

COMPUTER PROGRAMMING

POWER POINT PRESENTATION

• Year : 2017 - 2018

• Subject Code : ACS001

• Regulations : IARE-R16

• Class : II Semester

• Branch : AE / ME / CE

 Team of Instructors

 Mr. N. Ramanjaneya Reddy, Associate Professor, CSE

 Mr. N. Poorna Chandra Rao, Assistant Professor, CSE

 Mr. S. Lakshman Kumar, Assistant Professor, CSE

 Ms. A. Uma Datta, Assistant Professor, IT

 Ms. A. Swapna, Assistant Professor, IT

 Ms. A. Lakshmi, Assistant Professor, IT

 1

 UNIT-I

Introduction to computers: Computer systems, computing environments, computer

languages, creating and running programs, algorithms, flowcharts; Introduction to

C language: History of C, basic structure of C programs, process of compiling and

running a C program, C tokens, keywords, identifiers, constants, strings, special

symbols, variables, data types; Operators and expressions: Operators, arithmetic,

relational and logical, assignment operators, increment and decrement operators,

bitwise and conditional operators, special operators, operator precedence and

associativity, evaluation of expressions, type conversions in expressions,

formatted input and output.

2

Computer -- Hardware

Key board

Mouse

 Input Devices

Monitor

Printer

 Output Devices

Secondary Storage Devices

Input

Storage

Area

Program Storage Area Output

Storage

Area
Working Storage Area

Primary or Main Memory (RAM)

Register 1

Arithmetic

and

 Logic Unit

Register 2

……

……

Register N

Micro Processor

3

Algorithm: Step by step procedure of solving a particular problem.

Pseudo code: Artificial informal language used to develop algorithms.

Flow chart: Graphical representation of an algorithm.

Algorithm to find whether a number even or odd:

Step1: Begin Step1: START

Step2: Take a number Step2: Read num

Step3: if the number is divisible by2 then Step3: if(num%2=0) then

 print that number is even print num is even

 otherwise print that number is odd otherwise

 print num is odd

Step4: End Step4: STOP

(Algorithm in natural language) (Algorithm by using pseudo code)

#include<stdio.h>

#include<conio.h>

main()

{

 int num;

 printf(“Enter any number”);

 scanf(“%d”,&num);

 if(num%2==0)

 printf(“%d is even”,num);

 else

 printf(%d is odd”,num);

}

(Program in C language)

start

read num

print num

is even

stop

If

num%2=0

print num

is odd

Flow chart:

Yes No

4

Flow chart symbols

Oval Terminal

Parallegram Input/output

Rectangle Process

Document Hard copy

Diamond Decision

Circle Connector

Double sided Rectangle Sub program

Hexagon Iteration

Trapezoid Manual Operation

Cylinder Magnetic Disk Storage
5

Machine Language – Assembly Language – High-Level Language

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 entry main,^m<r2>

 sub12 #12,sp

 jsb C$MAIN_ARGS

 moveb $CHAR_STRING_CON

 pusha1 -8(fp)

 pusha1 (r2)

 calls #2,SCANF

 pusha1 -12(fp)

 pusha1 3(r2)

 calls #2,SCANF

 mull3 -8(fp),-12(fp),-

 pusha 6(fp)

 calls #2,PRINTF

 clrl r0

 ret

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 00000000 00000100 0000000000000000

01011110 00001100 11000010 0000000000000010

 11101111 00010110 0000000000000101

 11101111 10111110 0000000000001011

11111000 10101101 11011111 0000000000010010

 01100010 11011111 0000000000010101

11101111 00000010 11111011 0000000000010111

11110100 10101101 11011111 0000000000011110

00000011 10100010 11011111 0000000000100001

11101111 00000010 11011111 0000000000100100

01111110 11110100 10101101

11111000 10101110 11000101 0000000000101011

00000110 10100010 11111011 0000000000110001

11101111 00000010 11111011 0000000000110100

 01010000 11010100 0000000000111011

 00000100 0000000000111101

1

2

3

4

5

6

7

8

9

1

0

#include<stdio.h>

int main(void)

{

 int n1, n2,product;

 printf(“Enter two numbers : “);

 scanf(“%d %d”,&n1,&n2);

 product = n1 * n2;

 printf(“%d”,product);

 return 0;

}

The only language the computer can understand is machine

language (binary language).

A high level language is an English like language where one

instruction typically translates into a series of machine-

language instructions.

A low level language corresponds closely to machine code

so that a single low-level language instruction translates to a

single machine language instruction.
6

Structure of C program

/*Program to find

 area and perimeter of Circle */

#include<stdio.h>

#define PI 3.1415

float radius;

float area();

float perimeter();

int main()

{

 float a, p;

 printf(“Enter radius : “);

 scanf(“%f”,&radius);

 a = area();

 p = perimeter();

 printf(“Area of Circle : %f”,a);

 printf(“Perimeter : %f”,p);

}

float area()

{

 return (PI * radius * radius);

}

float perimeter()

{

 return (2 * PI * radius);

}

Documentation Section

Linkage Section

Definition Section

Global Declaration Section

Main Function Section

 Local Declaration Part

 Executable Code Part

Sub Program Section

 Function1()

 Function2()

 ……………

 FunctionN()

7

Program Development Steps

1)Statement of Problem

 a) Working with existing system and using proper

questionnaire, the problem should be explained

clearly.

 b) What inputs are available, outputs are required

and what is needed for creating workable solution

should be understood clearly.

2)Analysis

 a) The method of solutions to solve the problem can

be identified.

 b) We also judge that which method gives best

results among different methods of solution.

3)Designing

 a) Algorithms and flow charts will be prepared.

 b) Keep focus on data, architecture, user interfaces

and program components.

4)Implementation

 The algorithms and flow charts developed in the

previous steps are converted into actual programs in

the high level languages like C.

4.a)Compilation

Translate the program into machine code. This

process is called as Compilation. Syntactic errors are

found quickly at the time of compiling the program.

These errors occur due to the usage of wrong syntaxes

for the statements.

 Eg: x=a*y+b

There is a syntax error in this statement, since, each

and every statement in C language ends with a

semicolon (;).

4.b)Execution

The next step is Program execution. In this phase, we

may encounter two types of errors.

Runtime Errors: these errors occur during the

execution of the program and terminates the program

abnormally.

Logical Errors: these errors occur due to incorrect

usage of the instructions in the program. These errors

are neither detected during compilation or execution

nor cause any stoppage to the program execution but

produces incorrect output.

8

Executing a C program

compiles

Syntax

Errors?

Yes

Object machine code

010110 100

…………….

01011 101

C-compiler

#include<stdio.h>

int main()

{

 …….

Text

Editor
prog1.c

prog1.obj
Linker

Executable

machine code

00101010

………….

01010101

adds

Translators are system software

used to convert high-level

language program into

machine-language code.

Compiler : Coverts the entire

source program at a time

into object code file, and

saves it in secondary storage

permanently. The same

object machine code file will

be executed several times,

whenever needed.

Interpreter : Each statement of

source program is translated

into machine code and

executed immediately.

Translation and execution of

each and every statement is

repeated till the end of the

program. No object code is

saved. Translation is

repeated for every execution

of the source program.

machine code of

 library file

Input

prog1.exe

No

C-Runtime
Executes

Feeds

Runtime

 or Logic

Errors ?

Yes

Output 9

C-Language Keywords(C99)

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

_Bool _Imaginary restrict _Complex

inline

Character Set of C-Language

Alphabets : A-Z and a-z

Digits : 0-9

Special Symbols : ~ ! @ # $ % ^ & () _ - + = | \ { } [] : ; “ ‘

 < > , . ? /

White Spaces : space , Horizontal tab, Vertical tab, New Line

 Form Feed.

10

C-Tokens

Tokens : The smallest individual units of a C- program are called Tokens.
Key words, Identifiers, Constants, Operators, Delimiters.

Key words : have a predefined meaning and these meanings cannot be
changed. All keywords must be written in small letters (except additional
c99 keywords).

Identifiers : names of variables, functions, structures, unions, macros, labels,
arrays etc.,

 Rules for define identifiers :

 a) First character must be alphabetic character or under score

 b) Second character onwards alphabetic character of digit or under
score.

 c) First 63 characters of an identifier are significant.

 d) Cannot duplicate a key word.

 e) May not have a space or any other special symbol except under
score.

 f) C – language is Case-sensitive.

11

C-Tokens

Constants : fixed values that do not change during execution of a program.

 Boolean constants : 0 (false) and 1 (true)

 Character constants :

 only one character enclosed between two single quotes

 (except escape characters).

 wide character type - wchar_t - for Unicode characters.

 Integer constants : +123, -3454 , 0235 (octal value),

 0x43d98 (hexa - decimal value)

 54764U, 124356578L, 124567856UL

 Float constants : 0.2 , 876.345, .345623 , 23.4E+8, 47.45e+6

 String Constants : “Hello world” , “Have a nice day!”

 Complex Constants : real part + imaginary part * I ex : 12.3 + 3.45 * I

Operators : a symbol, which indicates an operation to be performed.
Operators are used to manipulate data in program.

Delimiters : Language Pattern of c-language uses special kind of symbols

: (colon, used for labels) ; (semicolon terminates statement) () parameter list
[] (array declaration and subscript), { } (block statement)

 # (hash for preprocessor directive) , (comma variable separator) 12

Data Types (pre defined)

Type Typical Size in Bits Minimal Range

char 8 –127 to 127

unsigned char 8 0 to 255

signed char 8 –127 to 127

int 16 or 32 –32,767 to 32,767

unsigned int 16 or 32 0 to 65,535

signed int 16 or 32 Same as int

short int 16 –32,767 to 32,767

unsigned short int 16 0 to 65,535

signed short int 16 Same as short int

long int 32 –2,147,483,647 to 2,147,483,647

long long int 64 –(263) to 263 – 1 (Added by C99)

signed long int 32 Same as long int

unsigned long int 32 0 to 4,294,967,295

unsigned long long int 64 264 – 1 (Added by C99)

float 32 3.4e-38 to 3.4e+38

double 64 1.7e-308 to 1.7e+308

long double 80 3.4e-4932 to 1.1e+4932

void -- data type that not return any value

 13

Conversion Specifiers

Code Format

%a Hexa decimal output in the form of 0xh.hhhhp+d(C99 only)

%s String of characters (until null zero is reached)

%c Character

%d Decimal integer

%f Floating-point numbers

%e Exponential notation floating-point numbers

%g Use the shorter of %f or %e

%u Unsigned integer

%o Octal integer

%x Hexadecimal integer

%i Signed decimal integer

%p Display a pointer

%n The associated argument must be a pointer to integer, This sepecifier causes
 the number of characters written in to be stored in that integer.

%hd short integer

%ld long integer

%lf long double

%% Prints a percent sign (%)

14

Back Slash (Escape Sequence) Characters

Code Meaning
 \b Backspace

 \f Form feed

 \n New line

 \r Carriage return

 \t Horizontal tab

 \" Double quote

 \' Single quote

 \ \ Backslash

 \v Vertical tab

 \a Alert

 \? Question mark

 \N Octal constant (N is an octal constant)

 \xN Hexadecimal constant (N is a hexadecimal constant)
15

Increment and Decrement Operators

prefix increment (++a) postfix increment (a++) prefix decrement(- -a) postfix decrement (a- -)

Before evaluation of expression

 Evaluation of expression

After evaluation of expression

and before leaving the statement

Executes all Prefix Operations

Executes all Postfix Operations

/* prefix operators */

#include<stdio.h>

int main() {

 int a = 7, b = 12, c;

 c = b * (++a) + 5 * (++a);

 printf(“ a = %d”, a);

 printf(“\n b = %d”,b);

 printf(“\n c = %d”,c);

}

Output:

 a = 9

 b = 12

 c = 153 (12 * 9 + 5 * 9)

/* prefix and postfix operators */

#include<stdio.h>

int main() {

 int a = 7, b = 12, c;

 c = b * (a++) + 5 * (++a);

 printf(“ a = %d”, a);

 printf(“\n b = %d”,b);

 printf(“\n c = %d”,c);

}

Output:

 a = 9

 b = 12

 c = 136 (12 * 8 + 5 * 8)

/* postfix operators */

#include<stdio.h>

int main() {

 int a = 7, b = 12, c;

 c = b * (a++) + 5 * (a++);

 printf(“ a = %d”, a);

 printf(“\n b = %d”,b);

 printf(“\n c = %d”,c);

}

Output:

 a = 9

 b = 12

 c = 119 (12 * 7 + 5 * 7)
16

Bitwise Logical Operators

& -- Bitwise AND

| -- Bitwise OR

^ -- Bitwise XOR

~ -- Bitwise NOT

A B A & B A | B A ^ B ~A

1 1 1 1 0 0

1 0 0 1 1 0

0 1 0 1 1 1

0 0 0 0 0 1

Bitwise AND

A (42) : 00000000 00101010

B (15) : 00000000 00001111

& (10) : 00000000 00001010

Bitwise OR

A (42) : 00000000 00101010

B (15) : 00000000 00001111

| (47) : 00000000 00101111

Bitwise XOR

A (42) : 00000000 00101010

B (15) : 00000000 00001111

& (37) : 00000000 00100101

Bitwise NOT

A (42) : 00000000 00101010

~ (-43) : 11111111 11010101

17

BITWISE SHIFT OPERATORS

Bitwise Left Shift (<<)

A (43) : 00000000 00101011

A << 2 : 00000000 10101100

Bitwise Right Shift (>>)

(positive values)

A (43) : 00000000 00101011

A >> 2 : 00000000 00001010

Bitwise Right Shift (>>)

(negetive values)

A (-44) : 11111111 11010100

A >> 2 : 11111111 11110101

Note : Right shift operator fills the left vacant fields with ‘zeros’ for positive numbers,

with ‘ones’ for negative numbers.

TYPE CONVERSION

1.bool

2.char

3.short int

4.int

5.long int

6.long long int

7.float

8.double

9.long double

Opposite

To

Gravity

Gravity

.

.

.

(forcible)

(natural)

Explicit Type Conversion

(casting)

Implicit Type Conversion

(automatic)

.

.

.

(forcible)

(automatic)

18

Precedence and Associativity of Operators

Precdence Group Operators Associativity

(Highest to Lowest)

(param) subscript etc., () [] –>. L R

Unary operators - + ! ~ ++ – – (type) * & sizeof R L

Multiplicative * / % L R

Additive + – L R

Bitwise shift << >> L R

Relational < <= > >= L R

Equality = = != L R

Bitwise AND & L R

Bitwise exclusive OR ^ L R

Bitwise OR | L R

Logical AND && L R

Logical OR | | L R

Conditional ?: R L

Assignment = += –= *= /= %= &= ^= R L

 |= <<= >>=

Comma , L R 19

Important Functions in math.h

abs(x) absolute value of integer x

ceil(x) rounds up and returns the smallest integer greater than or

 equal to x

floor(x) rounds down and returns the largest integer less than or equal

 to x

log(x) returns natural logarithm

pow(x,y) returns the value of xy

sqrt(x) returns square root of x

exp(x) returns natural anti logarithm

sin(x) returns sine value where x in radians

cos(x) returns cosine value where x in radians

tan(x) returns tangent values where x in radians

fmod(x,y) calculate x modulo y, where x and y are double

hypot(x,y) calculate hypotenuse of right angle where x,y are sides.

log10(x) returns logarithm base 10

20

UNIT-II

CONTROL STRUCTURES, ARRAYS AND STRINGS

Control structures: Decision statements; if and switch statement; Loop control statements:

while, for and do while loops, jump statements, break, continue, goto statements; Arrays:

Concepts, one dimensional arrays, declaration and initialization of one dimensional

arrays, two dimensional arrays, initialization and accessing, multi dimensional arrays;

Strings concepts: String handling functions, array of strings.

Prepared by

 Dr. K. Srinivasa Reddy,

HOD-IT,

Institute of Aeronautical Engineering, Hyderabad-090

21

Test

Expression

?

Entry

False

Next statement

True Statement-block

True

simple if:

Test

Expression

?

Entry

True-block

Statements

False

False-block

Statements

True

Next statement

if-else:

/* check a citizen is eligible for voting */

#include<stdio.h>

int main()

{

 int age;

 printf(“Enter the age : ”);

 scanf(“%d”,&age);

 if(age >= 18)

 printf(“Eligible for voting…”);

 getch();

}

/* print a number is even or odd */

#include<stdio.h>

int main()

{

 int number;

 printf(“Enter a number : “);

 scanf(“%d”, &number);

 if((number %2) == 0)

 printf(“%d is even number.”,number);

 else

 printf(“%d is odd number.”,number);

}
22

Test

condition1

?

Entry

Statement-3

True

Test

condition2

?

False

Statement-2 Statement-1

True

False

Next statement

nested if…else: /* check whether a year is leap year or not */

#include<stdio.h>

int main() {

 int year;

 printf("Enter the year ?");

 scanf("%d",&year);

 if((year %100) == 0)

 {

 if((year % 400) == 0)

 printf("%d is leap year.",year);

 else

 printf("%d is not leap year.",year);

 } else {

 if((year % 4) == 0)

 printf("%d is leap year.",year);

 else

 printf("%d is not leap year.",year);

 }

 getch();

}

23

if…else…if :

Entry

Test

condition1

?

True

Statement-1

True

Statement-2
Test

condition2

?

False

True Test

conditionN

?

False

Statement-N

Next statement

/* program to print the grade of student */

#include<stdio.h>

int main() {

 int marks;

 printf("Enter marks ? ");

 scanf("%d", &marks);

 if(marks >= 75)

 printf("Distinction");

 else if(marks >= 60)

 printf("First class");

 else if(marks >= 50)

 printf("Second class");

 else if(marks >= 35)

 printf("Third class");

 else

 printf("Failed");

}

24

switch statement :

Entry

switch

expression

?

Next statement

/* program to simulate a simple calculator */

#include<stdio.h>

int main() {

 float a,b;

 char opr;

 printf("Enter number1 operator number2 : ");

 scanf("%f %c %f",&a,&opr,&b);

 switch(opr)

 {

 case '+':

 printf("Sum : %f",(a + b));

 break;

 case '-':

 printf("Difference : %f",(a - b));

 break;

 case '*':

 printf("Product : %f",(a * b));

 break;

 case '/':

 printf("Quotient : %f",(a / b));

 break;

 default:

 printf("Invalid Operation!");

 }

}

associate

statement

associate

statement

associate

statement

associate

statement

value1 value2 valueN default

Exit

……...

25

Test

Condition

?

Body of The loop

False

true

while – (Entry controlled)

Entry

Loop Statements

Following Statement

Test

Condition

?

Body of The loop

False

True

Entry

Following Statement

do-while – (Exit controlled)

/* sum of 1 to 10 numbers */

#include<stdio.h>

int main() {

 int i = 1,sum = 0;

 while(i<=10){

 sum = sum + i;

 i = i + 1;

 }

 printf(“Total : %d “,sum);

}

/* average of 5 numbers */

#include<stdio.h>

int main() {

 int count = 1;

 float x, sum = 0;

 do {

 printf(“x = “);

 scanf(“%f”,&x);

 sum += x;

 ++ count;

 } while(count <= 5);

 printf(“Average = %f “, (sum/5))

}

26

for -- Statement

Initialization Statement
Increment Statement

Test

Condition

?

Body of The loop

Entry

True

Following Statement

False

/* check whether a number is prime or not */

#include<stdio.h>

int main() {

 int n,i,factors = 0;

 printf("Enter a number : ");

 scanf("%d",&n);

 for(i = 1; i <= n; i++) {

 if((n % i)==0) ++factors;

 }

 if (factors == 2)

 printf("%d is prime number.",n);

 else

 printf("%d is not prime number.",n);

} 27

/* Ranking of 60 students in a class */

int main() {

 /*declaring 60 varialbes */

 int score0, score1,score2,……,score59;

 /* Reading scores for sixty times */

 printf(“Enter the score : “);

 scanf(“%d”, &score0);

 …. …. …. ….

 printf(“Enter the score : “);

 scanf(“%d”, &score59);

 /* comparing & swapping for 1770 times

 * to arrange in descending order */

 swap(score0, score1);

 swap(score1, score2);

 swap(score2, score3);

 …. …. …. ….

 swap(score0,score1);

 swap(score1,score2);

 swap(score0,score1);

 /*printing 60 scores after sorting */

 printf(“%4d”, score0);

 printf(“%4d”, score1);

 … … … …

}

void swap (int a, int b) {

 int temp;

 if(a < b) {

 temp = a ; a = b ; b = temp;

 }

}

score0

score1

score2

score3

 .

 .

score59

scores[0]

scores[1]

scores[2]

scores[3]

 .

 .

scores[59]

#include<stdio.h>

int main() {

 int scores[60] , i , j, temp;

 for(i = 0; i < 60 ;i++) {

 printf("Enter the score : ");

 scanf("%d", &scores[i]);

 }

 for(i=0;i<(60-1);i++)

 for(j=0; j <(60 -(i+1)); j++)

 if(scores[j] < scores[j +1]) {

 temp = scores[j];

 scores[j] = scores[j +1];

 scores[j + 1] = temp;

 }

 for(i = 0; i < 60; i ++) printf("%4d", scores[i]);

}

Sixty variables are replaced by one Array

Sixty input

statements are

called by one loop

statement

1770 comparing

statements are

included in one

loop statement

Array & its Advantage

28

scores[0] scores[1] scores[2] scores[3] scores[4]

scores Array

. . .

start here

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 (memory

addresses)

#include<stdio.h>

#include<math.h>

#define SIZE 10

int main() {

 int scores[SIZE],sum=0,i;

 float deviation, mean, total=0;

 float variance , stddev;

 for(i=0; i < SIZE ;i++) {

 printf("Enter score : “);

 scanf("%d", &scores[i]);

 sum = sum + scores[i];

 }

 mean = (float)sum / SIZE;

 printf("\nMean : %.2f",mean);

 printf("\nDeviations : ");

 for(i=0;i<SIZE ; i++) {

 deviation = scores[i] - mean;

 printf("%.2f\t", deviation);

 total=total + deviation*deviation;

 }

 variance = total / SIZE;

 printf("\nVariance = %.2f\n", variance);

 stddev = sqrt(variance);

 printf("Standard Deviation : %f", stddev);

}

Mean can be calculated only after reading all scores. Each deviation is difference of individual score and

mean. To calculate deviations of all scores, scores must be stored in an ARRAY.

Initialization of Array

Declaration of Array

Processing on Array
Input to an element

Accessing

an element

29

Scalar Variables :

 A variable represents a data item and it can be used to store a single atomic value at a time. These

are also called scalar variables.

 Integer takes 2 bytes memory as a single unit to store its value. i.e.,the value of a scalar variable

cannot be subdivided into a more simpler data items.

 The address of first byte is the address of a variable .

Vector Variables (arrays):

 In contrast, an array is multivariable (an aggregate data type), which is also referred to a data

structure. It represents a collection of related data items of same type.

An individual data item of an array is called as ‘element’. Every element is accessed by index or

subscript enclosed in square brackets followed after the array name.

 All its elements are stored in consecutive memory locations, referred under a common array name.

 Ex : int marks[10] ; /* declaration of array */

 ‘0’ is first number in computer environment. The first element of array marks is marks[0] and last

element is marks[9]. (the address of first element is the address of the array)

 An array is a derived data type. It has additional operations for retrieve and update the individual

values.

 The lowest address corresponds to the first element and the highest address to the last element.

 Arrays can have from one to several dimensions. The most common array is the string, which is

simply an array of characters terminated by a null.

Scalar variable for single data item & Vector variable for multiple data items

30

Declaration of One Dimensional Arrays

Syntax :

 arrayType arrayName [numberOfElements];

Example :

 int scores [60];

 float salaries [20];

Initialization of Array while Declaration :

 int numbers [] = { 9, 4, 2, 7, 3 };

 char name[] ={‘J’,’N’,‘T’,‘U’,‘ ‘,‘H’,‘Y’,‘D’,’\0’ };

 char greeting[] = “Good Morning”;

Declaration of Multi Dimensional Arrays

Syntax :

 arrayType arrayName [Rows][Columns];

 arrayType arrayName [Planes][Rows][Columns];

Example :

 /* Each student for seven subjects */

 int marks[60][7];

 /* Matrix with 3 planes and 5 rows and 4 columns */

 float matrix[3][5][4];

Initialization of Array while Declaration :

 int matrix [][] = { { 4, 2, 7, 3 } ,

 { 6, 1, 9, 5 } ,

 { 8, 5, 0, 1 } };

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

Elements of

Array [3] by [4]

/*passing an array to function */

#define SIZE 10

int main() {

 float list[SIZE] ,avg;

 … … … … …

 avg = average(SIZE , list);

 … … … … …

}

float average(int n , float x[]) {

 float sum=0,i;

 for(i = 0; i < n ; i++)

 sum = sum + x[i];

 return (sum / n) ;

}

31

char name[25] ;

scanf(“%s”, name); /*reading a string until a white space is encountered (& operator is not required)*/

printf(“%s”, name); /*printing a string in input window */

gets(name) ; /* reading a string including white spaces until ‘\n’ is encountered. */

puts(name); /* printing a string and moves cursor to new line */

Strings - One Dimensional Character Arrays

 A String is sequence of characters. In ‘C’ strings are implemented by an array of

characters terminated with a null character ‘\0’(back slash followed by zero).

 char city[] = “HYDERABAD”;

H Y D E R A B A D \0

name

 ‘CITY’ is an array of characters has size of 10 characters including a null character

‘\0’(ascii code is zero).

String Manipulation Functions in <string.h>

strlen(s1) - returns the length of string excluding the last ‘null’ character.

strcpy(s1,s2) - copies characters in s2 into s1.

strcat(s1,s2)- concatenates s2 to s1.

strcmp(s1,s2) -compares s1 with s2 lexicographically and returns ‘0’ if two strings are

 same , returns -1 if s1 is before s2 and returns +1 if s1 is after s2.

strcmpi(s1,s2) -compares s1 with s2 like strcmp() but case of characters is ignored.

strchr(s1,ch) -returns pointer to first occurrence of the character ‘ch’ in s1.

strstr(s1,s2) -returns pointer to first occurrence s2 in s1.

strrev(s1) -returns pointer to the reversed string.

32

 Memory Address : Bit is a smallest unit of memory to store either ‘0’ or ‘1’ in memory. Byte is unit

of memory of 8 bits. Memory is a sequence of a large number of memory locations , each of which has an

address known as byte. Every byte in memory has a sequential address number to recognized by processor.

 RAM is temporary storage place to run programs. C-Language runtime also utilizes an allotted

memory block in RAM to run its programs.

Text Section : Memory-area that contains the machine instructions(code).It is read

 only and is shared by multiple instances of a running program.

Data Section : Memory image of a running program contains storage for initialized

 global variables, which is separate for each running instance of a program.

BSS (Below Stack Segment) : Memory area contains storage for uninitialized global variables. It is

also separate for each running instance of a program.

Stack : Area of memory image of a running program contains storage for automatic variables of a

function. It also stores memory address of the instruction which is the function call, to return the

value of called function.

Heap : This memory region is reserved for dynamically allocating memory for variables at run

time. Dynamic Memory Allocation calculate the required memory size while program is being

executed.

Shared Libraries: This region contains the executable image of shared libraries being used by a

program.

Memory Sections of C-Runtime

33

UNIT-III
FUNCTIONS AND POINTERS

Functions: Need for user defined functions, function declaration, function prototype,

category of functions, inter function communication, function calls, parameter passing

mechanisms, recursion, passing arrays to functions, passing strings to functions, storage

classes, preprocessor directives.

Pointers: Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of

pointers, pointers and arrays, pointers as functions arguments, functions returning

pointers.

Prepared by

 Dr. K. Srinivasa Reddy,

HOD-IT,

Institute of Aeronautical Engineering, Hyderabad-090

34

/* program to find area of a ring

*/

#include<stdio.h>

int main()

{

 float a1,a2,a,r1,r2;

 printf("Enter the radius : ");

 scanf("%f",&r1);

 a1 = 3.14*r1*r1;

 printf("Enter the radius : ");

 scanf("%f",&r2);

 a2 = 3.14*r2*r2;

 a = a1- a2;

 printf("Area of Ring : %.3f\n",

a);

}

/* program to find area of a ring */

#include<stdio.h>

float area();

int main()

{

 float a1,a2,a;

 a1 = area();

 a2 = area();

 a = a1- a2;

 printf("Area of Ring : %.3f\n", a);

}

float area()

{

 float r;

 printf("Enter the radius : ");

 scanf("%f", &r);

 return (3.14*r*r);

}

Modularizing and Reusing of code through Functions

Calculation of area of Circle is separated into a separate module from Calculation of area of

Ring and the same module can be reused for multiple times.

Function Declaration

Function Definition

Function Calls

Repeated & Reusable

blocks of code

35

 A Function is an independent, reusable module of statements, that specified by a name.

This module (sub program) can be called by it’s name to do a specific task. We can call the

function, for any number of times and from anywhere in the program. The purpose of a function

is to receive zero or more pieces of data, operate on them, and return at most one piece of

data.

 A Called Function receives control from a Calling Function. When the called function

completes its task, it returns control to the calling function. It may or may not return a value to

the caller. The function main() is called by the operating system; main() calls other functions.

When main() is complete, control returns to the operating system.

int main() {

 int n;

 float p, r, si;

 printf(“Enter Details of Loan1:“);

 scanf(“%f %d %f”, &p, &n, &r);

 si =calcInterest(p, n , r);

 printf(“Interest : Rs. %f”, si);

 printf(“Enter Details of Loan2:“);

}

float calcInterest(float loan , int terms , float iRate)

{

 float interest;

 interest = (loan * terms * iRate)/100;

 return (interest);

}

value of ‘r’ is copied to ‘iRate’

value of ‘n’ is copied to terms’

value of ‘p’ is copied to loan’

value of ‘interest’ is assigned to ‘si ’

Called Function

Calling Function

The block is
executed

Process of Execution for a Function Call 36

int main()

{

 int n1, n2;

 printf("Enter a number : ");

 scanf("%d",&n1);

 printOctal(n1);

 readPrintHexa();

 printf("Enter a number : ");

 scanf("%d",&n2);

 printOctal(n2);

 printf(“\n”);

}

void printOctal(int n)
{
 printf("Number in octal form : %o \n", n);
}

void readPrintHexa()

{

 int num;

 printf("Enter a number : ");

 scanf("%d",&num);

 printHexa(num);

 printf(“\n”);

}

void printHexa(int n)
{
 printf("Number in Hexa-Decimal form : %x \n",n);
}

1
2

3

4

5

6

7

8

Flow of

Control

 in

Multi-Function

Program

37

/* Program demonstrates function calls */

#include<stdio.h>

int add (int n1, int n2) ;

int main(void)

{

 int a, b, sum;

 printf(“Enter two integers : ”);

 scanf(“%d %d”, &a, &b);

 sum = add (a , b) ;

 printf(“%d + %d = %d\n”, a, b, sum);

 return 0;

}

/* adds two numbers and return the sum */

int add (int x , int y)

{

 int s;

 s = x + y;

 return (s);

}

Declaration (proto type) of Function

Formal Parameters

Function Call

Actual Arguments

Definition of Function

Parameter List used in the Function

Return statement of the Function

Return Value

Return Type

Function-It’s Terminology

Function Name

38

/* using different functions */

int main()

{

 float radius, area;

 printMyLine();

 printf(“\n\tUsage of functions\n”);

 printYourLine(‘-’,35);

 radius = readRadius();

 area = calcArea (radius);

 printf(“Area of Circle = %f”,

area);

}

void printMyLine()

{

 int i;

 for(i=1; i<=35;i++) printf(“%c”, ‘-’);

 printf(“\n”);

}

Function with No parameters

and No return value

void printYourLine(char ch, int n)

{

 int i;

 for(i=1; i<=n ;i++) printf(“%c”, ch);

 printf(“\n”);

}

Function with parameters

and No return value

float readRadius()

{

 float r;

 printf(“Enter the radius : “);

 scanf(“%f”, &r);

 return (r);

}

Function with return

value & No parameters

float calcArea(float r)

{

 float a;

 a = 3.14 * r * r ;

 return (a) ;

}

Function with return

value and parameters

Categories of Functions

Note: ‘void’ means “Containing nothing” 39

#include<stdio.h>

float length, breadth;

int main()

{

 printf("Enter length, breadth : ");

 scanf("%f %f",&length,&breadth);

 area();

 perimeter();

 printf(“\nEnter length, breadth: ");

 scanf("%f %f",&length,&breadth);

 area();

 perimeter();

}

void perimeter()

{

 int no = 0;

 float p;

 no++;

 p = 2 *(length + breadth);

 printf(“Perimeter of Rectangle %d: %.2f",no,p);

}

void area()

{

 static int num = 0;

 float a;

 num++;

 a = (length * breadth);

 printf(“\nArea of Rectangle %d : %.2f", num, a);

}

Enter length, breadth : 6 4

Area of Rectangle 1 : 24.00

Perimeter of Rectangle 1 : 20.00

Enter length, breadth : 8 5

Area of Rectangle 2 : 40.00

Perimeter of Rectangle 1 : 26.00

Automatic Local Variables

 Scope : visible with in the function.

Lifetime: re-created for every function call and

destroyed automatically when function is exited.

Static Local Variables

Visible with in the function,

created only once when

function is called at first

time and exists between

function calls.

External Global Variables

Scope: Visible across multiple

functions Lifetime: exists till the end

of the program.

Storage Classes – Scope & Lifetime 40

#include<stdio.h>

float length, breadth;

static float base, height;

int main()

{

 float peri;

 printf("Enter length, breadth : ");

 scanf("%f %f",&length,&breadth);

 rectangleArea();

 peri = rectanglePerimeter();

 printf(“Perimeter of Rectangle : %f“, peri);

 printf(“\nEnter base , height: ");

 scanf("%f %f",&base,&height);

 triangleArea();

}

void rectangleArea() {

 float a;

 a = length * breadth;

 printf(“\nArea of Rectangle : %.2f", a);

}

void triangleArea() {

 float a;

 a = 0.5 * base * height ;

 printf(“\nArea of Triangle : %.2f", a);

}

extern float length, breadth ;

/* extern base , height ; --- error */

float rectanglePerimeter()

{

 float p;

 p = 2 *(length + breadth);

 return (p);

}

File1.c File2.c

External Global Variables

Scope: Visible to all functions across all

files in the project.

Lifetime: exists till the end of the

program.

Static Global Variables

Scope: Visible to all functions with in

the file only.

Lifetime: exists till the end of the

program.

Storage Classes – Scope & Lifetime
41

#include<stdio.h>

void showSquares(int n)

{

 if(n == 0)

 return;

 else

 showSquares(n-1);

 printf(“%d “, (n*n));

}

int main()

{

 showSquares(5);

}

A function

calling itself

is

Recursion

Output : 1 4 9 16 25

showSquares(5)

showSquares(4)

showSquares(3)

showSquares(2)

showSquares(1) addition

of

function

calls

to

call-

stack

call-stack

execution

of

function

calls

in

reverse

Preprocessor Directives

#define - Define a macro substitution

#undef - Undefines a macro

#ifdef - Test for a macro definition

#ifndef - Tests whether a macro is not

 defined

#include - Specifies the files to be included

#if - Test a compile-time condition

#else - Specifies alternatives when #if

 test fails

#elif - Provides alternative test facility

#endif - Specifies the end of #if

#pragma - Specifies certain instructions

#error - Stops compilation when an error

 occurs

- Stringizing operator

- Token-pasting operator

Preprocessor is a program that

processes the source code before it

passes through the compiler.

main() 42

 Memory Address : Bit is a smallest unit of memory to store either ‘0’ or ‘1’ in memory.
Byte is unit of memory of 8 bits. Memory is a sequence of a large number of memory
locations , each of which has an address known as byte. Every byte in memory has a
sequential address number to recognized by processor.

 RAM is temporary storage place to run programs. C-Language runtime also utilizes an
allotted memory block in RAM to run its programs.
Text Section : Memory-area that contains the machine instructions(code).It is read
 only and is shared by multiple instances of a running program.
Data Section : Memory image of a running program contains storage for initialized
 global variables, which is separate for each running instance of a program.
BSS (Below Stack Segment) : Memory area contains storage for uninitialized global
 variables. It is also separate for each running instance of a program.
Stack : Area of memory image of a running program contains storage for automatic
 variables of a function. It also stores memory address of the instruction
 which is the function call, to return the value of called function.
Heap : This memory region is reserved for dynamically allocating memory for
 variables at run time. Dynamic Memory Allocation calculate the required
 memory size while program is being executed.
Shared Libraries: This region contains the executable image of shared libraries being used by
a program.

Memory Sections of C-Runtime

43

Two or more Permanent Manipulations using one Function

/* program to swap two numbers */
#include<stdio.h>
void swap(int x, int y)
{
 int temp;
 temp = x; x = y; y = temp;
 printf(“\nIn swap() : %d %d “,x,y);
}
int main()
{
 int a = 25,b = 37;
 printf(“Before swap() : %d %d”,a,b);
 swap (a,b);
 printf(“\nAfter swap() : %d %d“,a,b);
}

Passing Parameters By Value Passing Parameters By Reference

Output :
Before swap() 25 37
In swap () 37 25
After swap() 25 37

/* program to swap two numbers */
#include<stdio.h>
void swap(int *x, int *y)
{
 int temp;
 temp = *x; *x = *y; *y = temp;
 printf(“\nIn swap() : %d %d “,*x,*y);
}
int main()
{
 int a = 25,b = 37;
 printf(“Before swap() : %d %d”,a,b);
 swap (&a , &b);
 printf(“\nAfter swap() : %d %d“,a,b);
}

Output :
Before swap() 25 37
In swap () 37 25
After swap() 37 25

44

Pointer variable – A variable holds the address of another variable

char option = ‘Y’;

Allots some memory location

4042 (for example)

with a name option and

stores value ‘Y’ in it
‘Y’

option

4042

Value in ‘option’

Memory Address of variable ‘option’

char *ptr = NULL;

Creates a pointer variable
with a name ‘ptr’
Which can hold a
Memory address ptr

Memory address of
Variable ‘option’
Is copied to the

Pointer ‘ptr’

4042

ptr

ptr = &option; ‘Y’

option

4042

*ptr = ‘N’;
The value ‘N’ is

stored in the variable
which has the

memory address
4042

4042

ptr

‘N’

option

4042 45

Program with Using Pointers

int main() {

 int n1, n2 ;

 int *p = NULL, *q = NULL;

 n1 = 6 ;

 p = & n1;

 printf (“%d %d”, n1,*p);

 printf (“%ld %ld”,&n1, p);

 q = & n2;

 *q = 3 ;

 printf (“ %d %d “, *p , *q) ;

 p = q ;

 printf (“ %d %d “, *p , *q) ;

 *p = 7 ;

 printf (“ %d %d “, *p , *q) ;

}

NULL NULL

n1 n2

p q

6 3 n1 n2

p q

pointer variables are declared

Prints 6 3

6 3 n1 n2

p q

pointer ‘q’ assigned with pointer ‘q’

Prints 3 3

6 7 n1 n2

p q
Prints 7 7

When two pointers are referencing with one variable, both pointers contains address of the
same variable, and the value changed through with one pointer will reflect to both of them.

Prints 6 6

Prints address of n1

46

Pointer and Arrays

Even though pointers and arrays work alike and strongly related,

they are not synonymous. When an array is assigned with pointer,

the address of first element of the array is copied into the pointer.

#include<stdio.h>

int main()

 {

 int a[3] = { 12, 5 ,7}, b[3];

 int *p ,*q;

 p = a;

 printf("%d %d\n", *p, *a);

 q = p;

 printf("%d %d",*p,*q);

 b = a; /* error */

}

Prints 12 12

Prints 12 12

Pointer is an address variable, having no

initialized value by default. The address

stored in the pointer can be changed

time to time in the program.

Array name is an address constant,

initialized with the address of the first

element (base address)in the array. The

address stored in array name cannot be

changed in the program.

47

Pointer Arithmetic and Arrays

#include <stdio.h>

int main() {

 int arr [5] = { 12, 31, 56, 19, 42 };

 int *p;

 p = arr + 1;

 printf("%d \n", *p);

 printf("%d %d %d\n", *(p-1), *(p), *(p + 1));

 --p;

 printf("%d", *p);

Prints 31
Prints 12 31 56

Prints 12

Subscript operator [] used to access an element of array

implements address arithmetic, like pointer.

12

31

56

19

42

arr[0] or *(arr + 0)

arr[1] or *(arr + 1)

arr[2] or *(arr + 2)

arr[3] or *(arr + 3)

arr[4] or *(arr + 4)

p - 1

p

p + 1

p + 2

p + 3

48

Array of Pointers

 The advantage of pointer array is that the length of each row in the array may

be different. The important application of pointer array is to store character strings

of different length. Example :

 char *day[] = { “Sunday”, “Monday”, ”Tuesday”, “Wednesday”, “Thursday”,

 “Friday”, “Saturday” };

Pointer to Pointer (Double indirection)

Example :

 int a = 25;

 int *pa = &a;

 int **ppa ;

 *ppa = &pa;

 printf(“%d”, *pa); prints 25

 printf(“%d”, **ppa); prints 25

25

pa ppa

4078

 4024 4056

4056 4024

a

Two Dimensional Array -- Pointers

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] a[2][0] a[2][1] a[2][2] a[3][0] a[3][1] a[3][2]

base_address

Address of a[i] [j] = *(* (base_address + i) + j) = * (* (a + i) + j)

Array name contains base address

49

void Pointer

int main() {

 void* p;

 int x = 7;

 float y = 23.5;

 p = &x;

 printf(“x contains : %d\n”, *((int *)p));

 p = &y;

 printf(“y contains : %f\n”, *((float *)p));

}

 ‘void’ type pointer is a generic

pointer, which can be assigned to any

data type without cast during

compilation or runtime. ‘void’ pointer

cannot be dereferenced unless it is

cast.

Output :

x contains 7

y contains 23.500000

Function Pointers

 Function pointers are pointers, which

point to the address of a function.

Declaration :

 <return type> (* function_pointer)

 (type1 arg1, type2 arg2, …….);

int add (int a, int b) { return (a + b) ; }

int sub (int a, int b) { return (a – b) ; }

int (*fp) (int, int) ; /* function pointer */

int main() {

 fp = add;

 printf(“Sum = %d\n”, fp(4, 5)) ;

 fp = sub;

 printf(“Difference = %d\n”, fp(6 , 2)) ;

}

Output :

Sum = 9

Difference = 4

50

UNIT-IV
STRUCTURES AND UNIONS

Structures and unions: Structure definition, initialization, accessing structures, nested

structures, arrays of structures, structures and functions, passing structures through

pointers, self referential structures, unions, bit fields, typedef, enumerations; Dynamic

memory allocation: Basic concepts, library functions.

Prepared by

 Dr. K. Srinivasa Reddy,

HOD-IT,

Institute of Aeronautical Engineering, Hyderabad-090

51

C Data Types:
Primary data types

Derived data types

User-defined data types

Derived
Types

Function
Type

Structure
Type

Array Type
Pointer

Type
Union Type

Array – Collection of one or more related variables of similar

data type grouped under a single name

 Structure – Collection of one or more related variables of different

data types, grouped under a single name

 In a Library, each book is an object, and its characteristics like title, author, no of

pages, price are grouped and represented by one record.

 The characteristics are different types and grouped under a aggregate variable of

different types.

 A record is group of fields and each field represents one characteristic. In C, a record

is implemented with a derived data type called structure. The characteristics of record are

called the members of the structure.
52

book

bookid

title

author

pages

price

STRUCTURE- BOOK

struct book {

 int book_id ;

 char title[50] ;

 char author[40] ;

 int pages ;

 float price ;

};

Book-1

BookID: 1211

Title : C Primer Plus

Author : Stephen Prata

Pages : 984

Price : Rs. 585.00

Book-2

BookID: 1212

Title : The ANSI C Programming

Author : Dennis Ritchie

Pages : 214

Price : Rs. 125.00

Book-3

BookID: 1213

Title : C By Example
Author : Greg Perry

Pages : 498

Price : Rs. 305.00

Structure tag

integer book_id

Array of 50 characters title

Array of 40 characters author

integer pages

float price

2 bytes

50 bytes

40 bytes

2 bytes

4 bytes

struct < structure_tag_name >

 {

 data type < member 1 >

 data type < member 2 >

 …. …. …. ….

 data type < member N >

} ;

Memory occupied by a Structure variable

53

Initialization of structure

Initialization of structure variable while

declaration :

 struct student s2 = { 1001, “ K.Avinash ”,

 87.25 } ;

Initialization of structure members individually :

 s1. roll_no = 1111;

 strcpy (s1. name , “ B. Kishore “) ;

 s1.percentage = 78.5 ;

Declaring a Structure Type

struct student

{

 int roll_no;

 char name[30];

 float percentage;

};

 Declaring a Structure Variable

struct student s1,s2,s3;

 (or)

struct student

{

 int roll_no;

 char name[30];

 float percentage;

}s1,s2,s3;

Reading values to members at

runtime:

struct student s3;

printf(“\nEnter the roll no”);

scanf(“%d”,&s3.roll_no);

printf(“\nEnter the name”);

scanf(“%s”,s3.name);

printf(“\nEnter the percentage”);

scanf(“%f”,&s3.percentage);

membership operator

54

struct employee {

 int empid;

 char name[35];

 int age;

 float salary;

};

int main() {

 struct employee emp1,emp2 ;

 struct employee emp3 = { 1213 , ” S.Murali ” , 31 , 32000.00 } ;

 emp1.empid=1211;

 strcpy(emp1.name, “K.Ravi”);

 emp1.age = 27;

 emp1.salary=30000.00;

 printf(“Enter the details of employee 2”);

 scanf(“%d %s %d %f “ , &emp2.empid, emp2.name, &emp2.age, &emp2.salary);

 if(emp1.age > emp2.age)

 printf(“ Employee1 is senior than Employee2\n”);

 else

 printf(“Employee1 is junior than Employee2\n”);

 printf(“Emp ID:%d\n Name:%s\n Age:%d\n Salary:%f”,

 emp1.empid,emp1.name,emp1.age,emp1.salary);

}

Implementing a Structure

Declaration of Structure Type

Declaration of Structure variables

Declaration and initialization of Structure variable

Initialization of Structure members individually

Reading values to members of Structure

Accessing members of Structure

55

Nesting of structures

struct date {

 int day ;

 int month ;

 int year ;

} ;

struct person {

 char name[40];

 int age ;

 struct date b_day ;

};

int main() {

 struct person p1;

 strcpy (p1.name , “S. Ramesh “) ;

 p1. age = 32 ;

 p1.b_day.day = 25 ;

 p1.b_day. month = 8 ;

 p1.b_day. year = 1978 ;

}

Arrays And structures

struct student

{

 int sub[3] ;

 int total ;

} ;

int main() {

 struct student s[3];

 int i,j;

 for(i=0;i<3;i++) {

 printf(“\n\nEnter student %d marks:”,i+1);

 for(j=0;j<3;j++) {

 scanf(“%d”,&s[i].sub[j]);

 }

 }

 for(i=0;i<3;i++) {

 s[i].total =0;

 for(j=0;j<3;j++) {

 s[i].total +=s[i].sub[j];

 }

 printf(“\nTotal marks of student %d is: %d”,

 i+1,s[i].total);

 }

}

OUTPUT:

 Enter student 1 marks: 60 60 60

 Enter student 2 marks: 70 70 70

 Enter student 3 marks: 90 90 90

Total marks of student 1 is: 180

Total marks of student 2 is: 240

Total marks of student 3 is: 270

Outer Structure

Inner Structure

Accessing Inner

Structure members

56

struct fraction {

 int numerator ;

 int denominator ;

};

void show (struct fraction f)

{

 printf (“ %d / %d “, f.numerator,

 f.denominator) ;

}

int main () {

 struct fraction f1 = { 7, 12 } ;

 show (f1) ;

}

OUTPUT:

 7 / 12

structures and functions Self referential structures

struct student_node {

 int roll_no ;

 char name [25] ;

 struct student_node *next ;

} ;

int main()

 {

 struct student_node s1 ;

 struct student_node s2 = { 1111, “B.Mahesh”, NULL } ;

 s1. roll_no = 1234 ;

 strcpy (s1.name , “P.Kiran “) ;

 s1. next = & s2 ;

 printf (“ %s “, s1. name) ;

 printf (“ %s “ , s1.next - > name) ;

}

A self referential structure is one that includes at least one member

which is a pointer to the same structure type.

 With self referential structures, we can create very useful data

structures such as linked -lists, trees and graphs.

s2 node is linked to s1 node

Prints P.Kiran

Prints B.Mahesh

57

Pointer to a structure

Accessing structure members through

pointer :

i) Using . (dot) operator :

 (*ptr) . prodid = 111 ;

 strcpy ((*ptr) . Name, “Pen”) ;

ii) Using - > (arrow) operator :

 ptr - > prodid = 111 ;

 strcpy(ptr - > name , “Pencil”) ;

struct product

{

 int prodid;

 char name[20];

};

int main()

{

 struct product inventory[3];

 struct product *ptr;

 printf(“Read Product Details : \n");

 for(ptr = inventory;ptr<inventory +3;ptr++) {

 scanf("%d %s", &ptr->prodid, ptr->name);

 }

 printf("\noutput\n");

 for(ptr=inventory;ptr<inventory+3;ptr++)

 {

 printf("\n\nProduct ID :%5d",ptr->prodid);

 printf("\nName : %s",ptr->name);

 }

}

Read Product Details :

111 Pen

112 Pencil

113 Book

Print Product Details :

Product ID : 111

Name : Pen

Product ID : 112

Name : Pencil

Product ID : 113

Name : Book

58

A union is a structure all of whose members share the same memory

 Union is a variable, which is similar to the structure and contains number of members

like structure.

 In the structure each member has its own memory location whereas, members of union

share the same memory. The amount of storage allocated to a union is sufficient to hold its

largest member.

struct student {

 int rollno;

 float avg ;

 char grade ;

};

union pupil {

 int rollno;

 float avg ;

 char grade;

} ;

int main() {

 struct student s1 ;

 union pupil p1;

 printf (“ %d bytes “,

 sizeof (struct student)) ;

 printf (“ %d bytes “,

 sizeof (union pupil)) ;

}

Output :

 7 bytes 4 bytes

Memory allotted to structure student

Address 5000 5001 5002 5003 5004 5005 5006

rollno avg grade

Total memory occupied : 7 bytes

Memory allotted to union pupil

rollno

avg

grade
Total memory occupied : 4 bytes

Address 5000 5001 5002 5003

59

Dynamic Memory Allocation (DMA) of pointers

Static memory allocation means allocating memory by compiler. When using address operator,

the address of a variable is assigned to a pointer. Ex : int a = 20 ; int *p = &a ;

Dynamic memory allocation means allocating memory using functions like malloc() and calloc().

The values returned by these functions are assigned to pointer variables only after execution of

these functions. Memory is assigned at run time.

int main()

{

 int *p, *q ;

 p = (int *) malloc (sizeof(int));

 if(p == NULL)

 {

 printf(“Out of memory\n”);

 exit(-1);

 }

 printf(“Address in p : %d“, p);

 free (p);

 p = NULL;

}

Allocates memory in bytes and returns the address of first

byte to the pointer variable

Releases previously allocated memory space.

 calloc () is used for allocating memory space

during the program execution for derived data types

such as arrays, structures etc.,

Example :

 struct book {

 int no ; char name[20] ; float price ;

 };

 struct book b1 ;

 b1 *ptr ;

 ptr = (book *) calloc (10, sizeof (book));

 ptr = (book *) realloc (ptr , 35 * sizeof (book));

Modifies the size of previously allocated memory to

new size. 60

 ‘ typedef ’ is a keyword,which allows you to
specify a new name for a datatype which is
already defined in c language program.
Syntax:
 typedef <datatype> <newname>
 /* Re-defining int type as Integer type */
typedef int Integer;
int main() {
 Interger a ,b , sub;
 a = 20,b = 10;
 sub = a - b;
 printf(“%d - %d = %d”, a, b, sub);
}
 /* Defining structure with typedef to avoid
 repeated usage of struct keyword */

typedef struct {
 int hours;
 int minutes;
} TIME ;
int main() {
 TIME t1, t2 , *t;
 t = (TIME *) calloc (10, sizeof(TIME));
}

typedef – to define new datatype bitfieds

struct playcard {

 unsigned pips ;

 unsigned suit ;

};

 Above structure occupies 4 bytes of

memory. But the member pips accepts a

value between 1 to 13 and the member suit

accepts any value of 0, 1, 2 and 3 .
 So we can create a more packed
representation of above structure with bitfields.
struct playcard {

 unsigned pips : 4;

 unsigned suit : 2;

};

 A bitfield is a set of adjacent bits within

a single machine word.

 4-bit field called pips that is capable of

storing the 16 values 0 to 15, and a 2-bit

field called suit that is capable of storing

values 0, 1, 2, and 3. So the entire structure

variable occupies only one byte.

Note : arrays of bit fields and a pointer to

address a bit field is not permitted.

61

Enumeration – a set of named integers, makes program more readable

#include<stdio.h>

int main() {

 int signal;

 printf ("\t\t\t MENU \n\t1.RED \n");

 printf ("\t2.ORANGE\n\t3.GREEN \n“);

 printf ("\n\t Enter the signal : “);

 scanf (“%d”, &signal);

 switch(signal)

 {

 case 1:

 printf(“\t Stop and Wait!"); break;

 case 2:

 printf(“\t Ready to start!"); break;

 case 3:

 printf(“\t Start and go!"); break;

 }

}

#include<stdio.h>

enum color {RED = 1,ORANGE,GREEN };

int main() {

 enum color signal;

 printf ("\t\t\t MENU \n\t1.RED \n");

 printf ("\t2.ORANGE\n\t3.GREEN\n");

 printf ("\n\t Enter the signal : ");

 scanf ("%d", &signal);

 switch(signal) {

 case RED:

 printf("\t Stop and Wait!"); break;

 case ORANGE:

 printf("\t Ready to start!"); break;

 case GREEN:

 printf("\t Start and go!"); break;

 }

}

Declaration of enumeration :

 enum <enum_name> { member1, member2, …. …. …. } ;

Example :

 enum option { YES, NO, CANCEL } ;

 By default YES has value 0, NO has value 1 and CANCEL has 2.

 enum direction { EAST = 1, SOUTH, WEST = 6, NORTH } ;

 Now EAST has value 1, SOUTH has value 2, WEST has value 6, and NORTH has value 7.

 Enumerated types can be converted implicitly or cast explicitly.

 int x = WEST ; /* Valid. x contains 6. */

 enum direction y ; y = (enum direction) 2 ; /* Valid. Y contains SOUTH */

62

<stdlib.h>

int atoi(s) Converts string s to an integer

long atol(s) Converts string s to a long integer.

float atof(s) Converts string s to a double-precision quantity.

void* calloc(u1,u2) Allocate memory to an array u1, each of length u2 bytes.

void exit(u) Closes all files and buffers, and terminate the program.

void free (p) Free block of memory.

void* malloc (u) Allocate u bytes of memory.

int rand(void) Return a random positive integer.

void* realloc(p,u) Allocate u bytes of new memory to the pointer variable p.

void srand(u) Initialize the random number generator.

void systerm(s) Pass command string to the operating system.

<time.h>

clock_t clock() Returns clock ticks since program starts.

char *asctime(stuct tm) Converts date and time into ascii.

int stime(time_t *tp) Sets time.

time_t time(time_t *timer) Gets time of day.

double difftime(t1,t2) Returns difference time between two times t1 and t2.

Standard C-Library Functions

63

UNIT-V
FILES

Files: Streams, basic file operations, file types, file opening modes, file input and output

functions, file status functions, file positioning functions, command line arguments.

Prepared by

 Dr. K. Srinivasa Reddy,

HOD-IT,

Institute of Aeronautical Engineering, Hyderabad-090

64

 scanf() and printf() functions read and write data which always uses the

terminal (keyboard and screen) as the target.

 It becomes confusing and time consuming to use large volumes of data

through terminals.

 The entire data is lost when either program terminates or computer is

turned off.

 Some times it may be necessary to store data in a manner that can be

later retrieved and processed.

 This leads to employ the concept of FILES to store data permanently

in the system.

 Record is logical group of data fields that

comprise a single row of information, which

describes the characteristics of an object.

 File is a set of records that can be accessed

through the set of library functions.

 A File is a place on disk where a group of

related data (records) can be stored

Console I / O Vs File I / O

File Operations

1. Creating a new file

2. Opening an existing file

3. Reading from a file

4. Writing to a file

5. Moving to a specific

location in a file (seek)

6. Closing a file

65

A Stream acts as an interface between a program

and an input/output Device.

Types of Files

1.Text file : It can be thought of as a stream of characters that can be processed sequentially

and in forward direction only.

2.Binary file : It is collection of bytes like images.

3.Sequential File: Data stored sequentially, to read the last record of the file, we need to

traverse all the previous records before it. Ex: files on magnetic tapes.

4.Random Access File: Data can be accessed and modified randomly. We can read any record

directly. Ex : files on disks.

 Stream is a Sequence of data bytes, which is used to read and write data to a file.

 The streams that represent the input data of a program are known as Input Streams, where

as the streams that represent the output data of a program are known as Output Streams.

 Input streams gets the data from different input devices such as keyboard and mouse and

provide input data to the program.

 Output Streams obtain data from the program and write that on different Output Devices

such as Memory or print them on the Screen.

66

/*program to write and read data from file*/

#include<stdio.h>

void main() {

 FILE *fp;

 char ch;

 fp = fopen(“data.txt”, “w”);

 if(fp == NULL) {

 printf(“Cannot open file.”);

 exit(0);

 }

 printf(“Type text (to stop press ‘.’) : ”);

 while(ch != ‘.’) {

 ch = getche();

 fputc(ch,fp);

 }

 fclose(fp);

 printf(“\nContants read : “);

 fp = fopen(“data.txt”,”r”);

 while(!feof(fp))

 printf(“%d”, fgetc(fp));

 fclose(fp);

}

Steps involved using files

1. Declaring FILE pointer variable :

Syntax :

 FILE *file_pointer1;

2. Open a file using fopen() function :

Syntax :

 fp= fopen(“filename”,“mode of access”);

3. fputc() – Used to write a character to

the file.

Syntax :

 fputc(character, file_pointer);

4. fgetc() – Used to read a character to the

file.

Syntax :

 fgetc(file_pointer);

5. Close a file using fclose() function :

Syntax :

 fclose(file_pointer);

67

 /* creating a new file */

int main(){

 char ch;FILE *fp;

 printf("\nEnter the text\n");

 printf("\n\t(Press ctrl+Z after

 completing text)\n");

 fp=fopen("str.txt","w");

 while((ch=getchar())!=EOF)

 putc(ch,fp);

 fclose(fp);

}

file pointer used to handle files

fclose(filepointer);

putc(character,filepointer);

filepointer=fopen(“filename”,”mode”);

/* Reading the contents of existing file */

#include<stdio.h>

int main() {

 FILE *fp;

 char ch;

 fp=fopen("str.txt","r");

 while((ch=getc(fp))!=EOF)

 printf("%c",ch);

 fclose(fp);

}

/* appending data to an existing file */

int main() {

 FILE *fp; char ch;

 printf("\nEnter the text\n");

 printf("\n\t(Press ctrl+Z after

 completing text)\n");

 fp=fopen("str.txt","a");

 while((ch=getchar())!=EOF)

 putc(ch,fp);

 fclose(fp);

}
68

 r -- open a file in read mode

 -- if file exits, the marker is positioned at
beginning.

 -- if file does not exist, error returned.

r+ -- open a file in read and write mode

 -- if file exits, the marker is positioned

 at beginning.

 -- if file does not exist, NULL returned.

 w -- open a file in write mode

 -- if file exits, all its data is erased.

 -- if file does not exist, it is created.

w+ -- open a file in read and write mode

 -- if file exits, all its data is erased.

 -- if file does not exist, it is created.

 a -- open a file in append mode
 -- if file exits, the marker is positioned
 at end.
 -- if file does not exist, it is created.

a+ -- open a file in read and append mode

 -- if file exits, the marker is positioned

 at end.

 -- if file does not exist, it is created.

int main() { /* Without using w+ */

 FILE *fp; char ch;

 printf("\nEnter the text\n");

 fp=fopen("str1.txt","w");

 while((ch=getchar())!='\n‘)putc(ch,fp);

 fclose(fp);

 fp=fopen("str1.txt","r");

 while((ch=getc(fp))!=EOF)

 printf("%c",ch);

 fclose(fp);

}

rb , wb , ab, rb+ , wb+ , ab+ are modes to operate a file as binary file.

 /* open a file in read and write mode */
int main() {

 FILE *fp; char ch;

 printf("\nEnter the text\n");

 fp=fopen("str1.txt","w+");

 while((ch=getchar())!='\n') putc(ch,fp);

 rewind(fp);

 while((ch=getc(fp))!=EOF)

 printf("%c",ch);

 fclose(fp);

}
69

File Input / Output Functions

fopen(fp, mode) Open existing file / Create new file

fclose(fp) Closes a file associated with file pointer.

closeall () Closes all opened files with fopen()

fgetc(ch, fp) Reads character from current position and advances the pointer to

next character.

fprintf() Writes all types of data values to the file.

fscanf() Reads all types of data values from a file.

gets() Reads string from a file.

puts() Writes string to a file.

getw() Reads integer from a file.

putw() Writes integer to a file.

fread() Reads structured data written by fwrite() function

fwrite() Writes block of structured data to the file.

fseek() Sets the pointer position anywhere in the file

feof() Detects the end of file.

rewind() Sets the record pointer at the beginning of the file.

ferror() Reports error occurred while read/write operations

fflush() Clears buffer of input stream and writes buffer of output stream.

ftell() Returns the current pointer position. 70

Text files Vs Binary Files

 /* Copying one binary file to other */

#include<stdio.h>

int main()

{

 FILE *fs,*ft;

 char ch;

 fs=fopen("pr1.exe","rb");

 if(fs==NULL){

 printf("\nCannot Open the file");

 exit(0);

 }

 ft=fopen("newpr1.exe","wb");

 if(ft==NULL) {

 printf("\nCannot open the file");

 fclose(fs);

 exit(0);

 }

 while((ch=getc(fs))!=EOF)

 putc(ch,ft);

 fclose(fs);

 fclose(ft);

}

“rb” open a file in read mode

“wb” open a file in write mode

“ab” open a file in append mode

“rb+” open a pre-existing file in read and

write mode

“wb+” open a file in read and write mode

“ab+” open a file in read and append mode

Text File :

i) Data are human readable characters.

ii) Each line ends with a newline character.

iii) Ctrl+z or Ctrl+d is end of file character.

iv) Data is read in forward direction only.

v) Data is converted into the internal format

before being stored in memory.

Binary File :

i) Data is in the form of sequence of bytes.

ii) There are no lines or newline character.

iii) An EOF marker is used.

iv) Data may be read in any direction.

v) Data stored in file are in same format that

they are stored in memory.
71

int main() {

 int n,i;

 char *str="abcdefghijklmnopqrstuvwxyz";

 FILE *fp = fopen("notes.txt","w");

 if(fp==NULL){

 printf("\nCannot open file."); exit(0);

 }

 fprintf(fp,"%s",str);

 fclose(fp);

 fp = fopen("notes.txt","r");

 printf("\nText from position %d : \n\t“,ftell(fp));

 fseek(fp, 3 ,SEEK_SET);

 for(i=0; i < 5; i++) putchar(getc(fp));

 printf("\nText from position %d : \n\t“,ftell(fp));

 fseek(fp, 4 ,SEEK_CUR);

 for(i=0; i < 6; i++) putchar(getc(fp));

 fseek(fp, - 10 , SEEK_END);

 printf("\nText from position %d : \n\t“,ftell(fp));

 for(i=0; i < 5; i++) putchar(getc(fp));

 printf("\nCurrent position : %d",ftell(fp));

 rewind(fp);

 printf("\nText from starting : \n\t");

 for(i=0;i < 8 ; i++) putchar(getc(fp));

 fclose(fp);

}

Random Access File

output :

Text from position 3 :

 defgh

Text from position 12 :

 mnopqr

Text from position 16 :

 qrstu

Current position : 21

Text from starting :

 abcdefgh

ftell(file_pointer)

 -- returns the current position of file

pointer in terms of bytes from the

beginning.

rewind(file-pointer)

 -- moves the file pointer to the

starting of the file, and reset it.

fseek(fileptr, offset, position)

 – moves the file pointer to the

location (position + offset)

position :

 SEEK_SET – beginning of file

 SEEK_CUR – current position

 SEEK_END – end of the file

72

Formatted I / O

/* using fscanf() and fprintf() functions */

#include<stdio.h>

int main() {

 FILE *fp;

 int rno , i;

 float avg;

 char name[20] , filename[15];

 printf("\nEnter the filename\n");

 scanf("%s",filename);

 fp=fopen(filename,"w");

 for(i=1;i<=3;i++) {

 printf("Enter rno,name,average

 of student no:%d",i);

 scanf("%d %s %f",&rno,name,&avg);

 fprintf(fp,"%d %s %f\n",rno,name,avg);

 }

 fclose(fp);

 fp=fopen (filename, "r“);

 for(i=1;i<=3;i++) {

 fscanf(fp,"%d %s %f",&rno,name,&avg);

 printf("\n%d %s %f",rno,name,avg);

 }

 fclose(fp);

}

/*Receives strings from keyboard
 and writes them to file
 and prints on screen*/
#include<stdio.h>
int main() {
 FILE *fp;
 char s[80];
 fp=fopen(“poem.txt","w");
 if(fp==NULL) {
 puts("Cannot open file");exit(0);
 }
 printf("\nEnter a few lines of text:\n");
 while(strlen(gets(s))>0){
 fputs(s,fp);
 fputs("\n",fp);
 }
 fclose(fp);
 fp=fopen(“poem.txt","r");

 if(fp==NULL){

 puts("Cannot open file"); exit(0);

 }

 printf("\nContents of file:\n");

 while(fgets(s,79,fp)!=NULL)

 printf("%s",s);

 fclose(fp);
} 73

/* using putw() and getw() functions */

#include<stdio.h>

int main() {

 FILE *fp1,*fp2; int i,n;

 char *filename;

 clrscr();

 fp1=fopen("test.txt","w");

 for(i=10;i<=50;i+=10)

 putw(i,fp1);

 fclose(fp1);

 do {

 printf("\nEnter the filename : \n");

 scanf("%s",filename);

 fp2=fopen(filename,"r");

 if(fp2==NULL)

 printf("\nCannot open the file");

 } while(fp2==NULL);

 while(!feof(fp2)) {

 n=getw(fp2);

 if(n==-1) printf("\nRan out of data");

 else printf("\n%d",n);

 }

 fclose(fp2);

 getch();

}

fputc() fgetc() Individual characters

fputs() fgets() Character Strings

fprintf() fscanf() Formatted ASCII

fwrite() fread() Binary files

write() read() Low-level binary

NAME MEANING

stdin Standard input (from keyboard)

stdout Standard output (to monitor)

stderr Standard error output (to monitor)

stdaux Standard auxiliary (both input and

output)

stdprn Standard printer output(to printer)

Standard I / O

Predefined Streams

74

Handling Records (structures) in a File

struct player {

 char name[40]; int age; int runs;

} p1,p2;

void main() {

 int i ; FILE *fp = fopen ("player.txt", "w");

 if(fp == NULL) {

 printf ("\nCannot open file."); exit(0);

 }

 for(i=0;i<3;i++) {

 printf("Enter name, age, runs of a player : ");

 scanf("%s %d %d",p1.name, &p1.age,&p1.runs);

 fwrite(&p1,sizeof(p1),1,fp);

 }

 fclose(fp);

 fp = fopen("player.txt","r");

 printf(“\nRecords Entered : \n");

 for(i=0;i<3;i++) {

 fread(&p2,sizeof(p2),1,fp);

 printf("\nName : %s\nAge : %d\nRuns : %d",p2.name,p2.age,p2.runs);

 }

 fclose(fp);

} 75

Error Handling:
While operating on files, there may be a chance of having certain errors which will

cause abnormal behavior in our programs.

1)Opening an file that was not present in the system.

2)Trying to read beyond the end of file mark.

3)Device overflow.

4)Trying to use a file that has not been opened.

5)Trying to perform an operation on a file when the file is opened for another type of

operation.

6)Attempting to write to a write-protected file.

feof(fp) returns non-zero integer value if
we reach end of the file otherwise zero.

ferror(fp) returns non-zero integer value
if an error has been detected otherwise
zero

perror(string)prints the string, a colon
and an error message specified by the
compiler

file pointer (fp) will return NULL if it
cannot open the specified file.

/* program on ferror() and perror () */
#include<stdio.h>
int main(){
 FILE *fp;
 char ch;
 fp=fopen("str.txt","w");
 ch=getc(fp);
 if(ferror(fp))
 perror(“Error Raised : ");
 else
 printf("%c",ch);
 fclose(fp);
}

76

#include<stdio.h>
main(){
FILE *fp1,*fp2;
int i,number;
char *filename;
fp1=fopen("TEST.txt","w");
for(i=10;i<=50;i+=10)
 putw(i,fp1);
fclose(fp1);
file:
printf("\nEnter the filename\n");
scanf("%s",filename);
fp2=fopen(filename,"r");
if(fp2==NULL){
 printf("\nCannot open the file");
 printf("\nType File name again");
 goto file;}
else{
 for(i=1;i<=10;i++){
 number=getw(fp2);
 if(feof(fp2)){
 printf("\nRan out of data");
 break;}
else
 printf("\n%d",number); } }
fclose(fp2);}

fp will return NULL if unable to open
the file

feof(fp) returns 1 if it reaches end of
file otherwise 0.

Output:
Enter the filename
TETS.txt
Cannot open the file
Type the File name again
Enter the filename
TEST.txt
10
20
30
40
50
Ran out of data.

77

Structure of FILE pointer

Type: FILE

 File control structure for streams.

 typedef struct {

 short level;

 unsigned flags;

 char fd;

 unsigned char hold;

 short bsize;

 unsigned char *buffer, *curp;

 unsigned istemp;

 short token;

 } FILE;

rename(“old-filename",”new-filename");

 -- It renames the file with the new name

remove(“filename")

 -- It removes the file specified (macro)

unlink(“filename");

 -- It also removes the file name

fcloseall();

 -- Closes all the opened streams in the

 program except standard streams.

fflush(file_pointer)

 -- Bytes in the buffer transferred to file.

tmpfile ()

 -- creates a temporary file, to be deleted

 when program is completed.

tmpnam(“filename”)

 -- creates a unique file name

File Management Functions

feof(file_pointer)

 -- to check if end of file has been

reached.

ferror(file_pointer)

 -- to check the error status of the file

clearerr(file_pointer)

 -- to reset the error status of the file

File status functions

78

