DIGITAL SYSTEM DESIGN B.TECH III SEM(ECE)-R16

Prepared by
Dr.Lalit Kumar Kaul
Professor,ECE Dept

(Autonomous)

Unit 1

FUNDAMENTALS OF DIGITAL TECHNIQUES

Any number in one base system can be converted into another base system Types

1) decimal to any base
2) Any base to decimal
3) Any base to Any base

Number Systems

Decimal number: $123.45=110^{2}+210^{1}+310^{0}+410^{-1}+510^{-2}$

Base b number: $N=a_{q-1} b^{q-1}+\quad+a_{0} b^{0}+\quad+a_{-1} b_{0}^{p}$
$b>1, \quad 0<=a_{i}<=b-1$
Integer part: $\boldsymbol{a}_{\mathbf{q - 1}} \boldsymbol{a}_{\mathbf{q - 2}} \quad \boldsymbol{a}_{0}$
Fractional part: $\boldsymbol{a}_{-1} \boldsymbol{a}_{-2} \quad \boldsymbol{a}_{\boldsymbol{p}}$.
Most significant digit: $\boldsymbol{a}_{\mathbf{q - 1}} \ldots$
Least significant digit: $\boldsymbol{a}_{\boldsymbol{p}}$
Binary number ($b=2$): $1101.01=12^{3}+12^{2}+02^{1}+12^{0}+02^{-1}+12^{-2}$
Representing number N in base $b:(N)_{b}$

Complement of digit $a: a^{\prime}=(b-1)-a$
Decirnal system: 9 's complement of $3=9-3=6$
Binary system: 1's complement of $1=1$-1 $=0$

Representation of Integers

Base				
2	4	8	10	12
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	10	4	4	4
0101	11	5	5	5
0110	12	6	6	6
0111	13	7	7	7
1000	20	10	8	8
1001	21	11	9	9
1010	22	12	10	α
1011	23	13	11	β
1100	30	14	12	10
1101	31	15	13	11
1110	32	16	14	12
1111	33	17	15	13

Base Conversions

Example: Base 8 to base 10

$$
(432.2)_{8}=48^{2}+38^{1}+28^{0}+28^{-1}=(282.25)_{10}
$$

Example: Base 2 to base 10

$$
(1101.01)_{2}=12^{3}+12^{2}+02^{1}+12^{0}+02^{-1}+12^{-2}=(13.25)_{10}
$$

Base b_{1} to b_{2}, where $b_{1}>b_{2}$:

$$
\begin{aligned}
& (N)_{b_{1}}=a_{q-1} b_{2}^{q-1}+a_{q-2} b_{2}^{q-2}+\cdots+a_{1} b_{2}^{1}+a_{0} b_{2}^{0} \\
& \frac{(N)_{b_{1}}}{b_{2}}=\underbrace{a_{q-1} b_{2}^{q-2}+a_{q-2} b_{2}^{q-3}+\cdots+a_{1}}_{Q_{0}}+\frac{a_{0}}{b_{2}} \\
& \left(\frac{Q_{0}}{b_{2}}\right)_{b_{1}}=\underbrace{a_{q-1} b_{2}^{q-3}+a_{q-2} b_{2}^{q-4}+\cdots}_{Q_{1}}+\frac{a_{1}}{b_{2}}
\end{aligned}
$$

Conversion of Bases (Contd.)

Example: Convert $(548)_{10}$ to base 8

Q_{i}	r_{i}
68	$4=a_{0}$
8	$4=a_{1}$
1	$0=a_{2}$
	$1=a_{3}$

Thus, $(548)_{10}=(1044)_{8}$
Example: Convert $(345)_{10}$ to base 6

Q_{i}	r_{i}
57	$3=a_{0}$
9	$3=a_{1}$
1	$3=a_{2}$
	$1=a_{3}$

5. Thus, $(345)_{10}=(1333)_{6}$

Conversions of fractional numbers

Fractional number:

$$
\begin{aligned}
& (N)_{b_{1}}=a_{-1} b_{2}^{-1}+a_{-2} b_{2}^{-2}+\cdots+a_{-p} b_{2}^{-p} \\
& b_{2} \cdot(N)_{b_{1}}=a_{-1}+a_{-2} b_{2}^{-1}+\cdots+a_{-p} b_{2}^{-p+1}
\end{aligned}
$$

Example: Convert (0.3125$)_{10}$ to base 8
$0.31258=2.5000$ hence $a_{-1}=2$
$0.50008=4.0000$ hence $a_{-2}=4$
Thus, $(0.3125)_{10}=(0.24)_{8}$

Decimal to Binary

Example: Convert $(432.354)_{10}$ to binary

Q_{i}	r_{i}
216	$0=a_{0}$
108	$0=a_{1}$
54	$0=a_{2}$
27	$0=a_{3}$
13	$1=a_{4}$
6	$1=a_{5}$
3	$0=a_{6}$
1	$1=a_{7}$
	$1=a_{8}$

$0.3542=0.708$ hence $a_{-1}=0$
$0.7082=1.416$ hence $a_{-2}=1$
$0.4162=0.832$ hence $a_{-3}=0$
$0.8322=1.664$ hence $a_{-4}=1$
$0.6642=1.328$ hence $a_{-5}=1$
$0.3282=0.656$ hence $a_{6}=0$
$a_{-7}=1$
etc.

Thus, $(432.354)_{10}=(110110000.0101101 . .)_{2}$

Octal to Binary Conversion

Example:Convert (123.4) to binary
 $$
(123.4)_{8}=(001010011.100)_{2}
$$

Example:Convert (1010110.0101) to octal $(1010110.0101)_{2}=(001010110.010100)_{2}=(126.24)_{8}$

Complements

- Complements arc used in digital computers to simplify the subtraction operation and for log-ical manipulation
- They are two types of complements

1) Diminished radix complement ($r^{n}-1$)- N \{ r is the base of num
system $\}$
2) Radix

Complement (r^{n}

- 1)-N+1

$(r-1$)'s complement

- If the base = 10

The 9's complement of 546700 is

$$
999999-546700=453299
$$

- If the base $=2$
- The 1's complemcnt of 1011000 is 0100111.

r's complement

, the 10 's complement of 012398 is 987602

- the 1 's complement of 1101100 is 0010100

Subtraction using complements

- Discard end carry for r's complement Using 10's complement subtract 72532 3250.

$$
\begin{aligned}
M & =72532 \\
\text { 10's complement of } N & =+96750 \\
\text { Sum } & =169282
\end{aligned}
$$

Discard end carry for 10's complement Answer $=69282$

Subtraction using $(r-1$)'s complement

$$
\begin{gathered}
\mathrm{X}-\mathrm{Y}=1010100-1000011 \\
\mathrm{X}=1010100 \\
\text { 1's comp of } \quad \begin{array}{l}
\mathrm{Y}=+\underline{0111100} \\
\mathrm{Sum}=10010000
\end{array}
\end{gathered}
$$

Add End-around carry $=\quad+1$

$$
\circlearrowleft_{6} Y=0010001
$$

Binary Codes

Decimal digit	$w_{4} w_{3} w_{2} w_{1}$											
	8	4	2	1	2	4	2	1	6	4	2	-3
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	1	0	1
2	0	0	1	0	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1	1	0	0	1
4	0	1	0	0	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1	1	0	1	1
6	0	1	1	0	1	1	0	0	0	1	1	0
7	0	1	1	1	1	1	0	1	1	1	0	1
8	1	0	0	0	1	1	1	0	1	0	1	0
9	1	0	0	1	1	1	1	1	1	1	1	1
				।	I							」

Self-complementing code: Code word of 9 's complement of N obtained by interchanging 1 's and O 's in the code word of N

Non Weighted Codes

Decimal digit	Excess-3					Cyclic			
0	0	0	1	1	0	0	0	0	
1	0	1	0	0	0	0	0	1	
2	0	1	0	1	0	0	1	1	
3	0	1	1	0	0	0	1	0	
4	0	1	1	1	0	1	1	0	
5	1	0	0	0	1	1	1	0	
6	1	0	0	1	1	0	1	0	
7	1	0	1	0	1	0	0	0	
8	1	0	1	1	1	1	0	0	
9	1	1	0	0	0	1	0	0	
			1						

Add 3 to BCD

Successive code words differ in only one digit

Gray Code(Unit distance Code)

Decimal	Gray				Binary			
number	g_{3}	g_{2}	g_{1}	g_{0}	b_{3}	b_{2}	b_{1}	b_{0}
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	1	0	0	1	0
3	0	0	1	0	0	0	1	1
4	0	1	1	0	0	1	0	0
5	0	1	1	1	0	1	0	1
6	0	1	0	1	0	1	1	0
7	0	1	0	0	0	1	1	1
8	1	1	0	0	1	0	0	0
9	1	1	0	1	1	0	0	1
10	1	1	1	1	1	0	1	0
11	1	1	1	0	1	0	1	1
12	1	0	1	0	1	1	0	0
13	1	0	1	1	1	1	0	1
14	1	0	0	1	1	1	1	0
15	1	0	0	0	1	1	1	1

Binary to Gray Conversion

Example:
Binary:
$b_{5} \quad b_{4} \quad b_{3} \quad b_{2} \quad b_{1} \quad b_{0}$

Gray-to-binary:

- $b_{i}=g_{i}$ if no. of 1 's preceding g_{i} is even
- $b_{i}=\mathfrak{g}_{i}^{2}$ if no. of 1 's preceding g_{i} is odd

Mirror Image Representation in Gray Code

00	0	00	0	000
01	0	01	0	001
11	0	11	0	011
10	0	10	0	010
	1	10	0	110
	1	11	0	111
	1	01	0	101
	1	00	0	100
			1	100
			1	101
			1	111
		1	110	
			1	010
			1	011
			1	000

Error Detection and Correction

- No communication channel or storage device is completely error-free
- As the number of bits per area or the transmission rate increases, more errors occur.
- Impossible to detect or correct 100% of the errors

Types of Error Detection

- 3 Types of Error Detection/Correction Methods

-Cyclic Redundancy Check (CRC)
-Hamming Codes
-Reed-Solomon (RS)
$10011001011=1001100+1011$
\wedge
Code word
\wedge
information error-checking bits/ bits parity bits/ syndrome/
redundant bits

Hamming Codes

EX. Data
 Bits
 00
 01
 10
 11
 Parity Code
 $\frac{\text { Bit }}{0} \quad \frac{\text { Word }}{000}$
 1
 011
 101
 110

000* 100
001 101*
010 110*
011* 111

- Single parity bit can only detect error, not correct it
Error-correcting codes require more than a single parity bit
EX. 00000
01011
10110
11101
Minimum Hamming distance $=3$
Can detect up to 2 errors and correct 1 error

Cyclic Redundancy Check

1. Let the information byte $\mathrm{F}=1001011$
2. The sender and receiver agree on an arbitrary binary pattern P . Let $\mathrm{P}=1011$.
3. Shift F to the left by 1 less than the number of bits in P. Now, F = 1001011000.
4. Let F be the dividend and P be the divisor. Perform "modulo 2 division".
5. After performing the division, we ignore the quotient. We got 100 for the remainder, which becomes the actual CRC checksum.
6. Add the remainder to F, giving the message M :

$$
1001011+100=1001011100=M
$$

Calculating and Using CRCs

7. M is decoded and checked by the message receiver using the reverse process.
---_1010100

1011 | 1001011100 $\frac{1011}{001001}$
1001
0010
001011
1011 0000
\leftarrow Remainder

Canonical and Standard Forms

- We need to consider formal techniques for the simplification of Boolean functions.
- Identical functions will have exactly the same canonical form.
- Minterms and Maxterms
- Sum-of-Minterms and Product-of- Maxterms
- Product and Sum terms
- Sum-of-Products (SOP) and Product-of-Sums (POS)

Definitions

- Literal: A variable or its complement
- Product term: literals connected by •
- Sum term: literals connected by +
- Minterm: a product term in which all the variables appear exactly once, either complemented or uncomplemented
- Maxterm: a sum term in which all the variables appear exactly once, either complemented or uncomplemented

Truth Table notation for Minterms and Maxterms

- Minterms and Maxterms are eas to denote using a truth table.
- Example:

Assume 3 variable x.y.z (order is fixed)

x	y	z	Minterm	Maxterm
0	0	0	$x^{\prime} y^{\prime} z^{\prime}=m_{0}$	$x+y+z=M_{0}$
0	0	1	$x y^{\prime} y^{\prime} z=m_{1}$	$x+y+z^{\prime}=M_{1}$
0	1	0	$x z^{\prime} y z^{\prime}=m_{2}$	$x+y^{\prime}+z=M_{2}$
0	1	1	$x x^{\prime} y z=m_{3}$	$x+y^{\prime}+z^{\prime}=M_{3}$
1	0	0	$x y^{\prime} z^{\prime}=m_{4}$	$x^{\prime}+y^{\prime}+z=M_{4}$
1	0	1	$x y^{\prime} z=m_{5}$	$x^{\prime}+y+z^{\prime}=M_{5}$
1	1	0	$x y z^{\prime}=m_{6}$	$x^{\prime}+y^{\prime}+z=M_{6}$
1	1	1	$x y z=m_{7}$	$x^{\prime}+y^{\prime}+z^{\prime}=M_{7}$

Canonical Forms (Unique)

- Any Boolean function F() can be expressed as a unique sum of minterms and a unique product of maxterms (under a fixed variable ordering).
- In other words, every function F() has two canonical forms:
- Canonical Sum-Of-Products (sum of minterms)
- Canonical Product-Of-Sums (product of maxterms)

Canonical Forms (cont.)

- Canonical Sum-Of-Products:

The minterms included are those m_{j} such that F()$=1$ in row j of the truth table for F() .

- Canonical Product-Of-Sums:

The maxterms included are those M_{j} such that F()$=0$ in row j of the truth table for F() .

Example

- Truth table for $f_{1}(a, b, c)$ at right
- The canonical sum-of-products form for f_{1} is

$$
\begin{aligned}
f_{1}(a, b, c) & =m_{1}+m_{2}+m_{4}+m_{6} \\
& =a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c^{\prime}+a b c^{\prime}
\end{aligned}
$$

- The canonical product-of-sums form for f_{1} is $\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{M}_{0} \bullet \mathrm{M}_{3} \bullet \mathrm{M}_{5} \bullet \mathrm{M}_{7}$ $=(a+b+c) \cdot\left(a+b^{\prime}+c^{\prime}\right) \bullet$ $\left(a^{\prime}+b+c^{\prime}\right) \cdot\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$.
- Observe that: $\mathrm{m}_{\mathrm{j}}=\mathrm{M}_{\mathrm{j}}{ }^{\prime}$

a	b	c	f_{1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Conversion Between Canonical Forms

- Replace Σ with Π (or vice versa) and replace those j 's that appeared in the original form with those that do not.
- Example:
$f_{1}(a, b, c)=a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c^{\prime}+a b c^{\prime}$
$=\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{4}+\mathrm{m}_{6}$
$=\sum(1,2,4,6)$
$=\Pi(0,3,5,7)$
$(a+b+c) \cdot\left(a+b^{\prime}+c^{\prime}\right) \cdot\left(a^{\prime}+b+c^{\prime}\right) \cdot\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$

Conversion of SOP from standard to canonical form

- Expand non-canonica/terms by inserting equivalent of 1 in each missing variable x : $\left(x+x^{\prime}\right)=1$
- Remove duplicate minterms

$$
\begin{aligned}
\mathrm{f}_{1}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) & =\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{bc} c^{\prime}+\mathrm{ac} \\
& =\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}+\left(\mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{bc} c^{\prime}+\mathrm{a}\left(\mathrm{~b}+\mathrm{b}^{\prime}\right) \mathrm{c}^{\prime} \\
& =\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{abc}+\mathrm{a}^{\prime} \mathrm{bc} c^{\prime}+\mathrm{abc} c^{\prime}+
\end{aligned}
$$

ab'c'

$$
=a^{\prime} b^{\prime} c+a b c^{\prime}+a^{\prime} b c+a b^{\prime} c^{\prime}
$$

Conversion of POS from standard to canonical form

- Expand noncanonical terms by adding 0 in terms of missing variables (e.g., $x x^{\prime}=0$) and using the distributive law
- Remove duplicate maxterms
- $\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(\mathrm{a}+\mathrm{b}+\mathrm{c}) \cdot\left(\mathrm{b}^{\prime}+\mathrm{c}^{\prime}\right) \cdot\left(\mathrm{a}^{\prime}+\mathrm{c}^{\prime}\right)$
$=(a+b+c) \cdot\left(a a^{\prime}+b^{\prime}+c^{\prime}\right) \cdot\left(a^{\prime}+b b^{\prime}+c^{\prime}\right)$
$=(a+b+c) \cdot\left(a+b^{\prime}+c^{\prime}\right) \cdot\left(a^{\prime}+b^{\prime}+c^{\prime}\right) \cdot$
$\left(a^{\prime}+b+c^{\prime}\right) \cdot\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$
$(a+b+c) \cdot\left(a+b^{\prime}+c^{\prime}\right) \cdot\left(a^{\prime}+b^{\prime}+c^{\prime}\right) \cdot\left(a^{\prime}+b+c^{\prime}\right)$

UNIT-2
 BOOLEAN ALGEBRA AND THEOREMS

LOGIC GATES

Formal logic: In formal logic, a statement (proposition) is a declarative sentence that is either true(1) or false (0).
It is easier to communicate with computers using formal logic.

- Boolean variable: Takes only two values - either true (1) or false (0).
They are used as basic units of formal logic.

Boolean function and logic diagram

. Boolean function: Mapping from Boolean variables to a Boolean value.

- Truth table:
- Represents relationship between a Boolean function and its binary variables.
- It enumerates all possible combinations of arguments and the corresponding function values.

Boolean function and logic diagram

- Boolean algebra: Deals with binary variables and logic operations operating on those variables.
- Logic diagram: Composed of graphic symbols for logic gates. A simple circuit sketch that represents inputs and outputs of Boolean functions.

Gates

- Refer to the hardware to implement Boolean operators.
- The most basic gates are

Name	Graphic symbol	Algebraic function	$\begin{aligned} & \text { Truth } \\ & \text { table } \end{aligned}$	
Inverter	$A>0-\mathrm{x}$	$\mathrm{x}=\mathrm{A}^{\prime}$	$\begin{array}{l\|l} \hline \text { A } & \\ \hline 0 & 1 \\ 1 & 0 \end{array}$	
AND		$x=A B$	$\begin{array}{ll\|l} \text { A } & B & X \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	True if both are true.
OR	P	$x=A+B$	A X 0 0 0 0 1 1 1 0 1 1 1 1	True if either one is true.

Boolean function and truth table

- Other common gates include:

Name	Graphic symbol	Algebraic function	Truth table	
$\begin{aligned} & \text { Bxclusive-OR } \\ & \text { (XOR) } \end{aligned}$		$\begin{aligned} x & =A \oplus B \\ & =A^{\prime} B+A B^{\prime} \end{aligned}$	$\begin{array}{ll\|l} \mathrm{A} & \mathrm{~B} & \mathrm{x} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	Parity check: True if only one is true.
NAND		$x=(\mathrm{AB}){ }^{\prime}$	$\begin{array}{lll} A & B & X \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	Inversion of AND.
NOR		$x=A+B$	$\begin{array}{l\|l\|l} \text { A } & B & x \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$	Inversion of OR.

BASIC IDENTITIES OF BOOLEAN ALGEBRA

- Postulate 1 (Definition). A Boolean algebra is a closed algebraic system containing a set K of two or more elements and the two operators • and + which refer to logical AND and logical OR

Basic Identities of Boolean Algebra (Existence of 1 and 0 element)

(1) $x+0=x$
(2) $x \cdot 0=0$
(3) $x+1=1$
(4) $x \cdot 1=1$
(5) $x+x=x$
(6) $x \cdot x=x$
(7) $x+x^{\prime}=x$
(8) $x \cdot x^{\prime}=0$

Basic Identities of Boolean Algebra (Commutatively):

(9) $x+y=y+x$
(10) $x y=y x$
(11) $x+(y+z)=(x+y)+z$
(12) $x(y z)=(x y) z$
(13) $x(y+z)=x y+x z$
(14) $x+y z=(x+y)(x+z)$
(15) $(x+y)^{\prime}=x^{\prime} y^{\prime}$
(16) $(x y)^{\prime}=x^{\prime}+y^{\prime}$
(17) $\left(x^{\prime}\right)^{\prime}=x$

Function Minimization using Boolean Algebra

Examples:
(a) $a+a b=a(1+b)=a$
(b) $a(a+b)=a \cdot a+a b=a+a b=a(1+b)=a$.
(c) $a+a^{\prime} b=\left(a+a^{\prime}\right)(a+b)=1(a+b)=a+b$
(d) $a\left(a^{\prime}+b\right)=a \cdot a^{\prime}+a b=0+a b=a b$

DeMorgan's Theorem

(a) $(a+b)^{\prime}=a^{\prime} b^{\prime}$
(b) $(a b)^{\prime}=a^{\prime}+b^{\prime}$

Generalized DeMorgan's Theorem
(a) $(a+b+\ldots z)^{\prime}=a^{\prime} b^{\prime} \ldots z$
(b) $(a . b \ldots z)^{\prime}=a^{\prime}+b^{\prime}+\ldots z^{\prime}$

DeMorgan's Theorem

$$
\begin{aligned}
& F=a b+c^{\prime} d^{\prime} \\
& F^{\prime}=? ?
\end{aligned}
$$

- $F=a b+c^{\prime} d^{\prime}+b^{\prime} d$
- $\mathrm{F}^{\prime}=$??

More DeMorgan's example

Show that: $\left(a\left(b+z\left(x+a^{\prime}\right)\right)\right)^{\prime}=a^{\prime}+b^{\prime}\left(z^{\prime}+x^{\prime}\right)$

$$
\begin{aligned}
\left(a\left(b+z\left(x+a^{\prime}\right)\right)\right)^{\prime}=a^{\prime}+ & \left(b+z\left(x+a^{\prime}\right)\right)^{\prime} \\
& =a^{\prime}+b^{\prime}\left(z\left(x+a^{\prime}\right)\right)^{\prime} \\
& =a^{\prime}+b^{\prime}\left(z^{\prime}+\left(x+a^{\prime}\right)^{\prime}\right) \\
& =a^{\prime}+b^{\prime}\left(z^{\prime}+x^{\prime}\left(a^{\prime}\right)^{\prime}\right) \\
& =a^{\prime}+b^{\prime}\left(z^{\prime}+x^{\prime} a\right) \\
& =a^{6}+b^{\prime} z^{\prime}+b^{\prime} x^{\prime} a \\
& =\left(a^{6}+b^{\prime} x^{\prime} a\right)+b^{\prime} z^{\prime} \\
& =\left(a^{6}+b^{\prime} x^{6}\right)\left(a+a^{6}\right)+b^{\prime} z^{\prime} \\
& =a^{6}+b^{\prime} x^{6}+b^{\prime} z^{6} \\
& =a^{\prime}+b^{\prime}\left(z^{\prime}+x^{\prime}\right)
\end{aligned}
$$

Two Level implantation

NAND-AND

AND-NOR

NOR-OR

OR-NAND

NAND-AND

AND-NOR functions:

Example 3: Implement the following function

$$
\begin{aligned}
& F=\overline{X Z}+\bar{Y} Z+\bar{X} Y Z \\
& \text { or } \\
& \overline{\boldsymbol{F}}=\bar{X} \boldsymbol{Z}+\overline{\boldsymbol{Y}} \boldsymbol{Z}+\overline{\boldsymbol{X} \boldsymbol{Y} \boldsymbol{Z}}
\end{aligned}
$$

Since F^{\prime} is in SOP form, it can be implemented by using NAND-NAND circuit. By complementing the output we can get F, or by using $N A N D-A N D$ circuit as shown in the figure.

It can also be implemented using AND-NOR circuit as it is equivalent to NAND- AND circuit

OR-NAND functions:

Example 4: Implement the following function

$$
\begin{aligned}
& F=\overline{(X+Z) \cdot(\bar{Y}+Z) \cdot(\bar{X}+Y+Z)} \text { or } \\
& \overline{\boldsymbol{F}}=(\boldsymbol{X}+\boldsymbol{Z})(\overline{\boldsymbol{Y}}+\boldsymbol{Z})(\overline{\boldsymbol{X}}+\boldsymbol{Y}+\boldsymbol{Z})
\end{aligned}
$$

Since \mathbf{F}^{\prime} is in POS form, it can be implemented by using NOR-NOR circuit.
By complementing the output we can get \mathbf{F}, or by using NOR-OR circuit as shown in the figure.

It can also be implemented using OR-NAND circuit as it is equivalent to NOR-OR circuit

Universal Gates

The objectives of this lesson are to learn about:

1. Universal gates - NAND and NOR.
2. How to implement NOT, AND, and OR gate using NAND gates only.
3. How to implement NOT, AND, and OR gate using NOR gates only.
4. Equivalent gates.

NAND GATE

X	Y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

NOR GATE

X	Y	NOR
0	0	1
0	1	0
1	0	0
1	1	0

NAND AS A UNIVERSAL GATE

1. All NAND input pins connect to the input signal \mathbf{A} gives an output $\mathbf{A}^{\text {² }}$.

2. One NAND input pin is connected to the input signal \mathbf{A} while all other input pins are connected to logic 1. The output will be A'.

Implementing AND Using only NAND Gates
An AND gate can be replaced by NAND gates as shown in the figure (The AND is replaced by a NAND gate with its output complemented by a NAND gate inverter).

Implementing OR Using only NAND Gates
An OR gate can be replaced by NAND gates as shown in the figure (The OR gate is replaced by a NAND gate with all its inputs complemented by NAND gate inverters).

Thus, the NAND gate is a universal gate since it can implement the AND, OR and NOT functions.

NOR AS A UNIVERSAL GATE

1. All NOR input pins connect to the input signal \mathbf{A} gives an output \mathbf{A}^{\prime}.

2. One NOR input pin is connected to the input signal A while all other input pins are connected to logic 0 . The output will be \mathbf{A}^{\prime}.

Implementing OR Using only NOR Gates

An OR gate can be replaced by NOR gates as shown in the figure (The OR is replaced by a NOR gate with its output complemented by a NOR gate inverter)

Implementing AND Using only NOR Gates

An AND gate can be replaced by NOR gates as shown in the figure (The AND gate is replaced by a NOR gate with all its inputs complemented by NOR gate inverters)

Thus, the NOR gate is a universal gate since it can implement the AND, OR and NOT functions.

BCD-to-Excess-3 Code converter

- BCD is a code for the decimal digits 0-9
- Excess-3 is also a code for the decimal digits

| Decimal
 Digit | | Input
 BCD | | | | Output
 Excess |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Specification of BCD-to-Excess3

- Inputs: a BCD input, A, B,C,D with A as the most significant bit and D as the least significant bit.
- Outputs: an Excess-3 output W,X,Y,Z that corresponds to the BCD input.
- Internal operation - circuit to do the conversion in combinational logic.

Formulation of BCD-to-Excess-3

- Excess-3 code is easily formed by adding a binary 3 to the binary or BCD for the digit. There are 16 possible inputs for both BCD and Excess-3.
- It can be assumed that only valid BCD inputs will appear so the six combinations not used can be treated as don't cares.

Optimization - BCD-to-Excess-3

- Lay out K-maps for each output, W X Y Z

K-map for X

K-map for Y

K-map for Z

- A step in the digital circuit design process.

Placing 1 on K-maps

- Where are the Minterms located on a K-Map?

Expressions for W X Y Z

$$
\begin{aligned}
& \mathrm{W}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})= \Sigma \mathrm{m}(5,6,7,8,9) \\
&+\mathrm{d}(10,11,12,13,14,15) \\
& \mathrm{X}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})= \Sigma \mathrm{m}(1,2,3,4,9) \\
&+\mathrm{d}(10,11,12,13,14,15) \\
& \mathrm{Y}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})= \Sigma \mathrm{m}(0,3,4,7,8) \\
&+\mathrm{d}(10,11,12,13,14,15) \\
& \mathrm{Z}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{\Sigma}(0,2,4,6,8) \\
&+\mathrm{d}(10,11,12,13,14,15)
\end{aligned}
$$

Minimize K-Maps

- W minimization
, Find $W=A+B C+B C^{A}$
K-map for \mathbf{W}

Minimize K-Maps

- X minimization
- Find $X=B C^{\prime} D^{\prime}+B^{\prime} C+B^{\prime} D$

K-map for \mathbf{X}

Minimize K-Maps

- Y minimization
- Find $Y=C D+C^{\prime} D^{\prime}$

Minimize K-Maps

- Z minimization
- Find $Z=D^{\prime}$

K-minapition

BCD-to-Seven-Segment Decoder

- Specification
- Digital readouts on many digital products often use LED seven-segment displays.
- Each digit is created by lighting the appropriate segments. The segments are labeled a, b, c, d, e, f, g
- The decoder takes a BCD input and outputs the correct code for the seven-segment display.

Specification

- Input: A 4-bit binary value that is a BCD coded input.
- Outputs: 7 bits, a through g for each of the segments of the display.
- Operation: Decode the input to activate the correct segments.

Formulation

Construct a truth table

Decimal Digit		Input BCD	Seven-Segment Decoder Outputs abcdefg
0	0	000	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}$
1	0	001	01110000
2	0	010	$\begin{array}{lllllll}1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}$
3	0	011	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$
4	0	100	$1 \begin{array}{lllllll}1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$
5	0	101	$1 \begin{array}{lllllll}1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$
6	0	110	$\begin{array}{lllllll}1 & 0 & 1 & 1 & 1 & 1 & 1\end{array}$
7	0	111	1111000
8	1	000	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
9	1	001	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$
All o	r	inputs	0000000

Optimization

Create a K-map for each output and get

- $A=A^{\prime} C+A^{\prime} B D+B^{\prime} C^{\prime} D^{\prime}+A B^{\prime} C^{\prime}$
- $B=A^{\prime} B^{\prime}+A^{\prime} C^{\prime} D^{\prime}+A^{\prime} C D+A B^{\prime} C^{\prime}$
- $C=A^{\prime} B+A^{\prime} D+B^{\prime} C^{\prime} D^{\prime}+A B^{\prime} C^{\prime}$
$\circ D=A^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C+B^{\prime} C^{\prime} D^{\prime}+A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime} D$
$\circ E=A^{\prime} C D^{\prime}+B^{\prime} C^{\prime} D^{\prime}$
- $F=A^{\prime} B C^{\prime}+A^{\prime} C^{\prime} D^{\prime}+A^{\prime} B D^{\prime}+A B^{\prime} C^{\prime}$
$\circ G=A^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$

Karnaugh Maps for Simplification

Karnaugh Maps

- Boolean algebra helps us simplify expressions and circuits
- Karnaugh Map: A graphical technique for simplifying a Boolean expression into either form:
- minimal sum of products (MSP)
- minimal product of sums (MPS)
- Goal of the simplification.
- There are a minimal number of product/sum terms
- Each term has a minimal number of literals
- Circuit-wise, this leads to a minima/two-level implementation

Re-arranging the Truth Table

- A two-variable function has four possible minterms. We can rearrange these minterms into a Karnaugh map

x	y	minterm
0	0	$x^{\prime} y^{\prime}$
0	1	$x^{\prime} y$
1	0	$x y^{\prime}$
1	1	$x y$

- Now we can easily see which minterms contain common literals - Minterms on the left and right sides contain y' and y respectively
- Minterms in the top and bottom rows contain x ' and x respectively

Karnaugh Map Simplifications

- Imagine a two-variable sum of minterms:

$$
x^{\prime} y^{\prime}+x^{\prime} y
$$

- Both of these Minterms appear in the top row of a Karnaugh map, which means that they both contain the literal x '

$$
\begin{array}{rlrl}
x^{\prime} y^{\prime}+x^{\prime} y & & =x^{\prime}\left(y^{\prime}+y\right) & {[\text { Distributive }]} \\
& =x^{\prime} \cdot 1 & {\left[y+y^{\prime}=1\right]} & \\
& =x^{\prime} & {[x \bullet 1=x]}
\end{array}
$$

- What happens if you simplify this expression using Boolean algebra?

More Two-Variable Examples

- Another example expression is x'y + xy
- Both minterms appear in the right side, where y is uncomplemented
- Thus, we can reduce x ' $y+x y$ to just y

- How about $x^{\prime} y^{\prime}+x^{\prime} y+x y$?
- We have $x^{\prime} y^{\prime}+x$ 'y in the top row, corresponding to x '
- There's also x ' $y+x y$ in the right side, corresponding to y
- This whole expression can be reduced to x ' $+y$

		y
	$x^{\prime} y^{\prime}$	$x^{\prime} y$
X	$x y^{\prime}$	$x y$

A Three-Variable Karnaugh Map

- For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky:

- Another way to label the K-map (use whichever you like):

Why the funny ordering?

- With this ordering, any group of 2,4 or 8 adjacent squares on the map contains common literals that can be factored out

		y		
	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
X	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$
	Z			

$$
\begin{aligned}
& x^{\prime} y^{\prime} z+x^{\prime} y z \\
= & x^{\prime} z\left(y^{\prime}+y\right) \\
= & x^{\prime} z \cdot 1 \\
= & x^{\prime} z
\end{aligned}
$$

- "Adjacency" includes wrapping around the left and right sides:

$$
\begin{aligned}
& x^{\prime} y^{\prime} z^{\prime}+x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z^{\prime} \\
= & z^{\prime}\left(x^{\prime} y^{\prime}+x y^{\prime}+x^{\prime} y+x y\right) \\
= & z^{\prime}\left(y^{\prime}\left(x^{\prime}+x\right)+y\left(x^{\prime}+x\right)\right) \\
= & z^{\prime}\left(y^{\prime}+y\right)
\end{aligned}
$$

 to do our simplifications.

K-maps From Truth Tables

- We can fill in the K-map directly from a truth table
- The output in row i of the table goes into square m_{i} of the K-map
- Remember that the rightmost columns of the K-map are "switched"

Reading the MSP from the K-map

- You can find the minimal SoP expression
- Each rectangle corresponds to one product term
- The product is determined by finding the common literals in that

rectangle							y	
	0	1	0	0				
\times	0	1	1	1				

			y	
	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z$
X	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$
	x			

$$
F(x, y, z)=y^{\prime} z+x y
$$

Grouping the Minterms Together

 The most difficult step is grouping together all the 1 s in the K-map- Make rectangles around groups of one, two, four or eight 1 s
- All of the 1 s in the map should be included in at least one rectangle
- Do not include any of the 0s
- Each group corresponds to one product term

For the Simplest Result

- Make as few rectangles as possible, to minimize the number of products in the final expression.
- Make each rectangle as large as possible, to minimize the number of literals in each term.
- Rectangles can be overlapped, if that makes them larger.

K-map Simplification of SoP Expressions

- Let's consider simplifying $f(x, y, z)=x y+y^{\prime} z+x z$
- You should convert the expression into a sum of minterms form,
- The easiest way to do this is to make a truth table for the function, and then read off the minterms
- You can either write out the literals or use the minterm shorthand
- Here is the truth table and sum of minterms for our example:

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
\begin{aligned}
f(x, y, z) & =x^{\prime} y^{\prime} z+x y^{\prime} z+ \\
& +x y z^{\prime}+ \\
& =m_{1}+m_{5}+m_{6}+m_{7}
\end{aligned}
$$

Unsimplifying Expressions

- You can also convert the expression to a sum of minterms with Boolean
algebra
- Apply the distributive law in reverse to add in missing variables.
- Very few people actually do this, but it's occasionally useful.

$$
\begin{aligned}
x y+y^{\prime} z+x z & =(x y \bullet 1)+\left(y^{\prime} z \bullet 1\right)+(x z \bullet 1) \\
& =\left(x y \bullet\left(z^{\prime}+z\right)\right)+\left(y^{\prime} z \bullet\left(x^{\prime}+x\right)\right)+\left(x z \bullet\left(y^{\prime}+y\right)\right) \\
& =\left(x y z^{\prime}+x y z\right)+\left(x^{\prime} y^{\prime} z+x y^{\prime} z\right)+\left(x y^{\prime} z+x y z\right) \\
& =x y z^{\prime}+x y z+x^{\prime} y^{\prime} z+x y^{\prime} z
\end{aligned}
$$

 expression

- The resulting expression is larger than the original one!
- But having all the individual minterms makes it easy to combine them together with the K-map

Making the Example K-map

- In our example, we can write $f(x, y, z)$ in two equivalent ways

$$
\begin{aligned}
& f(x, y, z)=x^{\prime} y^{\prime} z+x y^{\prime} z+x y z^{\prime} \\
& +x y z
\end{aligned}
$$

$$
f(x, y, z)=m_{1}+m_{5}+m_{6}+m_{7}
$$

		y			
	m_{0}	m_{1}	m_{3}	m_{2}	
\times	m_{4}	m_{5}	m_{7}	m_{6}	
		Z			

- In either case, the resulting K-map is shown below

Practice K-map 1

- Simplify the sum of minterms $m_{1}+m_{3}+m_{5}+$ m_{6}

Solutions for Practice K-map 1

- Here is the filled in K-map, with all groups shown
- The magenta and green groups overlap, which makes each of them as
large as possible
- Minterm m_{6} is in a group all by its lonesome

\qquad 0 1 1 0^{0}

K-maps can be tricky!

- There may not necessarily be a unique MSP. The K-map below yields two
valid and equivalent MSPs, because there are two possible ways to include minterm m_{7}

- Remember that overlapping groups is possible, as shown above

Four-variable K-maps - f(W,X,Y,Z)

- We can do four-variable expressions too!
- The minterms in the third and fourth columns, and in the third and fourth rows, are switched around.
- Again, this ensures that adjacent squares have common literals

- Grouping minterms is similar to the three-variable case, but:
- You can have rectangular groups of 1, 2, 4, 8 or 16 minterms
- You can wrap around all foursides

Four-variable K-maps

			y		
	$w^{\prime} x^{\prime} y^{\prime} z^{\prime}$	$w^{\prime} x^{\prime} y^{\prime} z$	$w^{\prime} x^{\prime} y z$	$w^{\prime} x^{\prime} y z^{\prime}$	
	$w^{\prime} x y^{\prime} z^{\prime}$	$w^{\prime} x y^{\prime} z$	$w^{\prime} x y z$	$w^{\prime} x y z^{\prime}$	X
W	$w x y^{\prime} z^{\prime}$	$w x y^{\prime} z$	wxyz	wxyz'	X
	$w x^{\prime} y^{\prime} z^{\prime}$	$w x^{\prime} y^{\prime} z$	$w x^{\prime} y z$	$w x^{\prime} y z^{\prime}$	
		Z			

, The expression is already a sum of minterms, so here's the K-map:

			y		
	1	0	0	1	
	0	1	0	0	X
W	0	1	0	0	
	1	0	0	1	

, We can make the following groups, resulting in the MSP $x^{\prime} z^{\prime}+x y^{\prime} z$

$m_{0}+m_{2}+m_{5}+m_{8}+m_{10}+m_{13}$

Five-variable K-maps f(V,W,X,Y,Z)

Simplify $f(V, W, X, Y, Z)=\Sigma m(0,1,4,5,6,11,12,14,16,20,22,28,30,31)$

$$
\begin{aligned}
& f=X Z^{\prime} \\
& \Sigma m(4,6,12,14,20,22,28,30) \\
& +V^{\prime} W^{\prime} Y^{\prime} \quad \sum m(0,1,4,5) \\
& +W^{\prime} Y^{\prime} Z^{\prime} \quad \sum m(0,4,16,20) \\
& + \text { VWXY } \quad \sum m(30,31) \\
& +V^{\prime} W X^{\prime} Y Z \quad \text { m11 }
\end{aligned}
$$

PoS Optimization

- Maxterms are grouped to find minimal PoS expression

01	11	10

1				$x+y+z$
	$x+y+z^{\prime}$	$x+y^{\prime}+z^{\prime}$	$x+y^{\prime}+z$	
	$x^{\prime}+y+z$	$x^{\prime}+y+z^{\prime}$	$x^{\prime}+y^{\prime}+z^{\prime}$	$x^{\prime}+y^{\prime}+z$

- $F(W, X, Y, Z)=\Pi M(0,1,2,4,5)$

PoS Optimization from SoP

$$
\begin{aligned}
F(W, X, Y, Z)= & \sum m(0,1,2,5,8,9,10) \\
& =\Pi M(3,4,6,7,11,12,13,14,15)
\end{aligned}
$$

$$
\begin{aligned}
& F(W, X, Y, Z)=\left(W^{\prime}+X^{\prime}\right)\left(Y^{\prime}+Z^{\prime}\right)\left(X^{\prime}\right. \\
& +Z) \\
& \text { Or, } \\
& F(W, X, Y, Z)=X^{\prime} Y^{\prime}+X^{\prime} Z^{\prime}+W^{\prime} Y^{\prime} Z
\end{aligned}
$$

Which one is the minimal one?

SoP Optimization from PoS

$$
\begin{aligned}
F(W, X, Y, Z) & =\Pi M(0,2,3,4,5,6) \\
& =\Sigma m(1,7,8,9,10,11,12,13,14,15)
\end{aligned}
$$

$$
F(W, X, Y, Z)=W+X Y Z+X^{\prime} Y^{\prime} Z
$$

I don't care!

- You don't always need all 2^{n} input combinations in an n-variable function
- If you can guarantee that certain input combinations never occur
- If some outputs aren't used in the rest of the circuit
- We mark don't-care outputs in truth tables and K-maps with Xs.

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	x
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	x
1	1	1	1

, Within a K-map, each X can be considered as either 0 or 1. You should pick the interpretation that allows for the most simplification.

Practice K-map

- Find a MSP for

$$
\begin{gathered}
f(w, x, y, z)=\Sigma m(0,2,4,5,8,14,15), d(w, x, y, z)= \\
\sum m(7,10,13)
\end{gathered}
$$

This notation means that input combinations $w x y z=0111,1010$ and 1101 (corresponding to minterms $\mathrm{m}_{7}, \mathrm{~m}_{10}$ and m_{13}) are unused

Solutions for Practice K-map

, Find a MSP for:

$$
f(w, x, y, z)=\Sigma m(0,2,4,5,8,14,15), d(w, x, y, z)=\Sigma m(7,10,13)
$$

$$
f(w, x, y, z)=x^{\prime} z^{\prime}+w^{\prime} x y^{\prime}+w x y
$$

K-map Summary

- K-maps are an alternative to algebra for simplifying expressions
- The result is a MSP/MPS, which leads to a minimal two-level circuit
It's easy to handle don't-care conditions
K-maps are really only good for manual simplification of small expressions...
- Things to keep in mind:
- Remember the correct order of minterms/maxterms on the K-map
- When grouping, you can wrap around all sides of the K-map, and your groups can overlap
- Make as few rectangles as possible, but make each of them as large as possible. This leads to fewer, but simpler, product terms
- There may be more than one valid solution

UNIT 3

DESIGN OF COMBINATIONAL CHRCUTS

Combinational Logic Design

- A process with 5 steps
- Specification
- Formulation
- Optimization
- Technology mapping
- Verification
- 1 st three steps and last best illustrated by example

Functional Blocks

- Fundamental circuits that are the base building blocks of most larger digital circuits
- They are reusable and are common to many systems.
- Examples of functional logic circuits
-Decoders
-Encoders
-Code converters
-Multiplexers

Where they are used

- Multiplexers
-Selectors for routing data to the processor, memory, I/O
-Multiplexers route the data to the correct bus or port.
- Decoders
- are used for selecting things like a bank of memory and then the address within the bank. This is also the function needed to 'decode' the instruction to determine the operation to perform.
- Encoders
- are used in various components such as keyboards.

UNIT4
 SEQUENTIAL CIRCUITS

Objectives

- In this chapter you will learn about:
- Logic circuits that can store information
- Flip-flops, which store a single bit
- Registers, which store multiple bits
- Shift registers, which shift the contents of a register
- Counters of various types

Motivation: Control of an Alarm System

Memory element

Alarm

Reset

Alarm turned on when On/Off $=1$
Alarm turned off when On/Off $=0$
Once triggered, alarm stays on until manually reset The circuit requires a memory element

The Basic Latch

- Basic latch is a feedback connection of two NOR gates or two NAND gates
- It can store one bit of information
- It can be set to 1 using the S input and reset to 0 using the R input.

A Simple Memory Element

- A feedback loop with even number of inverters
- If $\mathrm{A}=0, \mathrm{~B}=1$ or when $\mathrm{A}=1, \mathrm{~B}=0$

This circuit is not useful due to the lack of a mechanism for changing its state

A Memory Element with NOR Gates

Reset

The Gated Latch

- Gated latch is a basic latch that includes input gating and a control signal
- The latch retains its existing state when the control input is equal to 0
- Its state may be changed when the control signal is equal to 1 . In our discussion we referred to the control input as the clock
- We consider two types of gated latches:
- Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0 , respectively.
- Gated D latch uses the Dinput to force the latch into a state that has the same logic value as the D input.

Gated S/R Latch

Gated D Latch

(a) Circuit

(c) Graphical symbol

Setup and Hold Times

- Setup Time $\mathrm{t}_{\text {su }}$
- The minimum time that the input signal must be stable prior to the edge of the clock signal.
- Hold Time t_{h}
- The minimum time that the input signal must be stable after the edge of the clock signal.

Flip-Flops

- A flip-flop is a storage element based on the gated latch principle
- It can have its output state changed only on the edge of the controlling clock signal

Flip-Flops

- We consider two types:
- Edge-triggered flip-flop is affected only by the input values present when the active edge of the clock occurs
- Master-slave flip-flop is built with two gated latches
- The master stage is active during half of the clock cycle, and the slave stage is active during the other half.
- The output value of the flip-flop changes on theedge of the clock that activates the transfer into the slave stage.

Master-Slave D Flip-Flop

(b) Timing diagra

(c) Graphical symbol

A Positive-Edge-Triggered D FlipFlop

Graphical symbol

Comparison of Level-Sensitive and Edge-Triggered D Storage Elements

Comparison of Level-Sensitive and Edge-Triggered D Storage Elements

Master-Slave D Flip-Flop with Clear and Preset

T Flip-Flop

(a) Circuit

T	$\mathrm{Q}(t+1)$
O	$\mathrm{Q}(t)$
1	$\mathrm{Q}(t)$

(b) Characteristic table

Clock
T
Q

JK Flip-Flop

$$
\begin{array}{cc|c}
\mathrm{J} & \mathrm{~K} & \mathrm{Q}(\mathrm{t}+1) \\
\hline \mathrm{O} & 0 & \mathrm{Q}(\mathrm{t}) \\
\mathrm{O} & 1 & \mathrm{O} \\
1 & 0 & 1 \\
1 & 1 & \bar{Q}(\mathrm{t})
\end{array}
$$

(b) Characteristic table
(c) Graphical symbol

Flip-flop excitation tables

Types of Flip-flops

- SR flip-flop (Set, Reset)

T flip-flop (Toggle)

D flip-flop (Delay)
-JK flip-flop

Excitation Tables

Previous State $->$ PresentState	S	R
$0->0$	0	X
$0->1$	1	0
$1->0$	0	1
$1->1$	X	0

| Previous State $->$ PresentState | T |
| :---: | :--- | :--- |
| $0->0$ | 0 |
| $0->1$ | 1 |
| $1->0$ | 1 |
| $1->1$ | 0 |

Excitation Tables

Previous State $->$ PresentState	D
$0->0$	0
$0->1$	1
$1->0$	0
$1->1$	1

Previous State $->$ PresentState	J	K
$0->0$	0	X
$0->1$	1	X
$1->0$	X	1
$1->1$	X	0

Timing Diagrams

	S	R
$0->0$	0	X
$0->1$	1	0
$1->0$	0	1
$1->1$	X	0

	T
$0->0$	0
$0->1$	1
$1->0$	1
$1->1$	0

Timing Diagrams

	D
$0->0$	0
$0->1$	1
$1->0$	0
$1->1$	1

	J	K
$0->0$	0	X
$0->1$	1	X
$1->0$	X	1
$1->1$	X	0

Conversions of flipflops

Procedure uses excitation tables

Method: to realize a type A flipflop using a type B flipflop:

1. Start with the K-map or state-table for the A-flipflop.
2. Express B-flipflop inputs as a function of the inputs and present state of A-flipflop such that the required state transitions of A-flipflop are reallized.

Type B

1. Find $Q^{+}=f(g, h, Q)$ for type A (using type A state-table)
2. Compute $x=f 1(g, h, Q)$ and $y=f 2(g, h, Q)$ to realize Q^{+}.

Example: Use JK-FF to realize D-FF

1) Start transition table for D-FF
2) Create K-maps to express J and K as functions of inputs (D, Q)
3) Fill in K-maps with appropriate values for J and K to cause the same state transition as in the D-FF transition table

State-Table
e.g.
when $\mathrm{D}=\mathrm{Q}=0$, then $\mathrm{Q}^{+}=0$ the same transition $\mathrm{Q}-->\mathrm{Q}^{+}$ is realize with $\mathrm{J}=0, \mathrm{~K}=\mathrm{X}$

Q	Q^{+}	R	S	J	K	T	D
0	0	X	0	0	X	0	0
0	1	0	1	1	X	1	1
1	0	1	0	X	1	1	0
1	1	0	X	X	0	0	1

Example: Implement JK-FF using a D-FF

PRESET and CLEAR: asynchronous, level-sensitive inputs used to isitijatize flfinflq9.OUS il in Puts

PRESET, CLEAR: active low inputs
PRESET $=0-->Q=1$
CLEAR $=0 \quad-->Q=0$

LogicWorks Simulation

Counters

- Counters are a specific type of sequential circuit.
- Like registers, the state, or the flip-flop values themselves, serves as the "output."
- The output value increases by one on each clock cycle.
- After the largest value, the output "wraps around" back to 0 .

- Using two bits, we'd get something like this:

Present State		Next State	
A	B	A	B
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Benefits of counters

- Counters can act as simple clocks to keep track of "time."
- You may need to record how many times something has happened.
- How many bits have been sent or received?
- How many steps have been performed in some computation?
- All processors contain a program counter, or PC.
- Programs consist of a list of instructions that are to be executed one after another (for the most part).
- The PC keeps track of the instruction currently being executed.
- The PC increments once on each clock cycle, and the next program instruction is then executed.

A slightly fancier counter

- Let's try to design a slightly different two-bit counter:
- Again, the counter outputs will be 00, 01, 10 and 11.
- Now, there is a single input, X. When $X=0$, the counter value should increment on each clock cycle. But when $\mathrm{X}=1$, the value should decrement on successive cycles.
- We'll need two flip-flops again. Here are the four possible states:

The complete state diagram and table

- Here's the complete state diagram and state table for this circuit.

Present State		Inputs	Next State		
Q_{1}	Q_{0}	X	Q_{1}	Q_{0}	
0	0	0	0	1	
0	1	0	1	0	
0					
1	0	0	1	1	
1					
1	1	0	0	0	
1					

D flip-flop inputs

- If we use D flip-flops, then the D inputs will just be the same as the desired next states.
- Equations for the D flip-flop inputs are shown at the right.
-Why does $D_{0}=Q_{0}$ ' make sense?

Present State		Inputs	Next State	
Q_{1}	Q_{0}	X	Q_{1}	Q_{0}
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

		Q_{0}		
	0	1	0	1
Q $_{1}$	1	0	1	0
			\times	

$\mathrm{D}_{1}=\mathrm{Q}_{1} \oplus \mathrm{Q}_{0} \oplus \mathrm{X}$				
			Qo	
	1	1	0	0
Q1	1	1	0	0
		X		
	$\mathrm{D}_{0}=\mathrm{Q}_{0}{ }^{\prime}$			

The counter in Logic Works

- Here are some D Flip Flop devices from LogicWorks.
- They have both normal and complemented outputs, so we can access Q0' directly without using an inverter. (Q1' is not needed in this example.)
- This circuit counts normally when Reset $=1$. But when Reset is 0 , the flip-flop outputs are cleared to 00 immediately.
- There is no three-input XOR gate in LogicWorks so we've used a four-input version instead, with one of the inputs connected to 0 .

JK flip-flop inputs

- If we use JK flip-flops instead, then we have to compute the JK inputs for each flip-flop.
- Look at the present and desired next state, and use the excitation table on the right.

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	J	K
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

Present State		Inputs X	Next State		Flip flop inputs			
Q1	Qo		Q1	Qo	J_{1}	K_{1}	Jo	K
0	0	0	0	1	0	x	1	X
0	0	1	1	1	1	x	1	x
0	1	0	1	0	1	x	x	1
0	1	1	0	0	0	\times	\times	1
1	0	0	1	1	x	0	1	\times
1	0	1	0	1	x	1	1	\times
1	1	0	0	0	x	1	\times	1
1	1	1	1	0	\times	0	\times	1

JK flip-flop input equations

Present State		Inputs		Next State			Flip flop inputs			
Q_{1}	Q_{0}	X	Q_{1}	Q_{0}	$\mathrm{~J}_{1}$	K_{1}	J_{0}	K_{0}		
0	0	0	0	1	0	\times	1	\times		
0	0	1	1	1	1	\times	1	\times		
0	1	0	1	0	1	\times	\times	1		
0	1	1	0	0	0	\times	\times	1		
1	0	0	1	1	\times	0	1	\times		
1	0	1	0	1	\times	1	1	\times		
1	1	0	0	0	\times	1	\times	1		
1	1	1	1	0	\times	0	\times	1		

- We can then find equations for all four flip-flop inputs, in terms of the present state and inputs. Here, it turns out $\mathrm{J}_{1}=\mathrm{K}_{1}$ and $\mathrm{J}_{0}=\mathrm{K}_{0}$.

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{K}_{1}=\mathrm{Q}_{0}{ }^{\prime} \mathrm{X}+\mathrm{Q}_{0} \mathrm{X}^{\prime} \\
& \mathrm{J}_{0}=\mathrm{K}_{0}=1
\end{aligned}
$$

The counter in Logic Works again

- Here is the counter again, but using JK Flip Flop n.i. RS devices instead.
- The direct inputs R and S are noninverted, or active-high.
- So this version of the circuit counts normally when Reset $=0$, but initializes to 00 when Reset is 1 .

Asynchronous Counters

- This counter is called asynchronous because not all flip flops are hooked to the same clock.
-Look at the waveform of the output, \mathbf{Q}, in the timing diagram. It resembles a clock as well. If the period of the clock is T, then what is the period of \mathbf{Q}, the output of the flip flop? It's 2T!
-We have a way to create a clock that runs twice as slow. We feed the clock into a T flip flop, where T is hardwired to 1 . The output will be a clock who's period is twice as long.

Asynchronous counters

If the clock has period T. Q0 has period 2T. Q1 period is 4T
With n flip flops the period is 2^{n}.

Registers,Counters,State Reduction

3 bit asynchronous "ripple" counter using T flip flops

-This is called as a ripple counter due to the way the FFs respond one after another in a kind of rippling effect.

Synchronous Counters

- To eliminate the "ripple" effects, use a common clock for each flip-flop and a combinational circuit to generate the next state.
- For an up-counter, use an incrementer =>

Synchronous Counters (continued)

- Internal details =>
- Internal Logic
- XOR complements each Diditumenter enable EN
- AND chain causes complement of a bit if all bits toward LSB from it equal 1
- Count Enable
- Forces all outputs of AND chain to 0 to "hold" the state
- Carry Out
- Added as part of incrementer
- Connect to Count Enable of additional 4-bit counters to form larger counters

(a) Lodic Diacmam-Serial Gating

Design Example: Synchronous BCD

- Use the sequential logic model to design a synchronous BCD counter with D flip-flops
- State Table =>
- Input combinations 1010 through 1111 are don't cares

Current State	Next State Q8 Q4 Q2 01
0000	0001
0001	001
0 0 1 0	001
0 0 011	010
0110	01101
0101	0110
0110	011
0111	1000
1000	100
1001	0000

Synchronous BCD (continued)

- Use K-Maps to two-level optimize the next state equations and manipulate into forms conaining XOR gates:
$\mathrm{D} 1=\mathrm{QP}$
$\mathrm{D} 2=\mathrm{Q} 2+\mathrm{Q} 1 \mathrm{Q} 8$,
$\mathrm{D} 4=\mathrm{Q} 4+\mathrm{Q} 1 \mathrm{Q} 2$
$\mathrm{D} 8=\mathrm{Q} 8+(\mathrm{Q} 1 \mathrm{Q} 8+\mathrm{Q} 1 \mathrm{Q} 2 \mathrm{Q} 4)$
- $\mathrm{Y}=\mathrm{Q} 1 \mathrm{Q} 8$
- The logic diagram can be drawn from these equations
- An asynchronous or synchronous reset should be added
(What happens if the counter is perturbed by a power disturbance or other interference and it enters a state other than 0000 through 1001?

Synchronous BCD (continued)

- Find the actual values of the six next states for the don't care combinations from the equations
- Find the overall state diagram to assess behavior for the don't care states (states in decimal)

\left.| Present State | | | | Next State | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q8 Q4 Q2 Q1 | | | Q8 Q4 Q2 Q1 | | | | | |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | | |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 | | |$\right) 0$.

Synchronous BCD (continued)

- For the BCD counter design, if an invalid state is entered, return to a valid state occurs within two clock cycles
- Is this adequate?!

Counting an arbitrary sequence

\square TABLE 7-10
State Table and Flip-Flop Inputs for Counter

Unused states

- The examples shown so far have all had 2^{n} states, and used n flip-flops. But sometimes you may have unused, leftover states.
- For example, here is a state table and diagram for a counter that repeatedly counts from 0 (000) to 5 (101).
- What should we put in the table for the two unused states?

Present State			Next State		
Q_{2}	Q_{1}	Q_{0}	Q_{2}	Q_{1}	Q_{0}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	$?$	$?$	$?$
1	1	1	$?$	$?$	$?$

Unused states can be don't

cares...

- To get the simplest possible circuit, you can fill in don't cares for the next states. This will also result in don't cares for the flip-flop inputs, which can simolify the hardware.

Present State Q_{2} av Q_{1} wi $Q_{0 e}$	Next State p				
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	x	x	x
1	1	1	x	x	x

...or maybe you do care

- To get the safest possible circuit, you can explicitly fill in next states for the unused states 110 and 111 .
- This guarantees that even if the circuit somehow enters an unused state, it will eventually end up in a valid state.
- This is called a self-starting counter.

Present State			Next State		
Q_{2}	Q_{1}	Q_{0}	Q_{2}	Q_{1}	Q_{0}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	0	0

Logic Works counters

- There are a couple of different counters available in LogicWorks.
The simplest one, the Counter-4 Min, just increments once on each clock cycle.
- This is a four-bit counter, with values ranging from 0000 to 1111.
- The only "input" is the clock signal.

More complex counters

- More complex counters are also possible. The full-featured LogicWorks Counter-4 device below has several functions.
- It can increment or decrement, by setting the UP input to 1 or 0.
- You can immediately (asynchronously) clear the counter to 0000 by setting CLR $=1$.
- You can specify the counter's next output by setting $D_{3}-D_{0}$ to any four-bit value and clearing LD.
- The active-low EN input enables or disables the counter.
- When the counter is disabled, it continues to output the same value without incrementing, decrementing, loading, or clearing.
- The "counter out" CO is normally 1 , but becomes 0 when the counter reaches its maximum value, 1111.

An 8-bit counter

- As you might expect by now, we can use these general counters to build other counters.
- Here is an 8 -bit counter made from two 4-bit counters.
- The bottom device represents the least significant four bits, while the top counter represents the most significant four bits.
- When the bottom counter reaches 1111 (i.e., when $\mathrm{CO}=0$), it enables the top counter for one cycle.
- Other implementation notes:
- The counters share clock and clear signals.

A restricted 4-bit counter

- We can also make a counter that "starts" at some value besides 0000.
- In the diagram below, when $\mathrm{CO}=0$ the LD signal forces the next state to be loaded from $D_{3}-D_{0}$.
- The result is this counter wraps from 1111 to 0110 (instead of 0000).

Another restricted counter

- We can also make a circuit that counts up to only 1100, instead of 1111.
- Here, when the counter value reaches 1100, the NAND gate forces the counter to load, so the next state becomes 0000.

Summary of Counters

- Counters serve many purposes in sequential logic design.
- There are lots of variations on the basic counter.
- Some can increment or decrement.
- An enable signal can be added.
- The counter's value may be explicitly set.
- There are also several ways to make count \not
- You can follow the sequential design principles counters from scratch.
- You could also modify or combine existing counter devices.

Sequential Circuit Design

Creating a sequential circuit to address a design need.

Sequential Circuit Design

- Steps in the design process for sequential circuits
- State Diagrams and State Tables
- Examples

Sequential Circuit Design Process

- Steps in Design of a Sequential Circuit
- 1. Specification - A description of the sequential circuit. Should include a detailing of the inputs, the outputs, and the operation. Possibly assumes that you have knowledge of digital system basics.
- 2. Formulation: Generate a state diagram and/or a state table from the statement of the problem.
- 3. State Assignment: From a state table assign binary codes to the states.
-4. Flip-flop Input Equation Generation: Select the type of flip-flop for the circuit and generate the needed input for the required state transitions

Sequential Circuit Design Process

- 5. Output Equation Generation: Derive output logic equations for generation of the output from the inputs and current state.
- 6. Optimization: Optimize the input and output equations. Today, CAD systems are typically used for this in real systems.
- 7. Technology Mapping: Generate a logic diagram of the circuit using ANDs, ORs, Inverters, and F/Fs.
- 8. Verification: Use a HDL to verify the design.

Mealy and Moore

- Sequential machines are typically classified as either a Mealy machine or a Moore machine implementation.
- Moore machine: The outputs of the circuit depend only upon the current state of the circuit.
- Mealy machine: The outputs of the circuit depend upon both the current state of the circuit and the inputs.

An example to go through the steps

The specification: The circuit will have one input, X, and one output, Z. The output Z will be 0 except when the input sequence 1101 are the last 4 inputs received on X. In that case it will be a 1 .

Generation of a state diagram

- Create states and meaning for them.
- State A - the last input was a 0 and previous inputs unknown. Can also be the reset state.
- State B - the last input was a 1 and the previous input was a 0 . The start of a new sequence possibly.
- Capture this in a state diagram

Notes on State diagrams

- Capture this in a state diagram
- Circles represent the states
- Lines and arcs represent the transition between state.
- The notation Input/Output on the line or arc specifies the input that causes this transition and the output for this change of state.

Continue to build up the diagram

Add a state C

- State C - Have detected the input sequence 11 which is the start of the sequence.

Continue.....

- Add a state D
- State D - have detected the 3 rd input in the start of a sequence, a 0 , now having 110 . From State D, if the next input is a 1 the sequence has been detected and a 1 is output.

Add remaining transitions

The previous diagram was incomplete.

- In each state the next input could be a 0 or a 1. This must be included.

Now generate a state table

- The state table
- This can be done directly from the state diagram.
- Now need to do a state assignment

	Next State		Output	
Prresent State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	A	B	0	0
B	A	C	0	0
C	D	C	0	0
D	A	B	0	1

Select a state assignment

- Will select a gray encoding
- For this state A will be encoded 00, state B 01, state C 11 and state D 10

	Next State		Output	
Prresent State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
00	00	01	0	0
01	00	11	0	0
11	10	11	0	0
10	00	01	0	1

Flip-flop input equations

- Generate the equations for the flip-flop inputs
- Generate the D_{0} equation

- Generate the D_{1} equation

The output equation

- The next step is to generate the equation for the output Z and what is needed to generate it.
- Create a K-map from the truth table.

$\mathrm{Z}=\mathrm{X} \mathrm{Q}_{0} \overline{\mathrm{Q}}_{1}$

Now map to a circuit

- The circuit has 2 D type F/Fs

UNIT 5

CAPABILITIES AND MINIMIZATION OF SEQUENTIAL MACHINES

STGs may contain redundant states, i.e. states whose function can be accomplished by other states.

State minimization is the transformation of a given machine into an equivalent machine with no redundant states.

State Minimization: Completely Specified Machines

Two states, s_{i} and s_{j} of machine M are distinguishable if and only if there exists a finite input sequence which when applied to M causes different output sequences depending on whether M started in s_{i} or s_{j}.

Such a sequence is called a distinguishing sequence for (s_{i}, s_{j}).

If there exists a distinguishing sequence of length k for $\left(s_{i}\right.$, s_{j}, they are said to be k-distinguishable.

State Minimization: Completely Specified Machines

PS	NS, ${ }^{\text {z }}$	
	* $=0$	$x=1$
A	E; 0	D, 1
家	F, 0	D, 0
C	E, 0	B, 1
D	F, 0	B, 0
E	C, 0	F, 1
F	3; 0	C, 0

Example:

- states A and B are 1 -distinguishable, since a 1 input applied to A yields an output 1 , versus an output 0 from B.
 output 100, versus an oultipult 1011 firom E.

Completely Specified Machines

States s_{i} and $s_{j}\left(s_{i} \sim s_{j}\right)$ are saind to bee equinvallemit iff no distinguishing sequence exists for ($s_{i j} s_{j j}$),

If $s_{i} \sim s_{j}$ and $s_{j} \sim s_{k}$, then $s_{i} \sim s_{k}$. So state equivalence is an equivalence relation (i.e. it is a reflexive, symmetric and transitive relation).
An equivalence relation partitions the elements of a set into equivalence classes.
Property: If $s_{i} \sim s_{j}$, their corresponding X-successors, for all inputs X, are also equivalent.
Procedure: Group states of M so that two states are in the same group iff they are equivalent (forms a partition of the states).

Completely Specified Machines

PS	NS; ${ }^{\text {z }}$	
	$x=0$	$x=1$
A	E; 0	D, 1
B	F; 0	D, 0
c	E, 0	B, 1
D	F, 0	B; 0
E	C; 0	F, 1
F	B, 0	C; 0

P_{i} : partition using distinguishing sequences of length i.
Partition:
$P_{o}=(\mathrm{ABCDEF})$
$P_{1}=(\mathrm{ACE})(\mathrm{B} \mathrm{D} \mathrm{F})$
$P_{2}=(\mathrm{ACE})(\mathrm{BD})(\mathrm{F})$
$P_{3}=(\mathrm{A} \mathrm{C)})(\mathrm{E})(\mathrm{B} \mathrm{D})(\mathrm{F})$
$P_{4}=(\mathrm{A} \mathrm{C)})(\mathrm{E})(\mathrm{B} \mathrm{D})(\mathrm{F})$
Atgerithm terminates when $P_{k}=P_{K+1}$

Completely Specified Machines

Outline of state minimization procedure:

- All states equivalent to each other form an equivalence class. These may be combined into one state in the reduced machine.
- Start an initial partition of a single block. Iteratively refine this partition by separating the 1-distinguishable states, 2-distinguishable states and so on.
- To obtain P_{k+1}, for each block B_{i} of P_{k}, create one block of states that not 1 -distinguishable within B_{i}, and create different blocks states that are 1distinguishable within B_{i}.

Completely Specified Machines

Theorem: The equivalence partition is unique:
Theorem: If two states, s_{i} and s_{j}, of machine M are distinguishable, then they are ($n-7$)distinguishable, where n is the number of states in M.
Definition: Two machines, M_{1} and M_{2}, are iff, for every state in M_{1} there is a corresponding equivalent state in M_{2} and vice versa.
Theorem. For every machine M there is a minimum machine $M_{\text {rec }} \sim M$. $M_{\text {red }}$ is unique up to isomorphism.

Completely Specified Machines

Reduced machine obtained from previous example:

\[

\]

$$
\begin{aligned}
& \equiv \alpha \text { 际 } \%
\end{aligned}
$$

State Minimization of CSMs: Complexity

Algorithm DFA ~ DFA min $_{\text {m }}$

Input: A finite automaton $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with
Output: A minimum finite automaton $\mathrm{M}^{\prime}=\left(Q^{\prime}, \Sigma, \delta\right.$, $\left.q^{\prime}{ }_{0}, F^{\prime}\right)$.
Method:

1. $t:=2 ; Q_{0}:=\{$ undefined $\} ; Q_{1}:=\mathrm{F} ; Q_{2}:=Q \backslash F$.
2. while there is $0<i \leq t, a \in \sum$ with $\delta\left(Q_{i} ; a\right) \subseteq Q_{j}$, for all $j \leq t$
do (a) Choose such an i, a, and $j \leq t$ with $d\left(Q_{i}, a\right) \cap Q_{j} \neq \varnothing$.
(b) $Q_{t+1}:=\left\{q \in Q_{i} \mid \delta(q, a) \in Q_{j}\right\} ;$
$t:=t+1$.
end.

State Minimization of CSMs: Complexity

3. (* Denote
[q] the equivalence class of state q, and $\left\{Q_{i}\right\}$ the set of all equivalence classes.
*)

$$
\begin{aligned}
& Q^{\prime}:=\left\{Q_{7}, Q_{2}, \ldots, Q_{t}\right\} . \\
& q_{0}^{\prime}:=\left[q_{0}\right] . \\
& F^{\prime}:=\left\{[q] \in Q^{\prime} \mid \mathrm{q} \in F\right\} . \\
& \delta^{\prime}([q], a):=[\delta(q, a)] \text { for all } q \in Q, a \in \sum .
\end{aligned}
$$

State Minimization of CSMs: Complexity

Standard implementation: O(km $\left.{ }^{2}\right)$, where $\boldsymbol{m} \equiv \|$ Q and $k \equiv|\Sigma|$

Modification of the body of the while loop:

1. Choose such an $i, a \in \sum$, and choose $j_{1}, j_{2} \leq t$ with $\quad j_{1} \neq j_{2}, \delta\left(Q_{i}, a\right)$ $\cap Q_{j_{1}} \neq \varnothing$, and $\delta\left(Q_{i}, a\right) \cap Q_{j_{2}} \neq \varnothing$.
2. If $\left|\left\{q \in Q_{i} \mid \delta(q, a) \in Q_{j 1}\right\}\right| \leq\left|\left\{q \in Q_{i} \mid \delta(q, a) \in Q_{j 2}\right\}\right|$

$$
\text { then } Q_{t+1}:=\left\{q \in Q_{i} \mid \delta(q, a) \in Q_{j_{1}}\right\}
$$

$$
\text { else } Q_{t+1}:=\left\{q \in Q_{i} \mid \delta(q, a) \in Q_{j_{2}}\right\} f ;
$$

$$
Q_{i}:=Q_{i} \backslash Q_{t+1}
$$

$$
t:=t+1 .
$$

State Minimization of CSMs: Complexity

Note: $\left|Q_{f=1}\right| \leqslant i / 2\left|Q_{Q}\right|$. Thinerefiore, fion all| $a \in Q$, the name of the cllass wumichn comtains a cogiven state 9 chandes 5 at
Goal: Develop an implementation such that all computations can be assigned to transitions containing a state for which the name of the corresponding class is changed.

State Minimization of CSMs: BDD Implementation

X and Y are spaces of all states:
$E_{0}(x, y)=\prod_{y=1}^{|S|}\left(x_{i} \sim y_{j}\right)$ (initially all states are equivalent)
$E_{j+1}(x, y)=$

$$
\begin{aligned}
& E_{j}(x, y) \wedge \forall i \exists(o, z, w) \\
& \quad\left[T(x, i, z, o) \wedge T(y, i, w, o) \wedge E_{j}(z, w)\right]
\end{aligned}
$$

(i.e. states x, y continue to be equivalent if they are j - equivalent and for all inputs the next states are j - equivalent)

State Minimization:
 Incompletely Specified Machines

Statement of the problem: given an incompletely specified machine M, find a machine M 'such that:

- on any input sequence, M^{\prime} produces the same outputs as M, whenever M is specified.
- there does not exist a machine M '' with fewer states than M^{\prime} which has the same property.

State Minimization: Incompletely Specified Machines

Machine M:

門	NS, z	
	* $=0$	* $三 1$
51	53, 0	¢ z_{2}, 0
52	52, $=$	53, 0
53	§3, 1	§2, 0

Attempt to reduce this case to usual state minimization of completely specified machines:

- Brute Force Method: Force the don't cares to all their possible values andr choose the smallest of the completely specified machines so obtained.
In this example, it means to state minimize two completely specified machines obtained from M, by setting the don't care to elther 0 and 1.

State Minimization: Incompletely Specified Machines

Suppose that the - is set to be a 0 .
Machine M^{\prime} :

险	NŞ, z	
	* $=0$	*
$\S 1$	S3, 0	¢ 2,0
52	52, 0	53, 0
53	¢3, 1	§2, 0

 assert different outputs under input 0 , so sil ammi siz are not equivivalemt.
States 51 and 53 are not equivalent either.
So this completely specified machine cammet ree reduced furtheer (3 states is the minimum).

Incompletely Specified Machines

Suppose that the - is set to be a 1.
Machine $M^{\prime \prime}$:

PS	NS, z	
	$x=0$	$x=1$
s1	s3, 0	s2, 0
s2	s2, 1	s3, 0
s3	s3, 1	s2, 0

States s1 is incompatible with both s2 and s3. States s3 and s2 are equivalent. So number of states is reduced from 3 to 2. Machirre M/" fed:

PS	NS, z	
	$x=0$	$x=1$
A	A, 1	A, 0
B	$B, 0$	A, 0

State Minimization: Incompletely Specified Machines

Can this always be done?
Machine M:

PS	NS, z	
	$x=0$	$x=1$
s1	s3, 0	s2, 0
s2	s2,	s1,0
s3	s1, 1	s2,0

State Minimization: Incompletely Specified Machines

Machine M_{2} :

Machine $M_{3:}$:

	$\mathrm{x}=0$	$\mathrm{x}=1$
ST	53, 0	s2,0
s2	s2, 1	s1,0
s3	s1, 1	s2, 0

Machine M_{2} and M_{3} are formed by filling in the e_{e} unspecified entry in M with 0 and 1, respectively. Both machines M_{2} and M_{3} cannot be reduced: ConcJusion?: $1 /$ cannot be minimized further! But is it a correct conclusion?

State Minimization: Incompletely Specified Machines

Note: that we want to 'merge' two states when, for any input sequence, they generate the same output sequence, but only where both outputs are specified.
Definition: A set of states is compatible if they agree on the outputs where they are all specified.

Machine $M^{\prime \prime}$:

PS	$N S, z$	
	$x=0$	$x=1$
s1	$\mathrm{s3}, 0$	$\mathrm{~s} 2,0$
s2	s2, -	s1,0
s3	s1, 1	s2,0

In this case we have two compatible sets: $\mathrm{A}=(\mathrm{s} 1, \mathrm{~s} 2)$ and $\mathrm{B}=\left(\mathrm{s}_{3}, \mathrm{~s} 2^{2}\right)$. A reduced machine $M_{\text {red }}$ can be built as follows.

PS	NS, z	
	$x=0$	$x=1$
A	$B, 0$	A, 0
B	A, 1	A, 0

Incompletely Specified Machines

Can we simply look for a set of compatibles of minimum cardinality, such that every original state is in at least one compatible?

No. To build a reduced machine we must be able to send compatibles into compatibles. So choosing a given compatible may imply that some other compatibles must be chosen too.

Incompletely Specified Machines

PS	I1	NS, z I2	I3	I4
s1	s3,0	s1,-	-	-
s2	s6,-	s2,0	s1,-	-
s3	,- 1	,--	s4,0	-
s4	s1,0	,--	-	s5,1
s5	,--	s5,-	s2,1	s1,1
s6	,--	s2,1	s6,-	s4,1

A set of compatibles that cover all states is: (s3s6), (s4s6), (s1 s6), ($\$ 4 \mathrm{~s} 5$), (s 2 s 5).
But (s3s6) requires (s4s6),
(s 4 s 6) requires(s 4 s 5), (s 4 s 5) requires ($\mathrm{s} 1 \mathrm{s5}$),
(s1 s6) requires (s 1 s 2), (s 1 s 2) requires (s3s6),
(s2s5) requires (s 1 s 2).
So, this selection of compatibles requires too many other compatibles...

Incompletely Specified Machines

PS	I1	NS, Z I2	I3	I4
s1	s3,0	s1,-	-	-
s2	s6,-	s2,0	s1,-	-
s3	,- 1	,--	s4,0	-
s4	s1,0	,--	-	s5,1
s5	,--	s5,-	s2,1	s1,1
s6	,--	s2,1	s6,-	s4,1

Another set of compatibles that covers all states is (s 1 s 2 s 5$)$, (s3s6), (s4s5). But
(s] s2s5) requires (s3s6)
(s3s6) requires (s4s6) (s4s6) requires (s4s5) (s4s5) requires (s1s5).
So must select also (s 4 s 6) and (s 1 s 5).
Selection of minimum set is a binate covering problem !!!

Incompletely Specified Machines

More formally:

When a next state is unspecified, the future behavior of the machine is unpredictable. This suggests the definition of admissible input sequence.
Definition. An input sequence is admissible, for a starting state of a machine if no unspecified next state is encountered, except possibly at the final step.
Definition. State s_{i} of machine M_{1} is said to cover, or contain, state s_{j} of M_{2} provided

1. every input sequence admissible to s_{j} is also admissible to s_{i}, and
2. its application to both M_{1} and M_{2} (initially is s_{i} and s_{j}, respectively) results in identical output sequences whenever the outputs of M_{2} are specified.

State Minimization: Incompletely Specified Machines

Definition. Machine M_{1} is said to cover machine M_{2} iff
for every state s_{j} in M_{2}, there is a corresponding state s_{i} in M_{1} such that s_{i} covers s_{j}.

The problem of state minimization for an incompletely specified machine M is:
find a machine M' which covers M such that for any other machine M " covering M, the number of states of M' does not exceed the number of states of $M^{\prime \prime}$.'

Short summary of rest of section

- Definition of compatible states
- Method to compute when two states are incompatible
- Definition of maximal compatible sets
- A set is compatible if all pairs in the set are compatible
- Definition of prime compatibles
- Solve Quine-McCluskey type problem
- Generate all prime compatibles
- Solve binate covering problem

