
Database Management Systems

UNIT - I

CONCEPTUAL MODELING

Introduction to DBMS- Data, Information,

Database, DBMS

Data:

• Raw facts; building blocks of information

• Unprocessed information

 Information:

– Data processed to reveal meaning

Database

Database—shared, integrated computer structure that stores:

– End user data (raw facts)

– Metadata (data about data)

Database management system

• DBMS (Database management system):

– Collection of programs that manages database structure and

controls access to data

– Possible to share data among multiple applications or users

– Makes data management more efficient and effective

Advantages of the DBMS

• End users have better access to more and better-managed data

– Promotes integrated view of organization’s operations

– Probability of data inconsistency is greatly reduced

– Possible to produce quick answers to ad hoc queries

DBMS contains information about a particular enterprise

1. Collection of interrelated data

2. Set of programs to access the data

3. An environment that is both convenient and efficient to use

CONCEPTUAL MODELING

DB Applications, various DBMS

Database Applications

• Database Applications:

– Banking: transactions

– Airlines: reservations, schedules

– Universities: registration, grades

– Sales: customers, products, purchases

Database Applications(contd.)

—Online retailers: order tracking, customized recommendations

—Manufacturing: production, inventory, orders, supply chain

—Human resources: employee records, salaries, tax deductions

• Databases can be very large.

• Databases touch all aspects of our lives

University Database Example

• Application program examples

– Add new students, instructors, and courses

– Register students for courses, and generate class rosters

– Assign grades to students, compute grade point averages (GPA)

and generate transcripts

• In the early days, database applications were built directly on top of

file systems

Various Databases

• Single-user:

– Supports only one user at a time

• Desktop:

– Single-user database running on a personal computer

• Multi-user:

– Supports multiple users at the same time

Various Databases(contd.)

• Workgroup:

– Multi-user database that supports a small group of users or a

single department

• Enterprise:

– Multi-user database that supports a large group of users or an

entire organization

Various Databases(contd.)

Can be classified by location:

• Centralized:

– Supports data located at a single site

• Distributed:

– Supports data distributed across several sites

CONCEPTUAL MODELING

DBMS Vs. File Management

System, Levels of Abstractions,

Data Independence

Drawbacks of file systems

• Data redundancy and inconsistency

– Multiple file formats, duplication of information in different files

• Difficulty in accessing data

– Need to write a new program to carry out each new task

• Data isolation

– Multiple files and formats

Drawbacks of file systems (contd.)

Integrity problems

Integrity constraints (e.g., account balance > 0) become “buried” in
program code rather than being stated explicitly

Hard to add new constraints or change existing ones

Atomicity of updates

Failures may leave database in an inconsistent state with partial updates

carried out

Example: Transfer of funds from one account to another should either

complete or not happen at all

Drawbacks of file systems (contd.)

• Concurrent access by multiple users

– Concurrent access needed for performance

– Uncontrolled concurrent accesses can lead to inconsistencies

• Example: Two people reading a balance (say 100) and

updating it by withdrawing money (say 50 each) at the same

time

• Security problems

– Hard to provide user access to some, but not all, data

Levels of Abstraction

• Physical level: describes how a record (e.g., instructor) is stored.

• Logical level: describes data stored in database, and the

relationships among the data.

 type instructor = record

 ID : string;

 name : string;

 dept_name : string;

 salary : integer;

end;

• View level: application programs hide details of data types. Views

can also hide information (such as an employee’s salary) for security
purposes.

View of Data

An architecture for a database system

Instances and Schemas

• Similar to types and variables in programming languages

• Logical Schema – the overall logical structure of the database

• Example: The database consists of information about a set of

customers and accounts in a bank and the relationship between

them

• Analogous to type information of a variable in a program

• Physical schema– the overall physical structure of the database

• Instance – the actual content of the database at a particular point

in time

• Analogous to the value of a variable

Instances and Schemas(contd.)

• Physical Data Independence – the ability to modify the physical

schema without changing the logical schema

• Applications depend on the logical schema

• In general, the interfaces between the various levels and

components should be well defined so that changes in some parts

do not seriously influence others.

CONCEPTUAL MODELING

Various Data Models, Database

Languages

Data Models

• A collection of tools for describing

– Data

– Data relationships

– Data semantics

– Data constraints

• Relational model

• Entity-Relationship data model (mainly for database design)

• Object-based data models (Object-oriented and Object-relational)

• Semistructured data model (XML)

• Other older models:
– Network model
– Hierarchical model

Relational Model

All the data is stored in various tables.

Example of tabular data in the relational model

Columns

Rows

A Sample Relational Database

Hierarchical model

Hierarchical Database Model

Assumes data relationships are hierarchical

• One-to-Many (1:M) relationships

• Each parent can have many children

• Each child has only one parent

• Logically represented by an upside down tree

Network model

Network Database Model

Similar to Hierarchical Model

• Records linked by pointers

• Composed of sets

• Each set consists of owner (parent) and member (child)

• Many-to-Many (M:N) relationships representation

• Each owner can have multiple members (1:M)

• A member may have several owners

Entity Relationship Model
• Entity Relationship (ER) Model

– Based on Entity, Attributes & Relationships

• Entity is a thing about which data are to be collected and stored

– e.g. EMPLOYEE

• Attributes are characteristics of the entity

– e.g. SSN, last name, first name

• Relationships describe an associations between entities

– i.e. 1:M, M:N, 1:1

– Represented in an Entity Relationship Diagram (ERD)

• Formalizes a way to describe relationships between groups of
data

E-R Diagram:

• Entity
– represented by a rectangle with its name

in capital letters.

• Relationships
– represented by an active or passive verb

inside the diamond that connects the

related entities.

• Connectivities
– i.e., types of relationship

– written next to each entity box.

Data Definition Language (DDL)

• Specification notation for defining the database schema

• Example: create table instructor (
 ID char(5),
 name varchar(20),
 dept_name varchar(20),
 salary numeric(8,2))

• DDL compiler generates a set of table templates stored in a data
dictionary

• Data dictionary contains metadata (i.e., data about data)

• Database schema

• Integrity constraints

• Primary key (ID uniquely identifies instructors)

• Authorization

• Who can access what

Data Manipulation Language (DML)

Language for accessing and manipulating the data organized by the

appropriate data model

DML also known as query language

Two classes of languages

Pure – used for proving properties about computational power and for

optimization

Relational Algebra - Tuple relational calculus & Domain relational

calculus

Commercial – used in commercial systems

SQL is the most widely used commercial language

CONCEPTUAL MODELING

Database users , DBA

Database Users and Administrators:

Database Users:

Users are differentiated by the way they expect to interact with the

system

• Application programmers – interact with system through DML calls

• Sophisticated users – Interact with the system without writing programs.

They form their requests in a

• database query language

Database Users(contd.)

• Specialized users – write specialized database applications that do

not fit into the traditional data processing

• framework

• Naïve users – invoke one of the permanent application programs

that have been written previously

• Examples, people accessing database over the web, bank tellers,

clerical staff

Database Administrator

Having central control over the system is called a ‘database
administrator (DBA)’.
The functions of DBA includes:

– Schema Definition: Creates the original database schema by executing a

set of DDL statements a good understanding of the enterprise’s
information resources and needs.

– Storage structure and access method definition

Database Administrator(contd.)

―Schema and physical organization modification

―Granting users authority to access the database

―Backing up data

―Monitoring performance and responding to changes

―Database tuning.

Database Users and Administrators

Database

CONCEPTUAL MODELING

Transaction Manager, DBS

structure

Database Engine

• Storage manager

• Query processing

• Transaction manager

Storage Manager

• Storage manager is a program module that provides the interface

between the low-level data stored in the database and the

application programs and queries submitted to the system.

• The storage manager is responsible to the following tasks:

– Interaction with the OS file manager

– Efficient storing, retrieving and updating of data

• Issues:

– Storage access

– File organization

– Indexing and hashing

Query Processing

• Parsing and translation

• Optimization

• Evaluation

Query Processing (Cont.)

• Alternative ways of evaluating a given query

– Equivalent expressions

– Different algorithms for each operation

• Cost difference between a good and a bad way of evaluating a

query can be enormous

• Need to estimate the cost of operations

– Depends critically on statistical information about relations

which the database must maintain

– Need to estimate statistics for intermediate results to compute

cost of complex expressions

Transaction Manager

What if the system fails?

What if more than one user is concurrently updating the same data?

A transaction is a collection of operations that performs a single logical

function in a database application

Transaction-management component ensures that the database remains in

a consistent (correct) state despite system failures (e.g., power failures

and operating system crashes) and transaction failures.

Concurrency-control manager controls the interaction among the

concurrent transactions, to ensure the consistency of the database.

CONCEPTUAL MODELING

Transaction Manager, DBS

structure

Database Engine

• Storage manager

• Query processing

• Transaction manager

Storage Manager

• Storage manager is a program module that provides the interface

between the low-level data stored in the database and the

application programs and queries submitted to the system.

• The storage manager is responsible to the following tasks:

– Interaction with the OS file manager

– Efficient storing, retrieving and updating of data

• Issues:

– Storage access

– File organization

– Indexing and hashing

Query Processing

• Parsing and translation

• Optimization

• Evaluation

Query Processing (Cont.)

• Alternative ways of evaluating a given query

– Equivalent expressions

– Different algorithms for each operation

• Cost difference between a good and a bad way of evaluating a

query can be enormous

• Need to estimate the cost of operations

– Depends critically on statistical information about relations

which the database must maintain

– Need to estimate statistics for intermediate results to compute

cost of complex expressions

Transaction Manager

What if the system fails?

What if more than one user is concurrently updating the same data?

A transaction is a collection of operations that performs a single logical

function in a database application

Transaction-management component ensures that the database remains in

a consistent (correct) state despite system failures (e.g., power failures

and operating system crashes) and transaction failures.

Concurrency-control manager controls the interaction among the

concurrent transactions, to ensure the consistency of the database.

CONCEPTUAL MODELING

Database Architecture

Database Architecture

The architecture of a database systems is greatly influenced by

 the underlying computer system on which the database is running:

• Centralized

• Client-server

• Parallel (multi-processor)

• Distributed

Database System Internals

Database Application Architectures:

Storage Management

• Storage manager is a program module that provides the interface

between the low-level data stored in the database and the

application programs and queries submitted to the system

Query Processing

Parsing and translation

Optimization

Evaluation

Transaction Management

Transaction-management component ensures that the database remains in

a consistent (correct) state despite system failures (e.g., power failures

and operating system crashes) and transaction failures.

Concurrency-control manager controls the interaction among the

concurrent transactions, to ensure the consistency of the database.

CONCEPTUAL MODELING

History of Database

History of Database Systems

• 1950s and early 1960s:

– Data processing using magnetic tapes for storage

• Tapes provided only sequential access

– Punched cards for input

History (contd.)

• Late 1960s and 1970s:

– Hard disks allowed direct access to data

– Network and hierarchical data models in widespread use

– Ted Codd defines the relational data model

• Would win the ACM Turing Award for this work

• IBM Research begins System R prototype

• UC Berkeley begins Ingres prototype

– High-performance (for the era) transaction processing

History (contd.)

1980s:

Research relational prototypes evolve into commercial systems

SQL becomes industrial standard

Parallel and distributed database systems

Object-oriented database systems

1990s:

Large decision support and data-mining applications

Large multi-terabyte data warehouses

Emergence of Web commerce

History (contd.)

Early 2000s:

XML and XQuery standards

Automated database administration

Later 2000s:

Giant data storage systems

Google BigTable, Yahoo PNuts, Amazon, ..

ER Model - Basics

Entity Sets

• A database can be modeled as:

– a collection of entities,

– relationship among entities.

• An entity is an object that exists and is distinguishable from

other objects.

– Example: specific person, company, event, plant

• Entities have attributes

– Example: people have names and addresses

• An entity set is a set of entities of the same type that share the

same properties.

– Example: set of all persons, companies, trees, holidays

Entity Sets customer and loan

customer-id customer- customer- customer- loan- amount

 name street city number

Attributes

• An entity is represented by a set of attributes, that is descriptive
properties possessed by all members of an entity set.

• Domain – the set of permitted values for each attribute

• Attribute types:

– Simple and composite attributes.

– Single-valued and multi-valued attributes

• E.g. multivalued attribute: phone-numbers

– Derived attributes

• Can be computed from other attributes

• E.g. age, given date of birth

Example:

customer = (customer-id, customer-name, customer-street,customer-city)
 loan = (loan-number, amount)

Composite Attributes

Relationship Sets

• A relationship is an association among several entities

 Example:

 Hayes depositor A-102

 customer entity relationship set account entity

• A relationship set is a mathematical relation among n  2

entities, each taken from entity sets

 {(e1, e2, … en) | e1  E1, e2  E2, …, en  En}

where (e1, e2, …, en) is a relationship

 Example:

 (Hayes, A-102)  depositor

Relationship Set borrower

Relationship Sets (Cont.)
• An attribute can also be property of a

relationship set.

• For instance, the depositor relationship set
between entity sets customer and account
may have the attribute access-date

Degree of a Relationship Set

• Refers to number of entity sets that

participate in a relationship set.

• Relationship sets that involve two entity sets

are binary (or degree two). Generally, most

relationship sets in a database system are

binary.

• Relationship sets may involve more than two

entity sets.

•

E.g. Suppose employees of a bank may have jobs

(responsibilities) at multiple branches, with different jobs at

different branches. Then there is a ternary relationship set

between entity sets employee, job and branch

Mapping Cardinalities

• Express the number of entities to which another entity can

be associated via a relationship set.

• Most useful in describing binary relationship sets.

• For a binary relationship set the mapping cardinality must be

one of the following types:

– One to one

– One to many

– Many to one

– Many to many

Mapping Cardinalities

One to one One to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

Mapping Cardinalities

Many to one Many to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

Mapping Cardinalities affect ER Design

 Can make access-date an attribute of account, instead of a relationship

attribute, if each account can have only one customer

 I.e., the relationship from account to customer is many to one, or

equivalently, customer to account is one to many

E-R Diagrams

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Lines link attributes to entity sets and entity sets to relationship sets.

 Ellipses represent attributes

 Double ellipses represent multivalued attributes.

 Dashed ellipses denote derived attributes.

 Underline indicates primary key attributes (will study later)

 Composite, Multivalued, Derived Attributes

Roles

• Entity sets of a relationship need not be

distinct
• The labels “manager” and “worker” are called roles; they specify how

employee entities interact via the works-for relationship set.

• Roles are indicated in E-R diagrams by labeling the lines that connect

diamonds to rectangles.

• Role labels are optional, and are used to clarify semantics of the relationship

Participation of Entity Set in a Relationship Set

 Total participation (indicated by double line): every entity in the entity set

participates in at least one relationship in the relationship set

 E.g. participation of loan in borrower is total

 every loan must have a customer associated to it via borrower

 Partial participation: some entities may not participate in any relationship

in the relationship set

 E.g. participation of customer in borrower is partial

Design Issues

• Use of entity sets vs. attributes
Choice mainly depends on the structure of the enterprise being
modeled, and on the semantics associated with the attribute in
question.

• Use of entity sets vs. relationship sets
Possible guideline is to designate a relationship set to describe an
action that occurs between entities

• Binary versus n-ary relationship sets
Although it is possible to replace any non binary (n-ary, for n > 2)
relationship set by a number of distinct binary relationship sets, a
n-ary relationship set shows more clearly that several entities
participate in a single relationship.

• Placement of relationship attributes

E-R Diagram for a Banking Enterprise

Summary of Symbols Used in E-R Notation

Summary of Symbols (Cont.)

Advanced concepts of ER Model

Weak Entity Sets

• An entity set that does not have a primary key is referred to as a

weak entity set.

• The existence of a weak entity set depends on the existence of a

identifying entity set

– it must relate to the identifying entity set via a total, one-to-

many relationship set from the identifying to the weak entity

set

– Identifying relationship depicted using a double diamond

• The discriminator (or partial key) of a weak entity set is the set

of attributes that distinguishes among all the entities of a weak

entity set.

• The primary key of a weak entity set is formed by the primary

key of the strong entity set on which the weak entity set is

existence dependent, plus the weak entity set’s discriminator.

Weak Entity Sets (Cont.)

• We depict a weak entity set by double rectangles.

• We underline the discriminator of a weak entity set with a

dashed line.

• payment-number – discriminator of the payment entity set

• Primary key for payment – (loan-number, payment-number)

Weak Entity Sets (Cont.)

• Note: the primary key of the strong entity set is not explicitly

stored with the weak entity set, since it is implicit in the

identifying relationship.

• If loan-number were explicitly stored, payment could be made a

strong entity, but then the relationship between payment and

loan would be duplicated by an implicit relationship defined by

the attribute loan-number common to payment and loan

More Weak Entity Set Examples

• In a university, a course is a strong entity and a course-offering can

be modeled as a weak entity

• The discriminator of course-offering would be semester (including

year) and section-number (if there is more than one section)

• If we model course-offering as a strong entity we would model

course-number as an attribute.

 Then the relationship with course would be implicit in the course-

number attribute

Specialization

• Top-down design process; we designate subgroupings within an

entity set that are distinctive from other entities in the set.

• These subgroupings become lower-level entity sets that have

attributes or participate in relationships that do not apply to the

higher-level entity set.

• Depicted by a triangle component labeled ISA (E.g. customer “is
a” person).

• Attribute inheritance – a lower-level entity set inherits all the

attributes and relationship participation of the higher-level entity

set to which it is linked.

Specialization Example

Generalization

• A bottom-up design process – combine a number of entity sets

that share the same features into a higher-level entity set.

• Specialization and generalization are simple inversions of each

other; they are represented in an E-R diagram in the same way.

• The terms specialization and generalization are used

interchangeably.

Specialization and Generalization (Contd.)

• Can have multiple specializations of an entity set based on

different features.

• E.g. permanent-employee vs. temporary-employee, in addition to

officer vs. secretary vs. teller

• Each particular employee would be

– a member of one of permanent-employee or temporary-

employee,

– and also a member of one of officer, secretary, or teller

• The ISA relationship also referred to as superclass - subclass

relationship

Design Constraints on specialization/Generalization

• Constraint on which entities can be members of a given
lower-level entity set.

– condition-defined

• E.g. all customers over 65 years are members of
senior-citizen entity set; senior-citizen ISA person.

– user-defined

• Constraint on whether or not entities may belong to more
than one lower-level entity set within a single generalization.

– Disjoint

• an entity can belong to only one lower-level entity set

• Noted in E-R diagram by writing disjoint next to the
ISA triangle

– Overlapping

• an entity can belong to more than one lower-level
entity set

Design Constraints on gecialization/Generalization

(Contd.)

• Completeness constraint -- specifies whether or not an entity in

the higher-level entity set must belong to at least one of the

lower-level entity sets within a generalization.

– total : an entity must belong to one of the lower-level entity

sets

– partial: an entity need not belong to one of the lower-level

entity sets

Aggregation

 Consider the ternary relationship works-on, which we saw earlier

 Suppose we want to record managers for tasks performed by an

 employee at a branch

Aggregation (Cont.)

• Relationship sets works-on and manages represent overlapping

information

– Every manages relationship corresponds to a works-on relationship

– However, some works-on relationships may not correspond to any

manages relationships

• So we can’t discard the works-on relationship

• Eliminate this redundancy via aggregation

– Treat relationship as an abstract entity

– Allows relationships between relationships

– Abstraction of relationship into new entity

• Without introducing redundancy, the following diagram represents:

– An employee works on a particular job at a particular branch

– An employee, branch, job combination may have an associated

manager

E-R Diagram With Aggregation

E-R Design Decisions

• The use of an attribute or entity set to represent an object.

• Whether a real-world concept is best expressed by an entity set

or a relationship set.

• The use of a ternary relationship versus a pair of binary

relationships.

• The use of a strong or weak entity set.

• The use of specialization/generalization – contributes to

modularity in the design.

• The use of aggregation – can treat the aggregate entity set as a

single unit without concern for the details of its internal

structure.

E-R Diagram with a Ternary Relationship

Cardinality Constraints on Ternary Relationship

• We allow at most one arrow out of a ternary (or greater degree)

relationship to indicate a cardinality constraint

• E.g. an arrow from works-on to job indicates each employee works

on at most one job at any branch.

• If there is more than one arrow, there are two ways of defining the

meaning.

– E.g a ternary relationship R between A, B and C with arrows to B

and C could mean

– 1. each A entity is associated with a unique entity from B and C

or

– 2. each pair of entities from (A, B) is associated with a unique C

entity, and each pair (A, C) is associated with a unique B

– Each alternative has been used in different formalisms

– To avoid confusion we outlaw more than one arrow

Binary Vs. Non-Binary Relationships

• Some relationships that appear to be non-binary may be better

represented using binary relationships

– E.g. A ternary relationship parents, relating a child to his/her

father and mother, is best replaced by two binary relationships,

father and mother

• Using two binary relationships allows partial information

(e.g. only mother being know)

– But there are some relationships that are naturally non-binary

• E.g. works-on

Converting Non-Binary Relationships to Binary Form

• In general, any non-binary relationship can be represented using
binary relationships by creating an artificial entity set.

– Replace R between entity sets A, B and C by an entity set E, and
three relationship sets:

 1. RA, relating E and A 2.RB, relating E and B

 3. RC, relating E and C

– Create a special identifying attribute for E

– Add any attributes of R to E

– For each relationship (ai , bi , ci) in R, create

 1. a new entity ei in the entity set E 2. add (ei , ai) to RA

 3. add (ei , bi) to RB 4. add (ei , ci) to RC

Converting Non-Binary Relationships (Cont.)

• Also need to translate constraints

– Translating all constraints may not be possible

– There may be instances in the translated schema that

cannot correspond to any instance of R

• Exercise: add constraints to the relationships RA, RB and RC

to ensure that a newly created entity corresponds to

exactly one entity in each of entity sets A, B and C

– We can avoid creating an identifying attribute by making E a

weak entity set (described shortly) identified by the three

relationship sets

UNIT - II

Relational Database

Approach

Example of a Relation

Basic Structure

• Formally, given sets D1, D2, …. Dn a relation r is a subset of

D1 x D2 x … x Dn

Thus a relation is a set of n-tuples (a1, a2, …, an) where

each ai  Di

• Example: if

 customer-name = {Jones, Smith, Curry, Lindsay}

 customer-street = {Main, North, Park}

 customer-city = {Harrison, Rye, Pittsfield}

Then r = { (Jones, Main, Harrison),

 (Smith, North, Rye),

 (Curry, North, Rye),

 (Lindsay, Park, Pittsfield)}

 is a relation over customer-name x customer-street x customer-city

Attribute Types

• Each attribute of a relation has a name

• The set of allowed values for each attribute is called the domain

of the attribute

• Attribute values are (normally) required to be atomic, that is,

indivisible

– E.g. multivalued attribute values are not atomic

– E.g. composite attribute values are not atomic

• The special value null is a member of every domain

• The null value causes complications in the definition of many

operations

– we shall ignore the effect of null values in our main

presentation and consider their effect later

Relation Schema

• A1, A2, …, An are attributes

• R = (A1, A2, …, An) is a relation schema

 E.g. Customer-schema =

 (customer-name, customer-street, customer-city)

• r(R) is a relation on the relation schema R

 E.g. customer (Customer-schema)

Relation Instance
• The current values (relation instance) of a

relation are specified by a table

• An element t of r is a tuple, represented

by a row in a table

Jones

Smith

Curry

Lindsay

customer-name

Main

North

North

Park

customer-street

Harrison

Rye

Rye

Pittsfield

customer-city

customer

attributes

(or columns)

tuples

(or rows)

Relations are Unordered

 Order of tuples is irrelevant (tuples may be stored in an arbitrary

order)

 E.g. account relation with unordered tuples

Database
• A database consists of multiple relations

• Information about an enterprise is broken up into parts, with each
relation storing one part of the information

 E.g.: account : stores information about accounts
 depositor : stores information about which customer
 owns which account
 customer : stores information about customers

• Storing all information as a single relation such as
 bank(account-number, balance, customer-name, ..)
results in

– repetition of information (e.g. two customers own an account)

– the need for null values (e.g. represent a customer without an
account)

• Normalization theory deals with how to design relational schemas

The customer Relation

The depositor Relation

Mapping ER model to Relation

Schemas

Conceptual and Logical Design

Conceptual Model:

Relational Model:

PERSON BUYS PRODUCT

name

price name ssn

1

1

Mapping an E-R Diagram to

Relational Schema

We cannot store date in an ER schema

(there are no ER database management systems)

 We have to translate our ER schema into a relational schema

 What does “translation” mean?

Translation: Principles

• Maps

– ER schemas to relational schemas

– ER instances to relational instances

• Ideally, the mapping should

– be one-to-one in both directions

– not lose any information

• Difficulties:

– what to do with ER-instances that have identical

attribute values, but consist of different entities?

– in which way do we want to preserve information?

Mapping Entity Types to Relations

• For every entity type create a relation

• Every atomic attribute of the entity type becomes a relation attribute

• Composite attributes: include all the atomic attributes

• Derived attributes are not included

(but remember their derivation rules)

• Relation instances are subsets of the cross product

of the domains of the attributes

• Attributes of the entity key make up the primary key of the relation

name

given family

STUDENT

studno

no. of
students equip

subject

courseno

COURSE

Mapping Entity Types to Relations (cntd.)

STUDENT (studno, givenname, familyname)

COURSE (courseno, subject, equip)

name

given family

STUDENT

studno

no. of
students equip

subject

courseno

COURSE

Mapping Many:many Relationship Types to

Relations

Create a relation with the following set of attributes:

N (degree of relationship)

U {a1,…,aM}
U primary_key(Ei)

i=1
primary keys of each

entity type participating

in the relationship

attributes of the

relationship type (if any)

exammark

labmark

ENROLLED

name

given family

STUDENT

studno

no. of
students equip

subject

courseno

COURSE

Mapping Many:many Relationship Types to Relations cnt d.)

ENROL(studno, courseno, labmark, exammark)

Foreign Key ENROL(studno) references STUDENT(studno)

Foreign Key ENROL(courseno) references COURSE(courseno)

exammark

labmark

ENROLLED

name

given family

STUDENT

studno

no. of
students equip

subject

courseno

COURSE

Mapping Many:one Relationship Types to Relations

Idea: “Post the primary key”

• Given E1 at the ‘many’ end of relationship and E2 at the ‘one’ end
of the relationship, add information to the relation for E1

• The primary key of the entity at the ‘one’ end (the determined entity)

becomes a foreign key in the entity at the ‘many’ end (the determining

entity). Include any relationship attributes with the foreign key entity

E1 U primary_key(E2) U {a1,…,an}

relation for

entity E1
primary key for E2,

is now a foreign key to E2

Attributes on the

relationship type (if

any)

slot

TUTOR

given family

name

STUDENT

studno

STAFF

name

roomno

m 1

Mapping Many:one Relationship Types to Relations: Example

slot

TUTOR

name

given family

STUDENT

studno

STAFF

name

roomno

m 1

The relation

STUDENT(studno, givenname, familyname)

is extended to

STUDENT(studno, givenname, familyname, tutor, roomno, slot)

and the constraint

Foreign Key STUDENT(tutor,roomno) references STAFF(name,roomno)

Mapping Many:one Relationship Types to Relations (cntd.)

attributes on the

(if any)

Another Idea: If

• the relationship type is optional to both entity types, and

• an instance of the relationship is rare, and

• there are many attributes on the relationship then…

… create a new relation with the set of attributes:

primary_key(E1) U primary_key(E2) U {a1,…,am}

primary key for E2,

is now a foreign key

to E2

primary key for E1,

is now a foreign key to E1; also

the PK for this relation

slot

TUTOR

given family

name

STUDENT

studno

STAFF

name

roomno

m 1

Mapping Many:one Relationship Types to Relations (cntd.)

TUTOR(studno, staffname, rommno, slot)

and

Foreign key TUTOR(studno) references STUDENT(studno)

Foreign key TUTOR(staffname, roomno) references

STAFF(name, roomno)

Compare with the

mapping of many:many

relationship types!

slot

TUTOR

name

given family

STUDENT

studno

STAFF

name

roomno

m 1

Mapping One:one Relationship Types to Relations

year

1

YEAR

1

YEARTUTOR

STAFF

name

roomno

• Post the primary key

of one of the entity

types into the other

entity type as a

foreign key, including

any relationship

attributes with it

or

• Merge the entity

types together

Which constraint

holds in this case?

YEAR

year yeartutor

1
2
3

zobel
bush
capon

STAFF

name roomno year

kahn IT206 NULL

bush 2.26 2

goble 2.82 NULL

zobel 2.34 1

watson IT212 NULL

woods IT204 NULL

capon A14 3

lindsey 2.10 NULL
barringer 2.125 NULL21

ER Model To Relational Model

A Case Study

Translation of the University Diagram

STUDENT

(studno, givenname,

familyname, hons,

tutor, tutorroom, slot, year)

ENROL(studno, courseno,

labmark,exammark)

COURSE(courseno, subject, equip)

STAFF(lecturer,roomno,

appraiser, approom)

TEACH(courseno, lecturer,lecroom)

YEAR(year, yeartutor, yeartutorroom)

SCHOOL(hons, faculty)

YEAR

12

REG

year

hons

SCHOOL

faculty

m

n

1

1 1

1

1

exammark

labmark

ENROL

subject

equip

courseno

COURSE

name

given family

STUDENT

studno

m

n

TEACH

slot

TUTOR

YEARREG

YEARTUTOR

STAFF

name

roomno

appraiser
appraisee

1 m

APPRAISAL

Exercise: Supervision of PhD Students

• A database needs to be developed that keeps track of PhD students:

• For each student store the name and matriculation
number. Matriculation numbers are unique.

• Each student has exactly one address. An address consists of street,
town and post code, and is uniquely identified by this information.

• For each lecturer store the name, staff ID and office number. Staff ID's

are unique.

• Each student has exactly one supervisor. A staff member may

supervise a number of students.

• The date when supervision began also needs to be stored.

13

Exercise: Supervision of PhD Students

• For each research topic store the title and a short description.
Titles are unique.

• Each student can be supervised in only one research topic, though

topics that are currently not assigned also need to be stored in the
database.

Tasks:

a) Design an entity relationship diagram that covers the

requirements above. Do not forget to include cardinality and
participation constraints.

b) Based on the ER-diagram from above, develop a relational database

schema. List tables with their attributes. Identify keys and foreign
keys.

Basics of Relational databases

Relational Model

 Relational model

First commercial implementations available in early 1980s

Has been implemented in a large number of commercial system

 Hierarchical and network models

Preceded the relational model
 Represents data as a collection of relations

 Table of values

Row

•Represents a collection of related data values

•Fact that typically corresponds to a real-world entity or relationship

•Tuple

Table name and column names
• Interpret the meaning of the values in each row

• attribute

Domains, Attributes, Tuples, and Relations

Domain D

Set of atomic values

Atomic

Each value indivisible

 Specifying a domain

Data type specified for each domain

 Relation schema R

Denoted by R(A1, A2, ...,An)

Made up of a relation name R and a list of attributes, A1, A2, .., An

Attribute Ai

Name of a role played by some domain D in the relation schema R

Degree (or arity) of a relation

Number of attributes n of its relation schema

Domains, Attributes, Tuples, and Relations (cont’d.)

Relation (or relation state)

Set of n-tuples r = {t1, t2, ..., tm}

Each n-tuple t

•Ordered list of n values t =<v1, v2, ..., vn

•Each value vi, 1 ≤ i ≤ n, is an element of dom(Ai) or is a

special NULL value(cont’d.)

Relation (or relation state) r(R)

Mathematical relation of degree n on the domains

dom(A1), dom(A2), ..., dom(An)

Subset of the Cartesian product of the domains that define R:

•r(R) (dom(A1) × dom(A2) × ... × dom(An))

Characteristics of Relations

 Cardinality
Total number of values in domain
 Current relation state
Relation state at a given time
Reflects only the valid tuples that represent a particular state of the

real world
 Attribute names
 Indicate different roles, or interpretations, for the domain
 Ordering of tuples in a relation
Relation defined as a set of tuples
Elements have no order among them
 Ordering of values within a tuple and an alternative definition of a

relation
Order of attributes and values is not that important
As long as correspondence between attributes and values

maintained

Characteristics of Relation Contd.

Alternative definition of a relation

Tuple considered as a set of (<attribute>,<value>) pairs

Each pair gives the value of the mapping from an attribute Ai

to a value vi from dom(Ai)

Use the first definition of relation

Attributes and the values within tuples are ordered

Simpler notation

Characteristics of Relation Contd.

 Values and NULLs in tuples

Each value in a tuple is atomic
 Flat relational model

• Composite and multivalued attributes not allowed

• First normal form assumption
Multivalued attributes

• Must be represented by separate relations
Composite attributes

• Represented only by simple component attributes in basic relational
model

 NULL values

Represent the values of attributes that may be unknown or may not
apply to a tuple
Meanings for NULL values

• Value unknown
• Value exists but is not available
• Attribute does not apply to this tuple (also known as value undefined)

Relational Model Notation

 Interpretation (meaning) of a relation

Assertion

•Each tuple in the relation is a fact or a particular instance of the
assertion

Predicate

•Values in each tuple interpreted as values that satisfy predicate
 Relation schema R of degree n

Denoted by R(A1, A2, ..., An)

 Uppercase letters Q, R, S

Denote relation names

 Lowercase letters q, r, s

Denote relation states

 Letters t, u, v

Denote tuples

Relational Model Notation

  Name of a relation schema: STUDENT
 Indicates the current set of tuples in that relation
 Notation: STUDENT(Name, Ssn, ...)
Refers only to relation schema
 Attribute A can be qualified with the relation name R to which it

belongs
Using the dot notation R.A
 n-tuple t in a relation r(R)
Denoted by t = <v1, v2, ..., vn>
vi is the value corresponding to attribute Ai

 Component values of tuples:
t[Ai] and t.Ai refer to the value vi in t for attribute

• Ai

t[Au, Aw, ..., Az] and t.(Au, Aw, ..., Az) refer to the subtuple of values
<vu, vw, ..., vz> from t corresponding to the attributes specified in the
list

Formal languages

Relational Algebra – Basic operations

Query languages

• Query Languages are categorized as

 Pure Query languages and Commercial Query languages

• Languages which are defined theoretically and mathematically are

known as Pure query languages

 Example: Relational Algebra

• Commercial Query languages are developed based on Pure query

languages for implementation purpose

 Example : SQL

Query Languages

• Language in which user requests information from the database.

• Categories of languages

– procedural

– non-procedural

• “Pure” languages:
– Relational Algebra

– Tuple Relational Calculus

– Domain Relational Calculus

• Pure languages form underlying basis of query languages that

people use.

Relational Algebra

• Procedural language

• Six basic operators

– select

– project

– union

– set difference

– Cartesian product

– rename

• The operators take one or more relations as inputs and give a

new relation as a result.

Select Operation – Example

• Relation r A B C D

1

5

12

23

7

7

3

10

• A=B ^ D > 5 (r)
A B C D

1

23

7

10

Select Operation

• Notation:  p(r)

• p is called the selection predicate

• Defined as:

 p(r) = {t | t  r and p(t)}

 Where p is a formula in propositional calculus consisting
of terms connected by :  (and),  (or),  (not)
Each term is one of:

 <attribute> op <attribute> or <constant>

 where op is one of: =, , >, . <. 

• Example of selection:
  branch-name=“Perryridge”(account)

Project Operation – Example

• Relation r: A B C

10

20

30

40

1

1

1

2

A C

1

1

1

2

=

A C

1

1

2

 A,C (r)

Project Operation

• Notation:

 A1, A2, …, Ak (r)

 where A1, A2 are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained by

erasing the columns that are not listed

• Duplicate rows removed from result, since relations are sets

• E.g. To eliminate the branch-name attribute of account

 account-number, balance (account)

Union Operation – Example

• Relations r, s:

 r s:

A B

1

2

1

A B

2

3

r

s

A B

1

2

1

3

Union Operation

• Notation: r  s

• Defined as:

 r  s = {t | t  r or t  s}

• For r  s to be valid.

 1. r, s must have the same arity (same number of attributes)

 2. The attribute domains must be compatible (e.g., 2nd column

 of r deals with the same type of values as does the 2nd

 column of s)

• E.g. to find all customers with either an account or a loan

 customer-name (depositor)  customer-name (borrower)

Set Difference Operation – Example

• Relations r, s:

r – s:

A B

1

2

1

A B

2

3

r

s

A B

1

1

Set Difference Operation

• Notation r – s

• Defined as:

 r – s = {t | t  r and t  s}

• Set differences must be taken between compatible relations.

– r and s must have the same arity

– attribute domains of r and s must be compatible

Cartesian-Product Operation-Example

Relations r, s:

r x s:

A B

1

2

A B

1

1

1

1

2

2

2

2

C D

10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

C D

10

10

20

10

E

a

a

b

b r

s

Cartesian-Product Operation

• Notation r x s

• Defined as:

 r x s = {t q | t  r and q  s}

• Assume that attributes of r(R) and s(S) are disjoint. (That is,

R  S = ).

• If attributes of r(R) and s(S) are not disjoint, then renaming must

be used.

Composition of Operations

• Expressions using multiple operations: Example: A=C(r x s)

• r x s

• A=C(r x s)

A B

1

1

1

1

2

2

2

2

C D

10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

A B C D E

1

2

2

10

20

20

a

a

b

Rename Operation

• Allows us to name, and therefore to refer to, the results of

relational-algebra expressions.

• Allows us to refer to a relation by more than one name.

Example:

  x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

 x (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with

the

attributes renamed to A1, A2, …., An.

RA - Operations Examples

Banking :

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street,

customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

• Find all loans of over $1200

Find the loan number for each loan of an amount greater
than $1200

amount > 1200 (loan)

loan_number (amount > 1200

(loan))

Find the names of all customers who have a loan, an account,
or both, from the bank customer_name (borrower)  customer_name (depositor)

Example Queries
• Find the names of all customers who have a loan at the Perryridge branch.

 Find the names of all customers who have a loan at the Perryridge branch but do

not have an account at any branch of the bank.

customer_name (branch_name =

“Perryridge”

 (borrower.loan_number =

loan.loan_number(borrower x loan))) –

customer_name(depositor)

customer_name (branch_name=“Perryridge”

 (borrower.loan_number =

loan.loan_number(borrower x loan)))

RA - Advanced Operations - Examples

Find the names of all customers who have a

loan at the Perryridge branch.

 customer_name(loan.loan_number = borrower.loan_number (
 (branch_name = “Perryridge” (loan)) x borrower))

 customer_name (branch_name = “Perryridge” (

borrower.loan_number = loan.loan_number (borrower x loan)))

Outer Join – Example

• Relation loan

 Relation borrower

customer_name loan_number

Jones

Smith

Hayes

L-170

L-230

L-155

3000

4000

1700

loan_number amount

L-170

L-230

L-260

branch_name

Downtown

Redwood

Perryridge

Outer Join – Example

• Join

loan borrower

loan_number amount

L-170

L-230

3000

4000

customer_name

Jones

Smith

branch_name

Downtown

Redwood

Jones

Smith

null

loan_number amount

L-170

L-230

L-260

3000

4000

1700

customer_name branch_name

Downtown

Redwood

Perryridge

 Left Outer Join

 loan borrower

Outer Join – Example

loan_number amount

L-170

L-230

L-155

3000

4000

null

customer_name

Jones

Smith

Hayes

branch_name

Downtown

Redwood

null

loan_number amount

L-170

L-230

L-260

L-155

3000

4000

1700

null

customer_name

Jones

Smith

null

Hayes

branch_name

Downtown

Redwood

Perryridge

null

 Full Outer Join

 loan borrower

 Right Outer Join

 loan borrower

 Question: can outerjoins be expressed using basic

relational

 algebra operations

Division Operation – Example

 Relations r, s:

 r  s: A

B





1

2

A B






















1

2

3

1

1

1

3

4

6

1

2

r

s

Another Division Example

A B















a

a

a

a

a

a

a

a

C D











a

a

b

a

b

a

b

b

E

1

1

1

1

3

1

1

1

 Relations
r, s:

 r 
s:

D

a

b

E

1

1

A B




a

a

C




r

s

Division Operation (Cont.)

• Property

– Let q = r  s

– Then q is the largest relation satisfying q x s  r

• Definition in terms of the basic algebra operation

Let r(R) and s(S) be relations, and let S  R

 r  s = R-S (r) – R-S ((R-S (r) x s) – R-S,S(r))

 To see why

– R-S,S (r) simply reorders attributes of r

– R-S (R-S (r) x s) – R-S,S(r)) gives those tuples t in

 R-S (r) such that for some tuple u  s, tu  r.

RA - Advanced Operations

• Advanced Operations

– Set intersection

– Natural join

– Aggregation

– Outer Join

– Division

• All above, other than aggregation, can be expressed using basic
operations we have seen earlier

Set-Intersection Operation – Example

• Relation r, s:

• r  s

A B







1

2

1

A B




2

3

r s

A B

 2

Natural Join Operation – Example
• Relations r, s:

A B










1

2

4

1

2

C D









a

a

b

a

b

B

1

3

1

2

3

D

a

a

a

b

b

E










r

A B











1

1

1

1

2

C D









a

a

a

a

b

E









s

 r s

 Notation: r s

Natural-Join Operation

• Let r and s be relations on schemas R and S
respectively.
Then, r s is a relation on schema R  S obtained
as follows:
– Consider each pair of tuples tr from r and ts from s.

– If tr and ts have the same value on each of the attributes in
R  S, add a tuple t to the result, where

• t has the same value as tr on r

• t has the same value as ts on s

• Example:
R = (A, B, C, D)

S = (E, B, D)

– Result schema = (A, B, C, D, E)

– r s is defined as:
 r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

Bank Example Queries
• Find the largest account balance

– Strategy:

• Find those balances that are not the largest

– Rename account relation as d so that we can compare

each account balance with all others

• Use set difference to find those account balances

that were not found in the earlier step.

– The query is:

 balance(account) - account.balance

 (account.balance < d.balance (account x d
(account)))

Aggregate Functions and Operations

• Aggregation function takes a collection of values and returns a
single value as a result.

 avg: average value
 min: minimum value
 max: maximum value
 sum: sum of values
 count: number of values

• Aggregate operation in relational algebra

E is any relational-algebra expression

– G1, G2 …, Gn is a list of attributes on which to group (can be
empty)

– Each Fi is an aggregate function

– Each Ai is an attribute name

)(
)(,,(),(,,, 221121

E
nnn AFAFAFGGG  

Aggregate Operation – Example

• Relatio
n r:

A B

















C

7

7

3

10

 g sum(c) (r) sum(c)

27

 Question: Which aggregate operations cannot be
expressed using basic relational operations?

Aggregate Operation – Example

• Relation account grouped by branch-name:

branch_name g sum(balance) (account)

branch_name account_number balance

Perryridge

Perryridge

Brighton

Brighton

Redwood

A-102

A-201

A-217

A-215

A-222

400

900

750

750

700

branch_name sum(balance)

Perryridge

Brighton

Redwood

1300

1500

700

Aggregate Functions (Cont.)

• Result of aggregation does not have a name

– Can use rename operation to give it a name

– For convenience, we permit renaming as part of

aggregate operation

 branch_name g sum(balance) as sum_balance

(account)

Outer Join

• An extension of the join operation that avoids loss of information.

• Computes the join and then adds tuples form one relation that does

not match tuples in the other relation to the result of the join.

• Uses null values:

– null signifies that the value is unknown or does not exist

– All comparisons involving null are (roughly speaking) false by

definition.

• We shall study precise meaning of comparisons with nulls

later

Outer Join – Example

• Relation loan

 Relation borrower

customer_name loan_number

Jones

Smith

Hayes

L-170

L-230

L-155

3000

4000

1700

loan_number amount

L-170

L-230

L-260

branch_name

Downtown

Redwood

Perryridge

Outer Join – Example

• Join

loan borrower

loan_number amount

L-170

L-230

3000

4000

customer_name

Jones

Smith

branch_name

Downtown

Redwood

Jones

Smith

null

loan_number amount

L-170

L-230

L-260

3000

4000

1700

customer_name branch_name

Downtown

Redwood

Perryridge

 Left Outer Join

 loan borrower

Outer Join – Example

loan_number amount

L-170

L-230

L-155

3000

4000

null

customer_name

Jones

Smith

Hayes

branch_name

Downtown

Redwood

null

loan_number amount

L-170

L-230

L-260

L-155

3000

4000

1700

null

customer_name

Jones

Smith

null

Hayes

branch_name

Downtown

Redwood

Perryridge

null

 Full Outer Join

 loan borrower

 Right Outer Join

 loan borrower

 Question: can outerjoins be expressed using basic

relational

 algebra operations

Null Values

• It is possible for tuples to have a null value, denoted by null, for some

of their attributes

• null signifies an unknown value or that a value does not exist.

• The result of any arithmetic expression involving null is null.

• Aggregate functions simply ignore null values (as in SQL)

• For duplicate elimination and grouping, null is treated like any other

value, and two nulls are assumed to be the same (as in SQL)

Null Values

• Comparisons with null values return the special truth value:

unknown

– If false was used instead of unknown, then not (A < 5)

 would not be equivalent to A >= 5

• Three-valued logic using the truth value unknown:

– OR: (unknown or true) = true,

 (unknown or false) = unknown

 (unknown or unknown) = unknown

– AND: (true and unknown) = unknown,

 (false and unknown) = false,

 (unknown and unknown) = unknown

– NOT: (not unknown) = unknown

– In SQL “P is unknown” evaluates to true if predicate P

Cont…

– evaluates to unknown

• Result of select predicate is treated as false if it evaluates to

unknown

– NOT: (not unknown) = unknown

– In SQL “P is unknown” evaluates to true if predicate P evaluates

to unknown

• Result of select predicate is treated as false if it evaluates to

unknown

Division Operation

• Notation:

• Suited to queries that include the phrase “for all”.

• Let r and s be relations on schemas R and S respectively where

– R = (A1, …, Am , B1, …, Bn)

– S = (B1, …, Bn)

The result of r  s is a relation on schema

R – S = (A1, …, Am)

 r  s = { t | t   R-S (r)   u  s (tu  r) }

Where tu means the concatenation of tuples t and u to produce a

single tuple

r 

s

Division Operation – Example

 Relations r, s:

 r  s: A

B





1

2

A B






















1

2

3

1

1

1

3

4

6

1

2

r

s

Another Division Example

A B















a

a

a

a

a

a

a

a

C D











a

a

b

a

b

a

b

b

E

1

1

1

1

3

1

1

1

 Relations
r, s:

 r 
s:

D

a

b

E

1

1

A B




a

a

C




r

s

Division Operation (Cont.)
• Property

– Let q = r  s

– Then q is the largest relation satisfying q x s  r

• Definition in terms of the basic algebra operation

Let r(R) and s(S) be relations, and let S  R

 r  s = R-S (r) – R-S ((R-S (r) x s) – R-S,S(r))

 To see why

– R-S,S (r) simply reorders attributes of r

– R-S (R-S (r) x s) – R-S,S(r)) gives those tuples t in

 R-S (r) such that for some tuple u  s, tu  r.

RA - Advanced Operations - Examples

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street,
customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

Example Queries

• Find all loans of over $1200

Find the loan number for each loan of an amount greater
than $1200

amount > 1200 (loan)

loan_number (amount > 1200

(loan))

Find the names of all customers who have a loan, an account, or both, from
the bank

customer_name (borrower)  customer_name (depositor)

Example Queries

• Find the names of all customers who have a loan at the Perryridge branch.

 Find the names of all customers who have a loan at the Perryridge branch

but do not have an account at any branch of the bank.

customer_name (branch_name =

“Perryridge”

 (borrower.loan_number =

loan.loan_number(borrower x loan))) –

customer_name(depositor)

customer_name (branch_name=“Perryridge”

 (borrower.loan_number =

loan.loan_number(borrower x loan)))

Example Queries

• Find the names of all customers who have a loan at the
Perryridge branch.

 customer_name(loan.loan_number = borrower.loan_number (
 (branch_name = “Perryridge” (loan)) x borrower))

 customer_name (branch_name = “Perryridge” (

borrower.loan_number = loan.loan_number (borrower x loan)))

Examples of RA Queries

Examples of RA Queries

• person (driver-id, name, address)
car (license, year, model)

• accident (report-number, location, date)
owns (driver-id, license)

• participated (report-number driver-id, license, damage-amount)
employee (person-name, street, city)
works (person-name, company-name, salary)

• company (company-name, city)
manages (person-name, manager-name)
An expressions in the relational algebra:

Examples of RA Queries

a. Find the names of all employees who work for First Bank

Corporation.

• Π person-name (σ company-name = “First Bank Corporation”
(works))

b. Find the names and cities of residence of all employees who work

for First Bank Corporation.

• Πperson-name, city (employee ⋈ (σ company-name = “First Bank
Corporation” (works)))

c. Find the names, street address, and cities of residence of all employees

who work for First Bank Corporation and earn more than $10,000 per

annum.

• Π person-name, street, city (σ(company-name = “First Bank
Corporation” ∧ salary > 10000) works ⋈ employee)

d. Find the names of all employees in this database who live in the same

city as the company for which they work.

• Π person-name (employee ⋈ works ⋈company)

 Find the names of all employees who live in the same city and on

the same street as do their managers.

• Π person-name ((employee ⋈ manages) ⋈ (manager-name =

employee2.person-name ∧employee.street = employee2.street ∧employee.city = employee2.city)(ρemployee2 (employee)))

Cont…

e. Find the names of all employees in this database who do not work

for First Bank Corporation.

• Π person-name (σ company-name = “First Bank
Corporation”(works))
If people may not work for any company:

 Π person-name(employee) - Πperson-name (σ(company-name =

“First Bank Corporation”)(works))

 f . Assume the companies may be located in several cities. Find all

companies located in every city in which Small Bank Corporation is

located.

• Π company-name (company ÷ (Πcity (σ company-name = “Small
Bank Corporation” (company)))

Examples of RA Queries

• Find the accounts held by more than two customers in the
following ways:

a. Using an aggregate function.

• t1 ← account-number 𝒢count customer-name(depositor)

• Π account-number (σ num-holders>2 (ρ account-holders(account-
number, num-holders)(t1)))

 b. Without using any aggregate functions

• t1 ← (ρd1(depositor) × ρd2 (depositor) × ρd3 (depositor))
• t2 ← σ(d1.account-number=d2.account-number=d3.account-

number)(t1)

Examples of RA Queries

• Π d1.account-number(σ(d1.customer-name ≠ d2.customer-name ∧

d2.customer-name ≠ d3.customer-name ∧d3.customer-name ≠
d1.customer-name)(t2))

• Find the company with the most employees.

t1 ← company-name G count-distinct

person-name(works)

t2 ← max num-employees(ρcompany-

strength(company-name,num-

employees)(t1))

Π company-name(ρt3(company-name,

num-employees)(t1) ⋈ρt4(num-

employees)(t2))

Cont…

b. Find the company with the smallest payroll.

• t1 ← company-name G sum salary(works)
t2 ← min payroll(ρcompany-payroll(company-name,payroll)(t1))
Π company-name(ρt3(company-name, payroll)(t1) ⋈ρt4(payroll)(t2))

c. Find those companies whose employees earn a higher salary, on
average, than the average salary at First Bank Corporation.

• t1 ← company-nameGsum salary(works)
t2 ← min payroll(ρcompany-payroll(company-name,payroll)(t1))
Πcompany-name(ρt3(company-name,payroll)(t1) ⋈ρt4(payroll)(t2))

Tuple Relational Calculus

• A nonprocedural query language, where each query is of the form

 {t | P (t) }

• It is the set of all tuples t such that predicate P is true for t

• t is a tuple variable, t [A] denotes the value of tuple t on attribute A

Cont.

• t  r denotes that tuple t is in relation r

• P is a formula similar to that of the predicate calculus

Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., , , , , , )

3. Set of connectives: and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

 x  y x v y

cont.

5. Set of quantifiers:

t r (Q (t)) ”there exists” a tuple in t in relation r

 such that predicate Q (t) is true

t r (Q (t)) Q is true “for all” tuples t in relation r

Examples of TRC Queries

• branch (branch_name, branch_city, assets)

• customer (customer_name, customer_street,

customer_city)

• account (account_number, branch_name, balance)

• loan (loan_number, branch_name, amount)

• depositor (customer_name, account_number)

• borrower (customer_name, loan_number)

Example Queries

• Find the loan_number, branch_name, and amount for

loans of over $1200

 Find the loan number for each loan of an amount greater than

$1200

 {t |  s loan (t [loan_number] = s [loan_number] 

s [amount]  1200)}

 Notice that a relation on schema [loan_number] is implicitly

defined by

 the query

{t | t  loan  t [amount]  1200}

Example Queries

• Find the names of all customers having a loan, an account, or both

at the bank

 {t | s  borrower (t [customer_name] = s [customer_name])

  u  depositor (t [customer_name] = u [customer_name])

• Find the names of all customers who have a loan and an account

 at the bank

 {t | s  borrower (t [customer_name] = s [customer_name])

  u  depositor (t [customer_name] = u [customer_name])

Example Queries

• Find the names of all customers having a loan at the Perryridge branch

 {t | s  borrower (t [customer_name] = s [customer_name]

  u  loan (u [branch_name] = “Perryridge”

  u [loan_number] = s [loan_number]))}

• Find the names of all customers who have a loan at the

 Perryridge branch, but no account at any branch of the bank

 {t | s  borrower (t [customer_name] = s [customer_name]

  u  loan (u [branch_name] = “Perryridge”

  u [loan_number] = s [loan_number]))

  not v  depositor (v [customer_name] =

 t [customer_name])}

Example Queries

• Find the names of all customers having a loan from the Perryridge

branch, and the cities in which they live

 t | s  loan (s [branch_name] = “Perryridge”

  u  borrower (u [loan_number] = s [loan_number]

  t [customer_name] = u [customer_name])

   v  customer (u [customer_name] = v [customer_name

] t [customer_city] = v [customer_city])))}

Example Queries

• Find the names of all customers who have an account at all branches

located in Brooklyn:

 t |  r  customer (t [customer_name] = r [customer_name]) 

 ( u  branch (u [branch_city] = “Brooklyn” 

  s  depositor (t [customer_name] = s [customer_name]

   w  account (w[account_number] = s [account_number]

  (w [branch_name] = u [branch_name]))))}

 Find the names of all employees who work for First Bank

Corporation:-

 i. {t | ∃ s ∈ works (t[person-name] = s[person-name] ∧ s[company-

name] = “First Bank Corporation”)}

 ii. { < p > | ∃ c, s (< p, c, s > ∈ works ∧ c = “First Bank Corporation”)}

 Cont…

 Find the names and cities of residence of all employees who work

for First Bank Corporation:-

i. {t | ∃ r ∈ employee ∃ s ∈ works (t[person-name] = r[person-

name] ∧ t[city] = r[city] ∧ r[person-name] = s[person-name] ∧ s[company-name] = “First Bank Corporation”)}
ii. {< p, c > | ∃ co, sa, st (< p, co, sa > ∈ works ∧ < p, st, c > ∈ employee ∧ co = “First Bank Corporation”)}

• Find the names, street address, and cities of residence of all

employees who work for First Bank Corporation and earn more

than $10,000 per annum:-

i. {t | t ∈ employee ∧ (∃ s ∈ works (s[person-name] = t[person-

name] ∧ s[company-name] = “First Bank Corporation” ∧ s[salary] >

10000))}

ii. {< p, s, c > | < p, s, c > ∈ employee ∧ ∃ co, sa (< p, co, sa > ∈ works ∧ co = “First Bank Corporation” ∧ sa > 10000)}

Cont…

Find the names of all employees in this database who live in the same

city

as the company for which they work:-

i. {t | ∃ e ∈ employee ∃ w ∈ works ∃ c ∈ company

(t[person-name] = e[person-name] ∧ e[person-name] = w[person-name] ∧ w[company-name] = c[company-name] ∧ e[city] = c[city])}

Cont…

Domain Relational calculus- Queries

• A nonprocedural query language equivalent in power to the tuple

relational calculus

• Each query is an expression of the form:

 {  x1, x2, …, xn  | P (x1, x2, …, xn)}

– x1, x2, …, xn represent domain variables

– P represents a formula similar to that of the predicate calculus

Example Queries

• Find the loan_number, branch_name, and amount for loans of over

$1200

 { l, b, a  |  l, b, a   loan  a > 1200}

Find the names of all customers who have a loan of over $1200

{ c  |  l, b, a ( c, l   borrower   l, b, a   loan  a > 1200)}

Find the names of all customers who have a loan from the Perryridge

branch and the loan amount

 { c, a  |  l ( c, l   borrower  b ( l, b, a   loan 

b=“Perryridge”))}

 { c, a  |  l ( c, l   borrower   l, “ Perryridge”, a   loan)}

Example Queries

• Find the names of all customers having a loan, an account,
or both at the Perryridge branch:

{ c  |  s,n ( c, s, n   customer) 

  x,y,z ( x, y, z   branch  y = “Brooklyn”) 

  a,b ( x, y, z   account   c,a   depositor)}

 Find the names of all customers who have an account at all branches

located in Brooklyn:

{ c  |  l ( c, l   borrower

   b,a ( l, b, a   loan  b = “Perryridge”))
   a ( c, a   depositor

   b,n ( a, b, n   account  b = “Perryridge”))}

Safety of Expressions

The expression:

 {  x1, x2, …, xn  | P (x1, x2, …, xn)}

 is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from

dom (P) (that is, the values appear either in P or in a tuple of a

 relation mentioned in P).

2. For every “there exists” subformula of the form  x (P1(x)), the

 subformula is true if and only if there is a value of x in dom (P1)

 such that P1(x) is true.

3. For every “for all” subformula of the form x (P1 (x)), the subformula is

true if and only if P1(x) is true for all values x from dom (P1).

Domain Relational calculus- Queries

• A nonprocedural query language equivalent in power to the tuple

relational calculus

• Each query is an expression of the form:

 {  x1, x2, …, xn  | P (x1, x2, …, xn)}

– x1, x2, …, xn represent domain variables

– P represents a formula similar to that of the predicate calculus

Example Queries

• Find the loan_number, branch_name, and amount for loans of over

$1200

 Find the names of all customers who have a loan from the
Perryridge branch and the loan amount:

 { c, a  |  l ( c, l   borrower  b ( l, b, a  

loan  b=“Perryridge”))}

 { c, a  |  l ( c, l   borrower   l, “ Perryridge”, a
  loan)}

 { c  |  l, b, a ( c, l   borrower   l, b, a   loan  a > 1200)}

 Find the names of all customers who have a
loan of over $1200

 { l, b, a  |  l, b, a   loan  a > 1200}

Example Queries

• Find the names of all customers having a loan, an

account, or both at the Perryridge branch:
• { c  |  l ( c, l   borrower

   b,a ( l, b, a   loan  b = “Perryridge”))
   a ( c, a   depositor

   b,n ( a, b, n   account  b = “Perryridge”))}

• Find the names of all customers who have an account at all branches

located in Brooklyn:

 { c  |  s,n ( c, s, n   customer) 

  x,y,z ( x, y, z   branch  y = “Brooklyn”) 

  a,b ( x, y, z   account   c,a   depositor)}

Safety of Expressions

The expression:

 {  x1, x2, …, xn  | P (x1, x2, …, xn)}

 is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from

dom (P) (that is, the values appear either in P or in a tuple of a

 relation mentioned in P).

2. For every “there exists” subformula of the form  x (P1(x)), the

 subformula is true if and only if there is a value of x in dom (P1)

 such that P1(x) is true.

3. For every “for all” subformula of the form x (P1 (x)), the subformula is

true if and only if P1(x) is true for all values x from dom (P1).

Expressive Power of Algebra and Calculus

 Unsafe query:
• z a syntactically correct calculus query that has an infinite

number of answers

• E.g., { S | ¬ (S ∈ Sailors) }

• Every query that can be expressed in relational algebra can be
expressed as a safe query in DRC / TRC; the converse is also true

• Relational Completeness

• Query language (e.g., SQL) can express every query that is
expressible in relational algebra

• In addition, commercial query languages can express some
queries that cannot be expressed

• in relational algebra

UNIT - III

BASIC SQL QUERY

• SQL can execute queries against a database

• SQL can retrieve data from a database

• SQL can insert records in a database

• SQL can update records in a database

• SQL can delete records from a database

• SQL can create new databases

• SQL can create new tables in a database

• SQL can create stored procedures in a database

• SQL can create views in a database

• SQL can set permissions on tables, procedures, and views

• Although SQL is an ANSI (American National Standards Institute) standard,

there are different versions of the SQL language.

SQL

• Data definition statement are use to define the

database structure or table.

• Statement Description CREATE Create new

database/table.

• ALTER: Modifies the structure of database/table.

• DROP : Deletes a database/table.

• TRUNCATE: Remove all table records including

allocated table spaces.

• RENAME: Rename the database/table.

 Data Definition Language (DDL)

Allows the specification of not only a set of relations but also

information about each relation, including:

• The schema for each relation.

• The domain of values associated with each attribute.

• Integrity constraints

• The set of indices to be maintained for each relations.

• Security and authorization information for each relation.

• The physical storage structure of each relation on disk.

Data Definition Language

Domain Types in SQL

• char(n):Fixed length character string, with user-specified length n.

• varchar(n): Variable length character strings, with user-specified
maximum length n.

• Int: Integer (a finite subset of the integers that is machine-
dependent).

• Smallint: Small integer (a machine-dependent subset of the integer
domain type).

• numeric(p,d): Fixed point number, with user-specified precision of

• p digits, with n digits to the right of decimal point.

• real, double precision: Floating point and double-precision floating
point numbers, with machine-dependent precision.

• float(n):Floating point number, with user-specified precision of at
least n digits.

An SQL relation is defined using the create table command:

• create table r (A1 D1, A2 D2, ..., An Dn,

• (integrity-constraint1),

• ...,

• (integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

• Example:

• create table branch

• (branch_name char(15) not null,

• branch_city char(30),

• assets integer)

Create Table Construct

CREATE TABLE

•In SQL2, can use the CREATE TABLE command for

 specifying the primary key attributes, secondary keys, and

 referential integrity constraints (foreign keys).

•Key attributes can be specified via the PRIMARY KEY and

 UNIQUE phrases

(Dname Varchar(10) NOT NULL,

Dnumber Integer NOT NULL,

Mgrssn Char(9),

Mgrstartdate Char(9),

Primary key (Dnumber),

create table dept unique (dname),foreign key(mgrssn) references emp);

– not null

– primary key (A1, ..., An)

• Example:Declare branch_name as the primary key for

branch and ensure that the values of assets are non-

negative.

• create table branch (branch_name char(15), branch_city

char(30), Assets integer, primary key(branch_name))

• primary key declaration on an attribute automatically

ensures not null in SQL- 92 onwards, needs to be

explicitly stated in SQL-89

Integrity Constraints in Create Table

DROP TABLE

 – Used to remove a relation (base table) and its definition

– The relation can no longer be used in queries, updates, or any other
commands since its description no longer exists

– Example:

• DROP TABLE DEPENDENT;

Drop and Alter Table Constructs:

• The drop table command deletes all information about the dropped relation
from the database.

• The alter table command is used to add attributes to an existing relation:
 alter table r add A D

• where A is the name of the attribute to be added to relation r and D is the
domain of A.

– All tuples in the relation are assigned null as the value for the new
attribute.

• The alter table command can also be used to drop attributes of a relation:
 alter table r drop A

• where A is the name of an attribute of relation r

– Dropping of attributes not supported by many databases

ALTER TABLE
 • Used to add an attribute to one of the base relations

• The new attribute will have NULLs in all the tuples of the relation right after

the command is executed; hence, the NOT NULL constraint is not allowed

for such an attribute

Example:

• ALTER TABLE EMPLOYEE ADD JOB VARCHAR(12);

• The database users must still enter a value for the new attribute JOB for

each EMPLOYEE tuple. This can be done using the UPDATE command.

Integrity Constraints

– Integrity constraints guard against accidental damage to the database,

by ensuring that authorized changes to the database do not result in a

loss of data consistency.

• A checking account must have a balance greater than $10,000.00

• A salary of a bank employee must be at least $4.00 an hour

• A customer must have a (non-null) phone number

Constraints on a Single Relation

• not null

• primary key

• unique

• check (P), where P is a predicate

Not Null Constraint:

• Declare branch_name for branch is not null

• branch_name char(15) not null

• Declare the domain Dollars to be not null

• create domain Dollars numeric(12,2) not null

The Unique Constraint

 – unique (A1, A2, …, Am)

• The unique specification states that the attributes

A1, A2, … Am Form a candidate key.

• Candidate keys are permitted to be null (in contrast to primary keys).

The check clause
– check (P), where P is a predicate

• Declare branch_name as the primary key for branch and ensure that the

values of assets are non-negative.

• create table branch (branch_name char(15), branch_city char(30),

 Assets integer, primary key(branch_name), CHECK (assets >= 0))

• The check clause permits domains to be restricted:

• Use check clause to ensure that an hourly _ wage domain allows

only values greater than a specified value.

• create domain hourly_ wage numeric (5,2) constraint value _ test

check(value > = 4.00)

• The domain has a constraint that ensures that the hourly _ wage is

greater than 4.00

• The clause constraint value _ test is optional; useful to indicate

which constraint an update violated

Referential Integrity

■Ensures that a value that appears in one relation for a given set of

 attributes also appears for a set of attributes in another relation.

Example:If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the

branch relation for branch “Perryridge”.
■Primary and candidate keys and foreign keys can be specified as part

 of the SQL create table statement:

■The primary key clause lists primary key (PK) attributes.

■The unique key clause lists candidate key attributes

■The foreign key clause lists foreign key (FK) attributes and the

 name of the relation referenced by the FK. By default, a FK

 references PK attributes of the referenced table.

Referential Integrity in SQL – Example

 • create table customer (customer_name char(20), customer_street

char(30), customer_city char(30), primary key (customer_name));

• create table branch (branch_name char(15), branch_city char(30), assets

numeric(12,2), primary key(branch_name));

• create table account (account_number char(10), branch_name char(15),

 balance integer,primary key(account_number),foreign key(branch_name)

references branch);

• create table depositor (customer_name char(20), account_number

char(10),primary key (customer_name, account_number),foreign key

(account_number) references account,foreign key (customer_name)

references customer);

TRUNCATE TABLE Statement

 This SQL tutorial explains how to use the SQL TRUNCATE TABLE

statement with syntax and examples.

• Description:The SQL TRUNCATE TABLE statement is used to remove

all records from a table. It performs the same function as a DELETE

statement without a WHERE clause.

Syntax

The syntax for the TRUNCATE TABLE statement in SQL is:

TRUNCATE TABLE table_name;

The SQL DROP TABLE Statement

 • The DROP TABLE statement is used to drop an existing table in a

database.

Syntax

DROP TABLE table_name;

• Be careful before dropping a table. Deleting a table will result in loss

of complete information stored in the table!

Assertions
 • An assertion is a predicate expressing a condition that we wish the

database always to satisfy.

An assertion in SQL takes the form

• create assertion <assertion-name> check <predicate>

 When an assertion is made, the system tests it for validity, and tests

it again on every update that may violate the assertion

– This testing may introduce a significant amount of overhead;

hence assertions should be used with great care.

• Asserting for all X, P(X) is achieved in a round-about fashion using

not exists X such that not P(X)

Using General Assertions

• Specify a query that violates the condition; include inside a NOT EXISTS

clause

• Query result must be empty

– if the query result is not empty, the assertion has been violated

Assertion Example

– Every loan has at least one borrower who maintains an account with a

minimum balance or $1000.00

• create assertion balance_constraint check (not exists (select * from loan

where not exists (select * from borrower, depositor, account

whereloan.loan_number = borrower.loan_number and

borrower.customer_name = depositor.customer_name and

depositor.account_number = account.account_number and

account.balance >= 1000)));

Example-2
• The sum of all loan amounts for each branch must be less than the sum of all

account balances at the branch.

• create assertion sum_constraint check (not exists (select * from branch where
(select sum(amount) from loan where loan.branch_name =
branch.branch_name)>= (select sum(amount)

 from account where loan.branch_name = branch.branch_name)));

Assertions: Another Example

• “The salary of an employee must not be greater than the salary of
the manager of the department that the employee works for’’

• Creat assertion salary_constraint check (not exists

 (Select * from employee e, employee m, department d where
e.Salary > m.Salary and e.Dno=d.Number and d.Mgrssn=m.Ssn));

SQL Triggers

 – Objective: to monitor a database and take action when a condition
occurs

– Triggers are expressed in a syntax similar to assertions and include the
following:

• event (e.g., an update operation)

• condition

• action (to be taken when the condition is satisfied)

SQL Triggers: An Example

 A trigger to compare an employee’s salary to his/her supervisor during
insert or update operations:

Create Trigger Inform_supervisor Before Insert Or Update Of

Salary, Supervisor _ ssn On Employee For Each Row When (New.Salary
>(Select Salary From Employee Where Ssn=new.Supervisor _ ssn))
Inform_supervisor (new.supervisor_ssn,new.ssn);

SELECT Statement

 Syntax

 SELECT column-names FROM table-name;

• The SELECT statement retrieves data from a database.

• The data is returned in a table-like structure called a result-set.

• SELECT is the most frequently used action on a database.

To select all columns use *

 SELECT * FROM table-name;

WHERE Clause

 • To limit the number of rows use the WHERE clause.

• The WHERE clause filters for rows that meet certain criteria.

• WHERE is followed by a condition that returns either true or false.

• WHERE is used with SELECT, UPDATE, and DELETE.

 A WHERE clause with an UPDATE statement:

 UPDATE table-name SET column-name = value WHERE condition

 A WHERE clause with a DELETE statement: DELETE table-name

 WHERE condition

INSERT Into With Select Example

The Bigfoot Brewery supplier is also a customer.

Add a customer record with values from the supplier table

• INSERT INTO Customer (FirstName, LastName, City, Country, Phone)

 SELECT LEFT(ContactName, CHARINDEX(' ',ContactName) -1),

 SUBSTRING(ContactName, CHARINDEX(' ',ContactName) + 1, 100),

 City, Country, Phone FROM Supplier WHERE CompanyName = 'Bigfoot

Breweries‘;

UPDATE Statement

 • The UPDATE statement updates data values in a database.

• UPDATE can update one or more records in a table.

• Use the WHERE clause to UPDATE only specific records.

• The general syntax is:

UPDATE table-name SET column-name = value, column-name = value, ...

• To limit the number of records to UPDATE append a WHERE clause:

UPDATE table-name SET column-name = value, column-name = value, ...

 WHERE condition

• UPDATE Examples

 Problem: discontinue all products in the database UPDATE Product SET Is

Discontinued = 1

• UPDATE Product SET IsDiscontinued = 1 WHERE UnitPrice > 50

DELETE Statement

 • DELETE permanently removes records from a table.

• DELETE can delete one or more records in a table.

• Use the WHERE clause to DELETE only specific records.

• The general syntax is:

DELETE table-name ;

To delete specific records append a WHERE clause: DELETE table-

name WHERE condition;

SQL DELETE Examples

• Problem: Delete all products.

 DELETE Product;

• Problem: Delete products over $50.

 DELETE Product WHERE UnitPrice > 50;

Integrity and Security

• Domain Constraints

• Referential Integrity

• Assertions

• Triggers

• Security

• Authorization

• Authorization in SQL

Domain Constraints
• Integrity constraints guard against accidental damage to the

 database, by ensuring that authorized changes to the database do

 not result in a loss of data consistency.

• Domain constraints are the most elementary form of integrity

 constraint.

• They test values inserted in the database, and test queries to

 ensure that the comparisons make sense.

• New domains can be created from existing data types

 E.g. create domain Dollars numeric(12, 2)

 create domain Pounds numeric(12,2)

• We cannot assign or compare a value of type Dollars to a value of

 type Pounds.

 However, we can convert type as below

 (cast r.A as Pounds)

 (Should also multiply by the dollar-to-pound conversion-rate)

Domain Constraints (Cont.)

• The check clause in SQL-92 permits domains to be restricted:

 - Use check clause to ensure that an hourly-wage domain allows

 only values greater than a specified value.

 create domain hourly-wage numeric(5,2)

 constraint value-test check(value > = 4.00)

 - The domain has a constraint that ensures that the hourly-wage is

 greater than 4.00

 - The clause constraint value-test is optional; useful to indicate

 which constraint an update violated.

• Can have complex conditions in domain check

 - create domain AccountType char(10)

 constraint account-type-test

 check (value in (‘Checking’, ‘Saving’))
 - - check (branch-name in (select branch-name from branch))

Referential Integrity

 • Ensures that a value that appears in one relation for a given set of

 attributes also appears for a certain set of attributes in another relation.

 Example: If “Perryridge” is a branch name appearing in one of the tuples

in the account relation, then there exists a tuple in the branch relation for

branch “Perryridge”.
• Formal Definition

 Let r1(R1) and r2(R2) be relations with primary keys K1 and K2

 respectively.

 The subset α of R2 is a foreign key referencing K1 in relation r1,

 if for every t2 in r2 there must be a tuple t1 in r1 such that

 t1[K1] = t2[α].
 Referential integrity constraint also called subset dependency since its can

 be written as

 Πα (r2) ⊆ ΠK1 (r1)

Referential Integrity in the E-R Model

• Consider relationship set R between entity sets E1 and E2. The

relational schema for R includes the primary keys K1 of E1 and K2 of

E2.

 - Then K1 and K2 form foreign keys on the relational

 schemas for E1 and E2 respectively.

• Weak entity sets are also a source of referential integrity constraints.

 - For the relation schema for a weak entity set must include the

primary key attributes of the entity set on which it depends

Checking Referential Integrity
 on Database Modification

• The following tests must be made in order to preserve the

 following referential integrity constraint:

 Πα (r2) ⊆ ΠK (r1)

• Insert. If a tuple t2 is inserted into r2, the system must ensure

 that there is a tuple t1 in r1 such that t1[K] = t2[α]. That is

 t2 [α] ∈ ΠK (r1)

• Delete. If a tuple, t1 is deleted from r1, the system must

 compute the set of tuples in r2 that reference t1:

 σα = t1[K] (r2)

 -If this set is not empty

 - either the delete command is rejected as an error, or

 - the tuples that reference t1 must themselves be deleted

 (cascading deletions are possible).

Database Modification (Cont.)

• Update. There are two cases:

 If a tuple t2 is updated in relation r2 and the update modifies values

 for foreign key α, then a test similar to the insert case is made:
 Let t2’ denote the new value of tuple t2. The system must ensure

 that t2’[α] ∈ ΠK(r1)

 If a tuple t1 is updated in r1, and the update modifies values for the

 primary key (K), then a test similar to the delete case is made:

 1. The system must compute σα = t1[K] (r2)

 using the old value of t1 (the value before the update is applied).

 2. If this set is not empty

 1. the update may be rejected as an error, or

 2. the update may be cascaded to the tuples in the set, or

 3. the tuples in the set may be deleted.

Referential Integrity in SQL

 Primary and candidate keys and foreign keys can be specified as part of

 the SQL create table statement:

 The primary key clause lists attributes that comprise the primary key.

 The unique key clause lists attributes that comprise a candidate key.

 The foreign key clause lists the attributes that comprise the foreign key

and the name of the relation referenced by the foreign key.

 By default, a foreign key references the primary key attributes of the

 referenced table foreign key (account-number) references account

 Short form for specifying a single column as foreign key

 account-number char (10) references account

 Reference columns in the referenced table can be explicitly specified

 but must be declared as primary/candidate keys

 foreign key (account-number) references account(account-number)

Referential Integrity in SQL – Example

 create table customer

 (customer-name char(20),

 customer-street char(30),

 customer-city char(30),

 primary key (customer-name))

 create table branch

 (branch-name char(15),

 branch-city char(30),

 assets integer,

 primary key (branch-name))

Referential Integrity in SQL- Example (Cont.)

create table account

 (account-number char(10), branch-name char(15),

 balance integer, primary key (account-number),

 foreign key (branch-name) references branch)

create table depositor

 (customer-name char(20), account-number char(10),

 primary key (customer-name, account-number),

 foreign key (account-number) references account,

 foreign key (customer-name) references customer)

Cascading Actions in SQL

 create table account

 . . .

 foreign key(branch-name) references branch

 on delete cascade

 on update cascade

 . . .)

 Due to the on delete cascade clauses, if a delete of a tuple in

 branch results in referential-integrity constraint violation, the

 delete “cascades” to the account relation, deleting the tuple that

 refers to the branch that was deleted

 Cascading updates are similar.

Cascading Actions in SQL (Cont.)
• If there is a chain of foreign-key dependencies across multiple

 relations, with on delete cascade specified for each dependency,

 a deletion or update at one end of the chain can propagate across

 the entire chain.

• If a cascading update to delete causes a constraint violation that

 cannot be handled by a further cascading operation, the system

 aborts the transaction.

 - As a result, all the changes caused by the transaction and its

 cascading actions are undone.

• Referential integrity is only checked at the end of a transaction

 Intermediate steps are allowed to violate referential integrity

provided later steps remove the violation . Otherwise it would be

impossible to create some database states, e.g. insert two tuples

whose foreign keys point to each other

 # E.g. spouse attribute of relation

 marriedperson(name, address, spouse)

(Cont.)

Referential Integrity in SQL (Cont.)

• Alternative to cascading:

 on delete set null

 on delete set default

• Null values in foreign key attributes complicate SQL referential

integrity semantics, and are best prevented using not null

 -if any attribute of a foreign key is null, the tuple is defined to satisfy

the foreign key constraint!

Assertions

• An assertion is a predicate expressing a condition that we wish

 the database always to satisfy.

• An assertion in SQL takes the form

 create assertion <assertion-name> check <predicate>

• When an assertion is made, the system tests it for validity, and

 tests it again on every update that may violate the assertion

 - This testing may introduce a significant amount of overhead;

 hence assertions should be used with great care.

• Asserting

 for all X, P(X)

 is achieved in a round-about fashion using

 not exists X such that not P(X)

Assertion Example

 • The sum of all loan amounts for each branch must be less than

 the sum of all account balances at the branch.

 create assertion sum-constraint check

 (not exists (select * from branch

 where (select sum(amount) from loan

 where loan.branch-name

 branch.branch-name)>= (select sum(amount) from account where

loan.branch-name =

 branch.branch-name)));

Assertion Example

• Every loan has at least one borrower who maintains an account with a

minimum balance or $1000.00

 create assertion balance-constraint check

 (not exists (select * from loan where not exists

 (select * from borrower, depositor, account

 where loan.loan-number = borrower.loan-number

 and borrower.customer-name =

 depositor.customer- name and depositor.account-

 number = account.account-number and

 account.balance >= 1000)));

Triggers
 • A trigger is a statement that is executed automatically by the

 system as a side effect of a modification to the database.

• To design a trigger mechanism, we must:

 Specify the conditions under which the trigger is to be

 executed.

 Specify the actions to be taken when the trigger executes.

• Triggers introduced to SQL standard in SQL:1999, but supported even earlier

using non-standard syntax by most databases.

Trigger Example

• Suppose that instead of allowing negative account balances, the

 bank deals with overdrafts by

 setting the account balance to zero

 creating a loan in the amount of the overdraft

 giving this loan a loan number identical to the

 account number of the overdrawn account

• The condition for executing the trigger is an update to the account

relation that results in a negative balance value.

Trigger Example in SQL:1999
create trigger overdraft-trigger after update on account

 referencing new row as nrow

 for each row

 when nrow.balance < 0

 begin atomic

 insert into borrower

 (select customer-name, account-number

 from depositor

 where nrow.account-number =depositor.account-number);

 insert into loan values(n.row.account-number,

 nrow.branch-name, – nrow.balance);

 update account set balance = 0

 where account.account-number = nrow.account-number

end

Triggering Events and Actions in SQL

• Triggering event can be insert, delete or update

• Triggers on update can be restricted to specific attributes

 E.g. create trigger overdraft-trigger after update of balance on

 account

• Values of attributes before and after an update can be referenced

 referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

• Triggers can be activated before an event, which can serve as extra

 constraints. E.g. convert blanks to null.

 create trigger setnull-trigger before update on r

 referencing new row as nrow

 for each row when nrow.phone-number = ‘ ‘
 set nrow.phone-number = null

External World Actions
• ! We sometimes require external world actions to be triggered on a

• database update

• " E.g. re-ordering an item whose quantity in a warehouse has become

• small, or turning on an alarm light,

• ! Triggers cannot be used to directly implement external-world

• actions, BUT

• " Triggers can be used to record actions-to-be-taken in a separate table

• " Have an external process that repeatedly scans the table, carries out

• external-world actions and deletes action from table

• ! E.g. Suppose a warehouse has the following tables

• " inventory(item, level): How much of each item is in the warehouse

• " minlevel(item, level) : What is the minimum desired level of each item

• " reorder(item, amount): What quantity should we re-order at a time

• " orders(item, amount) : Orders to be placed (read by external process)

Statement Level Triggers

• Instead of executing a separate action for each affected row, a

single action can be executed for all rows affected by a transaction

 - Use for each statement instead of for each row

 - Use referencing old table or referencing new table to refer to

temporary tables (called transition tables) containing the affected

rows

• Can be more efficient when dealing with SQL statements that

update a large number of rows

External World Actions

• We sometimes require external world actions to be triggered on a

 database update

 - E.g. re-ordering an item whose quantity in a warehouse has

 become small, or turning on an alarm light,

• Triggers cannot be used to directly implement external-world

 actions, BUT

 - Triggers can be used to record actions-to-be-taken in a separate table

 - Have an external process that repeatedly scans the table, carries out

 external-world actions and deletes action from table

• E.g. Suppose a warehouse has the following tables

 - inventory(item, level): How much of each item is in the warehouse

 - minlevel(item, level) : What is the minimum desired level of each item

 - reorder(item, amount): What quantity should we re-order at a time

 - orders(item, amount) : Orders to be placed (read by external process)

External World Actions (Cont.)
• create trigger reorder-trigger after update of amount on inventory

 referencing old row as orow, new row as nrow

 for each row

 when nrow.level < = (select level

 from minlevel

 where minlevel.item = orow.item)

 and orow.level > (select level from minlevel

 where minlevel.item = orow.item)

 begin

 insert into orders

 (select item, amount

 from reorder

 where reorder.item = orow.item)

 end

Triggers in MS-SQLServer Syntax

• create trigger overdraft-trigger on account

 for update as if inserted.balance < 0

 begin

 insert into borrower (select customer-name,account-number

 from depositor, inserted

 where inserted.account-number = depositor.account-number)

 insert into loan values

 (inserted.account-number, inserted.branch-name,

 – inserted.balance)

 update account set balance = 0

 from account, inserted

 where account.account-number = inserted.account-number

end

When Not To Use Triggers

• Triggers were used earlier for tasks such as

 maintaining summary data (e.g. total salary of each department)

• Replicating databases by recording changes to special relations

 (called change or delta relations) and having a separate process

 that applies the changes over to a replica

• There are better ways of doing these now:

 - Databases today provide built in materialized view facilities to

 maintain summary data

 - Databases provide built-in support for replication

• Encapsulation facilities can be used instead of triggers in many cases

 - Define methods to update fields

 - Carry out actions as part of the update methods instead of

 through a trigger

Security

• Security - protection from malicious attempts to steal or modify
data.

 Database system level

 - Authentication and authorization mechanisms to allow

 specific users access only to required data

 - We concentrate on authorization in the rest of this chapter

 Operating system level

 - Operating system super-users can do anything they want

 to the database! Good operating system level security is

 required.

 Network level: must use encryption to prevent

 - Eavesdropping (unauthorized reading of messages)

 - Masquerading (pretending to be an authorized user or sending

 messages supposedly from authorized users)

Security (Cont.)

 Physical level

 - Physical access to computers allows destruction of

 data by intruders; traditional lock-and-key security

 is needed

 - Computers must also be protected from floods, fire,

 etc.

 Human level

 - Users must be screened to ensure that an authorized

 users do not give access to intruders

 - Users should be trained on password selection and

 secrecy

Authorization

• Forms of authorization on parts of the database:

 Read authorization - allows reading, but not modification of data.

 Insert authorization - allows insertion of new data, but not

modification of existing data.

 Update authorization - allows modification, but not deletion of data.

 Delete authorization - allows deletion of data

Forms of authorization to modify the database schema:

 Index authorization - allows creation and deletion of indices.

 Resources authorization - allows creation of new relations.

 Alteration authorization - allows addition or deletion of attributes in a

relation.

 Drop authorization - allows deletion of relations.

Authorization and Views

 Users can be given authorization on views, without being given any

authorization on the relations used in the view definition

 Ability of views to hide data serves both to simplify usage of the

system and to enhance security by allowing users access only to

data they need for their job

 A combination or relational-level security and view-level security

can be used to limit a user’s access to precisely the data that user
needs.

View Example

  Suppose a bank clerk needs to know the names of the customers of

each branch, but is not authorized to see specific loan information.

 - Approach: Deny direct access to the loan relation, but grant access

 to the view cust-loan, which consists only of the names of

 customers and the branches at which they have a loan.

 - The cust-loan view is defined in SQL as follows:

 create view cust-loan as

 select branchname, customer-name

 from borrower, loan

 where borrower.loan-number = loan.loan-number



View Example (Cont.)

 The clerk is authorized to see the result of the query:

 select *from cust-loan

 When the query processor translates the result into a query on the

 actual relations in the database, we obtain a query on borrower

 and loan.

 Authorization must be checked on the clerk’s query before query
processing replaces a view by the definition of the view.

Authorization on Views

 Creation of view does not require resources authorization since

 no real relation is being created

 The creator of a view gets only those privileges that provide no

 additional authorization beyond that he already had.

 E.g. if creator of view cust-loan had only read authorization on

 borrower and loan, he gets only read authorization on cust-loan

Granting of Privileges
 The passage of authorization from one user to another may be

represented by an authorization graph.

 The nodes of this graph are the users.

 The root of the graph is the database administrator.

 Consider graph for update authorization on loan.

 An edge Ui →Uj indicates that user Ui has granted update

authorization on loan to Uj.

Authorization Grant Graph

 Requirement: All edges in an authorization graph must be part of

 some path originating with the database administrator

 If DBA revokes grant from U1:

 - Grant must be revoked from U4 since U1 no longer has authorization

 - Grant must not be revoked from U5 since U5 has another

 authorization path from DBA through U2

 Must prevent cycles of grants with no path from the root:

 - DBA grants authorization to U7

 - U7 grants authorization to U8

 - U8 grants authorization to U7

 - DBA revokes authorization from U7

 Must revoke grant U7 to U8 and from U8 to U7 since there is no

 path from DBA to U7 or to U8 anymore.

Security Specification in SQL

 The grant statement is used to confer authorization

 grant <privilege list>

 on <relation name or view name> to <user list>

 <user list> is:

 - a user-id

 - public, which allows all valid users the privilege granted

 - A role (more on this later)

 Granting a privilege on a view does not imply granting any

 privileges on the underlying relations.

 The grantor of the privilege must already hold the privilege on the

specified item (or be the database administrator).

Privileges in SQL

 select: allows read access to relation,or the ability to query using

 the view

 - Example: grant users U1, U2, and U3 select authorization on the

 branch relation:

 grant select on branch to U1, U2, U3

 insert: the ability to insert tuples

 update: the ability to update using the SQL update statement

 delete: the ability to delete tuples.

 references: ability to declare foreign keys when creating relations.

 usage: In SQL-92; authorizes a user to use a specified domain

 all privileges: used as a short form for all the allowable privileges

Privilege To Grant Privileges

 with grant option: allows a user who is granted a privilege to

 pass the privilege on to other users.

 - Example:

 grant select on branch to U1 with grant option

 gives U1 the select privileges on branch and allows U1 to grant this

 privilege to others

Roles
 Roles permit common privileges for a class of users can be

 specified just once by creating a corresponding “role”

 Privileges can be granted to or revoked from roles, just like user

 Roles can be assigned to users, and even to other roles

 SQL:1999 supports roles

 create role teller

 create role manager

 grant select on branch to teller

 grant update (balance) on account to teller

 grant all privileges on account to manager

 grant teller to manager

 grant teller to alice, bob

 grant manager to avi

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

 revoke<privilege list>

 on <relation name or view name> from <user list>

[restrict|cascade]

 Example:

 revoke select on branch from U1, U2, U3 cascade

 Revocation of a privilege from a user may cause other users also to

lose that privilege; referred to as cascading of the revoke.

 We can prevent cascading by specifying restrict:

 revoke select on branch from U1, U2, U3 restrict

 With restrict, the revoke command fails if cascading revokesare

required.

Revoking Authorization in SQL (Cont.)

 <privilege-list> may be all to revoke all privileges the revokee may

hold.

 If <revokee-list> includes public all users lose the privilege except

those granted it explicitly.

 If the same privilege was granted twice to the same user by different

grantees, the user may retain the privilege after the revocation.

 All privileges that depend on the privilege being revoked are also

revoked.

Limitations of SQL Authorization
 SQL does not support authorization at a tuple level

 - E.g. we cannot restrict students to see only (the tuples storing)

 their own grades

 With the growth in Web access to databases, database accesses

come primarily from application servers.

 - End users don't have database user ids, they are all mapped

 to the same database user id

 All end-users of an application (such as a web application) may be

 mapped to a single database user

 The task of authorization in above cases falls on the application

program, with no support from SQL

 - Benefit: fine grained authorizations, such as to individual tuples, can

be implemented by the application.

 - Drawback: Authorization must be done in application code, and may

be dispersed all over an application

 Checking for absence of authorization loopholes becomes very difficult

since it requires reading large amounts of application code

Joins and Views

Joined Relations

• Join operations take two relations and return as a result another
relation.

• These additional operations are typically used as subquery
expressions in the from clause

• Join condition – defines which tuples in the two relations match,
and what attributes are present in the result of the join.

• Join type – defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are
treated.

Join Types

inner join

left outer join

right outer join

full outer join

Join Conditions

natural

on <predicate>
using (A1, A2, ..., An)

Join - Examples

• Relation loan

customer-name loan-number

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

branch-name

Downtown

Redwood

Perryridge

loan-number

L-170

L-230

L-260

 Relation borrower

 Note: borrower information missing for L-260 and loan information missing for
L-155

Joined Relations – Examples

• loan inner join borrower on

loan.loan-number = borrower.loan-number

• loan left outer join borrower on

loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number

Jones

Smith

L-170

L-230

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number

Jones

Smith

null

L-170

L-230

null

loan-number

L-170

L-230

L-260

branch-name amount

Downtown

Redwood

3000

4000

customer-name

Jones

Smith

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

null

3000

4000

null

customer-name

Jones

Smith

Hayes

loan-number

L-170

L-230

L-155

loan natural inner join borrower

loan natural right outer join borrower

Joined Relations – Examples

Joined Relations – Examples

loan full outer join borrower using (loan-number)

branch-name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

loan-number

L-170

L-230

L-260

L-155

Find all customers who have either an account or a loan (but not both) at
the bank.

 select customer-name

 from (depositor natural full outer join borrower)
 where account-number is null or loan-number is null

Views

• Provide a mechanism to hide certain data from the view of certain

users. To create a view we use the command:

• create view v as <query expression>

where:

<query expression> is any legal expression

The view name is represented by v

Update of a View

• Create a view of all loan data in loan relation, hiding the amount

attribute

 create view branch-loan as

 select branch-name, loan-number from loan

• Add a new tuple to branch-loan

 insert into branch-loan

 values (‘Perryridge’, ‘L-307’)
 This insertion must be represented by the insertion of the tuple

 (‘L-307’, ‘Perryridge’, null)

 into the loan relation

• Updates on more complex views are difficult or impossible to

translate, and hence are disallowed.

• Most SQL implementations allow updates only on simple views

(without aggregates) defined on a single relation

Integrity Constraints - Relational

Database

Integrity Constraints

• Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the

database do not result in a loss of data consistency.

• Various Integrity Constraints In RDB :

– Domain Integrity Constraints

– Referential Integrity Constraints

– Assertions

– Triggers

– Functional Dependencies

Domain Constraints

• Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the database do

not result in a loss of data consistency.

• Domain constraints are the most elementary form of integrity

constraint.

• They test values inserted in the database, and test queries to

ensure that the comparisons make sense.

• New domains can be created from existing data types

– E.g. create domain Dollars numeric(12, 2)

 create domain Pounds numeric(12,2)

• We cannot assign or compare a value of type Dollars to a value of

type Pounds.

– However, we can convert type as below

 (cast r.A as Pounds)

(Should also multiply by the dollar-to-pound conversion-rate

Referential Integrity
• Ensures that a value that appears in one relation for a given set of

attributes also appears for a certain set of attributes in another
relation.

– Example: If “Perryridge” is a branch name appearing in one of
the tuples in the account relation, then there exists a tuple in
the branch relation for branch “Perryridge”.

• Formal Definition

– Let r1(R1) and r2(R2) be relations with primary keys K1 and K2
respectively.

– The subset  of R2 is a foreign key referencing K1 in relation r1, if
for every t2 in r2 there must be a tuple t1 in r1 such that t1[K1] =
t2[].

– Referential integrity constraint also called subset dependency
since its can be written as
  (r2)  K1 (r1)

Assertions

• An assertion is a predicate expressing a condition that we wish the

database always to satisfy.

• An assertion in SQL takes the form

 create assertion <assertion-name> check <predicate>

• When an assertion is made, the system tests it for validity, and tests

it again on every update that may violate the assertion

– This testing may introduce a significant amount of overhead;

hence assertions should be used with great care.

• Asserting

 for all X, P(X)

is achieved in a round-about fashion using

 not exists X such that not P(X)

Assertion Example

 The sum of all loan amounts for each branch must be less than the

sum of all account balances at the branch.

 create assertion sum-constraint check

 (not exists (select * from branch

 where (select sum(amount) from loan

 where loan.branch-name =

 branch.branch-name)

 >= (select sum(amount) from account

 where loan.branch-name =

 branch.branch-name)))

Triggers

• A trigger is a statement that is executed automatically by the

system as a side effect of a modification to the database.

• To design a trigger mechanism, we must:

– Specify the conditions under which the trigger is to be executed.

– Specify the actions to be taken when the trigger executes.

• Triggers introduced to SQL standard in SQL:1999, but supported

even earlier using non-standard syntax by most databases.

Trigger Example

• Suppose that instead of allowing negative account balances, the

bank deals with overdrafts by

– setting the account balance to zero

– creating a loan in the amount of the overdraft

– giving this loan a loan number identical to the account number

of the overdrawn account

• The condition for executing the trigger is an update to the account

relation that results in a negative balance value.

Functional Dependencies

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.

 A functional dependency is a generalization of the notion of a

 key.

Functional Dependencies (Contd.)

• Let R be a relation schema

  R and   R

• The functional dependency

  
 holds on R if and only if for any legal relations r(R), whenever any two

tuples t1 and t2 of r agree on the attributes , they also agree on the

attributes . That is,

t1[] = t2 []  t1[] = t2 []

• Example: Consider r(A,B) with the following instance of r.

1 4

1 5

3 7

• On this instance, A  B does NOT hold, but B  A does hold.

Functional Dependencies (Cont.)

• K is a superkey for relation schema R if and only if K  R

• K is a candidate key for R if and only if

 K  R, and

 for no   K,   R

• Functional dependencies allow us to express constraints that
cannot be expressed using superkeys.

 Consider the schema:

Loan-info-schema = (customer-name, loan-number, branch-name,
amount)

 We expect this set of functional dependencies to hold:

• loan-number  amount

• loan-number  branch-name

 but would not expect the following to hold:

loan-number  customer-name

Pitfalls & Design of Relational

Database

Introduction to schema refinement

• Problems caused by redundancy

 Redundant storage

 Update Anomalies

 Insert Anomalies

 Delete Anomalies

Example:

Project (Project-id, Name, Status, Budget, Dept-Id, Dept-name,

Location)

• How To address Above Problems?

• NULL values can not address completelt

Pitfalls in Relational Database Design

• Relational database design requires that we find a “good” collection
of relation schemas. A bad design may lead to

 Repetition of Information.

 Inability to represent certain information.

• Design Goals:

 Avoid redundant data

 Ensure that relationships among attributes are represented

 Facilitate the checking of updates for violation of database

integrity constraints.

Example
Consider the relation schema: Lending-schema = (branch-name,

branch-city, assets , customer-name)

• Redundancy:

 Data for branch-name, branch-city, assets are repeated for each loan that a

branch makes

 Wastes space

 Complicates updating, introducing possibility of inconsistency of assets value

• Null values

 Cannot store information about a branch if no loans exist

 Can use null values, but they are difficult to handle.

Design Guidelines - RDB

• What is relational database design?

– The grouping of attributes to form "good" relation schemas

• Two levels of relation schemas

– The logical "user view" level

– The storage "base relation" level

• Design is concerned mainly with base relations

• What are the criteria for "good" base relations?

Semantics of the Attributes

• GUIDELINE 1: Informally, each tuple in a relation should represent

one entity or relationship instance. (Applies to individual relations

and their attributes).

– Attributes of different entities (EMPLOYEEs, DEPARTMENTs,

PROJECTs) should not be mixed in the same relation

– Only foreign keys should be used to refer to other entities

– Entity and relationship attributes should be kept apart as much

as possible.

• Bottom Line: Design a schema that can be explained easily relation

by relation. The semantics of attributes should be easy to interpret.

Redundancy - Update Anomalies

• Information is stored redundantly

– Wastes storage

– Causes problems with update anomalies

• Insertion anomalies

• Deletion anomalies

• Modification anomalies

UPDATE ANOMALY- EXAMPLE

• Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

• Update Anomaly:

– Changing the name of project number P1 from “Billing” to
“Customer-Accounting” may cause this update to be made for
all 100 employees working on project P1.

INSERT ANOMALY - EXAMPLE

• Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

• Insert Anomaly:

– Cannot insert a project unless an employee is assigned to it.

• Conversely

– Cannot insert an employee unless an he/she is assigned to a

project.

DELETE ANOMALY- EXAMPLE

• Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

• Delete Anomaly:

– When a project is deleted, it will result in deleting all the

employees who work on that project.

– Alternately, if an employee is the sole employee on a project,

deleting that employee would result in deleting the

corresponding project.

Redundancy - Update Anomalies

• GUIDELINE 2:

– Design a schema that does not suffer from the insertion,

deletion and update anomalies.

– If there are any anomalies present, then note them so that

applications can be made to take them into account.

Null Values in Tuples

• GUIDELINE 3:

– Relations should be designed such that their tuples will have as

few NULL values as possible

– Attributes that are NULL frequently could be placed in separate

relations (with the primary key)

• Reasons for nulls:

– Attribute not applicable or invalid

– Attribute value unknown (may exist)

– Value known to exist, but unavailable

 Spurious Tuples – avoid at any cost

• Bad designs for a relational database may result in erroneous
results for certain JOIN operations

• The "lossless join" property is used to guarantee meaningful results
for join operations

• GUIDELINE 4:
– The relations should be designed to satisfy the lossless join

condition.

– No spurious tuples should be generated by doing a natural-join
of any relations.

Spurious Tuples

• There are two important properties of decompositions:

a) Non-additive or losslessness of the corresponding join

b) Preservation of the functional dependencies.

• Note that:

– Property (a) is extremely important and cannot be sacrificed.

– Property (b) is less stringent and may be sacrificed. (See

Chapter 15).

Overall Database Design Process

• We have assumed schema R is given

 R could have been generated when converting E-R
diagram to a set of tables.

 R could have been a single relation containing all
attributes that are of interest (called universal relation).

Normalization breaks R into smaller relations.

 R could have been the result of some ad hoc design of
relations, which we then test/convert to normal form.

Functional Dependencies -

Reasoning

Functional Dependencies

– Constraints on the set of legal relations.

– Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.

– A functional dependency is a generalization of the notion of a

key.

Functional Dependencies (Contd.)
• Let R be a relation schema

  R and   R

• The functional dependency

  
 holds on R if and only if for any legal relations r(R), whenever any two

tuples t1 and t2 of r agree on the attributes , they also agree on the

attributes . That is,

t1[] = t2 []  t1[] = t2 []

• Example: Consider r(A,B) with the following instance of r.

1 4

1 5

3 7

• On this instance, A  B does NOT hold, but B  A does hold.

Functional Dependencies (Cont.)

• K is a superkey for relation schema R if and only if K  R

• K is a candidate key for R if and only if

 K  R, and

 for no   K,   R

• Functional dependencies allow us to express constraints that
cannot be expressed using superkeys.

 Consider the schema:

Loan-info-schema = (customer-name, loan-number, branch-name,
amount)

 We expect this set of functional dependencies to hold:

• loan-number  amount

• loan-number  branch-name

 but would not expect the following to hold:

loan-number  customer-name

Use of Functional Dependencies

• We use functional dependencies to:

 test relations to see if they are legal under a given set of
functional dependencies

• If a relation r is legal under a set F of functional
dependencies, we say that r satisfies F.

 specify constraints on the set of legal relations

• We say that F holds on R if all legal relations on R satisfy the
set of functional dependencies F.

• Note: A specific instance of a relation schema may satisfy a
functional dependency even if the functional dependency does not
hold on all legal instances.

 For example, a specific instance of Loan-schema may, by chance,
satisfy

loan-number  customer-name.

Closure of a Set of Functional Dependencies

 • Given a set F set of functional dependencies, there are certain

other functional dependencies that are logically implied by F.

 E.g. If A  B and B  C, then we can infer that A  C

• The set of all functional dependencies logically implied by F is the

closure of F.

• We denote the closure of F by F+.

• We can find all of F+ by applying Armstrong’s Axioms:

 if   , then   

 if   , then     

 if   , and   , then   

• These rules are

(reflexivity)

(augmentation)

(transitivity)

sound (generate only functional dependencies that actually hold) and

 complete (generate all functional dependencies that hold).

Example
 R = (A, B, C, G, H, I)

 F = {

 A B

 A C

 CG H

 CG I

 B H }

 some members of F+

 A H

 by transitivity from A B and B H

 AG I

 by augmenting A C with G, to get AG CG

and then transitivity with CG I

 CG HI

 from CG H and CG I : “union rule” can be inferred from

– definition of functional dependencies, or

– Augmentation of CG I to infer CG CGI, augmentation of

 CG H to infer CGI HI, and then transitivity

Decomposition – Desirable

Properties

Decomposition - Problems

• To Avoid Redundancy the given relations must be Decomposed into

Sub Relations.

• Problems related to Decomposition

 Lossy /Superfluous information

 Dependency Preservation

Solution: Lossless Join Decomposition

Decomposition

• Decompose the relation schema Lending-schema into:

 Branch-schema = (branch-name, branch-city , assets)

 Loan-info-schema = (customer-name, loan-number, branch-name,

amount)

• All attributes of an original schema (R) must appear in the

decomposition (R1, R2):

R = R1  R2

• Lossless-join decomposition.

 For all possible relations r on schema R

r = R1 (r) R2 (r)

 Example of Non Lossless-Join Decomposition

 • Decomposition of R = (A, B) R1 = (A) R2 = (B)

A B

 1

 2

 1

A




B

1

2

A(r)
B(r)

r

A (r) B (r)
A B

 1

 2

 1

 2

Dependency Preservation

• After Decomposing Relation into Sub relations each FD that hold on

original relation must hold on any of sub relation

Testing for Dependency Preservation

• To check if a dependency  is preserved in a decomposition of

R into R1, R2, …, Rn we apply the following simplified test (with

attribute closure done w.r.t. F)

 result = 
while (changes to result) do

 for each Ri in the decomposition

 t = (result  Ri)+  Ri

 result = result  t

 If result contains all attributes in , then the functional

 dependency    is preserved.

• We apply the test on all dependencies in F to check if a

decomposition is dependency preserving

• This procedure takes polynomial time, instead of the exponential

time required to compute F+ and (F1  F2  …  Fn)+

Goals of Normalization

 Decide whether a particular relation R is in “good” form.

 In the case that a relation R is not in “good” form, decompose it

into a set of relations {R1, R2, ..., Rn} such that

• each relation is in good form

• the decomposition is a lossless-join decomposition

 Our theory is based on:

• functional dependencies

• multivalued dependencies

Normalization Using Functional Dependencies

• When we decompose a relation schema R with a set of functional

dependencies F into R1, R2,.., Rn we want

 Lossless-join decomposition: Otherwise decomposition would
result in information loss.

 No redundancy: The relations Ri preferably should be in either
Boyce- Codd Normal Form or Third Normal Form.

 Dependency preservation: Let Fi be the set of dependencies
F+ that include only attributes in Ri.

Preferably the decomposition should be dependency preserving,

that is
(F1  F2  …  Fn)

+ = F+

Otherwise, checking updates for violation of functional dependencies

may require computing joins, which is expensive.

Example

• R = (A, B, C)

F = {A  B, B  C)

 Can be decomposed in two different ways

• R1 = (A, B), R2 = (B, C)

 Lossless-join decomposition:

R1  R2 = {B} and B  BC

 Dependency preserving

• R1 = (A, B), R2 = (A, C)

 Lossless-join decomposition:

R1  R2 = {A} and A  AB

 Not dependency preserving

 (cannot check B  C without computing R1 R2)

Testing for Dependency Preservation

• To check if a dependency  is preserved in a decomposition of

R into R1, R2, …, Rn we apply the following simplified test (with

attribute closure done w.r.t. F)

 result = 
while (changes to result) do

 for each Ri in the decomposition

 t = (result  Ri)+  Ri

 result = result  t

 If result contains all attributes in , then the functional

 dependency    is preserved.

• We apply the test on all dependencies in F to check if a

decomposition is dependency preserving

• This procedure takes polynomial time, instead of the exponential

time required to compute F+ and (F1  F2  …  Fn)+

Normalization of Relations

• Normalization:
– The process of decomposing unsatisfactory "bad" relations by

breaking up their attributes into smaller relations

• Normal form:
– Condition using keys and FDs of a relation to certify whether a

relation schema is in a particular normal form

Normalization of Relations (2)

• 2NF, 3NF, BCNF
– based on keys and FDs of a relation schema

• 4NF

– based on keys, multi-valued dependencies : MVDs;

• 5NF

– based on keys, join dependencies : JDs

• Additional properties may be needed to ensure a good relational

design (lossless join, dependency preservation; see Chapter 15)

Practical Use of Normal Forms

• Normalization is carried out in practice so that the resulting
designs are of high quality and meet the desirable properties

• The practical utility of these normal forms becomes questionable
when the constraints on which they are based are hard to
understand or to detect

• The database designers need not normalize to the highest possible
normal form

– (usually up to 3NF and BCNF. 4NF rarely used in practice.)

• Denormalization:

– The process of storing the join of higher normal form relations

as a base relation—which is in a lower normal form

Keys and Attributes

• A superkey of a relation schema R = {A1, A2,, An} is a set of

attributes S subset-of R with the property that no two tuples t1 and

t2 in any legal relation state r of R will have t1[S] = t2[S]

• A key K is a superkey with the additional property that

removal of any attribute from K will cause K not to be a superkey

any more.

Keys and Attributes

• If a relation schema has more than one key, each is called a

candidate key.

– One of the candidate keys is arbitrarily designated to be the

primary key, and the others are called secondary keys.

• A Prime attribute must be a member of some candidate key

• A Nonprime attribute is not a prime attribute—that is, it is not

a member of any candidate key.

First Normal Form

• Disallows
– composite attributes

– multivalued attributes

– nested relations; attributes whose values for an individual tuple

are non-atomic

• Considered to be part of the definition of a relation

• Most RDBMSs allow only those relations to be defined that are in

First Normal Form

Normalization into 1NF

Second Normal Form (1)

• Uses the concepts of FDs, primary key

• Definitions

– Prime attribute: An attribute that is member of the primary
key K

– Full functional dependency: a FD Y -> Z where removal of

any attribute from Y means the FD does not hold any more

• Examples:

– {SSN, PNUMBER} -> HOURS is a full FD since neither SSN ->
HOURS nor PNUMBER -> HOURS hold

– {SSN, PNUMBER} -> ENAME is not a full FD (it is called a partial
dependency) since SSN -> ENAME also holds

Second Normal Form (2)

• A relation schema R is in second normal form (2NF) if every non-

prime attribute A in R is fully functionally dependent on the primary

key

• R can be decomposed into 2NF relations via the process of 2NF

normalization or “second normalization”

Normalizing into 2NF and 3NF

Third Normal Form & BCNF

Third Normal Form (1)

• Definition:

– Transitive functional dependency: a FD X -> Z that can be
derived from two FDs X -> Y and Y -> Z

• Examples:

– SSN -> DMGRSSN is a transitive FD
• Since SSN -> DNUMBER and DNUMBER -> DMGRSSN hold

– SSN -> ENAME is non-transitive

• Since there is no set of attributes X where SSN -> X and X ->
ENAME

Third Normal Form (2)

• A relation schema R is in third normal form (3NF) if it is in 2NF and
no non-prime attribute A in R is transitively dependent on the
primary key

• R can be decomposed into 3NF relations via the process of 3NF
normalization

• NOTE:
– In X -> Y and Y -> Z, with X as the primary key, we consider this a

problem only if Y is not a candidate key.

– When Y is a candidate key, there is no problem with the
transitive dependency .

– E.g., Consider EMP (SSN, Emp#, Salary).

• Here, SSN -> Emp# -> Salary and Emp# is a candidate key

Normal Forms Defined Informally

• 1st normal form

– All attributes depend on the key

• 2nd normal form

– All attributes depend on the whole key

• 3rd normal form

– All attributes depend on nothing but the key

General Definition of 2NF

• A relation schema R is in second normal form (2NF) if every non-

prime attribute A in R is fully functionally dependent on every key

of R

• FD

 County_name → Tax_rate violates 2NF.

So second normalization converts LOTS into

LOTS1 (Property_id#, County_name, Lot#, Area, Price)

LOTS2 (County_name, Tax_rate)

 Third Normal Form

• DEFINITION of 3NF:
A relation schema R is in third normal form (3NF) if every non-

prime attribute in R meets both of these conditions:

– It is fully functionally dependent on every key of R

– It is non-transitively dependent on every key of R

Note that stated this way, a relation in 3NF also meets the

requirements for 2NF.

BCNF (Boyce-Codd Normal Form)

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if

whenever an FD X → A holds in R, then X is a superkey of R

• Each normal form is strictly stronger than the previous one

– Every 2NF relation is in 1NF

– Every 3NF relation is in 2NF

– Every BCNF relation is in 3NF

• There exist relations that are in 3NF but not in BCNF

• Hence BCNF is considered a stronger form of 3NF

• The goal is to have each relation in BCNF (or 3NF)

BCNF - Example

 BCNF by Decomposition (1)

• Two FDs exist in the relation TEACH:

– fd1: { student, course} -> instructor

– fd2: instructor -> course

• {student, course} is a candidate key for this relation and that the
dependencies shown follow the pattern in Figure 14.13 (b).

– So this relation is in 3NF but not in BCNF

• A relation NOT in BCNF should be decomposed so as to meet this
property, while possibly forgoing the preservation of all functional
dependencies in the decomposed relations.

BCNF by Decomposition (2)

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}
– D2: {course, instructor } and {course, student}
– D3: {instructor, course } and {instructor, student} 

• All three decompositions will lose fd1.
– We have to settle for sacrificing the functional dependency

preservation. But we cannot sacrifice the non-additivity
property after decomposition.

• Out of the above three, only the 3rd decomposition will not
generate spurious tuples after join.(and hence has the non-
additivity property).

• A test to determine whether a binary decomposition

(decomposition into two relations) is non-additive (lossless) is
discussed under Property NJB on the next slide. We then show how
the third decomposition above meets the property.

MULTIVALUED DEPENDENCIES

JOIN DEPENDENCIES

4NF & 5NF

Multivalued Dependencies

 There are database schemas in BCNF that do not seem to be

sufficiently normalized

 Consider a database

• classes(course, teacher, book)

• such that (c,t,b)  classes means that t is qualified to teach c,

• and b is a required textbook for c

 The database is supposed to list for each course the set of teachers

any one of which can be the course’s instructor, and the set of

books, all of which are required for the course (no matter who

teaches it).

Multivalued Dependencies (Contd.)

 There are no non-trivial functional dependencies and

therefore the relation is in BCNF

 Insertion anomalies – i.e., if Sara is a new teacher that can teach

classes
 Insertion anomalies – i.e., if Sara is a new teacher that can teach

the following two tuples need to be inserted

 (Physics101, Sara, Mechanics)

 (database, Sara, Optics)

Multivalued Dependencies (MVDs)

 Let R be a relation schema and let   R and   R.

The multivalued dependency

  

holds on R if in any legal relation r(R), for all pairs for tuples t1

and t2 in r such that t1[] = t2 [], there exist tuples t3 and t4 in r

such that:

t1[] = t2 [] = t3 [] t4 []

t3[] = t1 []

t3[R– ] = t2[R – ]

t4 [] = t2[]

t4[R– ] = t1[R– ]

EXAMPLE

 Let R be a relation schema with a set of attributes that are

partitioned into 3 nonempty subsets.

• Y, Z, W

 We say that Y  Z (Y multidetermines Z)

• if and only if for all possible relations r(R)

• < y1, z1, w1 >  r and < y2, z2, w2 >  r

• then

• < y1, z1, w2 >  r and < y2, z2, w1 >  r

 Note that since the behavior of Z and W are identical it follows
that Y  Z if Y  W

EXAMPLE Contd.

 In our example:

• course  teacher

• course  book

 The above formal definition is supposed to formalize the
notion that given a particular value of Y (course) it has
associated with it a set of values of Z (teacher) and a set of
values of W (book), and these two sets are in some sense
independent of each other.

 Note:

• If Y  Z then Y  Z

• Indeed we have (in above notation) Z1 = Z2

The claim follows.

Use of Multivalued Dependencies

 We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a

given set of functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall thus

concern ourselves only with relations that satisfy a given set of

functional and multivalued dependencies.

 If a relation r fails to satisfy a given multivalued dependency, we

can construct a relations r that does satisfy the

multivalued dependency by adding tuples to r

Theory of MVDs
 From the definition of multivalued dependency, we can derive

the following rule:

• If   , then   

• That is, every functional dependency is also a

multivalued dependency

 The closure D+ of D is the set of all functional and

multivalued dependencies logically implied by D.

• We can compute D+ from D, using the formal definitions
of functional dependencies and multivalued
dependencies.

• We can manage with such reasoning for very simple
multivalued dependencies, which seem to be most
common in practice

• For complex dependencies, it is better to reason about

sets of dependencies using a system of inference rules .

Fourth Normal Form

 A relation schema R is in 4NF with respect to a set D of

functional and multivalued dependencies if for all multivalued

dependencies in D+ of the form   , where   R and  

R, at least one of the following hold:

•    is trivial (i.e.,    or    = R)

•  is a superkey for schema R

 If a relation is in 4NF it is in BCNF

Join Dependencies and 5NF

Definition:

• A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified on

relation schema R, specifies a constraint on the states r of R.

– The constraint states that every legal state r of R should have

a non-additive join decomposition into R1, R2, ..., Rn; that is,

for every such r we have

– * (R1(r), R2(r), ..., Rn(r)) = r

 Note: an MVD is a special case of a JD where n = 2.

• A join dependency JD(R1, R2, ..., Rn), specified on relation schema

R, is a trivial JD if one of the relation schemas Ri in JD(R1, R2, ...,

Rn) is equal to R.

Join Dependencies & 5NF Contd..

Definition:

• A relation schema R is in fifth normal form (5NF) (or

Project-Join Normal Form (PJNF)) with respect to a set F of

functional, multivalued, and join dependencies if,

– for every nontrivial join dependency JD(R1, R2, ..., Rn) in

F+ (that is, implied by F),

• every Ri is a superkey of R.

• Discovering join dependencies in practical databases with

hundreds of relations is next to impossible. Therefore, 5NF

is rarely used in practice.

ER Model and Normalization

&

 Universal Relation Approach

Overall Database Design Process

 We have assumed schema R is given

• R could have been generated when converting E-R diagram to
a set of tables.

• R could have been a single relation containing all attributes

that are of interest (called universal relation).

• Normalization breaks R into smaller relations.

• R could have been the result of some ad hoc design of
relations, which we then test/convert to normal form.

ER Model and Normalization

 Dangling tuples – Tuples that “disappear” in

computing a join.

• Let r1 (R1), r2 (R2), …., rn (Rn) be a set of relations

• A tuple r of the relation ri is a dangling tuple if r is not in the

relation join of all sub relations r1,r2,…rn

• The relation r1 r2…. Is a universal relation that involves all

the attributes in the “universe” defined by R1  R2  …  Rn

• If dangling tuples are allowed in the database, instead of

decomposing a universal relation, we may prefer to

synthesize a collection of normal form schemas from a given

set of attributes.

Universal Relation Approach

 Dangling tuples may occur in practical database applications.

 They represent incomplete information

 E.g. may want to break up information about loans into:

• (branch-name, loan-umber)

(loan-number, amount)

• (loan-number, customer-name)

 Universal relation would require null values, and have dangling

tuples

Universal Relation Approach Contd.
 A particular decomposition defines a restricted

form of incomplete information that is acceptable
in our database.

• Above decomposition requires at least one of
customer-name, branch-name or amount in order
to enter a loan number without using null values

• Rules out storing of customer-name, amount without
an appropriate loan-number (since it is a key, it can't
be null either!)

 Universal relation requires unique attribute names
unique role assumption

• e.g. customer-name, branch-name

 Reuse of attribute names is natural in SQL since relation
names can be prefixed to disambiguate names

UNIT - IV

Transaction - Concept, properties

and state

Transaction:
A transaction is a unit of program execution that accesses and possibly

updates various data items.

• E.g., transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Two main issues to deal with:

– Failures of various kinds, such as hardware failures and system

crashes

– Concurrent execution of multiple transactions

Required Properties of a Transaction

• Consider a transaction to transfer $50 from account A to

account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Atomicity requirement
– If the transaction fails after step 3 and before step 6, money will

be “lost” leading to an inconsistent database state

• Failure could be due to software or hardware

– The system should ensure that updates of a partially executed
transaction are not reflected in the database

Durability requirement :

 once the user has been notified that the transaction has completed

(i.e., the transfer of the $50 has taken place), the updates to the
database by the transaction must persist even if there are software
or hardware failures.

Consistency requirement:
In above example:

– The sum of A and B is unchanged by the execution of the transaction

• In general, consistency requirements include

• Explicitly specified integrity constraints such as primary keys and
foreign keys

• Implicit integrity constraints

– e.g., sum of balances of all accounts, minus sum of loan
amounts must equal value of cash-in-hand

• A transaction, when starting to execute, must see a consistent database.

• During transaction execution the database may be temporarily
inconsistent.

• When the transaction completes successfully the database must be
consistent

 Isolation requirement :

If between steps 3 and 6 (of the fund transfer transaction) , another
transaction T2 is allowed to access the partially updated database,
it will see an inconsistent database (the sum A + B will be less than
it should be).

 T1 T2

1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

• Isolation can be ensured trivially by running transactions serially

– That is, one after the other.

ACID Properties

 A transaction is a unit of program execution that accesses and

possibly updates various data items. To preserve the integrity of

data the database system must ensure:

• Atomicity. Either all operations of the transaction are properly

reflected in the database or none are.

• Consistency. Execution of a transaction in isolation preserves the

consistency of the database.

ACID Properties(cont.)

• Isolation. Although multiple transactions may execute

concurrently, each transaction must be unaware of other

concurrently executing transactions. Intermediate transaction

results must be hidden from other concurrently executed

transactions.

– That is, for every pair of transactions Ti and Tj, it appears to Ti

that either Tj, finished execution before Ti started, or Tj started

execution after Ti finished.

• Durability. After a transaction completes successfully, the changes

it has made to the database persist, even if there are system

failures.

Transaction State

• Active – the initial state; the transaction stays in this state while it is

executing

• Partially committed – after the final statement has been executed.

• Failed -- after the discovery that normal execution can no longer

proceed.

Transaction State(cont.)

• Aborted – after the transaction has been rolled back and the

database restored to its state prior to the start of the transaction.

Two options after it has been aborted:

– Restart the transaction

• can be done only if no internal logical error

– Kill the transaction

• Committed – after successful completion.

Transaction State (Cont.)

Transaction Management

Implementation of atomicity,

consistency, isolation and

durability

 Implementation of Atomicity an Durability

• Atomicity

– Transactions are atomic – they don’t have parts (conceptually)
– can’t be executed partially; it should not be detectable that they

interleave with another transaction

• Durability
– Once a transaction has completed, its changes are made

permanent

– Even if the system crashes, the effects of a transaction must
remain in place

Atomicity an Durability(cont.)

• To implement the Atomicity an Durability we use a technique called

shadow copy scheme.

• It uses a database pointer to refer the copy of file in the database.

 Implementation of Isolation

• Isolation

– The effects of a transaction are not visible to other transactions
until it has completed

– From outside the transaction has either happened or not

• There are various concurrency control schemes that ensures that a

transaction has to acquire locks

• Concurrency control scheme provides few locking protocols to

ensure the concurrent execution.

Consistency

Consistency

Transactions take the database from one consistent state

into another

In the middle of a transaction the database might not be

consistent.

Example of transaction

• Transfer £50 from account A to account B

Read(A)

A = A - 50

Write(A)

Read(B)

B = B+50

Write(B)

Atomicity - shouldn’t take money from A without giving it to B

Consistency - money isn’t lost or gained

Isolation - other queries shouldn’t see A or B change until
completion

Durability - the money does not go back to A

• The transaction manager enforces the ACID properties

– It schedules the operations of transactions

– COMMIT and ROLLBACK are used to ensure atomicity

Transaction Management

Concurrent execution and

Recoverability of Transactions

Concurrent Executions

• Multiple transactions are allowed to run concurrently in the system.

Advantages are:

– Increased processor and disk utilization, leading to

better transaction throughput

• E.g. one transaction can be using the CPU while another is

reading from or writing to the disk

– Reduced average response time for transactions: short

transactions need not wait behind long ones.

Concurrent Executions(cont.)

• Concurrency control schemes – mechanisms to achieve

isolation

– That is, to control the interaction among the concurrent

transactions in order to prevent them from destroying the

consistency of the database

Example : let T1 & T2 are two transactions that transfers funds from
one account to another.

Step-1:- Transaction T1 transfers 500 from account A to account B is
defined as

T1: Read(A)

 A:=A-500;

 Write(A);

 Read(B);

 B:=B+500;

 Write(B);

T2 : Read(A)

 temp:=A*0.1;

 A:=A-temp;

 Write(A);

Read(B);

B:=B+temp;

Write(B);

A serial schedule in which T1 is followed by T2

T1

Read(A);

A:=A-500;

Write(A);

Read(B);

B:=B+500;

Write(B);

T2

Read(A);

temp:=A*0.1;

A:=A-temp;

Write(A);

Read(B);

B:=B+temp;

Write(B);

* Vice versa for T2 is followed by T1

 Concurrent schedule:

T1

Read(A);

A:=A-500;

Write(A);

Read(B);

B:=B+500;

Write(B);

T2

Read(A);

temp:=A*0.1;
A:=A-temp;
Write(A);

Read(B);
B:=B+temp;

Write(B);

 Concurrent execution is carried out by concurrency-control component

of the database.

Recoverability

• A schedule is said to be recoverable if a failed transaction is

undone.

 If a transaction Ti fails we need to undo the effect of this transaction

to ensure the atomicity property.

 In a concurrent execution it is necessary to ensure that transaction

Ti that is dependent on Ti is also aborted.

Recoverable Schedules

• Recoverable schedule — if a transaction Tj reads a data item
previously written by a transaction Ti , then the commit operation
of Ti must appear before the commit operation of Tj.

• The following schedule is not recoverable if T9 commits
immediately after the read(A) operation.

If T8 should abort, T9 would have read (and possibly shown to the

user) an inconsistent database state. Hence, database must ensure

that schedules are recoverable.

Cascading Rollbacks

• Cascading rollback – a single transaction failure leads to a series

of transaction rollbacks. Consider the following schedule where

none of the transactions has yet committed (so the schedule is

recoverable)

If T10 fails, T11 and T12 must also be rolled back.

Can lead to the undoing of a significant amount of work

Cascadeless Schedules

• Cascadeless schedules — for each pair of transactions Ti and Tj

such that Tj reads a data item previously written by Ti, the commit

operation of Ti appears before the read operation of Tj.

• Every cascadeless schedule is also recoverable

• It is desirable to restrict the schedules to those that are cascadeless

• Example of a schedule that is NOT cascadeless

Concurrency Control

• A database must provide a mechanism that will ensure that all
possible schedules are both:

– Conflict serializable.

– Recoverable and preferably cascadeless

• Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur

• Testing a schedule for serializability after it has executed is a little
too late!

– Tests for serializability help us understand why a concurrency
control protocol is correct

• Goal – to develop concurrency control protocols that will assure
serializability.

Transaction Management

Serializability - View and Conflict

Serializability

• Basic Assumption – Each transaction preserves database

consistency.

• Thus, serial execution of a set of transactions preserves database

consistency.

• A (possibly concurrent) schedule is serializable if it is equivalent to a

serial schedule. Different forms of schedule equivalence give rise to

the notions of:

1. conflict serializability

2. view serializability

Simplified view of transactions

• We ignore operations other than read and write instructions

• We assume that transactions may perform arbitrary

computations on data in local buffers in between reads and

writes.

• Our simplified schedules consist of only read and write

instructions.

Conflicting Instructions

Let li and lj be two Instructions of transactions Ti and Tj

respectively. Instructions li and lj conflict if and only if there exists

some item Q accessed by both li and lj, and at least one of these

instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.
 2. li = read(Q), lj = write(Q). They conflict.

 3. li = write(Q), lj = read(Q). They conflict

 4. li = write(Q), lj = write(Q). They conflict

Conflicting Instructions(cont.)

Intuitively, a conflict between li and lj forces a (logical) temporal order

between them.

If li and lj are consecutive in a schedule and they do not conflict,

their results would remain the same even if they had been

interchanged in the schedule.

Conflict Serializability

If a schedule S can be transformed into a schedule S´ by a series

of swaps of non-conflicting instructions, we say that S and S´ are

conflict equivalent.

We say that a schedule S is conflict serializable if it is conflict

equivalent to a serial schedule

Conflict Serializability (Cont.)

Schedule 3 can be transformed into Schedule 6 -- a serial schedule

where T2 follows T1, by a series of swaps of non-conflicting

instructions. Therefore, Schedule 3 is conflict serializable.

Schedule 3
Schedule 6

Conflict Serializability (Cont.)

• Example of a schedule that is not conflict serializable:

We are unable to swap instructions in the above schedule to

obtain either the serial schedule < T3, T4 >, or the serial schedule

< T4, T3 >.

View Serializability

• Let S and S’ be two schedules with the same set of transactions .
And S’ are View equivalent if the following three conditions are
met:

1. Initial Read

2. Write-read

3. Final write

• View equivalence is purely based on reads and writes alone.

View Serializability(cont.)

• A schedule S is view serializable it is equivalent to a serial schedule.

• Every conflict serializable schedule is also a view serializable .

• Every view serializable schedule is not conflict serializable has

blind writes.

Above example is a view serializable but not conflict serializable.

Transaction Management

Testing Serializability,

Concurrency Control vs.

Serializability Tests

Testing for Conflict Serializability

• In order to determine a conflict serializable we need to

construct a directed graph called precedence graph .

• It is represented as G=(V,E)

• V-consists of transactions

• E-consists of set of edges Ti->Tj for which one of the three

conditions.

1. Ti executes Write(Q) before Tj executes Read(Q).

2. Ti executes Read(Q) before Tj executes Write(Q)

3. Ti executes Write(Q) before Tj executes Write(Q)

Testing for Conflict Serializability(cont.)

• A schedule is conflict serializable if and only if its precedence

graph is acyclic.

• Cycle-detection algorithms exist which take order n2 time,

where n is the number of vertices in the graph.

– (Better algorithms take order n + e where e is the number

of edges.)

• If precedence graph is acyclic, the serializability order can be

obtained by a topological sorting of the graph.

– That is, a linear order consistent with the partial order of

the graph.

Precedence Graph

Consider some schedule of a set of transactions T1, T2, ..., Tn

Precedence graph — a direct graph where the vertices are the

transactions (names).

We draw an arc from Ti to Tj if the two transaction conflict, and Ti

accessed the data item on which the conflict arose earlier.

We may label the arc by the item that was accessed.

Example

Conflict Serializability

For example, a serializability order for

the schedule (a) would be one of

either (b) or (c)

Concurrency Control vs. Serializability Tests

• Concurrency-control protocols allow concurrent schedules, but

ensure that the schedules are conflict/view serializable, and are

recoverable and cascadeless .

• Different concurrency control protocols provide different

tradeoffs between the amount of concurrency they allow and

the amount of overhead that they incur.

• Tests for serializability help us understand why a concurrency

control protocol is correct.

Concurrency Control

• A database must provide a mechanism that will ensure that all possible

schedules are both:

– Conflict serializable.

– Recoverable and preferably cascadeless

• A policy in which only one transaction can execute at a time generates serial

schedules, but provides a poor degree of concurrency

• Concurrency-control schemes tradeoff between the amount of concurrency

they allow and the amount of overhead that they incur.

• Testing a schedule for serializability after it has executed is a little too late!

– Tests for serializability help us understand why a concurrency control

protocol is correct

• Goal – to develop concurrency control protocols that will assure

serializability.

Weak Levels of Consistency

• Some applications are willing to live with weak levels of consistency,

allowing schedules that are not serializable

– E.g., a read-only transaction that wants to get an approximate

total balance of all accounts

– E.g., database statistics computed for query optimization can be

approximate (why?)

– Such transactions need not be serializable with respect to other

transactions

• Tradeoff accuracy for performance

Levels of Consistency in SQL-92

• Serializable — default

• Repeatable read — only committed records to be read,

repeated reads of same record must return same value. However, a

transaction may not be serializable – it may find some records

inserted by a transaction but not find others.

• Read committed — only committed records can be read, but

successive reads of record may return different (but committed)

values.

• Read uncommitted — even uncommitted records may be read.

Levels of Consistency in SQL-92(cont.)

 Lower degrees of consistency useful for gathering approximate

information about the database

 Warning: some database systems do not ensure serializable

schedules by default

 E.g., Oracle and PostgreSQL by default support a level of

consistency called snapshot isolation (not part of the SQL

standard)

Transaction Definition in SQL

• Data manipulation language must include a construct for specifying

the set of actions that comprise a transaction.

• In SQL, a transaction begins implicitly.

• A transaction in SQL ends by:

– Commit work commits current transaction and begins a new

one.

– Rollback work causes current transaction to abort.

• In almost all database systems, by default, every SQL statement also

commits implicitly if it executes successfully

– Implicit commit can be turned off by a database directive

• E.g. in JDBC, connection.setAutoCommit(false);

Transaction Management

Introduction to Locks - types,

granting lock

Introduction:

 Locking is necessary in a concurrent environment to assure that

one process should not retrieve or update a record which another

process is updating. Failure to this would result in inconsistent and

corrupted data.

There are various modes to lock data items. They are:

• Shared(S): If a transaction Ti has shared mode lock on data item Q

then Ti can read but not write Q. lock-S(Q) instruction is used in

shared mode.

• Exclusive(X): If a transaction has obtained an exclusive mode lock

on data item Q, then Ti can perform both read and write. lock-X(Q)

instruction is used to lock in exclusive mode.

Types of Locks

• A lock is a mechanism to control concurrent access to a data item.

Lock requests are made to concurrency-control manager.

Transaction can proceed only after request is granted.

• Lock-compatibility matrix

Lock-compatibility matrix

Example of a transaction performing locking:

Locking as above is not sufficient to guarantee serializability — if A and

B get updated in-between the read of A and B, the displayed sum would

be wrong.

Granting of Locks

Concurrency control manager will grants the lock requests to the

transactions.

•First it checks for no access on that particular data item it allocates

lock on that data item.

•Else it keeps the requesting transaction in waiting state.

Transaction Management

Lock based protocols

Lock-based Protocols

Lock-based Protocols:

 lock-based protocols use a mechanism by which any transaction

cannot read or write data until it acquires an appropriate lock on it.

Problems with Locking

• Transaction schedule may not be serializable

₋ Can be solved with Two-Phase Locking

• May cause deadlocks

₋ A deadlock is caused when two transactions wait for each

other to unlock data.

Two-Phase Locking (2PL)

Two-Phase Locking (2PL):
A protocol that guarantees serializability but does not prevent

deadlocks.

• A transaction obeying the two-phase locking protocol (2PL)

if

– before operating on any object, the transaction first

acquires a lock on that object

(Growing Phase/locking phase)

– after releasing a lock, the transaction never acquires any

more locks (Shrinking Phase/unlocking phase).

2PL can be shown to be conflict serializable in the order

of ‘lock point’

Lock Point

• Lock Point: The point in the schedule where the transaction has

obtained its final lock is called the lock point of the transaction.

• 2PL gives the problem of deadlock and also suffers from cascading

rollback.

• Cascading rollbacks can be avoided by a modification of two-phase

locking called strict two phase locking protocol.

Strict 2PL

Strict-2PL: Transaction holds X-locks till it commit/aborts. After

commit/aborted it releases the lock.

Another variants of Two-Phase locking is Rigorous and

conservative 2PL.

variants of Two-Phase locking

Rigorous 2PL: T holds S|X locks till it commit |Aborts transactions can

be serialized in the order in which they commit.

Conservative 2PL:Transaction gets all locks in an atomic manner i.e. no

deadlocks.

Transaction Management

Time stamp based protocols

Timestamp Ordering

Timestamp:

– a number of generate by system.

– ticks of the computer's internal clock.

– no two transactions can have the same timestamp.

How timestamps are used ?

− A transaction Ti has time-stamp TS(Ti),

− A new transaction Tj is assigned time-stamp TS(Tj) such that

 TS(Ti) <TS(Tj).

The protocol maintains for each data Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that

executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that

executed read(Q) successfully.

Timestamp-ordering Protocol

Case 1: Suppose that transaction Ti issues read(Q).

• If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q that

was already overwritten. Hence, Ti should read value before W-

timestamp. Therefore read operation is rejected, and Ti is rolled

back.

• If TS(Ti) W-timestamp(Q), then the read operation is executed,

and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).Suppose

that transaction Ti issues write(Q).

Timestamp-ordering Protocol(contd.)

Case: 2 Suppose Ti issues write(Q).

• If TS(Ti) < R-timestamp(Q), since it has read-write conflict the write
operation is rejected, and Ti is rolled back.

• If TS(Ti) < W-timestamp(Q), since it has write-write conflict the
write operation is rejected, and Ti is rolled back. Otherwise, the
write operation is executed, and W-timestamp(Q) is set to TS(Ti).

• If TS(Ti) > R-timestamp(Q) and TS(Ti) > W-timestamp(Q), since all
read and write operations done before timestamp write operation
is granted. Therefore w-timestamp need tobe updated with max of
w-TS & TS(Ti).

Thomas’s write rule:
• This rule states that if TS(Ti) < W-timestamp(Q) then the operation

is rejected & Ti is rolled back. Timestamp ordering rules can be

modified to make the schedule view serializable. Instead of making

Ti rolled back, the write operation itself is ignored.

Thomas’s write rule

Thomas’s write rule(contd.)
 Consider the given transactions

For the condition TS(Ti) < W-timestamp(Q) write of T2 is having largest

W-timestamp.

In case of T1 and T2 write operation is updated by W-timestamp(Q) to

TS(T1).

Under the thomas’s write rule, write(Q) on T1 would be ignored.

Transaction Management

Validation Based Protocol

Validation based protocol

Validation based protocol:

 No checking is done while the transaction is executing.

 Each transaction executes in three phases in its lifetime.

• Read phase: During this phase, the system executes transaction Ti It

reads the values of various data items and writes on temporary

local variables without updating the actual database.

Validation phases

• Validation phase: Transaction Ti performs a validation test to

determine the operation of read phase without violating the

serializability.

• Write phase: If Transaction Ti succeeds in validation then actual

updates are applied to the database otherwise the system rolls

back Ti.

Validation based protocol(contd.)

 To perform the validation test, we need to know when the various phases
of transaction Ti took place. Therefore associate three different
timestamps with transaction Ti . The validation scheme is called as
optimistic concurrency-control.

Three timestamps of validation are:

• Start (T): start of execution (Ti)

• Validation (T): Ti finished its read phase & started it validation phase.

• Finish (T): Time when Ti finished its write phase.

Serializability order by the timestamp-ordering technique is determined by
using the value TS (Ti) = validation (Ti).

Validation Test

Validation Test:

For transaction TS(Ti) < TS(Ti), one of the following condition must hold

• Finish (Ti) < Start(Tj) : Since Ti completes its execution before Tj

started the serializability order is maintained.

• Start(Ti)< Finish (Ti) <Validation(Tj) :The validation phase of Tj

should occur after T i finishes.

• It ensures that writes of Ti & Tj do not overlap. Write (Ti) do not

effect read(Tj) hence serializability order is maintained.

Example for validating the transaction in a schedule

Transaction Management

Deadlock Handling

Deadlock Handling

• Consider the following two transactions:

 T1: write (X) T2: write(Y)

 write(Y) write(X)

• Schedule with deadlock

Deadlock Handling(contd.)

• System is deadlocked if there is a set of transactions such that

every transaction in the set is waiting for another transaction

in the set.

• Deadlock prevention protocols ensure that the system will

never enter into a deadlock state. Some prevention strategies

– Require that each transaction locks all its data items before

it begins execution (predeclaration).

– Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified

by the partial order (graph-based protocol).

Deadlock Prevention Strategies

• Following schemes use transaction timestamps for the sake of

deadlock prevention alone.

• wait-die scheme — non-preemptive

– older transaction may wait for younger one to release data

item. Younger transactions never wait for older ones; they are

rolled back instead.

– a transaction may die several times before acquiring needed

data item

Deadlock Prevention Strategies(contd.)

• wound-wait scheme — preemptive

– older transaction wounds (forces rollback) of younger

transaction instead of waiting for it. Younger transactions may

wait for older ones.

– may be fewer rollbacks than wait-die scheme.

Deadlock prevention (Cont.)

• Both in wait-die and in wound-wait schemes, a rolled back

transactions is restarted with its original timestamp. Older

transactions thus have precedence over newer ones, and starvation

is hence avoided.

• Timeout-Based Schemes :

– a transaction waits for a lock only for a specified amount of

time. After that, the wait times out and the transaction is rolled

back.

– thus deadlocks are not possible

– simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.

Deadlock Detection

• Deadlocks can be described as a wait-for graph, which consists of a

pair G = (V,E),

– V is a set of vertices (all the transactions in the system)

– E is a set of edges; each element is an ordered pair Ti Tj.

• If Ti  Tj is in E, then there is a directed edge from Ti to Tj, implying

that Ti is waiting for Tj to release a data item.

Deadlock Detection(contd.)

• When Ti requests a data item currently being held by Tj, then the

edge Ti Tj is inserted in the wait-for graph. This edge is removed

only when Tj is no longer holding a data item needed by Ti.

• The system is in a deadlock state if and only if the wait-for graph

has a cycle. Must invoke a deadlock-detection algorithm

periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

Deadlock Recovery

• When deadlock is detected :

– Some transaction will have to rolled back (made a victim) to

break deadlock. Select that transaction as victim that will incur

minimum cost.

– Rollback -- determine how far to roll back transaction

• Total rollback: Abort the transaction and then restart it.

• More effective to roll back transaction only as far as

necessary to break deadlock.

– Starvation happens if same transaction is always chosen as

victim. Include the number of rollbacks in the cost factor to

avoid starvation

Recovery System,

Recovery and Atomicity

Recovery System

Recovery system is an integral part of database management system

that can restore the database to the consistent state before failure.

The failures are categorized as failure that does not result in loss of

information and effects with loss of information.

Failures
Failures are classified as:

1. Transaction failure
The transaction may fail due to two errors. They are:

 Logical error: The transaction further cannot continue with
 normal execution because of internal conditions as data not found,
 invalid input data, overflow or exceeded resource limits.

 System error: The transaction further cannot continue with
 undesirable state like deadlock conditions.

2. System crash: System crash causes loss of the content of volatile
storage. The reasons for this are: hardware problem; bug in the software or
database software.

3. Disk failure: Disk crash leads to loss of information, which is due to
failure due to data transfer or head crash. To recover from this failure backup
on other disks, tapes.

Recovery from failure

The steps to determine how to recover from failures are:

• Identify the failure modes of storage devices.

• Consider how these failure modes effect the content of the

database

• Propose recovery algorithms to ensure DB properties such as

consistency, atomicity and durability. These algorithms has two

parts: To ensure recovery from failures; Action taken after a failure

to ensure DB properties.

Storage Structure

The storage types are defines by their relative speed, capacity and

resistance to failure. Broadly classified as volatile, nonvolatile and

stable storage.

• Volatile storage: The data in these storage cannot survive from

system crashes. Example as main and cache memory. Access to data

in volatile memory is fast and directly can access.

• Nonvolatile storage: It survives from system crashes. Example as

disk and magnetic tapes. The data in this leads to failure due to disk

crash, it leads to loss of data.

• Stable storage: Stable storage is impossible theoretically.

Stable storage implementation

• The implementation of stable storage requires:

• The replicate of data in several nonvolatile storage (disk) with

independent failure modes. Which is possible with RAID systems.

• Update the data in a controlled manner to ensure failure during

data transfer does not damage the required data. Block transfer

from storage to memory can be result any of these cases:

• Successful completion: Transfer of data without loss.

• Partial failure: A transfer at mid of transaction, it leads to incorrect

information at destination.

• Total failure: The failure occurred at early stage of transfer. Hence

no loss of data at destination block.

Recovery Process- Data transfer

To restore the data block to a consistent state during failure at data transfer
requires:

• The storage system with two physical blocks for each logical database block.
This can be done in two ways:

– Mirrored disks, if both are at the same location;

– Remote backup, if one is at local and other is at a remote site.

• The output operation is executed as:
– Write the data onto the first physical block

– When first write completes successfully, write the same on the second
disk.

– The output is completed only after the second write completes
successfully.

– During Recovery the systems need to examine each pair of physical blocks
and perform the require actions to ensure a successful write operation on
stable storage or no change.

Actions required at different failures

Failure cases Actions required

Both blocks have same content

and no errors

No further actions required

Error in one block It replaces with content of other

block

Both blocks has no error, but the

content is different

The value of second block replace

with first block

Recovery procedure

Example:
Let consider,

• Initially A and B have ₹1000 and ₹2000. The transaction Ti that
transfers ₹50 from account A to account B;

• Goal is either to perform all database modifications made by Ti or
none at all. Several output operations may be required for Ti (to
output A and B).

• A failure may occur after one of these modifications have been
made but before all of them are made.

The two possible recovery procedures are:

• Reexecute Ti : The system will enter into inconsistent state. It
results the A with ₹900 instead of ₹950.

• Do not reexecute Ti : The system will enter into inconsistent
state. The current system state has A with ₹900 and B with ₹2000.

Atomocity

• Modifying the database without ensuring that the transaction will

commit may leave the database in an inconsistent state.

• To ensure atomicity despite failures, we first output information

describing the modifications to stable storage without modifying

the database itself.

Recovery from failure

Two approaches for recovery:

• Log-based recovery

• Shadow-paging

Assume (initially) that transactions run serially, that is,

one after the other.

Recovery Algorithms

• Recovery algorithms are techniques to ensure database consistency

and transaction atomicity and durability even with failures.

Recovery algorithms have two parts:

• Actions taken during normal transaction processing to ensure

enough information exists to recover from failures

• Actions taken after a failure to recover the database contents to a

state that ensures atomicity, consistency and durability.

Two approaches using logs

• Deferred database modification

• Immediate database modification

Log-Based Recovery
A log is kept on stable storage.

The log is a sequence of log records, and maintains a record of update

activities on the database.

Log record has 3 fields:

Transaction Identifier: Unique identifier of the transaction that

performed write operation.

Data item identifier: Unique identification of the data item written

Old value: Value of the item prior to the write

New value: Value of the item after write transaction

Cont..

Various log records are:

<Ti start> log record Before Ti executes write(X),

<Ti, X, V1, V2> is written, where V1 is the value of X before the write,

and V2 is the value to be written to X. Log record notes that Ti has

performed a write on data item Xj Xj had value V1 before the write,

and will have value V2 after the write.

<Ti commit> Transaction Ti has committed

<Ti abort> Transaction Ti has aborted

Deferred Database Modification
The deferred database modification scheme records all modifications to the log, but

defers all the writes to after partial commit.

Assume that transactions execute serially.

<Ti start>transaction Ti started.

write(X) operation results in a log record :

<Ti, X, V> where V is the new value for X

Note: old value is not needed for this scheme

The write is not performed on X at this time, but is deferred.

When Ti partially commits,

<Ti commit> is written to the log

Finally, the log records are read and used to actually execute the previously deferred

writes. During recovery after a crash, a transaction needs to be redo if and only if both

<Ti start> and<Ti commit> are there in the log.

Redoing a transaction Ti

< redoTi> sets the value of all data items updated by the transaction to the new values.

Example

• Crashes can occur while the transaction is

executing the original updates, or while

recovery action is being taken example

transactions T0 and T1 (T0 executes before

T1):

• Let T0 be a transaction that transfers ₹50
from Account A to B. T1 be a transaction

that withdraws ₹100 from Account C.
Initially A, B and C have ₹1000, ₹2000 and
₹700 respectively.

T0:

read (A)

A: - A - 50

Write(A)

read (B)

B:- B + 50

write (B)

T1 :

 read (C)

C:-C- 100

write (C)

Log Record entries

Portion of database

log for T0 and T1

Log database

<T0 start>

<T0, A, 950>

<T0, B, 2050>

<T0, commit>

<T1 start>

<T1, C, 600>

<T1, commit>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T1,commit>

A=950

B=2050

C=600

Log updates at three instances of time

(a) (b) (c)

<T0 start>

<T0, A, 950>

<T0, B, 2050>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T1,commit>

Recovery actions

Case 1:

Shown in (a)

Crash occurs just after log

record for Write(B) of

transaction T0.

 No redo action required due to no commit

in log.

 The accounts A and B remains with initial

values.

 Incomplete transaction T0 can be deleted

from the log

Case 2:

Shown in (b)

Crash occurs just after log

record for Write(C) of

transaction T1.

 Redo(T0) is performed due to commit

record (<T0, commit>) in log.

 The accounts A and B has with ₹950 and
₹2050 respectively.

 Incomplete transaction T1 can be deleted

from the log

Case 3:

Shown in (c)

Crash occurs just after log

record (<T1, commit>) is

written in stable storage.

 The accounts A, B and C has with ₹950,
₹2050 and ₹600 respectively.

Immediate Database Modification

• The immediate database modification scheme allows database

updates of an uncommitted transaction to be made as the writes are

issued since undoing may be needed, update logs must have both old

value and new value. Update log record must be written before

database item is written. Assume that the log record is output directly

to stable storage can be extended to postpone log record output, so

long as prior to execution of an output(B) operation for a data block

B, all log records corresponding to items B must be flushed to stable

storage.

• Output of updated blocks can take place at any time before or after

transaction commit

• Order in which blocks are output can be different from the order in

which they are written.

Recovery procedure operations

Recovery procedure has two operations instead of one:

• undo(Ti) restores the value of all data items updated by Ti to their

old values, going backwards from the last log record for Ti

• redo(Ti) sets the value of all data items updated by Ti to the new

values, going forward from the first log record for Ti

• Transaction Ti needs to be undone if the log contains the record

• <Ti start>, but does not contain the record <Ti commit>.

• Transaction Ti needs to be redone if the log contains both the

record <Ti start> and the record <Ti commit>.

Undo operations are performed first, then redo operations.

Example

• Let accounts A, B and C initially has ₹1000, ₹2000 and ₹700
respectively. The log entry of both the transactions are:

 Log Database

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050>

 A = 950

B = 2050

<T0 commit>

<T1 start>

<T1, C, 700, 600>

 C = 600

<T1 commit>

Cont..

• Using the log, the system can handle any failure that result in the
loss of information in nonvolatile storage. Generally the recovery
scheme uses any of two procedures:

• Undo (Ti) restores to old values.

• Redo (Ti) sets the updated values by transaction Ti to the new
values.

• The set of data items updated by transaction Ti and respective new
and old values are found in log. After failure occurs the recovery
team consults the log to perform redo and undo operations on
respective transactions.

• Undo (Ti) is performed, if the log contains <Ti start> but not contain
<Ti commit>.

• Redo (Ti) is performed, if the log contains <Ti start> and <Ti
commit>.

Failure

time slots

(a) (b) (c)

Log <T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050>

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050>

<T0 commit>

<T1 start>

<T1, C, 700, 600>

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050>

<T0 commit>

<T1 start>

<T1, C, 700, 600>

<T1 commit>

Recovery

Scheme

Undo(T0) Redo(T0)

Undo(T0)

Redo(T0)

Redo(T1)

Recovery

Action

Account A and B with

₹1000 and ₹2000

Account A, B and C

with ₹950, ₹2050 and

₹700.

Account A, B and C with

₹950, ₹2050 and₹ 600.

Recovery Actions

Example

• Crashes can occur while the transaction is

executing the original updates, or while

recovery action is being taken example

transactions T0 and T1 (T0 executes before

T1):

• Let T0 be a transaction that transfers ₹50
from Account A to B. T1 be a transaction

that withdraws ₹100 from Account C.
Initially A, B and C have ₹1000, ₹2000 and
₹700 respectively.

T0:

read (A)

A: - A - 50

Write(A)

read (B)

B:- B + 50

write (B)

T1 :

 read (C)

C:-C- 100

write (C)

Log Record entries

Portion of database

log for T0 and T1

Log database

<T0 start>

<T0, A, 950>

<T0, B, 2050>

<T0, commit>

<T1 start>

<T1, C, 600>

<T1, commit>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T1,commit>

A=950

B=2050

C=600

Log updates at three instances of time

(a) (b) (c)

<T0 start>

<T0, A, 950>

<T0, B, 2050>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T1,commit>

Recovery actions
Case 1:

Shown in

(a)

Crash occurs just after

log record for Write(B)

of transaction T0.

 No redo action required due to no

commit in log.

 The accounts A and B remains with

initial values.

 Incomplete transaction T0 can be

deleted from the log

Case 2:

Shown in

(b)

Crash occurs just after

log record for Write(C)

of transaction T1.

 Redo(T0) is performed due to commit

record (<T0, commit>) in log.

 The accounts A and B has with ₹950
and ₹2050 respectively.

 Incomplete transaction T1 can be

deleted from the log

Case 3:

Shown in

(c)

Crash occurs just after

log record (<T1,

commit>) is written in

stable storage.

 The accounts A, B and C has with

₹950, ₹2050 and ₹600 respectively.

Why check points required?

• Difficulties with Deferred and immediate database updates are

• The search process in time consuming

• Most of times the redo() need to be performed on already updated

data. With redo no harm, but it will cause recovery to take longer.

• To reduce the above said overheads, checkpoints are introduced.

Check points

Along with the system maintained log files using any of the two

techniques(deferred and Immediate), periodically performs the

checkpoints. Which requires the following sequence of actions:

• Output all log records from main memory to stable storage.

• Output to the disk all modified buffer blocks

• Output onto stable storage a log record <checkpoint>

Example

• Example: Let T1, T2, T3, and T4 are transaction recorded in log. Tc is

checkpoint and Tt is the failure occurred.

Steps to perform checkpoints

During recovery we need to consider only the most recent transaction
Ti that started before the checkpoint, and transactions that started
after Ti.

1. Scan backwards from end of log to find the most recent
 <checkpoint> record

2. Continue scanning backwards till a record <Ti start> is found.

3. Need only consider the part of log following above start record.
Earlier part of log can be ignored during recovery, and can be erased
whenever desired.

4. For all transactions (starting from Ti or later) with no <T i commit>,
execute undo(Ti). (Done only in case of immediate modification.)

5. Scanning forward in the log, for all transactions starting from Ti or
later with a <Ti commit>, execute redo(Ti).

Shadow paging

Shadow paging is an alternative to log-based recovery; this scheme is
useful if transactions execute serially

• Maintain two page tables during the lifetime of a transaction –the
current page table, and the shadow page table.

• Store the shadow page table in nonvolatile storage, such that state
of the database prior to transaction execution may be recovered.
Shadow page table is never modified during execution.

• To start with, both the page tables are identical. Only current page
table is used for data item accesses during execution of the
transaction.

• Whenever any page is about to be written for the first time:

• Copy of this page is made onto an unused page.

• Current page table is then made to point to the copy.

• Update is performed on the copy

Example of Shadow paging

Steps to commit a transaction

To commit a transaction :
1. Flush all modified pages in main memory to disk

2. Output current page table to disk

3. Make the current page table the new shadow page table, as follows:

• keep a pointer to the shadow page table at a fixed (known) location on
disk.

• to make the current page table the new shadow page table, simply update
the pointer to point to current page table on disk

• Once pointer to shadow page table has been written, transaction is
committed.

• No recovery is needed after a crash — new transactions can start right
away, using the shadow page table.

• Pages not pointed to from current/shadow page table should be freed
(garbage collected).

Advantages

• Advantages of shadow-paging over log-based schemes

– no overhead of writing log records

– recovery is trivial

• Disadvantages

• Copying the entire page table is very expensive

• Need to flush every updated page, and page table

• Need to flush every updated page, and page table

Disadvantages

– Copying the entire page table is very expensive

– Can be reduced by using a page table structured like a B+-tree

– No need to copy entire tree, only need to copy paths in the tree
that lead to updated leaf nodes

– Commit overhead is high even with above extension

– Need to flush every updated page, and page table

– Data gets fragmented (related pages get separated on disk)

– After every transaction completion, the database pages
containing old versions of modified data need to be garbage
collected

– Hard to extend algorithm to allow transactions to run
concurrently

• Easier to extend log based schemes

Recovery actions
Case 1:

Shown in

(a)

Crash occurs just after

log record for Write(B)

of transaction T0.

 No redo action required due to no

commit in log.

 The accounts A and B remains with

initial values.

 Incomplete transaction T0 can be

deleted from the log

Case 2:

Shown in

(b)

Crash occurs just after

log record for Write(C)

of transaction T1.

 Redo(T0) is performed due to commit

record (<T0, commit>) in log.

 The accounts A and B has with ₹950
and ₹2050 respectively.

 Incomplete transaction T1 can be

deleted from the log

Case 3:

Shown in

(c)

Crash occurs just after

log record (<T1,

commit>) is written in

stable storage.

 The accounts A, B and C has with

₹950, ₹2050 and ₹600 respectively.

UNIT - V

DATA STORAGE AND QUERY PROCESSING

Physical Storage Media, Magnetic disks

Physical Storage Media
Cache – fastest and most costly form of storage; volatile; managed by

the computer system hardware.

Main memory --fast access (10s to 100s of nanoseconds; 1 nanosecond

= 10–9 seconds)

generally too small (or too expensive) to store the entire database

Capacities of up to a few Gigabytes widely used currently

Capacities have gone up and per-byte costs have decreased steadily and

rapidly (roughly factor of 2 every 2 to 3 years)

Volatile: contents of main memory are usually lost if a power failure or

system crash occurs.

Flash memory :Data survives power failure

Classification of Physical Storage Media

•Speed with which data can be accessed

•Cost per unit of data

•Reliability

data loss on power failure or system crash

physical failure of the storage device

•Can differentiate storage into:

volatile storage: loses contents when power is switched off

non-volatile storage:

l Contents persist even when power is switched off.

lI Includes secondary and tertiary storage, as well as batter-

backed up main-memory.

Magnetic-disk

• Data is stored on spinning disk, and read/written magnetically

• Primary medium for the long-term storage of data; typically

stores entire database.

• Data must be moved from disk to main memory for access, and

written back for storage

• Much slower access than main memory (more on this later)

• direct-access – possible to read data on disk in any order,

unlike magnetic tape

• Capacities range up to roughly 1.5 TB as of 2009

• Much larger capacity and cost/byte than main memory/flash

memory

• Growing constantly and rapidly with technology improvements

(factor of 2 to 3 every 2 years)

• Survives power failures and system crashes

Optical storage

• Non-volatile, data is read optically from a spinning disk using a laser

• CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms

• Blu-ray disks: 27 GB to 54 GB

• Write-one, read-many (WORM) optical disks used for archival
storage

 (CD-R, DVD-R, DVD+R)

• Multiple write versions also available

 (CD-RW, DVD-RW, DVD+RW, and DVD-RAM)

• Reads and writes are slower than with magnetic disk

• Juke-box systems, with large numbers of removable disks, a few
drives, and a mechanism for automatic loading/unloading of disks
available for storing large volumes of data

Tape storage

• Non-volatile, used primarily for backup (to recover from disk failure),

and for archival data

• sequential-access – much slower than disk

• very high capacity (40 to 300 GB tapes available)

• tape can be removed from drive  storage costs much cheaper than

disk, but drives are expensive

Storage Hierarchy

Primary storage: Fastest media but

volatile (cache, main memory).

Secondary storage: next level in

hierarchy, non-volatile, moderately

fast access time also called on-line

storage

E.g. flash memory, magnetic disks

Tertiary storage: lowest level in

hierarchy, non-volatile, slow access

time also called off-line storage

E.g. magnetic tape, optical storage

RAID

RAID: Redundant Arrays of Independent Disks
• RAID id a disk organization techniques that manage a large numbers

of disks, providing a view of a single disk of

• high capacity and high speed by using multiple disks in parallel,

• high reliability by storing data redundantly, so that data can be

recovered even if a disk fails

RAID Levels

• RAID Level 0: Block striping; non-redundant.

– Used in high-performance applications where data loss is not
critical.

• RAID Level 2: Memory-Style Error-Correcting-Codes (ECC) with bit
striping.

• RAID Level 3: Bit-Interleaved Parity

• RAID Level 4: Block-Interleaved Parity;

 uses block-level striping, and keeps a parity block on a separate disk
for corresponding blocks from N other disks.

• RAID Level 5: Block-Interleaved Distributed Parity;

 partitions data and parity among all N + 1 disks, rather than storing
data in N disks and parity in 1 disk.

RAID Levels

Factors in choosing RAID level

• Monetary cost

• Performance: Number of I/O operations per second, and bandwidth

during normal operation

• Performance during failure

• Performance during rebuild of failed disk

• Including time taken to rebuild failed disk

File organization Techniques

•The database is stored as a collection of files.

•Each file is a sequence of records.

• A record is a sequence of fields.

•Fixed Length Record

•Variable Length Record

File organization Techniques

Heap File Organization

• While creation of file, the Operating System allocates memory area

to that file without any further accounting details.

• File records can be placed anywhere in that memory area. It is the

responsibility of the software to manage the records.

• Heap File does not support any ordering, sequencing, or indexing

on its own.

Sequential File Organization

• Every file record contains a data field (attribute) to uniquely identify

that record.

• In sequential file organization, records are placed in the file in

some sequential order based on the unique key field or search key.

File organization Techniques

Hash File Organization

• Uses Hash function computation on some fields of the records.

• The output of the hash function determines the location of disk

block where the records are to be placed.

Clustered File Organization

• Not considered good for large databases

• Related records from one or more relations are kept in the same

disk block, i.e. the ordering of records is not based on primary key

or search key.

Sequential File Organization

•Suitable for applications that require

sequential processing of the entire file

•The records in the file are ordered by

a search-key.

Insertion –locate the position where

the record is to be inserted

• if there is free space insert there

• if no free space, insert the record

in an overflow block

•In either case, pointer chain must

be updated

•Need to reorganize the file from

time to time to restore sequential

order

Multitable Clustering File Organization

• Store several relations in one file using a multitable clustering file

organization

department

instructor

Multitable clustering of department and instructor

Record organization Techniques

Fixed-Length Records

 Store record i starting from byte n (i – 1), where n is the size of each

record.

 Record access is simple but records may cross blocks

 Modification: do not allow records to cross block boundaries

 Deletion of record i: alternatives:

 move records i + 1, . . ., n to i, . . . , n – 1 move record n to ido not

move records, but link all free records on a free list

Deleting record 3 and compacting

Free Lists

• Store the address of the first
deleted record in the file header.

• Use this first record to store the
address of the second deleted
record, and so on

• Can think of these stored
addresses as pointers since they
“point” to the location of a
record.

• More space efficient
representation: reuse space for
normal attributes of free records
to store pointers. (No pointers
stored in in-use records.)

Variable-Length Records

• Variable-length records arise in database systems in several ways:

• Storage of multiple record types in a file.

• Record types that allow variable lengths for one or more fields such

as strings (varchar)

• Record types that allow repeating fields (used in some older data

models).

• Attributes are stored in order

• Variable length attributes represented by fixed size (offset, length),

with actual data stored after all fixed length attributes

• Null values represented by null-value bitmap

Basic Concepts :Indexing

Structures for Files - Different

types of Indices

Ordered Indices

In an ordered index, index entries are stored sorted on the search key

 value. E.g., author catalog in library.

Primary index: in a sequentially ordered file, the index whose search key

 specifies the sequential order of the file,Also called clustering index

The search key of a primary index is usually but not necessarily the primary

 key.

Secondary index: an index whose search key specifies an order different from

 the sequential order of the file. Alsocalled non-clustering index.

Index-sequential file: ordered sequential file with a primary index.

Dense Index Files

• Dense index — Index record appears for every search-key value

in the file.

• E.g. index on ID attribute of instructor relation

Basic Concepts

• Indexing mechanisms used to speed up access to desired data.

– E.g., author catalog in library

• Search Key - attribute to set of attributes used to look up records in a

file.

• An index file consists of records (called index entries) of the form

• Index files are typically much smaller than the original file

• Two basic kinds of indices:

– Ordered indices: search keys are stored in sorted order

– Hash indices: search keys are distributed uniformly across “buckets”
using a “hash function”.

Index Evaluation Metrics

• Access types supported efficiently. E.g.,

– records with a specified value in the attribute

– or records with an attribute value falling in a specified range of

values.

• Access time

• Insertion time

• Deletion time

• Space overhead

Ordered Indices

• In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

• Primary index: in a sequentially ordered file, the index whose search key

specifies the sequential order of the file.

– Also called clustering index

– The search key of a primary index is usually but not necessarily the

primary key.

• Secondary index: an index whose search key specifies an order different

from the sequential order of the file. Also called

non-clustering index.

• Index-sequential file: ordered sequential file with a primary index.

Dense Index Files

• Dense index — Index record appears for every search-key value in the

file.

• E.g. index on ID attribute of instructor relation

Dense Index Files (Cont.)

• Dense index on dept_name, with instructor file sorted on dept_name

Sparse Index Files

• Sparse Index: contains index records for only some search-key values.

– Applicable when records are sequentially ordered on search-key

• To locate a record with search-key value K we:

– Find index record with largest search-key value < K

– Search file sequentially starting at the record to which the index

record points

Sparse Index Files (Cont.)

• Compared to dense indices:

– Less space and less maintenance overhead for insertions and

deletions.

– Generally slower than dense index for locating records.

• Good tradeoff: sparse index with an index entry for every block

in file, corresponding to least search-key value in the block.

Secondary Indices Example

Secondary index on salary field of instructor

• Index record points to a bucket that contains pointers to all the actual

records with that particular search-key value.

• Secondary indices have to be dense

Primary and Secondary Indices

• Indices offer substantial benefits when searching for records.

• BUT: Updating indices imposes overhead on database modification --

when a file is modified, every index on the file must be updated,

• Sequential scan using primary index is efficient, but a sequential scan

using a secondary index is expensive

– Each record access may fetch a new block from disk

– Block fetch requires about 5 to 10 milliseconds, versus about 100

nanoseconds for memory access

Multilevel Index

• If primary index does not fit in memory, access becomes expensive.

• Solution: treat primary index kept on disk as a sequential file and

construct a sparse index on it.

– outer index – a sparse index of primary index

– inner index – the primary index file

• If even outer index is too large to fit in main memory, yet another level

of index can be created, and so on.

• Indices at all levels must be updated on insertion or deletion from the

file.

Multilevel Index (Cont.)

Index Update: Deletion

 If deleted record was the only record in the file with its particular

search-key value, the search-key is deleted from the index also.

• Single-level index entry deletion:

– Dense indices – deletion of search-key is similar to file record

deletion.

– Sparse indices –

• if an entry for the search key exists in the index, it is deleted by

replacing the entry in the index with the next search-key value

in the file (in search-key order).

• If the next search-key value already has an index entry, the entry

is deleted instead of being replaced.

Index Update: Insertion

• Single-level index insertion:

– Perform a lookup using the search-key value appearing in the

record to be inserted.

– Dense indices – if the search-key value does not appear in

the index, insert it.

– Sparse indices – if index stores an entry for each block of

the file, no change needs to be made to the index unless a new

block is created.

• If a new block is created, the first search-key value

appearing in the new block is inserted into the index.

• Multilevel insertion and deletion: algorithms are simple

extensions of the single-level algorithms

Secondary Indices

• Frequently, one wants to find all the records whose

 values in a certain field (which is not the search-key of the

primary index) satisfy some condition.

– Example 1: In the instructor relation stored sequentially

by ID, we may want to find all instructors in a particular

department

– Example 2: as above, but where we want to find all

instructors with a specified salary or with salary in a

specified range of values

• We can have a secondary index with an index record for each

search-key value

Other Features

• Covering indices

– Add extra attributes to index so (some) queries can avoid

fetching the actual records

• Particularly useful for secondary indices

– Why?

– Can store extra attributes only at leaf

B-TREES INDEXED FILE

B-tree

 • Index structures for large datasets cannot be stored in main

memory

• Storing it on disk requires different approach to efficiency

• Assuming that a disk spins at 3600 RPM, one revolution occurs in

1/60 of a second, or 16.7ms

• Crudely speaking, one disk access takes about the same time as

200,000 instructions

Motivation (cont.)

• Assume that we use an AVL tree to store about 20 million records

• We end up with a very deep binary tree with lots of different disk

accesses; log2 20,000,000 is about 24, so this takes about 0.2 seconds

• We know we can’t improve on the log n lower bound on search for a

binary tree

• But, the solution is to use more branches and thus reduce the height

of the tree!

– As branching increases, depth decreases

Definition of a B-tree

• A B-tree of order m is an m-way tree (i.e., a tree where each node

may have up to m children) in which:

1. the number of keys in each non-leaf node is one less than the

number of its children and these keys partition the keys in the

children in the fashion of a search tree

2. all leaves are on the same level

3. all non-leaf nodes except the root have at least m / 2 children

4. the root is either a leaf node, or it has from two to m children

5. a leaf node contains no more than m – 1 keys

• The number m should always be odd

An example B-Tree

 51 62 42

6 12

26

55

60

70

64

90

45

1 2 4 7 8 13 15 18 25

27

29

46

48

53

A B-tree of order 5

containing 26 items

Note that all the leaves are at the same level

Constructing a B-tree

• Suppose we start with an empty B-tree and keys arrive in the following
order:1 12 8 2 25 5 14 28 17 7 52 16 48 68 3 26 29 53 55 45

• We want to construct a B-tree of order 5

• The first four items go into the root:

• To put the fifth item in the root would violate condition 5

• Therefore, when 25 arrives, pick the middle key to make a new root

Constructing a B-tree (contd.)

1 2

8

12 25

6, 14, 28 get added to the leaf nodes:

1 2

8

12 14 6 25 28

Constructing a B-tree (contd.)

• Adding 17 to the right leaf node would over-fill it, so we take the

middle key, promote it (to the root) and split the leaf

12 14 25 28 1 2 6

8 17

12 14 25 28 1 2 6

7, 52, 16, 48 get added to the leaf nodes

8 17

12 14 25 28 1 2 6 16 48 52 7

Constructing a B-tree (contd.)

• Adding 68 causes us to split the right most leaf, promoting 48

to the root, and adding 3 causes us to split the left most leaf,

promoting 3 to the root; 26, 29, 53, 55 then go into the leaves

3 8 17 48

52 53 55 68 25 26 28 29 1 2 6 7 12 14 16

Adding 45 causes a split of 25 26 28 29

and promoting 28 to the root then causes the root to split

• The maximum number of items in a B-tree of order m
and height h:
Root m – 1

level 1 m(m – 1)

level 2 m2(m – 1)

. . .

level h mh(m – 1)

• So, the total number of items is

 (1 + m + m2 + m3 + … + mh)(m – 1) =

 [(mh+1 – 1)/ (m – 1)] (m – 1) = mh+1 – 1

• When m = 5 and h = 2 this gives 53 – 1 = 124

Analysis of B-Trees

Reasons for using B-Trees

• When searching tables held on disc, the cost of each disc
transfer is high but doesn't depend much on the amount
of data transferred, especially if consecutive items are
transferred
– If we use a B-tree of order 101, say, we can transfer each node

in one disc read operation

– A B-tree of order 101 and height 3 can hold 1014 – 1 items
(approximately 100 million) and any item can be accessed with 3
disc reads (assuming we hold the root in memory)

• If we take m = 3, we get a 2-3 tree, in which non-leaf
nodes have two or three children (i.e., one or two keys)
– B-Trees are always balanced (since the leaves are all at the same

level), so 2-3 trees make a good type of balanced tree

Comparing Trees

• Binary trees
– Can become unbalanced and lose their good time complexity

(big O)

– AVL trees are strict binary trees that overcome the balance
problem

– Heaps remain balanced but only prioritise (not order) the keys

• Multi-way trees
– B-Trees can be m-way, they can have any (odd) number of

children

– One B-Tree, the 2-3 (or 3-way) B-Tree, approximates a
permanently balanced binary tree, exchanging the AVL tree’s
balancing operations for insertion and (more complex) deletion
operations

B+-Tree Index Files

B+-tree indices are an alternative to indexed-sequential files.

• Disadvantage of indexed-sequential files

– performance degrades as file grows, since many overflow blocks
get created.

– Periodic reorganization of entire file is required.

• Advantage of B+-tree index files:

– automatically reorganizes itself with small, local, changes, in the
face of insertions and deletions.

– Reorganization of entire file is not required to maintain
performance.

• (Minor) disadvantage of B+-trees:

– extra insertion and deletion overhead, space overhead.

• Advantages of B+-trees outweigh disadvantages

– B+-trees are used extensively

Example of B+-Tree

B+-Tree Index Files (Cont.)

:A B+-tree is a rooted tree satisfying the following properties

• All paths from root to leaf are of the same length

• Each node that is not a root or a leaf has between n/2 and n

children.

• A leaf node has between (n–1)/2 and n–1 values

• Special cases:

– If the root is not a leaf, it has at least 2 children.

– If the root is a leaf (that is, there are no other nodes in the

tree), it can have between 0 and (n–1) values.

B+-Tree Node Structure

• Typical node

– Ki are the search-key values

– Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).

• The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

 (Initially assume no duplicate keys, address duplicates later)

Leaf Nodes in B+-Trees

 • For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key

value Ki,

• If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or equal

to Lj’s search-key values

• Pn points to next leaf node in search-key order

Non-Leaf Nodes in B+-Trees

• Non leaf nodes form a multi-level sparse index on the leaf nodes.

For a non-leaf node with m pointers:

– All the search-keys in the subtree to which P1 points are less

than K1

– For 2  i  n – 1, all the search-keys in the subtree to which Pi

points have values greater than or equal to Ki–1 and less than Ki

– All the search-keys in the subtree to which Pn points have values

greater than or equal to Kn–1

Example of B+-tree

B+-tree for instructor file (n = 6)

• Leaf nodes must have between 3 and 5 values
((n–1)/2 and n –1, with n = 6).

• Non-leaf nodes other than root must have between 3 and
6 children ((n/2 and n with n =6).

• Root must have at least 2 children.

Observations about B+-trees

• Since the inter-node connections are done by pointers, “logically”
close blocks need not be “physically” close.

• The non-leaf levels of the B+-tree form a hierarchy of sparse indices.

• The B+-tree contains a relatively small number of levels

• Level below root has at least 2* n/2 values

• Next level has at least 2* n/2 * n/2 values

• .. etc.

– If there are K search-key values in the file, the tree height is no

more than  logn/2(K)
– thus searches can be conducted efficiently.

• Insertions and deletions to the main file can be handled efficiently,

as the index can be restructured in logarithmic time (as we shall

see).

Queries on B+-Trees

• Find record with search-key value V.

1. C=root

2. While C is not a leaf node {

1. Let i be least value s.t. V  Ki.

2. If no such exists, set C = last non-null pointer in C

3. Else { if (V= Ki) Set C = Pi +1 else set C = Pi}

}

3. Let i be least value s.t. Ki = V

4. If there is such a value i, follow pointer Pi to the desired
record.

5. Else no record with search-key value k exists.

Queries on B+-Trees (Cont.)
• If there are K search-key values in the file, the height of the tree is no

more than logn/2(K).
• A node is generally the same size as a disk block, typically 4 kilobytes

– and n is typically around 100 (40 bytes per index entry).

• With 1 million search key values and n = 100

– at most log50(1,000,000) = 4 nodes are accessed in a lookup.

• Contrast this with a balanced binary tree with 1 million search key values

— around 20 nodes are accessed in a lookup

– above difference is significant since every node access may need a disk

I/O, costing around 20 milliseconds

B-Tree Index Files (Cont.)

• Advantages of B-Tree indices:

– May use less tree nodes than a corresponding B+-Tree.

– Sometimes possible to find search-key value before reaching leaf

node.

• Disadvantages of B-Tree indices:

– Only small fraction of all search-key values are found early

– Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees

typically have greater depth than corresponding B+-Tree

– Insertion and deletion more complicated than in B+-Trees

– Implementation is harder than B+-Trees.

• Typically, advantages of B-Trees do not out weigh disadvantages.

Static Hashing
Static Hashing

• A bucket is a unit of storage containing one or more records (a bucket

is typically a disk block).

• In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.

• Hash function h is a function from the set of all search-key values K to

the set of all bucket addresses B.

• Hash function is used to locate records for access, insertion as well as

deletion.

• Records with different search-key values may be mapped to the same

bucket; thus entire bucket has to be searched sequentially to locate a

record.

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key (See

figure in next slide.)

characters modulo 10

E.g. h(Music) = There are 10 buckets,

The binary representation of the ith character is assumed to be

the integer i.

The hash function returns the sum of the binary representations

of the 1 h(History) = 2

 h(Physics) = 3 h(Elec. Eng.) = 3

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key

(see previous slide for details).

Hash Functions

• Worst hash function maps all search-key values to the same bucket; this

makes access time proportional to the number of search-key values in the

file.

• An ideal hash function is uniform, i.e., each bucket is assigned the same

number of search-key values from the set of all possible values.

• Ideal hash function is random, so each bucket will have the same number of

records assigned to it irrespective of the actual distribution of search-key

values in the file.

• Typical hash functions perform computation on the internal binary

representation of the search-key.

• For example, for a string search-key, the binary representations of all the

characters in the string could be added and the sum modulo the number of

buckets could be returned.

Handling of Bucket Overflows (Cont.)

• Overflow chaining – the overflow buckets of a given bucket are

chained together in a linked list.

• Above scheme is called closed hashing.

– An alternative, called open hashing, which does not use

overflow buckets, is not suitable for database applications.

Hash Indices

• Hashing can be used not only for file organization, but also for

index-structure creation.

• A hash index organizes the search keys, with their associated record

pointers, into a hash file structure.

• Strictly speaking, hash indices are always secondary indices

– if the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary.

– However, we use the term hash index to refer to both secondary

index structures and hash organized files.

Example of Hash Index

Deficiencies of Static Hashing

• In static hashing, function h maps search-key values to a fixed set of

B of bucket addresses. Databases grow or shrink with time.

– If initial number of buckets is too small, and file grows,

performance will degrade due to too much overflows.

– If space is allocated for anticipated growth, a significant amount

of space will be wasted initially (and buckets will be under full).

– If database shrinks, again space will be wasted.

• One solution: periodic re-organization of the file with a new hash

function

– Expensive, disrupts normal operations

• Better solution: allow the number of buckets to be modified

dynamically.

Dynamic Hashing

• Good for database that grows and shrinks in size

• Allows the hash function to be modified dynamically

• Extendable hashing – one form of dynamic hashing

– Hash function generates values over a large range — typically b-bit
integers, with b = 32.

– At any time use only a prefix of the hash function to index into a table of
bucket addresses.

– Let the length of the prefix be i bits, 0  i  32.

• Bucket address table size = 2i. Initially i = 0

• Value of i grows and shrinks as the size of the database grows and
shrinks.

– Multiple entries in the bucket address table may point to a bucket (why?)

– Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to coalescing and
splitting of buckets.

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see

next slide for details)

Use of Extendable Hash Structure

• Each bucket j stores a value ij

– All the entries that point to the same bucket have the same values

on the first ij bits.

• To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket

• To insert a record with search-key value Kj

– follow same procedure as look-up and locate the bucket, say j.

– If there is room in the bucket j insert record in the bucket.

– Else the bucket must be split and insertion re-attempted (next

slide.)Overflow buckets used instead in some cases (will see shortly)

Insertion in Extendable Hash Structure(Cont)

To split a bucket j when inserting record with search-key

value Kj:

• If i > ij (more than one pointer to bucket j)
– allocate a new bucket z, and set ij = iz = (ij + 1)
– Update the second half of the bucket address table entries

originally pointing to j, to point to z

– remove each record in bucket j and reinsert (in j or z)
– recompute new bucket for Kj and insert record in the bucket

(further splitting is required if the bucket is still full)
• If i = ij (only one pointer to bucket j)

– If i reaches some limit b, or too many splits have happened in
this insertion, create an overflow bucket

– Else
• increment i and double the size of the bucket address table.
• replace each entry in the table by two entries that point to

the same bucket.
• recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

 Deletion in Extendable Hash Structure

• To delete a key value,

– locate it in its bucket and remove it.

– The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).

– Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it

is present)

– Decreasing bucket address table size is also possible

• Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets

becomes much smaller than the size of the table

Use of Extendable Hash Structure:

Example

Extendable Hashing vs. Other Schemes

• Benefits of extendable hashing:
– Hash performance does not degrade with growth of file

– Minimal space overhead

• Disadvantages of extendable hashing

– Extra level of indirection to find desired record

– Bucket address table may itself become very big (larger than
memory)Cannot allocate very large contiguous areas on disk
either

– Solution: B+-tree structure to locate desired record in bucket
address table Changing size of bucket address table is an
expensive operation

• Linear hashing is an alternative mechanism

– Allows incremental growth of its directory (equivalent to bucket
address table)At the cost of more bucket overflows

Comparison of Ordered Indexing

and Hashing
• Cost of periodic re-organization

• Relative frequency of insertions and deletions

• Is it desirable to optimize average access time at the expense of

worst-case access time?

• Expected type of queries:

– Hashing is generally better at retrieving records having a

specified value of the key.

– If range queries are common, ordered indices are to be

preferred

• In practice:

– PostgreSQL supports hash indices, but discourages use due to

poor performance

– Oracle supports static hash organization, but not hash indices -

SQLServer supports only B+-trees

Dynamic Hashing

 As the database grows over time, we have three options:

• - Choose hash function based on current file size. Get

• performance degradation as file grows.

• - Choose hash function based on anticipated file size.

• Space is wasted initially.

• -Periodically re-organize hash structure as file grows.

• Requires selecting new hash function, recomposing all

• addresses and generating new bucket assignments.

• Costly, and shuts down database.

• Some hashing techniques allow the hash function to be modified

dynamically to accommodate the growth or shrinking of the

database. These are called dynamic hash functions.Extendable

hashing is one form of dynamic hashing.

• Extendable hashing splits and coalesces buckets as database size

changes.

• This imposes some performance overhead, but space efficiency is

maintained.

• As reorganization is on one bucket at a time, overhead is acceptably

low.

General extendable hash structure.

• We choose a hash function that is uniform and random that generates values
over a relatively large range.

• Range is b-bit binary integers (typically b=32).

• is over 4 billion, so we don't generate that many buckets!

• Instead we create buckets on demand, and do not use all b bits of the hash
initially.

• At any point we use i bits where .

• The i bits are used as an offset into a table of bucket addresses.

• Value of i grows and shrinks with the database.

• Figure shows an extendable hash structure.

• Note that the i appearing over the bucket address table tells how many bits are
required to determine the correct bucket.

• It may be the case that several entries point to the same bucket.

• All such entries will have a common hash prefix, but the length of this prefix may
be less than i.

• So we give each bucket an integer giving the length of the common hash prefix.

• This is shown in Figure in the before slide as .

• Number of bucket entries pointing to bucket j is then .

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

Query

Parser
&

Translator

Relational-algebra
expression

Optimizer

Execution Plan
Evaluation

Engine

Query
Output

Query
Parser

&
Translator

Relational-algebra
expression

Basic Steps in Query Processing

• Parsing and translation

– translate the query into its internal form. This is then translated

into relational algebra.

– Parser checks syntax, verifies relations

• Evaluation

– The query-execution engine takes a query-evaluation plan,

executes that plan, and returns the answers to the query.

Basic Steps in Query Processing: Optimization

• A relational algebra expression may have many equivalent

expressions

– E.g., salary75000(salary(instructor)) is equivalent to

 salary(salary75000(instructor))

• Each relational algebra operation can be evaluated using one of

several different algorithms

– Correspondingly, a relational-algebra expression can be evaluated in

many ways.

• Annotated expression specifying detailed evaluation strategy is

called an evaluation-plan.

– E.g., can use an index on salary to find instructors with salary < 75000,

– or can perform complete relation scan and discard instructors with

salary  75000

Basic Steps: Optimization (Cont.)

• Query Optimization: Amongst all equivalent evaluation plans choose the one

with lowest cost.

– Cost is estimated using statistical information from the

 database catalog

• e.g. number of tuples in each relation, size of tuples, etc.

