
DIGITAL SYSTEM DESIGN
B.TECH III SEM(ECE)-R16

1

Prepared by

Dr.Lalit Kumar Kaul

Professor,ECE Dept

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

FUNDAMENTALS OF DIGITAL

TECHNIQUES

2

Any number in one base system can be
converted into another base system
Types
1) decimal to any base
2) Any base to decimal
3) Any base to Any base

3

4

5

6

7

8

9

10

 Complements arc used in digital computers
to simplify the subtraction operation and for
log- ical manipulation

 They are two types of complements

1) Diminished radix complement

(rn - 1)-N {r is the base of num
system}

2) Radix

Complement (rn

- 1)-N+1

11

 If the base = 10

 The 9's complement of 546700 is

999999 - 546700 = 453299.

 If the base = 2

 The 1's complemcnt of 1011000 is 0100111.

12

 the 10's complement of 012398 is 987602

 the 1's complement of 1101100 is 0010100

13

 Discard end carry for r‟s complement

Using 10's complement subtract 72532 -

3250.

M = 72532

10's complement of N = + 96750

Sum = 169282

Discard end carry for 10‟s complement

Answer = 69282

14

 X - Y = 1010100 - 1000011

X = 1010100

1's comp of Y =+ 0111100

Sum = 1 0010000

Add End-around carry = + 1

X1 - Y = 0010001

15

16

17

18

19

20

 No communication channel or storage device
is completely error-free

 As the number of bits per area or the
transmission rate increases, more errors
occur.

 Impossible to detect or correct 100% of the
errors

21

- 3 Types of Error Detection/Correction
Methods

-Cyclic Redundancy Check (CRC)
-Hamming Codes
-Reed-Solomon (RS)

10011001011 = 1001100 + 1011
^ ^ ^
Code word information error-checking bits/

bits parity bits/
syndrome/
redundant bits

22

EX. Data Parity Code

Bits

00
01
10
11

Bit

0
1
1
0

Word

000
011
101
110

000* 100
001 101*
010 110*
011* 111

23

- Single parity bit can only detect error, not
correct it

- Error-correcting codes require more than a
single parity bit

EX. 0 0 0 0 0
0 1 0 1 1
1 0 1 1 0
1 1 1 0 1

Minimum Hamming distance = 3

Can detect up to 2 errors and correct 1
error

24

1. Let the information byte F = 1001011

2. The sender and receiver agree on an arbitrary
binary pattern P. Let P = 1011.

3. Shift F to the left by 1 less than the number of
bits in P. Now, F = 1001011000.

4. Let F be the dividend and P be the divisor.
Perform “modulo 2 division”.

5. After performing the division, we ignore the
quotient. We got 100 for the remainder, which
becomes the actual CRC checksum.

6. Add the remainder to F, giving the message M:

1001011 + 100 = 1001011100 = M

25

7. M is decoded and checked by the message
receiver using the reverse process.

____1010100

1011 | 1001011100

1011
001001
1001
0010
001011

1011
0000  Remainder

26

 We need to consider formal techniques for
the simplification of Boolean functions.
◦ Identical functions will have exactly the same

canonical form.
◦ Minterms and Maxterms
◦ Sum-of-Minterms and Product-of- Maxterms
◦ Product and Sum terms
◦ Sum-of-Products (SOP) and Product-of-Sums (POS)

27

 Literal: A variable or its complement

 Product term: literals connected by •

 Sum term: literals connected by +

 Minterm: a product term in which all the
variables appear exactly once, either
complemented or uncomplemented

 Maxterm: a sum term in which all the
variables appear exactly once, either
complemented or uncomplemented

28

29

 Any Boolean function F() can be expressed
as a unique sum of minterms and a unique
product of maxterms (under a fixed variable
ordering).

 In other words, every function F() has two
canonical forms:
◦ Canonical Sum-Of-Products (sum of minterms)
◦ Canonical Product-Of-Sums (product of

maxterms)

30

 Canonical Sum-Of-Products:
The minterms included are those mj such
that F() = 1 in row j of the truth table for F().

 Canonical Product-Of-Sums:
The maxterms included are those Mj such
that F() = 0 in row j of the truth table for F().

31

32

 Replace ∑ with ∏ (or vice versa) and replace
those j‟s that appeared in the original form
with those that do not.

 Example:
f1(a,b,c) = a‟b‟c + a‟bc‟ + ab‟c‟ + abc‟

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)
= ∏(0,3,5,7)
=

(a+b+c)•(a+b‟+c‟)•(a‟+b+c‟)•(a‟+b‟+c‟)

33

 Expand non-canonical terms by inserting
equivalent of 1 in each missing variablex:
(x + x‟) = 1

 Remove duplicate minterms

 f1(a,b,c) = a‟b‟c + bc‟ + ac‟
= a‟b‟c + (a+a‟)bc‟ + a(b+b‟)c‟
= a‟b‟c + abc‟ + a‟bc‟ + abc‟ +

ab‟c‟
= a‟b‟c + abc‟ + a‟bc + ab‟c‟

34

 Expand noncanonical terms by adding 0 in
terms of missing variables (e.g., xx‟ = 0) and
using the distributive law

 Remove duplicate maxterms
 f1(a,b,c) = (a+b+c)•(b‟+c‟)•(a‟+c‟)

= (a+b+c)•(aa‟+b‟+c‟)•(a‟+bb‟+c‟)
= (a+b+c)•(a+b‟+c‟)•(a‟+b‟+c‟)•

(a‟+b+c‟)•(a‟+b‟+c‟)
=

(a+b+c)•(a+b‟+c‟)•(a‟+b‟+c‟)•(a‟+b+c‟)

35

36

Formal logic: In formal logic, a statement
(proposition) is a declarative sentence that is either

true(1) or false (0).

It is easier to communicate with computers using
formal logic.

• Boolean variable: Takes only two values – either

true (1) or false (0).

They are used as basic units of formal logic.

37

• Boolean function: Mapping from Boolean
variables to a Boolean value.

• Truth table:
◦ Represents relationship between a Boolean function

and its binary variables.

◦ It enumerates all possible combinations of
arguments and the corresponding function values.

38

• Boolean algebra: Deals with binary variables
and logic operations operating on those
variables.

• Logic diagram: Composed of graphic
symbols for logic gates. A simple circuit
sketch that represents inputs and outputs of
Boolean functions.

39

 Refer to the hardware to implement Boolean
operators.

 The most basic gates are

40

41

•Postulate 1 (Definition): A Boolean algebra is
a closed algebraic system containing a set K
of two or more elements and the two
operators · and + which refer to logical AND
and logical OR

42

(1) x + 0 = x
(2) x · 0 = 0
(3) x + 1 = 1
(4) x · 1 =1
(5) x + x = x
(6) x · x = x

(7)x + x‟ = x
(8) x · x‟ = 0

43

(9) x + y = y + x
(10) xy = yx
(11) x + (y + z) = (x + y) + z
(12) x (yz) = (xy) z
(13) x (y + z) = xy + xz
(14) x + yz = (x + y)(x + z)
(15) (x + y)‟ = x‟ y‟
(16) (xy)‟ = x‟ + y‟
(17) (x‟)‟ = x

44

 Examples:

(a) a + ab = a(1+b)=a

(b) a(a + b) = a.a +ab=a+ab=a(1+b)=a.

(c) a + a'b = (a + a')(a + b)=1(a + b) =a+b

(d) a(a' + b) = a. a' +ab=0+ab=ab

45

(a) (a + b)' = a'b'

(b) (ab)' = a' + b'

Generalized DeMorgan's Theorem

(a) (a + b + … z)' = a'b' … z'

(b) (a.b … z)' = a' + b' + … z„

46

 F = ab + c‟d‟

 F‟ = ??

 F = ab + c‟d‟ + b‟d

 F‟ = ??

47

Show that: (a(b + z(x + a')))' =a' + b' (z' + x')

(a(b + z(x + a')))' = a' + (b + z(x + a'))'

= a' + b' (z(x + a'))'

= a' + b' (z' + (x + a')')

= a' + b' (z' + x'(a')')

= a' + b' (z' + x'a)

=a‘+b' z' + b'x'a

=(a‘+ b'x'a) + b' z'

=(a‘+ b'x‘)(a +a‘) + b' z'

= a‘+ b'x‘+ b' z‘

= a' + b' (z' + x')

48

 NAND-AND

 AND-NOR

 NOR-OR

 OR-NAND

49

50

51

52

53

 The objectives of this lesson are to learn
about:

1. Universal gates - NAND and NOR.

2.How to implement NOT, AND, and OR gate
using NAND gates only.

3.How to implement NOT, AND, and OR gate
using NOR gates only.

4. Equivalent gates.

54

55

56

57

58

59

60

 BCD is a code for the decimal digits 0-9

 Excess-3 is also a code for the decimal digits

61

 Inputs: a BCD input, A,B,C,D with A as the
most significant bit and D as the least
significant bit.

 Outputs: an Excess-3 output W,X,Y,Z that
corresponds to the BCD input.

 Internal operation – circuit to do the
conversion in combinational logic.

62

 Excess-3 code is easily formed by adding a
binary 3 to the binary or BCD for the digit.

 There are 16 possible inputs for both BCD
and Excess-3.

 It can be assumed that only valid BCD inputs
will appear so the six combinations not used
can be treated as don‟t cares.

63

 Lay out K-maps for each output, W X Y Z

 A step in the digital circuit design process.

64

 Where are the Minterms located on a K-Map?

65

 W(A,B,C,D) = Σm(5,6,7,8,9)
+d(10,11,12,13,14,15)

 X(A,B,C,D) = Σm(1,2,3,4,9)
+d(10,11,12,13,14,15)

 Y(A,B,C,D) = Σm(0,3,4,7,8)
+d(10,11,12,13,14,15)

 Z(A,B,C,D) = Σm(0,2,4,6,8)
+d(10,11,12,13,14,15)

66

 W minimization

 Find W = A + BC + BD

67

 X minimization

 Find X = BC‟D‟+B‟C+B‟D

68

 Y minimization

 Find Y = CD + C‟D‟

69

 Z minimization

 Find Z = D‟

70

 Specification
◦ Digital readouts on many digital products often use

LED seven-segment displays.

◦ Each digit is created by lighting the appropriate
segments. The segments are labeled a,b,c,d,e,f,g

◦ The decoder takes a BCD input and outputs the
correct code for the seven-segment display.

71

 Input: A 4-bit binary value that is a BCD
coded input.

 Outputs: 7 bits, a through g for each of the
segments of the display.

 Operation: Decode the input to activate the
correct segments.

72

 Construct a truth table

73

 Create a K-map for each output and get
◦ A = A‟C+A‟BD+B‟C‟D‟+AB‟C‟

◦ B = A‟B‟+A‟C‟D‟+A‟CD+AB‟C‟

◦ C = A‟B+A‟D+B‟C‟D‟+AB‟C‟

◦ D = A‟CD‟+A‟B‟C+B‟C‟D‟+AB‟C‟+A‟BC‟D

◦ E = A‟CD‟+B‟C‟D‟

◦ F = A‟BC‟+A‟C‟D‟+A‟BD‟+AB‟C‟

◦ G = A‟CD‟+A‟B‟C+A‟BC‟+AB‟C‟

74

Karnaugh Maps for
Simplification

76
75

 Boolean algebra helps us simplify expressions and circuits

 Karnaugh Map: A graphical technique for simplifying a Boolean expression
into either form:

◦ minimal sum of products (MSP)

◦ minimal product of sums (MPS)

 Goal of the simplification.

◦ There are a minimal number of product/sum terms

◦ Each term has a minimal number of literals

 Circuit-wise, this leads to a minimal two-level implementation

77
76

 A two-variable function has four possible minterms. We can re-
arrange
these minterms into a Karnaugh map

78

x y minterm

0 0 x’y’

0 1 x ’y

1 0 xy ’

1 1 x y

Y

0 1

X
0

1

x’y’ x’y

xy’ xy

 Now we can easily see which minterms contain common literals
◦ Minterms on the left and right sides contain y‟ and y respectively
◦ Minterms in the top and bottom rows contain x‟ and x respectively

Y

0 1

X
0

1

x’y’ x’y

xy’ xy

Y’ Y

X’ x’y’ x’y

X xy’ xy

77

 Imagine a two-variable sum of minterms:

x‟y‟ + x‟y

 Both of these Minterms appear in the top row of a
Karnaugh map, which
means that they both contain the literal x‟

 What happens if you simplify this expression using
Boolean algebra?

79

x’y’ + x’y
= x’  1

= x’(y’ + y)
[y + y’ = 1]

[Distributive]

= x’ [x  1 = x]

Y

x ’ y ’ x ’ y

X x y ’ x y

78

 Another example expression is x‟y + xy
◦ Both minterms appear in the right side, where y is

uncomplemented

◦ Thus, we can reduce x‟y + xy to just y

 How about x‟y‟ + x‟y + xy?
◦ We have x‟y‟ + x‟y in the top row, corresponding to x‟

◦ There‟s also x‟y + xy in the right side, corresponding to y

◦ This whole expression can be reduced to x‟ +

80

Y

x’y’ x’y

X xy’ xy

y Y

x’y’ x’y

X xy’ xy

79

 For a three-variable expression with inputs x, y, z,

 Another way to label the K-map (use whichever
you like):

81

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

the arrangement of
minterms is more tricky:

YZ

00 01 11 10

X
0

1

x’y’z’ x’y’z x’yz x’yz’

xy’z’ xy’z xyz xyz’

YZ

00 01 11 10

X
0

1

m0 m1 m3 m2

m4 m5 m7 m6

80

 We‟ll use this property of adjacent squares
to do our simplifications.

82

 With this ordering, any group of 2, 4 or 8 adjacent squares on
the map
contains common literals that can be factored out

x’y’z + x’yz
= x’z(y’ + y)
= x’z  1

= x’z

 “Adjacency” includes wrapping around the left and right sides:

x’y’z’ + xy’z’ + x’yz’ + xyz’
= z’(x’y’ + xy’ + x’y + xy)
= z’(y’(x’ + x) + y(x’ + x))
= z’(y’+y)
= z’

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

81

 We can fill in the K-map directly from a truth table

◦ The output in row i of the table goes into square mi of the K-map

◦ Remember that the rightmost columns of the K-map are “switched”

83

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Y

0 1 0 0

X 0 1 1 1

Z

82

 You can find the minimal SoP expression

◦ Each rectangle corresponds to one product term

◦ The product is determined by finding the common literals in that

84

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

rectangle Y

0 1 0 0

X 0 1 1 1

Z

xyy’z

F(x,y,z)= y’z + xy

83

 The most difficult step is grouping together all
the 1s in the K-map

◦ Make rectangles around groups of one,
two, four or eight 1s

◦ All of the 1s in the map should be included
in at least one rectangle

◦ Do not include any of the 0s

◦ Each group corresponds to one product
term

85

Y

0 1 0 0

X 0 1 1 1

Z

84

 Make as few rectangles as possible, to
minimize the number of products in the final
expression.

 Make each rectangle as large as possible, to
minimize the number of literals in each
term.

 Rectangles can be overlapped, if that makes
them larger.

86
85

87

x y z f (x , y , z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

 Let‟s consider simplifying f(x,y,z) = xy + y‟z + xz

 You should convert the expression into a sum of minterms form,

◦ The easiest way to do this is to make a truth table for the function, and then read off
the minterms

◦ You can either write out the literals or use the minterm shorthand

 Here is the truth table and sum of minterms for our example:

f(x,y,z) = x’y’z + xy’z +
xyz’ + xyz

= m1 + m5 + m6 + m7

86

88

 You can also convert the expression to a sum of minterms
with Boolean
algebra
◦ Apply the distributive law in reverse to add in missing variables.
◦ Very few people actually do this, but it‟s occasionally useful.

xy + y’z + xz = (xy  1) + (y’z  1) + (xz 1)
= (xy  (z’ + z)) + (y’z  (x’ + x)) + (xz  (y’ + y))

= (xyz’ + xyz) + (x’y’z + xy’z) + (xy’z + xyz)
= xyz’ + xyz + x’y’z + xy’z

 In both case=s,mw1e+‟rme 5a+ctmua6l+ly m“u7nsimplifying” our example
expression
◦ The resulting expression is larger than the original one!
◦ But having all the individual minterms makes it easy to combine

them
together with the K-map

87

 In our example, we can write f(x,y,z) in two
equivalent ways

 In either case, the resulting K-map is shown
below

89

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

f(x,y,z) = x’y’z + xy’z + xyz’
+ xyz Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

f(x,y,z) = m1 + m5 + m6 + m7

Y

0 1 0 0

X 0 1 1 1

Z

88

 Simplify the sum of minterms m1 + m3 + m5 +
m6

90

Y

X

Z

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

89

 Here is the filled in K-map, with all groups
shown
◦ The magenta and green groups overlap, which

makes each of them as

large as possible

◦ Minterm m6 is in a group all by its lonesome

 The final MSP here is x‟z + y‟z + xyz‟

91

Y

0 1 1 0

X 0 1 0 1

Z

90

 There may not necessarily be a unique MSP. The K-map below
yields two

valid and equivalent MSPs, because there are two possible
ways to

include minterm m7

92

Y

0 1 0 1

X 0 1 1 1

Z

y’z + yz’ + xy y’z + yz’ + xz

 Remember that overlapping groups is possible, as shown above

Y

0 1 0 1

X 0 1 1 1

Z

Y

0 1 0 1

X 0 1 1 1

Z

91

 We can do four-variable expressions too!

◦ The minterms in the third and fourth columns, and in the third and

fourth rows, are switched around.

◦ Again, this ensures that adjacent squares have common literals

 Grouping minterms is similar to the three-variable case,but:

◦ You can have rectangular groups of 1, 2, 4, 8 or 16 minterms

◦ You can wrap around all foursides

93
92

94

Y

m0 m1 m3 m2

m4 m5 m7 m6
X

W
m12 m13 m15 m14

m8 m9 m11 m10

Z

Y

w’x’y’z’ w’x’y’z w’x’yz w’x’yz’

w’xy’z’ w’xy’z w’xyz w’xyz’
X

W
wxy’z’ wxy’z wxyz wxyz’

wx’y’z’ wx’y’z wx’yz wx’yz’

Z

93

 The expression is already a sum of minterms, so here‟s the K-map:

 We can make the following groups, resulting in the MSP x‟z‟ + xy‟z

95

Y

1 0 0 1

0 1 0 0
X

W
0 1 0 0

1 0 0 1

Z

Y

m0 m1 m3 m2

m4 m5 m7 m6
X

W
m12 m13 m15 m14

m8 m9 m11 m10

Z

Y

1 0 0 1

0 1 0 0
X

W
0 1 0 0

1 0 0 1

Z

Y

w’x’yz w’x’yz’

w’xyz w’xyz’

wxyz wxyz’
X

W

w’x’y’z’ w’x’y’z

w’xy’z’ w’xy’z

wxy’z’ wxy’z

wx’y’z’ wx’y’z wx’yz wx’yz’

Z

94

96

V= 0
Y

m0 m 1 m3 m2

m4 m5 m7 m6
X

W
m 1 2 m 1 3 m 1 5 m 1 4

m8 m9 m11 m 1 0

Z

V= 1Y

m16 m17 m19 m8

m20 m21 m23 m22
X

W
m28 m29 m31 m30

m24 m25 m27 m26

Z

95

97

V= 1

1

V= 0

1

1 1

1 1 1

1 1

1 1 1

1 1

f = XZ’
Σm(4,6,12,14,20,22,28,30)

Σm(0,1,4,5)
Σm(0,4,16,20)

+ V’W’Y’
+ W’Y’Z’
+ VWXY
+ V’WX’YZ

Σm(30,31)
m11

96

 Maxterms are grouped to find minimal PoS
expression

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ +y+z x’+y+z’ x’+y’+z’ x’+y’+z

98

00 11 10

0
x

1

yz

01

97

 F(W,X,Y,Z)= ∏ M(0,1,2,4,5)

99

x +y+z x+y+z’ x+y’+z’ x+y’+z

x’ 0+0y+z x’+y+0z1’ 1 x’+y’+z

10

0

1

x zx’+y’+z’1
y

0
x

1

0
00

0
01

y z 1
1

0
1

100 0 1 1

F(W,X,Y,Z)= Y . (X + Z)

98

10

0

F(W,X,Y,Z)= Σm(0,1,2,5,8,9,10)

0

0 0 0

0 0 0 0

0

= ∏ M(3,4,6,7,11,12,13,14,15)

F(W,X,Y,Z)= (W’ + X’)(Y’ + Z’)(X’
+ Z)

Or,

F(W,X,Y,Z)= X’Y’ + X’Z’ + W’Y’Z

Which one is the minimal one?

99

10

1

F(W,X,Y,Z)= ∏ M(0,2,3,4,5,6)

= Σm(1,7,8,9,10,11,12,13,14,15)

1

1

1 1 1 1

1 1 1 1

F(W,X,Y,Z)= W + XYZ + X’Y’Z

100

 You don‟t always need all 2n input combinations in an n-variable function

◦ If you can guarantee that certain input combinations never occur

◦ If some outputs aren‟t used in the rest of the circuit

 We mark don‟t-care outputs in truth tables and K-maps with Xs.

 Within a K-map, each X can be considered as either 0 or 1. You should pick

the interpretation that allows for the most simplification.

10

2

x y z f (x , y , z)

0 0 0 0

0 0 1 1

0 1 0 X

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 X

1 1 1 1

101

 Find a MSP for

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) =
m(7,10,13)

This notation means that input combinations wxyz = 0111, 1010 and 1101

(corresponding to minterms m7, m10 and m13) are unused

10

3

.
Y

1 0 0 1

1 1 x 0
X

W
0 x 1 1

1 0 0 x

Z

102

10

4

 Find a MSP for:

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) = m(7,10,13)

Y

1 1

1 1 x

x 1 1
X

W
1 x

Z

f(w,x,y,z)= x’z’ + w’xy’ + wxy

103

 K-maps are an alternative to algebra for simplifying
expressions
◦ The result is a MSP/MPS, which leads to a minimal two-level

circuit
◦ It‟s easy to handle don‟t-care conditions
◦ K-maps are really only good for manual simplification of small

expressions...

 Things to keep in mind:

◦ Remember the correct order of minterms/maxterms on the K-map
◦ When grouping, you can wrap around all sides of the K-map, and

your groups can overlap
◦ Make as few rectangles as possible, but make each of them as

large as possible. This leads to fewer, but simpler, product terms
◦ There may be more than one valid solution

10

5
104

UNIT 3

105

 A process with 5 steps

◦ Specification

◦ Formulation

◦ Optimization

◦ Technology mapping

◦ Verification

 1st three steps and last best illustrated by
example

106

• Fundamental circuits that are the base
building blocks of most larger digital circuits

• They are reusable and are common to many
systems.

• Examples of functional logic circuits

–Decoders

–Encoders

–Code converters

–Multiplexers

107

• Multiplexers
–Selectors for routing data to the processor,

memory, I/O
–Multiplexers route the data to the correct bus or

port.

• Decoders
–are used for selecting things like a bank of memory

and then the address within the bank. This is also
the function needed to „decode‟ the instruction to
determine the operation to perform.

• Encoders
–are used in various components such as keyboards.

108

SEQUENTIAL CIRCUITS

109

 In this chapter you will learn about:
◦ Logic circuits that can store information

◦ Flip-flops, which store a single bit

◦ Registers, which store multiple bits

◦ Shift registers, which shift the contents of a register

◦ Counters of various types

110

Memory

element
Alarm

Sensor

Reset

S

 Alarm turned on when On/Off = 1

 Alarm turned off when On/Off = 0

 Once triggered, alarm stays on until manually reset

 The circuit requires a memory element

111

 Basic latch is a feedback connection of two
NOR gates or two NAND gates

 It can store one bit of information

 It can be set to 1 using the S input and reset
to 0 using the R input.

112

A B

 A feedback loop with even number of
inverters

 If A = 0, B = 1 or when A = 1, B = 0

 This circuit is not useful due to the lack of a
mechanism for changing its state

113

Reset

Set

114

 Gated latch is a basic latch that includes input
gating and a control signal

 The latch retains its existing state when the control
input is equal to 0

 Its state may be changed when the control signal is
equal to 1. In our discussion we referred to the
control input as the clock

 We consider two types of gated latches:
◦ Gated SR latch uses the S and R inputs to set the latch to 1

or reset it to 0, respectively.

◦ Gated D latch uses the D input to force the latch into a

state that has the same logic value as the D input.

115

116

117

 Setup Time tsu

◦ The minimum time that the input signal must be stable
prior to the edge of the clock signal.

 Hold Time th

◦ The minimum time that the input signal must be stable
after the edge of the clock signal.

tsu

th

Clk

D

Q

118

 A flip-flop is a storage element based on the
gated latch principle

 It can have its output state changed only on
the edge of the controlling clock signal

119

 We consider two types:
◦ Edge-triggered flip-flop is affected only by the

input values present when the active edge of the
clock occurs

◦ Master-slave flip-flop is built with two gated
latches

 The master stage is active during half of the clock
cycle, and the slave stage is active during the other
half.

 The output value of the flip-flop changes on theedge
of the clock that activates the transfer into the slave
stage.

120

Master

D

Clock

Clock

D

Qm

Q = Qs

D Q

Q

(a)

(b) Timing diagram

(c) Graphical symbol

D Q

Clk Q

D Q

Clk Q

121

D Q

Q

Graphical symbol

Clock

122

Comparison of Level-Sensitive and
Edge-Triggered D Storage Elements

123

124

125

126

127

 SR flip-flop (Set,
Reset)

 T flip-flop
(Toggle)

 D flip-flop (Delay)

 JK flip-flop

128

Previous State -> PresentState S R

0 -> 0 0 X

0 -> 1 1 0

1 -> 0 0 1

1 -> 1 X 0

Previous State -> PresentState T

0 -> 0 0

0 -> 1 1

1 -> 0 1

1 -> 1 0

129

Previous State -> PresentState J K

0 -> 0 0 X

0 -> 1 1 X

1 -> 0 X 1

1 -> 1 X 0

Previous State -> PresentState D

0 -> 0 0

0 -> 1 1

1 -> 0 0

1 -> 1 1

130

CLK

T

Q

CLK

S

R

Q

S R

0->0 0 X

0->1 1 0

1->0 0 1

1->1 X 0

T

0->0 0

0->1 1

1->0 1

1->1 0

131

J K

0->0 0 X

0->1 1 X

1->0 X 1

1->1 X 0

D

0->0 0

0->1 1

1->0 0

1->1 1

CLK

J

K

Q

CLK

D

Q

132

Procedure uses excitation tables

Method: to realize a type A flipflop using a type B flipflop:

1. Start with the K-map or state-table for the A-flipflop.
2. Express B-flipflop inputs as a function of the inputs and present state of

A-flipflop such that the required state transitions of A-flipflop are reallized.

y

x Q

Type B

y

x Q
g

h

CL

CL

Type A

1. Find Q+ = f(g,h,Q) for type A (using type A state-table)

2. Compute x = f1(g,h,Q) and y=f2(g,h,Q) to realize Q+.

133

Example: Use JK-FF to realize D-FF

1) Start transition table for D-FF

2) Create K-maps to express J and K as functions of inputs (D, Q)

3) Fill in K-maps with appropriate values for J and K

to cause the same state transition as in the D-FF transition table

Q+Q R S J K T D
0 0 X 0 0 X 0 0
0 1 0 1 1 X 1 1
1 0 1 0 X 1 1 0
1 1 0 X X 0 0 1

D
0 1

0 X X

1 1 0

K = D

Q
D

J =D

0 1

0 0 1

1 X X

Q

D Q Q+

0 0

0 1
1 0
1 1

0

0
1
1

J K

0 X

X 1
1 X
X 0

State-Table
e.g.
when D=Q=0, then Q+= 0
the same transition Q-->Q+

is realize with J=0, K=X

134

Example: Implement JK-FF using a D-FF

0 0 1 1

0 1 1 0

00 01 11 10

K

Q

0

1

t= jQ + kq

0 0 1 1

0 0 1

00 01 11 10

J K Q Q+ D T

0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 1

J JK J

K

JK
Q

0

1 1

d= jQ + Kq

J

K

D Q

C

Clk

DFF

J

K

T

C

Q

Clk

T-FF

135

PRESET and CLEAR:
asynchronous, level-sensitive inputs
used to initialize a flipflop.

R

DSQ

C Q

1
0

1
0

1
0

Q

Clk

SET

CLR

T

Clk

CLR

SET

T

Q

200 400

Clk

T Q

CLEAR

PRESET

PRESET, CLEAR: active low inputs

PRESET = 0 --> Q = 1
CLEAR = 0 --> Q = 0

LogicWorks Simulation

136

 Counters are a specific type of
sequential circuit.

 Like registers, the state, or the
flip-flop values themselves, serves
as the “output.”

 The output value increases by one
on each clock cycle.

 After the largest value, the output
“wraps around” back to 0.

 Using two bits, we‟d get
something like this:

Present State

A B

Next State

A B

0 0 0 1

0 1 1 0

1 0 1 1

1 1 0 0

00 01

1011

1

11

1

137

 Counters can act as simple clocks to keep track of “time.”
 You may need to record how many times something has

happened.
◦ How many bits have been sent or received?
◦ How many steps have been performed in some computation?

 All processors contain a program counter, or PC.
◦ Programs consist of a list of instructions that are to be executed one

after another (for the most part).
◦ The PC keeps track of the instruction currently being executed.
◦ The PC increments once on each clock cycle, and the next program

instruction is then executed.

138

 Let‟s try to design a slightly different two-bit counter:

◦ Again, the counter outputs will be 00, 01, 10 and 11.

◦ Now, there is a single input, X. When X=0, the counter value should
increment on each clock cycle. But when X=1, the value should decrement
on successive cycles.

 We‟ll need two flip-flops again. Here are the four possible states:

00 01

1011

139

00 01

1011

0

1 00 1

1

1

Present State
Q1 Q0

Inputs
X

Next State
Q1 Q0

0 0 0 0 1

0

0 1 0 1 0

0

1 0 0 1 1

1

1 1 0 0 0

1 1

• Here’s the complete state diagram and state table for this circuit.

0

140

 If we use D flip-flops, then the D inputs will just be the same as the desired
next states.

 Equations for the D flip-flop inputs are shown at the right.

 Why does D0 = Q0‟ make sense?

Present State
Q1 Q0

Inputs
X

Next State
Q1 Q0

0 0 0 0 1

0 0 1 1 1

0 1 0 1 0

0 1 1 0 0

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 1 0

Q0

0 1 0 1

Q1 1 0 1 0

X

Q0

1 1 0 0

Q1 1 1 0 0

X

D1 = Q1  Q0  X

D0 = Q0’

141

 Here are some D Flip Flop
devices from LogicWorks.

 They have both normal and
complemented outputs, so we
can access Q0‟ directly without
using an inverter. (Q1‟ is not
needed in this example.)

 This circuit counts normally when
Reset = 1. But when Reset is 0,
the flip-flop outputs are cleared
to 00 immediately.

 There is no three-input XOR gate
in LogicWorks so we‟ve used a
four-input version instead, with
one of the inputs connected to 0.

142

 If we use JK flip-flops instead, then we have to
compute the JK inputs for each flip-flop.

 Look at the present and desired next state, and
use the excitation table on the right.

Present

Q1

State

Q0

Inputs

X

Next

Q1

State

Q0 J1

Flip flop

K1

inputs

J0 K0

0 0 0 0 1 0 x 1 x

0 0 1 1 1 1 x 1 x

0 1 0 1 0 1 x x 1

0 1 1 0 0 0 x x 1

1 0 0 1 1 x 0 1 x

1 0 1 0 1 x 1 1 x

1 1 0 0 0 x 1 x 1

1 1 1 1 0 x 0 x 1

Q(t) Q(t+1) J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

143

 We can then find equations for all four flip-flop inputs, in terms of the present state and
inputs. Here, it turns out J1 = K1 and J0 = K0.

J1 = K1 = Q0‟ X + Q0 X‟

J0 = K0 =1

Present
Q1

State
Q0

Inputs
X

Next
Q1

State

Q0 J1

Flip flop
K1

inputs
J0 K0

0 0 0 0 1 0 x 1 x

0 0 1 1 1 1 x 1 x

0 1 0 1 0 1 x x 1

0 1 1 0 0 0 x x 1

1 0 0 1 1 x 0 1 x

1 0 1 0 1 x 1 1 x

1 1 0 0 0 x 1 x 1

1 1 1 1 0 x 0 x 1

144

 Here is the counter again, but
using JK Flip Flop n.i. RS devices
instead.

 The direct inputs R and S are non-
inverted, or active-high.

 So this version of the circuit counts
normally when Reset = 0, but
initializes to 00 when Reset is 1.

145

•This counter is called
asynchronous because not
all flip flops are hooked to
the same clock.

•Look at the waveform of
the output, Q, in the timing
diagram. It resembles a
clock as well. If the period of
the clock is T, then what is
the period of Q, the output
of the flip flop? It's 2T!
•We have a way to create a
clock that runs twice as slow.
We feed the clock into a T
flip flop, where T is
hardwired to 1. The output
will be a clock who's period
is twice as long.

146

If the clock has period T. Q0 has
period 2T. Q1 period is 4T
With n flip flops the period is 2n.

147

148

•This is called as a ripple
counter due to the way the FFs
respond one after another in a

kind of rippling effect.

149

 To eliminate the "ripple" effects, use a common clock for
each flip-flop and a combinational circuit to generate the
next state.

 For an up-counter,
use an incrementer =>

D3 Q3

D2 Q2

D1 Q1

D0 Q0

Clock

Incre-

menter
A3 S3

A2 S2

A1 S1

A0 S0

150

 Internal details =>

 Internal Logic

◦ XOR complements each bit

◦ AND chain causes complement
of a bit if all bits toward LSB
from it equal 1

 Count Enable

◦ Forces all outputs of AND
chain to 0 to “hold” the state

 Carry Out

◦ Added as part of incrementer

◦ Connect to Count Enable of
additional 4-bit counters to
form larger counters

Incrementer

151

 Use the sequential logic model to design a synchronous BCD
counter with D flip-flops

 State Table =>

 Input combinations
1010 through 1111
are don‟t cares

Current State
Q8 Q4 Q2 Q1

Next State
Q8 Q4 Q2 Q1

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0

152

 Use K-Maps to two-level optimize the next state equations and manipulate
into forms containing XOR gates:

D1 = Q1‟

 D2 = Q2 + Q1Q8‟
D4 = Q4 + Q1Q2
D8 = Q8 + (Q1Q8 + Q1Q2Q4)

 Y = Q1Q8

 The logic diagram can be drawn from these equations

◦ An asynchronous or synchronous reset should be added

 What happens if the counter is perturbed by a power disturbance or other
interference and it enters a state other than 0000 through 1001?

153

 Find the actual values of the six next states for the don‟t care combinations from
the equations

 Find the overall state diagram to assess behavior for the don‟t care states (states in
decimal)

Present State Next State

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1

1 0 1 0 1 0 1 1

1 0 1 1 0 1 1 0

1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 0

1 1 1 0 1 1 1 1

1 1 1 1 0 0 1 0

0
1

8

7

6
5

4

9

11

2
12

3

14

15

13

10

154

 For the BCD counter design, if an invalid
state is entered, return to a valid state
occurs within two clock cycles

 Is this adequate?!

155

156

Present State
Q2 Q1 Q0

Next State
Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 0 0

1 1 0 ? ? ?

1 1 1 ? ? ?

001

010

011

100

101

 The examples shown so far have all had 2n states, and used n flip-flops.But
sometimes you may have unused, leftover states.

 For example, here is a state table and diagram for a counter that repeatedly
counts from 0 (000) to 5 (101).

 What should we put in the table for the two unused states?

000

157

ehow ends up i
beh ior ll d end n e actly

 To get the simplest possible circuit, you can fill in don‟t cares for the next
states. This will also result in don‟t cares for the flip-flop inputs, which can
simplify the hardware.

 If the circuit som n one of the unused states (110 or 111), its
what the don‟t cares were filled in with.

Present State
Q2 av Q1 wi Q0e

Next State

p Q2 o Q1x Q0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 0 0

1 1 0 x x x

1 1 1 x x x

001

010

011

100

101

000

158

 To get the safest possible circuit, you can explicitly fill in next states for the
unused states 110 and 111.

 This guarantees that even if the circuit somehow enters an unused state, it
will eventually end up in a valid state.

 This is called a self-starting counter.

Present State
Q2 Q1 Q0

Next State
Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

001

010

011

100

101

000

111110

159

 There are a couple of different counters
available in LogicWorks.

 The simplest one, the Counter-4 Min, just
increments once on each clock cycle.
◦ This is a four-bit counter, with values ranging from

0000 to 1111.

◦ The only “input” is the clock signal.

160

 More complex counters are also possible. The full-featured LogicWorks
Counter-4 device below has several functions.

◦ It can increment or decrement, by setting the UP input to 1 or 0.

◦ You can immediately (asynchronously) clear the counter to 0000 by
setting CLR = 1.

◦ You can specify the counter‟s next output by setting D3-D0 to any four-bit
value and clearing LD.

◦ The active-low EN input enables or disables the counter.

 When the counter is disabled, it continues to output the same value
without incrementing, decrementing, loading, or clearing.

◦ The “counter out” CO is normally 1, but becomes 0

when the counter reaches its maximum value, 1111.

161

 As you might expect by now, we
can use these general counters to
build other counters.

 Here is an 8-bit counter made from
two 4-bit counters.
◦ The bottom device represents the least

significant four bits, while the top
counter represents the most
significant four bits.

◦ When the bottom counter reaches
1111 (i.e., when CO = 0), it enables
the top counter for one cycle.

 Other implementation notes:
◦ The counters share clock and clear

signals.

162

 We can also make a counter that “starts” at some value besides 0000.

 In the diagram below, when CO=0 the LD signal forces the next state to be
loaded from D3-D0.

 The result is this counter wraps from 1111 to 0110 (instead of 0000).

163

 We can also make a circuit that counts up to only 1100, instead of 1111.

 Here, when the counter value reaches 1100, the NAND gate forces the
counter to load, so the next state becomes 0000.

164

 Counters serve many purposes in sequential logic
design.

 There are lots of variations on the basic counter.
◦ Some can increment or decrement.
◦ An enable signal can be added.
◦ The counter‟s value may be explicitly set.

 There are also several ways to make counters.
◦ You can follow the sequential design principles to build

counters from scratch.
◦ You could also modify or combine existing counter

devices.

165

Creating a sequential circuit to address a design

need.

166

 Steps in the design process for sequential
circuits

 State Diagrams and State Tables

 Examples

167

 Steps in Design of a Sequential Circuit
◦ 1. Specification – A description of the sequential

circuit. Should include a detailing of the inputs, the
outputs, and the operation. Possibly assumes that
you have knowledge of digital system basics.

◦ 2. Formulation: Generate a state diagram and/or a
state table from the statement of the problem.

◦ 3. State Assignment: From a state table assign
binary codes to the states.

◦ 4. Flip-flop Input Equation Generation: Select the
type of flip-flop for the circuit and generate the
needed input for the required state transitions

168

◦ 5. Output Equation Generation: Derive output logic
equations for generation of the output from the
inputs and current state.

◦ 6. Optimization: Optimize the input and output
equations. Today, CAD systems are typically used
for this in real systems.

◦ 7. Technology Mapping: Generate a logic diagram
of the circuit using ANDs, ORs, Inverters, and F/Fs.

◦ 8. Verification: Use a HDL to verify the design.

169

 Sequential machines are typically classifiedas
either a Mealy machine or a Moore machine
implementation.

Moore machine: The outputs of the circuit
depend only upon the current state of the
circuit.

 Mealy machine: The outputs of the circuit
depend upon both the current state of the
circuit and the inputs.

170

 The specification: The circuit will have one
input, X, and one output, Z. The output Z
will be 0 except when the input sequence
1101 are the last 4 inputs received on X. In
that case it will be a 1.

171

 Create states and meaning for them.
◦ State A – the last input was a 0 and previous inputs

unknown. Can also be the reset state.

◦ State B – the last input was a 1 and the previous
input was a 0. The start of a new sequence
possibly.

 Capture this in a state diagram



172

 Capture this in a state diagram
◦ Circles represent the states
◦ Lines and arcs represent the transition between

state.
◦ The notation Input/Output on the line or arc

specifies the input that causes this transition and
the output for this change of state.



173

 Add a state C
◦ State C – Have detected the input sequence 11

which is the start of the sequence.

174

 Add a state D
◦ State D – have detected the 3rd input in the start of

a sequence, a 0, now having 110. From State D, if
the next input is a 1 the sequence has been
detected and a 1 is output.

175

 The previous diagram was incomplete.

 In each state the next input could be a 0 or a
1. This must be included.

176

 The state table

 This can be done directly from the state
diagram.

• Now need to do a state assignment

177

 Will select a gray encoding

 For this state A will be encoded 00,
state B 01, state C 11 and state D 10

178

 Generate the equations for the flip-flop
inputs

 Generate the D0 equation

 Generate the D1 equation

179

The next step is to generate the equation for
the output Z and what is needed to generate
it.

 Create a K-map from the truth table.

180

 The circuit has 2 D type F/Fs

181

UNIT 5

182

STGs may contain redundant states, i.e. states
whose function can be accomplished by other
states.

State minimization is the transformation of a given
machine into an equivalent machine with no
redundant states.

18

4
183

Two states, si and sj of machine M are distinguishable if
and only if there exists a finite input sequence which
when applied to M causes different output sequences
depending on whether M started in si or sj.

Such a sequence is called a distinguishing sequence for (si,
sj).

If there exists a distinguishing sequence of length k for (si,
sj), they are said to be k-distinguishable.

18

5
184

Example:

18

6

PS NS, z
x=0 x=1

A
B
C
D
E
F

E, 0 D, 1
F, 0 D, 0
E, 0 B, 1
F, 0 B, 0
C, 0 F, 1
B, 0 C, 0

 states A and B are 1-distinguishable, since a 1 input applied to A yields
an output 1, versus an output 0 from B.

• states A and E are 3-distinguishable, since input sequence 111 applied to A yields
output 100, versus an output 101 from E.

185

If si ~ sj and sj ~ sk, then si~ sk. So state equivalence is an equivalence
relation (i.e. it is a reflexive, symmetric and transitiverelation).

An equivalence relation partitions the elements of a set into
equivalence classes.

Property: If si ~sj, their corresponding X-successors, for all inputs X,
are also equivalent.

Procedure: Group states of M so that two states are in the same group

iff they are equivalent (forms a partition of the states).

187

States si and sj (si ~ sj) are said to be equivalent
iff no distinguishing sequence exists for (si, sj).

186

Pi : partition using distinguishing sequences of length i.

Partition: Distinguishing Sequence:
P0 = (A B C D E F)
P1 = (A C E)(B D F) x =1
P2 = (A C E)(B D)(F) x =1; x =1
P3 = (A C)(E)(B D)(F) x =1; x =1; x =1
P4 = (A C)(E)(B D)(F)

Algorithm terminates when Pk = PK+1

18

8

PS NS, z
x=0 x=1

A
B
C
D
E
F

E, 0 D, 1
F, 0 D, 0
E, 0 B, 1
F, 0 B, 0
C, 0 F, 1
B, 0 C, 0

187

Outline of state minimization procedure:
 All states equivalent to each other form an

equivalence class. These may be combined into
one state in the reduced (quotient) machine.

 Start an initial partition of a single block.
Iteratively refine this partition by separating the
1-distinguishable states, 2-distinguishable
states and so on.

 To obtain Pk+1, for each block Bi of Pk, create one
block of states that not 1-distinguishable within
Bi , and create different blocks states that are 1-
distinguishable within Bi .

18

9
188

Theorem: If two states, si and sj, of machine M
are distinguishable, then they are (n-1)-
distinguishable, where n is the number of
states in M.

Definition: Two machines, M1 and M2, are
equivalent (M1 ~ M2) iff, for every state in M1
there is a corresponding equivalent state in M2
and vice versa.

Theorem. For every machine M there is a
minimum machine Mred ~ M.
Mred is unique up to isomorphism.

19

0

Theorem: The equivalence partition is unique.

189

Reduced machine obtained from previous
example:

19

1

PS NS, z
x=0
x=1









, 0 , 1
, 0 , 1
, 0 , 0
, 0 , 0

P4 = (A C)(E)(BD)(F)

=     PS NS, z
x=0

A
1
B
0
C
D
E

x=1
E, 0 D,

F, 0 D,

E, 0 B, 1
F, 0 B, 0
C, 0 F, 1

F B, 0 C, 0
190

Algorithm DFA ~ DFAmin

Input: A finite automaton M = (Q, , , q 0, F) with
no unreachable states.

Output: A minimum finite automaton M‟ = (Q‟, , ‟,
q ‟0, F‟).

Method:
1. t :=2; Q0:= { undefined }; Q1:=F; Q2:= Q\F.
2. while there is 0 < i  t, a   with (Qi,a)  Qj, for

all j  t
do (a) Choose such an i, a , and j  t with  (Qi,a)  Qj  .

(b) Qt +1 := {q  Qi |  (q,a)  Qj };
Qi := Qi \ Qt +1;
t := t +1.

end.

19

2
191

3. (* Denote

[q] the equivalence class of state q , and

{Qi } the set of all equivalence classes.

*)
Q‟ := {Q1, Q2, ..., Qt }.

q ‟0 := [q0].

F‟ := { [q]  Q‟ | q  F }.

 ‟ ([q], a) := [(q,a)] for all q  Q, a  .

19

3
192

1. Choose such an i, a  , and choose j1,j2  t with j1  j2,  (Qi,a)
 Qj1

 , and  (Qi,a)  Qj2
 .

2. If |{q  Qi | (q,a)  Qj1
}|  |{q  Qi | (q,a) Qj2

}|

then Qt +1 := {q  Qi | (q,a)  Qj1
}

t +1 ielse Q q  Q | := { (j2
q,a)  Q } fI;

iQ := Qi \ Qt+1;

t := t +1.

(i.e. put smallest set in t +1)

19

4

Standard implementation: O (kn 2), where n =|Q|
and k = ||

Modification of the body of the while loop:

193

19

5

Note: |Qt +1|  1/2|Qi|. Therefore, for all q  Q,
the name of the class which contains a given
state q changes at most log(n) times.

Goal: Develop an implementation such that
all computations can be assigned to
transitions containing a state for which the
name of the corresponding class is
changed.

194

X and Y are spaces of all states:
|S|

E (x,y) = i i (x ~ y) (initially all states are equivalent)
i=1

E
0

j +1(x,y) =

jE (x,y) i (o,z,w)
[T (x,i,z,o) T (y,i,w,o) Ej (z,w)]

(i.e. states x,y continue to be equivalent if they are
j - equivalent and for all inputs the next states are
j - equivalent)

19

6
195

Statement of the problem: given an
incompletely specified machine M, find a
machine M‟ such that:

◦ on any input sequence, M‟ produces the
same outputs as M, whenever M is
specified.

◦ there does not exist a machine M‟‟ with
fewer states than M‟ which has the
same property.

19

7
196

Machine M:

19

8

Attempt to reduce this case to usual state minimization of completely
specified machines.

• Brute Force Method: Force the don‟t cares to all their possible values and
choose the smallest of the completely specified machines so obtained.

In this example, it means to state minimize two completely specified
machines obtained from M, by setting the don‟t care to either 0 and 1.

PS NS, z
x=0 x=1

s1
s2
s3

s3, 0
s2, -
s3, 1

s2, 0
s3, 0
s2, 0

197

Suppose that the - is set to be a 0.
Machine M‟:

19

9

States s1 and s2 are equivalent if s3 and s2 are equivalent, but s3 and s2
assert different outputs under input 0, so s1 and s2 are not equivalent.

States s1 and s3 are not equivalent either.

So this completely specified machine cannot be reduced further (3 states is
the minimum).

PS NS, z
x=0 x=1

s1
s2
s3

s3, 0
s2, 0
s3, 1

s2, 0
s3, 0
s2, 0

198

20

0

Suppose that the - is set to be a 1.
Machine M‟‟:

States s1 is incompatible with both s2 and s3.
States s3 and s2 are equivalent.
So number of states is reduced from 3 to 2.
Machine M‟‟red :

PS

A
B

NS, z
x=0 x=1
A, 1 A, 0
B, 0 A, 0

PS NS, z
x=0 x=1

s1
s2
s3

s3, 0
s2, 1
s3, 1

s2, 0
s3, 0
s2, 0

199

20

1

Can this always be done?

Machine M:

PS

s1

NS, z
x=0 x=1
s3, 0

s2
s3

s2, -
s1, 1

s2, 0
s1, 0
s2, 0

200

20

2

Machine M2:

Machine M3:

PS

s1

NS, z
x=0 x=1
s3, 0 s2, 0

s2
s3

PS

s1

s2, 0 s1, 0
s1, 1 s2, 0

NS, z
x=0 x=1
s3, 0 s2, 0

s2
s3

s2, 1
s1, 1

s1, 0
s2, 0

Machine M2 and M3 are formed by filling in the
unspecified entry in M with 0 and 1, respectively.

Both machines M2 and M3 cannot be reduced.
Conclusion?: M cannot be minimized further!

But is it a correct conclusion?

201

20

3

Note: that we want to „merge‟ two states when, for any input
sequence, they generate the same output sequence, but
only where both outputs are specified.

Definition: A set of states is compatible if they agree on the
outputs where they are all specified.

Machine M‟‟ :

In this case we have two compatible sets: A = (s1, s2) and
B = (s3, s2). A reduced machine Mred can be built as
follows.

Machine Mred :

PS

s1

NS, z
x=0 x=1
s3, 0

s2
s3

s2, -
s1, 1

s2, 0
s1, 0
s2, 0

PS

A
B

NS, z
x=0 x=1
B, 0 A, 0
A, 1 A, 0

202

20

4

Can we simply look for a set of compatibles
of minimum cardinality, such that every
original state is in at least one compatible?

No. To build a reduced machine we must be
able to send compatibles into compatibles.
So choosing a given compatible may imply
that some other compatibles must be
chosen too.

203

20

5

A set of compatibles that cover all states is: (s3s6), (s4s6),
(s1s6), (s4s5), (s2s5).

But (s3s6) requires (s4s6),

(s4s6) requires(s4s5), (s4s5) requires (s1s5),

(s1s6) requires (s1s2), (s1s2) requires (s3s6),

(s2s5) requires (s1s2).

So, this selection of compatibles requires too many other

compatibles...

PS
I1

NS, z
I2 I3 I4

s1 s3,0 s1,- - -
s2 s6,- s2,0 s1,- -
s3 -,1 -,- s4,0 -
s4 s1,0 -,- - s5,1
s5 -,- s5,- s2,1 s1,1
s6 -,- s2,1 s6,- s4,1

204

20

6

Another set of compatibles that covers all states is (s1s2s5), (s3s6), (s4s5).
But

(s1s2s5) requires (s3s6) (s3s6) requires (s4s6) (s4s6) requires (s4s5)
(s4s5) requires (s1s5).

So must select also (s4s6) and (s1s5).

Selection of minimum set is a binate covering problem !!!

PS
I1

NS, z
I2 I3 I4

s1 s3,0 s1,- - -
s2 s6,- s2,0 s1,- -
s3 -,1 -,- s4,0 -
s4 s1,0 -,- - s5,1

s5 -,- s5,- s2,1 s1,1
s6 -,- s2,1 s6,- s4,1

205

20

7

More formally:

When a next state is unspecified, the future behavior of the
machine is unpredictable. This suggests the definition of
admissible input sequence.

Definition. An input sequence is admissible, for a starting state
of a machine if no unspecified next state is encountered,
except possibly at the final step.

Definition. State si of machine M1 is said to cover, or contain,
state sj of M2 provided
1. every input sequence admissible to sj is also admissible to si , and
2. its application to both M1 and M2 (initially is si and sj, respectively)

results in identical output sequences whenever the outputs of M2 are
specified.

206

Definition. Machine M1 is said to cover machine M2
iff

for every state sj in M2, there is a corresponding
state si in M1 such that si covers sj.

The problem of state minimization for an
incompletely specified machine M is:
find a machine M‟ which covers M such that for
any other machine M‟‟ covering M, the number of
states of M‟ does not exceed the number of states
of M‟‟.

20

8
207

 Definition of compatible states

 Method to compute when two states are
incompatible

 Definition of maximal compatible sets
◦ A set is compatible if all pairs in the set are

compatible

 Definition of prime compatibles
 Solve Quine-McCluskey type problem

◦ Generate all prime compatibles
◦ Solve binate covering problem

20

9
208

