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What is Control System?

d A system Controlling the operation of another system.
d A system that can regulate itself and another system.

d A control System is a device, or set of devices to manage,
command, direct or regulate the behaviour of other device(s) or

system(s).
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J System — An interconnection of elements and devices for a desired
purpose.

1 Control System — An interconnection of components forming a system
configuration that will provide a desired response.

 Process — The device, plant, or system under control. The input and
output relationship represents the cause-and-effect relationship of the
process.

Input———| Process —— Output
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Definitions (Contd..)

J Controlled Variable— It is the quantity or condition that is measured
and Controlled. Normally controlled variable is the output of the control
system.

 Manipulated Variable— It is the quantity of the condition that is varied
by the controller so as to affect the value of controlled variable.

 Control — Control means measuring the value of controlled variable of
the system and applying the manipulated variable to the system to correct
or limit the deviation of the measured value from a desired value.
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Definitions (Contd..)

Manipulated Variable

Input (
or Output

Set point | Controller Process ——
or Controlled Variable
reference

[ Disturbances— A disturbance is a signal that tends to adversely affect
the value of the system. It is an unwanted input of the system.

If a disturbance is generated within the system, it is called
internal disturbance. While an external disturbance is generated

outside the system.
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Types of Control System

J Open-Loop Control Systems utilize a controller or control actuator to
obtain the desired response.

(A Output has no effect on the control action. No feedback — no
correction of disturbances

[ In other words output is neither measured nor fed back.

Input Output
— | Controller Process ——

Open-loop control system (without feedback).

Examples:- Washing Machine, Toaster, Electric Fan
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Types of Control System (Contd..) .

[ Since in open loop control systems reference input is not compared
with measured output, for each reference input there is fixed operating
condition.

d Therefore, the accuracy of the system depends on calibration.

d The performance of open loop system is severely affected by the
presence of disturbances, or variation in operating/ environmental
conditions.
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Types of Control System (Contd..) .

[ Closed-Loop Control Systems utilizes feedback to compare the actual
output to the desired output response.

Input Output
——> Comparator | —>{ Controller Process

T Measurement | |

Closed-loop feedback control system (with feedback).

Examples:- Refrigerator, Iron
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Types of Control System (Contd..)

 Simple control is often open-loop

- user has a goal and selects an input to a system to try to achieve
this

Forward
path

(a) An open-loop system
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Types of Control System (Contd..)

J More sophisticated arrangements are closed-loop
- user inputs the goal to the system

Error
signal

Comparator
Forward
path

Feedback path

(b) A closed-loop system
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Types of Control System (Contd..) .

J Feedback Control System

1 A system that maintains a prescribed relationship between the output
and some reference input by comparing them and using the difference
(i.e. error) as a means of control is called a feedback control system.

Input | €ITOr

Controller

Process

Feedback

1 Feedback can be positive or negative.
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Examples of Control Systems

(1 Room temperature control

Heat Loss/Gain
from Outside

Desired Room
Temp QQ ‘ Heater/ | <, Temp
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Examples of Modern Control Systems.

(1 Aero plane landing system

Pitch angle N

— e ——
Aileron J
s » .3
ﬂectlon up |
>,
#
/ Aileron
deflection down

-
Y

Z

y

Roll angle
V

X

Yaw angle &
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Examples of Modern Control Systems.

omosi (a) Automobile steering
pe— control system.

(b) The driver uses the
difference between the
actual and the desired
et ot el direction of travel to
— generate a controlled
adjustment of the steering

e wheel.

Autual direction of travel

(b

o
E
B

=
g

=
Y
5

=

’ e (c) Typical direction-of-
travel response.
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Thermostat Example

d Set thermostat to desired room temperature
 Thermostat measures room temperature

d Furnace or AC turn on if measured <> desired

 Air from furnace or AC changes room air temperature

external
air
desired )fl\ ,| thermo- furnace s room air )actual
temp. stat or AC temp.

thermo-
Stat
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Toilet Flush Example

 Float height determines desired water level

 Flush empties tank, float is lowered and valve opens
d Open valve allows water to enter tank

 Float returns to desired level and valve closes

flush
' I
desired )fl\ | fioat valve water , actua
level tank level
float [
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Mathematical Model

d A mathematical model is a set of equations (usually differential
equations) that represents the dynamics of systems.

1 In practice, the complexity of the system requires some assumptions in
the determination model.

J How do we obtain the equations?
d Physical law of the process = Differential Equation
d Examples:

— Mechanical system (Newton’s laws)

— Electrical system (Kirchhoff’s laws)
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Mathematical Model of RLC network

d Example: RLC Circuit

| |
| |
@)

v(7)

-v(t)+V_+V +V_=0

U

1 t
+ RI (t)+—ji(r)dr = v (t)
C

0

di (t)
dt

L
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Laplace Transform

1 The differential equations are transformed into algebraic equations,
which are easier to solve.

d The Laplace transformation for a function of time, f(t) is:

E(s) = I: f(t)e Ndt = LEF (1)}

dy dy
QIf, f@)=—-then, L{f()}=1 - sL{y(t)} — y(0)
dt

d Similarly, |_4[d y(t)l _ sL{dy (t)} G
dt dt

[ odt

A Ths, ¢ yfm% STy (O} -y (0) -
| odt” dt
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Laplace Transform (contd..)

(d Consider RL Network FE L

O By applying KVL - Wy YT R—

. . . . 4 ...... E_ ' . . .

_ d N > ______
4|(t)+2—|(t):0 A A=) .

] d N

O Assume |(O):5A | |
4d By applying Laplace transform +——v-——r——-————o—-———— :

w(4i(t) + 2—OI i(t))e_adt -0
f
dt )

41(s)+ 2(sl (s)—-1i(0)) =0
41(s)+ 2sl (s)—10 =0

1 (s) =

S+ 2
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Transfer Function of Linear System

+o A I o+

VAngR+§;hw) vAg=f§?Mw)
v, (s) (Os} 1
3 Transfer —— = =
_ Vv, (s) ( 11 1+ sRC
function
\ Cs )
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Initial Conditions:

The Laplace transformyields:

(s2v(s) = sy(0)) + 4(s.Y(s)

Since R(s)=1/s and y(0)=1, we obtain:
(s + 4)

-y(0)) + 3Y(s) = 2-R(s)

2

Y(s) = +
(52 + 4s + 3)

s-(32 + 4s + 3)

The steady-state response is:

2
lim y(t) = -
3

to
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Series RL circuit

RZ0°=R+ j0Q

R

e(t)= E,sinot
=E,£0°V @ L ®wlLZ90°=0+ joL Q

dCircuit above is a series RL network connected to an ac voltage
source

Need to find the phasor form of the total impedance of this
combination Z, =(R+j0)+(0+ joL)=R+ joL = R+ j|x |ohms

The total impedance of this series combination is

dThe magnitudea ., - by converting to
polar form: I , Z=Rejal = a0
Q|Z;| = V[R2+(wL)? T e

f=tan™(oL/R)

dThe plot of Z;:

* 2.
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V Series RC circuit .

RZ0°=R+jOQ

R

e(t)=E,sinot g _
_E 0oV @ C—— = /-90°=0-j/CQ

oC

dAbove is a series RC network connected to an ac voltage
The total impedance of this combination is

z,|=(R+j0)+ (0~ j/oC)=R~ j/oC =R~ j|X_]
The polar coordinates are |, |_ /.-,

(1/0C)” ohms

0 = tan 1(_1/0)C ) = tan ’l—l/mRC
L R )
dThe phasor diagram of the total impedance is
» : -
| B = tan - 1fmRC)
|
————————————————— Z = R-jjoC
[l FECE
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Series RLC circuit

R0°=R+ jOQ

R

\i'(t)

e(t)=E,sinot @ L oL £90° =0+ joL Q
=E,£0°V

C
||
||

1

—~Z-90°=0-j/oC Q
oC

The total impedance of the RLC circuitziS= R + j(oL - 1/wC ) ohns
dIn terms of magnitudes it is: Z; = R + j(|X| - [Xc])Q2
dinductive and capacitive reactance have opposite signs
dThus net reactance may be either inductive or capacitive,
depending which is larger

Polar coordinates are

|z, |= \/R2+(coL—1/coC)2 _ \/R2+(‘XL‘—‘XC‘)2

0 = tan 710)L_1/(DC = tan 71‘XL‘_‘XC‘
R R
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Series RLC circui

1 The phasor diagram of the impedance when inductive reactance
IS greater than the capacitive reactance, i.e. when | X |>|X|

21 rsaclance

N1r————

The phasor diagram of the impedance when capacitive
reactance is greater than the inductive reactance, i.e. when
IXc[>IXL]

aaaaa

A,
i
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Newton’s Second Law

O Newton’s law of motion states that the algebraic sum of external
forces acting on a rigid body Iin a given direction is equal to the
product of the mass of the body and its acceleration in the same

direction. The law can be expressed as

> F = Ma
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Basic Types of Mechanical Systems

] Translational
1 Linear Motion

] Rotational
(] Rotational Motion
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Elements of Translational Mechanical Systems

Translational Translational Mass
Spring o Grl—o
o LYY <

Translational

Damper
O | o
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Translational Spring

A translational spring is a mechanical element that can be deformed
by an external force such that the deformation is directly
proportional to the force applied to it.

Translational Spring

NS

Circuit Symbols

Translational Spring

INSTITUTE OF AERONAUTICAL ENGINEERING



Translational Spring (Contd..)

O If Fis the applied force

k
X
ngomu—bf:

d Then X, is the deformationif X, = O I-\m
I:

H Or(x1 - X, ) is the deformation.

O The equation of motion is given as

F = k(x;, — x,)

d Where k is stiffness of spring expressed in N/m

INSTITUTE OF AERONAUTICAL ENGINEERING



Translational Mass

W Translational Mass Is an

. . Translational Mass
Inertia element.

a—t M [

dA mechanical system
without mass does not exist.

dIf a force F is applied to a
mass and it is displaced to x
meters then the relation b/w
force and displacements Is E(t)
given by Newton’s law.

x(t)

d -
F = M —X
dt
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Translational Dampe

EIWhe_n. the _wscosﬂy or drag Is not Translational
negligible in a system, we often Damper
model them with the damping force. o |_ o

dAIll the materials exhibit the property
of damping to some extent.

dIf damping Iin the system is not
enough then extra elements (e.g.

S

Dashpot) are added to increase . .

damping. F = BX
dWhere 5 Y] fficient

(N/ms1) —" e

> F  F = B(X, - X,)
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Transfer Function of Mechanical System

dThe mechanical system requires just one differential equation,
called the equation of motion, to describe it.

d Assume a positive direction of motion, for example, to the right.

L This assumed positive direction of motion is similar to assuming a
current direction in an electrical loop.

d First, draw a free-body diagram, placing on the body all forces that
act on the body either in the direction of motion or opposite to it.

d Second, use Newton’s law to form a differential equation of motion
by summing the forces and setting the sum equal to zero.

d Finally, assuming zero initial conditions, we take the Laplace
transform of the differential equation, separate the variables, and
arrive at the transfer function.
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Example on MTS

1 Consider the following system (friction is negligible)

Kk
G- - x
M
F ——
U Free Body Diagram
f, <
M Ty
F ——

dWhere T« anélm are force applied by the spring and
Inertial force respectively.
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Example on MTS (Contd..)

F=1f +f,
dThen the differential equation of the system is:
F = MX + kX

O Taking the Laplace Transform of both sides and ignoring initial
conditions we get

F(s) = Ms X (s)+ kX (s)
dThe transfer function of the system is
X (s) 1

F(s) Ms ~ + k
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Elements of Rotational Mechanical Systems

JRotational

C i vss A~
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Elements of Rotational Mechanical Systems

Moment of Inertia
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Example#l on MTS

 Consider the following system

F
1 Free Body Diagram
f K <— P f B
M f
F —— <— M X (S) 1

F(s) Ms~ + Bs + k
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Example#2 on MTS

O Find the transfer function of the mechanical translational system
given in Figure.
Free Body Diagram

S RS

f(t) | x(L Vo]

X (s) 1

f(t)=f + f, + f _
F(s) Ms >+ Bs +k
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Example#3 on MTS

U Find the transfer function X,(s)/F(s) of the following system.

M l Free Body Diagram
]} — x1(t) Fog ” ¢ f
Ki ———‘ B 1ok, B | B
’| 111 1 1
M j M,
| x2(t)
< FG) Twm,

F(t) = fo + f + fy +

2

0 = fkl + fMl + fq
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Automobile Suspension Example

m

mX, + b(x, — %)+ k(x, = x;) =0 (eq .1)

mX, 6 +bXx_ + kx_ 6 =Dbx, +kx. (eq. 2)

dTaking Laplace Transform of the equation (2)

ms X _(s)+bsX _(s)+ kX _(s) =bsX ,(s)+ kX .(s)

X, (s) bs + k

X (s) ms?+bs +k
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Example#1 on MRS

L~
B, -
0, K,y 0, \1 0, K, :
Eeaddey T | et
L~

DYV — e

3
?

dWrite the equations similar to MTS and obtain transfer function
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Example#2 on MRS

\YAYAYA YA

dWrite the equations similar to MTS and obtain transfer function
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~ -

~ 0, ) ~

~ K T 2 d

" / 1 71 /! k2 L

e e (v
1 B 2 j

N ~ 2 \ L~
N S~—
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Electric Circuit Analogs

L An electric circuit that is analogous to a system from another
discipline is called an electric circuit analog.

dThe mechanical systems with which we worked can be
represented by equivalent electric circuits.

 Analogs can be obtained by comparing the equations of motion
of a mechanical system, with either electrical mesh or nodal
equations.

dWhen compared with mesh equations, the resulting electrical
circuit is called a series analogy(Force voltage).

dWhen compared with nodal equations, the resulting electrical

circuit is called a parallel analogy(Force current).

INSTITUTE OF AERONAUTICAL ENGINEERING



Series (Force voltage) Analogy

) 1w xn . I R
6%5\'_ 1. Mass= M-> inductor 0000 j\f\ﬁ \
%_/ A =L _ e(t) (f;} Y L= C
g 2. Damper=B-> resistor . T
= — [ R
@ 3. Spring=K-> v
capacitor=1/C
U 4. Applied force=f(t)-> Kirchhoff’'s mesh
hquablon ot motion of yoltage source=e(t) equation for the
the above 5. Velocity =v(t)-> mesh above simple
transhlatl_on?l - current=i(t) series RLC
mechanical system is; .
(Ms ® + Bs + K)X () = F (s) (Ls fﬁt\f’%)."?&) _E(s)
Cs
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Mechanical System to a Series Analog

1 Draw a series analog for the mechanical system.

xy(r) (1)
fit) o 53 i
g_l b I_Ml K> Mz_l JUU
S 0000 g
S S e S S S S S A S S S A L A B S S B

J

/
B1 B2

U The equations of motion in the Laplace transform domain are;
(M 132 + (B, +B,)s+ (K, +K,)X (s)-(B,s+K,)X (s)=F(s) > (1)

- (B,s + KZ)Xl(s)Jr[Mzs2 + (B, +B,)s+ (K, +K_)]X,(s)=0— (2)

1 Coefficients represent sums of electrical impedance.

 Mechanical impedances associated withM1 form the first mesh,

dWhere as impedances between the two masses are common to
the two loops.
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Mechanical System to a Series Analog

U Impedances associated with M2 form the second mesh.
 The result is shown in Figure below, where i1(t) and i2(t) are the

currents of loop-1 and loop-2 respectively.
1 1

H G R1 :
70000 — —"VVW\W— "fﬂfﬂ@\‘ K
N\ g N\ L
&(1) ij :| < | gnz
i\ (1) - / ™ SSRGS / T
di
L—+R|+—J|dt+R(|—|)+—I(|—|)dt_e(t)—>(1)

dt C, C,

di , A
i, 2—|l)+—f(|2—|1)dt=0—>(2)
dt C, C,
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Parallel (Force current) Analogy

—— XlI)

S e 1. Mass= M-> capacitor
0000 =C | % B
%J 7" 2. Damper=B-> resistor MOME NS
= - [ -1/R [
(@) 3. Spring=K-> (®)
Z‘d:Ct(I)_r_dllfL ¢ d Kirchhoff's nodal
oGty AIESllE I e equation for the
 Equation of motiorf'gf et s_ourcezl(t) simple parallel
the above translafop{&iOC!ty =v(t)-> node RLC network
mechanical systenjgiage =v(i shown above is;

(|\/|32+Bs+K)X(S)=F(S) (CS+R+LWV(S):I(S)
L Ls )
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(A Draw a parallel analog for the mechanical system.

_T|“\J Xa(1)
% .:':'} K V2
L N / 'ij O O EI \ f\

|
|
I I' T T T T 1T 1T T T 1T31T 1T T 1T T 1T T T T T 5 T T T T T T 1
T T T T T T T T T T 1T T T T T T T T T [ [ T T T T T T 11
)
J /
Bl B2

1 Equations of motion after conversion to velocity are;

(K, + KZ)}Vl(S)_(B3 +&)v2(8) = F(s) > (1

s )

[(M S+ (B, +B,)+
S

(K, + K3)}v2(s): 0 - (2)

K \ [

—(B3+—2 v.(s)+|M s+ (B, +B,)+

s ]

 The Equation (1) and (2) are also analogous to electrical node
equations.

d Coefficients represent sums of electrical admittances.

 Admittances associated with M1 form the elements connected

to the first node

S
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Mechanical System to a Parallel Analo

d whereas mechanical admittances b/w the two masses are common
to the two nodes.

 Mechanical admittances associated with M2 form the elements
connected to the second node.

d The result is shown in the Figure below, where V1(t) and V2(t) are
the voltages of node-1 and node-2, respectively.

R3

V(6 VvV V(1)
i(f) G) ¢ 1~ RL L1 - C R2 L3
dv, 1 1 1 1 _
C, + V1+—jV1dt+—(V1—V2)+—I(V1—V2)dt:|(t)—>(1)
dt R, L, R, L,
dv 1 1 1 1
C, =V, [V dt + —(V, =V )+ — [ (V, - V,)dt =0 > (2)
dt R L R L

2 3 3 2
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Unit-2
BLOCK DIAGRAM REDUCTION AND
TIME RESPONSE ANALYSIS
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Introduction

U Time response of a dynamic system response to an input
expressed as a function of time.

\/\./

>

)
[
:l'\.-' -

Ty A

i

[

dThe time response of any system has two components
dTransient response

Steady-state response
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Introduction (Contd..)

dWhen the response of the system is changed from equilibrium it
takes some time to settle down.

This is called transient response.

6

dThe response of the Step Input
system after the transient

=

| | | | | | | |
0 2 4 6 8 10 12 14 16 20

Time (sec)

response is called steady . @
state response. Response S
i )

)

ad

I @

oo

1 Transient Response n

=)

@©

L

0p]
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Introduction (Contd..)

dTransient response depend upon the system poles only and not
on the type of input.

it is therefore sufficient to analyze the transient response using
a step input.

dThe steady-state response depends on system dynamics and
the input quantity.

it is then examined using different test signals by final value
theorem.
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Introduction (Contd..)

 The first order system has only one pole.
C(s) K

R(s) Ts +1
1 Where K is the D.C gain and T is the time constant of the system.

 Time constant is a measure of how quickly a 1%t order system
responds to a unit step input.

[ D.C Gain of the system is ratio between the input signal and the
steady state value of output.
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Introduction (Contd..)

1 The first order system given below.
10

G(s) =
3s + 1

J D.Cgainis 10 and time constant is 3 seconds.

[ For the following system

3/5

3
S+ 5 1/5s +1

d D.C Gain of the system is 3/5 and time constant is 1/5
seconds.
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Impulse Response of 1t Order System

J Consider the following 15t order system

C(s)

> t

R(s) =06(s) =1

C(s) =

Ts +1
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Impulse Response of 15t Order System

C(s) =

Ts + 1
(d Re-arrange following equation as

K /T
C(s) =

s+ 1/T

dIn order to compute the response of the system in time domain
we need to compute inverse Laplace transform of the above
equation.

K _
L_l( C W _ Ce _at C(t): _e t/T
\s+a) T
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Impulse Response of 15t Order System

aIf K=3 and T=2s then K /1
c(t) = —e
T
K/T*exp(-t/T)
1.5 ‘ ‘
1 L
57
0.5
0 | | | I
0 2 4 6 8 10

Time
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Step Response of 15t Order System

[ Consider the following 1t order system

C(s)

R(s)

R(s) =U(s) = —
S
K
C(s) =
S s(Ts +1)

diIn order to find out the inverse Laplace of the above equation, we
need to break it into partial fraction expansion

K KT
C(s) = —
S Ts + 1

INSTITUTE OF AERONAUTICAL ENGINEERING




Step Response of 15t Order System

C(s) = K(l—— ! )

\s Ts +1)

 Taking Inverse Laplace of above equation

c() = Kuw-e'T)

d Where u(t)=1
c)=K(-e"'T)

1 When t=T (time constant)

c() = K(l-e')=0.632 K
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Step Response of 15t Order System

[ If K=10 and T=1.5s then c(t) = K (1 e UT )

K*(1-exp(-t/T))

11
10 -
. = " ‘stepResponse
8- i
T _ steady state output 10
6 D.C Gain = K = _ |
= In 1
S TTT763% put
5+ I i
4t : i
|
3f , i
|
2 | _
l Unit Step Input
1 I
|
0 | i | | | | | | | |
0 1, 2 3 4 5 6 7 8 9 10
I Time
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Step Response of 15t Order System

1 System takes five time constants to reach its final value.

ety ,Slope= " .
{./ T f'{.i':::l =1 __E_!—[?.-T]
' I | s

| 4 |

0.632

- 860.5%

b
-]
Lad
-]
o
~
L
-]
=
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Step Response of 15t Order System

Q IfK=10and T=1, 3, 5, 7 c(t) = K (1 —e )
K*(1-exp(-t/T))
11
10 T=1s
9l ]
8t T=3s |
2l i
T=5

= ° 7

S 5 T=7s .
| i
| i
| i
. i
0 ‘ |

Time
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Step Response of 15t Order System

4 IfK=1, 3,5, 10 and T=1 c(t) = K(l—e_t/T)
K*(1-exp(-t/T))

11

10 -
K=10
9 L
8 L
7 L
6 L
= K=5
(&) 5 |
4+
K=3
3 L
2 L
K=1
1
0 | |
0 5 10 1-
Time
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Block Diagram Algebra

d We often represent control systems using block diagrams. A block
diagram consists of blocks that represent transfer functions of the
different variables of interest.

 If a block diagram has many blocks, not all of which are in cascade,
then it is useful to have rules for rearranging the diagram such that you
end up with only one block.
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Reduction techniques

1. Combining blocks in cascade

2. Combining blocks in parallel

‘ +
> Gl +
<)  + G, —
—c,
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Reduction techniques

3. Moving a summing point behind a block

+ +
=€G—> ﬁﬁeaq?
G_

Moving a summing point ahead of a block

- +
ﬁ 'ﬁ B

®

| V+

® |
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Reduction techniques

4. Moving a pickoff point behind a block

"G T <) G ”
5. Moving a pickoff point ahead of a block
— G > ﬁ J » G —————»
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Reduction techniques

6. Eliminating a feedback loop

S Y G > ﬁ q G
il 1F GH
H I
s . G
4%%%’ G > <mm)> > -,
=+ _
— 1+ G
H =1
7. Swap with two neighboring summing points
+ + + +
A — —2 B “ B— —3% A
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Signal flow graphs

 Alternative method to block diagram representation, developed by
Samuel Jefferson Mason.

(d Advantage: the availability of a flow graph gain formula, also called
Mason’s gain formula.

O A signal-flow graph consists of a network in which nodes are connected
by directed branches.

O It depicts the flow of signals from one point of a system to another and
gives the relationships among the signals.
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Fundamentals of Sighal Flow Graphs

0 Consider a simple equation below and draw its signal flow graph:
y = a&x

O The signal flow graph of the equation is shown below;

X @ oy

U Every variable in a signal flow graph is designed by a Node.

U Every transmission function in a signal flow graph is designed by a
Branch.

U Branches are always unidirectional.

U The arrow in the branch denotes the direction of the signal flow.
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Terminologies

d An input node or source contain only the outgoing branches. i.e., X,
d An output node or sink contain only the incoming branches. i.e., X,
O A path is a continuous, unidirectional succession of branches along which
no node is passed more than ones. i.e.,
X, to X, to X, X, to X5to X,
d Aforward path is a path from the input node to the output node. i.e.,
X, to X, to X5to X, , and X, to X, to X,, are forward paths.
QA feedback path or feedback loop is a path which originates and
terminates on the same node. i.e.; X, to X; and back to X, is a feedback

path.
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Terminologies

d A self-loop is a feedback loop consisting of a single branch. i.e.; As; is
a self loop.

U The gain of a branch is the transmission function of that branch.

O The path gain is the product of branch gains encountered in traversing
a path. i.e. the gain of forwards path X; to X, to X;to X, Is A,;A3A 3

O The loop gain is the product of the branch gains of the loop. i.e., the

loop gain of the feedback loop from X, to X; and back to X, is Aj,A,;

0 Two loops, paths, or loop and a path are said to be non-touching if
they have no nodes in common. A,
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Block Diagram Reduction-Example-1

1 For the system represented by the following block diagram determine:
Open loop transfer function

Feed Forward Transfer function

control ratio

feedback ratio

error ratio

closed loop transfer function

SRR I

characteristic equation

R + 4 1 G
;: f K s+ 1 [ -y -
8 ,

0.1
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Block Diagram Reduction-Example-1 (Contd..)

 First we will reduce the given block diagram to canonical form

R + S 1| C
i ~c+1|‘ -1 "
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Block Diagram Reduction-Example-1 (Contd..)
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Block Diagram Reduction-Example-1 (Contd..)

1. Open loop transfer functio B (s)

= G (s)H (s) G(s)
E(s) R+ K C

2. Feed Forward Transfe ¢ ¢s)

i+Ks+1
= G(s) T
E(s)

oll

C (s) - G (s) H (s)

function _
R(s) 1+ G(s)H (s)

7. Characteristic equation

3. Control ratio 22 _ _GH(S)
R(s) 1+ G(s)H (s) 1+G(s)H(s) =0
4. Feedback E¢s) _ I

R(s) 1+ G(s)H (s)

5. Error ratio cls) GG
R(s) 1+ G(s)H (s)
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Block Diagram: Reduction Example-2
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Block Diagram: Reduction Example-2 (Contd..)
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Block Diagram: Reduction Example-2 (Contd..)
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Block Diagram: Reduction Example-2 (Contd..)
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Block Diagram: Reduction Example-2 (Contd..)

R e e
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Block Diagram: Reduction Example-2 (Contd..)

QI oo
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Block Diagram: Reduction Example-2 (Contd..)

GlGZGB C
1-G,G,H,+G,G H,
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Block Diagram: Reduction Example-2 (Contd..)

R G,G,G, C
1-6,6,H +G,G,H,+G,G,G,
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Mason’s Rule

dThe block diagram reduction technique requires successive
application of fundamental relationships in order to arrive at the
system transfer function.

1 On the other hand, Mason’s rule for reducing a signal-flow graph
to a single transfer function requires the application of one
formula.

dThe formula was derived by S. J. Mason when he related the
signal-flow graph to the simultaneous equations that can be

written from the graph.
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Mason’s Rule

dThe transfer function, C(s)/R(s), of a system represented by a
signal-flow graph is;

C(S)_ - 1=
R(s) A

dWhere

dn = number of forward paths.

AP, = the i " forward-path gain.

A = Determinant of the system

A, = Determinant of the it" forward path

A is called the signal flow graph determinant or characteristic
function. Since A=0 is the system characteristic equation.
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Mason’s Rule

C(s) ;' !

R(s) A

d A = 1- (sum of all individual loop gains) + (sum of the products of
the gains of all possible two loops that do not touch each other) —
(sum of the products of the gains of all possible three loops that do
not touch each other) + ... and so forth with sums of higher number

of non-touching loop gains

d A, = value of A for the part of the block diagram that does not
touch the i-th forward path (A; = 1 if there are no non-touching loops
to the i-th path.)
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' Systematic approach .

Calculate forward path gain P, for each forward path |.
Calculate all loop transfer functions

Consider non-touching loops 2 at a time

Consider non-touching loops 3 at a time

etc

Calculate A from steps 2,3,4 and 5

Calculate A, as portion of A not touching forward path |

N o ook owbdE
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 Apply Mason’s Rule to calculate the transfer function of the system
represented by following Signal Flow Graph

I i
PlA1 + P2A2 + P3A3

R(s) A A
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Example: Forward Paths

Pl = A32 A43 A54 A65 A76 P
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Example: Loop Gains of the Feedback Loops

BT A A L = Ay Ag

L, = A, A, Ly = Ay Agy Aus Agy Ay
L6 = A77

L, = A_ A _

3 34 74 Lig = A Ag Asg Ays Ay Ay
I—7 = Ay Ay Ay

L, = A65 A56
L. = A_A_ A
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Example: two non-touching loops

L.L
L, L, L,L; 376 L,L,
L1L5 L2L6
L L L,Lg
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Example: Three non-touching loops

L.L
L, L, L,L; 376 L,L,
L1L5 L2L6
L L L,Lg

INSTITUTE OF AERONAUTICAL ENGINEERING



' Signal Flow Graph:Example#l

 Apply Mason’s Rule to calculate the transfer function of the system
represented by following Signal Flow Graph

* )

L I
[S=1
¥
Y-

 There are two forward
.
P I:)1:(31(32(34’ I:)2:(31(33(34

O Therefore, C PA +PA,
R A

 There are three feedback loops

L1 = GIG4H1’ Lz = _GleG4H2’ L3 = _GlG3G4H2
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Signal Flow Graph:Example#l (Contd...)

dThere are no non-touching loops, therefore
A = 1- (sum of all individual loop gains)
A=1-(L, +L,+L,)

A = l_(G1G4H1 - G,6,6,H, _GlG3G4H2)
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Signal Flow Graph:Example#l (Contd...)

4 Eliminate forward path-1

A, = 1- (sum of all individual loop gains)+...
A=1

d Eliminate forward path-2
A, = 1- (sum of all individual loop gains)+...
A, =1

C PA +PA, G,G,G, +G,G,G,

R A 1-G,G,H,+G,G,G,H,+G,G,G,H,
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Signal Flow Graph:Example#2

1. Calculate forward path gains for each forward path.

P =G,G,G,G, (path 1) and P,=G.G .G, G, (path 2)

17 2 37 4 5 6 7 8

2. Calculate all loop gains.

L1:(32H2’ L2:H3€‘3’ L3

3. Consider two non-touching loops.
] S Y [ L,L;
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Signal Flow Graph:Example#2 (Contd...)

4. Consider three non-touching loops.
None.

5. Calculate A from steps 2,3,4.

A=1-(L, +L,+Ly+L,)+(L,Ly+LL, +L,L,+L,L,)

A=1-(G,H, +H.,G, +G,H,  +G,H, )+
(G,H,G H, +G,H,G,H, +H,G,G.H, + H,G,G,H,)
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Signal Flow Graph:Example#2 (Contd...)

4 Eliminate forward path-1
A, =1-(L, +L,)

A, =1-(GH, +G,H,)

1

A Eliminate forward path-2

A, :l_(L1+ Lz)

A, :1_(GzH2+G3H3)
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Signal Flow Graph:Example#2 (Contd...)

Y (s) PA, +P,A,

R(s) A

Y(s) G,G,G,G,[1 - (G4H, +G,H )]+ G,G6,G,G,[1 - (G,H, + G4H, )]

R(s) 1-(G,H,+H,G,+GH,+G,H, )+(G,H,GH, +G,H,G,H, +H,G,G,H, + H,G,G,H,)
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Block Diagram to SFG:Example#3

Hl
R(S) E(sf— X \— X C(s)
( G, —'@__1’62 _’®7'Gs G, |e—
_ 2
H2
H3

R() 1 E(s) G, X G X, /G, X3 G,\C(s)
G > '® > ) > >

7~

W

2
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Block Diagram to SFG:Example#3 (Contd..)

A=1+(GCG.G.G

1273 "4

H3 +GZG3H2 +GgG4Hl)
P =GG,GG,; A =1
C(s) G.G.G.G

12223
R(s) 1+GGGGH,+GGH,+G,G,H,
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d Example-1: Convert the block diagram into a signal flow graph:

+¥
. j; f 52 §§ V . é ; f\ .
Ris) + Vi(s) G\(s) Vals) + 1(s) o Gus) Vals) ; Vs(s) Gals) Cis) .

_ i — —
V r
L?m Hy(s) L’ £ | )

[}
|

Ve.is)
6
Ris) O O )] O @] O O Cis)
Vi) Vals) Vals) Vyls) Vsis)
O O O
Vals) Vo) Valx)
(ex)
1
Ri(s) O -

Hy(s)
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A If desired, simplify the signal-flow graph to the one shown in
Figure (c) by eliminating signals that have a single flow in and a
single flow out, such as V2(s), V6(s s), and V8(s).

Fie T 7 (e
3l 3 gl

H|[.’i}

1 Gyls) (ra(5) 1 (71(5)

Ris) O - —— - {3 Cls)
Vals) P’ﬁ[.s'}u

—H3(s)

—H (s}
ich
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Exaple-2: Consider the signal flow graph below and identify the following

AT?

a) Input node.
b) Output node.

c) Forward paths.

d) Feedback paths.

e) Self loop.

f) Determine the loop gains of the feedback loops.
g) Determine the path gains of the forward paths.
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d Example-2: Answers

(a) X,
(b) Xy
(¢c) X, to X, t0oX, toX, toX,tolX, toX; to Xg
X, to X; to X; to X;
X, t0 X, to X, o X, to X, to X, to X
(d) X, to X;t0X,; X;toX,10X; X, toXs10X,; X, toX, tolX; toAX,;
X, to X;to X to X, to X; to X;; X to Xg to X;; X to X; to X,;
X; to X, to X5 to X5; X; to X5 X; to X5 to X to X to X, to X; to X,

(e) X; to X,

(f) Ay Ay AnAss AsgAss, AgsAser AqgAgys Ags AqgAsyy Agql Ay AyyAaa;
AgyAsqAysAsg Az Ay AgrAsg Ays Arg Asg

(8) Az ApAsgAgsAqgs Aras Agy AsgAgs A
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JExample-3: Consider the signal flow graph below and identify the
following; Gels)

G|[.’F} G:{S] G_?,[.'F} 54[5}
- £

Ris) O——{) ) ) Clis)
Vsis) Vals)
* There are four loop gains;
1. Ga(s)H, (s) Hy(s)
2. Gu(s)Ha(s) HA(s)
3. Gu(5)Gs(s)Hx(s) '
4. G4(s)Gs(s)Hs(s)
« There are two forward path gains; « Nontouching loop gains;
L. Gi(s)Ga(s)G3(s) Ga(s)Gs(s) G(s) L [Ga(s)H (5)][G4(s)H(s)]
2. G1(5)Ga(s)Ga(s) Gals)Gals) Ga(s) 2. [Gy(s)H (5)][G4(s)Gs(s) Ha(s)]

3. [Go(s)H 1(5))[G4(5)Ge(5) Ha(s)]
« Nontouching loops;
1Ga(s)H(s)
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JExample-4: Construct the signal flow graph of the block diagram of the
canonical feedback control system and find the control ratio C/R.

R +

E G C

—>- I -
H |=

==

H

The signal flow graph is easily constructed from Fig. Note that the — or + sign of the summing point is

associated with .
R - > c - ¢
Ew

There is only one forward path; hence P, =G

There is only one (feedback) loop. Hence P, = FGH

Finally, the control ratio is
The characteristic function A=1- P, =1+ GH

C PA G
Te=— =

Since the loop touch the forward path A, =1 R A 1+ GH
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JExample-5: Determine the control ratio C/R and the canonical block
diagram of the feedback control system.

The signal flow graph is
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JExample-5:Continue. (finding the control ratio C/R)

R 1 1 1 C
There are two forward paths:  * - - -*
Pl = G]_G:G" Pz = GIGJGq,
There are three feedback loops:
P, =G\GH, Py = -GGG, H, Py = — G636, H,

the signal flow graph determinant or characteristic function,
A=1—(P+ P+ P)

There are no nontouching loops, and all loops touch both forward paths; then
A =1 A, =1

Therefore the control ratio 1s

. C PA +PA, G,G,G, + G,G;G,
R A 1~ GG H, + GGG H,y + GGG H,
G,G,(G, + Gy)

" 1- G,G H, + G,G,G,H, + G,GsG, H,
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dExample-5:Continue. (finding the canonical block diagram)

The direct transfer function is G = Y PA,
G= P:dl + P,A,
G=G,G,( G, + Gy)
The loop transfer function is GH=A —1
GH=1-(P,+P,+P,;)—1

GH- 6164(63H1 + GzH: - HI)

GH (Gz'l‘Gj)Hz_Hl

Therefore H=
G, + G,y
The canonical block diagram is
+ Cc
£ ~ GGG+ Gy I 1 -
(G + GH, — H,
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Sensitivity of Systems To Parameter Variations

For the closed-loop case if GHs) > 1

Y(s) = . R(s) Output affected only by H(s)
H(s
G(s) + AQ(s)

Ri
OpenLoop  AY(s) = AG(s)R(S) L&) > Iy
Closed Loop

@9 +aa9) o
1+ (Qs) + AGQs) PH(s)

Y(s) + AY(s) =

AG(s)
(1+ GHs) + AGHS) (1 + GHS))

GH(s) > AGH(s)

AY(s) = R(s)

AG(s) The change in the output of the closed system
R(s) is reduced by a factor of 1+GH(s)

AY(s) =

(1+ GHs)”
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Sensitivity of Systems To Parameter Variations

d
=

S
AG(s) d_g (d_
G (s) G d G

G )
T (s) = L
1 + H[(s)*G(s)]

T d T G d T G 1 G
S G — pd = X = X
d G d G (1+ GH )
Sg T _ 1 Sensitivity of the closed-loop to G variations reduced
(1 + GH )
S T — GH Sensitivity of the closed-loop to H variations
H =

(1 + GH ) When GH is large sensitivity approaches 1
Changes in H directly affects the output response

INSTITUTE OF AERONAUTICAL ENGINEERING



(a) Open loop amplifier.

(b) Amplifier with feedback.
+ D] et - 0 AT‘
Gain Gain B ?f'
_K'E _K.u oty H_1
T 1T 1 +
f— f— f— f— M —K,
+
() ih)
B
Open loop Closed loop Block diagram model of feedback amplifier assuming R, == R of the amplifier.
v . =-K_-v. R2
0 a'in p=— R, =Rl + R2
R1 P
T =-k _
a Ka T 1
T=s—" Ska T T
‘ T—1 1+Ka-[3 1+Ka-B
Ka —

If Ka is large, the sensitivity is low .

4 T 1 -4
K, =10 B =01 Sg =—— =999 x 10

3
1+ 10
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Disturbance Signals In a Feedback

_—
WY A e Ve nl eV e e W e

R(S) .L . 1 15 X T i5) ;é T . | r M— 8

3 R + Js+ 0
Maolor back emf K, M - 300 =
z L
E 2004 P
E(s) = R(s) — o(s) R(s)=0 R R s
21007 5, § Py,
Oy,
E{ } _ _m( ) 0{} 1I0 EIO _?I{}
B)= & Maotor torque (N-m)
1 D
E{s) = —(s) = — Td(s) Td{s)= —
Jg+b+ | Km— i
Ra
1 D D
lim E(t)= lim s - [—j = ——t —@(infinite)
. . &
t — mfinite s=>0 | 1o0pe | Km— b+ | Km —
Ra Ra
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Disturbance Signals In a Feedback

_—
WY A e Ve nl eV e e W e

Aamplitier
1 1 K, Tyls) 1) 1
'Q ' Ka R, . M '

Closed-loop speed tachometer control system.
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J Gear is a toothed machine part, such as a wheel
or cylinder, that meshes with another toothed
part to transmit motion or to change speed or
direction.
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[ The two gears turn in opposite directions: one clockwise and the other
counterclockwise.

d Two gears revolve at different speeds when number of teeth on each gear
are different.

GEAR A
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Gearing Up and Down

 Gearing up is able to convert torque to velocity.

 The more velocity gained, the more torque sacrifice.
3 to 1 ratio

 The ratio is exactly the same: if you get three times
your original angular velocity, you reduce the resulting

torque to one third.

 This conversion is symmetric: we can also convert

velocity to torque at the same ratio. 3 tums 1 tum

moves by  moves by
24 teeth 24 teeth

1 The price of the conversion is power loss due to
friction.
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ear train

d A typical DC motor operates at speeds that are far too high to be
useful, and at torques that are far too low.

 Gear reduction is the standard method by which a motor is made

@ Ay

Follower
[dler
engineeringtoolbox.com

useful.

Criver

Driver
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Gear Ratio

O You can calculate the gear ratio by using
the number of teeth of the driver
divided by the number of teeth of the

follower. 3 to 1 ratio

d We gear up when we increase velocity

and decrease torque. >
Ratio: 3:1 rFoIIowe
L We gear down when we increase torque Stums 1 tum
and reduce velocity. moves by  moves by
. 24 teeth 24 teeth
Ratio: 1:3

Gear Ratio = # teeth input gear / # teeth output gear
= torque in / torque out = speed out / speed in
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Example of Gear Trains

d A most commonly used example of gear trains is the gears of an
automobile.

FROM 4 = . TO
ENGINE DIFFERENTIAL

Y

Idler
Gear

Layshaft
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Mathematical Modelling of Gear Trains

J Gears increase or reduce angular velocity (while simultaneously
decreasing or increasing torque, such that energy is conserved).

Energy of Driving Gear = Energy of Following Gear

ngl = N 292 Driver

.

Followeet

N 1~ Number of Teeth of Driving Gear

¢, ——— Angular Movement of Driving Gear
N » — > Number of Teeth of Following Gear

¢, —— Angular Movement of Following Gear
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Mathematical Modelling of Gear Trains

4 In the system below, a torque, T, is applied to gear 1 (with number of
teeth N, moment of inertia J, and a rotational friction B,).

4 It, in turn, is connected to gear 2 (with number of teeth N,, moment of
inertia J, and a rotational friction B,).

d The angle 6, is defined positive clockwise, 6, is defined positive
clockwise. The torque acts in the direction of 6,.

 Assume that T, is the load torque applied by the load connected to

Gear-2.
/,.;.. Jz iR
N2
H Bl
r__ r,;_'
)
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Mathematical Modellin

L For Gear-1
T, = 316?1 + 8101 + Tﬁ Eq (1)
] For Gear-2
]
) | | > 2 i

T, =J,0, +B,0, +T, ——Eq(?) N, _]1

 Since o By -
v
N.8, = N._,6
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(] Gear Ratio is calculated as

T N N
2= —2 T, =—T, ]
T, N, N, > ‘ %
N, ] N,
[ Put this value in eq (1) 1 1
N IP1 Bl
. . | - .
r, =J,0,+ B 6O + T, + s
N = By
d Put T, from eq (2)
. . N, . .
r,=J,0,+BO + (J,0, +B,O, +T,)
2
 Substitute 6, from eq (3)
¥ . 1 N, .. N, . N,
r, =30, +B,0 + (J, 0, + B, 0, + T,)
N, N, N, N,
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r., =360, +B6O +—J,—6,+B,—6, + —LT,)
N2 N2 2 N2
d After simplification , ,
. N, . . N, . N,
T, = J,0,+ J,0, + B0, + B,O0, + T,
N2 NZ N2

a
L N, N,
2 2
Nl Nl
Jog =3, + J, B,, = B, + B,
NZ NZ
. . N,
T, = ‘Jeqel + Beqﬁl +_N T

2
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Mathematical Modelling of Gear Trains

1 For three gears connected together
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Armature Controlled'D.C Motor

Input: voltage u
Output: Angular velocity o

Elecrical Subsystem (loop method): — .
N
- /00(\6
N<
_ di
u=R_i, +L, _dt—+ e, where e | = back-emfv oltage

Mechanical Subsystem

INSTITUTE OF AERONAUTICAL ENGINEERING



Armature Controlled'D.C Motor

Power Transformation:

Torque-Current: T ., = Kl

Voltage-Speed: &, = Ky

where K;: torque constant, K,: velocity constant For an ideal motor

K, =K,
Combing previous equations results in the following mathematical
model:
I di _ _
L + R I, + Kjw =u
] dt
| Jo + Bo-K. i, =0
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Armature Controlled'D.C Motor

Taking Laplace transform of the system’s differential equations
with zero initial conditions gives:
((L,s+ R_)I_(5) + K,Q() = U(s)

((Js + B)Q(s)-K (s) =0

t | a
Eliminating |, yields the input-output transfer function

Q(s) K,

Us L,3°+(R,+BL,)s+BR, +K,K,
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Armature Controlled'D.C Motor

If output of the D.C motor is angular position 0 then we
Know

do
®w =— or Q(s) =s0(s)
dt

Which yields following transfer function

o) (K, /R,)
Us) s(Js +(B+ KK, /R.))
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Field Controlled D.C Motor

Applying KVL at field circuit

di

e =ifRf + L ”

Mechanical Subsystem

T =Jw + Bow

m
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Field Controlled D.C Motor

Power Transformation:

Torque-Current:T,, = K i,

where K;: torque constant

Combing previous equations and taking Laplace transform
(considering initial conditions to zero) results in the following
mathematical model:

E,(s)=R;1,(s)+sL 1,(s)

[IsQ(s) + BQ(s) = K 1(s)
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Field Controlled D.C Motor

Eliminating 1(S) yields

Q(s) Ky

E.(s) (Js+B)L,s+R;)

If angular position 6 is output of the motor

IQf
wh | ]
i
L e,
0

1

é(s)
E.() s(Is+B)L,s+R,)
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Closed Loop Control of DC Drives

[ Closed loop control is when the firing angle is varied automatically
by a controller to achieve a reference speed or torque

 This requires the use of sensors to feed back the actual motor
speed and torque to be compared with the reference values

Output
signal

Reference
signal
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Closed Loop Control of DC Drives

Feedback loops may be provided to satisfy one or more of the
following:

JProtection
JEnhancement of response — fast response with small overshoot
dIimprove steady-state accuracy
Variables to be controlled in drives:
dTorque — achieved by controlling current
dSpeed
dPosition
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Closed Loop Control of DC Drives

(1 Cascade control structure
— Flexible — outer loops can be added/removed depending on control
requirements.
— Control variable of inner loop (eg: speed, torque) can be limited by limiting its
reference value
— Torque loop is fastest, speed loop — slower and position loop - slowest

position speed torque converter
controller controller controller
+ % T T +
0= @ ® O
— ™ —_— —» L
' _,ﬂ_ Q @
tacho
Kt
1/s
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Closed Loop Control of DC Drives

1 Cascade control structure:
— |Inner Torque (Current) Control Loop:

* Current control loop is used to control torque via armature
current (i,) and maintains current within a safe limit

* Accelerates and decelerates the drive at maximum permissible
current and torque during transient operations Torque

(Current)
Control Loop

position speed / torque converter
controller controller controller

0> N m*:‘ > L — —> —*
—()— O O

'] 3

1/s
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Closed Loop Control of DC Drives

(] Cascade control structure

J Speed Control Loop:
* Ensures that the actual speed is always equal to reference speed ®*

* Provides fast response to changes in ®*, T, and supply voltage (i.e. any
transients are overcome within the shortest feasible time) without

exceeding motor and converter capability

position / speed torque converter \

controller controller controller

-+ % T
e e e e
tacho
k
Speed !
Control 4//
Loop

1/s
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A.C Servo Motor

UJAn AC servomotor is basically a two phase induction motor
except for certain special design features. A two phase
servomotor differs in the following two ways from a normal

Induction motor.
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Speed - Torque Curve

TORQUE

SPEED
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Speed - Torque Curve

AN induction motor produces different amounts of torque, (twisting
force) at different speeds.

On the diagram, speed is on the horizontal axis and torque and
current are on the vertical axis.

dThe motor will produce locked rotor torque, and draw 6-10 times
the motor FLA amount.

As the motor increases speed, the torgue will move through the
Pull up torque region, and motor current will drop.

As the speed continues to increase, the motor then gets to the
point where it produces maximum torque, called the breakdown
torgue, and the current continues to decrease.
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Speed - Torque Curve

QIf this motor was running unloaded, the rotor speed would end up
very close to the synchronous speed, and the current would end up
about 30% of FLA.

dAs the load was increased, the current would move back up the
curve as well as the torque.

UJANnd the motor speed would drop from very close to synchronous
speed towards the rated speed.
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Speed - Torque Curve

(300 yp600_ _ _ 5
% % BT Ip
or&0E | [éUrRent ~~._
Breakdown >~ -
(300 T S~
%) orque .
(200 ° (200-250%)
o)
2 Pull Up
Locked
Rotor Torque
ortue (125%) \
d
ooy \
orque - ¢y T T T T T T T T TTT T T T T T T TTTTT T T T T T \
\
(100%) No Load
. Current

(30%)
SPEED Rated Speed Synch Speed
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dSynchros are used primarily for the rapid and accurate
transmission of information between equipment and stations.

LExamples of such information are changes in course, speed, and
range of targets or missiles; angular displacement (position) of the
ship's rudder; and changes in the speed and depth of torpedoes.

UThis information must be transmitted quickly and accurately.
Synchros can provide this speed and accuracy. They are reliable,
adaptable, and compact.

SYNCHRO INTERCONNECTING

RECEIVERS
INDICATOR
DIALS
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dSynchros work in teams. Two or more synchros interconnected
electrically form a synchro system. There are two general
classifications of synchro systems—TORQUE SYSTEMS AND
CONTROL SYSTEMS.

U Torque-synchro systems use torque synchros and control-synchro
systems use control synchros. The load dictates the type of synchro
system, and thus the type of synchro.

U Torque-synchro systems are classified "torque" because they are
mainly concerned with the torque or turning force required to move
light loads such as dials, pointers, or similar indicators.

UThe positioning of these devices requires a relatively low amount
of torgue. Control synchros are used In systems that are designed
to move heavy loads such as gun directors, radar antennas, and




Schematic symbols for Synchros

S2
S1

R1 :

o S2

L
R2

S3 TRANSMITTERS  ©F

AND RECEIVERS

TRANSMITTERS, RECEIVERS
CONTROLS TRANSFORMERS

S2

rB%U\———-OIM
o R2

S3 CONTROL S1
TRANSFORMERS
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Synchro Torgque Transmitter

dThe synchro transmitter converts the angular position of its rotor
(mechanical input) into an electrical output signal.

dWhen a 115-volt ac excitation voltage is applied to the rotor of a
synchro transmitter, the resultant current produces an ac magnetic
field around the rotor winding.

UdThe lines of force cut through the turns of the three stator
windings and, by transformer action, induce voltage into the stator
colls.

U The effective voltage induced in any stator coil depends upon the
angular position of that coil's axis with respect to the rotor axis.

dWhen the maximum effective coil voltage is known, the effective
voltage induced into a stator coil at any angular displacement can

INSTITUTE OF AERONAUTICAL ENGINEERING



“Control synchro systems

dWhen large amounts of power and a higher degree of accuracy
are required, as in the movement of heavy radar antennas and gun
turrets, torgue synchro systems give way to the use of CONTROL
SYNCHROS.

W Control synchros by themselves cannot move heavy loads.
However, they are used to "control" servo systems, which in turn do
the actual movement.

U There are three types of control synchros:
LUCONTROL TRANSMITTER (CX),
UCONTROL TRANSFORMER (CT), and
UCONTROL DIFFERENTIAL TRANSMITTER (CDX).
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“Control Transformer (CT)

dThe CT compares two signals, the electrical signal applied to its
stator and the mechanical signal applied to its rotor. Its output is a
difference signal that controls a power amplifying device and thus
the movement of heavy equipment.

AN interesting point about the rotor is that it is never connected to
an ac supply and, therefore, induces no voltages in the stator coills.
As a result, the CT stator currents are determined solely by the
voltages applied to the high-impedance stator windings.

U The rotor itself is wound so that its position has very little effect on
the stator currents. Also, there is never any appreciable current
flowing in the rotor because its output voltage is always applied to a
high-impedance load.

UAs a result, the CT rotor does not try to follow the magnetic field of
Its stator and must be turned by some external force.
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Introduction

M In time-domain analysis the response of a dynamic system to an input is
expressed as a function of time.

It is possible to compute the time response of a system if the nature of
input and the mathematical model of the system are known.

[ Usually, the input signals to control systems are not known fully ahead of
time.

O It is therefore difficult to express the actual input signals mathematically
by simple equations.
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Standard Test Signals

1 The characteristics of actual input signals are a sudden shock, a sudden
change, a constant velocity, and constant acceleration.

d The dynamic behavior of a system is therefore judged and compared
under application of standard test signals — an impulse, a step, a
constant velocity, and constant acceleration.

1 The other standard signal of great importance is a sinusoidal signal.
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Standard Test Signals

 Impulse signal

[ The impulse signal imitate the sudden
shock characteristic of actual input

signal.
(A t =0 o()
5(t) =4
|0 t=0
A 4

If A=1, the impulse signal is called unit
impulse signal.

>t
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Standard Test Signals

] Step signal

JThe step signal imitate the
sudden change characteristic

of actual input signal. ug)
[A t >0 A
u(t) =4
|0 t< O
If A=1, the step signal is called 0 >t
unit step signal
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Standard Test Signals

J Ramp signal A

dThe ramp signal imitate the
constant velocity characteristic
of actual input signal.

At t>0
r(t)={( - 0
|0 t<O

r(t) &
AL

1f A=1, the ramp signal is called  ramp signal with slope A A
unit ramp signal
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Standard Test Signals

 Parabolic signal pg)

J The parabolic signal imitate
the constant acceleration
characteristic of actual input

signal.

A’ 0 >t

— t >0 p(t) 4
p(t) - ﬁ 2 4.-5‘""'"'*"'#-‘0*‘!.
i
\O t<0 parabolic signal with slope A\.......... .
QIf A=1, the parabolic signal is  P® osat—yf | |

4. 5perennnennnnms 0 ; 2 >

called unit parabolic signal.
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Relation between standard Test Signals

[A t=0
(t) =
dimpulse W=t d
I dt
[A t> 0
(t) =
DStEp ] io t<o0 da
[ dt
[ At t >0
JdRamp r(t) =3
|0 t<O d
dt
. J [ At 3
JParabolic (0= | =0
{O t<O
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Laplace Transform of Test

Jimpulse
A t=20
5(t) =4
LO t=0
L{o(t)} =6(s) = A
AStep
(A t >0
u(t) = {
LO t< O
L{u)} = U (s) = &
S
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Laplace Transform of Test

JRamp [ At t>0
r(t) =4
LO t< O
LEFD) = R(s) = —
S
JParabolic e
p(t)=J X t >0
LO t< 0
A
L{p(t)} = P(s) = —
S
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Time response

U Time response of a dynamic system response to an input
expressed as a function of time.

\/\./

>

)
[
:l'\.-' -

Ty A

i

[

dThe time response of any system has two components
dTransient response

Steady-state response
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Time response (Contd..)

dWhen the response of the system is changed from equilibrium it
takes some time to settle down.

This is called transient response.

6

dThe response of the Step Input
system after the transient

=

| | | | | | | |
0 2 4 6 8 10 12 14 16 20

Time (sec)

response is called steady . @
state response. Response S
i )

)

ad

I @

oo

1 Transient Response n

=)

@©

L

0p]
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Time response (Contd..)

dTransient response depend upon the system poles only and not
on the type of input.

it is therefore sufficient to analyze the transient response using
a step input.

dThe steady-state response depends on system dynamics and
the input quantity.

it is then examined using different test signals by final value
theorem.
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Time response (Contd..)

 The first order system has only one pole.
C(s) K

R(s) Ts +1
1 Where K is the D.C gain and T is the time constant of the system.

 Time constant is a measure of how quickly a 1%t order system
responds to a unit step input.

[ D.C Gain of the system is ratio between the input signal and the
steady state value of output.
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Time response (Contd..)

1 The first order system given below.
10

G(s) =
3s + 1

J D.Cgainis 10 and time constant is 3 seconds.

[ For the following system

3/5

3
S+ 5 1/5s +1

d D.C Gain of the system is 3/5 and time constant is 1/5
seconds.
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Impulse Response of 1t Order System

J Consider the following 15t order system

C(s)

> t

R(s) =06(s) =1

C(s) =

Ts +1
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Impulse Response of 15t Order System

C(s) =

Ts + 1
(d Re-arrange following equation as

K /T
C(s) =

s+ 1/T

dIn order to compute the response of the system in time domain
we need to compute inverse Laplace transform of the above
equation.

K _
L_l( C W _ Ce _at C(t): _e t/T
\s+a) T
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Impulse Response of 15t Order System

aIf K=3 and T=2s then K /1
c(t) = —e
T
K/T*exp(-t/T)
1.5 ‘ ‘
1 L
57
0.5
0 | | | I
0 2 4 6 8 10

Time
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Step Response of 15t Order System

[ Consider the following 1t order system

C(s)

R(s)

R(s) =U(s) = —
S
K
C(s) =
S s(Ts +1)

diIn order to find out the inverse Laplace of the above equation, we
need to break it into partial fraction expansion

K KT
C(s) = —
S Ts + 1
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Step Response of 15t Order System

C(s) = K(l—— ! )

\s Ts +1)

 Taking Inverse Laplace of above equation

c() = Kuw-e'T)

d Where u(t)=1
c)=K(-e"'T)

1 When t=T (time constant)

c() = K(l-e')=0.632 K
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Step Response of 15t Order System

[ If K=10 and T=1.5s then c(t) = K (1 e UT )

K*(1-exp(-t/T))

11
10 -
. = " ‘stepResponse
8- i
T _ steady state output 10
6 D.C Gain = K = _ |
= In 1
S TTT763% put
5+ I i
4t : i
|
3f , i
|
2 | _
l Unit Step Input
1 I
|
0 | i | | | | | | | |
0 1, 2 3 4 5 6 7 8 9 10
I Time
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Step Response of 15t Order System

1 System takes five time constants to reach its final value.

ety ,Slope= " .
{./ T f'{.i':::l =1 __E_!—[?.-T]
' I | s

| 4 |

0.632

- 860.5%

b
-]
Lad
-]
o
~
L
-]
=
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Step Response of 15t Order System

Q IfK=10and T=1, 3, 5, 7 c(t) = K (1 —e )
K*(1-exp(-t/T))
11
10 T=1s
9l ]
8t T=3s |
2l i
T=5

= ° 7

S 5 T=7s .
| i
| i
| i
. i
0 ‘ |

Time
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Step Response of 15t Order System

4 IfK=1, 3,5, 10 and T=1 c(t) = K (1 —e T )
K*(1-exp(-t/T))

11

10 -
K=10
9 L
8 L
7 L
6 L
= K=5
(&) 5 |
4+
K=3
3 L
2 L
K=1
1
0 | |
0 5 10 1-
Time
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Steady State Error

O If the output of a control system at steady state does not exactly
match with the input, the system is said to have steady state error

d Any physical control system inherently suffers steady-state error in
response to certain types of inputs.

d A system may have no steady-state error to a step input, but the
same system may exhibit nonzero steady-state error to a ramp input.
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Classification of Control Systems

1 Control systems may be classified according to their ability to follow
step inputs, ramp inputs, parabolic inputs, and so on.

d The magnitudes of the steady-state errors due to these individual
inputs are indicative of the goodness of the system.
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Classification of Control Systems

1 Consider the unity-feedback control system with the following open-
loop transfer function

 K(T,s + 1)(Tys + 1)-++(T,s + 1)
GO = Nrs + )Tos + 1) (T,s + 1)

It involves the term sM in the denominator, representing N poles at
the origin.

d A system is called type O, type 1, type 2, ..., if N=0, N=1, N=2, ...,
respectively.
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Classification of Control Systems

1 As the type number is increased, accuracy is improved.

O However, increasing the type number aggravates the stability
problem.

d A compromise between steady-state accuracy and relative stability is
always necessary.
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Steady-state error analysis

C(s)

Unity feedback
H(s)=1

C(s)

Non-unity feedback
H(s)#1
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Steady-state error analysis

For unity feedback system:

E(s)=R(s)-C(s) —  System error

For a non-unity feedback system:

E(s) = R(s)—H(s)C(s) — Actuating error
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Steady State Error of Unity Feedback Systems

1 Consider the system shown in following figure.

R(s) E(s) C(s)

 The closed-loop transfer function is

C(s)  G(s) ooy = K(T,s + 1)(T,s + 1)---(T,,s + 1)
R(s) 1+ G(s) (5) = sN(Tis + 1)(Tos + 1)+ (Tys + 1)
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Steady State Error of Unity Feedback Systems

» Steady state error is defined as the error between the input signal
and the output signal when t-> infinity

 The transfer function between the error signal E(s) and the input

signal R(s) is £ (s) ) |

R(s) 1+G(s)

 The final-value theorem provides a convenient way to find the
steady-state performance of a stable system.

* Since E(s) is E(s) = Tt 1G(S) R(s)

* The steady state error is

1 — limsE(s) = lim > R)
Ess ILH:}ce([) Sl_I)HS ( ) SI—I}{l) 1 + G(S)
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Second Order System

(d We have already discussed the affect of location of poles and zeros on
the transient response of 15t order systems.

(d Compared to the simplicity of a first-order system, a second-order system
exhibits a wide range of responses that must be analyzed and described.

1 Varying a first-order system's parameter (T, K) simply changes the speed
and offset of the response

(d Whereas, changes in the parameters of a second-order system can
change the form of the response.

1 A second-order system can display characteristics much like a first-order
system or, depending on component values, display damped or pure
oscillations for its transient response.
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Introduction

d A general second-order system is characterized by the following transfer
function.

C(s) B

R(s)

® , —— un-damped natural frequency of the second order system,
which is the frequency of oscillation of the system without
damping.

damping ratio of the second order system, which is a measure
& —— ofthe degree of resistance to change in the system output.
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(J Determine the un-damped natural frequency and damping ratio
of the following second order system.

C(s) - 4

R(s) s®+2s+4

1 Compare the numerator and denominator of the given transfer
function with the general 2" order transfer function.

2
n

C(s) B )

R(S)  s*+2tw s+

2
w, =4 = o =2
" " = 2w S = 25

;/2/+2§a)ns+?/n[:§/+2s+/ z?):no:;
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Introduction

2
n

C(s) ~ )

R(s) 52+2§a)ns+a)§

U Two poles of the system are

-—w, ¢ +to g -1

—w. ¢ -0 yo -1
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Introduction

- w. ¢ + o, 4’2—1

2
—w, ¢ —ow V¢ -1

 According the value of , & second-order system can be set
Into one of the four categories

1.Overdamped - when the system has two real distincf poles (
>1).

jw
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Introduction

-w, ¢ + o, 4’2—1

2
-—w, ¢ —w \¢ -1

4 According the value of { |, a second-order system can be set
Into one of the four categories

2. Underdamped - when the system has two complex conjugate podes (O
< <1) jw
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Introduction

-w, ¢ + o, 4’2—1

2
-—w, ¢ —w \¢ -1

4 According the value of { |, a second-order system can be set
Into one of the four categories

3. Undamped - when the system has two imaginary poles (
0).

jw

X

X
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Introduction

-w, ¢ + o, 4’2—1

-, ¢ -0 \¢ g
4 According the value of { |, a second-order system can be set
Into one of the four categories

4, Crltlcally damped - when the system has two real but equal poles (

-C -b -a
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Static Error Constants

1 The static error constants are figures of merit of control systems. The
higher the constants, the smaller the steady-state error.

M In a given system, the output may be the position, velocity, pressure,
temperature, or the like.

[ Therefore, in what follows, we shall call the output “position,” the rate
of change of the output “velocity,” and so on.

1 This means that in a temperature control system “position” represents
the output temperature, “velocity” represents the rate of change of the
output temperature, and so on.
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Static Position Error Constant (K )

[ The steady-state error of the system for a unit-step input is

: 8 1
s = IIn) 1+ G(s) s
B 1
1+ G(0)

1 The static position error constant K, is defined by

K, =limG(s) = G(0)

s—0

O Thus, the steady-state error in terms of the static position error
constant K is given by
1

1+ K,
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Static Position Error Constant (K )

O For a Type 0 system

- K(T,s + 1)(T,s + 1) -
K, = lim = K
s=>0 (Tys + 1)(Tys + 1)+

d For Type 1 or higher order systems

o K(T,s + 1)(Tps + 1)+
K, = lim —
s—0 S (TlS _I_ 1)(Tzs _|_ 1)

 For a unit step input the steady state error e, is

= 00, for N =1

= I fort 0 system
635—1+K, or type 0 systems

0, for type 1 or higher systems

Q
&
|

INSTITUTE OF AERONAUTICAL ENGINEERING



Static Velocity Error Constant (K )

 The steady-state error of the system for a unit-ramp input is

.. = lim > 1
¥ 5501 + G(s) s?
_ s 1
- SI—I}}) SG(S)

1 The static velocity error constant K, is defined by

K, = lim sG(s)

s—0

[ Thus, the steady-state error in terms of the static velocity error constant
K, is given by 1
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Static Velocity Error Constant (K ) .

O For a Type 0 system

o sK(T,s + 1)(Tys + 1)
K, = lim =0
>0 (Tys + 1)(Ths + 1) -+

 For Type 1 systems

- sK(T,s +1)(Tys + 1) -
K, = lim = K
s—0 S(TlS + 1)(T28 + 1)

 For type 2 or higher order systems

- sK(T,s + 1)(Tys + 1)+
K, = lim = 00, for N = 2
=0 sN(Tis + 1)(Ths + 1) -+
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Static Velocity Error Constant (K ) .

d For a ramp input the steady state error e is

1
e = T - o for type O systems
— i — i f t 1 t
ey = K K’ or type 1 systems
1 .
€y = 2 T 0, for type 2 or higher systems
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Static Acceleration Error Constant (K,)

1 The steady-state error of the system for parabolic input is

lim ————
e p—
¥ 5501 4+ G(s) §°
B 1
lin’(l)szG(s)

 The static acceleration error constant K, is defined by

K, = lim s°G(s)

s—0

[ Thus, the steady-state error in terms of the static acceleration error
constant K, is given by 1
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Static Acceleration Error Constant (K,)

O For a Type 0 system
- S*K(T,s + 1)(Tys + 1) -+
K, = Iim =0
s=0 (Tys + 1)(Tos + 1)

O For Type 1 systems s’K(T,s + 1)(T,s + 1)
K, = lim -0
=0 §(Tys + 1)(Ths + 1)+

 For type 2 systems _ SZK(THS + 1)(Tbg + 1)
K, = lim - K
s=>0 §A(Tys + 1)(Tys + 1)+

1 For type 3 or higher order systems
S’ K(Tys + 1)(Tps + 1)+
K, = lim
s=0 §M(Tys + 1)(Tos + 1) -+
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Static Acceleration Error Constant (K,)

d For a parabolic input the steady state error e is

e, = o0, for type 0 and type 1 systems

o
7
|

= —, for type 2 syst
x> lortype2systems

e = 0, for type 3 or higher systems
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Step Input Ramp Input Acceleration Input
r(t) =1 r(t) =t r(t) =5t
Type 0 system ! 00 00
1+ K
T 1
ype 1 system 0 I 00
1
Type 2 system 0 0 Ve
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* For the system shown in figure below evaluate the static error constants
and find the expected steady state errors for the standard step, ramp and
parabolic inputs.

") E"_. 1020 (s+2)(s+5) . C(S)
. s“(s+8)(s+12)
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G(s) =

Kp :]im G(S)

s—>0

100 (s + 2)(s + 5)

s”(s+8)(s+12)

szlim

s—0

[100 (s+2)(s+5)
s*(s+8)s+12)

K, =1lim G (s)

s—>0

(100 s(s + 2)(s + 5))
m
-0

s*(s+8)(s+12)

K, = lim s°G(s)

s—>0

100 (0 + 2)(0 + 5)

K, = lim

K, =
{ (0 +8)(0 +12)

100 s2(s + 2)(s + 5)]

s’ (s +8)(s+12)
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K - o K, = o K, =10.4

€. — ! =0
1+ K,
1
Cs — 7 =9
K,
1
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Step Response of underdamped System

C (s) o, 2
- Step Respopsg(s) o

2 2
R(s) 5" + 200 5+ o, s(sz+2§a)ns+a)§)

O The partial fraction expansion of above equation is given as

1 2
C(s)=—- P20
S 2+2§a)ns+a)§
2
C(s)=—— 20
o200, w
1 2
C(s)=—— S 20,

s (s+g,) +olll-¢?)
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Step Response of underdamped System

C(S):l__ S+ 2¢w

S (S+§a)n)2+a)§(l—é’2)

J Above equation can be written as

1 S+ 2w
C(s) = —-— o -

S (S+§a)n)2+a)d

dWhere - wnw/l _;? , IS the frequency of transient oscillations
and is called damped natural frequency.

The inverse Laplace transform of above equation can be obtained
easily if C(s) is written in the following form:

1 S + o | co
C(s)=—- > - .
S (s+§con) +a)§ (s+§a)n) +C()dz
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Step Response of underdamped System

4 2
2a)n 1-¢&
1 S + Cw 1-¢&
C(s) = —- - - -
S (S+§a)n) + o (S+§a)n) + o
1 S+ ¢w - @ 4
C(S)Z;— ; T - 5 5
(S+§’a)n) + @y 1-¢ (S+§’a)n) + @y
c(t) =1-¢e " cos w, t - d e ““' sin w4t
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Step Response of underdamped System

Cw

ct)=1-e ' ¢cos w4t — e

]

—é’a)nt| . |
c(t)=1-¢e cos w t+ sin 4t

2 ]

J Wheny =0

c(t) =1-cos w,t
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Step Response of underdamped System

c(t) =1-e

if ¢ =0.1
181

167
1.4+
1.2+

1L
0.8

0.6

0.4+

0.2

N

0 2 4 6 8 10
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Step Response of underdamped System

| : ]
C(t)zl—e_@wcos o4 t+ sin a)dt|
L 1- ¢ J
f ¢ =05 and w_ =3
1.4 ‘ :
1.2+
1,
0.8+
0.6+
0.4r
0.2r
0 | | | |
0 2 4 6 8 10
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Step Response of underdamped System

| : ]
C(t)zl—e_@wcos o4 t+ sin a)dt|
L 1- ¢ J
f ¢ =09 and w_ =3
1.4
1.2+
1,
0.8+
0.6+
0.4+
0.2+
0 | | | |
0 2 4 6 8 10
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Step Response of underdamped System

1.2+ .
1 T ———
//
0.8 .
wn=0.5
0.6 wn=1 |
wn=1.5
wn=2
0.4 wn=2.5 *
0.2+ .
O ’ | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
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Underdamped System

For 0<¢ <1 and w, > 0, the 2" order system’s response due to
a unit step input is as follows.

Important timing characteristics: delay time, rise time, peak time,
maximum overshoot, and settling time.

c(f) A

Allowable tolerance

i Iy o
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Delay Time

[ The delay (t,) time is the time required for the response to
reach half the final value the very first time.

c(t)

Allowable tolerance

- Ig -
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d The rise time is the time required for the response to rise from
10% to 90%, 5% to 95%, or 0% to 100% of its final value.

dFor underdamped second order systems, the 0% to 100% rise
time is normally used. For overdamped systems, the 10% to 90%
rise time is com ), '

Allowable tolerance

I Yo
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 The peak time is the time required for the response to
reach the first peak of the overshoot.

c(r) h

Allowable tolerance
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Time Domain Specifications (Rise Time)

c(t) =1-e

Put t=1t_1in above equation

—c¢w t

|F T

C(tr)zl—e "1 cos a)dtr+

—

Where ct,)=1
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Time Domain Specifications (Rise Time)

[ ; 1|

CcoS a)dtr+ sin a)dt

above equation can be re - writen as

sin a)d’[r = — CcoS a)d’[r
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Time Domain Specifications (Rise Time)

. Base (b) “
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Time Domain Specifications (Peak Time)

[ ; |

é’a)nt|

cos w t + sin a)dt|

=g

c(t) =1-e

In order to find peak time let us differentiate above equation w.r.t t.

I | I |
dC(t) —lo t é/ -l -t é/a)d

= (o e | cos o t+ sin a)dt|—e " |—a)d sin @4t + cos a)dt|

: { RS | -¢t
—é’a)t|— gzwn é/a)d —|
0=c¢e ”|§a) cos o t + sin o ,t+w,sin o, t- cos @t |
n d 5 d d d ) d
1-¢ 1-¢ J
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Time Domain Specifications (Peak Time)

—§a)t}7 gza)n NI; Cj/ |
0=c¢e "1 lw /cos w t+ sm ow,t+ o, sin o, t- cos w4t
L 1-¢° \/1/24“/
2 1
éa)t| CC() . . |
sm w,t+w,sm o, ,t! =20
[Vi-¢7
|r42co . . 1|
e @t 2sma)t+a)dsma)t =0
[Vi-¢
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Time Domain Specifications (Peak Time)

O, 7,2rx, -

@ 4

[ Since for underdamped stable systems first peak is maximum peak

therefore,
T

t, = —

p
@ 4

INSTITUTE OF AERONAUTICAL ENGINEERING



Maximum Overshoot

d The maximum overshoot is the maximum peak value of the
response curve measured from unity. If the final steady-state value
of the response differs from unity, then it is common to use the
maximum percent overshoot. It is defined by

C(rp) — ¢(00)
c(00)

Maximum percent overshoot =

 The amount of the maximum (percent) overshoot directly
Indicates the relative stability of the system.
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Settling Time

L The settling time is the time required for the response curve to
reach and stay within a range about the final value of size
specified by absolute percentage of the final value (usually
2% or 5%).

c(f) h

Allowable tolerance

- I -
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Time Domain Specifications

| |

-dw nlp |

C(tp)zl—e cos @yt + sin ot

c(wo) =1

x 100

<
o
Il
X
|
B
—
(@)
o
n
S
o
—~t
o
+
[y
I
™\
)
mo
5
S
o
—~t
§=
N—
\’|\
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Time Domain Specifications

M = _gwnz( c/ i 2 ' o/ B w 100
o = € COS @ q{ + 5 sin dj X
d 1-¢ d
Put wy = a)n\/l—g“z in above equation
[ 2 1
_é’wn
| /a% 1—42( < . |
Mp=|—e cos 7 + sm |><100
2
| e

—e (—1+0)x100

|
|
J
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Time Domain Specifications (Settling Time)

Exponential decay generated by
real part of complex pole pair

-w, ¢ to, 52—1

Real Part Imaginary Part

Sinusoidal oscillation generated by
imaginary part of complex pole pair

» f
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Time Domain Specifications (Settling Time)

1 Settling time (2%) criterion
d Time consumed in exponential decay up to 98% of the input.

c()

Exponential decay generated by
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

=

[ Settling time (5%) criterion
O Time consumed in exponential decay up to 95% of the input.
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Summary of Time Domain Specifications

Rise Time Peak Time
T — 0 T — 0 — T &
tr = = p » N \/ )
@ 2 d w 1l -
d a)n\/l—é' n

Settling Time (2%)

4
ty =47 = Maximum Overshoot
o |,
"
3 2
t, = 3T = —— Mo=e V7 x100
o |,

Settling Time (4%)
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* Consider the system shown in following figure, where damping ratio is
0.6 and natural undamped frequency is 5 rad/sec. Obtain the rise time t,
peak time t;, maximum overshoot M, and settling time 2% and 4%
criterion t, when the system is subjected to a unit-step input.

R(s) E(s)

2 C(s)

Wy,

s(s + 2{w,)
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Rise Time Peak Time
/A H t — L
tr = p »
@ 4 d

Settling Time (2%)
Maximum Overshoot

t 4T ’
S: = - 7@
w L
_ I-¢
3 I\/Ip_e x 100
t, = 3T = ——
o

Settling Time (4%)
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Rise Time
T — 6
’[r =
@ 4
3.141 - 6
t, =
. 1—4’2
—g
2
0 = tan ‘l(w” Sl ) = 0.93 rad
o —| (o,
3.141 — 0.93
t. = = 0.55s

.
5\/1 ~0.6°
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Peak Time Settling Time (2%)
t = L tS - 4
P 50
d
4
3.141 tS: :1.333
t, = = 0.785 S 0.6 x5
4 Settling Time (4%)
3
t,. = —
co
3
tS = - IS
0.6 x5
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Maximum Overshoot

3.141 x0.6

2

M =e Y700 100

M . 0.095 x 100

M : =9.5%
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Step Response
1.4 ‘

1.2 - Mp 1

o
o
I
|

Amplitude

o
o
I
|

Rise Time
0.2 |

0 \ \ \ \ \ \
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (sec)
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1 The Laplace Transform of Impulse response of a system is actually the
transfer function of the system.

[ Therefore taking Laplace Transform of the impulse response given by
following equation.

c(t) = 3¢ "
C(8) e — 1= — o 5(s)
S +0.5 S +0.5
C(s) B C(s) B 3

5(s) R(s) S+0.5

C(s)_ 6
R(s) 28 +1
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[ Impulse response of a 1t order system is given below.

c(t) = 3¢ "

d Find out
U Time constant T=2
U D.C Gain K=6
M Transfer Function

J Step Response C(s) 6
R(s) 2S +1
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1 For step response integrate impulse response

C(t) _ 3e—0.5t

fe(t)dt = 37e "'t

c (t)=—6e "4 C
S

dWe can find out C if initial condition is known e.g. c.(0)=0

0=-6e " +cC

C =6

c.(t) =6 - 6e "
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O If initial conditions are not known then partial fraction expansion is a
better choice

C(s) 6
R(s) 2S +1
: : _ 1
since R(s)is astep input , R(s) = —
S
6
C(s) =
s(2S + 1)
6 A B
= —+
s(2S +1) s 2s+1
6 6 6
s(2S+1) s s+0.5
c(t) = 6 — 6e "
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Ramp Response of 15t Order System

[ Consider the following 15t order system

R(s) C(s)

C(s) =
sz(Ts + 1)

d The ramp response is given as

c) = Kft-T +Te ")
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Parabolic Response of 15t Order System

[ Consider the following 15t order system

R(s) - C(s)

K

1
R(s) = —  ThereforeC (s) = -
S S (Ts + 1)
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Practical Determination ot Transter Function o

d Often it is not possible or practical to obtain a system's transfer
function analytically.

1 Perhaps the system is closed, and the component parts are not easily
identifiable.

[ The system's step response can lead to a representation even though
the inner construction is not known.

1 With a step input, we can measure the time constant and the steady-
state value, from which the transfer function can be calculated.
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Practical Determination ot Transter Function o

O If we can identify T and K empirically we can obtain the transfer
function of the system.

C(s)_ K
R(s) Ts +1

INSTITUTE OF AERONAUTICAL ENGINEERING



Practical Determination ot Transter Function o

 For example, assume the unit step
response given in figure. o
.6

we Can

Amplitude

O From the response,
measure the time constant, that is,
the time for the amplitude to reach

0.2 F

0.1

03

dT=0.13s
2 03 04 05 06 07 03

0 01 0.2 0.3
Time (seconds)

63% of its final value.
[ Since the final value is about 0.72
is evaluated

the time constant
where the curve reaches 0.63 x
0.72 = 0.45, or about 0.13 second. d Thus transfer function s
obtained as:
C(s) 0.72 5.5

[ Kis simply steady state value. - -
R(s) 0.13s+1 s+ 7.7
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C(s) B K1+ as)

R(s) Ts + 1
[ Zero of the system lie at -1/a and pole at -1/T.

1 Step response of the system would be:

K+ as)
C(s) =

s(Ts +1)
C(s):£+ K(a —=T)

S (Ts + 1)

c(t) = K + i(oc _T)e T

T
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First Order System With Delays

1 Following transfer function is the generic representation of 1t order

system with time lag.
C(s) K s,

= e
R(s) Ts +1
d Where t is the delay time.
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First Order System With Delays

C(s) K s,
= e
R(s) Ts +1

------ Unit Step
—— Step Response

Ly
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First Order System With Delays

Step Response

C(s) 10

R(s) 3s+1. 10
C(s) = ——e " K =10
3s+1
s(3s+1) gl |
L[e ™F(s)]= f(t-o)u(t-20)
s =2 e
— + e =
S s+1/3 6 m
[10(t-2)-10e "*“"?u(t - 2)
4 L |
2 L |
ty= 25 T3
=3s
O |
|
0 5 10 15

Time (sec)
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Extra Poles °

R (s) " -1, n>m for a real system

(g +2r=n)

i.e. combination of first and second order systems

1 1

3 ) = 5 s3+asz+bs+c=(s+f)(sz+ds+e)<:>
s +as” +bs +c (s+f)(s +ds+e)

[1=1 ]
a=d+ f
o s’ +as’+bs+c=s"+(d+ f)s’ +(e+ fd)s+ fe e

|b:e+fd|

[c= fe J
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Extra Poles °

C(s)=—+> + Y

2 2

b(s+ @ )+c,o \1-¢,

a

r r
—p.t _ _
c(t)=1+3 a,e i + 3 b,e "+ cos (a)kwll—g“kzt)ﬁLche Kk gin (a)kw/l—gkzt)

j=1 k=1 k=1

The response of a higher order system is the sum of exponential and
damped sinusoidal curves.

Assuming that all poles are at the left hand side then the final value
of the output is “1” since all exponential terms will converge to 0.

Let’s assume that some poles have real parts that are far away from
the imaginary axis=>
—dw nt - ( 3 1_ 4,2 )
c(t)=1- ————=sin, o, t + tan

1-¢2 | ¢
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Extra Poles °

Overall performance is characterized by the isolated
(far away from zeros) poles that are close to the imaginary axis.

If we have only one pole (or a pair for complex roots) that is closed to
the real axis then we say that this pole (or pair of poles) is (are) the
DOMINANT pole(s) for the system.

A simple rule is that the dominant poles must be at least five to ten
times closer to the imaginary axis than the other ones.

1 q a. r _
Cl)=+Z T e el The values of b
-1 ; -1 non o o
| | (numerator coefficients)
q r . .
(1) =1+ T ae "+ 5 bye Ok cog (wk A gkzt)+ determmej thg amplitude
=1 -1 of the oscillations of the
R 2 system but not its
+Zce§"ksmw 1-¢,.°t - _
. ( k ‘ ) stability properties.
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Unit-3
STABILITY ANALYSIS AND CONTROLLERS
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‘ Concept of Stability .

1 In order to know the location of the poles, we need to find the roots of
the closed-loop characteristic equation.

It turned out, however, that in order to judge a system's stability we don't
need to know the actual location of the poles, just their sign. that is whether
the poles are in the right-half or left-half plane.

d The Hurwitz criterion can be used to indicate that a characteristic
polynomial with negative or missing coefficients is unstable.

(J The Routh-Hurwitz Criterion is called a necessary and sufficient test of
stability because a polynomial that satisfies the criterion is guaranteed to
stable. The criterion can also tell us how many poles are in the right-half
plane or on the imaginary axis.
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Routh-Hurwitz Stability Criterion

[ All the coefficients must be positive if all the roots are in the left half
plane. Also it is necessary that all the coefficients for a stable system be

nonzero.

 These requirements are necessary but not sufficient. That is we know the
system is unstable if they are not satisfied; yet if they are satisfied, we
must proceed further to ascertain the stability of the system.

d For example,
q(s)=53+52+25+8=(s+2)(52 —S+4)

The system is unstable yet all coefficients are positive

 The Routh-Hurwitz is a necessary and sufficient criterion for the stability
of linear systems.
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Routh-Hurwitz Stability Criterion (Contd..)

1 The Routh-Hurwitz criterion applies to a polynomial (characteristic
equation) of the form:

P(s)=a.s"+a_.S"  +.... +as+a
assume a, #= 0]

d The Routh-Hurwitz array:

n n—2 n—4 n—6

n—1

S an—l n—3 n—5 n—7
n—2

s b, b, b, b,
n—3

S C, C, C, C,
2

s k, k.,
1

S I
(@]

S m
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Routh-Hurwitz Stability Criterion (Contd..)

1 Columns of s are only for accounting.

d The b row is calculated from the two rows above it.
1 The ¢ row is calculated from the two rows directly above it.

 Etc...
1 The equations for the coefficients of the array are:

b . 1 an n—2 b . 1 an n—4
1 O 2 C—— jy "= mmnmnm
an—l an—1 n—3 an—l n—1 n—5
1 an—1 an—3 1 an—l an—5
C1 = —— 02 =S e
bl bl b2 b1 bl b3

d Note: the determinant in the expression for the ith coefficient in a row
is formed from the first column and the (i+1)th column of the two
preceding rows.
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Routh-Hurwitz Stability Criterion

(d The number of polynomial roots in the right half plane is equal to the
number of sign changes in the first column of the array.
d Example: P(s)=s"+s"+2s+8=(s+2)(s” —s+4)
The Routh array is :

3

S 1 2
s? 1 8
s’ -6
s’ 8

1 Since there are two sign changes on the first column, there are two roots
of the polynomial in the right half plane: system is unstable.

J Note: The Routh-Hurwitz criterion shows only the stability of the system,
it does not give the locations of the roots, therefore no information
about the transient response of a stable system is derived from the R-H
criterion.
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Routh-Hurwitz Stability Criterion (Contd..)

1 From the equations, the array cannot be completed if the first element
in @ row is zero. Because the calculations require divisions by zero. We
have 3 cases:

J Case 1: none of the elements in the first column of the array is zero.
This is the simplest case. Follow the algorithm as shown in the previous
slides.

( Case 2: The first element in a row is zero, with at least one nonzero
element in the same row. In this case, replace the first element which is
zero by a small number €. All the elements that follow will be functions
of €. After all the elements are calculated, the signs of the elements in
the first column are determined by letting € approach zero.
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Routh-Hurwitz Stability Criterion (Contd..)

0 Example: P(s)=s" +2s” +2s” +4s” +11s+10

S 1 2 11

S 2 4 10

S &
> 12
s -— 10
&E
s 6
s® 10

J When we calculate the elements:

bl=0, b2=6, there fore we put bl=e and calculate the other
coefficients.

 There are 2 sign changes regardless of € is positive or negative.
Therefore the system is unstable.
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Routh-Hurwitz Stability Criterion (Contd..)

. Case 3: All elements in a row are zero.

[ Example: P(s)=s’ +1
s 1 1
s" 0

o

S
 Here the array cannot be completed because of the zero element in the
first column.

1 Another example: P(s)=s°+s>+25+2

The array is :

3

S 1 2
32 1 2
s’ O

0
S
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Routh-Hurwitz Stability Criterion (Contd..)

[ Case 3 polynomial contains an even polynomial as a factor. It is called
the auxiliary polynomial. In the first example, the auxiliary polynomial
is s 41

[ And in the second example, auxiliary polynomialis ¢2 5

1 Case 3 polynomial may be analyzed as follows:

3 Suppose that the row of zeros is the s' row, then the auxiliary
polynomial is differentiated with respect to s, and the coefficients of
the resulting polynomial used to replace the zeros in the S row. The
calculation of the array then continues as in the case 1.
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Routh-Hurwitz Stability Criterion (Contd..)

d Example: P(s)=s"+s°+3s” +2s+2
The Routh array is :
S 1 3 2
2

2

0]
o r P

[ Since the S1 row contains zeros, the auxiliary polynomial is obtained

from the s2 row: P (s)=s’42

aux

 The derivative is 2s, therefore 2 replaces 0 in the s1 row, and the routh
array is then completed.
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Routh-Hurwitz Stability Criterion (Contd..)

 Example: P(s)=s"+s” +3s°+2s+2

The Routh array now becomes :

4

S 1 3 2
s> 1 2

s 1 2

s’ ¢2

s’ 2

1 Hence there are no roots in the right half plane.

1 Note: When there is a row of zeros in the routh array, the systems is
not stable. That is it will have roots either on the imaginary axis (as in this
example), or it has roots on the right half plane.
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Determination of range of gain K using

d Example: P(s)=s’+5s>+(9—K)s+ K
The Routh array is :

3

S 1 9-K

2

S 5 K

1

S 9-1.2K

(o}

S K

 For the system to be stable there should not be any sign changes in the
elements of 15t column

1 Hence choose the value of K so that 15t column elements are positive
[ From sO row, system to be stable K>0
d From s1 row 9-1.2K >0

9>1.2K

K< 7.5
1 Hence the range of K is 0<K<7.5
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Stability of Control System

 There are several meanings of stability, in general there are two kinds of
stability definitions in control system study.

— Absolute Stability

— Relative Stability
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Stability Margins and Sensitivity Peaks

 In control system design, one often needs to go beyond the issue of
closed loop stability. In particular, it is usually desirable to obtain some
guantitative measures of how far from instability the nominal loop is, i.e.
to quantify relative stability. This is achieved by introducing measures
which describe the distance from the nominal open loop frequency
response to the critical stability point (-1,0).

(b)

Gain and Phase Margins Peak Sensitivity
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Relative Stability of Feedback Control Systems

1 The verification of stability using the Routh-Hurwitz criterion provides
only a partial answer to the question of stability----whether the system is
absolutely stable.

 In practice, it is desired to determine the relative stability.

 The relative stability of a system can be defined as the property that is
measured by the relative real part of each root or pair of roots.
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Relative Stability of Feedback Control Systems

(d Because the relative stability of a system is dictated by location of the
roots of the characteristic equation, we can extend the Routh-Hurwitz
criterion to ascertain relative stability.

 This can be accomplished by utilizing a change of variable, which shifts
the s-plane vertical axis in order to utilize the Routh-Hurwitz criterion.

 The correct magnitude of shift the vertical axis must be obtained on a
trial-and-error basis.

J One may determine the real part of the dominant roots without solving
the high order polynomial g(s).
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Problems on RH Criterion

] Example-1: P(s) =s® +10s® +31s +1030
The Routh array is :

3

S 1 31

2

s® 1 103 (by dividing with 10)

1

S -72

(0]

S 103

[ 15t Column of routh array has two sign changes (from 1 to -72 and from -
72 to 103). Hence the system is unstable with two poles in the right-half

plane.
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Problems on RH Criterion (Contd..)

J Example 2:
1 Construct a Routh table and determine the number of roots with

positive real parts for the equation;

233+452+4s+12 = 0

 Solution:
Since there are two changes of sign in the first column of Routh table, the

equation above have two roots at right side (positive real parts).
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Problems on RH Criterion (Contd..)

J Example 3:
 The characteristic equation of a given system is:

s* +6s +11s° +6s+K =0

What restrictions must be placed upon the parameter K in order to
ensure that the system is stable?

[ Solution:

For the system to be stable, 60 — 6K <0, or k< 10, and K > 0.
Thus0<K< 10
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Block Diagram Reduction-Example-1

1 For the system represented by the following block diagram determine:
Open loop transfer function

Feed Forward Transfer function

control ratio

feedback ratio

error ratio

closed loop transfer function

SRR I

characteristic equation

R + 4 1 G
;: f K s+ 1 [ -y -
8 ,

0.1
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Block Diagram Reduction-Example-1 (Contd..)

 First we will reduce the given block diagram to canonical form

R + S 1| C
i ~c+1|‘ -1 "
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Block Diagram Reduction-Example-1 (Contd..)

INSTITUTE OF AERONAUTICAL ENGINEERING




Block Diagram Reduction-Example-1 (Contd..)

1. Open loop transfer functio B (s)

= G (s)H (s) G(s)
E(s) R+ K C

2. Feed Forward Transfe ¢ ¢s)

i+Ks+1
= G(s) T
E(s)

oll

C (s) - G (s) H (s)

function _
R(s) 1+ G(s)H (s)

7. Characteristic equation

3. Control ratio 22 _ _GH(S)
R(s) 1+ G(s)H (s) 1+G(s)H(s) =0
4. Feedback E¢s) _ I

R(s) 1+ G(s)H (s)

5. Error ratio cls) GG
R(s) 1+ G(s)H (s)
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Block Diagram: Reduction Example-2
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Block Diagram: Reduction Example-2 (Contd..)
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Block Diagram: Reduction Example-2 (Contd..)
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Block Diagram: Reduction Example-2 (Contd..)
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Block Diagram: Reduction Example-2 (Contd..)

R e e
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Block Diagram: Reduction Example-2 (Contd..)

QI oo
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Block Diagram: Reduction Example-2 (Contd..)

GlGZGB C
1-G,G,H,+G,G H,
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Block Diagram: Reduction Example-2 (Contd..)

R G,G,G, C
1-6,6,H +G,G,H,+G,G,G,
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Block Diagram: Reduction Example-1

[ Find the transfer function of the following block diagram

R(S) +  +

Y (s)
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Block Diagram: Reduction Example-1 (Cor;td..)

d  Solution:

1. Moving pickoff point A ahead of blo| G,

2. Eliminate loop | & simplify

B

" G, +G,G,
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Block Diagram: Reduction Example-1 (Cor;td..)

3. Moving pickoff point B behind block

G,+G,G,

Y (s)

2

R(s) + + :
B g G, — G,+G,G,
L

1 2

1HG, +6,G,)
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Block Diagram: Reduction Example-1 (Cor;td..)

R(s) + + Y (s)
G, G,+G,G, I
1+H, (G, +G,G,)
GZHl
G,+G,G,
R(s) + G,(G,+G,G,) Y (s)

— 1+G,G,H +H (G,+G,G,)

Y (s) ~ G, (G,+G,G,)
R(s) 1+GG,H +H_(G,+G,G,)+G (G, +G,G.)
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Block Diagram: Reduction Example-2

 Find the transfer function of the following block diagram
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Block Diagram: Reduction Example-2 (Cor;td..)

1. Eliminate loop |

R(s) +
"G, — 1~ G,
jI— H1 1+GZH2
_|_
H3
2. Moving pickoff point A behind block ©
1+ G,H,
R(s) 4 1 ®m | _o. RO
— ! 1+ G,H,
1
H 1+ G,H, :\\
1 1+G,H,
GZ H3+H1 )
GZ
Hq‘/,/bie{/aédbackloop
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Block Diagram: Reduction Example-2 (Cor;td..)

3. Eliminate loop Il

R(S)_* o G.G, Y (s)
— ] 1+ G,H, ]
o H,1+G,H,)
G?
Y (s) GG,

T (s) = =
R(s) 1+G,H,+GG,H,+GH +GG,H H,
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' Signal Flow Graph:Example#l

 Apply Mason’s Rule to calculate the transfer function of the system
represented by following Signal Flow Graph

* )

L I
[S=1
¥
Y-

 There are two forward
.
P I:)1:(31(32(34’ I:)2:(31(33(34

O Therefore, C PA +PA,
R A

 There are three feedback loops

L1 = GIG4H1’ Lz = _GleG4H2’ L3 = _GlG3G4H2

INSTITUTE OF AERONAUTICAL ENGINEERING




Signal Flow Graph:Example#l (Contd...)

dThere are no non-touching loops, therefore
A = 1- (sum of all individual loop gains)
A=1-(L, +L,+L,)

A = l_(G1G4H1 - G,6,6,H, _GlG3G4H2)
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Signal Flow Graph:Example#l (Contd...)

4 Eliminate forward path-1

A, = 1- (sum of all individual loop gains)+...
A=1

d Eliminate forward path-2
A, = 1- (sum of all individual loop gains)+...
A, =1

C PA +PA, G,G,G, +G,G,G,

R A 1-G,G,H,+G,G,G,H,+G,G,G,H,
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Signal Flow Graph:Example#2

1. Calculate forward path gains for each forward path.

P =G,G,G,G, (path 1) and P,=G.G .G, G, (path 2)

17 2 37 4 5 6 7 8

2. Calculate all loop gains.

L1:(32H2’ L2:H3€‘3’ L3

3. Consider two non-touching loops.
] S Y [ L,L;
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Signal Flow Graph:Example#2 (Contd...)

4. Consider three non-touching loops.
None.

5. Calculate A from steps 2,3,4.

A=1-(L, +L,+Ly+L,)+(L,Ly+LL, +L,L,+L,L,)

A=1-(G,H, +H.,G, +G,H,  +G,H, )+
(G,H,G H, +G,H,G,H, +H,G,G.H, + H,G,G,H,)
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Signal Flow Graph:Example#2 (Contd...)

4 Eliminate forward path-1
A, =1-(L, +L,)

A, =1-(GH, +G,H,)

1

A Eliminate forward path-2

A, :l_(L1+ Lz)

A, :1_(GzH2+G3H3)
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Signal Flow Graph:Example#2 (Contd...)

Y (s) PA, +P,A,

R(s) A

Y(s) G,G,G,G,[1 - (G4H, +G,H )]+ G,G6,G,G,[1 - (G,H, + G4H, )]

R(s) 1-(G,H,+H,G,+GH,+G,H, )+(G,H,GH, +G,H,G,H, +H,G,G,H, + H,G,G,H,)
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Block Diagram to SFG:Example#3

Hl
R(S) E(sf— X \— X C(s)
( G, —'@__1’62 _’®7'Gs G, |e—
_ 2
H2
H3

R() 1 E(s) G, X G X, /G, X3 G,\C(s)
G > '® > ) > >

7~

W

2
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Block Diagram to SFG:Example#3 (Contd..)

A=1+(GCG.G.G

1273 "4

H3 +GZG3H2 +GgG4Hl)
P =GG,GG,; A =1
C(s) G.G.G.G

12223
R(s) 1+GGGGH,+GGH,+G,G,H,
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' INTRODUCTION

Root Locus Technique:

 Root Locus mmm) the locus of a single root (pole) of a closed loop
system

d Root Loci —> the locus of multiple roots (poles) of a closed loop
system

O It is a graphical method for determining the location of the poles of a
given closed loop system for some parameter values of the system. The
parameter can be the system gain or time constant.

d Time constant being the design value of an open loop system is normally
not varied; the only variable being the system gain.

d Itis atime domain method.
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INTRODUCTION (Contd)..

d  We know that
for a unity feedback system the characteristic equation is given by
1+ G(S)=0, and

d  For a non-unity feedback system the characteristic equation is given
by

1+ G(S) H(S)=0
where,

d  G(S) : open loop transfer function of the system that is to be
controlled for desired time domain specifications, and

d  H(S) : feedback element (normally a transducer)
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INTRODUCTION (Contd)..

(d We know that for a closed loop system to be stable, its closed loop
poles (roots of characteristic equation) should lie in the left half of the
S-plane.

J We also know that a closed loop system is limitedly stable (on the verge
of instability) if any of its roots lie on the imaginary axis of the S-plane
and it is unstable if its poles lie in the right half of the S-plane.

1 Using this method, we can exactly position the location of closed loop
poles for a given value of system gain ‘K" whereas Routh’s method does
not facilitate this.

 Using Routh’s method we cannot determine relative stability of a
system whereas this method allows us to do that.
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lllustration by Example

d  We know that for a second order closed loop system the general form
is given by

M(S) = w,2 / (S + 26w, S + w,2) = N(S)/D(S)
d Let
G(S) = K/S(S+1) ; M(S) = G(S)/1+G(S) = K/(S? + S + K)
M(S) = N(S)/D(S)
d For a unity feedback system, the characteristics equation is:
Q(S) = 1+G(S) = 0 =1 + K/S(S+1) = 0
) 52454 K=(

d For K =0; the roots of Q(S) are at S=0 & S=-1; which are the poles of
the system.
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lllustration by Example (Contd)..

1 Looking at Q(S) = S?+ S + K = 0 we conclude that,

d  As we vary K from ‘0’ to any higher value, the location of the roots of
Q(S) will change (shift) in the S-plane.

d  Thus the roots will chalk out a locus in the S-plane for a given range of
‘K’. This is called Root Locus.
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Why Requirement of Root Locus Method ?

d We know that we are interested in finding the roots of a characteristic
equation for a range of a parameter of the system which generally is
system gain ‘K. Generally speaking we may be interested in
determining the location of closed loop poles for a range of ‘K’

O0<K<oo

d Now it is easy to factorize a second and third order characteristic
equation for various values of ‘K’, but for higher order polynomials it is
very difficult (near impossible) to factorize for determining their roots.

(d Therefore we need a method to do so & that method is Root Locus.
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d Though we are interested in determining the roots of the polynomial
(characteristic equation), 1 + G(S) H(S) = 0; we do not start with this
equation.

 Instead, we start with only G(S)H(S) or G(S) depending upon whether
the closed loop system is non-unity or unity feedback.

1 So, we rearrange the characteristic equation as:
G(S)H(S) = -1 (non-unity feedback), or
G(S) = -1 (unity feedback)
d The above rearrangement implies that
|G(S)H(S)|=1 & arg{G(S)H(S)}=n
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The Method (Contd)..

 The equations,
|G(S)H(S)|=1 & arg {G(S)H(S)} = n, imply that

d Forany point S =S, to be a root of the characteristic equation,
| G(S;)H(S;)|=1 & arg {G(S,)H(S;)} = n radians or 180 deg.

 Or, for a unity feedback system,
|G(S;)|=1 & arg {G(S,)} = n radians or 180 deg.

 The root locus is drawn on a graph sheet and every point on the locus is
obtained by satisfying the angle condition. The value of ‘K’ for that
point is then obtained graphically.
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The Method (Contd)..

J Before going ahead with the method, it is necessary to define what is
called ‘rational transfer function’.

A rational transfer function is the one which has equal number of poles
and zeros; that is Np = Nz

Np: number of poles Nz: number of zeros
d Consider the following transfer functions:

A G,(S) Hy(S) or G,(S) = K (S+1)/(S+2) -------- 1

- G,(S) = K (S+1)(S+2)/(S+3)(S+4) - 2
4 G4(S) = K (S+1)/(S+2)(S+3) ------- 3

4 G,(S) = K (S+1)/(S+2)(S+3)(S+4) - 4
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The Method (Contd)..

4 For, G,(S) = K (S+1)/(S+2), there is a finite pole at S = -2 & a finite zero at
S=-1; Np= Nz =1, hence it is a rational function

d  G,(S) also has equal number of poles and zeros; Np = Nz = 2;
d  G;(S) has 2 finite poles & 1 finite zero; Np # Nz

d  G,4(S) has 3 finite poles and 1 finite zero; Np # Nz

 Does it mean that G5(S) & G,4(S) are not rational functions!!

 They both are, indeed, rational functions; the need is to find out the
location of remaining zeros so that Np = Nz.
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The Method (Contd).. .

 In order to resolve the issue of ‘how many zeros’ a transfer function
has, we need to understand what is zero of a transfer function.

d Let G(S) = K (S+1)/(5+2)(5+3)

d We all understand ‘G(S)’ as ‘frequency dependent gain’ offered by the
system.

O Now, if we substitute S = -1 in G(S), its value = ‘0’; it means that gain
offered at S= -1 equals ‘0’. Therefore S = -1 is a zero of the transfer
function, G(S)

d Pole of a transfer function is a singularity because gain offered by G(S)
at its pole = oo, For example, S =-2 & -3 causes gain of G(S)= e
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The Method (Contd).. .

J Therefore, we say If the number of zeros are not equal to the number
of finite poles of G(S), then number of zeros = Np — Nz shall lie at o=.

d  Let
G(S) = K (S+1)/(5+2)(5+3)

O Lt. S——=00 G(S) = It. S—=>22 K/S = 0 ; the power of S is ‘1’ therefore there
is one zero at e=. Thus we have one finite zero and another zero at o-.
Hence Np = Nz

O For, G(S)=K(S5+1)/(S+2)(S+3)(S+4)
J we have one finite zero at S = -1 and two zeros at o°
(J Therefore both are rational functions
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The Method (Contd)..

L Let m

G(S) H(S) =K
I=n
S"TT (S + Pi)
i=1
d where, K:gainin the system
r: number of poles at the origin of S-plane
n & m: number of poles and zeros in the S-plane
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The Method (Contd)..

|G(S)H(S)| = K =1.0
I=n
| STITT [(S +Pi)|
=1
j=m | =n
KTT|(S+2Zj)| =S| TT |(S+ Pi); for K=0 we get poles
ji=1 i=1 of G(S)H(S)
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The Method (Contd)..

j=m I=n
T I(S+2Zj)|=|S] TT [(S+Pi)/K;
=1 i=1

d For K—> oo; we get zeros of G(S)H(S)
d We draw root locus for 0 S K < oo
Therefore,
 Starting points of root locus are poles of G(S)H(S), K=0
d End points of root locus are zeros of G(S)H(S), K = o=
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The Method (Contd)..The Angle Criteria

d The Angle Criteria:

G(S)H(S) = K

TT(S + Pi)
i=1
The angle criteria is in degrees given by:
m n
Yarg(S+7Zj) - Zarg(S+Pj)=+/-(2q9+1)180;
j=1 i=1 qg=0,1,2,....
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Implement Angle Criteria

d Since root locus is drawn satisfying angle criteria, now we explain how
it is done.

Plot location of poles & zeros of G(S)H(S) in the S-plane
Choose any point S = S0 in the S-plane.
From each pole & zero draw vectors to the chosen point, SO

Sl

Measure the angle subtended by each pole & zero at SO, in the CCW
direction.

5. Remember that angle subtended by a pole is negative & that by a zero
Is positive

6. Algebraically add all the angles. If they sum up to 180 degrees, then S =
SO is a point on the root locus.
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Graphical Implementation of Angle Criteria

1 Graphical lllustration for Angle Criteria:

S- plane

s

arg(S0+22) + arg(S0 + Z1) — arg(S0 + P3) — arg(S0 + P2) —arg(S0 + P1) = +/_
180 °.

0Z2 + 0Z1 — 6P3 — 6P2 — =180°

 If the above angle condition is satisfied then SO is on the locus.
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Magnitude Criteria

J From the magnitude criteria, we calculate the value of gain ‘K’ at the point
S = S0 which lies on the root locus ( that is S=S0 satisfies angle criteria).

m n
TT[(So +Zj)| TT [(So + Pi)]|
=1 i=1

K =1 or, K =
n m
TT1(So + Pi) | TT [ (So +Zj)|
=1 j=1

K = product of vector lengths from poles of G(S)H(S) to SO/product of
vector lengths from zeros of G(S)H(S) to SO.
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Ical Implementation or IVlagnitude

1 Graphical method for determination of ‘K’:
Ea Ca Da : vectors from poles of G(S)H(S) to point ‘a’: S =S0

od
X @) X
E A B C D
Aa Ba : vectors from zeros of G(S)H(S) to ‘@’

Gain K = (Ea)(Ca)(Da)/(Aa)(Ba)
We measure vector lengths, as per scale, and then calculate K
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Construction Rules for Root Locus

d Rule 1:

Root Locus is symmetrical about real axis of S-plane, because roots are
either real or complex conjugate.

d Rule 2;

As ‘K’ increases from ‘0’ to ‘e’, the open loop poles of G(S)H(S) move
(branch out) towards the zeros of G(S)H(S); some of the zeros may be at

oo’

The number of branches terminating on ‘e=’ equals Np — Nz; that is the
difference between number of finite poles & zeros of G(S)H(S).
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Construction Rules for Root Locus

(] Rule 3:

A point S = SO on the real axis shall lie on the root locus iff the total

number of open loop poles & zeros of G(S)H(S) to the right of SO is odd.
(Loci lie in the region 2, 4 & 6)

1 x 2 x 3 o 4 o5 x p O
1 The number of poles + zeros to the right of region ‘6’ = 1(odd)

d The number of poles + zeros to the right of region ‘5’ = 2(even)
d The number of poles + zeros to the right of region ‘4’ = 3(odd)
d The number of poles + zeros to the right of region ‘3’ = 4(even)
d The number of poles + zeros to the right of region ‘2’ = 5(odd)
d The number of poles + zeros to the right of region ‘1’ = 6(even)
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Construction Rules for Root Locus

J Rule 3 (contd)..

1 The poles are K= 0 points & the zeros are K = oo points. As we are
interested in the range of K, 0<K<eco, therefore the poles will start
moving towards their respective zeros, in the region on the real axis,
and terminate at zeros (K = =)

 Therefore, we can say that the loci of closed loop poles start at K =0
(the location of the poles of G(S)H(S)) and terminate at K =oo (the
location of the zeros of G(S)H(S))
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Construction Rules for Root Locus

(J Rule 3 (contd): Example for implementation

Let G(S)H(S) = K(S+1)(S+2)/s(S+3)(S+4)
1. Draw pole zero locations in the S-plane

2. Use angle criteria to mark the regions on the real axis of the S-plane
where the root loci shall lie

k=0 k=0 =00 =oo k=0 S-plane
X X O o X
-4 -3 -2 -1 0

 The regions where the loci shall lie are highlighted in yellow where the
total angle subtended by poles & zeros = 180°
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Construction rules for Root Locus

(J Rule 3 (contd): Example for implementation

In the considered example:

1. No. of open loop poles = 3; root loci branches = 3 because each pole is
a starting point.
Root Loci will start from S =0, -3 & -4 (K = 0 points)
As K increases, the loci moves from the poles to respective zeros (K =
oo points)
The arrows show the direction of movement of poles

5. Np =3 Nz=2;no. of poles for which the loci shall terminate at == = Np
—-Nz=1

6. We observe that pole at S = -4 terminates at o°
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Construction rules for Root Locus

(J Rule 4: (Angle of Asymptotes)

The (Np — Nz) branches of the root locus asymptotically tend to e=. The
angles of asymptotes are given by:

éq =(29+1) 180°/(Np —Nz); 9q=0,1,2, ...., (Np-Nz-1)
1. G(S) = K (S+1)(S+2)/S(S+3)(S+4)
Np = no. of poles =3; Nz =no. of zeros =2; Np-Nz=1
qg=0; $ =180°
2. G(S) = K(S+2)/(S+1)(S+3)(S+5)(S+6)
Np = no. of poles =4; Nz = no. of zeros = 1; Np-Nz =3
qg=0,1,2; $0 =60°, $1 =180°, $2 =300°
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Construction rules for Root Locus

1 Rule 5: (Centroid)

If no. of asymptotes are more than 1, they cross the real axis of the S-
plane. Their point of intersection on the real axis is known as Centroid.

Centroid oA is given by:

n m
2Pi - 27j (Sum of real parts of poles -
i=1  j=1 Sum of real parts of zeros)

oA = =
(Np — Nz) (No. of poles — No. of zeros)
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Construction rules for Root Locus An Example

J Example:

Determine 1) no. of loci on the real axis and their regions, 2) no. of
asymptotes, 3) angle of asymptotes, 4) Centroid for a unity feedback
system whose open-loop transfer function is given as: G(S) =
K/S(S+1)(S+2)

 Solution Steps:

Draw pole zero locations in the S-plane
Determine no. of finite poles, Np, and zeros, Nz & Np-Nz
Mark regions on the real axis where loci lie
Find no. of asymptotes = Np — Nz & their respective angles
If (Np-Nz) > 1 determine value of centroid
Sketch root loci (free hand)
Continued in next slide
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Construction rules for Root Locus An Example

1. X X X T (poles are K=0 pts.)
S=-2 S=-1 S=0

Np =3 Nz = 0 (no finite zero ; therefore all zeros at =o)

Np-Nz =3

Loci on the real axis will lie between S=0 & S=-1; it will also lie in the

region after S = -2 because total no. of poles & zeros to the right of the
regions = odd.

U OO

d  No. of asymptotes = Np-Nz = 3 & angles of asymptotes are given by ¢q
=(29+1) 180°/(Np —Nz); q=0,1,2; $0=60°, $1 = 180°, $2 = 300°

d  Since (Np-Nz)>1 = 3 we will determine Centroid
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Construction rules for Root Locus An Example

[ Centroid is given by:

(sum of real parts of poles — sum of real parts of zeros)

oA = (no. of finite poles — no. of finite zeros)

oA = {(0-1-2) — (0)}/(3-0) =-1.0 180°

C < X

red loci is the loci in complex plane  S=-2

in yellow regions loci lie on the real axis 300°
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(] Breakaway Points:

Multiple roots of the characteristic equation occur at these points.
These are obtained using the formula dK / dS = 0. These points also
satisfy the angle criteria.

Examples: K=0

X, X ‘ K50 S X(pl)
Breakaway 'Boint breakaway point ({)

I ——— %8
X 7 / X(p2)
X X N0 K=0

=~<Breakaway points
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(d Example: Calculation for Breakaway points
G(S) = K/S(S+1)(S+2)
1+ G(S)H(S) =0 mm) K/S(S+1)(S+2)=-1
mm) K =-(S3+352+29)
— dK/dS =-(3S2+6S +2) =0
We find the roots of the polynomial
352+65S+2=0
We get S1=-0.423 & S2 =-1.577

We know that for the given G(S), the loci on the real axis will lie
between ‘0" & -1’; therefore the breakaway point is = -0.423. S2 = -

1.577 is not a breakaway point because between S=-1 & -2 no loci exists
on the real axis of the S-plane.
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J Example:
G(S)H(S) = K/S(S+4)(S2 + 4S + 20)= K/S(S+4)(S+2+j4)(S+2-j4)

To determine the breakaway points: dK/dS =0. Substitute in 1+G(S)H(S) =
0 to get K = -5(5+4)(S? + 4S + 20)

dK/dS=S3+6S%2+185+20=0
Factorize dK/dS=0, we get S=-2; S=-2 +/-j 2.45

J Now we find out that out of the roots of dK/dS = 0 which qualify to be
breakaway points. To do this, we first draw the pole — zero locations of
G(S)H(S) in the S-plane

(next slide)
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Construction Rules for. Root Locus

(1 Example (contd): X 4
S-plane N \A
(K=0)x 4<% {R=0)
X
(k=0)d - +j4
J Having plotted the location of poles, we know that the root locus

on the real axis will lie between S = 0 (K=0) & S=-4(K=0).

(J Now, one root of dK/dS =0 lies at S = -2; therefore S=-2 is a breakaway
point. Since, -2 is also real part of the complex pole (-2 +/- j4),
therefore S=-2+/-j2.45 ( root of dK/dS =0) is also a breakaway point.
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Construction Rules for. Root Locus

J Angle of Departure/Arrival:
For poles on the real axis: ( either 0° or 180° )

0 X X 0
(K=o points) i 0 =180° 0=0°

Therefore, the angle of departure and/or arrival need be calculated only

for complex poles & zeros.
Method:
1. choose a point SO very close to the pole ‘p’

2. Graphically determine the angle contributions due to other poles &
zeros at the point SO.

3. determine angle of departure Bp from the pole ‘p’.
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Construction Rules tor. Root Locus

(d Draw the pole-zero locations of G(S)H(S)

d Draw a point SO in the S-plane very close to the pole/zero for which
departure angle is to be determined.

(J Draw vectors to SO from each pole & zero of G(S)H(S).
 Calculate total angle, ¢, subtended at SO.
d Angle of departure/ is given by ¢ — 6p/ =(2q+ 1) 180°, or
we have Op=+/-(2q+ 1) 180° + ¢;
0z =+/-(29+1)180° -
d Bp/6z :the angle of departure/arrival for the pole/zero; Bp is subtracted
from ¢ because it is angle subtended by a pole.
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Construction Rules tor. Root Locus

(1 Op: angle of departure SO

5 = N .
X \ 0 . X X
Os 04 0:

So is placed very close to the pole X

for which angle of departure is to be calculated. For the sake of clarity,
here, it is shown some distance from the pole.

1 Angle subtended by other poles & zeros at SO, ¢, is given by:
b=64-(61+62 + 63 +05)
é—-06p=+/-(29+1)180°,q=0,1,2, ..., 8p = +/-(29+1)180° + d
d Angle of arrival at a zero is calculated in a similar way.
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Construction Rules tor. Root Locus

O Example: Calculation of angle of departure 1 /ep= 135°
45°  K=0)

Poles are at -1 +/-j1 S=-2 (K = o)
Zero at 5= -2 o)
The K = 0 points are also points on the root

N -1

locus; therefore at open loop pole (K=0) %ﬁ -------- j1
location too, the angle criterion should be satisfied. 90°\
The angle ¢ = (45°—-90°); Op = (29+1)180° + ¢;

Op = 180° + (45° -90°) = 135° is the angle of departure
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Construction Rules tor. Root Locus

J Example: Angle of Arrival (at zero located at -1+j1)
tan01=7%=0.5
01= 26.56°
tan 63 =2.414/1
03 =67.49°
62 = 90° =
tan 64 = -0.414/1
04 =-22.49° 06’4 =360-22.49=337.5°

The total angle,®, subtended at the zero=02 - 063 - 61 + 64 = 18.44°,
Therefore angle of arrival 0z = 180° - ¢ = 161.6°
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determination ot ‘K" for speciftiec

J Example: 6\ 4\ KT

G(S) = K (S+6)/(S+1)(S+4)
K=0 points: S=-1 & S=-4 are poles of G(S)
K = oo points: S = -6 are zeros of G(S)
Loci on the real axis lies between S = -1 & S= -4; and between S =-6 &

(o o)

4. Since one zero is at oo, therefore one closed loop pole will approach
this zero asymptotically

5. Angle of asymptote: ¢ = 180°(2g+1)/Np-Nz =180°; =0
6. Since there is only one asymptote, there is no centroid
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determination ot ‘K" for specifiec

1 Breakaway points: 1+ G(S) =0; 1 + K (S+6)/(S+1)(S+4) = 0; therefore, K
= - (S+1)(S+4)/(S5+6)

O dK/ds = ;B 2 + 125 + 26 = Omm) S1 = -9.16, 52 = -2.84

J Both S1 & S2 are breakaway points because the root loci on the real
axis lies between S =-1 & -4; and between S = -6 & oo

K>0 S-plane

AN
A

v

K= e point K=0 points
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determination ot ‘K" for specifiec

1 Let us fix the location of closed poles at S1 & S2. Now we want to find K

which yields S1 & S2. Let
S1

S1=-2+j1.5
¢ = Cos(9)
J Draw vectors from each pole & zero of G(S) to S1 or S2 as shown.

1 Then K = product of the length of vectors from poles/ product of length of
vectors from zeros

K=|S1+4]||S1+1|/|S1+6]|=|-2+j1.5+4]||-2+j1.5+1|/|-2+j1.5+6| = 1.05
¢ = Cos(45°) = 0.707
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Effect of adding Zeros on Stability of a Closed

O G(S) = K /(S+1)(S+2)(S+3) K=K

[ The root loci is obtained as: As the root loci cross K>0

in to RH of S-plane, . k>0 x X

1 The closed loop system becomes unstable for a valu K>0 Fig.1
of K>Ki. Let us now add a zero. o=-2 (VZZroid)

 Let us now add a zero at S= -4 the loci will be (asymptotes)
(d We observe that addition of a zero has stabilized
o=-1 (centrai

the closed loop system for all values of K; O
7
G(S) = K (S+4)/(S+1)(S+2)(S=3) Fig. 2
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J Let us now add a zero at S =-2.5 G(S) = K (5+2.5)/(S+1)(5+2)(S+3)

o=-1.75 asymptotes

Looking at Figs. 1, 2 & 3 we see that addition of zero ha

1. Reduced no. of asymptotes X O x X

thereby preventing the locus from o=-1.75 Fig)3

moving in to RH of the S-plane.

2. Therefore the CL system has become stable for all values gf ‘K’

3. The location of zero also affects the locus.

4. Shifting zero location from S= -4 to -2.5 has moved centroid from -1 to -1.75
thereby shifting the starting point of asymptotes to further away from the

Imaginary axis of the S-plane. In Fig.2 the breakaway point is to the left of
o; in Fig.3 itis to the right of o.

5. Thus the system has become relatively more stable
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d Adding a pole:
G(S) = K/(S=1)(S+2) A

Fig. 1
G(S) = K/(S+1)(S+2)(S+3) M i
(d We observe that addition of a pole
affects stability of a CL system, as is seen
from Fig.1 & 2
A A A
Fig. 2
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Root Locus Problems

] Problem1:

For G(S) = K(S + b)/S(S + a) & H(S) = 1 show that the loci of the complex
roots are part of a circle with

center at (-b,0) ,and
radius = V (b2 —ab)
1 Solution:
The angle criterion: arg{(S + b)/S(S + a)} = +/- 180°
At,S=0+jwwehave:arg{(c+jw+b)/(o+jw)(o+]w+a)}
or, tan!(w/o+b)-tant( w/o)-tan w/o+a)=-
tanl( w/o) + tan}( w/o +a) = /1 + tan'}( w/o + b)
Take tan on both sides & simplify, to get
(0 +b)(20+a)=0(0+a)-w?
02* w?+2bo+ab=0
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Root Locus Problems (contd)..

d Add & subtract b? term to get
(02 + 2bo + b%) — b2 +w?2 + ab =0
(o + b)? + w?2 = b%-ab is the equation of the circle with
center at (-b,0) & radius =V (b2- ab)
Forb=1&a=-1
center = (-1,0) & radius = V2
d Problem 2:
H(S)=1 G(S)=1/S(S+ a)
Draw root locus as a varies between 0< a<eo
Solution:

‘a’ appears in the denominator polynomial of G(S). ‘K’ always appeared in
the numerator of G(S). Therefore we manipulate to get ‘a’ in the
numerator.

The Characteristic equation Q(S) =1 + G(S)H(S) =0
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Root Locus Problems (contd)..

dQ(S)=S2+aS+1=0
From Q(S), we rewrite G(S) in a way that ‘a’ appears in the numerator
Therefore, we write

G(S)=aS/S?+1 X j1
The root locus for parameter ‘a’:
o=0 points: S1=+j1 & S2=-j1; Np =2
o = oo points: S =0 ; (another zero at e=); Nz =1
Np — Nz =1; No. of loci =2
Locus on the real axis covers entire axis in the LH of S-plane

N

(—j1

No. of asymptotes =1
No Centroid ( because only one asymptote)

S

Angle of asymptote ( for g =0) = 180°
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Root Locus Problems (contd)..

J Breakaway point:
aS/S%2+1=-1; a=-(S2+1)/S;da/dS=0=S2-1=0;S=+/-1
The breakaway point is S = -1 because it is a point on the loci
(d Angle of Departure: (from pole atS =j1)
Angle subtended at S=j1 by zero at S=0 is 90°
Angle subtended at S = j1 by pole at S=-j1 =90°
Total angle subtended,  =90-90=0°
Angle of departure Op = 180° + ¢ = 180°
 The Root Loci: breakaway point  xj1
0

) ~ E
A Itis a circle with radius = 1 & center (0,0). (Contd. next slide) I
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Root Locus Problems (contd)..

d Let us fix the location of closed loop poles for damping ratio € = 0.5 &
determine time domain parameters. We redraw the locus.

¢ =Cos(B0) =0.5; 8 =60°. Draw a line at 60° from —ive real axis

as shown. ,
The intersections A & B on the locus define the breakawavpc:mt
location of the closed loop system.
Since the locus is a circle with unity radius, the
vector OA = 1 & therefore wn =1 rads/sec.
-€wn =-0.5 ; wd =wnV(1-€?) = 0.866 rads/sec
 The CL poles are — éwn +/- j wd =-0.5 +/- j 0.866

 The Characteristic equation is (S+ 0.5 + j 0.866)(S+ 0.5 - j 0.866)=S*+S
+1=0

The derived Ch. Eq. is: S*+ aS +1 =0
On comparing we get a=1.
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Root Locus Problems (contd)..

] Problem 3:

Suppose that the Characteristic equation is given as:
Q(S)=S*+KS? +2S+1=0
You are asked to draw root locus for 0<K<eo, How to draw?

Solution:

1. Collect all the terms containing ‘K.

2. Divide terms containing ‘K’ by the balance terms

3. Write Q(S) =1+ N’(S)/D’(S)=0

4. Write G(S) = N’(s)/D’(S)

5. Plotroot locus

6. Inthe presentcase: Q(S)=1+KS%Y/S* +25+1=0

7. G(S)=KS?%S?+ 2S + 1; Factorize denominator polynomial
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PROBLEM: Construction of Root Locus

Draw the root locus for the open loop transfer function G(s) and settling
time ts=4sec given, find the range of values of k and show that the loci of
the complex roots are part of a circle with (-1,0) as centre and radius =/,

where k(s +1)
G(s) =

s(s—-1)
Step-1: The first step in constructing a root-locus plot is to locate the
open-loop poles and zeros in s-plane.

 The k=0 points:

s=0, s=1

no. of poles (n)=2
 The k=< points:

s=-1

no. of zeros (m)=1
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PROBLEM: Construction of Root Locus (contd)..

The poles and zeros in
P Z o A )

s-plane after step-1.
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PROBLEM: Construction of Root Locus (contd)..

Step-2: Determine the root loci on the real axis.
3 T I 1 T T

1 To determine the root loci on
real axis we select some test .|
points.

d e.g: p, (on positive real axis).

Py
1 P TR  CRTP - -
[ No. of real poles and zeros on
the right of test point is zero ( -+
which is even)
2t
1 Hence, there is no root locus |
on the positive real axis. 3 ' ' ' ' | '
-3 -4 -3 -2 -1 0 1 2
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PROBLEM: Construction of Root Locus (contd)..

Step-2: Determine the root loci on the real axis.

J Next, select a test point on
the positive real axis between
1 and 0. o

1 No. of real poles and zeros on |
the right of test point is one ( P2
which is Odd) L e e R R R ELEEEEEEE, G EREERRRS :?:-‘-;..: ........ —

 Therefore, from 1 to 0 is part
of the root locus.

3 | | | | i |
5 _ _ _
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PROBLEM: Construction of Root Locus (contd)..

Step-2: Determine the root loci on the real axis.

(J Next, select a test point on : | | | | !
the negative real axis
between 0 and -1. ar

(J No. of real poles and zeros on ;
the right of test point is two ( p3
which is even) [ *3“"""?';‘: """"" Moo 7

Q Therefore, from 0 to -1 is not |
part of the root locus.

3 | | | | i |
5 _ _ _
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PROBLEM: Construction of Root Locus (contd)..

Step-2: Determine the root loci on the real axis.

(J Next, select a test point on
the negative real axis
between -1 and - o=,

(J No. of real poles and zeros on
the right of test point is three
( which is odd)

d Therefore, from -1 to - o= is
part of the root locus.

3

-3
&
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PROBLEM: Construction of Root Locus (contd)..

Step-2: Determine the root loci on the real axis.
3 T T T T T
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PROBLEM: Construction of Root Locus (contd)..

Step-3: Determine the asymptotes of the root loci and angles.

+180 °(2q + 1)

Where Angle of asymptotes = ¢ =

n-----> number of poles (2) n—m

m-----> number of zeros (1) _ +180 °(29 +1)
2-1

¢ = +180° when q =0

[ No. of asymptotes =n-m=1
1 The angle of asymptote is 180°.
 No centroid for this system
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PROBLEM: Construction of Root Locus (contd)..

Step-4: Determine the breakaway/break-in point.

The breakaway/break-in point is the point from which the root locus
branches leaves/arrives real axis.

The breakaway or break-in points can be determined from the roots of
dK/ds=0

It should be noted that not all the solutions of dK/ds=0 correspond to
actual breakaway points.

JIf a point at which dK/ds=0 is on a root locus, it is an actual breakaway
or break-in point.

The characteristic equation of the system is

K(s+1) .
s(s—-1)

1+ G(s)H (s) =1+

" :_s(s—l)

s+1
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PROBLEM: Construction of Root Locus (contd)..

1 The breakaway point can now be determined as

dK d [ s(s—-1)]

ds __dst s+1 J

dK (s +1)(2s-1) - (s® = s)(1)
ds (s +1)°
 Set dK/ds=0 in order to determine breakaway point.

(s+D@2s-D-(s" =)D s +25-1=0
(s +1)2
By solving the equation roots are at
s = +0.414
= —2.414

J By substituting these s values in k equation, the value of k is positive real
for s=0.414 (k=0.17), s=-2.414 (k=5.828). so these points are actual
breakaway points.

INSTITUTE OF AERONAUTICAL ENGINEERING



PROBLEM: Construction of Root Locus (contd)..

Step-4: Determine the breakaway/break-in point.

3 T T T I I
E _ —
.1 _ —
|:| ‘ JE:I- ———————— ::+:H: -------- —
Breakaway . Breakaway
point . point
-1k —
i _
-3 I I I I i I
5 -4 -3 — =1 0 1 2
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PROBLEM: Construction of Root Locus (coﬁtd)..

Step-5: Determine the points where root loci cross the
imaginary axis and range of K for stable operation

The characteristic equation of closed loop system:

s(s—-1)+k(s+1)=0

s+ (k-1)s+k=0 =) g2 1 y
s' k-1 0
k >0 .
h S K
k >1
52+1:
s=1%]jl

The root loci cuts the imaginary axis at s=1]jl
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PROBLEM: Construction of Root Locus (coﬁtd)..

Step-5: Determine the points where root loci cross the
imaginary axis and range of K for stable operation

The characteristic equation of closed loop system:

4
s(s-1)+k(s+1)=0 " —\/E ts:4:§—
n a)n
s24(k-1)s+k=0 — - — k
B -1
SZ+2§a)nS+a)nZ=O ga)n:(7) ga)nzlz(?)
k =3

The location of closed loop poles
for k=3, ts=4 sec

s2 +2s+3=0

s=-1+ j\/z
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PROBLEM: Construction of Root Locus (coﬁtd)..

To show that the loci of the complex roots are part of a
circle with (-1,0) as centre and/eadius =

1 Apply the angle criterion: (s+1
ZG(s) = Zk =+7(2q9 +1)
s(s —1)
S=0 + Jw
Zk+ Lo+ jo+l— Lo+ Jjo— Lo+ Jo—-1=—nrx
T + tan _1( i \ztan _1(2)+tan _1( i 7
\o +1) \o ) \o —1)
1 Apply the tan on both sides tan( A + B) = tan A+ tan B
o o 1—-tan Atan B
—+( W tan(yz)+( W
o \o -1 o +1)
w( © W 1—tan(7r)( @ )
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PROBLEM: Construction of Root Locus (coﬁtd)..

By cross multiply and simplify:

By add and subtract ‘1’ and rearrange

(0'2+20' +1)—1+a)2—1=0

(o-+1)2+a)2=2

1 This is the equation of the circle with center at (-1,0) and radius V2
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PROBLEM: Construction of Root Locus (coﬁtd)..

Complete root locus for the given system

k(s+1) Root Locus
G (s) = 1.5 . . . T T T .
s(s-1) :
(k= 1)
-1 - -
0.5 .
.
2
c - @ — > S =~ <
= Breakaway Breakaway
E point point
-0.5F .
s . : |
~1- j1.414 (k = 3 :
J ( ) ™Sk = 1)
15 | 1 | | | ] |
-3 2.5 -2 -1.5 -1 -0.5 0 0.5 1

Feal Axiz
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PROBLEM: Construction of Root Locus

The characteristic equation of a feedback control system is

s4+333+1252+(k—16)s+k=0

Sketch the root locus plot for O<k<ee and show that the system is
conditionally stable (stable only for a range of gain k). Determine the range
of gain for which the system is stable.

Solution:

To sketch the root locus, we require the open-loop transfer function
G(s)H(s)
d 1+G(s)H (s) = s“+3s° +12s° -16s+ks+k =0
1+G(s)H(s)=s(s  +3s° +12s-16)+k(s+1) =0
k(s +1) k(s +1)

=1+

1+ ; : =
s(s  +3s +12s-16)

=0
s(s—l)(s2 +4s+16)
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PROBLEM: Construction of Root Locus (coﬁtd)..

k(s +1) k(s +1)
G (s)H (s) = 3 > = _ :
S(s"+3s" +12s-16) s(s—-1)(s+2+ j3.42)(s+2- }j3.42)
 The k=0 points: s=0, s=1, s=-2+j3.42, s=-2-j3.42
no. of poles (n)=4
 The k=oo points: s=-1
no. of zeros (m)=1
 No. of root locus branches (n)=4
1 Root locus exists on the real axis from s=1 to s=0 and to the left of s=-1
O No asymptotes (n-m)=3
1 Angles of asymptotes- <60 ° +180 °
 Centroids = -o0.66
1 The breakaway points are given by dk/ds=0.

s(s—l)(s2 +4s+16)

where k =
s+1
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PROBLEM: Construction of Root Locus (coﬁtd)..

dk

d 4 3 2 4 3 2 d
d—=(s+1)—(s +3s +12s -16s)—-(s +3s +12s -16s)—(s+1) =0
ds ds ds

(s+1)(4s3+9sz+24s—16)—s4—353—1232+165:O
3s' +10s”° +21s” +245-16 = 0

[ By solving the above equation out of four roots only, s=0.45 and s=-2.26 are
actual break points.

1 Out of these s=0.45 is the breakaway point and s=-2.26 is the break-in point.
1 Corresponding to these points k values are 2.64 and 77.66

O The angle departure of the root locus from the complex pole is ¢, = £5 .27 °
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PROBLEM: Construction of Root Locus (coﬁtd)..

Determine the points where root loci cross the imaginary axis
and range of K for stable operation
The characteristic equation of closed loop system:

s4+333+1252+(k—16)s+k=0

< | 12 K k >0
s’ 3 k — 16 ‘ 52 —k >0
.2 36 — k +16 " k < 52
3
52—k(k_16)_3k 52k +16k —k° —832 —9k >0
s ) 52 — k k? - 59k +832 <0
N i k > 23.3andk < 35.7

The range of values of k for stability is 23.3<k<35.7. The corresponding
oscillation frequencies are 1.68 rad/sec and 2.6 rad/sec
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PROBLEM: Construction of Root Locus (coﬁtd)..

1 Complete root locus of the given system is

Foot Locus
&
.E_ =
4 L
E |
@
Z
=
=
i
m
E
= oL ‘.
ol P - 0 |
0, =+5 .21
5| 4
8 1 1 1 1
=10 -5 -5 o | 2 4

Real Axiz

INSTITUTE OF AERONAUTICAL ENGINEERING



Why Controllers!

1 If a closed loop system’s response is not as desired then we make use
of controllers.

 Controllers are also needed because to improve the closed loop
system’s response we cannot alter / change /replace the system(plant)
which is designed for certain steady state design specifications.

System response has two components:

transient response ,&

steady state response
 There may be a requirement to either improve transient response or
steady state response; or, both the responses may have to be improved.

 Different controllers are used for improving transient & steady state
responses; a combination of controllers is used to improve both transient
& steady state responses of a system.
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P: The Proportional Controller

1 Proportional Controller:
r(t)% c(t) cft) = KP r(t)

d P controller is a pure gain element. Generally put in cascade with the

plant(system to be controlled)
R(S) C(S)

9

d M(S) = C(S)/R(S) = Kp G(S)/1+ Kp G(S)
 Thus Kp provides additional gain to the loop; Kp can be <1 or >1

[ The value of Kp determines the location of closed loop pole(s). It affects
impulse response of the closed loop system.
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J Example 1:

G(S)=1/(S+1);Q(S)=1+G(S)=0 MPS+2 = 0 EEPS= -2
G1(S) = Kp G(S) = Kp/(S+1); Q(S) = 1 + G(S)=0 MS +(Kp+1)=0
=S = -(Kp +1)
 Thus we observe that the location of CL pole varies with Kp. If Kp is

increased then the pole moves farther away from the Imaginary Axis of
the S plane.

 The Impulse response without Kp = e™ ,and
with Kp = exp{ -(Kp +1)t}
d Thus we see that as Kp increases, impulse response decays faster to zero

thus reducing settling time. We cannot increase Kp beyond a value as it
may make higher order systems unstable.
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P: The Proportional Controller

- TVALNLT A E EE T AATEETAT™ATATTAEAT EE AR T AT EESETEA &AATAEEEN

J Example 2:
G(S)=1/S2+2S+2;Q(S)=1+G(S)=0 ™MPS2+25+3=0
m)S=-1+/-j1
=) implies pole locations are fixed
G+(S) = Kp/S?+ 25+ 2;Q(S)=S*+2S + (2+Kp)

(d We see that as Kp is increased the imaginary part of the roots increases
thereby increasing wn for the system, while maintaining intersection on
the real axis = -1. Therefore it does not affect settling time.

 Thus we see that increasing Kp introduces high frequency oscillations in
the system & it may not be appropriate to fix a high value for Kp as it
reduces damping in the system.
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I: The Integral Controller

 Integral Controller:

R(S) C(S)
C(S)/R(S) = Ge(S) = Ki/S

R(S) C(S)
+

C(S)/R(S) = Ki G(S)/(S + Ki G(S)); G(S) = K/(S5+1)
C(S)/R(S) = Ki K /(S* + S + Ki K) Therefore Integral control:
1. Increases the order of a system
2. Co)nverts over-damped system in to an under damped one ( governed by
Ki
3. As the integral gain Ki is varied, it varies wn of the system.
4. Reduces steady state error of a system & improves steady state response.
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I: The Integral Controller: Frequency Response

J Magnitude Response:
G(S) =Ki/S; S = jw G(jw) = Ki/jw
|G(Jw) |= G(w)=Ki/w ; arg(G(jw))= - N/2 rads =¢

G(w) ¢

-N/2
0 w (rads/sec)

At very low frequencies the integrator provides very high gain and very
high attenuation at high frequencies. It is a low pass filter.

d The phase lag : ¢ = —/1/2 rads (constant for all frequencies)
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D: The Derivative Controller

] Derivative Controller:
.
Kd S
J Explanation:

Take Inverse Laplace transform of (1); c(t) = Kd r°(t) = Kd dr/dt

Thus we observe that derivative controller differentiates the input. It
implies that if input is constant then the output of derivative block is
equal to zero. Thus its output exists only if input is varying with time.
Therefore, if this controller is in forward path, then we use a term like (1
+ Kd S) so that input to the plant does not become zero if the error
signal has attained a constant value.

C(S)
C(S) = (Kd S) R(S) ....1

This is depicted in next slide.
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D: The Derivative Controller

(] The Derivative Controller:
R(S)
r(t)

J If e(t), the error, attains a constant value then the output, y(t) =0 and
the plant (system) will have zero input which is not acceptable.

 Therefore in the forward path, we use a term (1+ Kd S) so that under
steady state y(t) = e(t). Therefore the derivative block is replaced by the

block in the forward path.

L In the feedback we retain it as Kd S
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Gc(S) =Kd S ; Ge(jw) = j Kd w; |Ge(jw) |= Ge(w) = Kd w;

arg(Ge(jw)) =N/2=¢
rads

Gc(w) Kd d

&
S

d We see from the above plots that derivative controller offer higher gain
at higher frequencies , therefore it is a high pass filter.

d Phase introduced by it is positive.

INSTITUTE OF AERONAUTICAL ENGINEERING



Proportional plus Integral Control

P+l Controller: |G(jw)|= G(w) = V(Ki* + (Kp w)* )/w

R(S)

—>

(P+1) Controller
E(S)/R(S) = Kp + Ki/S; G(S) = Kp + Ki/S
G(jw) = Kp + Ki/jw = (Ki + j Kp w)/jw
| G(jw)|= G(w) = V(Ki* + (Kp w)* )/w
arg(G(jw)) = tan (Kp w/Ki)—/1/2
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P+D Controller .

(1 P+D Controller:

R(S) C(S)

R(S) C(s)

+

(P+D Controller)
C(S)/R(S) = G(S)=Kp +Kd S

G(jw) =Kp +j Kd w

| G(jw) | = G(w) = V{(Kp* + (Kd w)*}

arg {G(jw)} = tan™ (Kd w/Kp)
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P+1+D Controller .

1 P+1+D Controller:

c(t) = {Kp + Kd d/dt + ki [ dt} r(t)

C(S) PLANT c5)
~o- -kl -

P+14+D) Controller

C(S)/R(S) = G(S) =Kp + Kd S + Ki/S = (Kd S* + Kp S + Ki)/S
G(jw) = {(Ki — Kd w) +j Kp w}/jw

| G(jw) | = G(w) = V{(Ki — Kd w)* + (Kp w)*}

arg{G(jw) } =tan™{ Kp w /(Ki — Kd w)}
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P+1+D Controller

J Observation:
Kp = 0; 1+D controller
Ki = 0; P+D controller
Kd = 0; P+I controller
[ Thus we can choose a combination depending on the requirement.
y(t) = {Kp + Kd d/dt + ki [ dt} e(t); e(t) is system error;
y(t) is P+I+D output
1 From the above equation, we observe that,
If e(t) >0 & is constant, then
Output of ‘D’ block=0
Output of ‘P’ block = Kp * e(t)
Output of ‘I’ block = Ki [ e(t) dt
[ Thus the ‘I’ block output will keep increasing & can destabilize the CL
system.
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P+1+D Controller

d Therefore, if the closed loop system is to be stable then the error, e(t),
should equal ‘0" under steady state.

d Zero steady state error implies,
Kp =00, Kv =00 & Ka = o0
It means that all error constants should have a very high value.

d the forward path transfer function in the block diagram is equal to
H(S)= Ge(S) G(S) = {(Kd S? + Kp S + Ki)/S} G(S)
d If G(S) is type ‘0’: H(S) is type ‘1’; e(t) = O for step input
d If G(S) is type ‘1’: H(S) is type ‘2’; e(t) = O for step & ramp inputs
O If G(S) is type ‘2”: H(S) is type ‘3’; e(t) = O for step, ramp & parabolic
inputs.
(d The above observations are also valid for P+l controller & depend upon

the location of zeros in G(S) . For an all pole G(S), order>2, the CL
system may cease to be stable unless there are zeros associated with
G(S). H(S) has 1 pair of CC zeros & pole at S=0.
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P+1+D Controller

(d The obvious concern is:
If error, e(t) becomes’0’ then will the controller output, y(t), become ‘0’ !
If y(t) attains a ‘0’ value will the system, G(S), output also become ‘0’!

d The system output, c(t), will not become ‘0’ because of the property of
the I- controller, Ki/S.

d The | controller retains its output at its previous value, if input to it
becomes ‘0" at t = t;; that is the value y(t) attained at time t = t; - At.

J The | controller is known as pure integrator because of its linear
(constant) slope.
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P+1+D Controller

1 The pure Integrator:
Y(S)/X(S) =1/S
y°(t) = x(t) = dy(t); x(t) = U(t)=1.0
dy(t) = 1.0
(d Rectangular Rule:
y(t) = y(t-1) + dy(t) * At; y(t) =0 at t=0; At : time increment
let At = 0.05
t=1; y(1)=0+1* 0.05=0.05
t=2;y(2) =y(1) + 1* 0.05= .05 + .05 = 0.1
t=3;vy(3)=y(2)+1*0.05=0.1+0.05=0.15
d Let us now make x(t) = 0; therefore dy(t) =0
t=4; y(4) =y(3)+0 *0.05=0.15
t=5; y(5) =y(4)+0=0.15
Thus we see that even after input x(t) = 0; the output is retained.
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Unit-1V
FREQUENCY DOMAIN ANALYSIS
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Frequency Domain Specifications

d We have studied about time domain specifications like, rise time ,tr;
peak time, tp; settling time, ts; peak overshoot, Mp.

d Now, we define frequency domain specifications for a given system and
determine their correlation with the time domain specifications.

 This correlation between time & frequency domain is necessary as it
enables us to derive time domain specifications from frequency domain
ones & vice-versa.

 Further, we may like to analyze a given system either in time domain or
frequency domain & hence we need to have a set of specification in
each domain for evaluating a given system’s response.

 Like in time domain, here too we consider a second order system for
deriving frequency domain specifications.
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Frequency Domain Specifications (contd)..

1 Given, a closed loop transfer function, T(S) = C(S)/R(S), as
T(S) = C(S)/R(S) = wn? / (S* + 2§ wn S + wn?)

1 For determining frequency response, we let S =jw in T(S) because we
are interested in real frequencies which lie on the Imaginary axis of the
S-plane.

T(jw) = wn?/ (-w? + j2€ wn w + wn?)
T(jw) = wn? / wn? { (1-(w/ wn))* +j2¢ w/ wn }
d Let u = w/ wn; u: normalized frequency
wn: natural frequency of oscillation of the system
w : input signal frequency

 Thus, T(jw) = 1/{(1-u?) +j2E u} ............ (1)
| T(jw)|= M(u) = 1/v{(1-u?)* + 4& u?} ..... (2)
arg{T(jw)}= ¢ =-tan™ {2& u/(1-u?)} ........... (3)
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Frequency Domain Specifications (contd)..

d The magnitude & phase response are part of frequency response.
Equations(2) & (3) corresponding to magnitude & phase response tell
us that,

d if we feed an input signal r(t) = A Sin(wt) to the system, the output
signal will have

magnitude = A/ V{ (1-u?)? + 4&% u?}, and the
phase introduced = - tan™ {2€ u/(1-u?)}
 Thus the output signal, under steady state, will be
c(t) = A/[V{ (1-u?)? + 4&% u?}] Sin (wt -tan™' {2 u/(1-u?)})

J We observe that the output amplitude is dependent on the input
frequency, and so is the phase lag introduced in the output signal.
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Frequency Domain Specifications (contd)..

(d Reproducing equations (2) & (3), we have
M(u) = 1/v{ (1-u?)? + 4& u?} ..... (2)
¢ =-tan' {2 u/(1-u?)} ........... (3)
PlottingM & dvs.u, u=w/wn

u M 0)
00| 1.0 | 0 (w=0)
1.0 |1/(2¢) |-N/2 (w= wn)
oo 0 -1 (wn  ©90)
1 Observation: -

At w= wn, the value of ‘M’ is inversely proportional to €.

The lower the & higher the ‘M’ implies higher peak in the magnitude
response.
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Frequency Domain Specifications (contd)..

(J Resonant Frequency:

The frequency where ‘M’ has a peak value is called resonant
frequency. At this frequency, the slope of the magnitude curve,
M, is zero. Differentiate ‘M’ w.r.t ‘u’ in equation (1)

Therefore, dM/du=0 =P ur?=1-2§* == ur=V(1-2 &2
U = ur mm) Wr = Wn \/(1-2 &2)

Resonant frequency : wr= wnV(1-2 &) ....(4)
(1 Resonant Peak, Mr:

The maximum value of magnitude is known as ‘Resonant peak’
M(u) = 1/v{ (1-u?)? + 4€2 u?}; at resonant frequency u=ur, we get Mr.
Substitute for u= ur in M(u), to get Mr = 1/{2€ V(1- &)} ..... (5)
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Frequency Domain Specifications (contd)..

(d Phase angle, ¢r at Resonant Frequency:
Phase angle: ¢ = - tan™ {2€ u/(1-u?)}
Substitute for u = urin ¢, to get
¢or =-tan7'{v(1-2 &)/} ...... (6)
From equations (4) & (5), as reproduced below
wr= wnv(1-2¢&) ...(4)
Mr=1/{2EV(1- &)} ..... (5)
It is seen that as ¢ approaches ‘0’
wr approaches wn, and
Mr approaches oo
At¢=0.707; Mr=1& wr=0
Therefore there is no resonant peak & hence no resonant frequency.
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Frequency Domain Specifications

(J The magnitude & phase plot:

For arange of & 0<€<0.707 we sketch the plots.
T M (£ 0.707)

M 1.0

Magnitude m 707) -N/2

SRR

~~—

Ur = wr/wn

Normalized Frequency

d We observe that for & 0.707, the magnitude plot decreases
monotonically from M=1 at u=0. Thus there is no resonant peak for
¢>0.707 & the greatest value of M =1.0
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Frequency Domain Specifications (contd)..

 Bandwidth, wb:
The frequency at which M =0.707 (1/V2) is called cut off frequency,
wc.

d The range of frequencies for which M> 1/v2 is defined as bandwidth,
wb of a system. Since control systems are low pass filters, wb = wc .

d At u =ub = wb / wn; (the normalized bandwidth), the expression for M
IS

M(ub) = 1/v{ (1- ub 2)? + 4€2 ub 2} = 1/V2
Solving the above equation, we get
ub®-2(1-2&%)ub?-1 =0 Let ub? = x; solve for x & then for ub. Ub = Vx
1 Solving for ub we get: ub =V [1-2€? + V(2-4&%+4£%)]
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Frequency Domain Specifications (contd)..

(] Bandwidth:

The denormalized bandwidth is given by,
wb = wn V [1-282 + V(2-482+4£4)]
Thus, we observe that bandwidth is a function of damping, € only.

¢ wb

0.2 1.51 wn
0.5 1.272 wn
0.707 | 0.999 wn

Thus we observe that as damping increases the bandwidth reduces.

INSTITUTE OF AERONAUTICAL ENGINEERING



Frequency Domain Specifications (contd)..

d Correlation between time and frequency domain parameters:
Time Domain:
Mp = exp(- N€/V(1-E%))
tp=/1/wnVv(1-€?); wd=wnV(1-&)
Frequency Domain:
Mr=1/{2§ V(1- §)}; wr= wnV(1-2§)
1 From the above equations we understand that no matter in which
domain ( frequency or time) we are analyzing a system performance,

the other domain (time or frequency) parameters can be easily
estimated using the above set of relationships.

 For example, working in time domain from the root locus we can fix &,
wn, for a desired location of closed loop poles and then we can
determine frequency domain parameters using above equations.
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Frequency Domain Specifications (contd)..

1 Correlation between time & frequency domain parameters:
wr/ wd = V(1-2 &)/ V(1-&?)

¢ wr/ wd
0.707| 0.0
0.5 |0.8165
0.3 |0.9493 T
0.2 |0.9789 orjwd |
00 | 1.0

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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POLAR PLOT

 Polar Plot:
Magnitude and phase of G(jw) is plotted in X-Y plane (graph sheet)
G(jw) = Re[G(jw)]+ Img [G(jw)]
G(jw) = |G(jw)| arg{G(jw)} = M exp(-jd)
As w is varied from ‘0’ to ‘eo’; the ‘M(w= w1)’ value is marked on the
graph sheet at an angle of p(w= w1l)

d Example 1:
G(S) = 1/(1 +TS) mmp G(jw) = 1/(1+]j wT)
m) M(w)=1/N(1+ (wT)?);  P(w)=-tan™(wT)
w—0; M =1 b =0°
(w = <><>)WO 1(w = 0)

N

S~

Ww—>00:M=0  =-1/2
w=1/T M=1/N2 ¢=-N/4

v
1/ 0= 1/T)
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POLAR PLOT (Contd..)

(J Observations:
1. The w =0 & w ==° are important points in a polar plot.

2. The angle subtended by G(jw) or G(jw) H(jw) at these frequencies
indicate the number of quadrants the polar plot is going to traverse in
the G(jw) or G(jw) H(jw) plane.

3. As we shall see later the intersection of the polar plot with the
negative real axis of the G(jw) or G(jw) H(jw) plane is a very important
information because it allows us to determine the stability of a CL
system, as also its relative stability.

4. Polar plot need not be drawn for all the frequencies from 0 to oo; the
necessary points are w = 0 & w = o= and those values of w at which the
polar plot intersects with the negative real axis of the G(jw) or G(jw)
H(jw) plane.
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POLAR PLOT (Contd..)

J Example 2:
G(S) or G(S)H(S) = 1/S(1+TS)
G(jw)=1/jw (1 +]Tw); M(w) =1/w V(1 + T*w?);
d(w) =-N1/2 - tan™(Tw)
w=0; M=oo; & =-1/2 Angle measured in CW direction: -
w=o; M=0; b = -/ Angle measured in CCW direction: +
w=1/T, M=T/N2 o¢=-3/1/4
J Note: we observe that between w =0 & w =< the angle changes by /1/2;
therefore the polar plot will traverse only in one quadrant.

The polar plot is shown in the next slide
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POLAR PLOT (Contd..)

 Polar plot:
Img. G(jw)

G(jw) plane
at w=cc M(w)=0, ¢=-/1

d Atw=1/T; M=T/v2—p==3/4
In order to plot this point, we draw
an angle ¢ =-3/1/4 and then mark

the point M = T/V2 w >0/ \
At point A, /

M =T/N2, ¢ = -3/1/4,
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POLAR PLOT (Contd..)

J Example 3:
G(S) = 1/(1+T: S)(1+T> S); G(jw) = 1/(1 +j wTh) (1 +j wTy)
M(w) = 1/V(1+ w?T:?) V(1+ w?T,?)
d(w) = -tan™(Tw) - tan™(T.w)
w=0;, M=1; d=0 Angle measured in CW direction: -
w=o; M=0; b = -/ Angle measured in CCW direction: +
(J We observe that ¢ changes from 0 to —/1 as w changes from 0 to o°.
 Therefore, the polar plot will traverse two quadrants in the G(jw) or
G(jw) H(jw) plane.

 Since the polar plot traverses two quadrants, we need to determine
point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jw) plane.
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POLAR PLOT (Contd..)

 Intersection with real & imaginary axis of the G(jw) plane:

J Procedure:

1. Rationalize G(jw) or G(jw) H(jw)

2. Separatein to real & imaginary parts of G(jw) or G(jw) H(jw)

3. For intersection on real axis; imaginary part = 0. Make imaginary part =
O by making its numerator = 0. We get value of w at point of
intersection. Calculate the value of real part at this value of w. Draw a
vector of this length from the origin to get intersection on the real axis.

4. For intersection on imaginary axis; real part = 0. Make real part = 0 by
making its numerator = 0. We get value of w at point of intersection.
Calculate the value of imaginary part at this value of w. Draw a vector
of this length from the origin to get intersection on the real axis.
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POLAR PLOT (Contd..)

d Determination of Intersection point(s):
O G(jw) can be written as, G(jw) = 1/[(1-w?T:T2) +j w(T1 + T2)]

Rationalize: multiply & divide G(jw) by [(1-w?TT2) - j w(Ty + T,)]; that is
conjugate of the denominator.

We get,
G(jw) = [(1-w?TT2) +j wW(T1 + T2))/[(1-w?T1T2)? + w?(T1 + T2)?]
Real part = (1-w?TqT2)/[(1-w?TiT2)? + w*(Tq + T2)?]
Imaginary part = w(Ty + T2)/[(1-w?TqT2)? + wW?(Ty + T2)?]
d We see from the above that
Imag. Part cannot be zero, &
Real part =0 for 1-w?TT, =0; w? =1/ TqT,
at intersection on imaginary axis, the frequency w = 1/V TqT,
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POLAR PLOT (Contd..)

Gfjw) plane
(W =00 M=0 ¢ =-N) (w=0M=1 $=0)
Vv T1 Tz/(T1 + Tz) wAO0 w>0
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POLAR PLOT

J Example 4:

G(S) = 1/(1+4T, S)(1+T, S) (14T3 S);

G(jw)=1/(1+j wTy) (1 +j wT2) (1 +j wT3)

M(w) = 1/V(1+ w?T:2) V(1+ w?T,2?) V(1+ w?T3?)

d(w) = - tan™(Thw) - tan™(Tow) - tan™(Tzw)

w=0;, M=1, ¢=0 Angle measured in CW direction: -

w=ee;, M=0; ¢=-3/1/2 Angle measured in CCW direction: +
J We observe that ¢ changes from 0 to —3/1/2 as w changes from 0 to o°.

 Therefore, the polar plot will traverse three quadrants in the G(jw) or
G(jw) H(jw) plane.

 Since the polar plot traverses three quadrants, we need to determine
point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jw) plane.
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POLAR PLOT (Contd..)

 Intersection on the Real & Imaginary axis of G(j w) plane:
Following the procedure as explained earlier, we have:
 For intersection on Imaginary Axis:
W=1/V(T1 T2 + T3 T4 + T,T3)
 For intersection on real Axis:
W=V[T1+T2+ T3/T1 T2 T3 ]

For the above values of w, determine the magnitude of the points with
imaginary intersection.
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POLAR PLOT (Contd..)

Gfjw) plane
(w =e M=0 & = -3/1/2) (wEO0M =1 ¢=0)
0 \
w1 =V (T1 +T+T3)/(T1 T2 T3) \w>0
w>0

OA: magnitude of G(jw) at w = w;,
OB : magnitude of G(jw) at
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POLAR PLOT (Relative Stability)

J Relative Stability:

S S

=
o

It is defined for systems that are open loop stable.

We have the Characteristic equation Q(S) =1 + G(S)H(S) =0
For real frequencies ( frequency response) S = jw

Therefore, Q(jw) =1 + G(jw) H(jw) =0

Or, G(jw ) H(j w) =-1

therefore, |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) = =+/- N
When loop gain = |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) =+/- N
Phase introduced due to error detector = 180°

Therefore, total phase in the loop =360° & |G(jw ) H(j w)|=1

. The CL system response is oscillatory & it is on the verge of

instability
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POLAR PLOT (Relative Stability Contd..)

11. loop gain = |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) = +/- N: thisis a
point (-1, jO) in the G(jw ) H(j w) plane. 1

12. Stability of a closed loop system is determined by \

(-1,]0)

non-encirclement of (-1,j0) point. As the polar plot gets closer to (-
1,j0) point, the CL system tends towards instability.

Polar plot & Location of closed loop poles:

X

X

% plane X S plane

<-M/

We observe that

(-1,i0) / G

[jw) H(jw) plane

polar plot closer to (41,](

)) point implies CL poles are

closer to the Imaginary axis of the S-plane
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POLAR PLOT (Relative Stability Contd..)

d As the CL poles move closer to the Imaginary axis of the S plane, the
system takes more time to settle down (reach steady state) & is
therefore relatively less stable than the one which has CL poles far
removed from the Imaginary axis of the S plane.

 In frequency domain it implies that as the polar plot moves closer to

the (-1,j0) in the G(jw ) H(jw ) plane, the CL system becomes relatively
less & less stable.

1 Therefore proximity of the polar plot to the (-1,j0) point determines CL
system’s relative stability.

O If the polar plot encircles the (-1,j0) point then the CL system is
unstable.
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POLAR PLOT (Relative Stability Contd..)

J Example of Relative stability:
G(jw )H(jw) plane

Plot 1: (-1,j0)a

Intersects negative real axis at ‘b” d

Plot 2:

Intersects negative real axis at ‘c’

Plot 3:

Passes through (-1,j0) point 1 (More Stable)
Plot 4: 2 (Stable)

Encircles (-1,j0) point & 3 (limitedly stable)
intersects negative real axis 4 (unstable)

at ‘d’

INSTITUTE OF AERONAUTICAL ENGINEERING



Relative Stability Index: Gain & Phase Margin

J Gain Margin:

1. The margin between actual gain ‘K’ (of the system) and the critical
gain causing oscillations (in the system output) is called Gain
Margin (GM)

2. Critical gain: the value of ‘K’ at which the Polar plot- { G(jw)H(j w)}
plot - passes through (-1,j0) point.

3. Definition of GM: It is the factor by which the system gain can be

increased to drive it to the verge of instability. GH plane

4. At w = w;, the magnitude of (-1,j0) (w=w")
intersection with the negative real axis is\( \‘
‘a’; the phase angle = /1 a

5. For the plot to pass through (-1,j0) point, the factor by which the

gain is to be increased = 1/a. GM = 1/a
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Relative Stability Index: Gain & Phase Margin

1. |G(jw)H(jw)| =a, at w = w;

2. arg {G(jw)H(jw)} = =71, at w = wy

3. w=uwisthe frequency at which ¢ = 180°.

4. w = wis called ‘Phase Crossover Frequency’

5. Phase crossover frequency: is defined as the frequency at which the
phase offered by the system is Ji

6. Gain Margin is now defined in terms of phase crossover frequency as

7. ‘reciprocal of the gain at the frequency at which phase angle
becomes 180’

8. Thus GM value is obtained at phase crossover frequency.
9. GM =1/a; In decibels: GM = 20 Log(1/a) = - 20 Log(a)
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Relative Stability Index: Gain & Phase Margin

J Phase Margin:

1.
2.

SRR

It is calculated at ‘Gain Crossover Frequency’

The frequency at which |G(jw)H(jw)| = 1 is called ‘Gain Crossover
frequency’ G(jw)H(jw) [plane

Draw a unit circle as shown. ‘/\
The point of intersection of unit circle X(w=)) /\ @)

with polar plot is X, say, the frequency is w. /
The |G(jw)H(jw) | (at w=w,) = length of vector OX= l(

PM = ¢
Therefore w=w, is the gain cross over frequency.

The angle made by OX with the negative real axis of the G(jw)H(jw)
plane is Phase Margin (PM), ¢, of the system.
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Relative Stability Index: Gain & Phase Margin

(JPhase Margin & Stability of CL system:

1. Itis defined as the amount of additional phase lag at the gain cross
over frequency required to bring the system to the verge of
instability.

2. Itis measured in the CCW direction from the negative real axis of
the G(jw) H(jw) plane.

3. If w=w,isthe gain cross over frequency, then phase margin (PM) is
computed as:

4. PM = =arg{G(jw:) H(jw4)} + 180°

5. Since systems introduce phase lag, arg{G(jw1) H(jw+)} is always
negative.

6. If PM is positive, the CL system is stable
7. If PM is negative the CL system is unstable
8. If PM =0 the CL system is on the verge of instability
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Relative Stability Index: Gain & Phase Margin

J GM & Stability of CL system:

GM is calculated as the inverse of the |G(jw)H(jw)|= ‘@’ at the point of
its intersection with negative real axis of the GH plane.

GM =1/a; or, GM = - 20 Log (a) in dB.
1. If GM is positive, CL system is stable
2. If GM is negative, CL system is unstable
3. If GM =0, CL system is on the verge of instability

dinterpretation of Relative Stability from GM & PM Values:

1. Large GM or large PM imply sluggish CL system
2. GMclose to ‘1’ or PM close to ‘0° imply highly oscillatory system

3. GM of about 6 dB or PM of 30-35° imply reasonably good degree of
relative stability

4. Generally a good GM automatically guarantees a good PM & vice-
versa.
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Relative Stability Index: Gain & Phase Margin

 Special Cases:

We have said that generally a good GM vyields good PM & vice versa. In
certain cases, it may not hold. G(jw)H(jw)

d Case 1: (-1,j0).point
Plot 1: gain K; ;PM = ¢;; GM = oo
Plot 2: gain Ky; PM = ¢,; GM = o0

Ks >Ky>Ky; Pa<Pa< Py
(d We see that as we increase gain in the system )

—

the Phase Margin reduces whereas the 2/114

1 Gain Margin does not change. Therefore in such cases we need to focus
only on PM because GM is not adjustable.
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Relative Stability Index: Gain & Phase Margin

] Case 2:

Plot 1: gain K; ;PM = ¢y; GM = 1/a rad=1
Plot 2: gain K3; PM = ¢, GM =1/b

K3 >K2>K1;CI)3<CI)2<(I)1 /
(_1)j0 ) pOI

d  We see that as we increase gain
the GM reduces appreciably , but
the PM does not vary much.

d Therefore, we need to monitor GM in this case.
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Polar Plot: Correlation between PM &.F,

1 Correlation between Phase Margin & Damping €:
Let G(S) = wn%S(S + 2&wn); for a unity feedback system
O At the gain cross over frequency, w = w;
|G(j w)H(jw)| =1.0
or, wn% wV(wy?®+48& wn?)=1.0

or, wA(wq% + 4 € wn?) = wn*
or, (wy/ wn)*+4¢& (w/ wn)>1=0;let (w;/wn)?=x
or, x> +48x-1=0

or, x=-2&+/-V(1+4¢&
or, (wy/ wn)*=Vv(1+4¢&%)-2¢
o, wi=wnV(V(1+4¢&)-2¢
1 The above equation relates € with gain cross over frequency, w;
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Polar Plot: Correlation between PM &.F,

arg{G(j w)H(jw)} =-90° - tan(w/2 € wn)
at w = w;, & =-90°-tan"(w; /2 € wn)
PM=d¢ = 180° + ¢, =180° - 90° - tan (w /2 € wn)
b =90°-tan™ (w1 /2 € wn)
 Substitute for w, to get,
b =90°-tan [V(V(1+4 &%) -2¢&)/2¢&]

or, [V(V(1+4¢&%)-2¢&)/2¢]=tan(90° - ¢) = cot P
or, tand=2¢/[V(V(1+4¢&%)-2¢%]
or, d=tan'{2&/[V(V(1+4¢&%)-28)]}

 The above equation gives a relationship between € & ¢ for an under
damped system.

 In the range € < 0.707, a reasonably good approximation is given by
¢=0.019¢
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Polar plot Examples: Computation of GM & PM

G(j w) = K/jw (1+j 0.2w)(1+j 0.05 w)
Jd ForK=1: a=-0.04
PM=¢=76°;
 Intersection on negative real axis, a = -0.04
GM =20 Log |1/a|=28 dB
J Suppose we desire a GM =20 dB, &
PM = 40°
d For a GM = 20 dB, the polar plot should intersect
the negative real axis at : 20 Log |1/b|=20dB
therefore, b=0.1
 This is achieved if K is increased by 0.1/0.04 = 2.5; K = 2.5.
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Polar plot Examples: Computation of GM & PM

1 To achieve PM = 40°, we have:

d Draw an angle of 40° in CCW direction from the 1

negative real axis of GH plane, as shown 40°

J We see that for PM = 40°, gain ‘K’ /

is to be increased by the ratio OA/OB O S

OA/OB =1/0.191=5.24
K=5.24
(J Thus we note that GM & PM are two different

 Specifications not achievable for a single value of gain
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Analytical Method: Gain & Phase Margi.n

J Example:
O G(S) = K/S(1+0.25)(1+.05S) == G(jw) = K/jw(1+j0.2w )(1+j0.05w)

d We know that for determining GM, we need to find intersection on
negative real axis (Imaginary part =0).

d Determine value of w for which Imaginary part = 0.
Simplify G(jw) to get G(jw) = K/[-0.25 w? + jw (1- 0.01 w?)]
Rationalize G(jw) to get,
G(jw) =-0.25K w¥Den -j w(1-0.01 w?)/Den
Where, Den = [(-0.25 w?)? + (w(1-0.01 w?))?]
For Imaginary part =0,==% 1-0.01 w?=0; == » = 10= w;
w1: phase cross over frequency. Magnitude of G(jw) at w = w;y
|G(jw) |= K/0.25(w4)* = K/25 =a (Contd.)
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Analytical Method: Gain & Phase Margi.n

1 For a desired GM =20 dB, we have
20 Log (1/a)=20 ,0or,a=1/10=0.1
K/25=a; K=2.5
 Calculation of PM:
Let w = w;, be the gain crossover frequency;
PM = 180° + arg{G(jw)}; Desired PM = 40°
arg{G(jw)} =-90° - tan™(0.2 w;) - tan™(0.05 w;)
PM =-90° - tan™"(0.2 w,) - tan™"(0.05 w,) +180° = 40°
tan™(0.2 w;) - tan™'(0.05 w;) = 50°; Apply tan on
0.25 w,/[1-0.01 w,2] =tan 50° = 1.2 rads; w, = 4 rads/sec
|G(jw) | at w = wy is = K/[w; V{1+(0.2 wy)?} V {1+(0.05 w,)*} =1
Forw,=4,K=5.2
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BODE PLOT :

d From the frequency response of open loop transfer function G(S) or
G(S)H(S), closed loop system stability & relative stability is determined;
as in polar plots & root locus methods.

We draw two plots for each transfer function
Magnitude plot in dB
Phase plot

Both the plots are drawn on semi log paper

I

Magnitude in dB is given by 20 Log | G(jw )|
or 20 Log |G(jw )H(j w)]|
Angle ¢(w) is plotted in degrees
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BODE PLOT (Contd..) °

(J Note on Log Scale:
The advantage of Log scale is that we can handle a very large data size
 Linear Scale:
-30 -20 -10 0 10 20

 In linear scale each segment is incremented equally.
 Log Scale:
 In log scale, we decide the multiplication factor ‘x’. Let x = 10
-2 -1 0 1 2 3  (linear scale) w

| | | | | |
0.01 0.1 1 10 100 1000 (Log scale)lLog w
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BODE PLOT (Contd..) °

(d Conversion to Log scale:

Log 10 w = 0 (on linear scale) = w =1 (on log scale)

Log 10 w = 1 (on linear scale) = w =10 (on log scale)

Log 10 w = 2 (on linear scale) = w =100 (on log scale)

Log 10 w = -1 (on linear scale) = w =0.1 (on log scale)

Log 10 w =-2 (on linear scale) = w =0.01 (on log scale)
J We observe from the above that

1. on the positive side increment by ‘1’ on linear scale corresponds to
multiplication by ‘10’ on the Log scale ,and

2. on the negative side increment by ‘-1’ on linear scale corresponds
to division by ‘10’ on the Log scale

3. We also observe that on the Log scale we cannot start with a value
of w =0, but it can assume a very small value
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BODE PLOT (Contd..) °

d Thus, we observe that increment by ‘1’ on linear scale causes
multiplication by ‘10" on Log scale and hence enabling data
compression and thus facilitating usage of large chunks of data.

d Further observations on Log scale:
1. Between w =1 & w =10 on the log scale, if we want to mark w =2

then we write: Log 10 ? = 0.301 ( which is 30.1% of the segment
length between ‘1’ & ‘10’ on the Log scale

2. Between w =1 & w =10 on the log scale, if we want to mark w = 3
then we write: Log 10 3 = 0.477 ( which is 47.7% of the segment
length between ‘1’ & ‘10’ on the Log scale

3. Between w =1 & w =10 on the log scale, if we want to mark w =5
then we write: Log 10 > = 0.699 ( which is 69.9% of the segment
length between ‘1’ & ‘10’ on the Log scale

Thus we see that the marking is not linear.
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BODE PLOT (Contd..) °

(d Representation of Transfer Functions:
(d We have two ways of representing a transfer function:
J Pole-Zero Form:

m n
G(S)= KI[TT(S+Z)]/I[TI(S+Pi)] ;m<n
j=1 i=1
d Time — Constant Form: m n
G(S) = {KTIZj/TTPi} {[TT (1+S/ Zj)] / [TT(1+ S/Pi)]}
ji=1 i=1
d Let Ky = K TTZj/TIPi ; Tzj = 1/Zj ; Tpi = 1/Pi; Tzj & Tpi are time constants
m n
G(S) = Kq [TT (1+ Tzj S)] / [TT(1+ Tpi S)]
ji=1 i=1
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BODE PLOT (Contd..) °

d Example:
Given, G(S) =10 (S + 2) (S+4)/(S +5) (S + 10) in pole- zero form
Convert in to time constant form
 Solution:
G(S) = (10)(2)(4)(1 + S/2)(1+ S/4) / (5)(10)(1 + S/5)(1 + S/10)
Ki = (10)(2)(4)/(5)(10) = 8/5
G(S) = (8/5) (1+0.5 S)(1+0.25S)/(1+0.2S)(1+0.1S)
d Where, Tz1 = 0.5; Tz2 = 0.25; Tp1 = 0.2; Tp2 = 0.1 are time constants
[ Convert Time constant form in to Pole-Zero form:
G(S) = (8/5)(.5)(.25)(S + 1/.5)(S + 1/.25)/[(.2)(.1)(S+1/.2) (S+1/.1)]
G(S) =K (S+2)(S+4)/(S+5)S+ 10)
K=(8/5)(.5)(.25)/(.2)(.1) = 10
1 In Bode & Polar plots we use Time Constant form
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BODE PLOT (Method for Drawing)

d Example:
G(S) =1/(1+TS) = G(jw) =1/(1 +j Tw)
= |G(jw)| = 1/V(1+(Tw)?); arg[G(jw)] = -tan™(wT)
d The Log — magnitude in dB is given by:
20 Log 10 |G(jw)|=M(w)= 20 Log 10 [1/V(1 + (Tw)?)]
M(w)=-10 Log 10 (1 + (Tw)?) ---------- 1
[ Two cases are considered:

1. For Tw <<< 1 (low frequency asymptote); M(w) = 0.0 because (Tw)? can
be neglected as compared to ‘1’

2. For Tw >>> 1 (high frequency asymptote); M(w) =-20 Log 10 (Tw)....... 2;
‘1’ can be neglected

wT (rads) | M(w) in dB wT (rads) | M(w) in dB
1 0 100 -40
10 -20 1000 | -60 (cont)
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BODE PLOT (Method for Drawing) Contd..

(d We observe from the table in the previous slide that,

1. For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the
magnitude changes by -20 dB.

2. Therefore the slope of the magnitude plot is -20 dB/decade change
in frequency.

d We have two plots: for wT<<<1 & wT >>>1
d For wT<<<1; M(w) =0 & for wT >>>1; M(w) has slope of -20 dB/decade

d At wT=1; M(w) in equation (2) = 0 dB & M(w) in equation (1) =0
therefore the two meet at wT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

1 This meeting point is called ‘Corner Frequency’ & is derived from wT=1;
or, w = 1/T is the corner frequency.
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BODE PLOT (Method for Drawing) Contd..

1 The Log-magnitude in dB is plotted as:
mag. in dB T 1/10T  1/T 10/T 10%T 10¥T

// | Log o

-40 / \ slope = -20 dB/decade

( Lo% mag.|Plot — semi log graph paper)

D The Angle Plot: for JuT<<<1, $=0 , for wT =1, ¢ =-45° for wT>>>1, p =-90°
N
-457¢

-90°

d(w)
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Bode Plots: Different types of Transfer Functions

Example: First order ‘zero’
G(S) = (1+T9) G(ijw) =01+ Tw)
| G(jw)| =V(1 + (Tw)?);  arg[G(jw)] = tan {(wT)
The Log — magnitude in dB is given by:
20 Log 10 | G(jw)| = M(w)= 20 Log 10 [N(1 + (Tw)?)]
M(w)= 10 Log 10 (1 + (Tw)?) --------
-1
Two cases are considered:

1. For Tw <<< 1 (low frequency asymptote); M(w) = 0.0 because
(Tw)? can be neglected as compared to ‘1’

2. For Tw >>> 1 (high frequency asymptote); M(w) = 20 Log 10
(Tw)... 2; ‘1" can be neglected

wT (rads) M(w) in dB wT (rads) M(w)
in dB

[ ) ATA
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Bode Plots: Different types of Transfer Functions

(d We observe from the table in the previous slide that,

1 For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the
magnitude changes by 20 dB.

1 Therefore the slope of the magnitude plotis 20 dB/decade change
in frequency.

d We have two plots: for wT<<<1 & wT >>>1

O For wT<<<1; M(w) =0 & for wT >>>1; M(w) has slope of 20
dB/decade

d At wT=1; M(w) in equation (2) = 0 dB & M(w) in equation (1) =0
therefore the two meet at wT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

1 This meeting point is called ‘Corner Frequency’ & is derived from
wT=1; or, w = 1/T is the corner frequency.
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Bode Plots: Different types of Transfer Functions

1 The Log-magnitude in dB is plotted as:

mag. In dBT %0 slope = 20 dB/decade

N\ I

20 |

i

\ w

1/10T |1/T 10/T 10T  10YT
( Log mag. Plot — semi log graph paper)

d The Angle Plot: for wT<<<1, $ =0, forwT =1, ¢ =45°% for wT>>>1, d = 90°

90°

d(w) ] | /

00
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Bode Plots: Different types of Transfer Functions

d Example:
Consider 1) G1(S)=1/S & 2)G2(S)=S
1) Gl(jw) = 1/jw; |G1(jw)|= 1/w & G2(jw) = jw; |G2(jw)|= w
2) The Log — magnitude in dB is given by:
20 Log 10 |G1(jw)|=M1(w)=20 Log 10 [1/w] =-20 Log 10 (w)
20 Log 10 |G2(jw)|= M2(w)= 20 Log 10 [w] = 20 Log 10 (w)

Angle : d1(w) =-90° Angle : p2(w) = 90°

-20 dB/decade (slope) M1(w)

zob Z 20 dB/decade (slope) M2(w) $2(w) = 90°
odB \ | Log w
0.1 : 0. w b1(w) =-90°
-20dB

Phase Plot

Log-magnitude plot
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Bode Plots: Different types of Transfer Functions

(d We have drawn Bode plots for first order transfer functions having a
simple (order 1) pole or a simple (order 1)zero. We now generalize it to
multiple order poles & zeros which may be present in a given transfer
function.

G1(S)=1/(1+TS)" (pole of order ‘m’), &
G2(S)= (1+TS)"  (zero of order ‘m’)

Gl(jw) = 1/(1 +jTw)"; |G1(jw)[= 1/[V(1+{wT)*]"
Log-magnitude (in dB) = 20 Log10 {1/[V(1+(wT)?]"}

=-10 m Log10 {(1+(wT)?] ........ 1
Angle = - m tan™(wT)

G2(jw) = (1 +])Tw)"; |G2(jw)|= [V(1+{wT)*]"
Log-magnitude (in dB) = 20 Log10 [V(1+(wT)?]"

=10 m Log10 {(1+(wT)?] .......... 2
Angle = m tan™'(wT)

INSTITUTE OF AERONAUTICAL ENGINEERING



Bode Plots: Different types of Transfer Functions

d For G1(S) :
Log-magnitude ( in dB) = -10 m Log10 {(1+(wT)?]

d For G2(S) :
Log-magnitude (in dB) = 10 m Log10 {(1+(wT)?]

1 Thus we observe that, for wT>>>1, the
slope of log-mag. plot for pole of order ‘m’ =-20 m dB/decade
slope of log-mag. plot for zero of order ‘m’ = 20 m dB/decade

J While the respective angles are given by
-/+ m tan™Y(wT)

where m =1,2,3 ... is the order of the pole & zero. So as ‘m’ increases the
slopes and the angle increase.
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Bode Plots: Different types of Transfer Functions

(d Multiple Poles & Zeros at the Origin of the S plane:
Consider 1) G1(S)=1/S" & 2)G2(S)=5"
1) Gl(jw)=1/(jw)”; |G1(jw)|=1/w" & G2(jw) = (jw)”; |G2(jw)|= w"
2) The Log — magnitude in dB is given by:
20 Log 10 |G1(jw)|=M1(w)=20Log 10 [1/w"] =-20 m Log 10 (w)
20 Log 10 |G2(jw)|=M2(w)=20Log 10 [w"] =20 m Log 10 (w)
Angle : d1(w) =-m90° Angle: p2(w)= m 90°
1 Here again we observe that the slope for log-magnitude plot of
G1(S) is -20m dB/decade & angle is —m 90°, &
G2(S) is 20m dB/decade & angleis m 90°
d where, m=1,2,3 .... Is the order of the pole and zero

As ‘m’ increases, slopes & angle increase
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Bode Plots: Different types of Transfer Functions

QO G(S) = K (1+T; S)(1+T, S)/S 1 + T5 S)(1 + T, S)

We have a combination of poles & zeros. There can be any
number of poles & zeros in a transfer function. We need to plot
Log-magnitude plot in dB & Angle plot in degrees

d Log-magnitude plot:
Glw) =K@ +]jTiw)(1 +]Tw)/(jw) ™1 +]Tzw)(1 +jT,w)
20 log | G(jw )| =20 log | K (14 Tyw)(1+] Tow)/(jw) 1+ Tsw)(1+]
T4w)|
20 log K + 20 log V(1+ (T;w)? + 20 log V(1 + (T,w)?
-20 m log w -20 log V(1 + (T3w)? - 20 log V(1+(T,w)? ..... 1

O From equation (1) we make out that log-magnitude plot in dB, for
a given G(S), is obtained by algebraically adding asymptotic plot
of each pole & zero including the constant gain term ‘K’
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Bode Plots: Different types of Transfer Functions

d Example:
G(S) = 10 (1+S)(1+10S)/S(1 + 5S)(1+20S)
] Bode Plot:
G(jw) = 10(1+] 1w)(1+4j 10w)/jw(1+ j 5w)(1 +j 20w)
1. K=10; magnitude in dB =20log 10 =20 dB
2. (1+4jlw); corner frequency wT = 1; w= 1/T; w =1; up to w=
1, magnitude = 0; for w=1, magnitude plot has a slope of 20
dB/decade
3. (1+j 10 w); corner frequency wT = 1; w= 1/10; w =0.1; up to w=
0.1, magnitude = 0; for w=>0.1, magnitude plot has a slope of 20
dB/decade

4. w; corresponds to pole at origin; magnitude plot has a slope of -20
dB /decade
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Bode Plots: Different types of Transfer Functions

J (1+4j5w); corner frequency wT = 1; w= 1/5; w =0.2; up to w=
0.2, magnitude = 0; for w=0.2, magnitude plot has a slope of -20
dB/decade

J (1+j 20 w); corner frequency wT = 1; w= 1/20; w =0.05; up to w=
0.05, magnitude = 0; for w=>0.05, magnitude plot has a slope of -20
dB/decade.

d The lowest corner frequency is 0.05; therefore we take lowest
frequency in log w scale as 0.005

The complete log- magnitude plot is shown in the next slide

INSTITUTE OF AERONAUTICAL ENGINEERING



Bode Plots: Different types of Transfer Functions

d Complete log-magnitude plot: —— complete log-magnitude plot
dB |60 |
40T (1+ ) 10w
20
—0.005 0.(=15 0.1 OI.Z S0 I2 I5 I10 ;0 5=00 w
207 &@3@)
-407

-60] We have drawn asymptotic plots for each term in G(S)

d Now, we algebraically add all the plots keeping in mind that slope
change occurs at corner frequency only; corner frequencies are

0.05, 0.1; slope change begins at these frequencies.
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Bode Plots: Different types of Transfer Functions

J Complete Angle plot: __ complete Angle plot
135°%
90° arg(1+ 10S)

45°]
— pges
-45°

-90°L arg(1+ 55)
-135°]

O Constant term introduces ‘0’ phase. At corner frequency angle is +/- 45°. At
ten times the corner frequency angle can be taken as +/- 90°. These are
asymptotic plots for angle of each term in G(S).

J Complete Angle plot is obtained by algebraically adding all the individual

nlots.
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1 Under damped systems have complex conjugate poles. Let us consider
normalized form of a second order system, given by

G(j u) = 1/(1 +j28&u- u?);
|G(j u)|= 1/V[(1-u?)* +(28u)?]
d The log-magnitude plot is given by
20 log | G(j u)|=M(u) =-10 log[(1-u?)* +(2&u)?]

For u <<<1; higher order terms in u are neglected to obtain
M(u) =0dB

For u>>>1; M(u) =-10log u* =-40 log u; (2€u)* << u* because €< 1
 Therefore, log magnitude plot consists of 2 straight line asymptotes

- one horizontal line at ‘0’ dB for u<<<1

- the other, a line with a slope of -40 dB/decade for u>>>1

1 These 2 asymptotes meet on ‘0’dB line at u =1; i.e. at w = wn.
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( The asymptotic plot for 2"9 order system is:

J Asymptotic plots are approx.

plots; error at u = 1.

J Exact Plot:
The log-magnitude plot is given by

O_

-40 L

10 100 w
-4& dB/decade (slope)
(Asymptotic plot)

M(u) = -10 log[(1-u?)? +(2€u)?]; Actual plots are drawn around Asymptotic plot.

We directly substitute for u =
M(u), u=1, is function of &.

u=1 | M(u)
¢=0.05] 20dB
¢=0.1| 14dB

1 & determine M(u) for different & values.
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(J The Phase Plot:
The phase angle is given by: ¢(u) = -tan™"(2&u/1-u?);

We observe that ¢(u) is a function of u & &¢. However, at u=1, for any
value of €, ¢p(u) =-90°.

foru=0; $(u) =0 & foru =9, P(u) =-180°
1 For O<u<1 & 1<u<ee, dp(u) is dependent on € value.

0.1 1.0 10 u
180° /
e |
Increasing €
§=0.1
&1
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Determination of Transfer Function from

1 The problem of Synthesis:
 Given a transfer function, we know how to draw Bode plot.

J Now we will have the reverse problem:

Given the Bode (log-magnitude) plot how to determine the transfer
function. This is the process of system identification from a given

frequency response. dBT
Solution: 0/1 1.0 10.0 100.0 w
Slope of plot ‘1’ = -20 dB/decade f | i

20 l
Slope of plot ‘2’ = -40 dB/decade 4

Corner frequency (wT = 1) corresponding to 6_5
plot ‘1’ = 1 rad/sec & plot ‘2’ = 0.1 rads/sec
1 The gain up to 1%t corner frequency (= 1 rad/sec) = 0 dB; therefore K =1

The transfer function, G(S) = 1/(1 + S)(1 + 0.1S)
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Determination of Transfer Function from

J Determine G(S) magnitude?f?
20 \KZLO dB/decade (slope)

0.1 1.0 1> | 100. 0w
20T — —— — — |
40 L — -20 dB/decade Blope™

 Corner frequencies are at w =1 & w = 10 rads/sec

Up to w = 1 rads/sec, the gain(magnitude) = 20 dB. We determine ‘K’
fromit. 20 Log 10 K =20 dB; therefore K = 10.

J At w = 1 rads/sec, magnitude plot falls with a slope of -40 dB/decade.
This corresponds to a double pole term like,1/(1+S)? in G(S). From w =
10 rads/sec, the slope changes to -20 dB/decade, therefore there is a
zero term like (1 + 0.1S) in G(S).

1 Therefore G(S) =K (1 +0.1S)/(1 + S)?
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Determination of Transfer Function from

(1 Determine G(S): magnitude dBT
40

~ Wdecade (slope)
ZO‘x — -70 d‘B/d'eca'de‘('FIope)
| / |
0 Q.1 110 \“10l0 100.0 w
20+ — — — — — o
I
407 — —-20dB/decade (stope)

60T — — — — — = —

 There is a ramp with a slope: -20 dB/decade, starting at w = 0.1 r/s. It
implies a term 1/S in G(S). At w = 1 r/s; its magnitude should be ‘0’
dB, but it is 20 dB. It implies ‘K’ = 10 in G(S). From w =1 r/s to w= 10
r/s, the slope is -40 dB/decade. It implies a term 1/(1 + S) in G(S). From
w =10 r/s to w= 100 r/s, the slope is -20 dB/decade. It implies a term (1
+0.15)in G(S).

1 Therefore, the transfer function is: G(S) = 10 (1+ 0.1 S)/S(S + 1)
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Determination of Transfer Function from

(1 Determine G(S): magnitude dB
40T
20 dB/decade (slope) 200 . _ _ _ _ 0_dB/decade (slape)
—016- w
Sl Eiing S G
-40 -20 dB/decadt@j;e)
e T
 Starting, there is a ramp slope= 20 'dB/decade; it implies a S term in

G(S); its magnitude should = 0 at w = 1 r/s, but it is not so. It implies a
gain term ‘K’ in G(S). To determine ‘K’ we write

J 20 LogK+20logw=-8atw=1r/s; or, 20 log K=-8; K=0.3981

d From w =1to 10 r/s ; slope is ‘0’; implies a term 1/(S +1) in G(S). From
w =10 to 100 r/s ; slope is -20 dB/decade; implies a term 1/(1+ 0.1S) in
G(S). From w=1000 r/s onwards, the slope is ‘0’; implies a term (1 + 0.01
S) in G(S).

d Therefore, G(S)=0.3981(1+0.01S)/(S+1)(1+0.0159)
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Nyquist Methoc

J Stability study is carried out graphically from the open loop frequency
response.

d Nyquist Stability Criterion:
1 The characteristic equation: Q(S) =1 + G(S)H(S) =0
G(S)H(S) = K (S+Z1)(S+Z2) ......(S + Zm)/(S+P1)(S+P5)... (S+ Pn); m < n
Q(S) = 1+ K (S+Z4)(S+Z3) ......(S + Zm)/(S+P4)(S+P3)... (S + Pn)
On simplification, we write:
Q(S) = (S+Z7)(S+Z3') ......(S + Zn’)/(S+P1)(S+P3)... (S + Pn)
(d We observe that

d Zeros of Q(S) at S =-Z¢, S = -Z,/, ...... S = - Zn’ are the roots of the
characteristic equation

M Poles of Q(S) at S=-P;, S =-P;, ... S = - Pn are the same as open loop
poles of the system

d For stable system, zeros of Q(S), roots of characteristic
equation, must be in the LH of the S-plane.
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Nyquist Methoc

 Even if some open loop poles lie in the RH of the S plane, all the zeros
of Q(S), poles of CL system, must lie in the LH of the S plane. It means
that an unstable open loop system can be made stable with an
appropriate design of CL system.

(d The Nyquist Contour:

Since we interested in finding out whether there are any zeros of Q(S) in
the RH of the S plane, we choose a contour that completely encloses RH

of the S plane. This is called Nyquist Contour.
j=__ A Splane

O In CW direction, starting from the origin C“T =N\
of the S plane, we traverse Nyquist Contour. Q Cs
along the paths C; C, and GCs. CST

, s o . . _ _
Since R , entire RH is enclosed j==—"Nyquist Contour
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Nyquist Methoc

d From the Nyquist Contour we observe

that for S = jw, along path C; frequency, w,
varies from ‘0’ to oo

along path C; frequency, w, varies from
‘(n\’ CS
-0 to ‘0. T
-j=— NyquistContour

1 The path C; is a circle of infinite radius ( R™> =<). Any point on C, can be
represented in polar form as: S = R exp(+/- je). Along C,, while
traversing in the direction of arrows, the angle © varies from 90° to -
90°.

1 The Nyquist Contour as defined in the aforesaid lines, encloses all the
right half S plane zeros & poles of 1 + G(S)H(S).
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Let,

Z: be the number of zeros of Q(S) in RH of the S plane
P: be the number of poles of Q(S) in RH of the S plane
J Nyquist Theorem:

As point S = So moves along the Nyquist contour in the S plane, in the
Q(S) plane a closed contour I'q is traversed which encloses the origin ‘N’
times in CCW direction; where N = P-Z.

1 For every point S = Sp on the Nyquist contour, Q(S) has a value. If we
plot the values of Q(S) in the plane called ‘Q(S) plane’, then, according
to Nyquist theorem, we will obtain a closed path, I'q, which will enclose
the origin of ‘Q(S) plane’ ‘N’ times.

J Stability Criterion:
We know that zeros of Q(S), Z, are the closed loop system poles &
therefore should lie in the LH of the S plane for system stability.
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Nyquist Methoc

1 Stability Criterion (contd.):
Therefore, Z = 0 ( for stable CL system).
1 So for a stable CL system, we have two situations:
for P #0:
m) N=p-Z=P
that the CCW encirclements of the origin of ‘Q(S) plane’ should be equal

to the number of poles, P, of Q(S) (open loop poles of G(S)H(S)) in the
RH of the S plane.

 The above assertion implies that even if the open loop system is
unstable, the CL system can be stable.

J For P = 0: ( no poles of G(S)H(S) in RH of the S plane) the number of
encirclements N = 0 for a stable CL system
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Nyquist Methoc

J Modified Stability Criterion:
We know that, Q(S) =1 + G(S)H(S)
= G(S)H(S) = Q(S) -1
 Therefore, we say that while,
['qg encircles the origin in Q(S) plane
FGH will encircle (-1,j0) point in the GH plane
 In G(S)H(S) plane, we state the Nyquist Stability Criterion as:
For P #0:

If the contour TGH of the open loop transfer function
G(S)H(S), corresponding to the Nyquist contour in the S plane, encircles
the point (-1,j0) in the CCW direction as many times as the number of
right of S-plane poles of G(S)H(S), the CL system is stable.

For P = 0: The CL system is stable if no encirclements of (-1,j0) point.
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Nyquist Methoc

( Mapping of Nyquist contour in tolGH contour: j==__ a Splane

Following steps are followed: C1T =\ @
y Ca
CgT
1. Convert G(S)H(S) in to G(jw) H(jw) -==— NyquistContour
2. For S =jw; 0 £ w £ oo (segment C;) draw polar (Nyquist) plot in GH
plane

3. For contour C,: S = R exp(j©); R — oo, Substitute S = R exp(j©) in
G(S)H(S) and let R —— oo for o< S < -o0, The entire segment maps to

‘0" in the GH plane

4. For -oo< w £ 0 (segment C3) draw polar plot for negative frequencies;
which is mirror image of plot for C,.
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Nyquist Method: Examples

—je= Nyquist Contour
d G(S)H(S) = K/(1+T, S) (14T, S);  C’sis mirror image of C’;

1. Corresponding to C; in I's plane we have the Nyquist plot in TGH
plane as C';.

2. Corresponding to C, in T's plane we have; S =R exp(j©) in G(S)H(S);
R—> o
G(S)H(S) = K/(T: Rel®*+ 1)(T, R el®*+ 1) as R—=>oco therefore
G(S)H(S) =0e29; |G(S)H(S)|=0; arg{ G(S)H(S)} =-26
On C; ; © varies from +90° to -90° as we move from +joo to -joo
arg {G(S)H(S)} varies from -180° to + 180° . This is C’; in TGH plane.
3. C3in TS plane is mapped as C’s ( Nyquist plot) in TGH plane. (Contd.)
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Nyquist Method: Examples (Contd..)

 For the example in previous slide:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to
determine the stability of its closed loop system.

d The number of encirclements, N, of (-1,j0) point is given by:
N = P-Z
 For closed loop system to be stable, Z=0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

 Therefore N should be equal to ‘0, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.
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Nyquist Method: Examples (Contd..)

C’3 T'en plane jeeo A S plane
— , ) '
w=0 C's® KC 2 G 'R e s
>{[ -io) ‘* 3 - o/ G
-2 < 7 w = == (arg =-90") CaT .
cy -je= — Nyquist Contour

d G(S)H(S) = (S+2)/(S+ 1)) (S-1); C’sis mirror image of C’;

1. Corresponding to C; in I's plane we have the Nyquist plot in TGH plane
as C'y.

2. Corresponding to C, in I's plane we have; S =R exp(j©) in G(S)H(S);
R — o
G(S)H(S) = (2+ Rel®)/(1+ R el®)(R ei®-1) as, R—> oo therefore
G(S)H(S) =0e™®; |G(S)H(S)|=0; arg{ G(S)H(S)} = -6
on C, ; © varies from +90° to -90° as we move from +joo to -joo
arg{G(S)H(S)} varies from -90° to +90° . This is C’; in TGH plane.

3. C3in TS plane is mapped as C’s ( Nyquist plot) in TGH plane. (Contd. .)
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Nyquist Method: Examples (Contd..)

 Having drawn the Nyquist diagram, we need to determine the stability
of related CL system.

J Observation:
G(S) H(S) has a pole in the RH of the S plane; therefore P =1
N=P-Z
Z = 0 for stable CL system
Therefore, N=P=1

mm) that the Nyquist plot should encircle (-1,j0)
point once in the CCW direction for the CL
system to be stable.

d From the Nyquist diagram we that it is encircling (-1,jO) point once in
CCW direction. Therefore, the CL system is stable
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Nyquist Method: Examples (Contd..)

(d Case: G(S)H(S) has a pole at the origin of the S plane:
1 Since there is a pole at the origin G r

in the S plane, while drawing the pole at $=0  jo

+

Nyquist contour we bypass the origin
because pole is a singularity.

Bypassing is done by drawing a circle of Cs — 0

very small radius r’; as r — 0. A point on the semi circle, Cq4, is

represented by
S=rel®
d The Nyquist contour is traversed starting 1) s = jO, to jeo (C)
2) S = jeoto —joo (Cy), 3) S= —jee t0 jO- (C3) and 4) S = jO- to jO. (Ca)
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Nyquist Method: Examples (Contd..)

L Example: G(S)H(S) = K/S(1+TS)

B [6H plane

radius
C’4 Pathis traversedin the direction of arrows

starting A-O-B-A

d A:w=j0,; |G(jw) H(jw)| = o=; arg =-90° B: w = j0,; | G(jw) H(jw) | = o=;
arg =-90°
0: W =jo° to -jeo ; |G(jw) H(jw)| = 0; arg =-180° to 180°
C:is mapped in to C’; & Cs is mapped in to C’s (Nyquist/polar plot)
C, is mapped in to C’;(origin); C4 is mapped in to C’4. (Contd.)
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Nyquist Method: Examples (Contd..)

4 G(jw)H(jw) = K/jw(1+jwT)
1. Ci: mappingin to g, plane: polar plot, C's
2. Cy: mapping in to gy plane: point C’; for S =R e®
3. G(S)H(S) =K/ R el® (14T R el®) as R—»e0
4.  G(S)H(S) = |G(S)H(S)| e'®; 0 e-128; arg(G(S)H(S)) =-26
5

Since © changes from +90 to -90 ; arg(G(S)H(S)) changes from -180°
to + 180°. So we get point ‘O’ in g, plane.

6. Csmappinginto C’sin g, plane forS=rei®asr—>0
7. G(S)H(S) =K/ rei® (1+Trei®) asr—>0
8. G(S)H(S) = |G(S)H(S)| e®; oo e-®; arg(G(S)H(S)) = -d

9. Since ¢ changes from -90 to +90 ; arg(G(S)H(S)) changes from 90° to
-90°. So we get C'4 g, plane.
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Nyquist Method: Examples

 For the example in previous Lecture:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to
determine the stability of its closed loop system.

d The number of encirclements, N, of (-1,j0) point is given by:
N = P-Z
 For closed loop system to be stable, Z=0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

 Therefore N should be equal to ‘0, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.
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Nyquist Method: Examples (Contd..)

C’s lsu plane j== :
w=0 C'aw ’;_Crz II:1‘II..F!'. £

x L P m = == [arg = -907) C3T
e -je= MNyquist Contour
G(S)H(S) = K/(S -1); C'zis mirrorimage of C’,

1. Corresponding to C; in I's plane we have the Nyquist plot in TGH plane
as C's.

2. Corresponding to C, in T's plane we have; S =R exp(j©) in G(S)H(S);
R —> oo
G(S)H(S) = K/ (Rei®-1)as,R oo therefore
G(S)H(S) =0e®; [G(S)H(S)[=0; arg{ G(S)H(S)} = -©
On C; ; © varies from +90° to -90° as we move from +joo to -joo
arg{G(S)H(S)} varies from -90° to +90° . This is C’; in TGH plane.
3. C3in TS plane is mapped as C’3 ( Nyquist plot) in TGH plane. (Contd. .)
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Nyquist Method: Examples (Contd..)

J Having drawn the Nyquist diagram, we need to determine the stability
of related CL system.

J Observation:
G(S) H(S) has a pole in the RH of the S plane; therefore P =1
N=P-Z
Z = 0 for stable CL system
Therefore, N=P=1

m) that the Nyquist plot should encircle (-1,j0) point once
in the CCW direction for the CL system to be stable.

d From the Nyquist diagram we that it is encircling (-1,j0) point once in
CCW direction. Therefore, the CL system is stable
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Nyquist Method: Examples (Contd..)

C’; [en plane joo S plane
\ = 1‘ _
bl = = Chi = G 'R 18 s
\J[ Y )
(-Lhigr— @ Cs
0 < 7 .:m =0 (arg =-90°) Cs T .
C’s je= ™ Nyquist Contour
G(S)H(S) =K/(1-S); C’3is mirror image of C';
1. Corresponding to C; in I's plane we have the Nyquist plot in TGH
plane as C';.

2. Corresponding to C, in T's plane we have; S =R exp(j©) in G(S)H(S);
R— oo
G(S)H(S) = K/ (Rei®-1)as, R~ oo therefore
G(S)H(S) =0e™®; |G(S)H(S)|=0; arg{ G(S)H(S)} = -6
On C;, ; © varies from +90° to -90° as we move from +joo to -joo
arg{G(S)H(S)} varies from -90° to +90° . This is C’; in TGH plane.
3.C3in TS plane is mapped as C’s ( Nyquist plot) in TGH plane. (Contd. )
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Nyquist Method: Examples (Contd..)

d Having drawn the Nyquist diagram, we need to determine the
stability of related CL system.

J Observation:
G(S) H(S) has a pole in the RH of the S plane; therefore P =1
N=P-Z
Z = 0 for stable CL system
Therefore, N=P=1

that the Nyquist plot should encircle (-1,j0)
point once in the CCW direction for the CL
system to be stable.

d From the Nyquist diagram we that it is not encircling (-1,j0) point
once in CCW direction. Therefore, the CL system is unstable.
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Unit-V
STATE SPACE ANALYSIS
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State-Space Modeling

 Alternative method of modeling a system than
[ Differential / difference equations
 Transfer functions

J Uses matrices and vectors to represent the system parameters and
variables

d In control engineering, a state space representation is a mathematical
model of a physical system as a set of input, output and state variables
related by first-order differential equations.

1 To abstract from the number of inputs, outputs and states, the variables
are expressed as vectors.
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Motivation for State-Space Modeling

 Easier for computers to perform matrix algebra
d e.g. MATLAB does all computations as matrix math
1 Handles multiple inputs and outputs
J Provides more information about the system
 Provides knowledge of internal variables (states)
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State

1 The state of a dynamic system is the smallest set of variables (called
state variables) such that knowledge of these variables at t=tO
, together with knowledge of the input for t > t0 , completely
determines the behavior of the system for any time t to t0 .

State Variables

[ The state variables of a dynamic system are the variables making up
the smallest set of variables that determine the state of the dynamic
system.

If at least n variables x1, x2, ...... , Xxn are needed to completely
describe the behavior of a dynamic system (so that once the input is
given for t > t0 and the initial state at t=tO is specified, the future
state of the system is completely determined), then such n variables
are a set of state variables.
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Definitions (Contd..)

State Vector

(J A state vector is thus a vector that determines uniquely the system
state x(t) for any time t> t0, once the state at t=tO is given and the
input u(t) for t > t0 is specified.

State Space

d The n-dimensional space whose coordinate axes consist of the x1
axis, X2 axis, ....., Xxn axis, where x1, x2,...... , Xn are state variables, is
called a state space.

J "State space" refers to the space whose axes are the state variables.
The state of the system can be represented as a vector within that
space.
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Definitions (Contd..)

State-Space Equations

In state-space analysis we are concerned with three types of variables
that are involved in the modeling of dynamic systems: input
variables, output variables, and state variables.

The number of state variables to completely define the dynamics of
the system is equal to the number of integrators involved in the

system.

Assume that a multiple-input, multiple-output system involves n
integrators. Assume also that there are m inputs u,(t), u,(t),....... u(t)
and p outputs y,(t), y,(t), ........ Yolt).
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State variable technique .

y(p)
u(m) Linear >
d System
x(n)
v
[, (1) (%, ()] |Vy1<t”|
0.0 ) O
. i _
u(m) oo | x(n) ()] Iyi(t)I
(U, (0] %, (0] -]
Input vector State vector Output vector
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State Model of LTI System

State Differential Equation

O The state of a system is described by the set of first-order
differential  equations written in terms of the state variables [x;
X, ... X,]. These first-order differential equations can be written in

general form as
X, =a, X, +a,X,+...a, X +b u +--b _u_

1

X, =a,X, +a,X,+...a, X + b21u1 + .- meum

X =a_ X +a ., X,+..a X + bn1U1 + ... bnmum
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State Model of LTI System (Contd..) .

[ Thus, this set of simultaneous differential equations can be written
In matrix form as follows:

X4 a g a,, a,, X4 b b _ _
11 1m u,
d X, a a 5, a,, X,
N — +
dt
bnl bnm um
_Xn_ _anl an2 ann_ _Xn_

n: number of state variables, m: number of

Inputs. _ . . . .
d The columi?] matrix consisting of the state variables is called the

state vector and is written as

2

)
L %2
|
]

[ Xn ]
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State Model of LTI System (Contd..) .

 The vector of input signals is defined as u. Then the system can
be represented by the compact notation of the state differential
equation as :
i X=AX+DBuU

d This differential equation is also commonly called the state
equation. The matrix A Is an nxn square matrix, and B is an nxm
matrix. The state differential equation relates the rate of change of
the state of the system to the state of the system and the input
signals. In general, the outputs of a linear system can be related to
the state variables and the input signals by the output equation

y=Cx+Du

O Where vy Is the set of output signals expressed in column vector
form. The state-space representation (or state-variable
representation) is comprised of the state variable differential
equation and the output equation.
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Block diagram representation of a LTI

- Y W A eV wlV oW e -

X = AX + Bu y = Cx + Du

A= System Matrix(n,n)
B= Input Matrix (n,m)
Xx= State Vector (n,1)
u= Input Vector (m,1)
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C= Output Matrix (p,n)
D= Direct Transmission Matrix (p,m)
y= Output Vector (p,1)




State Space Representation Examf)le

Q RLC circuit: modelling I(®

u() c —— V()

O Writing differential equations

u(t) = Ld—|+ Ri (t) + v(t)

dt
dv
i(t) = C —
dt
N dv Constant coefficient
u(t)=LC ——+ RC —+v(t) Second order
dt dt Differential equation
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State Space Representatlon Example

u(t)

U(t)=LL+Ri +v=LC 2L+ RC &4y

Can be written

di Ri \Y; u S
dt L L L —R -1 | 1
| L L L
dv. i ., | = + u
dt c Vv T O__V_ _O_
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State Space Representation Examf)le

L Armature
controlled DC
motor

di Tu = ki,
e,(t)=R,i_, +e, +L, — ,
dt d“o_ do_
T, =13, -+ B,
e, = k,o_ dt dt
di —Ral kba) . 1 . do Kk, B do_
= a T Ta = I, —
dt L, L, L, dt J_ J_odt
do
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State Space Representatlon Example

1 Selecting the - -
_ R - K, L

armature current i(t) e 0 1

and angular[ i 7 L. L. s e

. a a L
displacement of the K - B a
shaft ©(t), and the|®,|=, — 0w 1+ 0 ([e,]
angular velocity of the| ; I I ) )
shaft w(t) as the statelL ™ . 0 1 O L"m._
variables. .

d The state equations |
are as shown in thely, ()] [6, ()] [0 0 1]

previous slide. Lyz(t)J = La)m (t)J = LO . OJ Zm

(d The state matrix - -
form as shown beside
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State Model Example-1 .

Y (s) 1

U(s) s +6s° +10s+5

 Transfer function of the system Is (s) =

d The differential equation will be obtained by taking inverse Laplace tran
y+6y+10y+5y=u

 The derivatives of the inputs are not present in the differential
equation,
phase variables can be selected as the state variables

X, =Y y = X,
X, =Y =X, X, = X,
X, =Y =X, X, = X,
y=-6y-10y-5y+u X, =-5x, —-10x, -6x, +U
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State Model Example-1 (Contd..)‘

] State Model in matrix

form - 3 - — 3 —
X, 0 1 0 X, 0
X, = 0 0 1 X, + ;0 U
Xy _—5 — 10 —6__X3_ _1_
o
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State Model Example-2 ‘

4 The system in integral-differential form

t

y+7y+5y+6jydt :u'+3u+2J'udt
0 0

1 By differentiating the system equation will be obtained as follows
Y+7y+5y+6y=U+3U+ 2uU
d Comparing the above equation with standard 3" order differential

equation V+ay+a,y+a,y=bi+bi+b,+bu
a, =7,a,=5a,==56
Q Therefore, b, =0,b, =1,b, =3,b, =2
f,=b, =0

B,=b —-ap,=1-7x0=1
ﬂZ :bz_azﬂo_alﬂl:3—5X0—7X0:—4
p,=b,-a, B, —-a,pf,—ap,=2-6x0-5x1-7x(-4) =25
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State Model Example-2 (Contd..)‘

 The state variables are defined as
X, =Yy-p,u
X, =X, — fp,u
X, =X, — fB,u

X, = —a,X, —a,X, —a X, + f.u
4 The state and output equations are as follows

y:x1+ﬁ0u
>'<1=x2+,81u
>‘<2=x3+ﬂ2u

>'<3 = —6x1—5x2 —7x3 + 25U
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State Model Example-2 (Contd..).

] State Model in vector matrix form

X, | [0 1 o |l x, ] | 1

X, =1 0 0 1 X,  +;,—4,u

Xy |6 =5 =T X, ] | 2
e
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State Transition matrix

 Assuming that the system is continuous and -
linear that A and B are time-invariant and using X = Ax + Bu
Laplace transform

sX(s)—x(0) = AX (s)+ BU (s)

(sl — A)X(s)=x(0)+ BU (s)

X (s) = (sl = A)'[x(0) + BU (s)]

 Taking the inverse Laplace transform of resolvent matrix

K State Transition matriXa® (t) = L™ [(sl — A) ']
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State Transition matrix (Contd..)°

1 The state vector will take the following form (convolution)

A(t—17)

x(t):eAtx(O)+J'e Bu (z)dr

U The matrix exponential function is defined as

2
N A’t? A“t"
e =1+ At + + -+
2! k!

O Which converges for all finite t and any A.

+ ---

 Then the solution of the state differential equation is found to
be t
x(t) = e x(0) + je““’B u(t)dre

0

X (s)=[s1 —-A] x()+[sl —-A] B U(s)
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State Transition matrix (Contd..)°

d where we note that [sl-A]*=¢(s), which is the Laplace transform of
d(t)=eA.

4 The matrix exponential function ¢(t) describes the unforced
response of the system and is called the fundamental or state
transition matrix. t
x(t) = @ (t)x(0) + jcp(t—f)Bu (r)dz
0

1 Properties of the transition matrix

®(t) =L [(sl = A) ']

® () = D (-t)

At | k Akt
)

—e™ = (kt)||l®, -t)D(t, -t)=D(t, -t,)

®(0) =1 O(t,+1,)=d(t)P(t,) = D(t,)D (1)
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State Transition matrix (Contd..)°

J Obtain the STM for the state model
1 1]

*“lo 4

4 Solution:
[ ] [s 0] [1 1] [s—-1 —-11
sl — A= — —
P e
f[s=1 01 T[s-1 1 ]
¢(S)=[SI_A]_lzadj[sl—A]:L1 s—zlJ:{O 32—1J
sl — A (s —1) (s-1)
[ 1 1]
=i -1 -1 71| s-1 (S—l)2 [ Te' te']
STM =¢(t)=L [g(s)]=L [sl - A] =L"] | = | t
| L | [0 e ]
] s-1 |
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‘ Controllability .

Full-state feedback design commonly relies on pole-placement
techniques. It i1s important to note that a system must be
completely controllable and completely observable to allow the
flexibility to place all the closed-loop system poles arbitrarily. The
concepts of controllability and observability were introduced by
Kalman in the 1960s.

 Controllability:

A system is completely controllable if there exists an
unconstrained control u(t) that can transfer any initial state x(t,)
to any other desired location x(t) in a finite time, t,<t<T.
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Proof of controllability matrix

X 4 = Axk+ Buk

Xk+2 = AXk+1 + BU k+1
2
X,., = A(Ax, +Bu )+Bu, ,=AXx + ABu, + Bu,
- A" A"'B A"?B AB B
Xeon = Xy T u, + Uy, 0 F u kKi(n-2) T u k+(n-1)
A'x = A"'B A"?B AB B
Xeon — Xy = u, + Uy, o F u ki(n-2) T u k+(n-1)
uk
-1
x, —A"x =[A""B AB B
+n k
uk+(n—2)
| Y k+(n-1)

Initial condition
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Controllability (Contd..)

O For the system
X = AX + Bu

d We can determine whether the system is controllable by
examining the algebraic condition

rank [B AB  A°B .- A"'B]=n

1 The matrix A is an nxn matrix an B is an nx1 matrix. For multi
Input systems, B can be nxm, where m is the number of inputs.

4 For a single-input, single-output system, the controllability
matrix P, is described in terms of A and B as

P=[B AB A°B.. A"'B]

d Which is nxn matrix. Therefore, if the determinant of P, Is
nonzero, the system is controllable.
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Controllability with Example

O Example-1: Consider the system

[ 0 1 o [ [0]
0 0 1 Ix+Iqu , y=[1 0 o0]x+[0]u

|
|
|-a, -a, -a, |1 ]

[0 1 0 | [0 ] [ 0 | 1]
A:I 0 0 1 I =IOI Ale 1 I,AZB:I - a, I
L_ a, —a, azJ Llj L_ azJ L(az B al)J

[0 0 1]

P =B AB AZB]=IO 1 —a, I

1 -a, (a —al)J

d The determinant of P, =1 and #0 , hence this system is
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Controllability with Example .

1 Example-2: Consider a system represented by the two state

equ)%tlgngz X, +U,X, =-3X,+ d X,

The output of the system is y=x,. Determine the condition of
controllability.

>'<=__OI2 _03}x+[(1)}u , y=[0 1]x +[0]u
B::ﬂ o AB:r_Z OTFHZF—ZT

o Lo -sffo) | e ]

(1 2]

d The determinant of pc is equal to d, which is nonzero only
when d is nonzero.
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' Observabilrty .

All the poles of the closed-loop system can be placed arbitrarily
In the complex plane if and only if the system is observable.
Observability refers to the ability to estimate a state variable.

 Observability:
A system is completely observable if and only if there exists a

finite time T such that the initial state x(0) can be determined
from the observation history y(t) given the control u(t).
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Proof of observability matrix

X, = AX, + Bu,
y, =Cx, +Du, - (1)

yk+1 = CX k+1 + DU k+1

Y..,=C(Ax, +Bu,)+Du,  =CAx +CBu +Du, - (2)
Yyo(n1) = CA ka + CA "’Bu .+ CA "*Bu it FCBU L+ DU (D)
[ C ]
=
@), (@), () = X
D
[CA ]
= [yk - Du Yk — CBu kK Du k+l CABu k+(n-3) CBu kt(n-2) Du k+(n—1_)_]

T

Inputs & outputs
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Observability (Contd..)

1 Consider the single-input, single-output system

X = AX + Bu and y = Cx + Du

 Where C is a 1xn row vector, and x is an nx1 column vector.
This system is completely observable when the determinant of the
observability matrix P, Is nonzero.

C
CA

n-1

J Rank of Pois n A
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Observability (Contd..)

Q Example 1: %1 -2 1 10Fx 1 [1]

ES NI P LT

con ol
e

Po = [C(,:A } = {_12 H rank [Po]= 2| observable

O The rank of a matrix is defined by the number of linearly
Independent rows and/or the number of linearly independent
columns
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Observability (Contd..)

} — {_ , OJ rank [Po] =1 gnobservabl
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Role of Compensators

J Compensators are used in cascade or feedback to achieve desired
response from a closed loop system.

J Desired response is measured in terms of time domain parameters
(specifications) like, rise time, peak time, settling time and peak
overshoot.

 In terms of frequency response, desired response is measured in terms
of frequency domain specifications like, resonant peak, resonant
frequency and phase at resonant frequency.

J We have studied the relationship between frequency & time domain
parameters and know that one set can be derived from the other.

J If the closed loop system does not meet with the time domain and/or
frequency domain specifications; a compensator is used to achieve the
same.
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Lag Compensator

J Lag Compensator:
It introduces phase lag between its input and output.
It basically is an integrator ( Low Pass Filter)

It can be of any order, having ‘n” number of time constants, but it
should yield phase lag between its input & output.

It is designed using simple RC networks. Operational Amplifiers are
also used to design it.

U Its attenuated output can be appropriately amplified

] Different Types of Lag Compensators:
L G(S) =K/S; phase =-90°
1 G(S) = K/(1+TS); phase =-tan ' (wT)
A G(S) =K (14T, S)/(1+T, S) = tan ' (wTy) - tan ' (wT2); T1 < T>
Negative angle implies phase lag
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Realization of Basic Compensators: Lag

(J Lag Compensator:
G(S) = (S+2)/(S+P) = (2/P) [1+(1/Z) S]/[1+(1/P)S]
Let,=Z/PH) P=27/8; Lett=1/ZT>0™ P =1/(B1)
Therefore, G(S)=(S+ 1/t)/[S + 1/(B7)]
B G(S)=B(1+tS)/(1+BtS);B=2/P>1 ...1

 Equation 1 gives the transfer function of a lead compensator. Since
B>1, it will introduce phase lead between its output & input.

(] Pole-Zero Location: 1/\th % T

1 Lead Network: Eo(S)/Ei(S) = (R2 /R:+ R32) [S+1/R,C]/[S + 1/R.C(R1+ R3)/R3]
R On simplification, we get

ei(t) G zq\ Rz eo(t) Eo(S)/Ei(S) = (1/B) (S + 1/1)/[S + 1/(B1)]
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Realization Lag Compensators (Contd..)

1 Lag Compensator (Contd.):
G(S) = Eo(S)/Ei(S) = (1/B )(S + 1/7)/[S + 1/(BT)]
For drawing Bode plot we convert G(S) in to time constant form as:
G(S) = (1 +1S)/(1 + BtS); T : time constant & a is attenuation

T=R, G &B=(R1+R2)/Rz

J Bode plot: |G(jw|in dB -20 dB/decade
From the magnitude plotwe o T \
observe that gain at higher -20 \
frequencies is less than at low T 1_/\3_ - _1{_;/
frequencies. Phase, ¢° o
(Contd. Next slide) T

wm = 1/vt(Bt)= 1/TVB 1)

—
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Realization Lag Compensators (Contd..)

1 Hence Signal to Noise (S/N) ratio at the output of the lag compensator
is better than at its input.

Typically B is normally chosen to be 10.0
(d Phase Response:
The phase lead is given by ¢ =tan' (wt) - tan' (Bwt)
tan ¢ = wt (1-B)/[1 + B w? ]

1 To determine the frequency at which maximum phase lead occurs, we
have d¢/dw =0

do/dw =t/[1 + w? 2] - Bt/[1 +B*w? 2] =0
[ On simplification, we get w = wm = 1/tVp = V(1/t)(1/B7)

which is geometric mean of two corner frequencies. So at w=wm, we
get maximum phase lag, dm
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Realization Lag Compensators (Contd..)

d Maximum Phase Lead, ¢m:

¢ = tan' (wt) - tan' (Bwt); Substitute for w = wm = 1/tVp

¢ém =tan' (1/VB) - tan' (VP)

tan dm = (1-B)/2VPB

Sin ¢m = (1-B)/(1+B)

B =(1- Sin dm)/(1+ Sin dm) ..... 3

From (3) B can be determined for maximum phase lead desired.

 For phase lead > 60° the network attenuation increases sharply,
therefore for phase lead > 60° it is advisable to use 2 cascaded

lead networks.
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Lead Compensator

] Lead Compensator:
It introduces phase lead between its input and output.
It basically is a differentiator ( High Pass Filter)

It can be of any order, having ‘n” number of time constants, but it
should yield phase lead between its input & output.

It is designed using simple RC networks. Operational Amplifiers are
also used to design it.

U Its attenuated output can be appropriately amplified

] Different Types of Lead Compensators:

d G(S)=KS; phase = 90°

L G(S) = K(1+TS); phase = tan' (wT)

A G(S) =K (14T, S)/(1+T, S) = tan ' (wTy) -tan ' (wT2); T1 > T»
Positive angle implies phase lead
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Realization of Basic Compensators: Lead

(J Lead Compensator:
G(S) = (S+Z)/(S+P) = (2/P) [1+(1/Z) S]/[1+(1/P)S]
let, a =Z/PHp P=7/a; Lett=1/Z;T>0 B P =1/(ax)
Therefore, G(S)=(S+ 1/t)/[S + 1/(at)]
B G(S)=a(1+1tS)/(1+atS)a=2/P<1 ...1

1 Equation 1 gives the transfer function of a lead compensator. Since
a<1, it will introduce phase lead between its output & input.

(] Pole-Zero Location: % \@

Lead Network: o(S)/Ei(S) =Rz /[R2 +R: /(1 + CiR: S)]
Ri On simplification, we get
VAL,
ei(t) (G R, eo(t) Eo(S)/Ei(S) = (S + 1/7)/[S + 1/(a)]
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Realization Lead Compensators (Contd..)

(J Lead Compensator (Contd.):
G(S) = Eo(S)/Ei(S) = (S + 1/1)/[S + 1/(aT)]
For drawing Bode plot we convert G(S) in to time constant form as:
G(S) = a (1 +1S)/(1 + atS); T : time constant & a is attenuation

T=R G &G=R2/(R1+R2)
J Bode plot: |G(jw|inf]3 20 dB/decade

From the magnitude plot we o _\_ _

observe that gain at higher 0 /

frequencies is much higher than 1/t 1/at/"

at low frequencies. Phase,[d°

(Contd. Next slide) T m
wm = 1/vr(at)= 1/tva y { -

—
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Realization Lead Compensators (Contd..)

[ Higher frequencies normally correspond to noise, hence Signal to Noise
(S/N) ratio at the output of the lead compensator is poorer than its
input.

To improve S/N ratio a is normally chosen to be > 0.1
(J Phase Response:
The phase lead is given by ¢ =tan' (wt) - tan' (awrt)
tan ¢ = wt (1-a)/[1 + o w? t?]

 To determine the frequency at which maximum phase lead occurs, we
have dd/dw =0

do/dw =t/[1 + w? t?] — at/[1 +a’w? t?] =0
On simplification, we get w = wm = 1/tVa = V(1/t)(1/aT)

which is geometric mean of two corner frequencies. So at w=wm, we
get maximum phase lead, pm
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Realization Lead Compensators (Contd..)

(J Maximum Phase Lead, ¢m:
¢ =tan' (wt) - tan' (awt); Substitute for w = wm = 1/tVa
ém =tan' (1/Va) - tan' (Va)
tan dm = (1-a)/2Va
Sin dm = (1-a)/(1+a)
a = (1- Sin dm)/(1+ Sin pm) ..... 2
d From (2) a can be determined for maximum phase lead desired.
For phase lead > 60° the network attenuation increases sharply,
therefore for phase lead > 60° it is advisable to use 2 cascaded
lead networks. —
GO‘T" - 7\4
olyy |

14 (1/a)
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Realization of Basic Compensators: Lag-Lead

 Lag Lead Compensator:
Ge(S) ={(S+1/w)/[S+ 1/ (BT1)]}‘ {(S+1/t2)/[S + 1/(at2)]}; B>1; o<l

J Lag & Lead networks are in cascade.
Ge(S) = (S + 1/m) (S + 1/w)/[S + (1/Bt + 1/atz) S + 1/aptt,]

Network:
.l When forward path transfer
_.c,.|e R: function has complex poles close
ei C2 e0 to jw axis, phase lead or lag
—~ ]
networks are not effective.
(Bridged T Network) In such cases Bridged T network

is used.
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Realization of Basic Compensators: Lag-Lead

 The transfer function of Bridged T network is given by:

EO(S)/Ei(S) =[ (S+1/R1C1 )(S+1/R2Cz )/{S +(1/R1 C1+1/Rz C1+1/R2 Cz)S+1/R1
RZ C1C2}]

d Comparing with G(S), we get
R1 C1=T1,'R2C2=T2,' e 1

R1 Rz Cz C1 = (IBT1 T, ..... 2
1/R1 C1+1/R2 C1+1/R2 C= 1/[3'[1 + 1/aT2
Jd From1&2,weget: af=1 ... 3

From 3 we see that a single lag lead network does not permit us an
independent choice of a & B. Therefore we write G¢(S) as:

Gc(S) = (S + 1/t) (S + 1/1)/[S + 1/Bu][S + B/t2]; for a = 1/B
and, 1/R1 C1+1/R2 C1+1/R2 C = 1/BT1 + B/Tz
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Realization of Basic Compensators: Lag-Lead

(] Bode Plot: T

mag. dB
5 | | ]

|
-20 dB/decade 20 dB/decade
\i_i//ii\—'
-45°
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' Diagonalization .

O Multiplying the diagonal matrices are easy comparing to normal
matrices 10 0

"l
Dz_l_lo oTXrlo 01 fw0® o
o <1l —1J_|Lo —12J

 So A is diagonalizable if there exists an invertible matrix P such that
P~IAP = D where D is a diagonal matrix.
 Consider a state equatigh— aAx + By

21 - A|=0

d It's characteristic equation is




Diagonalization (Contd..) .

1 For the system matrix A all its n eigenvalues are distinct then the
model matrix will be special matrix called Vander Monde matrix

[ 1 1 .. 1 ]
I A 2, A I
VS A
| . o
| . : : |
L n-1 n-1 1J
A, A,
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Diagonalization (Contd..)

1 Diagonalize the system matrix
[0 1 0
.|

1 Eigen values of the system matrix A are the roots of the
characteristic lequatipng, o | o1 2 -1 o

\M—A\:ﬂ,lo 1 oI—Io 0 1 lelo 2 1

|
o 0o 1] |-6 -11 -6|

]
|
| |
|6 11 A +6]
a1 —Al=2°+64° +11a+6=(2+1) (2 +2)(2+3)=0
1 The eigen values are A1=-1, A2=-2, A3=-3

 The matrix A has distinct eigen values, hence the modal matrix can
be written directly in vander monde form as

r{ 1 1

1 1 17
|

_p
U
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Diagonalization (Contd..) .

1 The inverse of the modal matrix

-6 6 -2] 6 5 1

Loadi(v) 1 | 1|r 1|
Vv :_2|—5 8 —3| =;|—6 -8 —2|
-1 2 -1] 2 3 1]
 The diagonal matrix is given by

A

[ 6 5 17 0 1 071 1 17 [-1 0 0 ]
v‘lszgi—s -8 —2Ho 0 1”-1 ~2 —3I=Io ~2 oI
| 2 3 1 ][-6 -11 -6] 1 4 9] [o 0 -3]
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