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We should be able to analyze the performance of power systems

both in normal operating conditions and under fault (short-

circuit) condition. The analysis in normal steady-state operation

is called a power-flow study (load-flow study) and it targets on

determining the voltages, currents, and real and reactive power

flows in a system under a given load conditions.

The purpose of power flow studies is to plan ahead and account

for various hypothetical situations. For instance, what if a

transmission line within the power system properly supplying

loads must be taken off line for maintenance. Can the remaining

lines in the system handle the required loads without exceeding

their rated parameters?



A power-flow study (load-flow study) is an analysis of the voltages, currents,

and power flows in a power system under steady-state conditions. In such a

study, we make an assumption about either a voltage at a bus or the power

being supplied to the bus for each bus in the power system and then determine

the magnitude and phase angles of the bus voltages, line currents, etc. that

would result from the assumed combination of voltages and power flows.

The simplest way to perform power-flow calculations is by iteration:

1. Create a bus admittance matrix Ybus for the power system;

2. Make an initial estimate for the voltages at each bus in the system;

3. Update the voltage estimate for each bus (one at a time), based on the

estimates for the voltages and power flows at every other bus and the values

of the bus admittance matrix: since the voltage at a given bus depends on

the voltages at all of the other busses in the system (which are just

estimates), the updated voltage will not be correct. However, it will usually

be closer to the answer than the original guess.

4. Repeat this process to make the voltages at each bus approaching the

correct answers closer and closer…



The equations used to update the estimates differ for different types of busses.

Each bus in a power system can be classified to one of three types:

1. Load bus (PQ bus) – a buss at which the real and reactive power are

specified, and for which the bus voltage will be calculated. Real and reactive

powers supplied to a power system are defined to be positive, while the powers

consumed from the system are defined to be negative. All busses having no

generators are load busses.

2. Generator bus (PV bus) – a bus at which the magnitude of the voltage is kept

constant by adjusting the field current of a synchronous generator on the bus

(as we learned, increasing the field current of the generator increases both the

reactive power supplied by the generator and the terminal voltage of the

system). We assume that the field current is adjusted to maintain a constant

terminal voltage VT. We also know that increasing the prime mover’s governor

set points increases the power that generator supplies to the power system.

Therefore, we can control and specify the magnitude of the bus voltage and real

power supplied.



3. Slack bus (swing bus) – a special generator bus serving as the reference bus 

for the power system. Its voltage is assumed to be fixed in both magnitude and 

phase (for instance, 10˚ pu). The real and reactive powers are uncontrolled: 

the bus supplies whatever real or reactive power is necessary to make the 

power flows in the system balance.

In practice, a voltage on a load bus may change with changing loads. Therefore, 

load busses have specified values of P and Q, while V varies with load 

conditions.

Real generators work most efficiently when running at full load. Therefore, it is 

desirable to keep all but one (or a few) generators running at 100% capacity, 

while allowing the remaining (swing) generator to handle increases and 

decreases in load demand. Most busses with generators will supply a fixed 

amount of power and the magnitude of their voltages will be maintained 

constant by field circuits of generators. These busses have specific values of P 

and |Vi|.

The controls on the swing generator will be set up to maintain a constant 

voltage and frequency, allowing P and Q to increase or decrease as loads 

change.



The most common approach to power-flow analysis is based on the bus 

admittance matrix Ybus. However, this matrix is slightly different from the one 

studied previously since the internal impedances of generators and loads 

connected to the system are not included in Ybus. Instead, they are accounted for 

as specified real and reactive powers input and output from the busses.

Example 11.1: a simple power 

system has 4 busses, 5 transmission 

lines, 1 generator, and 3 loads. 

Series per-unit impedances are:

line 

#

Bus 

to 

bus

Series Z 

(pu)

Series Y (pu)

1 1-2 0.1+j0.4 0.5882-j2.3529

2 2-3 0.1+j0.5 0.3846-j1.9231

3 2-4 0.1+j0.4 0.5882-j2.3529

4 3-4 0.5+j0.2 1.1765-j4.7059

5 4-1 0.5+j0.2 1.1765-j4.7059



The shunt admittances of the transmission lines are ignored. In this case, the Yii

terms of the bus admittance matrix can be constructed by summing the 

admittances of all transmission lines connected to each bus, and the Yij (i  j) 

terms are just the negative of the line admittances stretching between busses i

and j. Therefore, for instance, the term Y11 will be the sum of the admittances of all 

transmission lines connected to bus 1, which are the lines 1 and 5, so Y11 = 1.7647 

– j7.0588 pu.

If the shunt admittances of the transmission lines are not ignored, the self 

admittance Yii at each bus would also include half of the shunt admittance of each 

transmission line connected to the bus.

The term Y12 will be the negative of all the admittances stretching between bus 1 

and bus 2, which will be the negative of the admittance of transmission line 1, so 

Y12 = -0.5882 + j2.3529.



The complete bus admittance matrix can be obtained by repeating these 

calculations for every term in the matrix:

1 .7 6 4 7 7 .0 5 8 8 0 .5 8 8 2 2 .3 5 2 9 0 1 .1 7 6 5 4 .7 0 5 9

0 .5 8 8 2 2 .3 5 2 9 1 .5 6 1 1 6 .6 2 9 0 0 .3 8 4 6 1 .9 2 3 1 0 .5 8 8 2 2 .3 5 2 9

0 0 .3 8 4 6 1 .9 2 3 1 1 .5 6 1 1 6 .6 2 9 0 1 .1 7 6 5 4 .7 0 5 9

1 .1 7 6 5 4 .7 0 5 9 0 .5 8 8 2 2 .3 5 2 9 1 .1 7 6 5 4 .7 0 5 9 2

b u s

j j j

j j j j
Y

j j j

j j j

    

      


    

      .9 4 1 2 1 1 .7 6 4 7j

 

 

 

 

 
 



b u s
Y V I

1 1 1 2 1 3 1 4 1 1

2 1 2 2 2 3 2 4 2 2

3 1 3 2 3 3 3 4 3 3

4 1 4 2 4 3 4 4 4 4

Y Y Y Y V I

Y Y Y Y V I

Y Y Y Y V I

Y Y Y Y V I

     

     

     
     

     
    

2 1 1 2 2 2 2 3 3 2 4 4 2
Y V Y V Y V Y V I   

The basic equation for power-flow analysis is derived from the nodal analysis 

equations for the power system:

For the four-bus power system shown above, (11.9.1) becomes

where Yij are the elements of the bus admittance matrix, Vi are the bus voltages, 

and Ii are the currents injected at each node. For bus 2 in this system, this equation 

reduces to

(11.9.1)

(11.9.2)

(11.9.3)



However, real loads are specified in terms of real and reactive powers, not as 

currents. The relationship between per-unit real and reactive power supplied to 

the system at a bus and the per-unit current injected into the system at that bus is:

*
S V I P jQ  

where V is the per-unit voltage at the bus; I* - complex conjugate of the per-unit 

current injected at the bus; P and Q are per-unit real and reactive powers. 

Therefore, for instance, the current injected at bus 2 can be found as

* * 2 2 2 2

2 2 2 2 2 2 *

2 2

P jQ P jQ
V I P jQ I I

V V

 
        

(11.10.1)

(11.10.2)

Substituting (11.10.2) into (11.9.3), we obtain

2 2

2 1 1 2 2 2 2 3 3 2 4 4 *

2

P jQ
Y V Y V Y V Y V

V


    (11.10.3)



Solving the last equation for V2, yields

 
2 2

2 2 1 1 2 3 3 2 4 4*

2 2 2

1 P jQ
V Y V Y V Y V

Y V

 
    

 

(11.11.1)

Similar equations can be created for each load bus in the power system.

(11.11.1) gives updated estimate for V2 based on the specified values of real and

reactive powers and the current estimates of all the bus voltages in the system.

Note that the updated estimate for V2 will not be the same as the original estimate

of V2
* used in (11.11.1) to derive it. We can repeatedly update the estimate wile

substituting current estimate for V2 back to the equation. The values of V2 will

converge; however, this would NOT be the correct bus voltage since voltages at

the other nodes are also needed to be updated. Therefore, all voltages need to be

updated during each iteration!

The iterations are repeated until voltage values no longer change much between

iterations.





This method is known as the Gauss-Siedel iterative method. Its basic procedure 

is:
1. Calculate the bus admittance matrix Ybus including the admittances of all

transmission lines, transformers, etc., between busses but exclude the

admittances of the loads or generators themselves.

2. Select a slack bus: one of the busses in the power system, whose voltage will

arbitrarily be assumed as 1.00˚.

3. Select initial estimates for all bus voltages: usually, the voltage at every load

bus assumed as 1.00˚ (flat start) lead to good convergence.

4. Write voltage equations for every other bus in the system. The generic form is

*

1

1
N

i i

i ik k

kii i
k i

P jQ
V Y V

Y V 



 
 

 
 
 
 

 (11.12.1)



5. Calculate an updated estimate of the voltage at each load bus in succession 

using (11.12.1) except for the slack bus.

6. Compare the differences between the old and new voltage estimates: if the 

differences are less than some specified tolerance for all busses, stop. 

Otherwise, repeat step 5.

7. Confirm that the resulting solution is reasonable: a valid solution typically has 

bus voltages, whose phases range in less than 45˚.

Example 11.2: in a 2-bus power system, a generator 

attached to bus 1 and loads attached to bus 2. the 

series impedance of a single transmission line 

connecting them is 0.1+j0.5 pu. The shunt admittance 

of the line may be neglected. Assume that bus 1 is the 

slack bus and that it has a voltage V1 = 1.00˚ pu. Real 

and reactive powers supplied to the loads from the 

system at bus 2 are P2 = 0.3 pu, Q2 = 0.2 pu (powers 

supplied to the system at each busses is negative of 

the above values). Determine voltages at each bus for 

the specified load conditions.



1. We start from calculating the bus admittance matrix Ybus. The Yii terms can be 

constructed by summing the admittances of all transmission lines connected to 

each bus, and the Yij terms are the negative of the admittances of the line 

stretching between busses i and j. For instance, the term Y11 is the sum of the 

admittances of all transmission lines connected to bus 1 (a single line in our case). 

The series admittance of line 1 is

1

1

1 1

1 1
0 .3 8 4 6 1 .9 2 3 1

0 .1 0 .5
l in e

lin e

Y j
j

Y
Z





     


Applying similar calculations to other terms, we complete the admittance matrix 

as
0 .3 8 4 6 1 .9 2 3 1 0 .3 8 4 6 1 .9 2 3 1

0 .3 8 4 6 1 .9 2 3 1 0 .3 8 4 6 1 .9 2 3 1
b u s

j j
Y

j j

   
  

   

2. Next, we select bus 1 as the slack bus since it is the only bus in the system 

connected to the generator. The voltage at bus 1 will be assumed 1.00˚.

(11.14.1)

(11.14.2)



3. We select initial estimates for all bus voltages. Making a flat start, the initial 

voltage estimates at every bus are 1.00˚.

4. Next, we write voltage equations for every other bus in the system. For bus 2:

2 2

2 2 1 1*

2 2 2 ,

1

o ld

P jQ
V Y V

Y V

 
  

  

Since the real and reactive powers supplied to the system at bus 2 are P2 = -0.3 pu

and Q2 = -0.2 pu and since Ys and V1 are known, we may reduce the last equation:

  

   

2 1*

2 ,

*

2 ,

1 0 .3 0 .2
0 .3 8 4 6 1 .9 2 3 1

0 .3 8 4 6 1 .9 2 3 1

1 0 .3 6 0 3 1 4 6 .3
1 .9 6 1 2 1 0 1 .3 1 0

1 .9 6 1 2 7 8 .8

o ld

o ld

j
V j V

j V

V

  
    

   

   
      

     

(11.15.1)

(11.15.2)



5. Next, we calculate an updated estimate of the voltages at each load bus in 

succession. In this problem we only need to calculate updated voltages for bus 2, 

since the voltage at the slack bus (bus 1) is assumed constant. We repeat this 

calculation until the voltage converges to a constant value.

The initial estimate for the voltage is V2,0 = 10˚. The next estimate for the voltage 

is

   

 

2 ,1 *

2 ,

1 0 .3 6 0 3 1 4 6 .3
1 .9 6 1 2 1 0 1 .3 1 0

1 .9 6 1 2 7 8 .8

1 0 .3 6 0 3 1 4 6 .3
1 .9 6 1 2 1 0 1 .3

1 .9 6 1 2 7 8 .8 1 0

0 .8 7 9 7 8 .4 9 9

o ld

V
V

   
      

     

   
   

 
     

   

This new estimate for V2 substituted back to the equation will produce the second 

estimate:

(11.16.1)



   2 , 2

1 0 .3 6 0 3 1 4 6 .3
1 .9 6 1 2 1 0 1 .3 1 0

1 .9 6 1 2 7 8 .8 0 .8 7 9 7 8 .4 9 9

0 .8 4 1 2 8 .4 9 9

V
   

     
 

      

   

The third iteration will be

   2 ,3

1 0 .3 6 0 3 1 4 6 .3
1 .9 6 1 2 1 0 1 .3 1 0

1 .9 6 1 2 7 8 .8 0 .8 4 1 2 8 .4 9 9

0 .8 3 4 5 8 .9 6 2

V
   

     
 

      

   

The fourth iteration will be

   2 , 4

1 0 .3 6 0 3 1 4 6 .3
1 .9 6 1 2 1 0 1 .3 1 0

1 .9 6 1 2 7 8 .8 0 .8 3 4 5 8 .9 6 2

0 .8 3 2 0 8 .9 6 2

V
   

     
 

      

   

The fifth iteration will be

   2 ,5

1 0 .3 6 0 3 1 4 6 .3
1 .9 6 1 2 1 0 1 .3 1 0

1 .9 6 1 2 7 8 .8 0 .8 3 2 0 8 .9

0 .8 3 1 5 8 .9 9 4

6 2
V

   
     

 
     

 



 

(11.17.1)

(11.17.2)

(11.17.3)

(11.17.4)



This power system converged to the answer in five iterations. The voltages at each 

bus in the power system are:

6. We observe that the magnitude of the voltage is barely changing and may 

conclude that this value is close to the correct answer and, therefore, stop the 

iterations.

1

2

1 .0 0

0 .8 3 1 5 8 .9 9 4

V

V

  

   

7. Finally, we need to confirm that the resulting solution is reasonable. The results 

seem reasonable since the phase angles of the voltages in the system differ by 

only 10˚. The current flowing from bus 1 to bus 2 is

1 2

1

1

1 0 0 .8 3 1 5 8 .9 9 4
0 .4 3 3 3 4 2 .6 5

0 .1 0 .5
l in e

V V
I

Z j


      
     



(11.18.1)

(11.18.2)



The power supplied by the transmission line to bus 2 is

   
**

0 .8 3 1 5 8 .9 9 4 0 .4 3 3 3 4 2 .6 5 0 .2 9 9 9 0 .1 9 9 7S V I j         

This is the amount of power consumed by the loads; therefore, this solution

appears to be correct.

Note that this example must be interpreted as follows: if the real and reactive

power supplied by bus 2 is 0.3 + j0.2 pu and if the voltage on the slack bus is 10˚

pu, then the voltage at bus 2 will be V2 = 0.8315-8.994˚.

This voltage is correct only for the assumed conditions; another amount of power

supplied by bus 2 will result in a different voltage V2.

Therefore, we usually postulate some reasonable combination of powers supplied

to loads, and determine the resulting voltages at all the busses in the power

system. Once the voltages are known, currents through each line can be

calculated.

The relationship between voltage and current at a load bus as given by (11.12.1)

is fundamentally nonlinear! Therefore, solution greatly depends on the initial

guess.



At a generator bus, the real power Pi and the magnitude of the bus voltage |Vi|

are specified. Since the reactive power for that bus is usually unknown, we need to

estimate it before applying (11.12.1) to get updated voltage estimates. The value

of reactive power at the generator bus can be estimated by solving (11.12.1) for

Qi:

*

*

1 1

1
N N

i i

i ik k i i i i i i ik k

k kii i
k i k i

P jQ
V Y V P jQ V Y V Y V

Y V  

 

   
   

      
   
   
   

 

Bringing the case k = I into summation, we obtain

*

1

*

1

Im

N N

i i ik ki i i ik k

k k

P jQ V Y Q VV Y V



   
 

   
 



Once the reactive power at the bus is estimated, we can update the bus voltage at

a generator bus using Pi and Qi as we would at a load bus. However, the

magnitude of the generator bus voltage is also forced to remain constant.

Therefore, we must multiply the new voltage estimate by the ratio of magnitudes

of old to new estimates.

(11.20.1)

(11.20.2)



Therefore, the steps required to update the voltage at a generator bus 

are:

1. Estimate the reactive power Qi according to (11.20.2);

2. Update the estimated voltage at the bus according to (11.12.1) as if the 

bus was a load bus;

3. Force the magnitude of the estimated voltage to be constant by 

multiplying the new voltage estimate by the ratio of the magnitude of 

the original estimate to the magnitude of the new estimate. This has 

the effect of updating the voltage phase estimate without changing the 

voltage amplitude.



Example 11.3: a 4-bus power system 

with 5 transmission lines, 2 

generators, and 2 loads. Since the 

system has  generators connected to 

2 busses, it will have one slack bus, 

one generator bus, and two load 

busses. Assume that bus 1 is the slack 

bus and that it has a voltage V1 = 

1.00˚ pu. Bus 3 is a generator bus. 

The generator is supplying a real 

power P3 = 0.3 pu to the system with a 

voltage magnitude 1 pu. The per-unit 

real and reactive power loads at 

busses 2 and 4 are P2 =0.3 pu, Q2 = 0.2 pu, P4 = 0.2 pu, Q4 = 0.15 pu (powers supplied to the system at 

each busses are negative of the above values). The series impedances of each 

bus were evaluated in Example 11.1. Determine voltages at each bus for the 

specified load conditions.



The bus admittance matrix was calculated earlier as

1 .7 6 4 7 7 .0 5 8 8 0 .5 8 8 2 2 .3 5 2 9 0 1 .1 7 6 5 4 .7 0 5 9

0 .5 8 8 2 2 .3 5 2 9 1 .5 6 1 1 6 .6 2 9 0 0 .3 8 4 6 1 .9 2 3 1 0 .5 8 8 2 2 .3 5 2 9

0 0 .3 8 4 6 1 .9 2 3 1 1 .5 6 1 1 6 .6 2 9 0 1 .1 7 6 5 4 .7 0 5 9

1 .1 7 6 5 4 .7 0 5 9 0 .5 8 8 2 2 .3 5 2 9 1 .1 7 6 5 4 .7 0 5 9 2

b u s

j j j

j j j j
Y

j j j

j j j

    

      


    

      .9 4 1 2 1 1 .7 6 4 7j

 

 

 

 

 
 

Since the bus 3 is a generator bus, we will have to estimate the reactive power at 

that bus before calculating the bus voltages, and then force the magnitude of the 

voltage to remain constant after computing the bus voltage. We will make a flat 

start assuming the initial voltage estimates at every bus to be 1.00˚. 

Therefore, the sequence of voltage (and reactive power) equations for all busses 

is:



(11.24.1)

(11.24.2)

(11.24.3)

 

 

 

2 2

2 2 1 1 2 3 3 2 4 4*

2 2 2 ,

*

3 3

1

3 3

3 3 1 1 3 2 2 3 4 4*

3 3 3 ,

3 ,

3 3

3

4 4

4 4 1 1 4 2 2 4 3 3*

4 4 4 ,

1

Im

1

1

o ld

N

ik k

k

o ld

o ld

o ld

P jQ
V Y V Y V Y V

Y V

Q V Y V

P jQ
V Y V Y V Y V

Y V

V
V V

V

P jQ
V Y V Y V Y V

Y V



 
    

  

 
   

 

 
    

  



 
    

  



(11.24.4)

(11.24.4)



1

2

3

4

1 .0 0

0 .9 6 4 0 .9 7

1 .0 1 .8 4

0 .9 8 0 .2 7

V p u

V p u

V p u

V p u

  

   

  

   

The voltages and the reactive power should be updated iteratively, for instance, 

using Matlab.

Computations converge to the following solution:

(11.25.1)

The solution looks reasonable since the bus voltage phase angles is less than 45˚.



After the bus voltages are calculated at all busses in a power system, a power-flow

program can be set up to provide alerts if the voltage at any given bus exceeds,

for instance, 5% of the nominal value. This is important since the power needs to

be supplied at a constant voltage level; therefore, such voltage variations may

indicate problems…

Additionally, it is possible to determine the net real and reactive power either

supplied or removed from the each bus by generators or loads connected to it. To

calculate the real and reactive power at a bus, we first calculate the net current

injected at the bus, which is the sum of all the currents leaving the bus through

transmission lines.

The current leaving the bus on each transmission line can be found as:

 
1

N

i ik i k

k

k i

I Y V V





  (11.26.1)



The resulting real and reactive powers injected at the bus can be found from

*

i i i i i
S V I P jQ   

where the minus sign indicate that current is assumed to be injected instead of 

leaving the node.

Similarly, the power-flow study can show the real and reactive power flowing in 

every transmission line in the system. The current flow out of a node along a 

particular transmission line between bus i and bus j can be calculated as:

(11.27.1)

 ij ij i j
I Y V V 

where Yij is the admittance of the transmission line between those two busses. The 

resulting real and reactive power can be calculated as:

*

ij i ij ij ij
S V I P jQ   



Also, comparing the real and reactive power flows at either end of the 

transmission line, we can determine the real and reactive power losses on each 

line.

In modern power-flow programs, this information is displayed graphically. Colors 

are used to highlight the areas where the power system is overloaded, which aids 

“hot spot” localization.

Power-flow studies are usually started from analysis of the power system in its 

normal operating conditions, called the base case. Then, various (increased) load 

conditions may be projected to localize possible problem spots (overloads). By 

adding transmission lines to the system, a new configuration resolving the 

problem may be found. This estimated models can be used for planning.

Another reason for power-flow studies is modeling possible failures of particular 

lines and generators to see whether the remaining components can handle the 

loads.

Finally, it is possible to determine more efficient power utilization by 

redistributing generation from one locations to other. This variety of power-flow 

studies is called economic dispatch.
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Line Z = 0.1j

One Two 1.000 pu

 0.894 pu

 160 MW

  80 MVR

160.0 MW

120.0 MVR

-10.304 Deg

 160.0 MW

 120.0 MVR

-160.0 MW

 -80.0 MVR

With constant impedance load the MW/Mvar load at

bus 2 varies with the square of the bus 2 voltage 

magnitude.  This if the voltage level is less than 1.0,

the load is lower than 200/100 MW/Mvar



 Since most of the time in the Newton-
Raphson iteration is spend calculating the 
inverse of the Jacobian, one way to speed 
up the iterations is to only 
calculate/inverse the Jacobian
occasionally
• known as the “Dishonest” Newton-Raphson
• an extreme example is to only calculate the 

Jacobian for the first iteration
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We pay a price

in increased 

iterations, but

with decreased 

computation

per iteration



Slide shows the region of convergence for 

different initial

guesses for the 2 bus case using the Dishonest N-RRed region

converges

to the high

voltage 

solution,

while the 

yellow region

converges

to the low

voltage 

solution



Maximum

of 15

iterations



 The completely Dishonest Newton-
Raphson is not used for power flow 
analysis.  However several approximations 
of the Jacobian matrix are used.  

 One common method is the decoupled 
power flow.  In this approach 
approximations are used to decouple the 
real and reactive power equations. 
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 By continuing with our Jacobian approximations 
we can actually obtain a reasonable 
approximation that is independent of the 
voltage magnitudes/angles.

 This means the Jacobian need only be 
built/inverted once.

 This approach is known as the fast decoupled 
power flow (FDPF)

 FDPF uses the same mismatch equations as 
standard power flow so it should have same 
solution

 The FDPF is widely used, particularly when we 
only need an approximate solution
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Line Z = j0.07

Line Z = j0.05 Line Z = j0.1

One Two

 200 MW

 100 MVR

Three 1.000 pu

 200 MW

 100 MVR

Use the FDPF to solve the following three bus system
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 The “DC” power flow makes the most 
severe approximations:
• completely ignore reactive power, assume all the 

voltages are always 1.0 per unit, ignore line 
conductance

 This makes the power flow a linear set of 
equations, which can be solved directly

1
θ B P



 A major problem with power system operation is the limited capacity 

of the transmission system

• lines/transformers have limits (usually thermal)

• no direct way of controlling flow down a transmission 

line (e.g., there are no valves to close to limit flow)

• open transmission system access associated with 

industry restructuring is stressing the system in new 

ways

 We need to indirectly control transmission 

line flow by changing the generator outputs





slack

One

Two

ThreeFourFive
A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

1.000 pu 1.000 pu

 1.000 pu

1.000 pu

1.000 pu

 0.000 Deg -4.125 Deg

-18.695 Deg

-1.997 Deg

 0.524 Deg

 360 MW

   0 Mvar

 520 MW

   0 Mvar

 800 MW

   0 Mvar

  80 MW

   0 Mvar

Notice with the dc power flow all of the voltage magnitudes are 

1 per unit.  



What we would like to determine is how a change in 

generation at bus k affects the power flow on a line 

from bus i to bus j.
The assumption is

that the change

in generation is

absorbed by the

slack bus



One way to determine the impact of a generator change is to 
compare a before/after power flow.
For example below is a three bus case with an overload

Z for all lines = j0.1

One Two

 200 MW

 100 MVR
200.0 MW

 71.0 MVR

Three 1.000 pu

   0 MW

  64 MVR

 131.9 MW

  68.1 MW   68.1 MW

124%



Z for all lines = j0.1
Limit for all lines = 150 MVA

One Two

 200 MW

 100 MVR
105.0 MW

 64.3 MVR

Three
1.000 pu

  95 MW

  64 MVR

 101.6 MW

   3.4 MW   98.4 MW

 92%

100%

Increasing the generation at bus 3 by 95 MW (and hence 

decreasing it at bus 1 by a corresponding amount), results

in a 31.3 drop in the MW flow on the line from bus 1 to 2. 



 Calculating control sensitivities by repeat 
power flow solutions is tedious and would 
require many power flow solutions.  An 
alternative approach is to analytically calculate 
these values
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In the per-unit system, the voltages, currents, 

powers, impedances, and other electrical 

quantities are expressed on a per-unit basis by 

the equation:

Quantity per 

unit =

Actual value

Base value of 

quantity

It is customary to select two base quantities to 

define a given per-unit system. The ones usually 

selected are voltage and power.
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Assume:

Then compute base values for currents and 

impedances:

ratedb
VV 

ratedb
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b

b

b

V
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b

b

b

b

b
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2
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And the per-unit system is:

b

actual

up

V

V
V 

..

b

actual

up

I

I
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..

b

actual

up

S
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actual
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Z

Z
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%100%
..


up
ZZ Percent of base Z



65

An electrical lamp is rated 120 volts, 500 watts. 

Compute the per-unit and percent impedance of 

the lamp. Give the p.u. equivalent circuit.

Solution:

(1) Compute lamp resistance

power factor = 1.0

 8.28
500

)120(
222

P

V
R

R

V
P

 08.28Z
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(2) Select base quantities

(3) Compute base impedance

(4) The per-unit impedance is:

VAS
b

500

VV
b

120

 8.28
500

)120(
22

b

b

b

S

V
Z

..01
8.28

08.28

..
up

Z

Z
Z

b

up



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(5) Percent impedance:

(6) Per-unit equivalent circuit:

%100% Z

..01 upZ ..01 upV
S


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An electrical lamp is rated 120 volts, 500 watts. If 

the voltage applied across the lamp is twice the 

rated value, compute the current that flows 

through the lamp. Use the per-unit method.

Solution:

VV
b
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..02
120

240

..
up

V

V
V

b

up
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..01
..

upZ
up
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The per-unit equivalent circuit is as follows:

..01 upZ ..02 upV
S



..02
01

02

..

..

..
up

Z

V
I

up

up

up







A
V

S
I

b

b

b
167.4

120

500


AIII
bupactual

0334.8167.402
..


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One-phase circuits

LVbLV
VV





IVSS

b


1

where
neutraltoline

VV





currentline
II






HVbHV
VV




bLV

b

bLV

V

S
I 

bHV

b

bHV

V

S
I 
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b

bLV

bLV

bLV

bLV

S

V

I

V
Z

2
)(



b

bHV

bHV

bHV

bHV

S

V

I

V
Z

2
)(



*

pupu

b

pu
IV

S

S
S 

cos
pupu

b

pu
IV

S

P
P 

sin
pupu

b

pu
IV

S

Q
Q 
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Selection 1

Ab
VV 

1Ab
SS 

1

Then

1

1

b

L

pu

Z

Z
Z 

1

2

1

1

b

b

b

S

V
Z 

Selection 2

Bb
VV 

2Bb
SS 

2

Then

2

2

b

L

pu

Z

Z
Z 

2

2

2

2

b

b

b

S

V
Z 
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2

2

2

1

2

1

2

11

21

2

b

b

b

b

b

b

L

b

b

L

pu

pu

V

S

S

V

Z

Z

Z

Z

Z

Z

Z

Z
































1

2

2

2

1

12

b

b

b

b

pupu

S

S

V

V
ZZ

“1” – old

“2” - new































oldb

newb

newb

oldb

oldpunewpu

S

S

V

V
ZZ

,

,

2

,

,

,,
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Generally per-unit values given to another base 

can be converted to new base by by the 

equations:

2

1

1___2___
),,(),,(

base

base

baseonpubaseonpu

S

S
SQPSQP 

2

1

1___2___

base

base

baseonpubaseonpu

V

V
VV 

1

2

2

2

2

1

1___2___

)(

)(
),,(),,(

basebase

basebase

baseonpubaseonpu

SV

SV
ZXRZXR 

When performing calculations in a power system, every 

per-unit value must be converted to the same base.
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Consider the equivalent circuit of transformer 

referred to LV side and HV side shown below:

LV
V

HV
V

LV
V

HV
V

SS
jXR 

1
N

2
N

22
a

X
j

a

R
SS



(1) Referred to LV side (2) Referred to HV side

Define 1

2

1


N

N

V

V
a

HV

LV

S
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Choose:

ratedLVb
VV

,1


ratedb
SS 

Compute:
112

1

bb

LV

HV

b
V

a
V

V

V
V 

b

b

b

S

V
Z

2

1

1


b

b

b

S

V
Z

2

2

2


2

2

1

2

1

2

2

2

1

2

1

)
1

(

a

V
a

V

V

V

Z

Z

b

b

b

b

b

b


Normal choose rated 

values as base values
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Per-unit impedances are:

1

1..

b

SS

up

Z

jXR
Z




1

2

1

22

2

22

2..

b

SS

b

SS

b

SS

up

Z

jXR

a

Z

a

jX

a

R

Z

a

jX

a

R

Z












So:

2..1.. upup
ZZ 

Per-unit equivalent 

circuits of transformer 

referred to LV side and 

HV side are identical !!
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LV
V

HV
V

SS
jXR 

1
N

2
N

Fig 1. Eq Ckt referred to LV side

1

2

1


N

N

V

V
a

HV

LV

S

1b
Z

1b
V

2b
V

Fig 2. Per-unit Eq Ckt referred to LV side Fig 3.

puS
Z

,

1:1

1b
V

2b
V

puS
Z

,

1b
V

2b
V

b
S
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LV
V

HV
V

1
N

2
N

Fig 4. Eq Ckt referred to HV side

1

2

1


N

N

V

V
a

HV

LV

S

2b
Z

2b
V

Fig 5. Per-unit Eq Ckt referred to HV side Fig 6.

puS
Z

,

1:1

1b
V

2b
V

puS
Z

,

1b
V

2b
V

1b
V

22
a

X
j

a

R
SS



b
S
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%100








loadfull

loadfullloadno

V

VV
VR

Voltage regulation is defined as:

%100

,

,,










loadfullpu

loadfullpuloadnopu

V

VV
VR

In per-unit system:

Vfull-load: Desired load voltage at full load. It may be equal 

to, above, or below rated voltage

Vno-load:  The no load voltage when the primary voltage is 

the desired voltage in order the secondary voltage 

be at its desired value at full load
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A single-phase transformer rated 200-kVA, 200/400-V, and 

10% short circuit reactance. Compute the VR when the 

transformer is fully loaded at unity PF and rated voltage 

400-V.

Solution:

Fig 7. Per-unit equivalent circuit

P
V

S
V1.0j

load
S

VV
b

400
2


kVAS
b

200

puS
puload

01
,



pujX
puS

1.0
,



S
X
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Rated voltage:

puV
puS

00.1
,



pu

jj

XIVV

o

puSpupuSpuP

7.5001.1

1.011.000.100.1

,,,







pu
V

S
I

puS

puload

puload
00.1

00.1

00.1
*

*

,

,

,





























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puVV
o

puPloadnopu
7.5001.1

,,




puVV
puSloadfullpu

00.1
,,




Secondary side:

Voltage regulation:

%1.0%100
0.1

0.1001.1

%100

,

,,















loadfullpu

loadfullpuloadnopu

V

VV
VR
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Select Vbase in generator circuit and Sb=100MVA, 

compute p.u. equivalent circuit.

G

100j

20 kV 22kV/220kV

80MVA

14%

220kV/20kV

50MVA

10%

50MVA

0.8 PF 

lagging
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Three-phase circuits

LVLbLV
VV

,



IVSSS

b
33

13




where
3/

)( lineLneutraltoline
VVV 



Lcurrentline
III 



HVLbHV
VV

,


LLb
IVS 3

bHVbHVbLVbLVb
IVIVS 33 
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b

bLV

b

bLVbLV

LV

LV

bLV

S

V

S

VV

I

V
Z

2
)(3

3






b

bHV

bHV

S

V
Z

2
)(



*

*

3

3

3

pupu

bb

LL

b

pu
IV

IV

IV

S

S
S 



bLV

b

bLV

V

S
I

3


bHV

b

bHV

V

S
I

3

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Three 25-kVA, 34500/277-V transformers 

connected in -Y. Short-circuit test on high voltage 

side:

Determine the per-unit equivalent circuit of the 

transformer.

VV
SCLine

2010
,



AI
SCLine

26.1
,



WP
SC

912
,3



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(a) Using Y-equivalent

3

34500
277

SS
jXR 

VAS
b

25000

3

2010


SC
V

26.1
SC

I

 00.921
26.1

47.1160

SC
Z

VV
SC

47.1160
3

2010

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So

 86.90048.191921
2222

SSCS
RZX

WP 304
3

912



 48.191

26.1

304

22

SC

S

I

P
R



 86.90048.191 jZ
SC

VAS
b

25000 VV
HVb

58.19918
3

34500

,


 99.15869
25000

58.19918
2

, HVb
Z

puj
j

Z
YpuSC

0568.0012.0
99.15869

86.90048.191

,,




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(b) Using -equivalent

34500 277

,SC
Z

VAS
b

250002010
SC

V

3

26.1


SC
I




79.2764
727.0

2010

,SC
Z

VV
SC

2010 AI
SC

727.0
3

26.1
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So




30.270418.57579.2764
222

,

2

,, SSCS
RZX

WP 304
3

912






18.575

727.0

304

22,

SC

S

I

P
R



 86.90048.191 jZ
SC

VAS
b

25000 VV
HVb

34500
,



 47610
25000

34500
2

, HVb
Z

puj
j

Z
puSC

0568.0012.0
47610

30.170418.575

,,









UNIT-III

SHORT CIRCUIT ANALYSIS



Start with Newton again ....
T = I a

We want to describe the motion of the 
rotating masses of the generators in 

the system



2H    d2 d =  Pacc

wo dt2

P = T w

a = d2d/dt2, acceleration is the second 

derivative of angular displacement 

w.r.t. time

w = dd/dt, speed is the first derivative



Accelerating Power, Pacc

Pacc = Pmech - Pelec

Steady State => No acceleration

Pacc = 0  =>  Pmech = Pelec



Generator connected to Infinite bus through 
2 lossless transmission lines

E’ and xd’ are constants
d is governed by the swing equation



Combine  xd’ & XL1 & XL2

 jXT = jxd’ + jXL1 || jXL2

The simplified system . . . 



Pelec = E’ |VR|   sin( d )

XT



Determine steady state (SEP)



Pre-fault => system as given

Fault => Short circuit at infinite bus

• Pelec = [E’(0)/ jXT]sin(d) = 0

Post-Fault => Open one transmission line
• XT2 = xd’ + XL2 > XT







2H d2 d =  Pacc

wo dt2

rearrange & multiply both sides by 
2dd/dt

2 dd d2d =  wo Pacc dd
dt  dt2 H          dt

=>
d {dd}2 =  wo Pacc dd
dt  {dt }        H          dt



{dd}2 =    wo Pacc dd

{dt}             H          dt

For the system to be stable, d must go 

through a maximum => dd/dt must go 

through zero.  Thus . . .

dm

 wo Pacc dd =  0 =  { dd}2

 H                            { dt  }
 do



For the total area to be zero, the positive 

part must equal the negative part. (A1 = 

A2)

 Pacc dd = A1 <= “Positive” Area

 Pacc dd = A2 <= “Negative” Area

dcl

do

dm

dcl





Draw a P-d curve

For a clearing angle of 80 degrees
• is the system stable?

• what is the maximum angle? 

For a clearing angle of 120 degrees

• is the system stable?

• what is the maximum angle? 









11

1





things are not changing

concerned with whether the 

system variables are within the 

correct limits



"Transient" means changing 

The state of the system is 

changing

We are concerned with the 

transition from one equilibrium to 

another

The change is a result of a "large" 

disturbance



1.  Does the system reach a new 

steady state that is acceptable?

2.  Do the variables of the system 

remain within safe limits as the 

system moves from one state to 

the next?



Instability => at least one rotor 

angle becomes unbounded with 

respect to the rest of the 

system

Also referred to as "going out of 

step" or "slipping a pole"



Transient Voltage Dips

Short-term current & power 

limits



Typical time frame of concern

• 1 - 30 seconds

Model system components that 

are "active" in this time scale

Faster changes -> assume 

instantaneous

Slower changes -> assume 

constants



Synchronous generators



Generation based control

• exciters, speed governors, voltage 

regulators, power system 

stabilizers



Slow changes 

modeled as a constant value



May respond in the 1-30 second 

time frame 

modeled as active devices



Minimization of disturbance 

severity and duration

Increase in forces restoring 

synchronism

Reduction of accelerating torque 

by reducing input mechanical 

power

Reduction of accelerating torque 

by applying artificial load



High-speed fault clearing, reduction 

of transmission system impedance, 

shunt compensation, dynamic 

braking, reactor switching, 

independent and single-pole 

switching, fast-valving of steam 

systems, generator tripping, 

controlled separation, high-speed 

excitation systems, discontinuous 

excitation control, and control of 

HVDC links



Deregulation & separation of 

transmission & generation 

functions of a utility

FACTS devices can help to control 

transient problems from the 

transmission system



THANK  YOU


