
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043

COMMON FOR

COMPUTER SCIENCE ENGINEERING/

INFORMATION TECHNOLOGY

DIGITAL LOGIC DESIGN PPT

(AEC020)

Course Coordinator

Mr. K.Ravi, Assistant Professor, ECE

Ms. G. Bhavana, Assistant Professor, ECE

Ms. L.Shruthi, Assistant Professor, ECE

Ms. V.Bindusree, Assistant Professor, ECE

Ms. J.Swetha, Assistant Professor, ECE

Ms. Shreya verma, Assistant Professor, ECE

DIGITAL LOGIC DESIGN PPT

1

UNIT 1

INTRODUCTION TO DIGITAL

LOGIC DESIGN

INTRODUCTION TO DIGITAL LOGIC DESIGN

2

Digital logic design is a system in electrical
and computer engineering that uses simple
number values to produce input and output

operations.

INTRODUCTION TO DIGITAL LOGIC DESIGN

3

INTRODUCTION TO DIGITAL LOGIC DESIGN

Advantages:

•A digital computer stores data in terms of digits

(numbers) and proceeds in discrete steps from one state

to the next.

•The states of a digital computer typically involve binary

digits which may take the form of the presence or

absence of magnetic markers in a storage medium , on-

off switches or relays. In digital computers, even letters,

words and whole texts are represented digitally.

4

NUMBER SYSTEMS

5

NUMBER BASE CONVERSION

Binary to Decimal Conversion:

It is by the positional weights method . In this

method,each binary digit of the no. is multiplied by its position

weight . The product terms are added to obtain the decimal no.

6

NUMBER BASE CONVERSION

Binary to Octal conversion:

Starting from the binary pt. make groups of 3 bits each,
on either side of the binary pt, & replace each 3 bit binary
group by the equivalent octal digit.

7

NUMBER BASE CONVERSION

Binary to Hexadecimal conversion:

For this make groups of 4 bits each , on either side of the
binary pt & replace each 4 bit group by the equivalent
hexadecimal digit.

8

NUMBER BASE CONVERSION

Decimal to Binary conversion:

I.method: is for small no.s The values of various powers of 2

need to be remembered. for conversion of larger no.s have a

table of powers of 2 known as the sum of weights method. The

set of binary weight values whose sum is equal to the decimal

no. is determined.

II.method : It converts decimal integer no. to binary integer no
by successive division by 2 & the decimal fraction is converted
to binary fraction by double –dabble method

9

NUMBER BASE CONVERSION

Octal to decimal Conversion:

Multiply each digit in the octal no by the weight of

its position&add all the product termsDecimal value of the octal

no.

10

NUMBER BASE CONVERSION

Decimal to Octal Conversion:

To convert a mixed decimal no. To a mixed octal no.

convert the integer and fraction parts separately. To convert

decimal integer no. to octal, successively divide the given no by

8 till the quotient is 0. The last remainder is the MSD .The

remainder read upwards give the equivalent octal integer no. To

convert the given decimal fraction to octal, successively

multiply the decimal fraction&the subsequent decimal fractions

by 8 till the product is 0 or till the required accuracy is the

MSD. The integers to the left of the octal pt read downwards

give the octal fraction.

11

NUMBER BASE CONVERSION

Decimal to Hexadecimal conversion:

It is successively divide the given decimal no. by 16

till the quotient is zero. The last remainder is the MSB. The

remainder read from bottom to

hexadecimal integer. To convert

top gives the equivalent

a decimal fraction to

hexadecimal successively multiply the given decimal fraction &

subsequent decimal fractions by 16, till the product is zero. Or

till the required accuracy is obtained,and collect all the integers

to the left of decimal pt. The first integer is MSB & the integer

read from top to bottom give the hexadecimal fraction known as

the hexadabble method.

12

NUMBER BASE CONVERSION

Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to

binary & then the binary no. to hexadecimal.

13

FINDING THE BASE OF THE NUMBERSYSTEM

• Find r such that (121)r=(144)8, where r and 8 are the bases

1*82 + 4*8+4*80 =64+32+4 =100

1*r2+2*r+1*r0 = r2+2r+1=(r+1)2

(r+1)2=100

r+1=10

r=9

14

Binary Addition:
Rules:

0+0=0
0+1=1
1+0=1
1+1=10

i.e, 0 with a carry of 1.

BINARYARITHMETIC

15

BINARYARITHMETIC

Binary Subtraction:

Rules: 0-0=0

1-1=0

1-0=1

0-1=1 with a borrow of 1

16

Binary multiplication:

Rules:

0x0=0

1x1=0

1x0=0

0x1=0

BINARYARITHMETIC

17

BINARYARITHMETIC

Binary Division:

Example : 1011012 by 110

110) 101101 (111.1

110

1010

110

1001

110

110

110

000

Ans: 111.1

18

BINARYARITHMETIC

9’s & 10’s Complements:

It is the Subtraction of decimal no.s can be accomplished by

the 9’s & 10’s compliment methods similar to the 1’s & 2’s

compliment methods of binary . the 9’s compliment of a

decimal no. is obtained by subtracting each digit of that

decimal no. from 9. The 10’s compliment of a decimal no is

obtained by adding a 1 to its 9’s compliment.

19

1’s compliment of n number:
It is obtained by simply complimenting each bit of the

no,.& also , 1’s comp of a no, is subtracting each bit of the

no. form 1.This complemented value rep the –ve of the

original no. One of the difficulties of using 1’s comp is its

rep o f zero.Both 00000000 & its 1’s comp 11111111 rep

zero.The 00000000 called +ve zero& 11111111 called –ve

zero.

BINARYARITHMETIC

20

BINARYARITHMETIC

1’s compliment arithmetic:
In 1’s comp subtraction, add the 1’s comp of

the subtrahend to the minuend. If there is a carryout , bring

the carry around & add it to the LSB called the end around

carry. Look at the sign bit (MSB) . If this is a 0, the result

is +ve & is in true binary. If the MSB is a 1 (carry or no

carry), the result is –ve & is in its is comp form .Take its 1’s

comp to get the magnitude inn binary.

21

BINARYARITHMETIC

9’s & 10’s Complements:
It is the Subtraction of decimal no.s can be accomplished by

the 9’s & 10’s compliment methods similar to the 1’s & 2’s

compliment methods of binary . the 9’s compliment of a

decimal no. is obtained by subtracting each digit of that

decimal no. from 9. The 10’s compliment of a decimal no is

obtained by adding a 1 to its 9’s compliment.

22

Methods of obtaining 2’s comp of a no:

In 3 ways

By obtaining the 1’s comp of the given no. (by changing all 0’s to

1’s & 1’s to 0’s) & then adding 1.

By subtracting the given n bit no N from 2n

Starting at the LSB , copying down each bit upto & including the

first 1 bit encountered , and complimenting the remaining bits.

BINARYARITHMETIC

23

BINARYARITHMETIC

2’s compliment Arithmetic:
The 2’s comp system is used to rep –ve no.s using modulus

arithmetic . The word length of a computer is fixed. i.e, if a 4 bit no.

is added to another 4 bit no . the result will be only of 4 bits. Carry

if any , from the fourth bit will overflow called the Modulus

arithmetic.

Ex:1100+1111=1011

24

BINARYARITHMETIC

9’s & 10’s Complements:

.

It is the Subtraction of decimal no.s can be accomplished by

the 9’s & 10’s compliment methods similar to the 1’s & 2’s

compliment methods of binary . the 9’s compliment of a

decimal no. is obtained by subtracting each digit of that

decimal no. from 9. The 10’s compliment of a decimal no is

obtained by adding a 1 to its 9’s compliment

25

1’s compliment of n number:
It is obtained by simply complimenting each bit of the

no,.& also , 1’s comp of a no, is subtracting each bit of the

no. form 1.This complemented value rep the –ve of the

original no. One of the difficulties of using 1’s comp is its

rep o f zero.Both 00000000 & its 1’s comp 11111111 rep

zero.The 00000000 called +ve zero& 11111111 called –ve

zero.

BINARYARITHMETIC

26

BINARYARITHMETIC

1’s compliment arithmetic:

In 1’s comp subtraction, add the 1’s comp of

the subtrahend to the minuend. If there is a carryout , bring

the carry around & add it to the LSB called the end around

carry. Look at the sign bit (MSB) . If this is a 0, the result

is +ve & is in true binary. If the MSB is a 1 (carry or no

carry), the result is –ve & is in its is comp form .Take its 1’s

comp to get the magnitude inn binary.

27

BINARYARITHMETIC

9’s & 10’s Complements:
It is the Subtraction of decimal no.s can be accomplished by

the 9’s & 10’s compliment methods similar to the 1’s & 2’s

compliment methods of binary . the 9’s compliment of a

decimal no. is obtained by subtracting each digit of that

decimal no. from 9. The 10’s compliment of a decimal no is

obtained by adding a 1 to its 9’s compliment.

28

Weighted Codes:-

The weighted codes are those that obey the position

weighting principle, which states that the position of each

number represent a specific weight. In these codes each

decimal digit is represented by a group of four bits.

In weighted codes, each digit is assigned a specific weight

according to its position. For example, in 8421/BCD code,

1001 the weights of 1, 1, 0, 1 (from left to right) are 8, 4, 2

and 1 respectively.

Examples:8421,2421 are all weighted codes.

BINARY WEIGHTED AND NON- WEIGHTED CODES

29

BINARY WEIGHTED AND NON- WEIGHTED CODES

Non-weightedcodes:

The non-weighted codes are not positionally weighted . In other

words codes that are not assigned with any weight to each digit

position.
Examples:Excess-3(XS-3) and Gray Codes.

30

BCD Addition:

It is individually adding the corresponding digits of the
decimal no,s expressed in 4 bit binary groups starting from
the LSD . If there is no carry & the sum term is not an illegal
code , no correction is needed.If there is a carry out of one
group to the next group or if the sum term is an illegal code
then 610(0100) is added to the sum term of that group &the
resulting carry is added to the next group.

BINARY CODED DECIMAL

31

BCD Subtraction:

Performed by subtracting the digits of each 4 bit groupof
the subtrahend the digits from the corresponding 4- bit
group of the minuend in binary starting from the LSD . if
there is no borrow from the next group , then 610(0110)is
subtracted from the difference term of this group.

BINARY CODED DECIMAL

32

Excess-3Addition:

Add the xs-3 no.s by adding the 4 bit groups in each column starting
from the LSD. If there is no carry starting from the addition of any of the 4-bit
groups , subtract 0011 from the sum term of those groups (because when 2
decimal digits are added in xs-3 & there is no carry , result in xs-6). If there is a
carry out, add 0011 to the sum term of those groups(because when there is a
carry, the invalid states are skipped and the result is normal binary).

BINARY CODED DECIMAL

33

Excess -3 (XS-3) Subtraction:

Subtract the xs-3 no.s by subtracting each 4 bit group of the subtrahend from
the corresponding 4 bit group of the minuend starting form the LSD .if there is
no borrow from the next 4-bit group add 0011 to the difference term of such
groups (because when decimal digits are subtracted in xs-3 & there is no borrow
, result is normal binary). I f there is a borrow , subtract 0011 from the difference
term(b coz taking a borrow is equivalent to adding six invalid states , result is in
xs-6)

BINARY CODED DECIMAL

34

Representation of signed no.s binary
arithmetic in computers:
Two ways of rep signed no.s

Sign Magnitude form

Complemented form

Two complimented forms

1’s compliment form

2’s compliment form

SIGNED BINARY NUMBERS

35

SIGNED BINARY NUMBERS

Error – Detecting codes:When binary data is transmitted &

processed,it is susceptible to noise that can alter or distort its

contents. The 1’s may get changed to 0’s & 1’s .because digital

systems must be accurate to the digit, error can pose a problem.

Several schemes have been devised to detect the occurrence of a

single bit error in a binary word, so that whenever such an error

occurs the concerned binary word can be corrected &

retransmitted.

36

ERROR DETECTING AND CORRECTING CODES

• Introduction:

• When we talk about digital systems, be it a digital computer or a
digital communication set-up, the issue of error detection and
correction is of great practical significance.

• Errors creep into the bit stream owing to noise or other
impairments during the course of its transmission from the
transmitter to the receiver.

• While the addition of redundant bits helps in achieving the goal of
making transmission of information from one place to another
error free or reliable, it also makes it inefficient.

37

ERROR DETECTING AND CORRECTING CODES

• Some Common Error Detecting and Correcting Codes

• Parity Code

• Repetition Code

• Cyclic Redundancy Check Code

• Hamming Code

38

ERROR DETECTING AND CORRECTING CODES

• Parity Code:

• A parity bit is an extra bit added to a string of data bits in order to detect
any error that might have crept into it while it was being stored or
processed and moved from one place to another in a digital system.

• This simple parity code suffers from two limitations. Firstly, it cannot
detect the error if the number of bits having undergone a change is even.

• Repetition Code:

• The repetition code makes use of repetitive transmission of each data bit
in the bit stream. In the case of threefold repetition, ‘1’ and ‘0’ would be
transmitted as ‘111’ and ‘000’ respectively.

• The repetition code is highly inefficient and the information throughput
drops rapidly as we increase the number of times each data bit needs to
be repeated to build error detection and correction capability.

39

ERROR DETECTING AND CORRECTING CODES

• Cyclic Redundancy Check Code:

• Cyclic redundancy check (CRC) codes provide a reasonably high level of
protection at low redundancy level.

• The probability of error detection depends upon the number of check
bits, , used to construct the cyclic code. It is 100 % for single-bit and two-
bit errors. It is also 100 % when an odd number of bits are in error and the
error bursts have a length less than .

• The probability of detection reduces to for an error burst
for an error burst lengthlength equal to , and to

greater than .

40

ERROR DETECTING AND CORRECTING CODES

• Hamming Code:

• An increase in the number of redundant bits added to message bits can
enhance the capability of the code to detect and correct errors.

• If sufficient number of redundant bits arranged such that different error
bits produce different error results, then it should be possible not only to
detect the error bit but also to identify its location.

• In fact, the addition of redundant bits alters the ‘distance’ code parameter,
which has come to be known as the Hamming distance.

• Hamming Distance:

• The Hamming distance is nothing but the number of bit disagreements
between two code words.

41

ERROR DETECTING AND CORRECTING CODES

• For example, the addition of single-bit parity results in a code with a
Hamming distance of at least 2.

• The smallest Hamming distance in the case of a threefold repetition code
would be 3.

• Hamming noticed that an increase in distance enhanced the code’s ability
to detect and correct errors.

• Hamming’s code was therefore an attempt at increasing the Hamming
distance and at the same time having as high an information throughput
rate as possible.

42

ERROR DETECTING AND CORRECTING CODES

• The algorithm for writing the generalized Hamming code is as follows:

1. The generalized form of code is P1P2D1P3D2D3D4P4D5D6D7D8D9D10D11P5.......,
where P and D respectively represent parity and data bits.

2. We can see from the generalized form of the code that all bit positions
that are powers of 2 (positions 1, 2, 4, 8, 16 ...) are used as parity bits.

3. All other bit positions (positions 3, 5, 6, 7, 9, 10, 11 ...) are used to encode
data.

4. Each parity bit is allotted a group of bits from the data bits in the code
word, and the value of the parity bit (0 or 1) is used to give it certain
parity.

43

ERROR DETECTING AND CORRECTING CODES

1. Groups are formed by first checking bits and then alternately skipping
and checking bits following the parity bit. Here, is the position of the
parity bit; 1 for P1, 2 for P2, 4 for P3, 8 for P4 and so on.

2. For example, for the generalized form of code given above, various
groups of bits formed with different parity bits would be P1D1D2D4D5....,
P2D1D3D4D6D7...., P3D2D3D4D8D9...., P4D5D6D7D8D9D10D11...., and so on. To
illustrate the formation of groups further, let us examine the group
corresponding to parity bit P3.

3. Now, the position of P3 is at number 4. In order to form the group, we check
the first three bits N-1=3 and then follow it up by alternately skipping and
checking four bits (N=4).

44

ERROR DETECTING AND CORRECTING CODES

• The Hamming code is capable of correcting single-bit errors on messages of
any length.

• Although the Hamming code can detect two-bit errors, it cannot give the error
locations.

• The number of parity bits required to be transmitted along with the message,
however, depends upon the message length.

• The number of parity bits n required to encode m message bits is the smallest
integer that satisfies the condition .

• The most commonly used Hamming code is the one that has a code word
length of seven bits with four message bits and three parity bits.

• It is also referred to as the Hamming (7, 4) code

45

ERROR DETECTING AND CORRECTING CODES

• The code word sequence for this code is written as P1P2D1P3D2D3D4, with
P1, P2 and P3 being the parity bits and D1, D2, D3 and D4 being the data bits.

• Generation of Hamming Code:

46

BOOLEAN ALGEBRA

UNIT 2

INTRODUCTION TO BOOLEAN

ALGEBRA

47

BOOLEAN ALGEBRA

• Also known as Switching Algebra

› Invented by mathematician George Boole in 1849

› Used by Claude Shannon at Bell Labs in 1938

• To describe digital circuits built from relays

• Digital circuit design is based on

› Boolean Algebra

• Attributes

• Postulates

• Theorems

› These allow minimization and manipulation of logic gates for
optimizing digital circuits

48

BOOLEAN ALGEBRA ATTRIBUTES

• Binary

› A1a: X=0 if X=1

› A1b: X=1 if X=0

• Complement

› aka invert, NOT

› A2a: if X=0, X’=1

› A2b: if X=1, X’=0

X Y X•Y

0 0 0

0 1 0

1 0 0

1 1 1

• AND operation

› A3a:0•0=0

› A4a:1•1=1

› A5a: 0•1=1•0=0

- The dot • means AND

- Other symbol forAND:

X•Y=XY (no symbol)

- The tick mark ’ means

complement, invert,
or NOT

- Other symbol for
complement: X’= X

› A3b:1+1=1

› A4b:0+0=0

› A5b: 1+0=0+1=1

- The plus + means OR

X Y X+Y

0 0 0

0 1 1

1 0 1

1 1 1

X X’

0 1

1 0

• OR Operation

49

BOOLEAN ALGEBRA ATTRIBUTES

• Variable: Variables are the different symbols in a Boolean expression

• Literal: Each occurrence of a variable or its complement is called a literal

• Term: A term is the expression formed by literals and operations at one
level

– A, B, C are three variables

– Eight Literals

– Expression has five terms including four AND terms and the OR term
that combines the first-level AND terms.

50

BOOLEAN ALGEBRA POSTULATES

• Identity Elements

› P2a: X+0=X

› P2b: X•1=X

• Commutativity

› P3a: X+Y=Y+X

› P3b: X•Y=Y•X

• Complements

› P6a: X+X’=1

› P6b: X•X’=0 X Y X•1 X•Y Y•X X’ X•X’

0 0 0 0 0 1 0

0 1 0 0 0 1 0

1 0 1 0 0 0 0

1 1 1 1 1 0 0

X Y X+0 X+Y Y+X X’ X+X’

0 0 0 0 0 1 1

0 1 0 1 1 1 1

1 0 1 1 1 0 1

1 1 1 1 1 0 1

AND operation

OR operation

51

BOOLEAN ALGEBRA POSTULATES

• Associativity

› P4a: (X+Y)+Z=X+(Y+Z)

› P4b: (X•Y)•Z=X•(Y•Z)

X Y Z X+Y (X+Y)+Z Y+Z X+(Y+Z) X•Y (X•Y)•Z Y•Z X•(Y•Z)

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 0 0 0 0

0 1 0 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 0 0 1 0

1 0 0 1 1 0 1 0 0 0 0

1 0 1 1 1 1 1 0 0 0 0

1 1 0 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1

52

BOOLEAN ALGEBRA POSTULATES

• Distributivity

› P5a: X+(Y•Z) = (X+Y)•(X+Z)

› P5b: X•(Y+Z) = (X•Y)+(X•Z)

X Y Z X+Y X+Z

(X+Y)•
(X+Z) Y•Z

X+
(Y•Z) X•Y X•Z

X•Y+
X•Z Y+Z

X•
(Y+Z)

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 1 0

0 1 0 1 0 0 0 0 0 0 0 1 0

0 1 1 1 1 1 1 1 0 0 0 1 0

1 0 0 1 1 1 0 1 0 0 0 0 0

1 0 1 1 1 1 0 1 0 1 1 1 1

1 1 0 1 1 1 0 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

53

BOOLEAN ALGEBRA THEOREMS

• Idempotency

› T1a: X+X=X

› T1b: X•X=X

• Null elements

› T2a: X+1=1

› T2b:X•0=0

• Involution

› T3: (X’)’=X

X Y X+Y X•Y X+X X•X X+1 X•0 X’ X’’

0 0 0 0 0 0 1 0 1 0

0 1 1 0 0 0 1 0 1 0

1 0 1 0 1 1 1 0 0 1

1 1 1 1 1 1 1 0 0 1

OR AND

54

BOOLEAN ALGEBRA THEOREMS

X Y X+Y X•Y

X+

(X•Y)

X•

(X+Y) X’ X’•Y

X+

(X’•Y) X’+Y

X•

(X’+Y)

0 0 0 0 0 0 1 0 0 1 0

0 1 1 0 0 0 1 1 1 1 0

1 0 1 0 1 1 0 0 1 0 0

1 1 1 1 1 1 0 0 1 1 1

• Absorption (akacovering)

› T4a: X+(X•Y)=X

› T4b: X•(X+Y)=X

› T5a: X+(X’•Y)=X+Y

› T5b: X•(X’+Y)=X•Y

OR AND

55

BOOLEAN ALGEBRA THEOREMS

X Y X+Y X•Y Y’ X•Y’

(X•Y)+

(X•Y’) X+Y’

(X+Y)•

(X+Y’)

0 0 0 0 1 0 0 1 0

0 1 1 0 0 0 0 0 0

1 0 1 0 1 1 1 1 1

1 1 1 1 0 0 1 1 1

• Absorption (aka combining)

› T6a: (X•Y)+(X•Y’)=X

› T6b: (X+Y)•(X+Y’)=X

OR AND

56

BOOLEAN ALGEBRA THEOREMS

• Absorption (aka combining)

› T7a: (X•Y)+(X•Y’•Z)=(X•Y)+(X•Z)

› T7b: (X+Y)•(X+Y’+Z) = (X+Y)•(X+Z)

X Y Z Y’ XY XY’Z

(XY)+
(XY’Z) XZ

(XY)+
(XZ) X+Y

X+Y’
+Z

(X+Y)•
(X+Y’+Z) X+Z

(X+Y)•
(X+Z)

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 1 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 0 1 1 1 1 1

1 0 0 1 0 0 0 0 0 1 1 1 1 1

1 0 1 1 0 1 1 1 1 1 1 1 1 1

1 1 0 0 1 0 1 0 1 1 1 1 1 1

1 1 1 0 1 0 1 1 1 1 1 1 1 1

57

BOOLEAN ALGEBRA THEOREMS

X Y X+Y X•Y X’ Y’ (X+Y)’ X’•Y’ (X•Y)’ X’+Y’

0 0 0 0 1 1 1 1 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 1 0 0 0 0 0 0

• DeMorgan’s theorem (very important!)

› T8a: (X+Y)’= X’•Y’

break (or connect) the bar & change the

break (or connect) the bar & change the

• X+Y = X•Y
sign

› T8b: (X•Y)’= X’+Y’

• X•Y = X+Y
sign

› Generalized DeMorgan’s theorem:

• GT8a: (X1+X2+…+Xn-1+Xn)’= X1’•X2’•…•Xn-1’•Xn’

• GT8b: (X1•X2•…•Xn-1•Xn)’= X1’+X2’+…+Xn-1’+Xn’

OR AND

58

BOOLEAN ALGEBRA THEOREMS

• Consensus Theorem

› T9a: (X•Y)+(X’•Z)+(Y•Z) = (X•Y)+(X’•Z)

› T9b: (X+Y)•(X’+Z)•(Y+Z) = (X+Y)•(X’+Z)

X Y Z X’ XY X’Z YZ

(XY)+
(X’Z)+

(YZ)
(XY)+
(X’Z) X+Y X’+Z Y+Z

(X+Y)•
(X’+Z)•
(Y+Z)

(X+Y)•
(X’+Z)

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 1 0 1 1 0 1 1 0 0

0 1 0 1 0 0 0 0 0 1 1 1 1 1

0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0 1 1 1 1 1

1 1 0 0 1 0 0 1 1 1 0 1 0 0

1 1 1 0 1 0 1 1 1 1 1 1 1 1

59

MORE THEOREMS?

• Shannon’s expansion theorem (also very important!)

• › T10a: f(X1,X2,…,Xn-1,Xn)=

• (X1’•f(0,X2,…,Xn-1,Xn))+(X1•f(1,X2,…,Xn-1,Xn))

• Can be taken further:

• - f(X1,X2,…,Xn-1,Xn)= (X1’•X2’•f(0,0,…,Xn-1,Xn))

• + (X1•X2’•f(1,0,…,Xn-1,Xn)) + (X1’•X2•f(0,1,…,Xn-1,Xn))

• +(X1•X2•f(1,1,…,Xn-1,Xn))

• Can be taken even further:

• - f(X1,X2,…,Xn-1,Xn)= (X1’•X2’•…•Xn-1’•Xn’•f(0,0,…,0,0))

• + (X1•X2’•…•Xn-1’•Xn’•f(1,0,…,0,0)) + …

• + (X1•X2•…•Xn-1•Xn•f(1,1,…,1,1))

• › T10b: f(X1,X2,…,Xn-1,Xn)=

• (X1+f(0,X2,…,Xn-1,Xn))•(X1’+f(1,X2,…,Xn-1,Xn))

• Can be taken further as in the case of T10a

• We’ll see significance of Shannon’s expansion theorem later

60

BOOLEAN ALGEBRA THEOREMS

• Idempotency

› T1a: X+X=X

› T1b: X•X=X

• Null elements

› T2a: X+1=1

› T2b:X•0=0

• Involution

› T3: (X’)’=X

X Y X+Y X•Y X+X X•X X+1 X•0 X’ X’’

0 0 0 0 0 0 1 0 1 0

0 1 1 0 0 0 1 0 1 0

1 0 1 0 1 1 1 0 0 1

1 1 1 1 1 1 1 0 0 1

OR AND

61

BOOLEAN ALGEBRA THEOREMS

X Y X+Y X•Y

X+

(X•Y)

X•

(X+Y) X’ X’•Y

X+

(X’•Y) X’+Y

X•

(X’+Y)

0 0 0 0 0 0 1 0 0 1 0

0 1 1 0 0 0 1 1 1 1 0

1 0 1 0 1 1 0 0 1 0 0

1 1 1 1 1 1 0 0 1 1 1

• Absorption (akacovering)

› T4a: X+(X•Y)=X

› T4b: X•(X+Y)=X

› T5a: X+(X’•Y)=X+Y

› T5b: X•(X’+Y)=X•Y

OR AND

62

BOOLEAN ALGEBRA THEOREMS

X Y X+Y X•Y Y’ X•Y’

(X•Y)+

(X•Y’) X+Y’

(X+Y)•

(X+Y’)

0 0 0 0 1 0 0 1 0

0 1 1 0 0 0 0 0 0

1 0 1 0 1 1 1 1 1

1 1 1 1 0 0 1 1 1

• Absorption (aka combining)

› T6a: (X•Y)+(X•Y’)=X

› T6b: (X+Y)•(X+Y’)=X

OR AND

63

BOOLEAN ALGEBRA THEOREMS

• Absorption (aka combining)

› T7a: (X•Y)+(X•Y’•Z)=(X•Y)+(X•Z)

› T7b: (X+Y)•(X+Y’+Z) = (X+Y)•(X+Z)

X Y Z Y’ XY XY’Z

(XY)+
(XY’Z) XZ

(XY)+
(XZ) X+Y

X+Y’
+Z

(X+Y)•
(X+Y’+Z) X+Z

(X+Y)•
(X+Z)

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 1 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 0 1 1 1 1 1

1 0 0 1 0 0 0 0 0 1 1 1 1 1

1 0 1 1 0 1 1 1 1 1 1 1 1 1

1 1 0 0 1 0 1 0 1 1 1 1 1 1

1 1 1 0 1 0 1 1 1 1 1 1 1 1

64

BOOLEAN ALGEBRA THEOREMS

X Y X+Y X•Y X’ Y’ (X+Y)’ X’•Y’ (X•Y)’ X’+Y’

0 0 0 0 1 1 1 1 1 1

0 1 1 0 1 0 0 0 1 1

1 0 1 0 0 1 0 0 1 1

1 1 1 1 0 0 0 0 0 0

• DeMorgan’s theorem (very important!)

› T8a: (X+Y)’= X’•Y’

break (or connect) the bar & change the

break (or connect) the bar & change the

• X+Y = X•Y
sign

› T8b: (X•Y)’= X’+Y’

• X•Y = X+Y
sign

› Generalized DeMorgan’s theorem:

• GT8a: (X1+X2+…+Xn-1+Xn)’= X1’•X2’•…•Xn-1’•Xn’

• GT8b: (X1•X2•…•Xn-1•Xn)’= X1’+X2’+…+Xn-1’+Xn’

OR AND

65

BOOLEAN ALGEBRA THEOREMS

• Consensus Theorem

› T9a: (X•Y)+(X’•Z)+(Y•Z) = (X•Y)+(X’•Z)

› T9b: (X+Y)•(X’+Z)•(Y+Z) = (X+Y)•(X’+Z)

X Y Z X’ XY X’Z YZ

(XY)+
(X’Z)+

(YZ)
(XY)+
(X’Z) X+Y X’+Z Y+Z

(X+Y)•
(X’+Z)•
(Y+Z)

(X+Y)•
(X’+Z)

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 1 0 1 1 0 1 1 0 0

0 1 0 1 0 0 0 0 0 1 1 1 1 1

0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0 1 1 1 1 1

1 1 0 0 1 0 0 1 1 1 0 1 0 0

1 1 1 0 1 0 1 1 1 1 1 1 1 1

66

MORE THEOREMS?

• Shannon’s expansion theorem (also very important!)

• › T10a: f(X1,X2,…,Xn-1,Xn)=

• (X1’•f(0,X2,…,Xn-1,Xn))+(X1•f(1,X2,…,Xn-1,Xn))

• Can be taken further:

• - f(X1,X2,…,Xn-1,Xn)= (X1’•X2’•f(0,0,…,Xn-1,Xn))

• + (X1•X2’•f(1,0,…,Xn-1,Xn)) + (X1’•X2•f(0,1,…,Xn-1,Xn))

• +(X1•X2•f(1,1,…,Xn-1,Xn))

• Can be taken even further:

• - f(X1,X2,…,Xn-1,Xn)= (X1’•X2’•…•Xn-1’•Xn’•f(0,0,…,0,0))

• + (X1•X2’•…•Xn-1’•Xn’•f(1,0,…,0,0)) + …

• + (X1•X2•…•Xn-1•Xn•f(1,1,…,1,1))

• › T10b: f(X1,X2,…,Xn-1,Xn)=

• (X1+f(0,X2,…,Xn-1,Xn))•(X1’+f(1,X2,…,Xn-1,Xn))

• Can be taken further as in the case of T10a

• We’ll see significance of Shannon’s expansion theorem later

67

SWITCHING FUNCTIONS

• Objective:
Understand the logic functions of the digitalcircuits

• Course Outcomes(CAEC020.05):
Describe minimization techniques and other optimization
techniques for Boolean formulas in general and digital circuits.

68

SWITCHING FUNCTIONs

function of a given

• For n variables, there are 2n possible combinations of

values

› From all 0s to all 1s

• There are 2 possible values for the output of a

combination of values of n variables

› 0 and 1

• There are 22n different switching functions for

n variables

69

SWITCHING FUNCTION EXAMPLES

• n=0 (no inputs) 22n = 220 = 21 =2

› Output can be either 0 or 1

• n=1 (1 input, A) 22n = 221 = 22 =4

› Output can be 0, 1, A, or A’

switch
function

n=0

output

switch

function

n=1

outputA A f f f f0 1 2 3

0 0 1 0 1

1 0 0 1 1

f0 = 0

f1 = A’

f2 = A

3f = 1

70

SWITCHING FUNCTION EXAMPLES

• n=2 (2 inputs, A and B) 22n = 222 = 24 =16

A B f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

logic 0

NOT-OR or NOR

switch

function
n=2

output

A

B

f0 = 0

f1 = A’B’= (A+B)’

f2 =A’B

f3 = A’B’+A’B = A’(B’+B) =A’

Most frequently used Less frequentlyused

invertA

Least frequentlyused
5

71

SWITCHING FUNCTION EXAMPLES

• n=2 (2 inputs, Aand B) 22n = 222 = 24 =16

A B f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0

1 0 0

1 1 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

switch

function

n=2

output
A

B

invert B

exclusive-OR

f4 =AB’

f5 =A’B’+AB’= (A’+A)B’= B’

f6 =A’B+AB’

f7 = A’B’+A’B+AB’=A’(B’+B)+(A’+A)B’
= A’+B’ = (AB)’
Most frequently used Less frequentlyused

NOT-AND or NAND
Least frequentlyused

6

72

SWITCHING FUNCTION EXAMPLES

• n=2 (2 inputs, A andB) 22n = 222 = 24 =16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

switch

function

n=2

output 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0

1 0 0

A A B f f f f f f f f f f f f f f f f

B

AND

exclusive-NOR

buffer B

f8 =AB

f9 =A’B’+AB

f10 = A’B+AB = (A’+A)B =B

f11 = A’B’+A’B+AB = A’(B’+B)+(A’+A)B=A’+B

Most frequently used Less frequentlyused Least frequentlyused
7

73

SWITCHING FUNCTION EXAMPLES

• n=2 (2 inputs, A andB) 22n = 222 = 24 =16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0

1 0 0

1 1 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

switch

function

n=2

output
A A B f f f f f f f f f f f f f f f f

B

bufferA

OR

f12 = AB’+AB = A(B’+B) =A

f13 = A’B’+AB’+AB = A(B’+B)+A’B’= A+A’B’=A+B’

f14 = A’B+AB’+AB = A(B’+B)+(A’+A)B =A+B

f15 = A’B’+A’B+AB’+AB =A’(B’+B)+A(B’+B)

= A’+A =1 logic 1
Most frequently used Less frequentlyused Least frequentlyused

8

74

CANONICAL AND STANDERED FORMS

• Logical functions are generally expressed in terms of different
combinations of logical variables with their true forms as well as the
complement forms. Binary logic values obtained by the logical functions
and logic variables are in binary form. An arbitrary logic function can be
expressed in the following forms.

• Sum of the Products (SOP)

• Product of the Sums (POS)

75

CANONICAL AND STANDERED FORMS

• Product Term: In Boolean algebra, the logical product of several variables
on which a function depends is considered to be a product term. In other
words, the AND function is referred to as a product term or standard
product.

• Sum Term: An OR function is referred to as a sum term

• Sum of Products (SOP): The logical sum of two or more logical product
terms is referred to as a sum of products expression

• Product of Sums (POS): Similarly, the logical product of two or more
logical sum terms is called a product of sums expression

• Standard form: The standard form of the Boolean function is when it is
expressed in sum of the products or product of the sums fashion

76

CANONICAL AND STANDERED FORMS

• Nonstandard Form: Boolean functions are also sometimes expressed in
nonstandard forms like , which is neither a sum of
products form nor a product of sums form.

• Minterm: A product term containing all n variables of the function in
either true or complemented form is called the minterm. Each minterm is
obtained by an AND operation of the variables in their true form or
complemented form.

• Maxterm: A sum term containing all n variables of the function in either
true or complemented form is called the Maxterm. Each Maxterm is
obtained by an OR operation of the variables in their true form or
complemented form.

77

CANONICAL SUM OF PRODUCTS

• When a Boolean function is expressed as the logical sum of all the
minterms from the rows of a truth table, for which the value of the
function is 1, it is referred to as the canonical sum of product expression

• For example, if the canonical sum of product form of a three-variable logic
function F has the minterms , , and , this can be expressed as the sum of
the decimal codes corresponding to these minterms as below..

78

CANONICAL SUM OF PRODUCTS

• The canonical sum of products form of a logic function can be obtained by
using the following procedure:

• Check each term in the given logic function. Retain if it is a
minterm, continue to examine the next term in the same manner.

• Examine for the variables that are missing in each product which is
not a minterm. If the missing variable in the minterm is X, multiply
that minterm with (X+X’).

• Multiply all the products and discard the redundant terms.

79

CANONICAL SUM OF PRODUCTS

• Example: Obtain the canonical sum of product form of the following
function

• Solution:

• Hence the canonical sum of the product expression of the given function is

80

CANONICAL SUM OF PRODUCTS

The product of sums form is a method (or form) of simplifying the Boolean

expressions of logic gates. In this POS form, all the variables are ORed, i.e. written

as sums to form sum terms. All these sum terms are ANDed (multiplied) together to

get the product-of-sum form. This form is exactly opposite to the SOP form. So this

can also be said as ―Dual of SOP form‖.

(A+B) * (A + B + C) * (C +D)

(A+B) ̅ * (C + D + E ̅)

81

CANONICAL SUM OF PRODUCTS

POS form can be obtained by

• Writing an OR term for each input combination, which produces LOW

output.

• Writing the input variables if the value is 0, and write the complement of

the variable if its value is AND the OR terms to obtain the output function.

82

CANONICAL SUM OF PRODUCTS

Example:
Boolean expression for majority function F = (A + B + C) (A + B + C ‘) (A + B’ + C) (A’ + B + C)

Now write the input variables combination with high output. F = AB + BC + AC.

83

KARANAUGH MAP

• Boolean algebra helps us simplify expressions and circuits

• Karnaugh Map: A graphical technique for simplifying a Boolean
expression into either form:

– minimal sum of products(MSP)

– minimal product of sums (MPS)

• Goal of the simplification.

– There are a minimal number of product/sumterms

– Each term has a minimal number of literals

84

 A two-variable function has four possible minterms. We can re-
arrange
these minterms into a Karnaugh map

5

x y minterm

0 0 x’y’

0 1 x ’y

1 0 xy ’

1 1 x y

Y

0 1

X
0

1

x’y’ x’y

xy’ xy

 Now we can easily see which minterms contain commonliterals
◦ Minterms on the left and right sides contain y’ and y respectively
◦ Minterms in the top and bottom rows contain x’ and x respectively

Y

0 1

X
0

1

x’y’ x’y

xy’ xy

Y’ Y

X’ x’y’ x’y

X xy’ xy

KARANAUGH MAP

85

• Make as few rectangles as possible, to minimize the number of
products in the final expression.

• Make each rectangle as large as possible, to minimize the number of
literals in each term.

• Rectangles can be overlapped, if that makes them larger

• The most difficult step is grouping together all the 1s in the K-map

• Make rectangles around groups of one, two, four or eight1s

• All of the 1s in the map should be included in at least one
rectangle. Do not include any of the 0s

• Each group corresponds to one product term

6

Y

0 1 0 0

X 0 1 1 1

Z

KARANAUGH MAP

86

• Maxterms are grouped to find minimal PoS
expression

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

7

00

0
x

1

yz

01 11 10

KARANAUGH MAP

87

3

x y z f(x,y ,z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• Let’s consider simplifying f(x,y,z) = xy + y’z + xz

• You should convert the expression into a sum of minterms form,

• The easiest way to do this is to make a truth table for the
function, and then read off the minterms

• You can either write out the literals or use the minterm
shorthand

• Here is the truth table and sum of minterms for our example:

f(x,y,z) = x’y’z + xy’z + xyz’
+ xyz
= m1 + m5 + m6 + m7

3 Variable k-Map

88

4

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

YZ

00 01 11 10

X
0

1

x’y’z’ x’y’z x’yz x’yz’

xy’z’ xy’z xyz xyz’

 For a three-variable expression with inputs x, y, z, the arrangement of

minterms is more tricky:
YZ

00 01 11 10

X
0

1

m0 m1 m3 m2

m4 m5 m7 m6

3 VARIABLE K-MAP

89

• Here is the filled in K-map, with all groups shown

– The magenta and green groups overlap, which makes eachof
them as

large as possible

– Minterm m6 is in a group all by itslonesome

• The final MSP here is x’z + y’z + xyz’

Y

0 1 1 0

X 0 1 0 1

Z

3-VARIABLE K-MAP

90

• There may not necessarily be a unique MSP. The K-map below yields
two

valid and equivalent MSPs, because there are two possible ways to

include minterm m7

6

Y

0 1 0 1

X 0 1 1 1

Z

y’z + yz’ + xy y’z + yz’ + xz

• Remember that overlapping groups is possible, as shown above

Y

0 1 0 1

X 0 1 1 1

Z

Y

0 1 0 1

X 0 1 1 1

Z

3-VARIABLE K-MAP

91

• Maxterms are grouped to find minimal PoS
expression

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

7

00

0
x

1

yz

01 11 10

3-VARIABLE K-MAP

92

4-VARIABLE K-MAP

• We can do four-variable expressions too!
– The minterms in the third and fourth columns, and in thethird

and
fourth rows, are switched around.

– Again, this ensures that adjacent squares have common literals

• Grouping minterms is similar to the three-variable case, but:
– You can have rectangular groups of 1, 2, 4, 8 or 16 minterms
– You can wrap around all four sides

93

4

Y

m0 m1 m3 m2

m4 m5 m7 m6
X

W
m12 m13 m15 m14

m8 m9 m11 m10

Z

Y

w’x’y’z’ w’x’y’z w’x’yz w’x’yz’

w’xy’z’ w’xy’z w’xyz w’xyz’
X

W
wxy’z’ wxy’z wxyz wxyz’

wx’y’z’ wx’y’z wx’yz wx’yz’

Z

4-VARIABLE K-MAP

94

• The express dy a sum of minterms,s -map:

• We can make the following groups, resulting in the MSP x’z’ + xy’z

5

ion
Y
isalrea

1 0 0 1

0 1 0 0
X

W
0 1 0 0

1 0 0 1

Z

o her
Y
e’s the K

m0 m1 m3 m2

m4 m5 m7 m6
X

W
m12 m13 m15 m14

m8 m9 m11 m10

Z

Y

1 0 0 1

0 1 0 0
X

W
0 1 0 0

1 0 0 1

Z

Example: Simplify m0+m2+m5+m8+m10+m13

Y

w’x’y’z’ w’x’y’z w’x’yz w’x’yz’

w’xy’z’ w’xy’z w’xyz w’xyz’
X

W
wxy’z’ wxy’z wxyz wxyz’

wx’y’z’ wx’y’z wx’yz wx’yz’

Z

4-VARIABLE K-MAP

95

• F(W,X,Y,Z)= ∏ M(0,1,2,4,5)

6

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ 0+0y+z x’+y+0z1’ 1 x’+y’+z

10

0

1

x zx’+y’+z’1
y

0
00

0
01

y z 1
1

0
1

100 0 1 1

F(W,X,Y,Z)= Y . (X + Z)

0
x

1

4-VARIABLE K-MAP

96

5-VARIABLE K-MAP

• Objective:

Understand the 5-Variable K-map

• Course Outcomes(CAEC020.06):

Evaluate the functions using various types of minimizing algorithms

like Karanaugh map method.

97

3

V= 0
Y

m0 m 1 m3 m2

m4 m5 m7 m6
X

W
m 12 m 13 m 15 m 14

m8 m9 m11 m 10

Z

V= 1Y

m16 m17 m19 m8

m20 m21 m23 m22
X

W
m28 m29 m31 m30

m24 m25 m27 m26

Z

5-variable K-map

98

• In our example, we can write f(x,y,z) in two equivalentways

4

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

f(x,y,z) = x’y’z + xy’z + xyz’
+ xyz

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

6f(x,y,z) = m1 + m5 + m + m7

• In either case, the resulting K-map is shown below

Y

0 1 0 0

X 0 1 1 1

Z

5-VARIABLE K-MAP

99

5

V= 1

1

V= 0

1

1 1

1 1 1

1 1

1 1 1

1 1

f = XZ’
Σm(4,6,12,14,20,22,28,30)

Σm(0,1,4,5)
Σm(0,4,16,20)

+ V’W’Y’
+ W’Y’Z’
+ VWXY
+ V’WX’YZ

Σm(30,31)
m11

5-VARIABLE K-MAP

100

• You don’t always need all 2n input combinations in ann-variable
function

– If you can guarantee that certain input combinations never
occur

– If some outputs aren’t used in the rest of the circuit

• We mark don’t-care outputs in truth tables and K-maps withXs.

3

x y z f (x , y , z)

0 0 0 0

0 0 1 1

0 1 0 X

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 X

1 1 1 1

DON’T CARE CONDITION

101

• Find a MSP for

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) = m(7,10,13)

This notation means that input combinations wxyz = 0111,1010

and 1101(corresponding to minterms m7, m10 and m13) are unused.

4

Y

1 0 0 1

1 1 x 0
X

W
0 x 1 1

1 0 0 x

Z

DON’T CARE CONDITION

102

5

• Find a MSP for:

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) = m(7,10,13)
Y

1 1

1 1 x

x 1 1
X

W
1 x

Z

f(w,x,y,z)= x’z’ + w’xy’ + wxy

DON’T CARE CONDITIONS

103

• The objectives of this lesson are to learn about:

1. Universal gates - NAND and NOR.

2. How to implement NOT, AND, and OR gate using NAND gates only.

3. How to implement NOT, AND, and OR gate using NOR gates only.

4. Equivalent gates.

NAND NOR IMPLEMENTATION

104

NAND NOR IMPLEMENTATION

105

106

NAND NOR IMPLEMENTATION

107

NAND NOR IMPLEMENTATION

108

TWO LEVEL Implementation

OR NAND Function:

Implement the following function

Since ‘F’ is in POS form Z can be implemented by using NOR NOR circuit.

Similarly complementing the output we can get F,or by using NOR –OR

Circuit as shown in figure

109

TWO LEVEL Implementation

110

It can also be implemented using OR-NAND circuit as it is equivalent
to NOR-OR circuit

TWO LEVEL Implementation

111

Two Level Implementation

• Example1: implement the following function F = AB +CD

• The implementation of Boolean functions with NAND gates requires
that the functions be in

• sum of products (SOP) form.

• The Rule

• This function can This function can be implemented by three
different ways as shown in the circuit diagram a, b, c

112

Two Level Implementation

Example 2: Consider the following Boolean function, implement the
circuit diagram by using
multilevel NOR gate. F = (AB ′ + A′B)i(C + D′)

113

Two Level Implementation

Exclusive‐OR (XOR) Function:
XOR: x y = xy’ + x’y

114

Two Level Implementation

Exclusive‐NOR = equivalence
(x y)’ = (xy’ + x’y)’
= (x’ + y)(x + y’) = x’y’ + xy

115

TWO LEVEL Implementation

116

TWO LEVEL Implementation

OR NAND Function:

Implement the following function

Since ‘F’ is in POS form Z can be implemented by using NOR NOR circuit.

Similarly complementing the output we can get F,or by using NOR –OR

Circuit as shown in figure

117

TWO LEVEL Implementation

118

It can also be implemented using OR-NAND circuit as it is equivalent
to NOR-OR circuit

TWO LEVEL Implementation

119

Two Level Implementation

• Example1: implement the following function F = AB +CD

• The implementation of Boolean functions with NAND gates requires
that the functions be in

• sum of products (SOP) form.

• The Rule

• This function can This function can be implemented by three
different ways as shown in the circuit diagram a, b, c

120

Two Level Implementation

Example 2: Consider the following Boolean function, implement the
circuit diagram by using
multilevel NOR gate. F = (AB ′ + A′B)i(C + D′)

121

Two Level Implementation

Exclusive‐OR (XOR) Function:
XOR: xy’ + x’y

122

Two Level Implementation

Exclusive‐NOR = equivalence
= (x’ + y)(x + y’) = x’y’ + xy

123

COMBINATIONAL CIRCUITS

UNIT 3

COMBINATIONAL

CIRCUITS

124

Combinational Circuits

• Combinational circuit is a circuit in which we combine the different
gates in the circuit, for example encoder, decoder, multiplexer and
demultiplexer.

Some of the characteristics of combinational circuits are following:

• The output of combinational circuit at any instant of time, depends
only on the levels present at input terminals.

• The combinational circuit do not use any memory. The previousstate
of input does not have any effect on the present state of the circuit.

• A combinational circuit can have an n number of inputs and m number
of outputs.

125

• Block diagram:
possible combinations of input values.

• Specific functions :of combinationalcircuits
Adders,subtractors,multiplexers,comprators,encoder,Decoder.

MSI Circuits and standardcells

COMBINATIONAL CIRCUITS

126

Analysis procedure

To obtain the output Boolean functions from a logic diagram,

proceed as follows:

1. Label all gate outputs that are a function of input variables with

arbitrary symbols. Determine the Boolean functions for eachgate

output.

2. Label the gates that are a function of input variables and

previously labeled gates with other arbitrary symbols. Find the

Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the

circuit are obtained.

ANALYSIS PROCEDURE

127

DESIGN PROCEDURE

Design Procedure

1.The problem is stated

2.The number of available input variables and requiredoutput

variables is determined.

3.The input and output variables are assigned lettersymbols.

4.The truth table that defines the required relationship between inputs

and outputs is derived.

5.The simplified Boolean function for each output isobtained.

6.The logic diagram is drawn.

128

BINARY ADDERS

ADDERS

Half Adder

A Half Adder is a combinational circuit with two binary inputs (augends
and addend bits and two binary outputs (sum and carry bits.) It adds
the two inputs (A and B) and produces the sum (S) and the carry (C)
bits.

Fig 1:Block diagram Fig 2:Truth table

Sum=A′B+AB′=A B

Carry=AB

129

Full Adder

The full-adder adds the bits A and B and the carry from the previous
column called the carry-in Cin and outputs the sum bit S and the

carry bit called the carry-out Cout .

BINARY ADDERS

Fig 3: block diagram Fig 4:Truth table

130

Half Subtractor

A Half-subtractor is a combinational circuit with two inputs A and B
and two outputs difference(d) and barrow(b).

Fig 5:Block diagram Fig 6: Truth table

BINARY SUBTRACTORS

d=A′B+AB′=A B

b=A′B

131

BINARY SUBTRACTORS

Full subtractor

The full subtractor perform subtraction of three input bits: the
minuend , subtrahend , and borrow in and generates two output

bits difference and borrow out .

Fig 7:Block diagram Fig 8: Truth table

132

PARALLEL ADDER AND SUBTRACTOR

A binary parallel adder is a digital circuit that adds two binary
numbers in parallel form and produces the arithmetic sum of those
numbers in parallel form

Fig 9:parallel adder

Fig 10:parallel subtractor

133

CARRY LOOK-A- HEAD ADDER

• In parallel-adder , the speed with which an addition can be
performed is governed by the time required for the carries to
propagate or ripple through all of the stages of the adder.

• The look-ahead carry adder speeds up the process by eliminating
this ripple carry delay.

134

CARRY LOOK-A- HEAD ADDER

Fig:1 block diagram

135

BINARY MULTIPLIER

A binary multiplier is an electronic circuit used in digital electronics,
such as a computer, to multiply two binary numbers. It is built using
binary adders.

Example: (101 x 011)

Partial products are: 101 × 1, 101 × 1, and 101 ×0

×

1 0 1

0 1 1

1 0 1

1 0 1

0 0 0

0 0 1 1 1 1

136

• We can also make an n × m “block” multiplier and use that to
form partial products.

• Example: 2 × 2 – The logic equations for each partial-product
binary digit are shown below

• We need to "add" the columns to get the product bits P0, P1,
P2, and P3.

BINARY MULTIPLIER

137

HA HA

A0

A1
B1 B0

B1 B0

BINARY MULTIPLIER

P3 P2 P1 P0

Fig 1: 2 x 2 multiplier array

138

MAGNITUDE COMPARATOR

Magnitude comparator takes two numbers as input in binary form
and determines whether one number is greater than, less than or
equal to the other number.

1-Bit Magnitude Comparator

A comparator used to compare two bits is called a single bit

comparator.

Fig :1 Block diagram

139

MAGNITUDE COMPARATOR

Fig 2:Logic diagram of 1-bit comparator

140

MAGNITUDE COMPARATOR

• 2 Bit magnitude comparator

Fig :3 Block diagram

Fig :4 Truth table

141

MAGNITUDE COMPARATOR

Fig 5:Logic diagram of 2-bit comparator

142

BCD ADDER

BCD Adder

• Perform the addition of two decimal digits in BCD, together with an
input carry from a previous stage.

• When the sum is 9 or less, the sum is in proper BCD form and no
correction is needed.

• When the sum of two digits is greater than 9, a correction of 0110
should be added to that sum, to produce the proper BCD result.
This will produce a carry to be added to the next decimal position.

143

DECODER

• A binary decoder is a combinational logic circuit that converts
binary information from the n coded inputs to a maximum of
2nunique outputs.

• We have following types of decoders 2x4,3x8,4x16….

2x4 decoder

Fig 1: Block diagram Fig 2:Truth table

144

DECODERS

Higher order decoder implementation using lower order.

Ex:4x16 decoder using 3x8 decoders

145

ENCODERS

• An Encoder is a combinational circuit that performs the reverse
operation of Decoder. It has maximum of 2n input lines and ‘n’
output lines.

• It will produce a binary code equivalent to the input, which is active
High.

Fig 1:block diagram of 4x2 encoder

146

ENCODERS

Octal to binary encoder

Fig 3: Logic diagramFig 2:Truth table

147

ENCODER

Priority encoder

A 4 to 2 priority encoder has four inputs Y3, Y2, Y1 & Y0 and two
outputs A1 & A0. Here, the input, Y3 has the highest priority,
whereas the input, Y0 has the lowestpriority.

Fig 4:Truth table

148

MULTIPLEXERS

• Multiplexer is a combinational circuit that has maximum of 2n data
inputs, ‘n’ selection lines and single output line. One of these data
inputs will be connected to the output based on the values of
selection lines.

• We have different types of multiplexers 2x1,4x1,8x1,16x1,32x1……

Fig 1: Block diagram Fig 2: Truth table

149

MULTIPLEXERS

Fig 3: Logic diagram

• Now, let us implement the higher-order Multiplexer using

lower-order Multiplexers.

150

MULTIPLEXERS

• Ex: 8x1 Multiplexer

Fig 3: 8x1 Multiplexerdiagram

151

MULTIPLEXERS

• Implementation of Boolean function using multiplexer

• f(A1 , A2 , A3) =Σ(3,5,6,7) implementation using 8x1 mux

152

MULTIPLEXERS

f(A1 , A2 , A3) =Σ(3,5,6,7) implementation using 4x1 mux

Method:1

Fig 1: Truth table

153

MULTIPLEXERS

Method:2

Fig 1: Truth table

154

DEMULTIPLEXER

• A demultiplexer is a device that takes a single input line and routes
it to one of several digital output lines.

• A demultiplexer of 2n outputs has n select lines, which are used to
select which output line to send the input.

• We have 1x2,1x4,8x1…. Demultiplexers.

Fig:1 Block diagram Fig :2 Truth table

155

DEMULTIPLEXER

Boolean functions for each output as

Fig:3 Logic diagram

156

CODE CONVERTERS

A code converter is a logic circuit whose inputs are bit patterns
representing numbers (or character) in one code and whose
outputs are the corresponding representation in a different code.

Design of a 4-bit binary to gray code converter

Fig :1 Truth table

157

CODE CONVERTERS

K-map simplification

158

CODE CONVERTERS

Fig: 2 Logic diagram

159

UNIT 4

INTRODUCTION TO

SEQUENTIAL LOGIC CIRCUITS

SEQUENTIAL LOGIC CIRCUITS

160

SEQUENTIAL LOGIC CIRCUITS

Sequential logic circuit consists of a combinational circuit with

storage elements connected as a feedback to combinationalcircuit

• output depends on the sequence of inputs (past and present)

• stores information (state) from past inputs

SEQUENTIAL LOGIC CIRCUITS

Figure 1: Sequential logic circuits

161

SEQUENTIAL LOGIC CIRCUITS

• Output depends on

– Input

– Previous state of the circuit

• Flip-flop: basic memory

element

• State table: output for all

combinations of input and

previous states(Truth Table)

162

SEQUENTIAL LOGIC CIRCUITS

1. Sequential circuit receives the binary informationfrom

external inputs and with the present state of the storage

elements together determine the binary value of the

outputs.

2. The output in a sequential circuit are a function of not

only the inputs, but also the present state of the storage

elements.

3. The next state of the storage elements is also afunction

of external inputs and the present state.

4. There are two main types of sequential circuits

1. synchronous sequential circuits

2. asynchronous sequential circuits

163

Synchronous sequential circuits

It is a system whose behaviour can be

defined from the knowledge of its signals

at discrete instants of time

Asynchronous sequential circuits

It depends upon the input signals at any

instant of time and the order in which the

input changes

SEQUENTIAL LOGIC CIRCUITS

164

Combinational vs. Sequential

COMBINATIONAL LOGIC CIRCUIT

Combinational logic circuit consists of input variables, logic gates

and output variables. The logic gate accepts signals from the inputs

and generates signals to the outputs.

n input

variables
m output

variables

For n input variables there are 2n possible combinations of binary input variables

165

SEQUENTIAL LOGIC CIRCUITS

Sequential logic circuit consists of a combinational circuit with

storage elements connected as a feedback to combinationalcircuit

• output depends on the sequence of inputs (past and present)

• stores information (state) from past inputs

Combinational vs. Sequential

Figure 1: Sequential logic circuits

166

Combinational vs. Sequential

Combinational Circuit

always gives the same output for a given set of inputs

ex: adder always generates sum and carry,

regardless of previous inputs

Sequential Circuit

stores information

output depends on stored information (state) plus input

so a given input might produce different outputs,

depending on the stored information

example: ticket counter

advances when you push the button

output depends on previous state

useful for building ―memory‖ elements and ―state machines‖

167

Combinational vs. Sequential

168

LATCHES

STORAGE ELEMENTS

Storage elements in a digital circuit can maintain a binary state

indefinitely, until directed by an input signal to switch states. The

major difference among various storage elements are the number of

input they posses and the manner in which the inputs affect the

binary state.There are two types of storage elements

1. Latches

2. Flipflops

Storage elements that operate with signal level are referred as latch

and those controlled by a clock transition are referred asflipflops.

169

LATCHES

1. LATCHES:

A latch has a feedback path, so information can be retained by the device.

Therefore latches can be memory devices, and can store one bit of data for

as long as the device is powered. As the name suggests, latches are used to

"latch onto" information and hold in place. Latches are very similar

to flip-flops, but are not synchronous devices, and do not operate on clock

edges as flip-flops do. Latch is a level sensitive device. Latch is a

monostable multivibrator

2. FLIPFLOPS:

A flip-flop is a circuit that has two stable states and can be used to store state

information. A flip-flop is a bistable multivibrator. The circuit can be made to

change state by signals applied to one or more control inputs and will have one

or two outputs. It is the basic storage element in sequential logic. Flip-flops and

latches are fundamental building blocks of digital electronics systems used in

computers, communications, and many other types of systems. Flipflop is a

edge sensitive device.

170

https://en.wikibooks.org/wiki/Digital_Circuits/Flip-Flops
https://en.wikibooks.org/wiki/Digital_Circuits/Flip-Flops
https://en.wikibooks.org/wiki/Digital_Circuits/Flip-Flops

LATCHES

SR LATCH

An SR latch (Set/Reset) is an asynchronous device: it works independently of control

signals and relies only on the state of the S and R inputs. In the image we can see that an

SR flip-flop can be created with two NOR gates that have a cross-feedback loop. SR

latches can also be made from NAND gates, but the inputs are swapped and negated. In

this case, it is sometimes called an SR latch.

R is used to ―reset‖ or ―clear‖ the element – set it to zero. S is used to ―set‖ the element –

set it to one.

If both R and S are one, out could be either zero or one. ―quiescent‖ state -- holds its

previous value. note: if a is 1, b is 0, and vice versa

171

LATCHES

GATED D-LATCH

The D latch (D for "data") or transparent latch is a simple extension of the gated SR

latch that removes the possibility of invalid input states. Two inputs: D (data) and WE

(write enable)

when WE = 1, latch is set to value of D

S = NOT(D), R = D

when WE = 0, latch holds previous value

S = R = 1

172

FLIPFLOPS:RS FLIPFLOP

Flip flops

A flip flop is an electronic circuit with two stable states that can be used to store

binary data. The stored data can be changed by applying varying inputs. Flip-flops

and latches are fundamental building blocks of digital electronics systems used in

computers, communications, and many other types of systems. Flip-flops and

latches are used as data storage elements. There are 4 types of flipflops

1. RS flip flop

2. Jk flip flop

3. D flip flop

4. T flip flop

Applications of Flip-Flops

These are the various types of flip-flops being used in digital electronic circuits and

the applications like Counters, Frequency Dividers, Shift Registers, Storage

Registers

173

https://electronicsforu.com/technology-trends/latest-storage-products
https://electronicsforu.com/technology-trends/latest-storage-products
https://electronicsforu.com/technology-trends/latest-storage-products
https://electronicsforu.com/technology-trends/latest-storage-products

FLIPFLOPS:RS FLIPFLOP

EDGE-TRIGGERED FLIP FLOPS

Characteristics

- State transition occurs at the rising edge or

falling edge of the clock pulse

Latches

respond to the input only during these periods

Edge-triggered Flip Flops (positive)

respond to the input only at this time

174

FLIPFLOPS:RS FLIPFLOP

FLIP FLOPS

175

FLIPFLOPS:RS FLIPFLOP

SR Flip-Flop

The SR flip-flop, also known as a SR Latch, can be considered as one of the most basic

sequential logic circuit possible. This simple flip-flop is basically a one-bit memory bistable

device that has two inputs, one which will ―SET‖ the device (meaning the output = ―1‖),

and is labelled S and one which will ―RESET‖ the device (meaning the output = ―0‖),

labelled R.The reset input resets the flip-flop back to its original state with an output Q that

will be either at a logic level ―1‖ or logic ―0‖ depending upon this set/reset condition.

A basic NAND gate SR flip-flop circuit provides feedback from both of its outputs back to

its opposing inputs and is commonly used in memory circuits to store a single data bit.

Then the SR flip-flop actually has three inputs, Set, Reset and its current output Q relating

to it’s current state or history.

Truth Table for this Set-Reset Function

176

FLIPFLOPS:JK FLIPFLOP

JK Flip flop
The JK Flip-flop is similar to the SR Flip-flop but there is no change in state when

the J and K inputs are both LOW. The basic S-R NAND flip-flop circuit has many

advantages and uses in sequential logic circuits but it suffers from two basic

switching problems.

1. the Set = 0 and Reset = 0 condition (S = R = 0) must always be avoided

2. if Set or Reset change state while the enable (EN) input is high the correct

latching action may not occur

Then to overcome these two fundamental design problems with the SR flip-flop

design, the JK flip Flop was developed by the scientist name Jack Kirby.

The JK flip flop is basically a gated SR flip-flop with the addition of a clock input

circuitry that prevents the illegal or invalid output condition that can occur when

both inputs S and R are equal to logic level ―1‖. Due to this additional clocked

input, a JK flip-flop has four possible input combinations, ―logic 1‖, ―logic 0‖, ―no

change‖ and ―toggle‖. The symbol for a JK flip flop is similar to that of an SR

Bistable Latch as seen in the previous tutorial except for the addition of a clock

input.

177

FLIPFLOPS:JK FLIPFLOP

Both the S and the R inputs of the previous SR bistable have now been replaced by two inputs

called the J and K inputs, respectively after its inventor Jack Kilby. Then thisequates

to: J = S and K = R.

The two 2-input AND gates of the gated SR bistable have now been replaced by two 3-

input NAND gates with the third input of each gate connected to the outputs at Q and Q. This cross

coupling of the SR flip-flop allows the previously invalid condition of S = ―1‖ and R = ―1‖ state to be

used to produce a ―toggle action‖ as the two inputs are now interlocked.

 If the circuit is now ―SET‖ the J input is inhibited by the ―0‖ status of Q through the

lower NAND gate. If the circuit is ―RESET‖ the K input is inhibited by the ―0‖ status of Q through

the upper NAND gate. As Q and Q are always different we can use them to control the input. When

both inputs J and K are equal to logic ―1‖, the JK flip flop toggles as shown in the following truth

table.

178

FLIPFLOPS:JK FLIPFLOP

The Truth Table for the JK Function

Then the JK flip-flop is basically an SR flip flop

with feedback which enables only one of its two

input terminals, either SET or RESET to be

active at any one time thereby eliminating the

invalid condition seen previously in the SR flip

flop circuit. Also when both the J and

the K inputs are at logic level ―1‖ at the same

time, and the clock input is pulsed ―HIGH‖, the

circuit will ―toggle‖ from its SET state to a

RESET state, or visa-versa. This results in the JK

flip flop acting more like a T-type toggle flip-flop

when both terminals are―HIGH‖.

179

FLIPFLOPS:T FLIPFLOP

T FLIP FLOP
We can construct a T flip flop by any of the following methods. Connecting the output feedback

to the input, in SR flip flop. Connecting the XOR of T input and Q PREVIOUS output to the

Data input, in D flip flop. Hard – wiring the J and K inputs together and connecting it to T input,

in JK flip – flop.

180

FLIPFLOPS:T FLIPFLOP

Working
T flip – flop is an edge triggered device i.e. the low to high or high to low transitions

on a clock signal of narrow triggers that is provided as input will cause the change in

output state of flip – flop. T flip – flop is an edge triggered device.

Truth Table of T flip – flop

181

FLIPFLOPS:T FLIPFLOP

If the output Q = 0, then the upper NAND is in enable state and lower NAND gate is in

disable condition. This allows the trigger to pass the S inputs to make the flip – flop in SET

state i.e. Q = 1.

If the output Q = 1, then the upper NAND is in disable state and lower NAND gate is in

enable condition. This allows the trigger to pass the R inputs to make the flip – flop in RESET

state i.e. Q =0.

In simple terms, the operation of the T flip – flop is

When the T input is low, then the next sate of the T flip flop is same as the present state.

T = 0 and present state = 0 then the next state = 0

T = 1 and present state = 1 then the next state = 1

When the T input is high and during the positive transition of the clock signal, the next stateof

the T flip – flop is the inverse of present state.

T = 1 and present state = 0 then the next state = 1

T = 1 and present state = 1 then the next state = 0

Applications
Frequency Division Circuits.

2 – Bit Parallel Load Registers.

182

FLIPFLOPS:D FLIPFLOP

D FLIP FLOP
The D-type flip-flop is a modified Set-Reset flip-flop with the addition of an inverter to prevent

the S and R inputs from being at the same logic level

One of the main disadvantages of the basic SR NAND Gate Bistable circuit is that the

indeterminate input condition of SET = ―0‖ and RESET = ―0‖ isforbidden.

This state will force both outputs to be at logic ―1‖, over-riding the feedback latching action and

whichever input goes to logic level ―1‖ first will lose control, while the other input still at logic

―0‖ controls the resulting state of the latch.

But in order to prevent this from happening an inverter can be connected between the ―SET‖ and

the ―RESET‖ inputs to produce another type of flip flop circuit known as a Data Latch, Delay

flip flop, D-type Bistable, D-type Flip Flop or just simply a D Flip Flop as it is more generally

called.

The D Flip Flop is by far the most important of the clocked flip-flops as it ensures that ensures

that inputs S and R are never equal to one at the same time. The D-type flip flop are constructed

from a gated SR flip-flop with an inverter added between the S and the R inputs to allow for a

single D (data) input.

Then this single data input, labelled ―D‖ and is used in place of the ―Set‖ signal, and the inverter

is used to generate the complementary ―Reset‖ input thereby making a level-sensitive D-type

flip-flop from a level-sensitive SR-latch as now S = D and R = not D as shown.
183

FLIPFLOPS:D FLIPFLOP

D-type Flip-Flop Circuit

We remember that a simple SR flip-flop requires two inputs, one to ―SET‖ the output and one

to ―RESET‖ the output. By connecting an inverter (NOT gate) to the SR flip-flop we can

―SET‖ and ―RESET‖ the flip-flop using just one input as now the two input signals are

complements of each other. This complement avoids the ambiguity inherent in the SR latch

when both inputs are LOW, since that state is no longer possible. Thus this single input is

called the ―DATA‖ input. If this data input is held HIGH the flip flop would be ―SET‖ and

when it is LOW the flip flop would change and become ―RESET‖. However, this would be

rather pointless since the output of the flip flop would always change on every pulse applied

to this data input.

184

FLIPFLOPS:D FLIPFLOP

To avoid this an additional input called the ―CLOCK‖ or ―ENABLE‖ input is used to isolate the

data input from the flip flop’s latching circuitry after the desired data has been stored. The effect

is that D input condition is only copied to the output Q when the clock input is active. This then

forms the basis of another sequential device called a D Flip Flop.

The ―D flip flop‖ will store and output whatever logic level is applied to its data terminal so long

as the clock input is HIGH. Once the clock input goes LOW the ―set‖ and ―reset‖ inputs of the

flip-flop are both held at logic level ―1‖ so it will not change state and store whatever data was

present on its output before the clock transition occurred. In other words the output is ―latched‖at

either logic ―0‖ or logic ―1‖.

Truth Table for the D-type Flip Flop

Note that: ↓ and ↑ indicates direction of

clock pulse as it is assumed D-type flip

flops are edge triggered

185

FLIPFLOPS:MASTER SLAVE FLIPFLOP

MASTER SLAVE FLIPFLOP
Master-slave flip flop is designed using two separate flip flops. Out of these, one acts as

the master and the other as a slave. The figure of a master-slave J-K flip flop is shown

below.

From the above figure you can see that both the J-K flip flops are presented in a

series connection. The output of the master J-K flip flop is fed to the input of the slave

J-K flip flop. The output of the slave J-K flip flop is given as a feedback to the input of

the master J-K flip flop. The clock pulse [Clk] is given to the master J-K flip flop and it

is sent through a NOT Gate and thus inverted before passing it to the slave J-K flip

flop.

186

FLIPFLOPS:MASTER SLAVE FLIPFLOP

187

FLIPFLOPS:MASTER SLAVE FLIPFLOP

The truth table corresponding to the working of the flip-flop shown in Figure is given by

Table I. Here it is seen that the outputs at the master-part of the flip-flop (data enclosed

in red boxes) appear during the positive-edge of the clock (red arrow). However at this

instant the slave-outputs remain latched or unchanged. The same data is transferred to

the output pins of the master-slave flip-flop (data enclosed in blue boxes) by the slave

during the negative edge of the clock pulse (blue arrow). The same principle is further

emphasized in the timing diagram of master-slave flip-flop shown by Figure 3. Here

the green arrows are used to indicate that the slave-output is nothing but the master-

output delayed by half-a-clock cycle. Moreover it is to be noted that the working of any

other type of master-slave flip-flop is analogous to that of the master slave JK flip-flop

explained here.

188

https://www.electrical4u.com/truth-table/
https://www.electrical4u.com/truth-table/
https://www.electrical4u.com/truth-table/
https://www.electrical4u.com/latches-and-flip-flops/
https://www.electrical4u.com/latches-and-flip-flops/
https://www.electrical4u.com/latches-and-flip-flops/
https://www.electrical4u.com/latches-and-flip-flops/

FLIPFLOPS:MASTER SLAVE FLIPFLOP

.

189

FLIPFLOPS:EXCITATION FUNCTIONS

In electronics design, an excitation table shows the minimum inputs that are necessary to generate a

particular next state (in other words, to "excite" it to the next state) when the current state is known.

They are similar to truth tables and state tables, but rearrange the data so that the current state and next

state are next to each other on the left-hand side of the table, and the inputs needed to make that state

change happen.

All flip-flops can be divided into four basic types: SR, JK, D and T. They differ in the number of

inputs and in the response invoked by different value of input signals.

The characteristic table in the third column of Table 1 defines the state of each flip-flop as a function of

its inputs and previous state. Q refers to the present state and Q(next) refers to the next state after the

occurrence of the clock pulse. The characteristic table for the RS flip-flop shows that the next state is

equal to the present state when both inputs S and R are equal to 0. When R=1, the next clock pulse

clears the flip-flop. When S=1, the flip-flop output Q is set to 1. The equation mark (?) for the next state

when S and R are both equal to 1 designates an indeterminate next state.

The characteristic table for the JK flip-flop is the same as that of the RS when J and K are replaced by S

and R respectively, except for the indeterminate case. When both J and K are equal to 1, the next state is

equal to the complement of the present state, that is, Q(next) = Q'.

The next state of the D flip-flop is completely dependent on the input D and independent of the present

state.

The next state for the T flip-flop is the same as the present state Q if T=0 and complemented if T=1.

190

https://en.wikipedia.org/wiki/Electronics_design
https://en.wikipedia.org/wiki/Electronics_design
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/State_table

SR Flip flop

FLIPFLOPS:EXCITATION FUNCTIONS

FLIP-FLOPSYMBOL CHARACTERISTIC TABLE

CHARACTERISTIC EQUATION EXCITATION TABLE

191

JK Flip flop

FLIPFLOPS:EXCITATION FUNCTIONS

FLIP-FLOPSYMBOL CHARACTERISTIC TABLE

CHARACTERISTIC EQUATION EXCITATION TABLE

192

D Flip flop

FLIPFLOPS:EXCITATION FUNCTIONS

FLIP-FLOPSYMBOL CHARACTERISTIC TABLE

CHARACTERISTIC EQUATION EXCITATION TABLE

193

T Flip flop

FLIPFLOPS:EXCITATION FUNCTIONS

FLIP-FLOPSYMBOL CHARACTERISTIC TABLE

CHARACTERISTIC EQUATION EXCITATION TABLE

194

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

CONVERTION OF SR FLIP FLOP TO JK FLIPFLOP

J and K will be given as external inputs to S and R. As shown in the logic diagram below, S

and R will be the outputs of the combinational circuit.

The truth tables for the flip flop conversion are given below. The present state is represented

by Qp and Qp+1 is the next state to be obtained when the J and K inputs are applied.

For two inputs J and K, there will be eight possible combinations. For each combination of

J, K and Qp, the corresponding Qp+1 states are found. Qp+1 simply suggests the future

values to be obtained by the JK flip flop after the value of Qp. The table is then completed

by writing the values of S and R required to get each Qp+1 from the corresponding Qp. That

is, the values of S and R that are required to change the state of the flip flop from Qp to

Qp+1 are written.

195

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

196

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

CONVERTION OF JK FLIP FLOP TO SR FLIPFLOP

This will be the reverse process of the above explained conversion. S and R will be the

external inputs to J and K. As shown in the logic diagram below, J and K will be the

outputs of the combinational circuit. Thus, the values of J and K have to be obtained in

terms of S, R and Qp. The logic diagram is shown below.

A conversion table is to be written using S, R, Qp, Qp+1, J and K. For two inputs, S and

R, eight combinations are made. For each combination, the corresponding Qp+1 outputs

are found ut. The outputs for the combinations of S=1 and R=1 are not permitted for an

SR flip flop. Thus the outputs are considered invalid and the J and K values are taken as

―don’t cares‖.

197

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

198

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

CONVERTION OF SR FLIP FLOP TO D FLIPFLOP

As shown in the figure, S and R are the actual inputs of the flip flop and D is the external

input of the flip flop. The four combinations, the logic diagram, conversion table, and the

K-map for S and R in terms of D and Qp are shown below.

199

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

CONVERTION OF D FLIP FLOP TO SR FLIPFLOP

D is the actual input of the flip flop and S and R are the external inputs. Eight possible

combinations are achieved from the external inputs S, R and Qp. But, since the combination

of S=1 and R=1 are invalid, the values of Qp+1 and D are considered as ―don’t cares‖. The

logic diagram showing the conversion from D to SR, and the K-map for D in terms of S, R

and Qp are shown below.

200

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

CONVERTION OF JK FLIP FLOPTO T FLIP FLOP

J and K are the actual inputs of the flip flop and T is taken as the external input for

conversion. Four combinations are produced with T and Qp. J and K are expressed in terms

of T and Qp. The conversion table, K-maps, and the logic diagram are given below.

201

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

CONVERTION OF JK FLIP FLOP TO D FLIPFLOP

D is the external input and J and K are the actual inputs of the flip flop. D and Qp make

four combinations. J and K are expressed in terms of D and Qp. The four combination

conversion table, the K-maps for J and K in terms of D and Qp, and the logic diagram

showing the conversion from JK to D are given below.

202

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

CONVERTION OF D FLIP FLOP TO JK FLIPFLOP

In this conversion, D is the actual input to the flip flop and J and K are the external inputs.

J, K and Qp make eight possible combinations, as shown in the conversion table below. D

is expressed in terms of J, K and Qp.

The conversion table, the K-map for D in terms of J, K and Qp and the logic diagram

showing the conversion from D to JK are given in the figure below.

203

CONVERTION OF ONE FLIP FLOP TO ANOTHER FLIP FLOP

CONVERTION OF T FLIP FLOPTO JK FLIP FLOP

We begin with the T-to-JK conversion table (see Figure 5), which combines the information

in the JK flip-flop's truth table and the T flip-flop's excitation table.

Next, we need to obtain the simplified Boolean expression for the T input in terms of J, K, and

Qn. The expression for the T input as JQ̅ n + KQn. This means that to convert the T flip-flop into

a JK flip-flop, the T input is driven by the output of a two-input OR gate which has as inputs

J ANDed with the negation of the present-state Qn, i.e., Q̅n

K ANDed with the present-state, Qn

204

STATE MACHINES

State Machine
Another type of sequential circuit

Combines combinational logic with storage

―Remembers‖ state, and changes output (and state) based on inputs and current state

State
The state of a system is a snapshot of all the relevant elements of the system at the moment the

snapshot is taken.

Examples:
The state of a basketball game can be represented by the scoreboard.

Number of points, time remaining, possession, etc.

The state of a tic-tac-toe game can be represented by the placement of X’s and O’s on the board.

205

STATE MACHINES
State Tables and State Diagrams

STATE TABLES AND STATE DIAGRAMS
In this model the effect of all previous inputs on the outputs is represented by a state of the

circuit. Thus, the output of the circuit at any time depends upon its current state and the

input. These also determine the next state of the circuit. The relationship that exists among

the inputs, outputs, present states and next states can be specified by either the state table or

the state diagram.

State Table

The state table representation of a sequential circuit consists of three sections labeled present

state, next state and output. The present state designates the state of flip-flops before the

occurrence of a clock pulse. The next state shows the states of flip-flops after the clock

pulse, and the output section lists the value of the output variables during the present state.

206

STATE MACHINES

State Diagram
In addition to graphical symbols, tables or equations, flip-flops can also be represented

graphically by a state diagram. In this diagram, a state is represented by a circle, and the

transition between states is indicated by directed lines (or arcs) connecting the circles.

The binary number inside each circle identifies the state the

circle represents. The directed lines are labelled with two binary

numbers separated by a slash (/). The input value that causes the

state transition is labelled first. The number after the slash

symbol / gives the value of the output. For example, the directed

line from state 00 to 01 is labelled 1/0, meaning that, if the

sequential circuit is in a present state and the input is 1, then the

next state is 01 and the output is 0. If it is in a present state 00

and the input is 0, it will remain in that state. A directed line

connecting a circle with itself indicates that no change of state

occurs. The state diagram provides exactly the same information

as the state table and is obtained directly from the state table.

State Diagram

207

Example:

Consider a sequential circuit

STATE MACHINES

The behavior of the circuit is determined by the

following Boolean expressions:

Z = x*Q1

D1 = x' + Q1

D2 = x*Q2' + x'*Q1'

These equations can be used to form the state table. Suppose the present state (i.e. Q1Q2) = 00

and input x = 0. Under these conditions, we get Z = 0, D1 = 1, and D2 = 1. Thus the next state

of the circuit D1D2 = 11, and this will be the present state after the clock pulse has been

applied. The output of the circuit corresponding to the present state Q1Q2 = 00 and x = 1 is Z =

0. This data is entered into the state table as shown in Table 2.

208

State table for the sequential circuit

STATE MACHINES

The state diagram for the sequential circuit

209

state diagrams of the four types of flip-flops

STATE MACHINES

210

STATE REDUCTION

State Reduction
Any design process must consider the problem of minimising the cost of the final circuit. The

two most obvious cost reductions are reductions in the number of flip-flops and the number of

gates.

The number of states in a sequential circuit is closely related to the complexity of the resulting

circuit. It is therefore desirable to know when two or more states are equivalent in all aspects.

The process of eliminating the equivalent or redundant states from a state table/diagram is

known as state reduction.

Example: Let us consider the state table of a sequentialcircuit

State table

211

STATE REDUCTION

It can be seen from the table that the present state A and F both have the same next states, B

(when x=0) and C (when x=1). They also produce the same output 1 (when x=0) and 0 (when

x=1). Therefore states A and F are equivalent. Thus one of the states, A or F can be removed

from the state table. For example, if we remove row F from the table and replace all F's by

A's in the columns, the state table is modified

State F removed

It is apparent that states B and E are equivalent. Removing E and replacing E's by B's results

in the reduce table

212

STATE REDUCTION

Reduced state table

The removal of equivalent states has reduced the number of states in the circuit from six to

four. Two states are considered to be equivalent if and only if for every input sequence the

circuit produces the same output sequence irrespective of which one of the two states is the

starting state.

213

STATE ASSIGNMENT

STATEASSIGNMENT
Each circuit state given in a state table has to be assigned a unique value, which represents

combinations of flip – flop output states.

A circuit having 2 internal states requires one flip – flop in its implementation

A circuit having 3 or 4 internal states requires two flip – flops in its implementation

A circuit having 5→ 8 internal states requires three flip – flops in its implementation etc.

It should be noted that although assignments are arbitrary, one assignment might be more

economical than another.

Consider the state table shown below for a circuit having two input pulses x1, x2 and a level

output Z.

Since the circuit has four internal states then two flip-flops are required. Let the two flip-flop

outputs be represented by variables y1 and y2, which can have combinations of values y1y2 =

00, 01, 11, 10. The state table can then be translated into a state table with secondary

assignments as shown. Note that this is just one of many possible assignments (in fact there are

24)

214

STATE ASSIGNMENT

Example of state assignment

With y1y2 =0 (i.e. in state 1), if x1 is applied then y1y2must change to 01 (i.e. state 2). That is,

the flip/flop generating y1 must not disturbed, but the y2generating flip-flop requires an input

such that the circuit settles in state 2, (for example a SET input if using SR flip-flops).

215

MEALY AND MOORE STATE MACHINES

Mealy state machine
In the theory of computation, a Mealy machine is a finite state transducer that generates an

output based on its current state and input. This means that the state diagram will include

both an input and output signal for each transition edge. In contrast, the output of a Moore

finite state machine depends only on the machine's current state; transitions are not directly

dependent upon input. The use of a Mealy FSM leads often to a reduction of the number of

states. However, for each Mealy machine there is an equivalent Moore machine.

216

MEALY AND MOORE STATE MACHINES

Moore state machine

In the theory of computation, a Moore machine is a finite state transducer where the outputs are

determined by the current state alone (and do not depend directly on the input). The state diagram

for a Moore machine will include an output signal for each state. Compare with a Mealy machine,

which maps transitions in the machine to outputs. The advantage of the Moore model is a

simplification of the behavior.

217

MEALY AND MOORE STATE MACHINES

Examples for Mealy and Moore machines

Derive a minimal state table for a single-input and single-output Moore-type FSM

that produces an output of 1 if in the input sequence it detects either 110 or 101

patterns. Overlapping sequences should be detected. (Show the detailed stepsof

your solution.)

218

MEALY AND MOORE STATE MACHINES

Sate Table (Moore FSM)

219

MEALY AND MOORE STATE MACHINES

State Assignment (Mealy FSM):
state A: Got no 1

state B: Got‖1‖

state C: Got‖11‖

state D: Got‖10”

Sate Table (Mealy FSM)

220

MEALY AND MOORE MACHINES

Sequential Logic Implementation

Models for representing sequential circuits
Abstraction of sequential elements

Finite state machines and their state diagrams

Inputs/outputs

Mealy, Moore, and synchronous Mealy machines

Finite state machine design procedure
Verilog specification

Deriving state diagram

Deriving state transition table

Determining next state and output functions

Implementing combinational logic

221

MEALY AND MOORE MACHINES

Mealy vs. Moore Machines

Moore: outputs depend on current state only

Mealy: outputs depend on current state and inputs

Ant brain is a Moore Machine (Output does not react immediately to input change)

We could have specified a Mealy FSM (Outputs have immediate reaction to inputs . As

inputs change, so does next state, doesn’t commit until clocking event)

Specifying Outputs for a Moore Machine

Output is only function of state. Specify in state bubble in state diagram. Example:

sequence detector for 01 or 10

222

MEALY AND MOORE MACHINES

Specifying Outputs for a Mealy Machine

Output is function of state and inputs .Specify output on transition arc between states.

Example: sequence detector for 01 or 10

223

MEALY AND MOORE MACHINES

Comparison of Mealy and Moore Machines

Mealy Machines tend to have less states

Different outputs on arcs (n^2) rather than states (n)

Moore Machines are safer to use

Outputs change at clock edge (always one cycle later)

In Mealy machines, input change can cause output change as soon as logic is done – a big

problem when two machines are interconnected – asynchronous feedback

Mealy Machines react faster to inputs

React in same cycle – don't need to wait for clock

In Moore machines, more logic may be necessary to decode state into outputs – more gate

delays after

224

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

synchronous sequential circuits a clock signal consisting of pulses, controls the
state variables which are represented by flip-flops. they are said to operate in

pulse mode.

asynchronous circuits state changes are not triggered by clock pulses. they depend on

the values of the input and feedback variables.

two conditions for proper operation:

1.-inputs to the circuit must change one at a time and must remain constant until the

circuit reaches stable state.

2.-feedback variables should change also one at a time. when all internal signals stop
changing, then the circuit is said to have reached stable state when the inputs
satisfy condition 1 above, then the circuit is said to operate in fundamental mode.

Analysis of Clocked Sequential Circuits

The analysis of a sequential circuit consists of obtaining a table or a diagram for

the time sequence of inputs, outputs, and internal states. It is also possible to write

Boolean expressions that describe the behavior of the sequential circuit. These

expressions must include the necessary time sequence, either directly or

indirectly.

225

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

State Equations

The behavior of a clocked sequential circuit can be described algebraically by means of

state equations. A state equation specifies the next state as a function of the present state and

inputs. Consider the sequential circuit shown in Fig. 5-15. It consists of two D flip-flops A

and B, an input x and an output y.

State equation
A(t+1) = A(t) x(t) + B(t) x(t)

B(t+1) = A`(t) x(t)

A state equation is an algebraic expression that specifies the condition for a flip-flop state

transition. The left side of the equation with (t+1) denotes the next state of the flip-flop one

clock edge later. The right side of the equation is Boolean expression that specifies the

present state and input conditions that make the next state equal to 1.

Y(t) = (A(t) + B(t)) x(t)`
226

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table

(sometimes called transition table). State Diagram

1/0 : means input =1
output=0

The information available in a state table can be represented graphically in the form of a state

diagram. In this type of diagram, a state is represented by a circle, and the transitions between

states are indicated by directed lines connecting the circles.

227

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

Flip-Flop Input Equations

The part of the combinational circuit that generates external outputs is descirbed
algebraically by a set of Boolean functions called output equations. The part of
the circuit that generates the inputs to flip-flops is described algebraically by a set
of Boolean functions called flip-flop input equations. The sequential circuit of
Fig. 5-15 consists of two D flip-flops A and B, an input x, and an output y. The
logic diagram of the circuit can be expressed algebraically with two flip-flop
input equations and an output equation:

DA = Ax + Bx,DB = A`x and y = (A + B)x`

Analysis with D Flip-Flop

The circuit we want to analyze is described by the input equation
The DA symbol implies a D flip-flop with output A. The x and y variables are the inputs to the

circuit. No output equations are given, so the output is implied to come from the output of the

flip-flop.

228

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

The binary numbers under A y are listed from 000 through 111 as shown in

Fig. 5-17(b). The next state values are obtained from the state equation

The state diagram consists of two circles-one for each state as shown in Fig.5-17(c)

229

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

ASYNCHRONOUS SEQUENTIAL CIRCUIT
Analysis of asynchronous circuits

Procedure:

– Cut all feedback paths and insert a delay element at each point where cut was made

– Input to the delay element is the next state variable yi while the output is the

present value yi .

– Derive the next-sate and output expressions from the circuit

– Derive the excitation table

– Derive the flow table

– Derive a state-diagram from the flow table

– Asynchronous circuits don’t use clock pulses

• State transitions by changes in inputs

– Storage Elements:

• Clock less storage elements or Delay elements

– In many cases, as combinational feedback

• Normally much harder to design

230

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

yi = Yi in steady state (but may be different during transition) Simultaneous change

in two (or more) inputs is prohibited. The time between two changes must be less

than the time of stability. Analysis

231

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

3.Draw a map by using rows: yi’s, columns: inputs, entries: Yi’s

4.To have a stable state, Y must be = y (circled)

(Transition Table) Y1 Y2

At y1y2x = 000, if x: 0 1

then Y1Y2: 00 01

then y1y2 = 01 (2nd row):stable

232

SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

In general, if an input takes the circuit to an unstable state, yi’s change untila stable

State Table As synchronousstate is found.

General state of circuit:

y1y2x:

There are 4 stable states:

000, 011, 110, 101

and 4 unstable states.

Flow Table

As Transition Table
(but with symbolic
states):

SYNTHESIS OF ASYNCHROUNOUS CIRCUITS

This topic is not covered in this course. it belongs to a more advanced logic design course.This it

is very important in todays digital systems design because clocks are so fast that they present

propagation delays making subsystems to operate out of synchronization.

Techniques for synthesis of asynchronous circuits include

The hoffman or classic synthesis approach

Handshaking signaling for two subsystems to communicate asynchronously
233

SHIFT REGISTERS

Introduction :

Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are
a group of flip-flops connected in a chain so that the output from one flip-flop becomes the
input of the next flip-flop. Most of the registers possess no characteristic internal sequence of
states. All the flip-flops are driven by a common clock, and all are set or reset simultaneously.
Shift registers are divided into two types.

1. Uni directional shift registers
1.Serial in – serial out shift register

2.Serial in – parallel out shift register
3.Parallel in – serial out shift register
4. Parallel in – parallel out shift register

2. Bidirectional shift registers
1.Left shift register
2. Right shift register

234

SHIFT REGISTERS

1.Serial in – serial out shift register

A basic four-bit shift register can be constructed using four D flip-flops, as shown below. The

operation of the circuit is as follows. The register is first cleared, forcing all four outputs to

zero. The input data is then applied sequentially to the D input of the first flip-flop on the left

(FF0). During each clock pulse, one bit is transmitted from left to right. Assume a data word

to be 1001. The least significant bit of the data has to be shifted through the register from FF0

to FF3.

In order to get the data out of the register, they must be shifted out serially. This can be done

destructively or non-destructively. For destructive readout, the original data is lost and at the end

of the read cycle, all flip-flops are reset to zero.

235

SHIFT REGISTERS

To avoid the loss of data, an arrangement for a non-destructive reading can be done by

adding two AND gates, an OR gate and an inverter to the system. The construction of this

circuit is shown below

The data is loaded to the register when the control line is HIGH (ie WRITE). The data can be

shifted out of the register when the control line is LOW (ie READ). This is shown in the

animation below.

236

SHIFT REGISTERS

2.Serial in – parallel out shift register

The difference is the way in which the data bits are taken out of the register. Once the data
are stored, each bit appears on its respective output line, and all bits are available
simultaneously.

In the animation below, we can see how the four-bit binary number 1001 is shifted to the Q

outputs of the register.

237

SHIFT REGISTERS

3.Parallel in – serial out shift register

A four-bit parallel in - serial out shift register is shown below. The circuit uses D flip-flops

and NAND gates for entering data (ie writing) to the register.

D0, D1, D2 and D3 are the parallel inputs, where D0 is the most significant bit and D3 is
the least significant bit. To write data in, the mode control line is taken to LOW and the
data is clocked in. The data can be shifted when the mode control line is HIGH as SHIFT
is active high. The register performs right shift operation on the application of a clock
pulse, as shown in the animation below.

238

SHIFT REGISTERS

4.Parallel in –parallel out shift register

For parallel in - parallel out shift registers, all data bits appear on the parallel outputs

immediately following the simultaneous entry of the data bits. The following circuit is a

four-bit parallel in - parallel out shift register constructed by D flip-flops.

The D's are the parallel inputs and the Q's are the parallel outputs. Once the register is

clocked, all the data at the D inputs appear at the corresponding Q outputs simultaneously.

239

SHIFT REGISTERS AND COUNTERS

Bidirectional Shift Registers

The registers discussed so far involved only right shift operations. Each right shift operation has

the effect of successively dividing the binary number by two. If the operation is reversed (left

shift), this has the effect of multiplying the number by two. With suitable gating arrangement a

serial shift register can perform both operations. A bidirectional, or reversible, shift register is one

in which the data can be shift either left or right. A four-bit bidirectional shift register using D

flip-flops is shown below

Here a set of NAND gates are configured as OR gates to select data inputs from the right
or left adjacent bitable, as selected by the LEFT/RIGHT control line.
The animation below performs right shift four times, then left shift four times. Notice the

order of the four output bits are not the same as the order of the original four input bits.

240

SHIFT REGISTERS AND COUNTERS

COUNTERS

Two of the most common types of shift register counters are introduced here: the Ring counter

and the Johnson counter. They are basically shift registers with the serial outputs connected

back to the serial inputs in order to produce particular sequences. These registers are classified

as counters because they exhibit a specified sequence of states.

Ring Counters

A ring counter is basically a circulating shift register in which the output of the most significant

stage is fed back to the input of the least significant stage. The following is a 4-bit ring counter

constructed from D flip-flops. The output of each stage is shifted into the next stage on the

positive edge of a clock pulse. If the CLEAR signal is high, all the flip-flops except the first one

FF0 are reset to 0. FF0 is preset to 1 instead.

241

SHIFT REGISTERS AND COUNTERS

Since the count sequence has 4 distinct states, the counter can be considered as a mod-4

counter. Only 4 of the maximum 16 states are used, making ring counters very inefficient in

terms of state usage. But the major advantage of a ring counter over a binary counter is that it

is self-decoding. No extra decoding circuit is needed to determine what state the counter is in.

242

SHIFT REGISTERS AND COUNTERS

Johnson Counters

Johnson counters are a variation of standard ring counters, with the inverted output of the last

stage fed back to the input of the first stage. They are also known as twisted ring counters. An n-

stage Johnson counter yields a count sequence of length 2n, so it may be considered to be a mod-

2n counter. The circuit above shows a 4-bit Johnson counter. The state sequence for the counter

is given in the table as well as the animation on the left.

Again, the apparent disadvantage of this counter is that the maximum available states are not

fully utilized. Only eight of the sixteen states are being used.

Beware that for both the Ring and the Johnson counter must initially be forced into a valid

state in the count sequence because they operate on a subset of the available number of states.

Otherwise, the ideal sequence will not be followed.

243

UNIT 5

RANDOM ACCESS

MEMORY

RANDOM ACCESS MEMORY

244

A memory unit is a collection of storage
cells together with associated circuits
needed to transfer information in and out
of the device.

Memory cells can be accessed for
information transfer to or from any desired
random location and hence the name
random access memory, abbreviated RAM.

A memory unit stores binary information
in groups of bits calledwords.

1 byte = 8 bits

1 word = 2 bytes.

The communication between a memory
and its environment is achieved
data input and output lines,

through
address

lines thatselection lines, and control
specify the direction of transfer.

Fig 1: Block diagram of memory unit

RANDOM ACCESS MEMORY

245

RANDOM ACCESS MEMORY

Content of a memory

 Each word in memory is
identificationan

called
assigned
number,
starting from 0

an address,
up to 2k-1,

where k is the number of
address lines.

 The number of words in a
memory with one of the
letters K=210, M=220, or G=230.

64K = 216 2M = 221

4G = 232 Fig 2: Content of a 1024 x 16 memory

246

RANDOM ACCESS MEMORY

Write and Read operations

1.

Transferring a new word to be stored into memory:

Apply the binary address of the desired word to the
address lines.

2. memory to theApply the data bits that must be stored in
data input lines.

3. Activate the write input.

247

Write and Read operations
 Transferring a stored word out of memory:

1. Apply the binary address of the desired word to the address lines.

2. Activate the read input.

 Commercial memory sometimes provide the two control inputs for reading and

writing in a somewhat different configuration in table 1.

Table 1

RANDOM ACCESS MEMORY

248

TYPES OF ROM

READ ONLY MEMORY (ROM)

• Computers almost always contain a small amount of read-only
memory that holds instructions for starting up the computer.Unlike
RAM, ROM cannot be written to.

• Because data stored in ROM cannot be modified (at least not very
quickly or easily), it is mainly used to distribute firmware (software
that is very closely tied to specific hardware, and unlikely to require
frequent updates).

• It is non-volatile which means once you turn off the computerthe
information is still there.

249

TYPES OF ROM

READ ONLY MEMORY (ROM)

• A type of memories that can only be read from any selected
address in sequence.

• Stored data cannot be changed at all or cannot be changed without
specialized equipment.

• Writing a data is not permitted.

• Reading data from any address does not destruct the content of
read address.

• Usually to store data that is used repeatedly in system application.

250

TYPES OF ROM

Programmable ROM (PROM)
• Is a memory chip on which data can be written onlyonce.

• Once a program has been written onto a PROM, it remainsthere
forever.

• Nonvolatile memory - unlike RAM, PROM's retain their contents
when the computer is turned off.

• The difference between a PROM and a ROM (read-only memory) is
that a PROM is manufactured as blank memory, whereas a ROM is
programmed during the manufacturing process.

• To write data onto a PROM chip, you need a special device called a
PROM programmer or PROM burner.

• PROM uses some type of fusing process to store bits. Fusible link is
programmed open or left intact to represent 0 or 1. The link cannot
be changed once it is programmed.

251

EPROM

• Once it is erased, it can be reprogrammed.

• Two basic types

• Ultraviolet (UV) EPROM

UV EPROM can be recognized by transparent quartz lid on the
package.

Entire UV EPROM data can be erased by exposing the
transparent quartz lid to the high intensity UV light.

• Electrically EPROM (EEPROM)

Individual bytes in EEPROM can be erased and programmed
by electrical pulses (voltage).

TYPES OF ROM

252

Mask ROMs

• Usually referred to simply as ROM (the oldest type of solid state

ROM)

• The data are permanently stored in the memory during the

manufacturing process and it cannot be changed.

• Most IC ROMs utilize the presence or absence of a transistor
connection at a row/column junction to represent a 1 or 0.

• Mask ROM and PROM can be of either MOS or bipolartechnology.

• Despite the simplicity of mask ROM, economies of scale and field-
programmability often make reprogrammable technologies more
flexible and inexpensive.

TYPES OF ROM

253

MEMORY DECODING

• Decoder

– select the memory word specified by the input address

• 2-dimensional coincident decoding is a more efficient

decoding scheme for large memories

MEMORY DECODING

254

MEMORY DECODING

Figure 1: Memory cell

 The equivalent logic of a binary cell that stores one bit of
information is shown below.

Read/Write = 0, select = 1, input data to S-R latch

Read/Write = 1, select = 1, output data from S-R latch

255

MEMORY DECODING

MEMORY ARRAY

256

MEMORY DECODING

4 x 4 RAM

 There is a need for decoding circuits
to select the memory word specified
by the input address.

 During the read operation, the four
bits of the selected word go through
OR gates to the output terminals.

 During the write operation, the data
available in the input lines are
transferred into the four binary cells
of the selected word.

 A memory with 2k words of n bits per
word requires k address lines that go
into kx2k decoder.

Fig 2: Diagram of 4 x 4 RAM

257

Coincident decoding

 A decoder with k inputs and
2k outputs requires 2k AND
gates with k inputs per gate.

 Two decoding in a two-
dimensional selection scheme
can reduce the number of
inputs per gate.

 1K-word memory, instead of
using a single 10X1024
decoder, we use two 5X32
decoders. Figure 1: Two-dimensional Decoding

structure for a 1K word memory

MEMORY DECODING

258

MEMORY DECODING

Address multiplexing

 DRAMs typically have four times the density of SRAM.

 The cost per bit of DRAM storage is three to four times less

than SRAM. Another factor is lower power requirement.

259

MEMORY DECODING

Address multiplexing

 Address multiplexing will reduce the number of pins in the IC

package.

 In a two-dimensional array, the address is applied in two parts

at different times, with the row address first and the column

address second. Since the same set of pins is used for both

parts of the address, so can decrease the size of package

significantly.

260

Address Multiplexing of a 64K DRAM

settling time of the
After a time equivalent to the

row
selection, RAS goes back to the 1
level.

Registers are used to store the

addresses of the row and

column.

CAS must go back to the 1 level

before initialing another memory

operation.

Fig 2: Address Multiplexing for a 64K DRAM

MEMORY DECODING

261

ADDRESS BUS AND DATA BUS

Memory structures are crucial in digital design. – ROM, PROM, EPROM,
RAM, SRAM, (S)DRAM, RDRAM,..

All memory structures have an address bus and a data bus – Possibly
other control signals to control output etc.

E.g. 4 Bit Address bus with 5 Bit Data Bus

ADDRESS AND DATA BUS

262

ADDRESS BUS AND DATA BUS

Internal organization

– ‘Lookup Table of values’

– For each address there is a

corresponding data output

ADDRESS AND DATA BUS

263

ADDRESS BUS

ADDRESS AND DATA BUS

•

•

•

•

•

Address signals are required to specify the location in the memory from
which information is accessed(read or written).

A set of parallel address lines known as the address bus carry the address
information.

The number of bits (lines) comprising the address bus depends upon the
size of the memory.

For example, a memory having four locations to store data has four unique
(00, 01, 10, 11) specified by a 2-bit addressbus.

The size of the address bus depends upon the total addressable locations
specified by the formula 2^n, where n is the number of bits. Thus 2^4 = 16
(n=4) specifies 4 bits to uniquely identify 16 different locations.

264

ADDRESS AND DATA BUS

DATA BUS

• Data lines are required to retrieve the information from the memor
y array during a read operation and to provide the data that is to be
stored in the memory during a write operation.

• As
a

the memory
time therefore

reads
the

or writes one data unit at
data lines should be equal

•

•

to the number of data bits stored at each addressable location in th
e memory.

A memory organized as a byte memory reads or writes byte data
values, therefore the number of data lines or the size of the data
bus should be 8-bits or 1 byte.

A memory organized to store nibble data values requires a 4-bit
wide data bus. Generally, the wider the data bus more data can be
accessed at each read or write operation

265

SEQUENTIAL MEMORY

• Output depends on stored information (current state) and may be
on current inputs

• Example:

• state = Score board of basket state = Score board of basketball
game (number of points time game (number of points, time
remaining, possession)

• input = which team scored the point

• output = point increase for the team that just scored.

• Sequential Circuits are built out of combinational logic and one or
more memory/storage elements

• E.g. Registers, Memories, Counters, Control Unit .

SEQUENTIAL MEMORY

266

SEQUENTIAL MEMORY

1-Bit memory element Characteristics

• Need a unit that can

• Retain/Remember a single bit with possible values () state i.e. 0 or
1.

• This will allow us to read a previous value stored„

• Able to change the value (state). For a bit we can:

• Set the bit to 1

• Reset, or clear, the bit to 0

• To remember/retain their state values, rely on concept of feedback
„

• Feedback digital circuits occurs when an output is looped backto
the input „

• A simple example of this concept is shown below

• If Q is 0 it will always be 0, if it is 1 it will always be 1
267

SEQUENTIAL MEMORY

Flip Flop

Flip flop is a sequential circuit which generally samples its
inputs and changes its outputs only at particular instants of
time and not continuously. Flip flop is said to be edge sensitive
or edge triggered rather than being level triggered like latches.

• S-R Flip Flop

It is basically S-R latch using NAND gates with an
additional enable input. It is also called as level triggered SR-
FF. For this, circuit in output will take place if and only if the
enable input (E) is made active. In short this circuit will
operate as an S-R latch if E = 1 but there is no change in the
output if E = 0.

268

Flip Flop

• Master Slave JK Flip Flop

Master slave JK FF is a cascade of two S-R FF with feedback
from the output of second to input of first. Master is a
positive level triggered. But due to the presence of the
inverter in the clock line, the slave will respond to the
negative level. Hence when the clock = 1 (positive level) the
master is active and the slave is inactive. Whereas when clock
= 0 (low level) the slave is active and master is inactive.

SEQUENTIAL MEMORY

269

Flip Flop

• Delay Flip Flop / D Flip Flop

Delay Flip Flop or D Flip Flop is the simple gated S-R latch with
a NAND inverter connected between S and R inputs. It has
only one input. The input data is appearing at the output after
some time. Due to this data delay between i/p and o/p, it is
called delay flip flop. S and R will be the complements of each
other due to NAND inverter. Hence S = R = 0 or S = R = 1, these
input condition will never appear. This problem is avoid by SR
= 00 and SR = 1 conditions.

SEQUENTIAL MEMORY

270

Flip Flop

• Toggle Flip Flop / T Flip Flop

Toggle flip flop is basically a JK flip flop with J and K terminals
permanently connected together. It has only input denoted
by T .

SEQUENTIAL MEMORY

271

CACHE

• A small amount of fast memory that sits between normal main

memory and CPU

• May be located on CPU chip or module

• Intended to allow access speed approaching registerspeed

• When processor attempts to read a word from memory, cache is

checked first

CACHE MEMORY

272

CACHE MEMORY

Cache Memory Principles

• If data sought is not present in cache, a block of memory of

fixed size is read into the cache

• Locality of reference makes it likely that other words in the

same block will be accessed soon

273

CACHE MEMORY

CACHE VIEW OF MEMORY

• N address lines => 2n words of memory

• Cache stores fixed length blocks of K words

• Cache views memory as an array of M blocks where M = 2^n/K

• A block of memory in cache is referred to as a line. K is the line size

• Cache size of C blocks where C < M (considerably)

• Each line includes a tag that identifies the block being stored

• Tag is usually upper portion of memory address

274

Cache operation – overview

• CPU requests contents of memory location

• Check cache for this data

• If present, get from cache (fast)

• If not present, read required block from main memory to
cache

• Then deliver from cache to CPU

• Cache includes tags to identify which block of main memory is
in each cache slot

CACHE MEMORY

275

Programmable Logic Array

• A programmable logic array (PLA) is a type of logic device that

can be programmed to implement various kinds of

combinational logic circuits.

• The device has a number of AND and OR gates which are

linked together to give output or further combined with more

gates or logic circuits.

PROGRAMMABLE LOGIC ARRAY

276

PROGRAMMABLE LOGIC ARRAY

Programmable LogicArray

Fig 1: Block diagram of PLA

277

PLA
F1 =AB’+AC+A’BC’

F2 = (AC+BC)’

Fig 2: PLA with 3-inputs 4 product terms and 2
outputs

PROGRAMMABLE LOGIC ARRAY

278

PROGRAMMABLE LOGIC ARRAY

Programmable Logic Array
• Advantages

• PLA architecture is more efficient than a PROM.

• Disadvantage

• PLA architecture has two sets of programmable fuses due to
which PLA devices are difficult to manufacture, program and
test.

• Applications:

• PLA is used to provide control over data path.

• PLA is used as a counter.

• PLA is used as decoders.

• PLA is used as a BUS interface in programmed I/O

279

Programming Table

1.

2. inputs and

First: lists the product terms numerically

Second: specifies the required paths between
AND gates

3. Third: specifies the paths between the AND and OR gates

4. For each output variable, we may have a T(ture) or
C(complement) for programming the XOR gate

PROGRAMMABLE LOGIC ARRAY

280

Simplification of PLA

 Careful investigation must be undertaken in order to reduce

the number of distinct product terms, PLA has a finite

number of AND gates.

 Both the true and complement of each function should be

simplified to see which one can be expressed with fewer

product terms and which one provides product terms that are

common to other functions.

PROGRAMMABLE LOGIC ARRAY

281

PROGRAMMABLE LOGIC ARRAY

Example
Implement the following two Boolean functions with a PLA:

F1(A, B,C) = ? (0, 1, 2, 4)

F2(A, B, C) = ? (0, 5, 6, 7)

The two functions are simplified in the maps of given figure

282

PROGRAMMABLE LOGIC ARRAY

PLA table by simplifying the function

 Both the true and
complement of the functions
are simplified in sum of
products.

 We can find the same terms
from the group terms of the
functions of F1, F1’,F2 and F2’
which will make the minimum
terms.

F1 = (AB +AC + BC)’

F2 = AB + AC + A’B’C’

Fig 1: Solution to example

283

PLAimplementation

PROGRAMMABLE LOGIC ARRAY

284

Memory Hierarchy

• For any memory:

— How fast?

— How much?

— How expensive?

• Faster memory => greater cost per bit

• Greater capacity => smaller cost / bit

• Greater capacity => sloweraccess

• Going down the hierarchy:

— Decreasing cost / bit

— Increasing capacity

— Increasing access time

— Decreasing frequency of access by processor

MEMORY HIAERARCHY

285

Memory Hierarchy - Diagram

MEMORY HIAERARCHY

286

MEMORY HIAERARCHY

• Registers

— In CPU

• Internal or Main memory

— May include one or more levels of cache

— “RAM”

• External memory

— Backing store

MEMORY HIAERARCHY

287

HIAERARCHY LIST

• Registers

• L1 Cache

• L2 Cache

• Main memory

• Disk cache

• Magnetic Disk

• Optical

• Tape

MEMORY HIAERARCHY

288

Locality of Reference

• Two or more levels of memory can be used to produce average

access time approaching the highest level

• The reason that this works well is called ―locality of reference‖

• In practice memory references (both instructions and data) tend to

cluster

— Instructions: iterative loops and repetitive subroutine calls

— Data: tables, arrays, etc. Memory references cluster in short run

MEMORY HIAERARCHY

289

Characteristics of Memory Systems

MEMORY HIAERARCHY

290

Capacity

• Word size

—The natural unit of organisation

—Typically number of bits used to represent an integer in the
processor

• Number of words

—Most memory sizes are now expressed in bytes

—Most modern processors have byte-addressable memory
but some have word addressable memory

— Memory capacity for A address lines is 2A addressable
units

MEMORY HIAERARCHY

291

Access Methods

• Sequential

—Start at the beginning and read through in order

—Access time depends on location of data and previous
location

— e.g. tape

• Direct

— Individual blocks have unique address

— Access is by jumping to vicinity plus sequential search

— Access time depends on location and previous location

— e.g. disk

MEMORY HIAERARCHY

292

Access Methods

• Random

— Individual addresses identify locations exactly

— Access time is independent of location or previous access

— e.g. RAM

• Associative

—Data is located by a comparison with contents of a portion
of the store

— Access time is independent of location or previous access

— All memory is checked simultaneously; access time is
constant

— e.g. cache

MEMORY HIAERARCHY

293

Performance

• Cycle Time

—Primarily applied to RAM; access time + additional time
before a second access can start

—Function of memory components and system bus, not the
processor

• Transfer Rate – the rate at which data can be transferred into
or out of a memory unit

— For RAM TR = 1 / (cycle time)

MEMORY HIAERARCHY

294

