Guest
In memory

representation

Storag
e

Virtual
Image

Host emulation

ABI

Hardware

Operative System

ISA

Virtual Machine
Manager

ISA

VM VM VM VM

Hardware

ISA

Virtual Machine
Manager

ISA

VM VM VM VM

Virtual Machine Manager

ISA

Virtual Machine Instance

Instructions (ISA)

Interpreter

Routines
Interpreter

Routines

Allocator

Dispatcher

User Instructions

Sensitive Instructions

Privileged Instructions

Server A

(running)

VM

VM

VM VM

Server B

(running)

Virtual Machine Manager

VM VM

Server A

(running)

VM

VM

VM VM

Server B

(inactive)

Virtual Machine Manager

VM VM

Before
Migration

After
Migration

Xen Hypervisor
(VMM)

• Memory
management
• CPU state registers
• Devices I/O

User Domains (Domain U)
• Guest OS
• Modified codebase
• Hypercalls into Xen VMM

User Applications
(unmodified ABI)

Management Domain (Domain
0)
• VM Management
• HTTP interface
• Access to the Xen
Hypervisor

Ring 3

Ring 2

Ring 1

Ring 0

Hardware (x86)

Privileged
instructio

ns

Hardware
trap

Hypervisor
• Binary translation
• Instruction caching

Guest Operating System
• Unmodified codebase
• VMM unaware

User Applications
(unmodified ABI) Ring 3

Ring 2

Ring 1

Ring 0

Hardware (x86)

Hardware
trap

(sensitive
instructions)

Dynamic / cached translation
(sensitive instructions)

Hardware (x86)

Host Operating System

VMware Hypervisor (VMM)
• Direct access to hardware
•I/O, memory, networking for
guests
• Save/Restore CPU state for host
OS

VMware
Driver

Virtual Machine Instance

User
Applications

VMware
Workstatio

n

Guest Operating System

User Applications I/
O

Hardware (x86)

Host Operating System VMware Hypervisor (VMM)
• Direct access to hardware
•I/O, memory, networking for guests
• Save/Restore CPU state for host OS

VMware
Driver

VM
Instance

serverd
(daemon

)

VMware

VMware

VMware

Web
Server

VM
Instance

VM
Instance

Hardware

VMkernel

host
d

VM
X

CIM
broke

r
VM

User world API

Resource
scheduling

Device drivers

Storage stack Network stack

Distributed
VM file system

Virtual Ethernet
adapter and

switch

VM VM

VMM VMM VMM

VM
X

VM
X

DCU
I

syslog

vxpa SNMP

Third-party
CIM plug-ins

Serve
r

ESX
i

ESX

vSpher
e

Serve
r

ESX
i

ESX

vSpher
e

Data Center

vCenter

Serve
r

ESX
i

ESX

vSpher
e

Serve
r

ESX
i

ESX

vSpher
e

Data Center

vCenter

vCloud

Cloud

Infrastructure
Virtualization

vFabric
Platform

Virtualization

Zimbra
Application

Virtualization

Hardware (x86)

Hypervisor
(Ring -1)

Hypercalls MSRs APIC Scheduler
Address

Management
Partition

Management

Root / Parent Partition

VMWPs

VMMS WMI

Hypervisor-aware
Kernel (Ring 0)

VSPs VID

WinHv
I/O

Stack
Driver

s

VMBus

Enlightened Child
Partition

User Applications
(Ring 3)

Hypervisor-aware
Wndows Kernel (Ring
0) VSCs /

ICs

WinHv
I/O

Stack
Driver

s

VMBus

Enlightened Child
Partition

User Applications
(Ring 3)

Hypervisor-aware
Linux Kernel (Ring 0)

VSCs /
ICs

LinuxH
v I/O

Stack
Driver

s

VMBus

Unenlightened Child
Partition

User Applications
(Ring 3)

Hypervisor-unaware
Kernel (Ring 0)

Processor Memory

 disruptive techno-commercial model
 Answer the following questions
◦ when and how to migrate one’s application into a cloud?
◦ what part or component of the IT application to migrate

into a cloud and what not to migrate into a cloud?
◦ what kind of customers really benefit from migrating

their IT into the cloud?

 Definition
◦ It is a techno-business disruptive model of using

distributed large-scale data centers either private or
public or hybrid offering customers a scalable virtualized
infrastructure or an abstracted set of services qualified
by service-level agreements (SLAs) and charged only by
the abstracted IT resources consumed.

 IaaS
◦ Amazon services
◦ Elastic Cloud Compute (EC2)
 small-instance

 large-instance

 extra-large instance

 high-cpu instance

 high-cpu medium instance

 high-cpu extra-large instance

 SaaS
◦ Gmail
◦ Scalable storage space

 Reasons
◦ Economic
◦ Business
◦ Technologic

 Five level of migration
◦ Application
◦ Code
◦ Design
◦ Architecture
◦ Usage

 Clean and independent application
 Code(design) needs to be modified and adapted
 Usage of application needs to be modified and adapted
 Hybrid Cloud

 economics and the associated trade-offs, of
leveraging the cloud computing services

 Factors to migrate
◦ Economic
 CaPex

 Opex

 When?

 cost of using cloud + cost of migration < cost of using
captive dc

◦ Licensing issues
◦ SLA compliances
◦ pricing of the cloud service offerings
 Elasticity and pricing variability

Asses

Isolate

Map

Re-
archite

ct

Augme
nt

Test

Optimi
ze

 Assessment
◦ Isolate dependency

 Reference migration architecture

 Data migration

 Application migration

 Leveraging AWS features

 Optimize for Cloud

 Is a challenge
 Identify in test phase
 Mitigate in optimization phase
 Types

◦ General
 Performance monitoring & tuning
 Disaster recovery
 Compliance with standards and governance issues
 Licensing issues
 QoS
 Portability and interoperability
 …

◦ Security-related
 Issues of security at various level of app
 issues of trust and issues of privacy
 Right execution logs
 Consistent identity management
 …

 Integration
◦ E2E (Enterprise to Enterprise)

◦ E2C (Enterprise to Cloud)

◦ C2C (Cloud to Cloud)

 Systems
◦ One-to-many

◦ One-to-one

◦ Many-to-one

 ITaaS (IT as a service)
◦ Cloud infrastructure

◦ HP: Everything as a service

 IaaS (Integration as a service)
◦ Deploy cloud for Business and technical benefits

◦ Station locally for security reason

◦ Connectivity for work together

◦ IaaS utilize B2B systems (SaaS and in-house)

◦ H&S architecture (Hub and Spoke)

 Challenges
1. Controllability
2. Visibility & flexibility
3. Security and Privacy
4. High Performance and Availability
5. Integration and Composition
6. Standards

 Private cloud,…
 Integration
◦ Real time data and functionality

 API
◦ Too coding

 Data Transmission security
 Impact of the clouds

 Integration middleware
◦ EAI
 Enterprise Application Integration

◦ ESB
 Enterprise Service Bus for service integration

 loosely coupled, in a cloud

◦ EDB
 Enterprise Data Bus for data integration

◦ MOM
 Message Oriented Middleware for integration application via

Message passing

◦ CEP
 Complex Event Processing engines

 decoupled

 Data synchronization

 Constraint of SaaS
◦ Dynamic nature of the SaaS interfaces
◦ Dynamic nature of the metadata
◦ Managing assets outside of the firewall
◦ Move Massive amounts of information

 Complicated integration
◦ New integration scenarios
◦ Limited access
 Controllability, Flexibility, Visibility

◦ Dynamic resources
 Tightly coupled

◦ Performance

 Integration model
◦ Local to local

◦ Local to cloud

◦ Cloud to cloud

 Three major scenario
◦ Public cloud

◦ Homogeneous cloud

◦ Heterogeneous cloud

 In one cloud

 Integration middleware
◦ ESB or ISB

 Two app owned by different companies

 May be in single server

 Two geographically separate

 Middleware in 1 or 2 or another cloud

 Public and private

 Dominate scene

 Three type cloud integration
i.Traditional Enterprise Integration Tools can be

empowered with special connectors to access
Cloud-located Applications
 the most likely approach for IT organizations

ii.Traditional Enterprise Integration Tools are hosted
in the Cloud
 Good for C2C

iii.Integration-as-a-Service (IaaS) or On-Demand
Integration Offerings
 On-premise to cloud, cloud to cloud and on-premise

to on-premise

 Informatica on demand is an example

 Connectivity

 Semantic mediation

 Data mediation
◦ Data transformation

 Data Migration

 Data Integrity

 Data Security

 Governance

 Understanding
◦ Semantic understanding of source and target system

 Definition
◦ Information represent, ownership, physical attributes

 Design
◦ Visual mapping technology

 Implementation
◦ Connecting source and target systems

 Test
◦ integration is properly designed and implemented

 Jitterbit
 Bommi software
◦ On demand

 Bungee connect
 OpenSource connect
 SnapLogic
◦ Free community
◦ Professional

 Pervasive DataCloud
 Bluewolf
◦ Proactive monitoring and consulting services

 Online MQ
 CloudMQ
 Linxter

 Enable integration among data, apps, web services,
….

 Features
◦ Scalable and secure server
◦ Fully Graphical
◦ Used Standalone or with EAI infrastructure

 Components
◦ Integration environment
 GUI

◦ Integration server
 Run time engine

 Force.com
◦ PaaS
◦ Integration need much time, money, expertise

Using Jitterbit- A First Look - Jitterbit.flv

 Multi-tenant platform
 Deliver

◦ Integration as a Service
◦ Package turnkey integration
◦ Support every integration scenario
◦ Connectivity to hundreds of different application and data stores

 Is platform for deploy applications that are
◦ Scalable
 multi-tenant architecture

◦ Flexible
 SaaS-to-SaaS, SaaS to on-premise ,…

◦ Easy to access and configure
 Via web browser

◦ Robust
◦ Secure
 automatic update, monitoring,...

◦ Affordable
 Pay-as-you-go model

5195856.mp4
5195856.mp4
5195856.mp4

 Internet based queuing system

 Send/Receive message over network

 Cloud messaging queuing service

 Advantages
◦ Ease of use
◦ No maintenance
◦ Load balancing
 Multiple instance

◦ High availability
 clustering

◦ Easy integration
 SOAP, JMS-compatible

 innovative on-demand data integration solutions

 As-a-service delivery model

 Benefits
◦ Rapid development and deployment
 with zero maintenance of the integration technology

◦ Automatically upgraded and continuously enhanced by
vendor

◦ Proven SaaS integration solutions
◦ Proven data transfer and translation technology

 No complex software update

 No additional fee

 Patching, versioning has no cost

 ISB (Internet Service Bus)

 Azure : cloud operating system

 Components
◦ Microsoft .NET Services

 .NET Service Bus

 .NET Access Control Service

 Authentication & Authorization

 .NET Workflow Service

◦ Relay Services

 Enterprise Cloud Computing Paradigm

 Cloud Characteristic (NIST)
◦ On-demand self service
◦ Broad network access
◦ Resource pooling
◦ Rapid elasticity
◦ Measured service

 Deployment Models
◦ Public Cloud
◦ Private Cloud
◦ Virtual Private Cloud
◦ Community Cloud
◦ Managed Cloud
◦ Hybrid Cloud

 ERP
 Capabilities of ERP
◦ Transactional Capabilities
 OLTP (Online Transaction Processing)
 manage transaction oriented applications(relational

databases)
 ACID properties, write/update-intensive
 CRM (Customer Relationship Management)

◦ Analytical Capabilities
 OLAP (Online Analytical Processing)
 Analysis, reporting, decision support
 Read only
 Data-intensive
 BI (Business Intelligence)

 Five stage of the cloud

 Standard
◦ Vendor lock-in
◦ OGF OCCI for compute clouds
◦ SNIA CDMI for storage and data management
◦ DMTF Virtualization Management (VMAN)
◦ DMTF Cloud Incubator
◦ Drives adoption, Drives the market, Third party vendor

 SLA
◦ Lack of control
◦ Primitive vs. Sophisticated

 Cloud Service Brokerage (CSB)
◦ Cloud Service Intermediation
◦ Aggregation
◦ Cloud service Arbitrage

 industry-specific characteristics
◦ Rivalry

◦ Comparable Products

 Market share

◦ Federation

 Small companies

◦ Switching cost

 Standardization

 IaaS provider characteristic
1. on-demand provisioning of computational resources
2. Virtualization technologies to lease resources
3. Provide public and simple remote interfaces to manage

resources
4. use a pay-as-you-go cost model
5. “infinite capacity” or “unlimited elasticity”

 Private and Public difference

 Role of Virtualization
◦ Key of these characteristic
◦ Allocating resources efficiently
◦ Taking into account an organization’s goals
◦ Reacting to changes in the physical infrastructure

 Problems In VM Solutions
◦ Distributed management of virtual machines

◦ Reservation-based provisioning of virtualized
resource

◦ Provisioning to meet SLA commitments

 RESERVOIR project
◦ Resources and Services Virtualization without

Barriers

◦ Addressed above problems

 Manage the virtual infrastructures themselves
 Efficiently selecting or scheduling

computational resources
 VM-based resource scheduling
◦ Static approach
◦ Efficiency approach

 Solution
◦ Virtual Infrastructure Manager
 Managing VMs in a pool of distributed physical resources

 Case Study
◦ OpenNebula

 VM model attributes
◦ A capacity in terms of memory and CPU
◦ A set of NICs attached to one or more virtual networks
◦ A set of disk images
◦ A state file (optional) or recovery file

 Life Cycle
◦ Resource Selection
◦ Resource Preparation
 Contextualization

◦ VM Creation
◦ VM Migration

◦ VM Termination

 Management Areas
◦ Virtualization

 physical resource

◦ Image management

◦ Networking

 How?
◦ Interfacing with the physical resource virtualization

technology (hypervisors like Xen, KVM)

 More detail
◦ Pluggable drivers
 Decouple the managing process from the underlying

technology

◦ High-level command
 start VM, stop VM

◦ Driver-based architecture
 Adding support VIMs by writing drivers

 How?
◦ Transferring the VM images from an image

repository to the selected resource and by creating
on-the-fly temporary images

 More detail
◦ What is image?

 Virtual disk contains the OS and other additional
software

◦ Image management model

Image(clone
)

Image(orginal)

 How?
◦ creating local area networks (LAN) to interconnect the

VMs and tracking the MAC addresses leased in each
network.

 More detail
◦ virtual application network (VAN)
 the primary link between VMs

◦ OpenNebula dynamically creates VANs
◦ physical cluster
 set of hosts with one or more network interfaces

 each of them connected to a different physical network

◦ Networking Model

 Demand for resources is known beforehand
 Example
◦ an experiment depending on some complex piece of

equipment is going to run from 2 pm to 4 pm

 Commercial Providers
◦ Infinite capacity

 Private clouds
◦ Finite capacity
◦ Reservation lead resource to be underutilized

 Haizea
◦ Lease manager
◦ Scheduling backend by openNebula to support

provisioning models

 Preemption
◦ Checkpointing
◦ Checkpointable applications
◦ OS-level checkpointing

 VARQ
◦ Virtual advance reservation for queues
◦ Queuing based approach
◦ Wait time prediction

 Planning based approach
◦ Immediately planned by making a reservation

 Challenges
◦ Preparation overhead

◦ Runtime overhead

 Haizea
◦ Leases

 Advance reservation

 Best-effort

 Immediate

 Backfilling
 How to address preparation and runtime Overhead?

◦ Disk image transfer before start
◦ Caching

 How does best-effort lease?
◦ Scheduling using queue
◦ Backfilling algorithm
◦ Depend on required disk image

 VM suspension/resumption
 How does advance reservation lease?

◦ EDF algorithm for preparation overhead
◦ Without preemption for Runtime overhead

 Pluggable policy
 Combine best-effort and advance reservation

◦ Overcome utilization problems

 Cloud consumer vs. End users
 SLA between Service owner and end user
◦ High-Level SLA

 SLA between Cloud provider and Service owner
 Cloud provider task
◦ Elasticity on demand

 Problem
◦ Application specific metric for resource allocation

 Solution
◦ Elasticity of the application should be contracted and

formalized as part of capacity availability SLA between
the cloud provider and service owner (RESERVOIR)

 Research issues

 Main approaches:
◦ No SLAs
 Premises

 Spare capacity
 QoS-insensitive

 Suitable for best-effort workloads
◦ Probabilistic SLAs
 Availability percentile
 Less stringent commitment
 Lower availability = cheaper cost
 Suitable Small and medium business

◦ Deterministic SLAs
 100% availability percentile
 Most stringent guarantee
 Suitable for Critical services

 Definition
◦ Scaling and de-scaling policies

 Motivation
◦ Pay-as-you-go billing

 Types
◦ Time driven
 Timer event

 Predictable workload

◦ OS Level Metric driven
 OS parameter, auto scaling

 Not precise

◦ Application Metric driven
 Application specific policies

 ARL (Acceptable Risk Level)
◦ Control over-subscribing of capacity

 BSM-aligned admission control
 Equivalent Capacity
◦ resource of the service applications
◦ Representation (r1,r2,…rn) → (10,13,…4)
◦ Physical capacity matching
 Knapsack problem (no capacity augmentation)
 Bin-packing problem (with capacity augmentation)

◦ We have abstract equivalent capacity
◦ Rejection policy
 Reject service
 Increase capacity and accept service
 Increase ARL and accept service

◦ Service providers influence

 Aspects
◦ Penalization for Nonplacement
 Penalty for SLA violation

◦ Selection Constraints
 No Partial placement

◦ Repeated Solution
 Minimize the cost of replacement

 Minimize the cost of reassignments of VMs to hosts

 Reassignment entail migration

◦ ICT-Level Management Policies
 power conservation

 load balancing

 migration minimization

 Policy-driven Management
◦ if-then rules
◦ Management goals

 Placement optimization
◦ Phase I : low effort placement
◦ Phase II : management policy

 Levels of management(abstraction)
◦ Business
◦ Service-induced
◦ Infrastructure (ICT level)

 Elements to create cloud
◦ Large-scale clusters
◦ Virtualization
◦ Service Oriented Architecture (SOA)
◦ Web Services

 CaaS
◦ Cluster as a Service

 Related Work
◦ Amazon EC2
◦ Google AppEngine
◦ Microsoft Azure
◦ Salesforce

 Problem
◦ To know if the resource(s) behind the Web service is

(are) ready

 Solution
◦ Resource Via Web Service (RVWS) framework
◦ A single, effective, service-based framework
◦ Combines
 dynamic attributes

 stateful Web services (aware of their past activity)

 stateful and dynamic WSDL documents

 brokering

 State attributes
◦ cover the current activity of the service and its

resources, thus indicating readiness.

 Characteristic attributes
◦ cover the operational features of the service, the

resources behind it, the quality of service (QoS),
price and provider information

WSDL docs

Publication dynamic attributes and
provider info..

CaaS

.NET 3.5

.NET 2

.NET 2

Windows 2003
server

Windows 2003
server

Windows 2003
server

Windows XP

 Data Storage

 Distributed Storage

 Considerations
◦ unique issues

◦ specific security requirements not been well-
defined

 Concerns about data in cloud
◦ Privacy

◦ Integrity

 Distributed Storage
◦ Types

 SAN

 NAS

◦ Reliability

◦ Security

◦ Integrity

 LAN
◦ same authority

 WAN
◦ different authorities

 Confidentiality

 Integrity

 Repudiation

 Missing link between download and upload
◦ Upload-to-Download Integrity

◦ Repudiation Between Users and Service Providers

 Third authority certified (TAC)

 Secret key sharing technique (SKS)

 Solutions
◦ Neither TAC nor SKS

◦ With SKS but without TAC

◦ With TAC but without SKS

◦ With Both TAC and SKS

 Uploading Session
1. User: Sends data to service provider with MD5 checksum

and MD5 Signature by User (MSU).
2. Service Provider: Verifies the data with MD5 checksum, if it

is valid, the service provider sends back the MD5 and MD5
Signature by Provider (MSP) to user.

3. MSU is stored at the user side, and MSP is stored at the
service provider side.

 Downloading Session
1. User: Sends request to service provider with authentication

code.
2. Service Provider: Verifies the request identity, if it is valid,

the service provider sends back the data with MD5
checksum and MD5 Signature by Provider (MSP) to user.

3. User verifies the data using the MD5 checksum.

 Uploading Session
1. User: Sends data to service provider with MD checksum

5.
2. Service Provider: Verifies the data with MD5 checksum,

if it is valid, the service provider sends back the MD5
checksum.

3. The service provider and the user share the MD5
checksum with SKS.

 Downloading Session
◦ User: Sends request to the service provider with

authentication code.
◦ Service Provider: Verifies the request identity, if it is

valid, the service provider sends back the data with MD5
checksum.

◦ User verifies the data through the MD5 checksum.

 Uploading Session
1. User: Sends data to the service provider along with MD5

checksum and MD5 Signature by User (MSU).
2. Service Provider: Verifies the data with MD5 checksum, if it

is valid, the service provider sends back the MD5
checksum and MD5 Signature by Provider (MSP) to the
user.

3. MSU and MSP are sent to TAC.

 Downloading Session
1. User: Sends request to the service provider with

authentication code.
2. Service Provider: Verifies the request with identity, if it is

valid, the service provider sends back the data with MD5
checksum.

3. User verifies the data through the MD5 checksum.

 Uploading Session
1. User: Sends data to the service provider with MD5

checksum.
2. Service Provider: verifies the data with MD5 checksum.
3. Both the user and the service provider send MD5

checksum to TAC.
4. TAC verifies the two MD5 checksum values. If they match,

the TAC distributes MD5 to the user and the service
provider by SKS.

 Downloading Session
1. User: Sends request to the service provider with

authentication code.
2. Service Provider: Verifies the request identity, if it is valid,

the service provider sends back the data with MD5
checksum.

3. User verifies the data through the MD5 checksum

 Database Outsourcing and Query Integrity
Assurance

 Data Integrity in Untrustworthy Storage

 Web-Application-Based Security

 Multimedia Data Security

 Database Outsourcing and Query Integrity
Assurance

 Data Integrity in Untrustworthy Storage

 Web-Application-Based Security

 Multimedia Data Security

 Security Concern
◦ Data privacy

 Hacigumus et al.

 Agrawal et al.

◦ Query integrity

 Correct and Complete

 Merkle hash tree

 Database Outsourcing and Query Integrity
Assurance

 Data Integrity in Untrustworthy Storage

 Web-Application-Based Security

 Multimedia Data Security

 Remote data storage possession checking
protocol
◦ Requirements

1. Partial copy of the data

2. Robust protocol

3. High communication overhead

4. Computationally efficient

5. Unlimited verification

◦ Technologies

 A PDP-Based Integrity Checking Protocol

 An Enhanced Data Possession Checking Protocol

 Enhance PDP-based protocol
◦ Satisfy Requirement #2 with 100% probability

 Computationally more efficient

 Verification time has been shortened

 Trade-offs between
◦ the computation times required by the prover

◦ the storage required at the verifier

 Database Outsourcing and Query Integrity
Assurance

 Data Integrity in Untrustworthy Storage

 Web-Application-Based Security

 Multimedia Data Security

 Web attack techniques
◦ Authentication
 Brute force, Insufficient Authentication, Weak password

recovery

◦ Authorization
 Insufficient Authorization, Session attacks

◦ Client-Side Attacks
 Content Spoofing, XSS, CSRF

◦ Command Execution
 Like code injection or denial of service via buffer overflow

◦ Information Disclosure
 Path Traversal

◦ Logical Attacks
 DoS attack

 Database Outsourcing and Query Integrity
Assurance

 Data Integrity in Untrustworthy Storage

 Web-Application-Based Security

 Multimedia Data Security

 Protection from Unauthorized Replication
◦ Advantage
 improve system performance

◦ Disadvantage
 contents copyright

 waste of replication cost

 extra control overheads

 Protection from Unauthorized Replacement
◦ Limited storage capacity
◦ Remove stored content to make space

 Protection from Unauthorized Pre-fetching
◦ Just pre-fetch necessary content

 The cloud infrastructure providers (back-end)

 The cloud service providers

 The cloud consumers (front-end)
◦ Application developer

◦ End user

 Technical
◦ Open security profiling

◦ Remote control

◦ Security compliance with standards

◦ Certificates

 Non-Technical
◦ User’s fear of losing control

 Introduction

 Technology and Tools for Cloud Computing

 Aneka Architecture overview

 Aneka Resource Provisioning Service

 Aneka Implementation

 Future Directions and Conclusion

 How to form private and public cloud?
 Private cloud
◦ Advantages
 Information Protection

 Ensuring SLA

 Standards

◦ Disadvantages
 Scale out

 Solution
 Hybrid clouds

◦ PaaS solutions
 Manjrasoft Aneka

 Deploying private cloud
◦ VM technologies
◦ VM managers

 IaaS
◦ Amazon
 EC2,S3

◦ GoGrid
◦ 3Tera AppLogic

 PaaS
◦ Microsoft Azure
◦ Google AppEngine

 Other Tools (commercial and research)
 DataSynapse, Elastra, Zimory Pools, App-Logic

 Aneka, OpenNebula, Nimbus

 Support for Heterogeneity
◦ integrate additional cloud service providers (IaaS) without

major changes to the entire system

 Support for Dynamic and Open Systems
◦ plugging new components and rapidly integrating new

features

 Support for Basic VM Operation Management
◦ software frameworks that support hypervisor-based

execution should implement a minimum set of operations

 Support for Flexible Scheduling Policies
◦ Public and private resources can be differently utilized,

and the workload should be dynamically partitioned

 Support for Workload Monitoring
◦ To lease a subset of resources and dismiss resources if

they are no longer necessary

 Request strategy

 Release strategy

 Pricing Models
 Security Standardization
 Management and Scheduling Policies for

heterogeneous environment
 Security in hybrid cloud
 Data retention
 Possibility of massive outage
 Provider trust
 Jurisdiction (confidentiality of data)
 Standardization

 Introduction

 Architecture overview

 Autonomic behavior of CometCloud

 Overview of CometCloud-based

applications

 Implementation and Evaluation

 Future Research Directions

 What
◦ Integrates of public and private cloud
◦ Is a PaaS

 Why
◦ to enable on-demand scale-up,

scale-down
and scale-out

 How
◦ Cloudbursting
◦ Cloudbridging

 Load Dynamics
◦ The computational environment must dynamically grow (or shrink)
◦ In response to dynamic loads

 Accuracy of the Analytics
◦ The required accuracy of risk analytics
◦ To dynamically adapt to satisfy the accuracy requirements

 Collaboration of Different Groups
◦ Different groups run the same app. with different dataset policies
◦ To satisfy their SLA.

 Economics
◦ Application tasks can have very heterogeneous and dynamic priorities.
◦ To handle heterogeneous and dynamic prov. and sched. requirements.

 Failures
◦ To manage failures without impacting application QoS.

Cloud-Bridging

Virtually Integrated working cloud

Policy

Deadline-Based

Budget-Based

Workload-Based

 VaR
◦ measuring the risk level of portfolios of financial

instruments
◦ VaR calculation should be completed within the limited

time
◦ computational requirements can change significantly
◦ autonomic cloudbursts
◦ Workload-based policy

 Image Registration
◦ determine the mapping between two images
◦ for medical informatics
◦ budget-based policy

a: VaR b: Image Registration

• All worker were unsecured
• Each worker ran on different instance

 Communication Overhead

a: Workload-specific policy b: Workload-bounded policy

VaR using Workload-Based Policy

Image Registration using Budget-Based Policy

Rationale
 Cloud Computing for HPC

 Introduction

 Cloud and GRID

 Security Issues

 PerfCloud

 Proposed approach and overall architecture

 Access control and Identity Federation in PerfCloud

 Conclusions

Cloud Computing and HPC

According to the definition of NIST, Cloud Computing is a model for enabling

on demand network access to a shared pool of configurable resources

 Cloud Computing delivery models

 IaaS (Infrastructure as a Service)‏

 SaaS (Service as a Service)‏

 AaaS (Application as a Service)‏

 Clouds to provide ”servers”, to provide ”application environments”, to provide

”datacenters”,……

 Cloud for HPC => IaaS

 Performance

 Interconnections

 Security (give administration rights to consumers)

Clouds, GRID and Performance

The use of clouds for HPC makes sense only if

performance is satisfactory

The availability of an existing GRID infrastructure is a

great opportunity to be exploited

Resources provided by clouds can be used with grid

(standard?) access mechanisms

Comparison of Cloud and GRID is an open discussion

(management of great number of

distributed/computational resources, huge datacenters,

different approach towards the applications)

PerfCloud: Cloud Computing and
GRID Integration

Cloud on GRID:

• The complex and stable GRID infrastructure is exploited to

build up a cloud environment.

• A set of GRID services is offered in order to manage (create,

migrate, ...) virtual machines, usually organized in (Virtual)

Clusters.

•A standard way to access the Cloud (via GRID interfaces –

read Web Services interfaces)

PerfCloud: The Approach

PerfCloud is a complete framework that provides

(virtual) cluster-on-demand functionalities integrated

with performance prediction services and a Gui

client:

• To provide a virtual cluster (with a set of pre-

installed applications) with its security domain,

giving full management to users

• To evaluate on-the-fly the performance of an

application on the VC created,

PerfCloud: Overall Architecture

It is composed of:

GRID Services able to

manage, evaluate and

predict performances of

Virtual Clusters

Virtual Clusters Machine

Images preconfigured for

HPC

Clients for easy access to

the environment

Resources to protect Available GT4 components

System/GRID Administrator
GRID User

Cloud Administrator
Cloud User

Manage and access physical resources

Manage and access virtual resources

 GRID user authentication is based on digital

certificates (x.509 and proxy certificates).
 Digital Certificates are accepted if the basic path

validation process is successful; it implies that all
CA in the certification path are trusted and all
certificates are valid.

 To validate certificates from external untrusted
domains an extended path validation is required;
it implies that there is a cross certification
among different CAs that can form or not an
explicit federation (hierarchical or peer-2-peer),
this operation is manually performed.

 To fully authomatize the process of extending
trust to other CA and so enable the idenity
federation, we propose a system to evaluate on-
line the CRL and evaluate the security level
associated to a CA.

 Enable Extended Path Validation in untrusted
Grid domains.

 Our approach is to build a dynamic cross
certification (federation) of CAs by evaluating
their Certificate Policies, on the basis of 3
components:
◦ An automatic policy evaluation methodology (REM),
◦ An OCSP Client (OGRO),
◦ An OCSP Responder (as CertiVer)

 In order to define the Certificate Policy and
further audit the CA, we refer to a Trusted
Third Party .

1) formalize a policy according to a common
template;

2) each provision is structured and normalized
according to a Local Security Level

3) an aggregation function which is based on
an Euclidean distance gives the Global
Security Level associated to the policy

• basic path validation on the proxy certificate is

 performed;

• the digital certificate status is evaluated on-line

 through the OCSP Responder;

• the GSL value is directly retrieved from the

POIS (that holds a database with all pre-

evaluated Certification Authorities).

• the GSL of the Cloud user’s CA is compared

against the minimum required-GSL defined by

the Federated Grid Container to extend trust, and

if GSLV C1 > GSLGC, the validation is

successful.

• If the extended path validation is successful,

the cloud user is mapped to a “federated user”.

 Authentication
mechanisms:
◦ None.
◦ GSISecureMessage:

each individual
message is encrypted.

◦ GSISecureConversation
: a secure context is
established.

◦ GSITransport:
transport-level
security is provided by
using TLS.

 Authorization
mechanisms:
◦ Container security

level (Authzn to access
a container);

◦ Service security level
(Authzn to access a
service);

◦ Resource security level
(Authzn to access a
resource);

WS-Security specification Policy-based Authzn services

Conclusions

 PerfCloud offers cluster-on-demand functionalities integrated with a

simulation environment able to predict user application performance on

the newly instantiated Virtual Clusters

 We have analyzed cloud-on-grid security issues and in particular, the

access control problem and the identity federation among untrusted virtual

clusters.

 As for access control, we identified the main roles within the PerfCloud

and we are able to enforce different security policies to separate the

access to physical and virtual resources.

 As for identity federation: an innovative interoperability system has been

proposed to perform the extended path validation of digital certificates in

an automatic way.

 Future works:

Performance/security tradeoff (SLA)

Social

Web 2.0

user involvement in the
creation of contents

Integration
Data Integration

Application Integration

User Interface Integration

modern
Web applications

culture of
participation

[Fischer 2009]

public APIs

Active co-
creation of

knowledge and
new ideas

Web Mashups widgets

Development of

data sources

Mainframe computing
1 computer / multiple users

1965

Client-server computing
Computer networks / multiple users

1985

 “The network is the computer”

 (John Gage, Sun Microsystems, 1984)

SaaS
DaaS
HaaS

Cloud computing
The Cloud / ALL the users

2005+

“The cloud is the computer”

2
1
5

Availability on the Web of ready-to-use “building
blocks”:

• Software services (content, functionality)
accessible throuhg public Web APIs to build
composite applications

• API: Application Programming Interface
a defined set of HTTP request messages, along
with a definition of the structure of response
messages, which is usually in XML or JSON format
[wikipedia.com]

2
1
7

 Mashup: young integration practice using the Web as
platform.

 Some definitions:

“...a mashup is a web application that combines data from

more than one source into a single integrated tool…”
[wikipedia.com]

“...you can integrate two or more […] Web APIs to create

something new and unique, known as a mashup…” [IBM
web site]

 Similar terms: service mashups, data mashups

Highly user-driven:

• Oftentimes the actual providers of
content/functionality are not even aware of being
“wrapped”

• Google Maps example: initially skilled users «hacked»
the code of the application

Strong evolution: from hacking to first systematic
development approaches in a few years

Composed of:

Google Maps (http://maps.google.com)

Craigslist (http://www.craigslist.com)

The HousingMaps application
(http://www.housingmaps.co

m)

A utility for finding a house
for sale or for rent

HousingMaps (http://www.housingmaps.com)
http://maps.google.com

http://www.craigslist.com

GoogleMaps

Own application logic/UI

Craigslist

http://www.housingmaps.com/
http://maps.google.com/
http://www.craigslist.com/

sources:

• Videos

• Images

• Maps

• News

• RSS feeds

• Social contents

•…

mashup

web site

browser

Public

interfaces
(API,‏RSS,‏…)

Data manipulation:

• embedding

• aggregation

• integration

222

To add a multimedia object in a Web page, it is sufficient
to copy an HTML “snippet” into the HTML code of my Web
page

flickr

foto

youtube

BROWSER

22
3

22
4

 <body>

 <iframe id="FlickrFrame"

 src="http://www.flickr.com/search/?q=milan"

 name="Flickr" style="width:600px; height:500px; border:
0px"></iframe>

 <iframe id="AmazonFrame"

 src="http://amazon.com/s/?url=search-alias%3Daps&field-
keywords=milan"

 name="Amazon" style="width:600px; height:500px; border:
0px"></iframe>

 </body>

</html>

Google News

http://newsmap.jp (aggregates from Google News)

22
9

www.housingmaps.com

• Collections:

• ProgrammableWeb (www.programmabelWeb.com)

• Mashery (developer.mashery.com/apis)

• …

• Ecosystems: offer software components that are
«compatible» and «integrable» to build
composite applications

• WordPress (www.wordpress.org)
offer a large set of widgets and the possibility to
include corresponding plugins into the
development workspace

• Netvibes.com: a portal with a huge number of
widgets

23
0

1. Wordpress plugins

2. HTML embedding: The Expo Mashup

 “There are creative people all around the
world, hundreds of millions of them, and they
are going to think of things to do with our basic
platform that we didn’t think of”

Vinton Cerf – Google

23
2

Component
discovery

and
selection

Composition
and

immediate
deployment

Use and
evolution

Mashup
idea

Composition tool/

sandbox

sandbox

23
4

Select the components (e.g., GMaps API and
the Craigslist RSS):
• Include GMaps component

• Define a layout for the RSS feed

• Set markers through GMaps API

Problems
• Manual development for skilled programmers

• Manual parsing of RSS feed

• No common Web API format

 Mashup tools/platforms

• Simplify the overall development process, enabling

even the less experienced user to mash up own
applications

netvibes.com

1. Dapper for content extraction + Netvibes

2. Our tools

How the mashup
paradigm can transform

UX?

Chasm between operating systems and packaged
applications Latzina, Beringer. ACM Interaction, March 2012

(http://www.sapdesignguild.org/community/readers/reader_latzina_beringer.asp)

 Spaces of interaction
where users can realize
their current goals by
moving across various
task contexts

 Elastic systems where
data objects (content)
and functions (capability)
are detached and can be
moved into different task
contexts (container)

 User interfaces emerge at
runtime

Evolution of web application development:

Manual development: static (plain HTML) and dynamic

(PHP, JSP,...) pages coded via simple text editors or
dedicated tools

Tool-aided development: authoring tools enable

developers to reason on the application content and
«structure»; the tools automatically generate the
code

Mashup development: we are going toward the user-

driven development of web applications

“Lightweight” applications

 reduced amount of code to be written; just the
code for integrating APIs

«Lightweight» development
availability of tools who do not require many technical
skills – e.g., pipes

Low (o zero) costs for gathering data

Rapid development
Reduced time-to-market, quick prototyping

25
4

Dependency from the online data sources
data quality, performances, service availbility and
reliability, change in the service policy (licensing,
acess restrictions, etc.)

APIs: standards e versioning

Intellectual property and copyright
“right to remix”: in which measure?

25
5

 Challenges, Architecture, and Solutions

 Customer-driven Service Management

 Computational Risk Management

 Autonomic Resource Management

 SLA-oriented Resource Allocation Through
Virtualization

 Service Benchmarking and Measurement

 System Modeling and Repeatable Evaluation

The resource provisioning will be driven by market-
oriented principles for efficient resource allocation
depending on user QoS targets and workload demand
patterns.
 Support for customer-driven service management based on customer

profiles and QoS requirements;
 Definition of computational risk management tactics to identify, assess,

and manage risks involved in the execution of applications;
 Derivation of appropriate market-based resource management

strategies that encompass both customer-driven service management
and computational risk management to sustain SLA-oriented resource
allocation;

 Incorporation of autonomic resource management models;
 Leverage of Virtual Machine technology to dynamically assign resource

shares;
 Implementation of the developed resource management strategies and

models into a real computing server;

 Traditional Resource Management Systems(Condor,
LoadLeveler, Load Sharing Facility, Portable Batch System)
◦ adopt system-centric resource allocation approaches that focus on

optimizing overall cluster performance
 Increase processor throughput and utilization for the cluster

 Reduce the average waiting time and response time for jobs

◦ Assume that all job requests are of equal user importance and neglect
actual levels of service required by different users.

 Virtual Machine management platform solutions(Eucalyptus,
OpenStack, Apache VCL, Citrix Essentials)
◦ Main goal is to provide automatic configuration and maintenance of

the centers

 Market-based resource management
◦ Not considered and incorporated customer-driven service

management, computational risk management, and autonomic
resource management into market-driven resource management

High-level system architectural
framework

Aneka
architecture

 Static resource
◦ 1 Aneka master - m1.large(7.5GB memory, 4 EC2

compute units, 850GB instance storage, 64bit
platform, US0.48 per instance per hour) Windows-
based VM

◦ 4 Aneka workers – m1.small(1.7GB memory, 1 EC2
compute unit, 160GB instance storage, 32bit
platform, US0.085 per instance per hour) Linux-
based VM

 Dynamic resources
◦ m1.small Linux-based instances

 CPU-intensive application

 SLA is defined in terms of user-defined
deadline

 execution time of each task was set to 2
minutes

 Each job consists of 120 tasks

