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UNIT-1
Introduction



Signal Processing

Humans are the most advanced signal processors

— speech and pattern recognition, speech synthesis,...

We encounter many types of signals in various
applications

— Electrical signals: voltage, current, magnetic and electric fields,...
— Mechanical signals: velocity, force, displacement,...
— Acoustic signals: sound, vibration,...

—  Other signals: pressure, temperature,...

Most real-world signals are analog

— They are continuous in time and amplitude
— Convert to voltage or currents using sensors and transducers

Analog circuits process these signals using

— Resistors, Capacitors, Inductors, Amplifiers,...

Analog signal processing examples

— Audio processing in FM radios
— Video processing in traditional TV sets



Limitations of Analog Signal Processing

« Accuracy limitations due to

— Component tolerances
— Undesired nonlinearities

« Limited repeatability due to

— Tolerances
— Changes in environmental conditions

« Temperature
 Vibration

 Sensitivity to electrical noise

 Limited dynamic range for voltage and currents
* Inflexibility to changes

 Difficulty of implementing certain operations

— Nonlinear operations
— Time-varying operations

 Difficulty of storing information



Digital Signal Processing

« Represent signals by a sequence of numbers
— Sampling or analog-to-digital conversions

» Perform processing on these numbers with a digital processor

— Digital signal processing

» Reconstruct analog signal from processed numbers

— Reconstruction or digital-to-analog conversion

analog

signal

e Analog input - analog output

A/D

digital
signal

— Digital recording of music

e Analog input - digital output

— Touch tone phone dialing

e Digital input - analog output

— Text to speech

e Digital input - digital output

n
»

DSP

digital
signal

— Compression of a file on computer

n
»

D/A

analog

signal



Pros and Cons of Digital Signal Processing
* Pros

— Accuracy can be controlled by choosing word length

— Repeatable

— Sensitivity to electrical noise is minimal

— Dynamic range can be controlled using floating point numbers
— Flexibility can be achieved with software implementations

— Non-linear and time-varying operations are easier to implement
— Digital storage is cheap

— Digital information can be encrypted for security

— Price/performance and reduced time-to-market

e Cons

— Sampling causes loss of information

— A/D and D/A requires mixed-signal hardware
— Limited speed of processors

— Quantization and round-off errors



Analog, digital, mixed signal
processing

Analog Interface Digital
Systems Systems Systems
N ADC 001,
Continuous-
I Time Signals D“Cfﬂte T‘
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= DAC
» Analytical techniques = Numerical techniques
» Analog electronics » Digital electronics



Digital Signal Processing
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Sampling and reconstruction

The main function of the low-pass antialiasing filter is to
band-limit the input signal to the folding frequency without
distortion.

It should be noted that even if the signal is band-limited, there is
always wide- band additive noise which will be folded back to
create aliasing.

When an analog voltage is connected directly to an ADC, the
conversion process can be adversely affected if the voltage is
changing during the conversion time.

The quality of the conversion process can be improved by using a
sample-and- hold (S/H) circuit.
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Sample and hold (S/H)circuit

@ Since the sampling operation is performed by the S/H circuit, the
role of S/H is to sample z.(¢) as instantaneously as possible and
to hold the sample value as constant as possible until the next
sample.

e Thus, the output of the S/H circuit can be modelled as a
staircase waveform where each sample value is held constant until
the acquisition of the next sample.

T
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1 N S/H Input S/H Output
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e Note that the S/H system is linear but time-varying.
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A/D converter

O x[a] =x(nT) | Quantizer [n] ..01010111...
—— | Sampler = . J;d - Coder -
! & - hits :
{ 1
T
(a)
Digital Signal xg[r] Discrete- Time Signal
. _Fx[n] = x(nT
r.-'_; i3 —"
v . Continuous-Time Signal

x(1)

—>f—

nT

e (Quantization converts a continuous-amplitude signal z(¢) into a
discrete-amplitude signal z4[n].

@ In theory, we are dealing with discrete-time signals; in practice,
we are dealing with digital signals.



A/D converter

e The major difference between ideal and practical conversion is
that an ADC generates sample values that are known with finite

precision.

@ The ADC is the device in which both quantization and binary

coding of the sampled signal take place.

e A B-bit quantizer can represent 27 different numbers.

e If the input amplitude range is divided into K quantization
intervals of equal width A (quantization step) and the output
levels are uniformly spaced, the resulting quantizer is called
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Quantization noise

@ The two major types of error introduced by an ADC are aliasing
error and quantization error.

X I:I.] .Tq{! }

@ Since quantization 1s a nonlinear operation, analysis of quanti-

zatlon error 1s done using statistical techniques.
e If there 1s a large number of small quantization itervals, the
signal x.(t) can ) be assumed to be approximately linear between

quantization levels. In this case:
eolt) 2 a(t) —ao(t) = ¢, —r<t<7
2T

@ Then the mean squared quantizaticnn erTor power 1s

1 A2
Py=— (1) 2dt =
Q=75 _TIE(}I e 13



D/A convertion

@ A band-limited signal can be reconstructed from a sequence of
samples using the ideal DAC described by

x(t) = ZI’-[R] gpr(t —nT) = Z z[n|sine(t/T — n)
TL Tt

@ A system that implements the above formula, for an arbitrary
function g, (t), is known as a practical digital-to-analog converter
(DAC).

@ The function g.(t) is also known as the characteristic pulse of a
DAC. At each sample time t = nT’, the converter generates a
pulse g,.(t — nT') scaled by z[n].

@ In particular, the switch-and-hold DAC performs the following
operation

rsu(t) =) wqn] gsu(t —nT)

where

1, 0<t<T *
== — GsH(Jﬂ):25”1(§T“/2)e_4’ﬂm 5

gsu(t) = {

0, otherwise



D/A convertion

@ The S/H circuit cannot completely eliminate the spectral replicas
mtroduced by the sampling process.
@ Moreover, 1t introduces amplitude distortion i the Nyquist band

F,| < F,/2.

T Tdeal bandlimmited
interpolator

_f:lil.l '5!}

Sample and hold
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_an K 0 s n 0
T T T T
Lilrgpl | 53]
T sH
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e

@ To compensate for the effects of the S/H circuit, we can use an

analog post-filter H,-(72) so that Gggy(9Q2) H.(32) = Gpr(12):

_2T/2__e9T/2 Q| < /T
Hr(}ﬂ) _ {sm{ﬂTfﬁ) - | | f

0, otherwise
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Reconstruction

@ A general formula that describes a broad class of reconstruction
processes 1S given by

r(t) = Z z[nlg,-(t —nT)

where g,-(t) 1s an interpolating reconstruction function.

@ The process of fitting a continuous function to a set of samples 1s
known as an interpolation.

x[nlg,(t —nT)  x[n]
xp (1)

(n—1)T nT (n+1)T

@ Thus, 1t the interpolation function has duration greater than or
equal to T, the addition of the overlapping copies “fills the gaps”
between samples. 16



Reconstruction

o In the Fourier domain, the interpolation formula becomes

X, (59) = Y a[n)Gr(3)e ™ = G (59) Y zln)e T

T T
Y "

X (e797)

e Consequently, we obtain

X)) = GT(JQ)X(EJQT)

e Specifically, if we choose g, (1) so that

T, |9 <Q,/2

Gr(19) = GpL(H92) = {0 Q> Q. /2

then X, (7Q0) = X.(yQ2) and, therefore, x,.(t) = z.(t).

17



Reconstruction

o Evaluating the inverse Fourier transform of G'gr, (7€2), we obtain

sin(mt,/ T
gr(t) = gpr(t) = ?it;é ) = sinc(t/T)

@ In this case we obtain:

The 1deal interpolation formula

z,(t) = Z o[ sin [w(t —nT")/T]

w(t —nT)/T

@ The system used to implement the 1deal interpolation 1s known as

an 1deal DAC.

Ifﬂ]—l" DAC —————— IF{I)
F.=1/T

18



Reconstruction

@ To understand the meaning and 1mplications of the i1deal
interpolation we look more closely at the sinc function gy, (t).

I}(N"-.Ill G (j€2) Cr 1" 2k,
/) ) |
F]
[ 1)
,—-“"‘xvﬂ "I "1,1 L-"ﬁ ! - r )
4T —3r—ﬂ\u T 0 T\ jar AT K

@ We note that gpr(t) =0 at all t = nT', except at t = 0 where
gpr(t) = 1. Thus, it is always true that z,.(nT) = x.(nT)
regardless of whether aliasing occurred during sampling.

2101g, 1y 1]

A oi1g (e-1)
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Signals

Continuous-time signals are functions of a real argument
X(t) where t can take any real value
X(t) may be O for a given range of values of t

Discrete-time signals are functions of an argument that
takes values from a discrete set

X[n] where n € {...-3,-2,-1,0,1,2,3...}

Integer index n instead of time t for discrete-time systems
X may be an array of values (multi channel signal)
Values for x may be real or complex

20



Discrete-time Signals and Systems

 Continuous-time signals are defined over a
continuum of times and thus are represented by a
continuous Independent variable.

 Discrete-time signals are defined at discrete times
and thus the independent variable has discrete
values.

 Analog signals are those for which both time and
amplitude are continuous.

» Digital signals are those for which both time and
amplitude are discrete.

21



Analog vs. Digital

The amplitude of an analog signal can take any real or complex value at each
time/sample

NN
\/ N_/

« The amplitude of a digital signal takes values from a
discrete set

22



Periodic (Uniform) Sampling

« Sampling is a continuous to discrete-time conversion

-

Tl

-3-2-1012 34

« Most common sampling is periodic
x[n]=x_(nT) -—o <n<w

« T isthe sampling period in second

« f,=1/T is the sampling frequency in Hz

« Sampling frequency in radian-per-second Q.=2=f_ rad/sec
« Use [.] for discrete-time and (.) for continuous time signals

« This is the ideal case not the practical but close enough
— In practice it is implement with an analog-to-digital converters
— We get digital signals that are quantized in amplitude and time

23



Periodic Sampling

« Sampling is, in general, not reversible

« Given a sampled signal one could fit infinite continuous signals
through the samples

NN R

-1
0 20 40 60 80 100

e Fundamental issue in digital signal processing
- If we loose information during sampling we cannot recover it

e Under certain conditions an analog signal can be sampled without
loss so that it can be reconstructed perfectly

24



Representation of Sampling

« Mathematically convenient to represent in two stages
— Impulse train modulator
— Conversion of impulse train to a sequence

- s(b)
i Convert impulse !

X (t) — x > train to discrete- ———> X[n]=X.(nT)
: time sequence :

______________________________________

© -3T2T-T O T 2T3T4T

25



Unit Sample Sequence

The unit sample sequence plays the same role for discrete-time sequences and
systems that the unit impulse (Dirac delta function) does for continuous-time
signals and systems.

26



Impulse Function

The impulse function, also known as Dirac’s delta function, is used to
represented quantities that are highly localized in space. Examples include
point optical sources and electrical charges.

The impulse function can be visualized as a narrow spike having infinite
height and zero width, such that its area is equal to unity.

27



Definition of Impulse Function

The impulse function may be defined from its basic properties.

O(X—X,)=0, Xx=#X

jz f(x)3(x—x,)dx = f(x,), X, <X, <X,

1

Where f(x) is any complex-valued function of x. If f(x) is discontinuous at the
point X,, the value of f(x,) is taken as the average of the limiting values as x
approaches x, from above and below.

This property is called the sifting property.

28



Graphical Representation

On graphs we will represent 5(x-x,) as a spike of unit
height located at the point X,.

29



Sampling Operation

The delta function samples the function f(x).

f(Xg) F---mmmmmmmmmmm e @

f(x)o(x—x,)

The function f(x) d(x-x,) is graphed as a spike of height f(x,) located at the point x,.

30



Unit Step Sequence

uln] =1,n>0
=0, n<O.

e T

0 n
u[n]=S[n]+S[n—-1]1+ S[n - 2] + ---

uln]=> &[n - K]

Conversely, the impulse sequence can be expressed
as the first backward difference of the unit step
sequence:

or  u[n]= > o[k]

S[nl1=u[n]-u[n -1]
31



Exponential Sequence

X[n] =Aan

IIITTTTT«--

0 n

If we want an exponential sequence that is
zero for n < 0, we can write this as:

x[n]= Aa 'u[n]

32



Geometric Series

A one-sided exponential sequence of the form

a™, for n>0 and o an arbitrary constant

Is called a geometric series. The series converges for |a| < 1, and its sum converges
to

o0 i 1
Z a -
-0 l1-«a
The sum of a finite number N of terms is
N ) 1 —a N +1
Z a - —
1= 0 l-a«o
A general form can also be written:
N, N, N,+1
N a -
Z a —
n=N, l1-«a

33



Sinusoidal Sequence

x[n]= Acos( w n + ¢)




Sequence as a sum of scaled, delayed
Impulses

p[n]=a_,8[n+3]+a,d[n-1]-a,8[n-2]-a,é[n—7]

35



Sequence Operations

The product and sum of two sequences are defined as the sample-by-
sample product and sum, respectively.

Multiplication of a sequence by a number is defined as multiplication
of each sample value by this number.

A sequence y[n] is said to be a delayed or shifted version of a sequence
X[n] if
y[n] =x[n—ng]

where ng is an integer.
Combination of Basic Sequences
Ex1 X[n] =Ka", n>0,

=0, n<o,

or X[n] =Ka"u[n].

36



Systems

37



Systems

—_— TS. >
x[n] t y[n]

A discrete-time system Is a transformation that maps an
Input sequence X[n] into an output sequence y[n].

System Characteristics

1. Linear vs. non-linear
2. Causal vs. non-causal

3. Time Invariant

38



o 0 A~ W

System Characteristics

—1 T}

>
x[n] y[n]

Linear vs. non-linear

Time invariant vs. time variant
Causal vs. non-causal

Stable vs. unstable
Memoryless vs. state-sensitive

Invertible vs. non-invertible

39



Discrete-Time Systems

« Discrete-Time Sequence is a mathematical operation that maps a given
Input sequence x[n] into an output sequence y[n]

y[n] = T{x[n]} X[n]—

T{.}

—y[n]

« Example Discrete-Time Systems
— Moving (Running) Average

y[n] = x[n] + X[n = 1]+ X[n - 2] + x[n - 3]

— Maximum

y[n] = max {x[n], x[n - 1], x[n - 2]}

— ldeal Delay System

y[n] = x[n - n_]

40



Linearity

A linear system Is one that obeys the principle of
superposition,

T{a,x,[n]+a,x,[n]}=a,y,[n]+a,y,[n]

where the output of a linear combination of inputs is the
same linear combination applied to the individual outputs.
This result means that a complicated system can be
decomposed into a linear combination of elementary
functions whose transformation is known, and then taking
the same linear combination of the results. Linearity also
Implies that the behavior of the system is independent of
the magnitude of the input.

41



Linear Systems

Linear System: A system is linear if and only if

T{x,[n]+ x,[n]} = T{x,[n]} + T{x,[n]} (additivit

and

T{ax [n]} = aT {x[n]} (scaling)

Examples
— ldeal Delay System

y[nl = x[n - n,]

T{x,[n]+ x,[n]}
T{x,[n]} + T{x,[n]}
T{ax [n]}
aT {x[n]}

X,[n-n_]+ x,[n-n_]
X,[n-n_]+x,[n-n_]
ax ,[n-n_]

ax ,[n-n_]

Y)

42



Time (Shift) Invariance

A system is said to be shift invariant if the only effect caused by

a shift in the position of the input is an equal shift in the position
of the output, that is

T{x[n-nyl}=y[n-n,]

The magnitude and shape of the output are unchanged, only the
location of the output is changed.

43



Time-Invariant Systems

« Time-Invariant (shift-invariant) Systems
— A time shift at the input causes corresponding time-shift at output

y[n] = T{x[n]} = y[n -n_ 1= Ti{x[n -n_1}

« Example
— Square
, Delay the input the output is y.[n]= (xIn -n_ 1)
y[n] = (x[n]) 2
Delay the output gives Y[n - no] = (x[n - no])

« Counter Example
— Compressor System
Delay the input the output is y,[n] = x[Mn —n_]

n] = x[Mn ]
vin] Delay the output gives yln-n_]=xMMn -n_ )]

44



Impulse Response

When the input to a system is a single impulse, the output is called
the impulse response. Let h[n] be the impulse response, given by

T{s[nl}= h[n]

A general sequence f [x] can be represented as a linear combination
of impulses, since

o0

f(x) = f(x)*é(x):jw f(u)o(x —u)du

flnl= f[nl*&[nl= 3 flkls[n - k]

45



Linear Shift-Invariant Systems

Suppose that T{} is a linear, shift-invariant system with h[n] as its
Impulse response.

Then, using the principle of superposition,

( |
Tisnl}=T1{ Y s[k1s[n—k]t = 3 s[kIT{5[n - k]}

k=—0 k =—0

and finally after invoking shift-invariance

o0 o0

Tis[nlf= Y s[kIT{s[n -klf= > s[klh[n - k]

k=—0 k =—o0

T{s[n]}=s[n]=*h[n]

This very important result says that the output of any linear, shift-
Invariant system is given by the convolution of the input with the
Impulse response of the system. 46



Causality

A system iIs causal if, for every choice of n,, the output
sequence at the index n = n, depends only on the input
sequence values for n < 0.

All physical time-based systems are causal because they are
unable to look into the future and anticipate a signal value
that will occur later.

47



Causal System
Causality

— A system is causal it’s output is a function of only the current and
previous samples

Examples
— Backward Difference

y[n] = x[n] - x[n - 1]

Counter Example
— Forward Difference

y[n] = xX[n + 1] + x[n]

48



Stability

A system is stable in the bounded-input, bounded-output
(BIBO) sense if and only it every bounded input produces a
bounded output sequence.

The input x[n] is bounded if there exists a fixed positive finite
value B, such that

‘x[n]‘ <B <o forall n

Stability requires that for any possible input sequence there exist
a fixed positive value B, such that

y[n]|< B, <o

49



Stable System

 Stability (in the sense of bounded-input bounded-output BIBO)

— Assystem is stable if and only if every bounded input produces a bounded
output

x[n][<B, <o = |y[n]<B, <=

« Example
— Square

2

y[n] = (x[n])
if input is bounded by ‘x[n]‘ <B, <o
output is bounded by ‘y[n]‘ <B:<w

« Counter Example
— Log
y[n] = log ,, (|x[n]|)
even if input is bounded by ‘x[n]‘ <B, <o

output not bounded for x[n]=0 = y[0]=log ,, (‘x [n ]‘) =
50



Memory (State)

A system is referred to as memoryless if the output y[n] at every
value of n depends only on the input X[n] at the same value of n.

If the system has no memory, it is called a static system. Otherwise
It Is a dynamic system.

51



Memoryless System

Memoryless System

— A ssystem is memoryless if the output y[n] at every value of n depends
only on the input x[n] at the same value of n

Example Memoryless Systems
— Square

y[nl = (x[n])’

— Sign
y[n] = sign {x[n]}

Counter Example

— ldeal Delay System
y[n] = x[n - n_]

52



Invertible System

A system is invertible if for each output sequence we can find a
unique input sequence. If two or more input sequences produce
the same output sequence, the system is not invertible.

53



Passive and Lossless Systems

A system is said to be passive If, for every finite energy input
sequence X[n], the output sequence has at most the same energy:

S lyin[ < 3 [xIn < =

If the above inequality is satisfied with an equal sign for every
Input signal, the system is said to be lossless.

54



Examples of Systems

Ideal Delay System

Moving Average System

Memoryless non-linear System
Accumulator System
Compressor System

Backward Difference System

y[nl=x[n-n,]

M,

1
y[n]= x[n - k]
M2+M1+1k:z_:Ml

y[n]= x[n]

n

yinl= 3 x[k]

k =—00

where M is a
y[nl= x[Mn]  positive integer

y[n]= x[n]-x[n -1]
55



Impulse Response of LTI Systems

Find the impulse response by computing the response to d[n].

Systems whose impulse responses have only a finite number of
nonzero samples are called finite-duration impulse response
(FIR) systems.

Systems whose impulse responses are of infinite duration are
called infinite-duration impulse response (IIR) systems.

If h[n] =0 forn <0, the system is causal.

56



Impulse Response for Examples

Find the impulse response by computing the response to 5[N]

Ideal Delay System ~ yInl=3[n-n,] FIR
J = -M ., <n<M
Moving Average System  vinl={M,+M +1 KR
{ 0, otherwise
n (1, n=>0
Accumulator System  y[nl= > 3[k]= %LO o IR
y[nl=uln]

Backward Difference System  y[n]1=3[n]-3[n-1] FIR

57



Stability Condition for LTI Systems

An LTI system is BIBO stable if and only if its impulse response
Is absolutely summable, that is

S = i hik]| < o

58



Stable and Causal LTI Systems
An LTI system is (BIBO) stable if and only if
— Impulse response is absolute summable

S |hik] < o
K = —o
— Let’s write the output of the system as

] = |3 hlkIx[ - K]

K = —o

— If the input is bounded
x[n]|< B,

0

< 3 hlk]xin -]

K = —o

— Then the output is bounded by .

vin] <8, ¥ hik]

— The output is bounded if the absolute sum is finite
An LTI system is causal if and only if

hlk]=0 for k <0



Difference Equations

An important subclass of LTI systems are defined by
an Nth-order linear constant-coefficient difference equation:

> a,y[n—-kl=> b x[n-m]

Often the leading coefficient a, = 1. Then the output y[n] can be
computed recursively from

y[lnl=-> a yln-kI+ > b _x[n-m]

A causal LTI system of this form can be simulated in
MATLAB using the function £ilter

y = filter(a,b,x);

60



Accumulator Example

Accumulator System yInl= > x[k]

k=—0

n-1

yinl= 3 x[k1= x[nl+ ¥ x[k]= x[n]+ y[n - 1]

k=-0 k =—o0

bo =1 x[n] —{(x I yIn]
a, =1
" one sample

a, = -1 delay

positive feedback system

61



Total Solution Calculation

> a,yln—kl=> b x[n-m]

The output sequence y[n] consists of a homogeneous solution y,[n] and a
particular solution y,[n].

ylnl=y,[n]+ vy, [n]

where the homogenous solution y,[n] is obtained from the homogeneous equation:

N
> a,y,[n-k]l=0
k=0

62



Homogeneous Solution

Given the homogeneous equation: S a,y,[n—kl=0
k h
k=0

Assume that the homogeneous solution is of the form

y,[n]= 2"
then

N
y,[nT=>" a A" =2""" (aO/IN +a, A" T4+ oay ): 0
k=0

1

defines an Nth order characteristic polynomial with roots 4, 4, ... 4y

The general solution is then a sequence y,[n]
N
y,[n1=> A 2,
1

(if the roots are all distinct) The coefficients A,, may be found from the
Initial conditions. 63



Particular Solution

The particular solution is required to satisfy the difference equation for a specific
input signal x[n], n>0.

> a,yln—kl=> b x[n-m]

To find the particular solution we assume for the solution y,[n] a form that depends
on the form of the specific input signal x[n].

y[n]=vy,[n]+ vy, [n]

64



General Form of Particular Solution

Input Signal Particular Solution
X[n] A
A (constant) K
AMP KM"
AnM KonM+K M1+ +K,
AnM A'K,nM+K nM-14 . +K )
[Acos(a)onﬂ K, cos( o n)+ K,sin( w_n)
| Asin( @ n) |
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Example (1/3)

Determine the homogeneous solution for

y[n]+ y[n-1]-6y[n-2]=10

Substitute  y [n]= A"

A" A" oA =" (AP A-6)=0

=" (1+3)(2-2)=0

Homogeneous solution is then

y [n1= AL + A2 =A(-3) +A,(2)
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Example (2/3)

Determine the particular solution for

y[n]+ yln-1]-6y[n-2]= x[n]

with x[n] = 8u[n] and y[-1] =1 and y[-2] =-1

The particular solution has the form y,[n]l=245

p+p—-6p=38

which is satisfied by g = -2
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Example (3/3)

Determine the total solution for

y[n]+ yln-1]-6y[n-2]= x[n]

with x[n] = 8u[n] and y[-1] =1 and y[-2] =-1

The total solution has the form

yInl=y,[nl+y,[nl=A(-3)" +A,(2) -2

e 1 1A ! A 2 1 |
y[_]__3 1+2 2 - > A1=—1.8
1 1 A2:4'8
y[—3] = —Al—I——A2 -2 =-1
9 4 )

y[n1=-1.8(-3)" +4.8(2)" -2
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Initial-Rest Conditions

The output for a given input is not uniquely specified.
Auxiliary information or conditions are required.

Linearity, time invariance, and causality of the system will
depend on the auxiliary conditions. If an additional condition is
that the system is initially at rest (called initial-rest conditions),
then the system will be linear, time invariant, and causal.
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Zero-input, Zero-state Response

An alternate approach for determining the total solution y[n] of a difference equation
IS by computing its zero-input response y,;[n], and zero-state response y,([n]. Then
the total solution is given by y[n] = y,[n] + y,[n].

The zero-input response is obtained by setting the input x[n] = 0 and satisfying the
initial conditions. The zero-state response is obtained by applying the specified input
with all initial conditions set to zero.
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Example (1/2)

y[nl+y[n-1]-6y[n-2]=0 y[-1] =
y [n1=AA + A2 =A(-3) +A,(2)

Zero-input response:

.
A, =-—=-5.4
y. [0]=A +A, =-y[-1]+6Yy[-2]=-1-6= -7 | 5
y. [11= A (-3)+ A,(2)=-y[0]+6y[-1]=7 + 6 =13 A 8 16
J ? 5
Zero-state response: y[n]l+ y[n-1]-6y[n—-2]= x[n]
with x[n]=8u[n]
\ 18
A =—=23.6
y, . [0]=A +A,-2=Xx[0]=38 5
.
V,[11= A (-3)+ A, (2)-2=x[1]-y[0]=8-8=0 [ 32 7
, .
) 5




Mitra Example (2/2)

Zero-input response:
y,[n]=-5.4(-3)"-1.6(2)"
Zero-state response:
y . [nN1=3.6(-3)" +6.4(2)" -2
Total solution is
y[lnl=y,[nl+y,[n]
y[n]=1.8(-3)" +4.8(2)" -2

This is the same as before
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Impulse Response

The impulse response h[n] of a causal system is the output
observed with input x[n] = 3[n].

For such a system, x[n] = 0 for n >0, so the particular solution is
zero, y,[n]=0. Thus the impulse response can be generated from the
homogeneous solution by determining the coefficients A, to satisfy
the zero initial conditions (for a causal system).
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Example

Determine the impulse response for

y[n]+ y[n-1]-6y[n—-2]= x[n]

The impulse response is obtained from the homogenous solution:

For n=0

For n=1

hinl=A,(-3)" + A,(2)

y[0]+ y[-1]-6y[-2] = x[O]

h[0] = 5[0] = 1

y[1]1+ y[0]-6y[-1] = x[1]

h[1] + h[0] = 8[1] = O

N

J

h[n] = i(— 3)" +
5

2 n
g(z) n>0 2




DSP Applications

« Image Processing

Pattern recognition
Robotic vision

Image enhancement
Facsimile

Satellite weather map
Animation

e |Instrumentation/Control

Spectrum analysis
Position and rate control
Noise reduction

Data compression

« Speech/audio

Speech recognition/synthesis
Text to speech

Digital audio

equalization

« Military

Secure communication
Radar processing
Sonar processing
Missile guidance

« Telecommunications

Echo cancellation
Adaptive equalization
ADPCM transcoders
Spread spectrum
Video conferencing
Data communication

 Biomedical

Patient monitoring
Scanners

EEG brain mappers

ECG analysis

X-ray storage/enhancement
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Some Applications of DSP




Image enhancement

= T
.
- ) \ 4 i)
i U
o N R b,
84 f=3-
< r— :
P s
AL
11

|

7



More Examples of Applications

 Sound Recording  Telephone Dialing

Applications Applications
— Compressors and Limiters

— Expanders and Noise Gates FM Stereo Applications

— Equalizers and Filters » Electronic Music

— Noise Reduction Systems Synthesis

— Delay and Reverberation — Subtractive Synthesis
Systems _ Additive Synthesis

— Special Effect Circuits ] ]
P .  Echo Cancellation In
 Speech Processing

.. Telephone Networks
— Speech Recognition

_ Speech Communication * Interference Cancellation
In Wireless
Telecommunication
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Reasons for Using DSP

Signals and data of many types are
increasingly stored in digital
computers, and transmitted in
digital form from place to place. In
many cases it makes sense to
process them digitally as well.

Digital processing is inherently
stable and reliable. It also offers
certain technical possibilities not
available with analog methods.

Rapid advances in IC design and
manufacture are producing ever
more powerful DSP devices at
decreasing cost.

Flexibility in reconfiguring
Better control of accuracy
requirement

Easily transportable and possible
offline processing

Cheaper hardware in some case

In many case DSP is used to
process a number of signals
simultaneously. This may be done
by interlacing samples (technique
known as TDM) obtained from the
various signal channels.

Limitation in speed & Requirement
In larger bandwidth
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Voice and data compression

AP P I icatio n S Echo cancellation

Signal multiplexing
Filtering

Space photograph enhancement
Telephone Data compression

Intelligent sensory analysis by

remote space probes

Space Diagnostic imaging (CT, MR,

ultrasound and others)
Medical Electrocardiogram analysis
Medical image storage / retrieval

Radar

Sonar

Ordnance guidance
Secure communication

DsP
Military

Scientific
Earthquake recording / analysis
Data acquisition

Industrialial Spectral analysis
Simulation and modeling

Qil and mineral prospecting
Process monitoring & control
Nondestructive testing

CAD and design tools




System Analysis

Three domains
o Time domain: impulse response, convolution sum

oo

yin]=x[n]*h[n]= ) x[kh[n—k]

o Frequency domain: fr:qmuency response
Y(e’®) = X(e/*)H(e’®)

o z-transform: system function
Y(z)=X(2)H ()

LTI system Is completed characterized by ...
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Frequency Response

Relationship btw Fourier transforms of input and

output
Y(e’?)=X(e’*)H(e’?)

In polar form
o Magnitude - magnitude response, gain, distortion

[ Y(e)|=| X (/) [-| H(e”)]
o Phase - phase response, phase shift, distortion

LY (e7%) = £X (/) + £LH (e!®)
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|deal lowpass filter-example

Frequency response

1, okko.,

H(e?) :{
0, o <olkr

1 Frequency selective filter
Impulse response

S110 (D 71
] = -

— oD < R < oD
JH

P

o Noncausal, cannot be implemented! hn]=0. n<0
o How to make a noncausal system causal?
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Non causal to causal

Cascading systems
1 |deal delay h[n]=do[n—n,]

Forward difference 011*? sameple delay
hnl=o[n+1]-0|n] }F[”] S[n—1]

|

:r[ ﬁ] = Backward difference ' Jf[ﬁ]
h[n]=o[n]-ao[n—-1]

- Y]

x[n]——

o In general, any noncausal FIR system can be made
cause by cascading it with a sufficiently long delay!

o But ideal lowpass filter Is an [IR system!
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Phase distortion and delay

|ldeal delay system
h,n|=35n—n,] Delay distortion
H (') =e/™
| H, (') =1

ZH  (e’)=—on,.|o|<x Linear phase distortion

|deal lowpass filter with linear phase

H, (') = e, ? - e
0. @, <@l<x Ideal lowpass filter is

always noncausall

— o0 < J1 < OO

s (n—n
hy,[n] = c( “’).
w(n—ny)
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Phase delay

e Recall that the phase response ZH (e’) gives the phase shift
experienced by each sinusoidal component of the input signal.

o In the case when z[n] = A, cos(wn + ¢.), we have
y[ln| = A, |H(e’)| cos(wn + ¢, + ZH()) =

Jw
= A, |H(e’)| cos (w {nﬁ— E + “Hle )])

w L
. ZH(e?™) . . .
where the quantity =————= shows the time shift (in number of
sampling intervals) experienced by each sinusoidal component of
the input signal.

@ Therefore, sometimes it is more meaningful to use the phase

delay defined by
a ZLH(e)

W

Tpd
e Nomnlinear phase responses may lead to severe shape alterations.

86



Phase delay

COriginal signal
I -:uﬁll I"\Uﬂu'ﬁll |ﬂ'-.r’-\"'u'n|
'r[ﬂ] II l | | ||
: |I II |J :
|
V] | 't
BERAL Y, /
. Low-frequency attenuation
f { | Ny
JI |[n] .ull |l Ilr'lll,Nlr || Jll.ll'. I| I|II
L II{Nﬂ 1) I In' .II I II I|'
III.'I IIILlll lII I'.lII ll-ll
-1+
High-frequency attenuation
1+ -
¥ [ﬂ] \L\'I 'IJ H‘ I,.-ﬂ-.'l
i \ f III |'I III
| | | | '
1 I|I | I \
. A (S .

Constant phase shift

LT ll'ﬁ\, ~ I'I I",,_,‘
e \ﬂlln |I WII .|I \WI'
: n
| ,[ ]I |I |
I| lll.--».n' |I J,-\JI II
-1+ II J:'h ||_I|'II“-.I I|I‘II'|I
1 Linear-phase shift
! i A
| YY)
l |I II | |
7 1 ] 1"
| |
—1 - I'»f“‘f‘»" 'l..f“‘u"x,'l
Nonlinear-phase shifi
iy I."" II-"nl
1 'Ifl' |II II,' Illl I|"I |I
yolnl W\ Ill'f ',U.-“.II .'Ir llv.-' .
T I| |I |'
\ |'ﬁl"J \ lﬁ"
—]_ e I‘l'll |I lIIl |I
\ Y

Note that the constant phase shift in y3[n| causes distortion because
each frequency component is delayed by a different amount. In cont-

rast, the linear-phase shift in y4[n] does not cause any distortion be-
cause it results in a constant phase delay.
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Group delay

A measure of the linearity of the phase

Concerning the phase distortion on a narrowband
signal |

i 1
Ill III
| L1

x|n] = s[n]cos(w,n) 0 A
For this input with spectrum only around w,, phase

effect can be approximated around w, as the linear
approximation (though in reality maybe nonlinear)

ZH(e'?) = —am, —gﬁﬂ
and the output is approximately
V[n]~| H(e’™)|s[n —ng]eos(ay(n—ny) —¢,)

GrOUp d9|ay S g?'{f[H(E"‘w)] _ —i{al‘g[H(gﬁm)]}-

doy —
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Group delay

@ A convenient way to check the linearity of phase response is to
use the group delay, defined as the negative of the slope of the
phase as follows

@ The derivative in this definition requires the use of the unwrap-
ped phase response V(w).

e Phase responses which are linear in frequency correspond to
constant phase delay and constant group delay; both delays are
identical, and each may be interpreted as time delay.

e Note that both the linear-phase response ZH (/%) = —wn, and
the generalized linear phase response /H (e?*) = g — wny have a
constant group delay.

@ The name group delay comes because 7,4(w.) shows the delay of
the “bundle” of frequency components about w..
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The Z-Transform
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Z-Transform Definition

-Counterpart of the Laplace transform for discrete-time signals
-Generalization of the Fourier Transform
-Fourier Transform does not exist for all signals

The z-transform of a sequence x[n] is defined as

o0

Z{x[n} = > x[nlz " = X (2)

n=-o

The inverse z-transform is given by

l n-1
X[n]=—""¢ X (z)z "dz
21w | ¢

This expression denotes a closed contour integral taken counterclockwise
about the origin and in the region of convergence (ROC). It incorporates the
Cauchy integral theorem from the theory of complex variables. This result is

not given directly in Oppenheim, but may be found in Proakis.
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Relationship to Fourier Transform

The z-transform of a sequence x[n] is defined as

o0

X (z)= % x[n]z"”

n= -
The Fourier transform of a sequence x[n] is defined as

o0

X (ej”): > x[n]e "

n =—-—o

For , _ g the z-transform reduces to the Fourier transform

This domain is a circle of unit radius in the complex plane, that is
lz| = 1.
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Convergence of the z-Transform

DTFT does not always converge B

X(e”) = 3 x[n]e "

n=-oo

— Infinite sum not always finite if x]n] no absolute summable
— Example: x[n] = a"u[n] for |aj>1 does not have a DTFT

Complex variable z can be written as r el so the z-transform

0 0
-Nn

e )= 3 xlllre )" =3 xllr e

n = -0 N =—-—0

DTFT of x[n] multiplied with exponential sequence r "
— For certain choices of r the sum maybe made finite

93



Unit Circle in Complex Z-Plane

-The z-transform is a function of the complex z variable

-Convenient to describe on the complex z-plane

-If we plot z=el® for »=0 to 2 we get the unit circle

Unit Circle

~.

z-plane \

Re
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Region of Convergence (ROC)

For any given sequence, the set of value of z for which the z-transform converges
is called the region of convergence, ROC. The criterion for convergence is that

the z-transform be absolutely summable:

> panie] " <

If some value of z, say, z = z,, is in the ROC, then all values of z on the circle defined
by |z| = |z, will also be in the ROC. So, the ROC will consist of a ring in the z-plane
centered about the origin. Its outer boundary will be a circle (or the ROC may extend
outward to infinity), and its inner boundary will be a circle (or it may extend inward

to include the origin).
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Region of Convergence

Im

z-plane

The region of convergence (ROC) as a ring in the z-plane. For specific cases, the inner boundary
can extend inward to the origin, and the ROC becomes a disk. In other cases, the outer boundary
can extend outward to infinity. 96



|_aurent Series

o0

X (z)= % x[n]z"”

n=—0

A power series of this form is a Laurent series. A Laurent series, and therefore
a z-transform, represents an analytic function at every point within the region
of convergence. This means that the z-transform and all its derivatives must be
continuous functions of z within the region of convergence.

X (1) = P(z)
Q(z)

Among the most useful z-transforms are those for which X(z) is a rational
function inside the region of convergence, for example where P(z) and Q(z)
are polynomials. The values of z for which X(z) are zero are the zeros of X(z)

and the values for which X(z) is infinite are the poles of X(z).
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Properties of the ROC

1. The ROC is a ring or disk in the z-plane centered at the origin

OSrR<‘z‘<rLsoo

2. The Fourier transform of x[n] converges absolutely if and only if the ROC of the z-
transform of x[n] includes the unit circle.

3. The ROC cannot contain any poles.

4. If x[n] is a finite-duration sequence, then the ROC is the entire z-plane except possibly
z=0 or z=oo.

5. If x[n] is a right-handed sequence (zero for n < N, <o ), the ROC extends outward from
the outermost (largest magnitude) finite pole in X(z) to (and possibly including infinity).

6. If x[n] is a left-handed sequence (zero for n > N, > -0 ), the ROC extends inward from
the innermost (smallest magnitude) nonzero pole in X(z) to (and possibly including) zero.

7. A two-sided sequence is an infinite-duration sequence that is neither right-sided or left-
sided. If x[n] is a two-sided sequence, the ROC will consist of a ring in the z-plane,
bounded on the interior and exterior by a pole and , consistent with property 3, not
containing any poles.

8. The ROC must be a connected region.
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Properties of ROC Shown Graphically

Finite-Duration Signals

Causal Entire z-plane
| 1 Exceptz=0
Anticausal Entire z-plane

| Except z = infinity

Two-sided Entire z-plane

L] Exceptz=0andz =

Infinite-Duration Signals

Causal
lz| >, A
| L1 N
Anticausal izl <r, C)
L1
Two-sided
r, < |z| <r, m
Tl INNY N 99




Example: Right-Sided Sequence

T p— "
JIm z-plane X[n] = a u[n]
Unit circle o
//.--"—"'--..., X (Z) = Z X[n]z_n
/! N n=-o
/ \
i | : ]
\ a;’\ 1 Re X(z) = Z (az N )” - -1
\\ / o 1- az
Vé
\
\'-..._ ____/
- -1
ROC ‘az <1
or > a
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Example: Left-Sided Sequence

Im z-plane
Unit circle
P -~ .
N
\
\
\
K
jafl PRe
/
//
\"‘H-.__ -

x[n]=—-a u[-n —1]

nonzero for n<-1

o0

X (z)= > x[nlz"

n=-—o

-1

X(z)=-> (az _1)n =1- i (a_lz)n

n=-o0
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Example: Sum of Two Exponential
Seguences

n n

$m  z-planc I
\2) L 3)

TN L .
(/ N v N .

‘yl e le 7 X (z)= ) x[n]z

/ 3 '~ -
~// T n=-o
1

1
(a) X (z) = -t ”
‘ ®) 1—%2 1+§z
Jm  z-plar
ROC ‘iz‘<1 and ‘—lz‘<1
2 3
KB ‘z > L
\\l 1%/’% 1 ¢ 2
) (ayo 2tz gzt | 22(z- )
Z = =
1 -1
G-2z"a+227) (z-3z+3)

Poles at %2 and -1/3, zeros at 0 and 1/12 102



Example: Two-Sided Sequence

$m -plane
T T ( ) 1
/ - N -—|uln]= 1 ‘Z‘> —
/ //’ ‘*.\\ \\ 1+ gZ 3
/ \ \\
/ \
! \ i n
¥ 0-0 ——k 1 1
_ 1y 1 J P11 o | =]l u[-n-1]=> Z| < —
3\\ 2 ),’ 2 ) 1_ 1,71 5
2
AN / /
\ \\“_ P 4
~_ | (- 3)
~
~ s 22(z —
\ﬁ"‘--..__ —-_—-/// x (Z) — : 12 :
(z-3)z+3)
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Example: Finite Length Sequence

Fm

15th-order pole

z-plane

Unit circle

£
}.’f
O
A
h
2

Pole-zero plot for N = 16

Re

fa” 0<n<N-1
x[n] =4 .
| 0 otherwise

o0

X (z)= > x[nlz"

n=-o

X (z) = Z_: (az _1)n = 1; (a:l __1)
n=0 —az

The sum is finite, so

ROC  [a|< o and —
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Jm z-plane

Unit circle
a b C He
Jm

Z-transforms with the same pole-zero locations
Illustrating the different possibilities for the ROC.
Each ROC corresponds to a different sequence.

z-plane

Jm

z-plane

(©)

c) A left-sided sequence

Im z-plane

///,F— \\
/ N
/
(a) / \
/ !
/ y
/
l'\ a b c'T Re
y /
Y /
AN /
~ s
\\‘--. ///
b) A right-sided sequence ()
Jm z-plane
e N
§ /f—ﬁ\\ \\
{
| (/ AP
VA | e T e
NS
\\‘_—d///

d) A two-sided sequence

(d)

v e) A two-sided sequence
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Common Z-Transform Pairs

Sequence | Transform ROC
S[n] 1 All z
1
ufn] T, z|> 1
1
-1 || <
o[n—m] z " *
n 1 Z| > |a
a-ulnl 1-az '
1
—a'u[-n-1] 1-az " f=e
na"ufn] az
u
a7 | R
n | <
—na'u[-n-1] (- a 71)2 Zj<|a

*All z except 0 (if m > 0) or o (if m<0)

Sequence Transform ROC
[cos @,nluln] 1-[cos w ]z s 1
1-1[2cos w0]271+ 27
. -1
[sin @ nJu[n] [sin_o, ]2 z|>1
1-1[2cos a)o]z_l+ 27’
1_ -1
[cos w,nJuln] Lrcos w,]2 Z|>r
1-1[2rcos a)0]271+ riz?
. -1
fsin @,nluln] Lrsin @]z >
1-1[2rcos w0]271+ riz?
a", 0<n< N -1 1-a"z " H
E— z|>0
0, otherwise 1-az "
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Z-Transform Properties (1/2)

3.4.1 Linearity

ax,[n]+ bx,[n]«—— ax ,(z) + bX ,(2) ROC contains R, N R

3.4.2 Time Shifting

X[n = n J«2- z "X (2) ROC = _RX (except for possible addition
or deletion of 0 or )
3.4.3 Multiplication by an Exponential Sequence

20 x[n]«—=—> X(iJ ROC =‘ZO‘RX

2,

3.4.4 Differentiation of X(z2)

x (2) ROC =R

nx[n]<—z—>—z
dz 107



/-Transform Properties (2/2

3.4.5 Conjugation of a Complex Sequence
X'[n]«—— X (z') ROC =R,

3.4.6 Time Reversal

. , 1 1
X [-n]«—> X | — ROC = —
Lz R,

3.4.7 Convolution of Sequences

Xl[n]*xz[n]<—z—> X, (z)X,(z) ROC contains R. n R

Xy Xy

3.4.8 Initial-Value Theorem

x[0] = lim X (z) provided that x[n] is zero for n <0, i.e. that x[n] is causal.

Z—> ©



Inverse z-Transform

Method of inspection — recognize certain transform pairs.

Partial Fraction Expansion

M
Z bkz_k

X (z) = k=0 Factor to

N

k where

) l_M[ (1— ckz_l)

X (z) = 0 k=1
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Example: Second-Order Z-Transform

) 1
Im z-plane X (z) = 1
S T I
P A A
77N X (z) = S L —
I( S }V 1—%2 1—%2
{ A
\ Y 171 Se
\'--...__._-4/ 2 1
A = =-1
1 -1
1- (%)
1
A, = — =2
1-5(3)
X (2) = — :
z) = +
1—%2_l 1—%2_l
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Partial Fraction Expansion

M —N N A
ITM>N X (z) = ZBrz_r+Z k
r=0 kzll_d Z

k

-1

B, can be obtained by long division of numerator by denominator, stopping
when the remainder is of lower degree than the denominator.

If M > N and X(z) has multiple-order poles, specifically a pole of order s at z=d.

M —N N A
X(z)= Y Bz + > —+ > ——
=0 o1kl —d,Z m=1 (1—di2_1)

1 [g° " : )
_ _d



Example

(1+ 2_1)2 1+2z2 +2°
X (2) = — s 2| > 1
(1—;2 )(1—2 ) 1-27 + 512
z7% 4.
A A _ _
X (2) = By + ——— ot — 2 Bo=T o T
1->z 1-1z 2
A A 1yt 2
X(Z)= Bo+ 11 _1+ 2_1 | = (1+(2) 1) _ (3) _ _9
1- 512 1-1z2 1_(%) -1
-9 8
X (z)=2+ — + 1 (1+1)°
1-3z 1-1z A, = ) ;=8
1-5(1)

x[n1=25[n]- (%) u[n]+8u[n]

2
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Power Series Expansion

o0

X (z)= % x[n]z"”

n=—0

Note that SIN—m]elo 7z "

Example :

X (2) = 22(1—§z_1)(1— z_z)z z° -2z7-1+ 11

x[n]=26[n+2]-26[n+1]1-6[n]+ 356[n—1]
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Example

X (z) = log (1+ az_l) |z|>|a|

Expand in power series:

log (1+ az _1): Z

n=1 n
+1a >1
xny= Y e
{ 0, n<o
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Contour Integration

Cauchy integral theorem

(1, k=1
1_?2 dz =
2rdle LO. k =1

C is a counterclockwise contour that encircles the origin.

Then one can show that

l n-1
x[n]=—_f X (z)z dz
Vi S

x[n]=3%" [residues of X(2)z " at the

poles inside C ]
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Residue Calculation

If X(z) is a rational function of z, we can write

n-1 l//(Z)
X(z)z =
(2) _d.)

Then one can show that

Res [X (z)z" tat z=d,|=
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Quick Review of LTI Systems

LTI Systems are uniquely determined by their impulse response
yIn]= ¥ xlk]h[n - k] = x[k]+ hlk]
We can write the input-ottput relation also in the z-domain

Y(z) = H(z)X(z)
Or we can define an LTI system with its frequency response

Y(e™)=Hle™)x(e™)
H(el*) defines magnitude and phase change at each frequency
We can define a magnitude response

Yie™) = Hle™)x(e™)

And a phase response
LY(ej‘”) = 4H(ej®)+ AX(ej"’)
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Phase Distortion and Delay

Remember the ideal delay system

h., [n] = 8[n — nd]__DTL_) H., (ejw) _ e @M

In terms of magnitude and phase response

H ., (ejm)

LHid(ejw): —®N

=1

o ol < n

Delay distortion is generally acceptable form of distortion
— Translates into a simple delay in time

Also called a linear phase response
— Generally used as target phase response in system design

Ideal lowpass or highpass filters have zero phase response
— Not implementable in practice
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System Functions for Difference Equations

Ideal systems are conceptually useful but not implementable

Constant-coefficient difference equations are
— general to represent most useful systems

— Implementable

— LTI and causal with zero initial conditions

N

> a.yln - k]

k=0

The z-transform is useful in analyzing difference equations

k=0

Let’s take the z-transform of both sides

= ZM: b x[n - k]
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System Function

Systems described as difference equations have system functions of the
form

M M

@) 227 [b] [1t-cz’)

H(Z)z = == _ -
X(z) Y acz " I1 1-dz")
Example
Hz) = tr2?) A
(1—12_1V1+32 1\ 14+ —z 4 =27 X(z)
.2 Ju 4 4 8
1 . . 2
1t 2, WY(z)=(1+22 + 22X (2)
.4 8 )

vInl+ —yn — 1]+ >yl - 2] = x[n]+ 2x[n - 1]+ x[n - 2]
4 8

120



Stability and Causality

A system function does not uniquely specify a system
— Need to know the ROC
Properties of system gives clues about the ROC
Causal systems must be right sided
— ROC is outside the outermost pole
Stable system requires absolute summable impulse response

S hin] < =

— Absolute summability implies existence of DTFT
— DTFT exists if unit circle is in the ROC
— Therefore, stability implies that the ROC includes the unit circle

Causal AND stable systems have all poles inside unit circle
— Causal hence the ROC is outside outermost pole
— Stable hence unit circle included in ROC
— This means outermost pole is inside unit circle
— Hence all poles are inside unit circle
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Example

Let’s consider the following LTI system

yIl- 2yl - 1]+ yln - 2] = x[n]
2

System function can be written as

Im z-plane
Unit circle
1
H(Z) = @ 1 Re
. S
1 - —z (1 - 2z ) 2
. 2 )
Three possibilities for ROC
— If causal ROC, but not stable ROC | : z‘ )
— If stable ROC, but not causal
— If not causal neither stable ROC, ROC _ : 1 < ‘z‘ < 2
.
1
ROC , : Jz| < =
2
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Structures for Discrete-Time Systems

Block Diagram Representation of Linear Constant-Coefficient
Difference Equations

Signal Flow Graph Representation of Linear Constant-Coefficient
Difference Equations

Basic Structures for IR Systems
Transposed Forms

Basic Network Structures for FIR Systems
Lattice Structures
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Introduction

« Example: The system function of a discrete-time system is

b +bz "
H(z)=—7——, [z| >4

1- az

 Its impulse response will be
h[n] = bya"u[n] + b,a™u[n-1]
 Its difference equation will be
y[n] —ay[n-1] = box[n] + b,x[n-1]
Since this system has an infinite-duration impulse response, it is not possible

to implement the system by discrete convolution. However, it can be rewritten
in a form that provides the basis for an algorithm for recursive computation.

y[n] = ay[n-1] + box[n] + byx[n-1]
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Block Diagram Representation of Linear Constant-coefficient

Difference Equations

X[n]

X,[n]

X;[n] + x,[n]

Multiplication of a
sequence by a constant

Unit delay

Addition of two sequences
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Block Diagram Representation of Linear Constant-coefficient

Difference Equations

1 H(z)sz(z>Hl(z>=}

Nkz
V(z) =H, (z)X (z)

Y (z)=H,(2)V (2)

[
P H(z):Hl(z)Hz(z):{z bkqu N
L

W (z) = H,(z)X (2)
Y (z) = H,(2)W (2)
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Block diagram representation for a general Nth-order
difference equation:
Direct Form |

X[n] by ‘ + ~ vIn] /\ y[n]
! 21
b, az
x[n-1] > + 2 y[n-1]
z! | z1
x[n-214 vy[n-2]
V:V b=M-1 + ar:l-l A 4
z'! z'!
X[N-M] EM )\ y[n-N]
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Block diagram representation for a general Nth-order
difference equation:
Direct Form 11

x[n] wln] bo () y[n]
Z-l Z 1
q, b,
<+ < W[n-l] W[n-].] > +
2-1 Z 1
+w[n-2] w[n-2] l
a | i b
+ N 1 \ 4 \ 4 =M 1 +
z'1 z1
O Twin-N]  wn-m]L_5#
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Combination of delay units (in case N = M)

X[n]

y[n]

w[n] bo
() 0 )
\ 4
71
q, b,

+ < > +
\ 4
71
v
|
NEE bn-1
+ < | > +
71
Cl[}] N

[
»
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Block Diagram Representation of Linear Constant-
coefficient Difference Equations 2

An implementation with the minimum number of delay elements is
commonly referred to as a canonic form implementation.

The direct form I is a direct realization of the difference equation
satisfied by the input x[n] and the output y[n], which in turn can be
written directly from the system function by inspection.

The direct form 11 or canonic direct form is an rearrangement of the
direct form I in order to combine the delay units together.
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Signal Flow Graph Representation of Linear Constant-
coefficient Difference Equations

a
/ Attenuator
X[n] d e yIn]
> —— @
z'1 :
Delay Unit

o Node: Adder, Separator, Source, or Sink
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Basic Structures for IR Systems

Direct Forms

Cascade Form

Parallel Form

Feedback in IR Systems
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Basic Structures for IR Systems

 Direct Forms

y[n] - Z a,y[n -—k]= Z b, x[n — k]

k=1
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Direct Form | (M = N)

r(n) v(n) [ y(n)
¥ ¥ v
= =
_Ja']_
= =
p— _Jﬂ-g rem—
= =
_Jalg
- —-:GN_]- -
z71 z71
E{M —anN
LTI All-zero system LTI All-pole system

Requires: M + N + 1 multiplications, M + N additions, M +~ N memory locations
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Direct Form Il (M = N)

z(n) | ~
- W
51 51
+ J* € L .
z_ll 21
—a
+ )% s 1
—{l — ———
+ )< 3
- _ar _ L] L]
+ )+ =1 ]
21 21
—an T bum
LTI All-pole system LTI All-zero system

Requires: M + N + 1 multiplications, M + N additions, M + N memory locations
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Direct Form ||

by
r(n) (3) 7 : ® »y(n)
—1
S —}1'-1 _ f{l r
Q=0
-1
Ve 22 b2 e
e ¥ ()
-1
—a3 L= b: |
@: 3 3 :3 »(+
A 4
" ) —Up =1 " QM’—'] . .
-1
et
—ap by
. For N>M
—‘{Lh.‘ |

Requires: M + N + 1 multiplications, M + N additions, max(M, N) memory
locations
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x[n] [n]
@ vt
21 !
2 0.75
> + + <
z'! z'!
‘ —0.1%5
Xl () vin]
> + > + >
Z—l
0.75 2
+/ < > \'l‘
. H (2) 1+ 221_ +z
_0125 1-0.752 " +0.125 7~
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O »O >(P >(P »O >
Z-1 Z_1
O O O O

\ 4

-0.125

A

O

x[n]
O >(P »O >(P
z—l
0.75 v 2
Q0
z—l
—0.1 2 5 v
A

A

\ 4
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Basic Structures for IR Systems 2

 (Cascade Form

1

[T @-9,z )] @-h,z " )1-hz")

k=1
H(z) = A

1 N2

[T @-czH[] @-d,z )(1-d z

k=1 k=1

1

)

where M = M;+2M, and N = N;+2N,.

« A modular structure that is advantageous for many types of
Implementations is obtained by combining pairs of real factors and
complex conjugate pairs into second-order factors.

N 1 —2
* b, + b, 2z + b, z
0k 1k 2k

H (Z) — I I 1 -1 -2
k=1 —apZ T a,7z

where N is the largest integer contained in (N+1)/2.
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Basic Structures for IR Systems 3

e Parallel Form

N 1

H(z)—iC z'kJrZi—Ak +i Bd-ec2 )
- k _ _ £ _
k=0 =11~ C,Z 1 1 (1-d,z 1)(1—de 1)

where N = N;+2N, . If M a N, then Np, = M - N; otherwise, the first summation in
right hand side of equation above is not included.

« Alternatively, the real poles of H(z) can be grouped in pairs :

" v e +e. 7
_ -k 0k 1k
H(z)—ZCkz +Z » >
=0 11— a,z -—a,.z

where Ng is the largest integer contained in (N+1)/2, and if Np = M - N is
negative, the first sum is not present.
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y §
o
~

O+

N

X[n] wa[n] b, Yolnl y[n]

y
D)
) 4
»( e
> )<
y

A

A

az3 gz Parallel form structure for
sixth order system (M=N=6).

142



1+2z ' +2° —7+8z"

H(z)= " > =8+ ” -
1-0.75z "+ 0.125 z 1-0.75z "+ 0.125 z
18 25

1-05z" 1-0.25z7"

2

=8+
1

\ 4

v
T X
r—
3
el
A4
) 4
D
) 4
D
—
00
) 4
B
‘ <
™
S
[ — ]
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Transposed Forms

« Transposition (or flow graph reversal) of a flow graph is accomplished by
reversing the directions of all branches in the network while keeping the
branch transmittances as they were and reversing the roles of the input and
output so that source nodes become sink nodes and vice versa.

x[n] y[n] y[n] X[n]
o »O O > < O (O - )
‘ ‘ z1 ‘ ‘ [
a EEEE > a z? :
x[n] y[n] v

o— @
Z-l
d
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Y

b, a;
b, a
bnat an-1
g ) 1
-1 Z
y4
bn an

Y
A

bo y[n]
q, b,
a b,
an-1 b1
) T o1
1 4
z an by

A
) 4
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X[n]

Y

A

Y

A

C

Y

X[n]

Y
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Basic Network Structures for FIR Systems

e Direct Form

— Itis also referred to as a tapped delay line structure or a transversal filter
structure.

« Transposed Form
« (Cascade Form

-2

M M
H(z)= hinlz " =] (bs + b,z +b,z")
n=0 k=1

where Mg is the largest integer contained in (M + 1)/2. If M is odd, one of
coefficients b,, will be zero.
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Direct Form

For causal FIR system, the system function has only zeros (except for
poles at z = 0) with the difference equation:

y[n] = SM—o biX[n-K]
It can be interpreted as the discrete convolution of x[n] with the
Impulse response
h[n]=|b, ,n=0,1,...,M,
, otherwise.
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Direct Form (Tapped Delay Line or Transversal Filter)

b, yIn]
b,
b,
> .
%
*
bna .,
> “
by ’A
X[n] 7-1 7-1 7-1
O »O—> O >
‘h[O] Ih[l] Ih[Z] Ih[M-l]Ih[I\/I] y[n]
> > W, > >
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Transposed Form of FIR Network

Y

‘h[M] Ih[M 1I h[2] Ih[l] Ih[O]

X[n]

O—0O

v ° ' \4

Y
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Cascade Form Structure of a FIR System

by by Y1
b12 R blMs R
b22 bZMs

Y

Y
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Structures for Linear-Phase FIR Systems

 Structures for Linear Phase FIR Systems :
— h[M-n] = h[n] forn=20,1,..,. M
« For M is an even integer : Type |
y[n] = S\, h[K](X[n-K] + X[n-M+k]) + h[M/2]x[n-M/2]
« For M is an odd integer : Type Il
yIN] = Sy=e™ 2 h[KI(X[n-K] + X[n-M+K])
— h[M-n] = -h[n] forn=20,1,..,M
« For M is an even integer : Type I
y[N] = Sy=e™?* h[KI(X[n-K] - X[n-M+K])
« For Mis an odd integer : Type IV
yIN] = Sye™ 2 h[KI(X[N-K] - X[n-M+K])
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Direct form structure for an FIR linear-phase when M is even.

x[n] 71
O /O /O
-1 T\
o ®-
yIn] h[O] lh[l] h[M/2]
i < <

Direct form structure for an FIR linear-phase when M is odd.

x[n] -1 - -1
® @ 2 - z >
S am
o? .\.: RN N
y[n] h[O] | h[1] h[(M-1)/2]
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Lattice Structures

Theory of autoregressive signal modeling
— Lattice Structure

Development of digital filter structures that are analogous to analog
filter structures :

— Wauve Digital Filters

Another structure development approach is based on state-variable
representations and linear transformations.
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Lattice Structures 2

 FIR Lattice

Y (2)
X (2)

H(z) = =A(z):{l—%amzm}

The coefficients {k;} in the lattice structures are referred
to as the k-parameters, which are called reflection
coefficients or PARCOR coefficients.

— When used in signal modeling, the k-parameters
are estimated from a data signal .

— Given a set of k-parameters, the system function
can be found and therefore the impulse response :
by recurrence formula for computing A(z) in terms
of the intermediate system functions
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Reflection coefficients or PARCOR coefficients structure

X[n] eqln] e,[n] ez[ﬂ] en-1[n] enln] Y[n]
O »O »O »O »Q - O C
-k,
z1 a z1
O O @ - Q J
e%[n] e [n] 2[”] €7n-1[N] e"[n]

Signal flow graph of an FIR lattice system

&oln] = &%[n] = x[n]

eiln] =e4[n] — ke i4[n-1], 1=1,2,...,N,
e7i[n] = -kiei4[n] + €74 [n-1]
y[n] = ey[n]
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A recurrence formula for computing A(z) = H(z) = Y(2)/X(z) can be
obtained in terms of intermediate system functions:

By recursive technique:

a0 =k,
a =g (-) -k a (D
m=1,2, .., (i-1)

Or by reverse recursive technique:
k= a0
a, ) =Ta,® +ka M[1-k?, m=1,2,...,1-1)
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Example:

A(2) = (1-0.8jz%)(1+0.8jz1)(1-0.9z1) =1 - 0.9z1 + 0.64z%2 - 0.576Z3.
Then, a,®=0.9,a,%=-0.64, and a;® = 0.576
The k-parameter can be computed as follow:
k; = a5 = 0.576
8,2 = [a,® + kja,®]/[1 - kq?] = 0.79518245
2,2 = [a,® + kga,¥]/[1 - ks?] = - 0.18197491
k, = a,(® =-0.18197491
a, (M) = [a,@ + kya,@]/[1 - k,2] = 0.67275747
k, = a,Y = 0.67275747
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e e e e o) o) »O y[n]
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All-Pole Lattice

A lattice system with an all-pole system function H(z) = 1/A(z) can be
developed from the FIR lattice .

— all roots of A(z) must be inside the unit circle: |kj| <1,i=1, ..., N

ei[n] eia[n]
en[n] = x[n] O >O >O >O

Eis[n] =¢ln] + ke™i4[n-1],  1=N,(N-1),...1, -kl-(i><
e~[n] = -kie;;[n] + 74 [n-1] -zt 7

y[n] = eq[n] = e7[n] e5ln] e7i4ln]
x[n]  egln] ey[n] e,[n] e 1[n] eN[n] y[n]
»O > »O > > »O
Ky Kn-2
Ky _ikuz » -k
@< @+ @+ O+ Q- @«

e y[N] e n1ln] e™y[n] o[”] 160



Basic all-pole lattice structures

Three-multiplier form
Four-multiplier, normalized form

J] cos &,
H (z) = izlA( )
z

Four-multiplier, Kelly-Lochbaum form : was first derived as an acoustic tube
model for speech synthesis.
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e;[n] €[N
O O »O >
'kuI i
e’i[n] (1-Kk?) e’i1[n]
&;[n] COS ¢ ei1[n]
O O »O >
-sin qu sim g;

e’i[n] COs Q; e’i1[N]
&[n] (1 +k) e;.1[n]
O O »O >
'kiI i
e’i[n] (1-k e’i1[n]

Three-multiplier form

Four-multiplier, normalized
form

Four-multiplier, Kelly-
Lochbaum form
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Lattice Systems with Poles and Zeros

Y (2) N ez T 'A(zTY) B(z)

H(z) = ————=3> — -

X (z) i—0 A(z) A(z)

N
B(z) = > b,z "
m =0

N
— (i)
bm = Chn — : ‘, cia;_n

i=m+1
X[n] = ey[n] en-1[N] En-o[0] e,[n] eq[n]
O—— ) > . —————p- - - ———————» ]
Section Section Section
e’nin] N ¢’n-1[n] N - 1e’f. e’dn]

Cn Cnlt Co
\ 4 » »
> >

y[n]
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Example of lattice IIR filter with poles and zeros

x[n] yIn]
O >
7-1
0.9 3
< ” >
0.64 3
< - >
0.576
< O >
X[n]
O »O > »O > »O > >
0.576 0.182 0.6728
-0.576 0.182 -0.6728
< O < O O ")
Z-l 7 1 7 1
3.9 5.4612 4.5404
> > > »O y[n]
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UNIT-2
DFS, DFT & FFT
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Fourier representation of signals

o A discrete-time sinusoidal signal z[n] is obtained by sampling a
continuous-time sinusoid z(t) = cos(2wFpt + ) at equally spaced
points ¢ = nI', which results in

x[n| = A cos(2nFonT + 9)‘ = A cos (Qﬂ'iﬂ- + H)

F
where Iy (Hz) is the fundamental frequency of z(¢) and Fj is the
sampling frequency.

@ The normalized frequency variable is defined as

fégzmﬂ

5

T=1/F,

where 1" is the sampling period.
e Similarly, the normalized angular frequency variable is defined as

F
w2 f=2r— = QT
w f TFS

e In this case, the discrete sinusoidal signal can be expressed as

z[n] = A cos(2w fon + 0) = Acos(won + 6) 166



Fourier representation of signals

e Periodicity in time: By definition z[n] is periodic if
z[n + N| = z[n], Vn.
zln+ N| = A cos(2n fon + 27 foN +0) = A cos(2n fon + 0) = z[n]
which is possible if and only if 27 fo N = 27k, with & € Z.

Result

The sequence z[n] = A cos(2w fon + 6) is periodic iff fo = k/N, that
is, fo is a rational number. If £ and N are a pair of mutually prime
integers, then NV is a fundamental period of z[n].

e Periodicity in frequency: We can see that

A cos [(wo + k2m)n + 6] = A cos(won+ kn 27+0) = A cos(won+0)

€L

Result

The sequence z[n| = A cos(wgn + #) is periodic in wy with funda-
mental period 27 and periodic in fy with fundamental period one. 67



Fourier representation of signals

e All distinct sinusoidal sequences have frequencies within an
interval of 27 radians. We shall use the fundamental frequency
ranges

—m<w<mwm or 0<w<2r

Therefore, if 0 < wg < 2w, the frequencies wp and wp + m 27 are
indistinguishable in terms of their values.

o Since A cos(wg|n + ngl] + 0] = A cos(won + (weng + #)), a time
shift is equivalent to a phase change.

@ The rate of oscillation of a discrete-time sinusoid increases as wy
goes from wp = 0 to wp = w. Yet, as wp increases from wy = 7 to
wp = 2, the oscillations become slower. Therefore:

Vicinity of wg = k27 =  Low frequencies

Vicinity of wg =nm+ k27 = High frequencies

168



Discrete complex exponentials

e Similar properties hold for the discrete-time complex exponentials
Sk — AkEJWkTI

o For si[n| to be periodic with fundamental period N, the frequen-
cy wi should be a rational multiple of 27, that is wr = 27k /N.

=1

All distinct complex exponentials with period N and frequency in the
fundamental range, have frequencies equal to {w, = 27k/N}, ;. J

e The discrete complex exponentials are N-periodic in both the n-
and k-variables.

sipln + N| = sp[n] (periodic in time)
sk+n|n| = sk[n|] (periodic in frequency)
@ The complex exponentials are also orthogonal, viz.
N-1 .
N, E=m
(ko) 2 3 siln] s, [n] = { -

— 0. kE#m 169



Discrete Fourier Series

Glven a periodic sequence %(n1 With period N so that

X[n] = X[N + N ]

The Fourier series representation can be written as

x[n] = =3 X[kJe@/"
N~

The Fourier series representation of continuous-time
periodic signals require infinite many complex exponentials

Not that for discrete-time periodic signals we have

ej(2n/N)(k+mN n ej(Zn/N)knej(ann) _ ej(Zn/N)kn

Due to the periodicity of the complex exponential we only
need N exponentials for discrete time Fourier series

N-1

~ 1 _
X[n] = _Z X[k]eJ(Zn/N)kn
N o
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Discrete Fourier Series Palr

A periodic sequence in terms of Fourier series coefficients

N 1 N1 |
x[n]=—}% X[k]eJ(Z”/N)"n
N k=0

The Fourier series coefficients can be obtained via

N-1

X[k]= Y X[nje @/

n=0

For convenience we sometimes use

-j(2n /N)

Analysis equation Wy = ¢

Synthesis equation -
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Fourier series for discrete-time periodic
signals

e Consider a linear combination of N complex exponentials

N-1 N-1
z[n| = Z cped Whn — Z cLsk[n]
k=0 k=0

which is periodic with fundamental period N.

@ To determine the series expansion coefficients ¢, we exploit the
orthogonality of si[n] as follows

N-—1 N-—1
(T, 8m) = Z x[n|s! [n] = Z Ck(SkySm) =Nem, m=0,...,N—1
n=0 k=0

e Therefore, we have

N—-1
1

=3 afnler

=0

CLp =

which is periodic in & with the fundamental period equal to N. -,



Discrete-time Fourier series

/MTECC)
DTFS
The Discrete Time Fourier Series (DTFS) pair is defined as
N-1 1 N-1
_ _ —912Z kn
x[n| = kZ_D C;LE "= = N HZ:; z[n|e N

o Parseval’s relation: The average power in one period of z[n]
can be expressed in terms of the Fourier series coefficients as

—1

k=0

o The value of |c;|? provides the portion of the average power P,,
of z[n] that is contributed by its k-th harmonic component. Since
CL+N = Ck, there are only N distinet harmonic components.

o The graph of |cx|? (as a function of either f = k/N, w = 27k /N,

or simply k) is known as the power spectrum of x[n]. 173



Fourier representation of aperiodic
signals
o Consider a finite duration sequence z|n], such that zn] =0

outside the range —L < n < Lo. Define a periodized version
zp[n| of z[n| as

zpn] = Z zln —IN], with N > Ly + Lo+ 1

o The DTFS of z,[n| is given by

N-—-1
ETRH
zy[n| = E cpel N
k=0
where
1 N-—-1
2ar a2 .
cL = — E zp[n]e I WA = E z[n]e I TN
N N
=0 n=—oo

e Define the “envelope” function X (e’/*) as
[

X(e¥) = Z z[nle " 174

n=—0c



Discrete-time Fourier transform
(DTFT)

e Noticing that 1/N = Aw/27, we have

N-1 ;| N-
27 . )
7 [H] _ el N kn _ _— X(Ejkﬂu)e_j(kﬂu}n&w
r k Dar
k=0 7 k=0

@ As N — o0, zp[n| = z[n], Yn. Also, as N — oo, Aw — 0, and the
summation above passes to an integral over the frequency range
from 0 to 2m. As a result, we have

DTFT
The Discrete Time Fourier Transform (DTFT) pair is defined as

o0

;’E[n] — % X(ij)ﬂ.}wndm — X(ij‘) _ Z :S[H]E_an

@ The quantities X (e’¥), | X (e?)|, and ZX (/) are known as the
spectrum, magnitude spectrum, and phase spectrum of z[n].
@ Parseval’s relation:

1 [" "
el =5 [ X ()P 17



Discrete Fourier Transform

Periodic sequence and DFS coefficients
X[k]= Z X[y

1‘-.1

Z 1 F—ﬁm

x[n]=
N koo —

Since summatlons are calculated btw 0 and (N-1)

Vo1

XnWe, 0<k<N-
X[k]:{;fM v. 0sk=N-1
0. otherwise Generally
. N-1
1 N-1 T i -k
J_ ]H’.{,n;hj? 0<n<N_1 X [A] — ZJ‘[”]I{N
x[n]=4 N &~ : T=gf—l
0,  otherwise x[n] = - > X[k,
IV k=0
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Discrete Fourier Transform

e Given N samples z[n|, 0 <n < N — 1 of an N-length sequence,
its Discrete Fourier Transform (DFT) X|k] is defined by
N—1
X[k £ Y efnle?F*, 0<k<N -1

=0

o Given N DF'T coefficients X[k], 0 <k < N — 1, their related N
“time-domain” samples z[n], 0 < n < N — 1 can be recovered by

the inverse DF'T (IDF'T) given by

N-1
aln] £ < 3 X[H T
k=0

o Note that X[k| is a function of the discrete frequency index k,
which corresponds to wy, =27/N, k=0,1,... ., N — 1.

In summary: The DFT pair

N-—-1
X[k =Y alnWx* €5  aln]=

=0

N—1
]_ "'—k -~ A _ 2
=Y X[EWR*, Wy 27T
N & [EIW V= © 177



Discrete Fourier Transform

@ The correctness of the DF'T formulas can be validated through:

N—-1 N—-1 N—1
TR 1 F—Imnn rnk
X[k = an]Wx" =" {N > X[m]Wy } WhF =

=ZX[m]{ ZHTL ™) ]

@ The orthogonality of discrete complex exponentials suggests

J.NT_].
1 Ak—m)n 1 k - 1, k—m=rN
Wik — k=4
N HZ=D A N< Ny W) {D, otherwise

which concludes the proof.
o Note that the N complex numbers { Wy k}i:::,l satisfy

(Wx")

and therefore they form the roots of unity (i.e., the N solutions of
2V — 1 =0). Note that these roots are equally spaced around the
unit circle with the angular spacing of 27 /N radians. 178
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Discrete Fourier Transform

@ The N equations for the DFT coefficients can be expressed in
matrix form as

- - 1 1 . 1 T1r r .
X[D] 1 _[.{I?_w o I.){f‘ﬁ':r_l nL:U]
X[1] o : N x[1]
1 X[N —1] Il owyr o we-ne-n || [N —1] 1)
XN ‘;N T N

@ Thus, we have
Xy =Wpyzn

e Note that Wy is symmetric (W = W) and orthogonal, viz.

1 1

-.-WJ.H: T“.THC

N N

@ Therefore, x can be recovered (synthesized) from Xy according
to

WHEWy = NIy = W' =

1
J.I-I\IT

which is nothing else but a matrix representation of IDFT. 179
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Discrete Fourier Transform

o The twiddle factor W = eI Wk ig periodic in both k£ and n
with fundamental period N, namely

E+N e (N T1
L{f:;\\l +N)n — W i'n and W N( +mn) _ I‘{"irn

o Letting k € Z results in the Discrete Fourier Series (DFS):

N-—-1
X[kl =X[k+N]=) a[n]Wx", Vkel

n=>0

o If n is allowed to take upon any integer value, the values of z|n]

will repeat with fundamental period NV, resulting in the Inverse
Discrete Fourier Series (IDFS).

znl=zn+N|, Vnelkl

@ These periodicities are an inherent property of DF'T, which stem
from the discrete nature of time and frequency variables. 180



Summary of properties

Bl
=

gy h P

g.

10.

11.

12

Property

Linearity

Time shifting
Frequency shifting
Modulation
Folding
Conjugation
Duality
Convolution

Correlation

Windowing

Parseval’s theorem

Parseval's relation

N-point sequence

x[n], hn], vin]

x; [n], xaln]
ayxy[n] +azxz[n]
xl(n — m)y]

Wy ™"l

*[n] cos (2w N)kgn
[ {(—nin]

‘FI 1

x"|n]

X[n]

AT I:E.L[H]

] (V)yl(—nhy]

v[n]x[n]
N—1

R _'..]

N-point DFT

X[k, HK], VIA]
X [k, Xalk]

a) X [k] +ayX; (k]
WEmX[k]

X[{k — mjy]

SXT(k +ko)v] + 3 X[(k — ko)

X*[k]
X*[(—=k)n]
Nx[{—k}]IN]
H[KXTK]

X[k Y[k

Lvir (V) xpk

3 xnly*[n] = F;; X[k1¥*[n]

N—1 N— 1_

1
2 kit =22 |X[k]?

fussl() ki)
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DFT Pair & Properties

» The Discrete Fourier Transform pair

N-1 1

X[k]: Z X[n]e—j(Zn/N)kn X[ﬂ]ziz X[k]ej(Zn/N)kn
n=0 N k=0

Property Time Domain Frequency Domain
Notation: x(n) X(w)

x1(n) X1(w)

xo(n) X1(w)
Linearity: aix1(n) + azxx2(n) a1 X1(w) + a2 Xo(w)
Time shifting: x(n— k) e Jwk X(w)
Time reversal x(—n) X(—w)
Convolution: x1(n) * x2(n) X1(w)Xz(w)
Correlation: Py (1) = x1(1) * x2(=1)  Sxpxp(w) = X1 (w)Xo(—w)

= X1(w) X5 (w) [if x2(n) real]

Wiener-Khintchine:  r (1) = x(/) = x(—1) Six(w) = | X(w)|?
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Circular convolution

Assume: x;(n) and xx(n) have support n =0,1,..., N—1.

Examples: N = 10 and support: n=0.1, ..., 9

23 4 5 6 7T 8 O 10 11 12
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Modulo Indices and Periodic
Repetition

(n)y =n mod N = remainder of n/N

Example: N =4

n |-4 -3 -2

-1 01 2 3 4 5 6 7 8
(Ms{0 1 2 3 01 2301230

n nonneg integer < N
N = Integer + N

5 1 —2 2
T 14 - _14.=
4 i 4 4 i 4
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Overlap During Periodic
Repetition

A periodic repetition makes an aperiodic signal x(n), periodic to
produce x,(n).
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Periodic repetition: N=4

[I=2] [I=1] [l=0] [I=1] [I=2]

X (h+N)
n+2N) x(n

no overlap

support length=4=N  Xp(1)
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Periodic repetition: N=4

[=-2] [l=1] [I=0] [I=1] [I=2]

X (n+N)
X (n+2N)

Wllikizg i1} ggedi

L R I

x(n)

overlap

support length=6 >N {pﬂﬂ
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Modulo Indices and the Periodic
Repetition

Assume: x(n) has support n=0,1,..., N —1.

oo

x((n))ny = x(n mod N) = x,(n) = Z x(n—1IN)

|=—oc

Note: Because the support size and period size are the same, there is
no overlap when taking the periodic repetition x((n))y.
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Modulo Indices and the Periodic
Repetition

x(n)
1

w1

2000000 n
76-5-4-3-2-1012 345867

x(n)

2
1 1
1 0

n
76-5-4-3-2-1012 345¢67
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Modulo Indices and the Periodic
Repetition

ré ' (), {

1 Al

n

0000000
76-5-4-3-2-1012 345¢67

x(n)

2 1 1
1 0
n

76-5-4-3-2-1012 3 45¢67




Modulo Indices and the Periodic
Repetition

2000000
J6-54-3-2-1012 34567

-7-6-5-4-3-2-] 1234567 ..

Therefore x((n))n = x,(n).
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Circular convolution

Assume: x1(n) and x»(n) have support n =10.1..... N —1.

To compute -1 xa(K)xa((n — k) (o SN sa(k)xa((n — K))n):
1. Take the periodic repetition of x>(n) with period N:

o

Xop(n) = Z xo(n — IN)

|I=—c0

2. Conduct a standard linear convolution of x1(n) and xp,(n) for
n=20,1...., N — 1:

o N_1
x1(n) @ xa(n) = x1(n) * x2p(n) = Z x1(k)xop(n — k) = Z x1(k)xop(n — k)
k=—oc k=0

Note: x1(n) ® xo(n) =0 for n < 0and n> N.
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Circular convolution

Z_'xl(k) x((n—k))n|= Z_'Xl(k) Xop(N — k)

.. which makes sense, since x((n))y = x,(n).
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Circular convolution-another
Interpretation

Assume: x1(n) and xo(n) have support n =0,1,.. ., N —1.

To compute ka;ﬂl X1(k)><2((”— k)) (or Zk _{] Xz(k) (( n— k)) )

1. Conduct a linear convolution of x1(n) and x(n) for all n:

o0 —

x (n) = x1(n) * x2(n) = Z x1(k)xa(n — k Z k)xa(n — k

2. Compute the periodic repetition of x;(n) and window the result for

n=0.1,..., N — 1:

x1(n) ® xo(n) = Z xt((n—IN), n=0.1,.... N —1

I=—o00
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Using DFT for Linear
Convolution

T herefore, circular convolution and linear convolution are related as
follows:

Xc(n) = xy(n) ® x2(n Z x (n—IN)

[=—o0

forn=0,1,....N -1

Q: When can one recover x;(n) from xc(n)?
When can one use the DFT to compute linear convolution?

A: When there is no overlap in the periodic repetition of x;(n).
When support length of x;(n) < N.
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Using DFT for Linear Convolution

o The linear convolution of two finite-length sequences {z[n]}~_3

. n=0
and {h[n]}* ! is a sequence y[n] of length L + M — 1, given by

yinl = 3 h[Kaln—K, n=0.1...,.L+M-2

k=—0oc
@ The convolution sequence y[n] has DTF'T given by
Y(e) = X (&) H(e™)
o If we sample Y (e’¥) at wy = 27k/N, where N > L + M — 1, we

can uniquely recover y[n] from Y [k] = Y (e27F/N),

e On the other hand, the IDFTs of H(EJ%E) and X(f:;:f“) yield the
sequences h|n| and z[n| padded with (N — M) and (N — L) zeros,
respectively. As a result,

yopln) = wop[n] ® hopln] = Y[k] = X[K]H[K

o Notethat if N > L+ M — 1, yln] =y.pn[, 0 <n <L+ M —2,
that is, circular convolution is identical to linear convolution. 196



Using DFT for Linear Convolution

e Thus, linear convolution can be implemented by means of the
DFT as shown below.

x[n] Pad aiih Xop[n1]
Length (M-1) zeros

L

N=L+M-1
l‘l' 1 'F.d
1[n] Pad with Lop[]

Length | (L-1) zeros

M

N-point
DFT

X1k]

=

N=point
DFT

Y [k] N—point | ¥[7]
IDFT Length
N
Yk] = Hk]X k]

@ The length M of the impulse response at which the DFT based
approach is more efficient than direct computation of convolution
depends on the hardware and software available to implement the
computations.
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Using DFT for Linear
Convolution

Let x(n) have support n=0,1,...,L—1.
Let h(n) have support n=0,1,... . M — 1.

We can set N > L+ M — 1 and zero pad x(n) and h(n) to have
support n=20,1,..., N —1.

1. Take N-DFT of x(n) to give X(k), k =0.1..... N —1.
Take N-DFT of h(n) to give H(k), k =0.1..... N —1.

Multiply: Y(k) = X(k) - H(k), k =0.1..... N —1.

Take N-IDFT of Y (k) to give y(n), n=20.1,.... N —1.

=~ N
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Using DFT for Linear
Convolution

Length of linear convolution result = Length of DFT

[=2] [=1] [=0] [=1] [I=2]

no overlap

support length=4=N  Xp(n)
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Using DFT for cicular
Convolution

N=L+M-1.
Let x,,(n) have support n=0,1, ..., N — 1.
Let h(n) have support n=0,1,.... M — 1.

We zero pad h(n) to have support n=20.1,..., N — 1.

- W N

Take N-DFT of x,(n) to give X,,(k), k=0,1,....N —1.
Take N-DFT of h(n) to give H(k), k=0,1,...,N —1.
Multiply: Y,.(k) = X,,(k)- H(k), k=0,1,....N — 1.

Take N-IDFT of Y, (k) to give yvc n(n), n=0,1,...,N —1.
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Using DFT for cicular
Convolution

o Let’s compute y[n| for the case of N = 4. We have

y|0 z[0] =z[3] z[2] =1 h|0|

yl1] | | =[] =2[0] =z[3] =z[2 h[1]

yl2] || z[2] =[1] =2[0] =z[3] h[2]
Cy3l ] [ =B8] 2] =z[1] =[0] | | A[3]

—_
Xy

@ We note that the column of X are generated by circularly
shifting x[n|. A matrix generated by this process is called a
circulant matric.
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Using DFT for cicular
Convolution

Length of linear convolution result > Length of DFT

. ) v.int+tN) v (n-IN
Q) linear y(n+2N) - yAny -
convolution
= result +
+
LA |

Add and keep points only
atn=0, 1. .... N-1

overlap since

N < L+M-1 Yeln) |
} /cmmptmn from
circular [ 929Y previous repetitions
. I
convolution i |
| 1
result i
i
Lll--liu

= _1-‘1(}3} at n=M-1, M, ..., N-1
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Filtering of Long Data Sequences

» All N-input samples are required simultaneously by the DFT
operator.

» |f N is too large as for long data sequences, then there is a

significant delay in processing that precludes real-time
processing.

signal Data Acquisition Data Processing signal
. +
input Delay Delay output
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Filtering of Long Data Sequences

» Strategy:

1. Segment the input signal into fixed-size blocks prior to
processing.

2. Compute DF T-based linear filtering of each block separately.

3. Fit the output blocks together in such a way that the overall
output is equivalent to the linear filtering of x(n) directly.

» Main advantage: samples of the output y(n) = h(n) x x(n) will
» Goal: FIR filtering: y(n) = x(n) = h(n)

» [Two approaches to real-time linear filtering of long inputs:

» Overlap-Add Method
» Overlap-Save Method

» Assumptions:

» FIR filter h(n) length = M 204
» Block length =L > M



Over-lap Add

Deals with the following signal processing principles:

» The linear convolution of a discrete-time signal of length L and a
discrete-time signal of length M produces a discrete-time
convolved result of length L +~ M — 1.

» Addititvity:

(x1(n)+x2(n)) = h(n) = x1(n) % h(n)+x2(n) = h(n)
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Over-lap Add

* Ni(n)

% Ni(n)

Input x(n) is divided
into non-overlapping
blocks x,,(n) each of
length L.

Each iInput block
Xm(n) is individually
filtered as it is received

to produce the output
block y,(n).
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Over-lap Add

» makes use of the N-DFT and N-IDFT where: N =L+ M — 1

» Thus, zero-padding of x(n) and h(n) that are of length
L.M < N is required.

» The actual implementation of the DFT /IDFT will use the fast
Fourier Transform (FFT) for computational simplicity.
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Over-lap Add

* h(n)
10 7
§ TI 2 L 1
I=4 I=4 I=4

These extra M-1 samples (i.e, “tail")
due to convolution expanding
the support must be added to the
begininning of the next cutput

I}IDLPE/_/ \

ADD

n E-\{I
block

| I
.i--ﬂ
M-1=2

Fl

o4

(=T 3

Il-l-l--lﬁ--ﬂ
AM-1=2

Fl

L
L =

¥
ADD
o
next
block

Output blocks y,,(n)
must be fitted together
appropriately to gener-
ate:

y(n) = x(n) * h(n)
The support overlap
amongst the y,(n)

blocks must be ac-
counted for.
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Over-lap Add

From the Addititvity property, since:

X(n) = xa(n) +x(n) +x(n) 4o = 3 xn(n)

m=1

x(n)* h(n) = (xa(n) +xa(n) + x3(n) +---) * h(n)

= xy(n) * h(n) + xa(n) * h(n) + x3(n) = h(n) 4+ - - -

)

= N () # h(n) = S ym(n)

m=1
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Over-lap Add

Input signal:
L > L « L —
z1(n) N M -1
\zeros
z2(n) NI M -1
N Zeros
r3(n |
Output signal: () \\gérrggl
y1(n)
Add 7]
M1 y2(n) |,
points Add 7]
Mo 1 yz(n)
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= W =

Over-lap Add

Break the input signal x(n) into non-overlapping blocks x,,(n) of length L.
Zero pad h(n) to be of length N =L+ M —1.
Take N-DFT of h(n) to give H(k), k=0,1,...,N — 1.

For each block m:
4.1 Zero pad x,(n) to be of length N=L+ M —1.
4.2 Take N-DFT of x,,(n) to give Xn(k), k=0,1,... . N — 1.
4.3 Multiply: Ym(k) = Xm(k)- H(k), k=0,1,...,N — 1.
4.4 Take N-IDFT of Yn,(k) to give ym(n), n=10,1,... . N—1.

Form y(n) by overlapping the last M — 1 samples of y,,(n) with the first
M — 1 samples of y,41(n) and adding the result.
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Over-lap save

Deals with the following signal processing principles:

» The N = (L -+ M — 1)-circular convolution of a discrete-time

signal of length V and a discrete-time signal of length M using
an N-DFT and N-IDFT.

» Time-Domain Aliasing:

o

Z (n=IN) ., n=0,1.....N—1

I\-u_-..{¢_|n“I
support=M + N — 1

:—DE
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Over-lap save

S v (ntN)
v,(n) linear v, (n+2N) ~ v F
convolution
2 result N N T'I .
—t1
e R T
w .
Add and keep points only
atn=0.1. ... N-1
overlap since
N < L+M-1 ve(n) |
{ corruption from
circular "i"'i/ previous repetitions
convolution
result
' I |

:.1;[(“'} at n=M-1, M, ..., N-1
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Over-lap save

» Convolution of x,(n) with support n=0.1,..., N — 1 and h(n)

with support n=0.1,..., M — 1 via the N-DFT will produce a
result yc m(n) such that:

(n) — aliasing corruption n=0,1,... , M -2
}"C._m T }"'Lm(”) ”:M_]-!M ..... N—1

where y; m(n) = xm(n) * h(n) is the desired output.

» The first M — 1 points of a the current filtered output block
Ym(n) must be discarded.

» The previous filtered block y,, 1(n) must compensate by
providing these output samples.
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Over-lap save Input segment stage

1. All input blocks x,,(n) are of length N = (L + M — 1) and
contain sequential samples from x(n).

2. Input block x,,(n) for m > 1 overlaps containing the first M — 1

points of the previous block x,,_1(n) to deal with aliasing
corruption.

3. For m =1, there is no previous block, so the first M — 1 points
are zeros.
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Over-lap save Input segment stage

Input signal blocks:

S ) ) M
M —1
ZEeros
1 (n)
V- 1] L —2
i:u:}int L2 (ﬂ‘)
overlap N
i){}illt L3 (ﬂ’)
overlap
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Over-lap save Input segment stage

x(n) = {0 O.V,,. 0, x(0),x(1),.... x(L—1)}
M — 1 zeros

x(n) = {x(L-M+1),...x(L—=1).x(L),.... x(2L —1)}

last M — 1 points from x1(n)

x3(n) = {x(2L—M+1)....x(2L —1),x(2L),..., x(3L—1)}

last M — 1 points from x3(n)

The last M — 1 points from the previous input block must be saved
for use in the current input block.
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Over-lap save filtering stage

» makes use of the N-DFT and N-IDFT where: N =L +-M —1

» Only a one-time zero-padding of h(n) of length M < L < N is
required to give it support n =0,1,..., N—1.

» The input blocks x,,(n) are of length N to start, so no
zero-padding is necessary.

» The actual implementation of the DFT /IDFT will use the fast
Fourier Transform (FFT) for computational simplicity.
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Over-lap save output blocks

(n) = aliasing n=0.1..... M —2
ye,m(n) = Vim(n) n=M—1.M.....N—1

where y; m(n) = xm(n) = h(n) is the desired output.
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Over-lap save output blocks

yvi(n) = {y(0), (), ... nM-=2), y(0),...,y(L-1)}
M — 1 points corrupted from aliasing

ya(n) = {y2(0), ya(1), ... y2(M—2),y(L),....y(2L—1)}
M — 1 points corrupted from aliasing

va(n) = {%;’3(0) y3(1), ... KE(M—Q)J,JV(QL),..,J(BL—1)}

al

M — 1 points corrupted from aliasing

where y(n) = x(n) = h(n) is the desired output.

The first M — 1 points of each output block are discarded.

The remaining L points of each output block are appended to form
y(n).
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Over-lap save output blocks

Output signal blocks:

P y1(n)
Discard
M -1 P y2(n)
points Discard
M -1 ¥ y3(n)
points Discard
M —1
points
y1(n) ya(n) y3(n)

y(n),n=20,1,2,...
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Over-lap save

. Insert M — 1 zeros at the beginning of the input sequence x(n).

. Break the padded input signal into overlapping blocks x,,(n) of length
N =1L+ M — 1 where the overlap length is M — 1.

. Zero pad h(n) to be of length N=L+ M — 1.
. Take N-DFT of h(n) to give H(k), k=0,1,....N — 1.

. For each block m:

5.1 Take N-DFT of x,,(n) to give Xn(k), k=0,1,...,N —1.

5.2 Multiply: Yn(k) = Xn(k) - H(k), k=0,1,....N —1.

5.3 Take N-IDFT of Y,,(k) to give ym(n), n=10,1,...,N — 1.

5.4 Discard the first M — 1 points of each output block y,,(n).

. Form y(n) by appending the remaining (i.e., last) L samples of each block
Ym(n).
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Over-lap save

Input signal blocks:

L L L —
M-1
Zeros
z1(n)
M — 1 — L
point zo(n)
overlap v
.'Illl--":lr I i ;
Output signal blocks: overlap
P y1(n)
Discard .
M 1 P y2(n)
points Discard P ¢
M — 1 P ys(n)
points Discard
M—1

points
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Relationships between CTFT,
DTFT, & DFT

The N-point DFT provides a unique representation of the
N-samples of a finite duration sequence.

The DF'T provides samples of the DTFT of the sequence at a set
of equally spaced frequencies.

Suppose that we are given a continuous-time signal x.(¢) with
Fourier transform X.(j0).

[ts relate discrete signal z[n| = z.(nT') has the DTFT given by

()

Tre

Since w = QT', the N-point DFT X k] is obtained by sampling
X (e?) at wy, = ETTL (or, alternatively, by sampling X (e7*) at

Q. = #%-k). Formally,

1 2 ]
X[H—?;XEC?(NT 77 )) E=0,1.....N —1 224




Relationships between CTFT,
DTFT, & DFT

o Sampling the DTFT of z[n| is equivalent to the periodic repeti-
tion of xz[n] with period N or equivalently of z.(nT') with period
NT'. The result is

#[n] =) a.(nT — NTk)
k
@ Therefore, we have the following N-point DFT pair

! T 1 2T _ 27
;EC{HT — NTk) = T ; X (_j‘ (NTIL - ?m))

where 0 <n< N—-land0< k<N —1.

@ The above relation reveals a frequency-domain aliasing caused by
time-domain sampling and a time-domain aliasing caused by fre-
quency-domain sampling (which, in turn, explains the inherent

. 225
periodicity of the DFT).




Relationships between CTFT, DTFT,
& DFT

1. (1) Xe(18)

/ CTFT /“\
\\
0 D Q2
Sampling Periodization
Y Y
, : e T TN NN
x[n] = xg(nT) ) = = Zj ( 2 — ””-T-)
1 DTFT
iR / MV
all 11
0 nl D 2
Periodization Sampling
\ '
) > DFT 1 — ., (.2rk . 2x
x[n] E (nl"—ENT) --T-r Xk = = Z: Xe (I__l T)

11111

::l—'l

‘ [[hl
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Fast Fourier Transform
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Discrete Fourier Transform

The DFT J'Jair was given as
X[k] _ Z x[n]e j(2m /N )kn

x[n] =

Baseline for computational complexity:

— Each DFT coefficient requires
» N complex multiplications
« N-1 complex additions

— All N DFT coefficients require

« N2 complex multiplications
* N(N-1) complex additions

Complexity in terms of real operations

« 4N?real multiplications
« 2N(N-1) real additions

—Z X[k e’

21'c/N

Most fast methods are based on symmetry properties

— Conjugate symmetry g J2=/Nk®N

— Periodicityinnand k e =/Nkn

“n)

e—j(Zn/N)kN

~j(2r /N)k(n+N)

e

e—j(Zn/N)k(—n) _

j(27x /N)(k +N)n

ej(Zn/N)kn
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Direct computation of DFT

The DFT of a finite-length sequence of length N
anwf, k=01...N-1 x[n]ox o X[k]
n=0 g——

Direct computation: N2 complex multiplications and

N(N-1) complex additions

= Compute and store (only over one period)
Wy =e /et
=cos(2ak / N)+ jsm(2ak/N), k=0]1,....N-1
o Compute the DFT using stored W::; and input x|7]
N-1
X[k)=> x{n¥y, k=0L..N-I
=0
Wy and x{n] may be complex
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Direct computation of DFT

For each k
N-1
X[k]="Y [Re{x[n]} Re{Vy"} —Am{x[n]} Im 7" })
h=0

+ jRe X[ n M Im Py} + Im{x[n]}Re Wy}, k=01,...N -1

Therefore, for each value of k, the direct computation
of X[k] requires 4N real multiplications and (4N-2)
real additions.

The direct computation of the DFT requires 4N*
real multiplications and N(4N —-2) real additions.

The efficiency can be improved by exploiting the
symmetry and periodicity properties of W,
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Complex conjugate symmetry
Wy =T =) =Re () - jImi{ry
Periodicity in n and k

kn k(n+N) __ (k+N)n
FVN’ o V:u" _T/VN

For example
Re {x{n]} Re (W)} +Re {x[N —n]} Re (")

= (Re{x[n]} +Re{x[N —n]}) Re (7"}

o The number of multiplications is reduced by a factor of
2.
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FFT

Cooley and Tukey (1965) published an algorithm for
the computation of the DFT that is applicable when
N Is a composite number, i.e., the product of two or
more integers. Later, it resulted in a number of
highly efficient computational algorithms.

The entire set of such algorithms are called the fast
Fourier transform, FFT.

FFT decomposes the computation of the DFT of a
sequence of length N into successively smaller
DFTs.

232



Decimation-In-Time FFT Algorithms

Makes use of both symmetry and periodicity
Consider special case of N an integer power of 2

Separate x[n] into two sequence of length N/2
— Even indexed samples in the first sequence
— Odd indexed samples in the other sequence

N-1 N-1 N-1

X[k]=S x[n]e @ /K x[nle TN LS x[nje T/ NK
2 = 2 2

n=0 n even n odd

Substitute variables n=2r for n even and n=2r+1 for odd

N/2-1 N/2-1
X[k]= S x[2riw ™ + ¥ x[2r + 1w 2y
r=0 r=0
N/2-1 N2
rk
= Z X[2r]W ', + W Z X[2r + 1]WN/2
r=0 r=0

- Glk]+ W H[k]
G[k] and H[K] are the N/2-point DFT’s of each subsequence

233



Decimation In Time

8-point DFT example using
decimation-in-time
Two N/2-point DFTs
— 2(N/2)? complex multiplications
— 2(N/2)? complex additions
Combining the DFT outputs
— N complex multiplications
— N complex additions
Total complexity
— N?/2+N complex multiplications
— N?/2+N complex additions
— More efficient than direct DFT
Repeat same process
— Divide N/2-point DFTs into
— Two N/4-point DFTs
— Combine outputs

x[0] o——

x[2] o——

x[4] o—>—

x[6] o—>—

x[1] o—>—

x[3] o—>—

x[5] o—>—

x|7] o——

N
5 point

DFT

2

oz

— — point

DFT

x[0] o—>—

x[4] o—>—

|
A

-

— point
DFT

x[2] o——

x[6] o——

LY
4

— point
DFT




Decimation In Time Cont’d
« After two steps of decimation in time

HuE I
Further break down 4o
(N/4)-1 x[4] o—>—
k
i TS LA LA o
DFT

(N/4)-] (N4
e IV
— — point
Zg VN4+ V N/2 Z [2 Nope- 4DFT
=0 “
(N4 N/4)-1 x[3]e> o
k e 01n
Hik)= Y HOTy , +17y, Z [21+1]7y, 1o _DFT

=0 =0

* Repeat until we’re left with two-point DFT’s

x[0] ¢

x[4] 0

W= W™= -1
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Decimation-In-Time FFT Algorithm

Final flow graph for 8-point decimation in time

ol . . X[0]
) . ; X[1]
v " M\/ /ﬁ, :

1[2] > .:-.-_- > )L'[Q]

Complexity:
— Nlog,N complex multiplications and additions
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Butterfly Computation

» Flow graph constitutes of butterflies

Wy
mth

stage

(m —1)st

stage

(.

(r+ Ni2)

Ir'V.,\:

« We can implement each butterfly with one multiplication

mth
stage

(m—1)st
stage

-1
« Final complexity for decimation-in-time FFT

— (N/2)log,N complex multiplications and additions
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In-Place Computation

» Decimation-in-time flow graphs require two sets of registers
— Input and output for each stage

* Note the arrangement of the input indices
— Bitreversed indexing

X,[0]=x[0] & X,[000 ] = x[000 ]
X,[1]= x[4] & X,[001 | = x[100 ]
X,[2]= x[2] & X, [010 | = x[010 ]
X,[3]=x[6] e X,[011]= x[110 ]
X, [4]=x[1] & X, [100 | = x[001 ]
X,[5]=x[5] & X,[101 ]= x[101 ]
X,[6]=x[3] < X,[110 ] = x[011 ]
X, [7]=x[7] & X, [111 ] = x[111 ]
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Decimation-In-Frequency FFT Algorithm
 The DFT equation

X[k]=3 x[nlw "

n=0

« Split the DFT equation into even and odd frequency indexes

N-1 N/2-1 N-1
X[2r] = 3 x[nIW* = 3 x[nIW T+ Y x[nlw
n=0 n=0 n=N/2

 Substitute variables to get

N/2-1 N/2-1 N/2-1
X[2r]= 3 x[nIW + S x[n o+ N /21w 2P = S (x[n] + x[no+ N/ 21)W

n=0 n=0 n=0

 Similarly for odd-numbered frequencies

N/2-1
X[2r+1]= 3 (x[n]- x[n+ N /2])WN"(/22”1)
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Decimation-In-Frequency FFT Algorithm
 Final flow graph for 8-point decimation in frequency

X[0] _ - 5 X1[0]
TN TS
x[1] o X[4]
\V/4520€
x[2] m o X|2]
» A X[6]

<3 >
¥[4] ¢ Iv"v s -1 o X|1]

-

v’v L
”"?a,_
x|[5] > ° X[5]
W
AR Ve Vo
W
‘(’[—J - . . _A. N Yl—]

] 1 e
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UNIT-3
IR filters



Filter Design Techniques

 Any discrete-time system that modifies certain frequencies
* Frequency-selective filters pass only certain frequencies

* Filter Design Steps
— Specification
* Problem or application specific
— Approximation of specification with a discrete-time system
* OQOur focus is to go from spec to discrete-time system

— Implementation
* Realization of discrete-time systems depends on target technology

 We already studied the use of discrete-time systems to implement a
continuous-time system

— If our specifications are given in continuous time we can use




Digital Filter Specifications

* Only the magnitude approximation problem

* Four basic types of ideal filters with magnitude responses
as shown below (Piecewise flat)

Hyp(e’®) Hp (™)
1 — 1 —
} T w } t w
-7 —oc 0 e T -7 —mc 0 mc n
jo
- C
@ T (¢")

o

“T —me2 —Mel ocl @cz T — T ~wc2 ~ocl 0cl We2 n
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Digital Filter Specifications

* These filters are unealisable because (one of the
following is sufficient)

— their impulse responses infinitely long non-
causal

— Their amplitude responses cannot be equal to a
constant over a band of frequencies

Another perspective that provides some
understanding can be obtained by looking at the
Ideal amplitude squared.
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Digital Filter Specifications

* The realisable squared amplitude response transfer
function (and its differential) Is continuous In

e Such functions ¢

— If IR can be infinite at point but around that
point cannot be zero.

— If FIR cannot be infinite anywhere.

* Hence previous differential of ideal response is
unrealisable
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Digital Filter Specifications

* For example the magnitude response of a digital
lowpass filter may be given as indicated below

|G'[£.lim‘,||

1+5F|

1-5p

AN

- Passband—} I Stopband
8s
U L] L] ¥ m
0 ®p ®, T
-—h-I I.._
Transition

band o



Digital Filter Specifications

* Inthe passband o<wo <, we require
that \G (e >\ =1 with a deviation: s,

o
1—§p£‘G(e )‘£1+5p, ‘a)‘ﬁa)p

e |In the stopband o, <w <z we réguire
that \G e'”) =0 With a deviation

‘G (')

247



Digital Filter Specifications

Filter specification parameters
» - Passband edge frequency
o. - Stopband edge frequency
o, - peak ripple value in the passband
s, - peak ripple value in the stopband
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Digital Filter Specifications

Practical specifications are often given in
terms of loss function (in dB)

G(w)=-201log ,,G(e')

Peak passband ripple
a,=-201log ,(1-5 ) dB

Minimum stopband attenuation
a,=-201log ,(5.) dB
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Digital Filter Specifications

* |n practice, passband edge frequency F and
stopband edge frequency  are specified In
Hz

 For digital filter design, normalized bandedge
frequencies need to be computed from

specifications in Hzusing ,
P P
0, . = — = = 27Z'FpT
F. F.
@) 27 F
. = > = > = 2w F T
F F 250



Digital Filter Specifications

° Example - Let Fo=7 kHZ, F. =3

kKHz, and ¢ = 2 kHZz
* Then
o - 27[(7><1O3 ): 0 56 »
25 x 10
ws:Zﬂ(BxlO )20.247[

25 ><1O3



IR Digital Filter Design

Standard approach

(1) Convert the digital filter specifications into
an analogue prototype lowpass filter
specifications

(2) Determine the analogue lowpass filter
transfer function H _(s)

(3) Transform H _(s) by replacing the complex
variable to the digital transfer function

G(z2)
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IR Digital Filter Design

* This approach has been widely used for the
following reasons:

(1) Analogue approximation techniques are
highly advanced

(2) They usually yield closed-form
solutions

(3) Extensive tables are available for
analogue filter design

(4) Very often applications require digital
simulation of analogue systems

253



IR Digital Filter Design

 Let an analogue transfer function be

P, (s)
D, (s)

H (s)

where the subscript “a” indicates the
analogue domain

« Adigital transfer function derived from this
IS denoted as

G(z) =

D(z)
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IR Digital Filter Design

» Basic idea behind the conversion of H _(s) INtoG (z)
IS to apply a mapping from the s-domain to the z-
domain so that essential properties of the analogue
frequency response are preserved

* Thus mapping function should be such that

— Imaginary (jQ ) axis in the s-plane be
mapped onto the unit circle of the z-plane

— A stable analogue transfer function be mapped
Into a stable digital transfer function
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Specification for effective frequency response of a continuous-time lowpass
filter and its corresponding specifications for discrete-time system.

LH (O

d, or d; passhand ripple

d, or d, stopband ripple

W, w, passband edge frequency
W,, w, stopband edge frequency

e? passband ripple parameter

Passband | Transition Stopband

1-d,=1N1+¢e?

*
-
-
e~

()] BW bandwidth = w, —w,
Lo — w, 3-dB cutoff frequency
- N w,, W, upper and lower 3-dB cutoff
| frequensies
i Dw transition band = [w,, — w
| Stopband A, passband ripple in dB
| =+ 20log10(1 +d))
N A, stopband attenuation in dB
IS S il = -20log10(d,)

Passband
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Design of Discrete-Time IIR Filters

* From Analog (Continuous-Time) Filters
—  Approximation of Derivatives
— Impulse Invariance
— the Bilinear Transformation



Reasons of Design of Discrete-Time IIR Filters from
Continuous-Time Filters

The art of continuous-time IIR filter design is highly advanced and,
since useful results can be achieved, it Is advantageous to use the
design procedures already developed for continuous-time filters.

Many useful continuous-time IR design methods have relatively
simple closed-form design formulas. Therefore, discrete-time IIR
filter design methods based on such standard continuous-time design
formulas are rather simple to carry out.

The standard approximation methods that work well for continuous-
time IR filters do not lead to simple closed-form design formulas
when these methods are applied directly to the discrete-time IIR case.



Characteristics of Commonly Used Analog Filters

»  Butterworth Filter
*  Chebyshev Filter
—  Chebyshev Type |
—  Chebyshev Type Il of Inverse Chebyshev Filter



Butterworth Filter

Lowpass Butterworth filters are all-pole filters characterized by the magnitude-squared
frequency response

HOW)[2 = L/[1 + (W/W)2N] = 1/[1 + e2(W/IW,)2N]

where N is the order of the filter, W, is its — 3-dB frequency (cutoff frequency), W, is
the bandpass edge frequency, and  1/(1 + €?) is the band-edge value of |[H(W)[2.

At W = W, (where W, is the stopband edge frequency) we have

L1+ e2(WJW)?N] = d,?
and

N = (1/2)log,,[(1/d,?) — 1]/10g;o(WJ/ W) = log,o(d/e)/10g,o(W/ W)
where d,= 141 + d,2.

Thus the Butterworth filter is completely characterized by the parameters N, d,, e, and
the ratio W/W,,.



Butterworth Lowpass Filters

 Passband is designed to be maximally flat
« The magnitude-squared function is of the form

2 1 2 1
H (i _ _
‘ C(JQ)‘ 1+ (jo/jo. )" ‘HC(S)‘ 1+ (s/jo. )"

| H.(jQ)]

Q

s, = (-1)"""(jo, )= e/ N for k2 0,1,...,2N -1



IH()R

0.7

0.6

0.5

0.4

0.3

02

0 1

Frequency response of lowpass Butterworth filters

-
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Chebyshev Filters

The magnitude squared response of the analog lowpass Type | Chebyshev
filter of Nth order is given by:

IHW)? = L/[1 + e?T@#(WIW,)].
where T (W) is the Chebyshev polynomial of order N:
T(W) = cos(NcostW), |W|<1,
= cosh(Ncosht W), W| > 1.

The polynomial can be derived via a recurrence relation given by
Tr(W) = 2\NTr-l(VV) o Tr-Z(W)a r= 21
with To(W) =1 and T,(W) = W.

The magnitude squared response of the analog lowpass Type Il or inverse
Chebyshev filter of Nth order is given by:

IHW)]? = L/[1 + e{ T (WJW,)/ Ty(WJ/W)}].



Chebyshev Filters

« Equiripple in the passband and monotonic in the stopband

* Or equiripple in the stopband and monotonic in the passband

‘HC(jQ)‘2 = . V,(x) = cos (N cos " x)

1+e’Vi(Q/a),)

O




IH(Q)1? H(82)?
| 1k

3 1_17/\/\/1 Frequency response of
lowpass Type | Chebyshev filter
IHW)P? = 1/[1 + eZTNZ(W/Wp)]

A o aL 8
’ N odd N even
|H()2 |H()?

IR

Frequency response of
lowpass Type Il Chebyshev filter

R

HW)P = 1/[1 + eX{T\2(WyW) T?(W/W)}
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N = logo[(V 1 - dy? + N 1 —d,2(1 + e?))led,]/10gy, [(W/W,) + V (WJW,)2 — 1]
= [cosh-(d/e)]/[cosh™ (W J/W,)]

for both Type I and 1l Chebyshev filters, and where
d,=1/V1+d2

The poles of a Type | Chebyshev filter lie on an ellipse in the s-plane with major
axis r; = W,{(b* + 1)/2b] and minor axis r; = W {(b* - 1)/2b] where b is related to
e according to

b={[V1+e2+1]/e}N
«  The zeros of a Type Il Chebyshev filter are located on the imaginary axis.



Type I. pole positions are
X, = r,cosf,
Y, = r;sinf,
f. = [p/2] + [(2k + 1)p/2N]
rp=W,[b, +1]/2b
r, = W,[b? - 1]/2b

b ={[V1+e?+1]/e}N

Type Il zero positions are
S, = JWJ/sinf,
and pole positions are

Vi = Wex,/ v X2 + Y2

Wy = Wy, / v X2 + Y2

b ={[1+1-d,2]/d}N

Determination of the pole locations k=0,1,...,N-1.

for a Chebyshev filter. ) 267



Approximation of Derivative Method

«  Approximation of derivative method is the simplest one for converting an
analog filter into a digital filter by approximating the differential equation by
an equivalent difference equation.

—  For the derivative dy(t)/dt at time t = nT, we substitute the backward difference
[y(nT) —y(nT —T))/T. Thus

dy (t)
dt

y(nT)-y(T -T) yInl-y[n-1]
T B T

t=nT

where T represents the sampling period. Then, s = (1 - z%)/T
—  The second derivative d2y(t)/dt? is derived into second difference as follow:

dy (t) _ yInT-2y[n-1]+ y[n - 2]
dt t=nT T
which s? = [(1 - z1)/T]2. So, for the kth derivative of y(t), sk = [(1 - z})/T]X




Approximation of Derivative Method

Hence, the system function for the digital IIR filter obtained as a result of the
approximation of the derivatives by finite difference is

H(Z) = Ha(s)ls:(z-l)/Tz

It is clear that points in the LHP of the s-plane are mapped into the
corresponding points inside the unit circle in the z-plane and points in the
RHP of the s-plane are mapped into points outside this circle.

—  Consequently, a stable analog filter is transformed into a stable digital filter due
to this mapping property.

Unit circle

N\

s-plane

z-plane
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Example: Approximation of derivative method

Convert the analog bandpass filter with system function
H,(s) = 1/[(s + 0.1)? + 9]
Into a digital IR filter by use of the backward difference for the derivative.

Substitute for s = (1 — z1)/T into H_(s) yields

Hz) = 1[((1—z2)/T) +0.1)2 + 9]
TZ
1+0.2T +9.01T7°
H (Z) - 2(1+0.17) -1 1 -2
14027 +9.01T 2 z 140.2T +9.01T°

T can be selected to satisfied specification of designed filter. For example, if T = 0.1,
the poles are located at

P12 =0.91 +£j0.27 = 0.949exp[+ j16.5°



Filter Design by Impulse Invariance

Remember impulse invariance
— Mapping a continuous-time impulse response to discrete-time
— Mapping a continuous-time frequency response to discrete-time
hin] = T,h_(nT ,)

H(e’) = i Hc[ji+ jz—nk]
=l T

d d
If the continuous-time filter is bandlimited to

H_(jo)=0 Q|2 /T
H(e™) = Hc[jiJ o <

If we start from discrete-time specifications T, cancels out
— Start with discrete-time spec in terms of ®
— Go to continuous-time Q= /T and design continuous-time filter
— Use impulse invariance to map it back to discrete-time w= QT

Works best for bandlimited filters due to possible aliasing



Impulse Invariance of System Functions

Develop impulse invariance relation between system functions

Partial fraction expansion of transfer function
N

A

Ho(s) =Y

k:ls_sk

k

Corresponding impulse response

N
A e t>0
. (t) szl ‘

0 t<O0
Impulse response of discrete-time filter
N N
h[n] = Tdhc(an) - Z TdAkeSkanu[n] :Z -I-al'A‘|<(e5kTd )”u[n]
System function N N
" TdAk

H(z) = D

kel — €

SdeZ—l

de

Pole s=s, in s-domain transform into poleat e



Impulse Invariant Algorithm

Step 1. define specifications of filter
—  Ripple in frequency bands
—  Critical frequencies: passband edge, stopband edge, and/or cutoff frequencies.
—  Filter band type: lowpass, highpass, bandpass, bandstop.

Step 2: linear transform critical frequencies as follow
W =w/T,
Step 3: select filter structure type and its order: Bessel, Butterworth, Chebyshev
type I, Chebyshev type Il or inverse Chebyshev, elliptic.
Step 4: convert H,(s) to H(z) using linear transform in step 2.
Step 5: verify the result. If it does not meet requirement, return to step 3.



Example: Impulse invariant method

Convert the analog filter with system function
H,(s) = [s + 0.1])/[(s + 0.1)? + 9]
into a digital 1IR filter by means of the impulse invariance method.

The analog filter has a zero at s = - 0.1 and a pair of complex conjugate poles at p, =- 0.1 £ j3.
Thus, 1 1
H (s)= 2 + 2
s+0.1-jJ3 s+0.1+ j3

1 1
Then 5 5

~0.1T _ j3T _ -1 ~0.1T _—j3T _ -1
e Z e e Z




Magnitude (dB)

Magnitude (dB)

I
& 8 B 8 o

L

S

i
L=

0.2 0.3
Normalized frequency

0.4

0.5

Frequency

Frequency response
of digital filter.

Frequency response
of analog filter.
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I Hegs ()|

o

Passband | Transition

|
I
I
|
|
|
|
|
|

Stopband

\H (e/)|

|
|
|
|
|

Stopband

~ |3 =

Wp

Disadvantage of previous
techniques: frequency
warping -> aliasing effect

and error in specifications

of designed filter (frequencies)
So, prewarping of frequency
IS considered.
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Example

Impulse invariance applied to Butterworth
0.89125 < |H(e™) <1 0 < |o| < 0.2x

‘H(e”’) < 0.17783 0.37 < |o| < =

Since sampling rate T4 cancels out we can assume T,=1
Map spec to continuous time

0.89125 < |H(j) =<1 0 <l|a|<0.2x
H(i) < 0.17783 0.3z < |o| <«
Butterworth filter is monotonic so spec will be satisfied if

H.(j0.27) > 0.89125 and |H_(j0.3x) < 0.17783
] 1

H. (i) —
1+ (o/ia,)

Determine N and €, to satisfy these conditions



Example Cont’d

Satisfy both constrains

1+(o.2n]w:( 1 T s 1+(o.3nJ2N (1 f

O L 0.89125 Q 10.17783

C C

Solve these equations to get

N=5.888 =6 and Q_=0.70474
N must be an integer so we round it up to meet the spec
Poles of transfer function
s, = (-1)'"(jo.)=a e/ for Kk =0,1,..,11
The transfer function
0.12093

(s> +0.364 s + 0.4945 )(s> + 0.9945 s + 0.4945 )s* +1.3585 s + 0.4945 )
Mapping to z-domain

H(z) 0.2871 - 0.4466 z ° ~2.1428 +1.1455 z'
z)= +
1-1.2971 z' +0.6949 z° 1-1.0691 z ' +0.3699 z°°
1.8557 - 0.6303 z '

1-0.9972 z ' +0.257 z2°°

+




Amplitude
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G

0

027 04w 0.6 0.87
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I
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Filter Design by Bilinear Transformation

Get around the aliasing problem of impulse invariance

Map the entire s-plane onto the unit-circle in the z-plane
— Nonlinear transformation
— Frequency response subject to warping

Bilinear transformation .
2 (1 -2z
S = 1

Td 1+ 2z

Transformed system function
[ 2 (1-2"
H(z) = H.| =
LTd 1+ 2z

Again T, cancels out so we can ignore it
We can solve the transformation for z as

N — |

Z_1+(Td/2)s_1+ch/2+JQTd/2 s - o+ 0

1-(T,/2)s 1-6T,/2-jQT,/2

Maps the left-half s-plane into the inside of the unit-circle in z
— Stable in one domain would stay in the other



Bilinear Transformation

On the unit circle the transform becomes

1+ jQT,/2
Z = = e
1 -jQT,/2

jo

 To derive the relation between @ and Q

_ -jo |’ -jo /2 . _. ‘| .
s:2 1 e :G+jQ:2|2e./zjsm(co/2)|:ﬂtan(gw
T,(1+e™ T,[2e " “cos(0/2)] T, L2 )
« Which yields
-
Q = tan (Ew or o = 2 arctan (Q dw
y

2
T, (2 L 2



Bilinear Transformation
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Example

Bilinear transform applied to Butterworth
0.89125 S‘H(ej“)sl 0 < |o|<0.2n

H(e’) < 0.17783 0.37 < |o| < =
Apply bilinear transformation to specifications

0.89125 < H(jo) =<1 o<\g\<itan(o'2n}

2 (0.371)
< 0.17783 — tan <
T, L\ 2 )

We can assume T,=1 and apply the specifications to

H(jQ ‘Q‘<oo

N—

H.(jQ)

2 1
To get ‘ 1+(@/a)"

2N 2 2N

1

2tan 0.1x ( 1 ) 2tan 0.15 =«
1 + = and 1 +
| 0.89125 ) Q

C C

10.17783



Example Cont’d
* Solve N and ().

[ 2 2 1
Iog”o 1;;83 ) 1)//((0 8;225 ) __1)|
N = Ltk ' : J L\ ' j JJ - 5.305 =6 Q. =0.766
2 log [tan (0.15 =)/tan (0.17)]

* The resulting transfer function has the following poles
m/12)@k) g K 2 0,1,...,11

s, = (1) (jo,) = o

* Resultingin

H -
() (s> + 0.3996 s + 0.5871 |(s”

0.20238
+1.0836 s+ 0.5871 )s® +1.4802 s + 0.5871 )

* Applying the bilinear transform yields

0.0007378 (1 +z ')
+0.7051 z °)1 - 1.0106 z~

H(z) =

1 1

(1-1.2686 z° +0.3583 z °)
1

(1-0.9044 z " +0.2155 z ?)

X
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IR Digital Filter: The bilinear
transformation

* To obtain G(z) replace s by f(z) in H(s)
o Start with requirements on G(z)

A2 Available H(s)

Stable Stable

Real and Rational in z | Real and Rational
ins

Order n Order n

L.P. (lowpass) cutoff C L.P. cutoff o T




Bilinear Transformation

* Mapping of s-plane into the z-plane
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Bilinear Transformation
« For z = e’ with unity scalar we have

or Q =tan( w /2)
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Bilinear Transformation

* Mapping is highly nonlinear

« Complete negative imaginary axis in the s-
plane from Q@ = - to o = 0 Is mapped Iinto
the lower half of the unit circle in the z-plane
fromz=-1 toz =1

« Complete positive imaginary axis in the s-
plane from a = 0 t0Q = » 1S Mmapped Into the
upper half of the unit circle in the z-plane
from z =1 toz = -1
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Bilinear Transformation

* Nonlinear mapping introduces a distortion
In the frequency axis called frequency
warping

 Effect of warping shown below

0 0= niow2)

/ .
0, #
£y e

b

R
Fa
ra
s

\ Q-
£

? L
|Hatj|
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Spectral Transformations

» To transform G_(z) a given lowpass transfer
function to another transfer function G (2)
that may be a lowpass, highpass, bandpass or
bandstop filter (solutions given by
Constantinides)

* ;7! has been used to denote the unit delay in
the prototype lowpass filter G, (z)and 2
to denote the unit delay In the transformed
filter G, (2) to avoid confusion
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Spectral Transformations

* Unitcircles in z- and z -planes defined by
7=el”  2-¢1°
* Transformation from z-domain to
z -domain given by

 Then
z=F(2)

Gp(2) =G {F(2)}
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Spectral Transformations

“hence

e From z = F (2) ,thU$Z‘= ‘F (2)

(>1, if |z]>1

F(2){=1, if z|=1

<1, if z/<1
 Thereforey; F (z) must be a stable allpass function

1 L(l1-a72
=+ J] , ‘ocg‘<1
F(2) r=1\ Z —0Q,

293



L_owpass-to-L.owpass

Spectral Transformation

* To transform a lowpass filterG | (z) with a cutoff
frequency o  to another lowpass filter G _ (z)
with a cutoff frequency  _, the transformation is

1 1 l1—o0o 2
V4 = =
F(z2) Z-«a
* On the unit circle we have
—jo e_Ja) —
e = -
l-ae’

which yields
tan( o /1 2) = (

1+ «

l-«o

)tan( @ | 2)
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L_owpass-to-Lowpass

Spectral Transformation
* Solvingwe get  sin (0, - @,)/2)

o =

sin ((w, +@,)/2)
« Example - Consider the lowpass digital filter

0.0662 (1+z 1)’

GL(Z):

(1-0.2593 z ")(1-0.6763 z '+ 0.3917 z °

which has a passband from dc to 0.25 = with
a 0.5 dB ripple

* Redesign the above filter to move the
passband edge to

)

0.35x 295



L_owpass-to-Lowpass
Spectral Transformation

* Here sin( 0.05 )
a = — = —-0.1934

sin( 0.37)
* Hence, the desired lowpass transfer function is

G,(2)=G (z)‘z_lz 27+ 0.1934

1+0.1934 727
0
10/}
%" GL(Z) G D(Z)
@
30t
-40 ‘ ‘ ‘ -~
0 0.2 04 0.6 0.8 1

Yas 296



L_owpass-to-L.owpass
Spectral Transformation

* The lowpass-to-lowpass transformation

_ 1 1—o 2
Zl— = &

CF(2) 2-a

can also be used as highpass-to-highpass,
bandpass-to-bandpass and bandstop-to-
bandstop transformations
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|_owpass-to-Highpass
Spectral Transformation

 Desired transformation
1 2_1 + O
Z = - »
1+ a ?

* The transformation parameter o IS given by
cos ((w, +a,.)/2)
cos ((w, —&,)/2)

where o |s the cutoff frequency of the lowpass
filter and IS the cutoff frequency of the desired

highpass fllter

o = —
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Lowpass-to-Highpass
Spectral Transformation

« Example - Transform the lowpass filter

0.0662 (1+z 1)’

GL(Z): 5

(1-0.2593 z “)(1-0.6763 z ' +0.3917 z °)

 With a passband edge at 0.25 = to a highpass
filter with a passband edge at 0.55

e Herea = —cos( 0.47)/cos( 0.157) = —0.3468
* The desired transformation 1s

4 77 -0.3468

© T 1-0.3468 27

1
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|_owpass-to-Highpass
Spectral Transformation

* The desired highpass filter is

G,(2)=6G (Z)‘Z_lz_ 27"~ 0.3468
1-0.3468 2

Gain, dB
I
(e} (e}

\\

0 02n  04=n 0.6n  0.8xw T
Normalized frequency
300



L_owpass-to-Highpass
Spectral Transformation

* The lowpass-to-highpass transformation can
also be used to transform a highpass filter with
a cutoffat »_ to a lowpass filter with a cutoff
at @

 and transform a bandpass filter with a center

frequency at »_ to a bandstop filter with a
center frequency at &,
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L_owpass-to-Bandpass
Spectral Transformation

* Desired transformation

_ 2 _ -1
Z2_ ,321+,3
1 g +1 g +1
7 = —
-1 _ 2o _
p-1 o 20f .

g +1 g +1
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Lowpass-to-Bandpass
Spectral Transformation

The parameters « and g are given by

cos ((d,, + @) /2)
-d)12)

o =

cos ((@.,

B =cot (b, -—d,)/2)tan( w_/2)
where o Isthe cutoff frequency of the lowpass

C

filter,and o, and @, are the desired upper and
lower cutoff frequencies of the bandpass filter
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Lowpass-to-Bandpass
Spectral Transformation

» Speclal Case - The transformation can be

simplified if 0, =0, - @,
 Then the transformation reduces to

P

where a = cos @, with @, denoting the
desired center frequency of the bandpass filter
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Lowpass-to-Bandstop
Spectral Transformation

* Desired transformation

_ 20 _ 1 -
22_ /o) Z1+ 154

1 1+ p 1+ p

1 - _ 20 _
B2 2af 1

1+ p 1+ p
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Lowpass-to-Bandstop
Spectral Transformatior

The parameters « and g are given by
cos ((d,, + @) /2)

o =
cos ((b., —@,)/2)
p=tan (&, -d.)/2)tan( o /2)
where @ Is the cutoff frequency of the
lowpass filter, and @, and @, are the desired

upper and lower cutoff frequencies of the
bandstop filter
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UNIT-4
FIR Filters



Selection of Filter Type

* The transfer function H(z) meeting the
specifications must be a causal transfer
function

* For lIR real digital filter the transfer
function is a real rational function of z

p, + P,z g pzz_2 + o+ Py, 2

d, + dlz_1 + dzz_2 + 4+ d 7

* H(z) must be stable and of lowest order N or
M for reduced computational complexity =

- M

H(z) =

N



Selection of Filter Type

* FIR real digital filter transfer function is a
polynomial in z~! (order N) with real
coefficients

HU)_ZhUﬂzn

 For reduced computatlonal complexity, degree N
of H(z) must be as small as possible

* [fa linear phase is desired then we must have:

h[n]=+h[N = n]
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Selection of Filter Type

» Advantages in using an FIR filter -
(1) Can be designed with exact linear phase

(2) Filter structure always stable with quantised
coefficients

 Disadvantages in using an FIR filter - Order of an
FIR filter is considerably higher than that of an
equivalent IR filter meeting the same
specifications; this leads to higher computational
complexity for FIR
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FIR Filter Design

Digital filters with finite-duration impulse response (all-zero, or FIR filters)
have both advantages and disadvantages compared to infinite-duration
impulse response (IIR) filters.

FIR filters have the following primary advantages:

*They can have exactly linear phase.

*They are always stable.

*The design methods are generally linear.

*They can be realized efficiently in hardware.
The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much
higher filter order than IIR filters to achieve a given level of performance.
Correspondingly, the delay of these filters is often much greater than for an
equal performance IIR filter.



FIR Design

FIR Digital Filter Design

Three commonly used approaches to FIR
filter design -

(1) Windowed Fourier series approach
(2) Frequency sampling approach
(3) Computer-based optimization methods
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Finite Impulse Response Filters

he transfer function is given by

N -1

H(z)= Y h(n).z "
n=0

The length of Impulse Response iIs N
All polesareat ;-0

Zeros can be placed anywhere on the z-
plane
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FIR: Linear phase

For phase linearity the FIR transfer
function must have zeros outside the
unit circle
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Linear Phase

What is linear phase?

Ans: The phase Is a straight line in the passband of
the system.

Example: linear phase (all pass system)

| Group delay Is given by the negative of the slope

Of the Ilne /',rjr[h_:}“: ITI{.'_,._J:I

::::\:.’h':::::::h—p_;

4T




Linear phase

* linear phase (low pass system)

* Linear characteristics only need to pertain to
the passband frequencies only.

LH(w) = P(w)
1

Passband
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FIR: Linear phase

* For Linear Phase t.f. (order N-1)

* h(n)=+h(N —1-n)
e 50 that for N even:
N/2—1 . N -1 h
H(z)= > h(n).z "+ 3 h(n).z
n=0 n:NZ
N/Z_l ) N/2_1 I
- > h(n)z "+ > h(N —-1-n).z ¢ ")
n=0

n=0
N/_l
2

S h(n)[z_niz_m] m=N-1-n
n=0



FIR: Linear phase

 for N odd:

N -1

-1

: - _(N—lj
H(z)= Y h(n).[znizm]+h[ ]z 7
n=0

* 1) Onc :z =1 we have for N even, and
+ve sign
joT _ij[Nz_lJ 2 ( ( : —1N
H (e ) =-¢ .Y 2h(n).cos | @®T| n - —
n=0 2
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FIR: Linear phase

* 1) While for —ve sign
| ot N T N/—l B
He'“ )=c¢ | [ 2 j ﬁ j2h(n).sin (a)T(n— N 1D

n=0 2

 [Note: antisymmetric case adds 7 /2 rads to
phase, with discontinuity ate = 0]

e |ll) For N odd with +ve sign
[N -1

H(e'”") = e_ijLZJ{h[N _1j
2
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FIR: Linear phase

* V) While with a —ve sign

[N -1 (N -3

L Jﬁ f 2 j.h(n).sin [a)T(n— N _1H

H(eja’T)ze
0 2

 [Notice that for the antisymmetric case to have
linear phase we require

(7]

The phase discontinuity is as for N even}]
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FIR: Linear phase

he cases most commonly used In filter
design are (1) and (l11), for which the
amplitude characteristic can be written as a
polynomial In

ol
COS ——
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Summary of Properties

H(w)=e""e " "F(0)Y a,cos (ko)

k=0

Type I 1 11 AV}
Order N even odd even odd
Symmetry symmetric symmetric anti-symmetric anti-symmetric
Period 2T 47 2T 47
@, 0 0 /2 /2
F(w) 1 cos(al2) sin(w) sin(wl2)
K N/2 (N-1)/2 (N-2)/2 (N-1)/2
H(0) arbitrary arbitrary 0 0
H(r) arbitrary 0 0 arbitrary




Design of FIR filters: windows

(1) Start with ideal infinite duration  {h(n)}

(i) Truncate to finite length. (This produces
unwanted ripples increasing in height near
discontinuity.)

(iii) Modify to  h (n) = h(n).w(n)

Weight w(n) Is the window
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Design of FIR filters: windows

Simplest way of designing FIR filters
Method is all discrete-time no continuous-time involved
Start with ideal frequency response

Hd(ejm): Zhd[n]e_jmn h

[n] = ZL H (e ) do
Choose ideal frequency response as desired respoﬁse
Most ideal impulse responses are of infinite length

The easiest way to obtain a causal FIR filter from ideal Is

d

More generally

hjn] = h [njw[n]  where wln] =1



Properties of Windows

Prefer windows that concentrate around DC in frequency
— Less smearing, closer approximation

Prefer window that has minimal span in time
— Less coefficient in designed filter, computationally efficient

So we want concentration in time and in frequency
— Contradictory requirements

Example: Rectangular window
W(ejw): ZM:e_jwn zl—e_Jw(M+1) IPRICYE sin [OJ(M +1)/2]
s 1-e " sin [o /2]

sin (e(M +1)/2)

(M=T)

sin (w/2)

Peak sidelobe

T 2 T 2 w
+

) (M+1)

—>{ Aw,, %l\"luinluhc
width



Windowing distortion

* Increasing window length generally reduces the
width of the main lobe

 peak of sidelobes is generally independent of M

W [,u) {in dB scale)
A

+ Main Lobe {causes smoothing)

™~ Magnitude of ripples
increases as the height

of the sidelobes increases
~

Sidelobes (causes ringing effect)
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Windows

Commonly used windows
Rectangular 1

2%‘ N —1
Bartlett 1-— =,
Hanning 1+ cos [Z:r‘j
] 2 TN
Hamming  0.54 + 0.46 Cos( i j
N

2 7N 4 N
Blackman 0.42 + 0.5cos ( j+ 0.08 cos ( j
N N

] i n N2 |
Kalser Jolﬁ\/l—[ & j I/Jo(ﬂ)
| N -1 ]
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Rectangular Window

 Narrowest main lob
— 41/(M+1)

— Sharpest transitions at
discontinuities in frequency

 Large side lobs
— -13dB

— Large oscillation around
discontinuities

« Simplest window possible

Rectangular

/

Hamming
———— Hanning

—-— Blackman
————— Bartlett

20 logy IW(e'®)l

0.4 0.6
Radian frequency ()




Bartlett (Triangular) Window

« Medium main lob
— 8n/M

e Side lobs
— -25dB

 Hamming window
performs better

« Simple equation

[ 2n /M 0O<n<M/2

w[n]:Iz—Zn/M M/2 <
I 0 else

<M

w[n] Rectangular
0 , ¢
Hamming
I ———— Hanning
0.8 I _ HII Lm 1M
|
I
0.6 I
|
I
0.4 I
. I
L) | . N
02 . | .
. |
e | N
L | \:"‘-:- n
0 M M
2
{0
_ 20
T
S 40
6 -
R
~100 | |
() 0.27 0.4 (.61 0.8 T

Radian frequency (w)



Hanning Window

wn|

*  Medium main lob
— 8n/M

e Side lobs
— -31dB

« Hamming window performs
better

« Same complexity as
Hamming

2 M

1] 27n )|
W[n]:J—Ll—cos{ M 0O <n<M
t 0 else

Rectangular

1.0

0.8

0.6

0.4

———— Hanning
—-—— Blackman
————— Bartlett

Hamming

20
=
:: -40
o —60
|

-850

—100
0

ATAY R

2

0.4 (.67

Radian frequency (w)

(.87



Hamming Window

« Medium main lob
— 8n/M

 Good side lobs
— -41dB

« Simpler than Blackman

21N

J0.54 - 0.46 cos(
M

{ 0

wn|=

else

20 |U}__',] 0 ”‘1((”“””

1.0

0.8

0.6

0.4

wn] Rectangular
i Hamming
| ———— Hanning
— I —-— Blackman
| N ———— Bartlett
|
|
I
|
|
|
P |
. | \
L | \
I .
= | RN
L " I \:"‘-:- n
M W
2
0
20—
_40
—60 —
80—
100 | ' | |
( 0.2 0.4 0.67 0.8

Radian frequency (o)



Blackman Window

« Large main lob
— 127n/M

« \ery good side lobs
— -57dB

Complex equation

T

(2
0.42 - 0.5 cos
\ M

w[n]J
|

n

0

wn] Rectangular
1.0 g
v Hamming
| ———— Hanning
0.8 — I —-— Blackman
| -—-— Bartlett
|
0.6 |
)6 I
|
|
0.4 I
P |
. | X\
02 . | .
. |
N | T "
’.a..:f—’/ ! B W
0 M M
2
4nn
+ 0.08 cos 0O<n<M
) \ M)
else
0
20+
&
e
=
5 —60 -
S R0+
0 027 0.4 0.6 0.8

Radian frequency (o)




Kaiser Window Filter Design Method

« Parameterized equation
forming a set of windows

— Parameter to change main-lob
width and side-lob area trade-off

0 else

— ly(.) represents zeroth-order
modified Bessel function of 1%t
Kind

Amplitude

dB

—
e [ =

—_— =

_IH_

e [ =

—_——p=h



Comparison of windows

COMPARISON OF COMMONLY USED WINDOWS

Pcak Transiton

Peak Approximation  Equivalent Width

Side-Lobe  Approximale Error, Kaiser of Equivalent

Type of Amplitude Width of 2010go 0 Window, Kaiser
Window (Relative) Main Lobe (dB) B Window
Rectangular -13 4w /(M + 1) —21 0 |.817x/M
Bartlett —25 8t/ M -25 1.33 237/ M
Hanning —-31 S/ M —44 3.86 5.01x/ M
Hamming —41 87/ M —33 4.86 6.27n/M
Blackman —357 12n/M ~-74 7.04 9197/ M
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Kaiser window

e Kaiser window

B Transition | Min. stop
width (Hz) |atth dB

2.12 1.5/N 30

4.54 2.9/N 50

6.76 4.3/N /70

8.96 5.7/N 90




Lowpass filter of length 51 and w.=7 /2

Lowpass Filter Designed Using Hann window

vv’

ﬂ iann
il

0.2

0.4

0.6

/1T
Lowpass Filter Designed Using Blackman window

0.8 1

Example

Lowpass Filter Designed Using Hamming window
0
b
> -50
3
S
D W
-100 me

0 0.2 0.4 0.6
/T

0.2

0.4

0.6 0.8 1
o/n

0.8
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Frequency Sampling Method

* In this approach we are given H (k) and
need to find H (2)

 This is an interpolation problem and the
solution is given in the DFT part of the

course
1 N-1 1-z°"
H(z)=— % H (k) S
N k-o ik
1-e N 7

* |t has similar problems to the windowing
approach



FIR Digital Filter Order Estimation

Kaiser’s Formula:

— 20 log |, (,/§p58)—13

14 .6(o, —a)p)/27z

N

12

+1

* 1e N is inversely proportional to transition
band width and not on transition band
location
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UNIT-5
Multirate signal processing &
Finite Word length Effects



Single vs Multirate Processing

@ Single-rate processing: the digital samples before and after
processing correspond to the same sampling frequency with
respect to (w.r.t.) the analog counterpart.

e.g.. LTI filtering can be characterized by the freq. response.

@ T he need of multi-rate:

e fractional sampling rate conversion in all-digital domain:
e.g. 44.1kHz CD rate <= 48kHz studio rate

@ The advantages of multi-rate signal processing:
o Reduce storage and computational cost
@ e.g.. polyphase implementation

e Perform the processing in all-digital domain
without using analog as an intermediate step that can:

@ bring inaccuracies — not perfectly reproducible

@ increase system design / implementation complexity
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Basic Multirate operations: Decimation
and Interpolation

e Building blocks for traditional single-rate digital signal
processing: multiplier (with a constant), adder, delay,

multiplier (of 2 signals)

@ New building blocks in multi-rate signal processing:

M-fold decimator KEn_’]}j

>

[-fold expander xuthb —.&_:7\%#1"]
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M-fold Decimator

yp[n] = x[Mn], M € N

e.a M=2_
Xin]
—111111{ -
[ -\ o | 234 i
\QL// Il
e T I
lalﬁ_ ~ =~

S(Enj}\' VM - g%:n']

Corresponding to the physical time scale, it
is as if we sampled the original signal in a
slower rate when applying decimation.
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Sampling Rate Reduction by an Integer Factor:
Downsampling

We reduce the sampling rate of a sequence by “sampling” it
X, [n]=x[nM ] = x_(nMT )

This 1s accomplished with a sampling rate compressor

Lowpass filter
»| Gan=1 — i M —
x|n| Cutoff = /M X[n] X, |n]=x[nM|
Sampling Sampling Sampling
period T period T period T'= MT

We obtain x4[n] that is identical to what we would get by
reconstructing the signal and resampling it with T’=MT

There will be no aliasing if




Frequency Domain Representation of Downsampling
Recall the DTFT of x[n]=x.(nT)

x( Jw)__z Um znkn

\ T T )
The DTFT of the downsampled signal can similarly written as

N I

k =-—o

T T ) \ MT MT )

F=—-0

Let’s represent the summation index as

r =i+ kM where - o < k < o and 0O <i<M
| 1M1F1 » © 2nk  2mi))]
X oy _ - _ _
_d(e) MZ T% [(MT T MTNJ
And finally
M -1 jf 25
Xd(ejw):izx(ew o
Z0 )



Frequency Domain Representation of Downsampling

Interpretation of ¥Yp(w)

Step-1: stretch ¥(w) by a factor of M to

obtain X(w /M)

Step-2: create M — 1 copies and shift

them in successive amounts of 2«

Step-3: add all M copies together and

multiply by 1/M.

D
A A /L
N

.lTli' in d.'rr £

3T - ' W aw 3T 4w £
=TT
A(555) 4
N |
—T W T 3T 4w 4T M
Mo
Al
=t % a3t 4m £

T itk peﬁa&_ﬁ 2
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Aliasing

The stretched version X(w/M) can in general overlap with its
shifted replicas. This overlap effect is called aliasing.

When aliasing occurs, we cannot recover x[n] from the
decimated version yp[n], i.e. | M can be a lossy operation.

We can avoid aliasing by limiting the bandwidth of x[n] to

lw| <7/ M.

When no aliasing, we can recover x[n] from the decimated
version yp|[n] by using an expander, followed by filtering of the
unwanted spectrum images.
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Frequency Domain Representation of Downsampling w/ Prefilter

X (j2)
1
—Ly 0, )

X (et

1

T
—2 —ar — W py Wy = g TT 2 w =0T
X, (e’)
_
MT (M =3
l l l l l
—2ar _ 37 —TT r 37 2 w = 07T
2 o 2
H:.!’ (f"l‘w)
1
| | |
—2r —aT AT o — T 2ar w =0T

M B M
| _‘l{({r_."{u) — H{I(é’jm))k'( {1_."{u)
T

2 —ar _ T 2ar w =0T




Decimation filter

The decimator is normally preceded by a lowpass filter called
decimator filter.

Decimator filter ensures the signal to be decimated is bandlimited

and controls the extent of aliasing.

a T | e [tromy| Typicat resprst
ACn) H(2) k____.,_ (M= 11\ ﬂ—dgbw‘mjﬂ"rer

Decmotion 'D&d wAokeT” -\NL l

thﬂr 0 ‘Wr:ip %yh J‘ﬂf ~ I~
e

Pmsa bowmd., staPhM
Lﬂ_’ﬁ_l—t,w‘t?ﬁ‘mm
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|_-fold Interpolator
el = {x[n/f_] if nis integer multiple of L € N XLHJ\_,@__VYEEM

0 otherwise

S l
*—1[] ’ : 1 ll — Question: Can we recover x[n|
[¢] LIIIJ_ R-h v f ? Af Y
f_,=?,;| "H\ h aE[',n] rom J/E[ﬂ]. es.
1 E ] T The expander does not cause loss of
e tadarbrd o information.
T r &~ 7
:f-l[«L:‘n_,zme_.,
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Increasing the Sampling Rate by an Integer Factor:
Upsampling
We increase the sampling rate of a sequence interpolating it
x[n]=x[n/L]=x_(nT /L)

This is accomplished with a sampling rate expander

Lowpass filter
— L —] Gan=L p—
x[n] x.[n] | Cutoff = /L x;|n|
Sampling Sampling Sampling

period T period T' = T/L period T'= T/L
We obtain x;[n] that is identical to what we would get by
reconstructing the signal and resampling 1t with T°=T/L

Upsampling consists of two steps

— Expanding
(x[n/L] n=0,FL,F2L,..

elnl= T e e kb )

— Interpolating



Frequency Domain Representation of Expander

The DTFT of x,

o0

n] can be written as

o0

X.(e")=%

N = -0

5 x[kJln - kL ]jej“’" _ s ke P - x(e)

k = -0

The output of the expander is frequency-scaled

X (78)
|
_nlﬂf ﬂlﬂf ﬂ
X{ed




Input-output relation on the Spectrum

Evaluating on the unit circle, the Fourier Transform relation is:
Ye(ev) =X(e#) = Yg(w)=X(wl)

i.e. [-fold compressed version of X(w) along w

. W

qwﬂ mﬂﬂrﬁ

nmnnn&rnnnm
A S
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Periodicity and spectrum images

The Fourier Transform of a discrete-time signal has period of 2.
With expander, X(wL) has a period of 27 /L.

The multiple copies of the compressed spectrum over one period of
2m are called images.

And we say the expander creates an imaging effect.
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Frequency Domain Representation of Interpolator

 The DTFT of the desired interpolated signals is

Xi(ew)
1_L
T T
/I\ | /\ | /I\
2 —1T o T T 2ar w=0T"
L L

« The extrapolator output is given as

X, (e = X (elwly
|

VAV NAVAN 4

4m 27 w=QT'

L L L
» To get interpolated signal we apply the following LPF

H{“ EJ.-".M |

—2ar —qr T



Interpolation filters

An interpolation filter normally follows an expander to
suppress all the images in the spectrum.

I ALy =

Ex Pﬂmri&" lm‘geﬂ)nlm N

T’f['r;er

' =
= 8 2 4
1 el
-] | l.'[‘;m.
-2~ o (1Liqrd )
1 yon)
~~~HH ‘H‘l‘!'[,,m

time-domain interpretation
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Fractional sampling rate convertor

So far, we have learned how to increase or decrease sampling rate
in the digital domain by integer factors.

Question: How to change the rate by a rational fraction L/M?
(e.g.: audio 44.1kHz <= 48kHz)

@ Method-1: convert into an analog signal and resample

@ Method-2: directly in digital domain by judicious combination
of interpolation and decimation

Question: Decimate first or expand first? And why?

L | —cTEPLMmmK:M - gem

XCn)
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Fractional sampling rate convertor

E% dlesmred [y L 2,m=3 1= 4
o 1&5 wsl ene T
_ S ‘H/’"‘/ G#d:mLE{N‘J EI.U-H‘EL &Lma ﬁuﬁ{v
- = < - - i-‘\—"l
T o | 3T
- _ I' i : —5._ T"— &’ Im .E_,—t_b beﬂ
- _g_ oy LT K[m

o ol "1:,#,‘
Use a low pass filter with passband greater than :rr/3 and smpband
edge before 27 /3 to remove images

Equiv. to getting 2 samples
out of every 3 original samples

@ the signal now is critically
sampled

@ some samples kept are
interpolated from x|n]
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Changing the Sampling Rate by Non-Integer Factor

« Combine decimation and interpolation for non-integer factors
Interpolator Decimator

T TIL T TIL TMI/L
* The two low-pass filters can be combined into a single one

T TIL TIL TM/L 358



Time Domalin

x:[n] In a low-pass filtered version of x|n]
The low-pass filter impulse response is
sin (xn /L)

hn] =
nh /L
Hence the interpolated signal is written as
sin (n(n - kL )/ L)
n(n — kL )/ L

<[] - 3 xlk]

Note that h fo] -

h [n]

1
0 n = ¥L, ¥2L,...

Therefore the filter output can be written as
x.[n]=x[n/L]=x_(nT /L) = x_(nT") for n = 0, FL, F2L,...

(5022 x[k]h[nM — k] M-fold decimation filter
yln] =< 320 x[k]h[n — kL] L-fold interpolation filter
e oo X|K]h[nM — kL] M /L-fold decimation filter




Sampling of bandpass signals

o Let z.(t) be a real-valued signal that is band-limited to the range
(Qr,Qp), viz. X(Q) =0 for | < Qp, and |2 > Q.

e Such z.(t) is called a bandpass signal with centre frequency
c = (2. + Qp)/2 and bandwidth (Hz) B = (Qy — 1) /2m.

e Let us first assume that there exists an integer K > 0 such that
Uy =27K B and let us set ), =2 (27 B).

o Recall that the spectrum of the sampled signal z[n] = z.(nT') is
defined as

X (7)) = TZX (5(Q — kL))

A i2
() L2 Fy=3(FRy—F)

| Aekn "r:' F,=28

1
T
’\/\’ A /1”1“ mxﬁ vm\‘
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Sampling of bandpass signals

o We notice that if we multiply X (¢**!') by the Fourier transform
G (7€2), we can recover X.(€1), and hence z.(t), exactly.

@ The ideal reconstruction process is given by

z(t) =) a(nT)g,(t — nT)

where g,(t) is the modulated ideal band-limited interpolation
function given by
sin( Bt
gr(t) = 25T ety

i

where B is the bandwidth measured in Hz.

Conclusion

A sampling rate of F, = 2(Fy — F1.) is adequate for alias-free
sampling of a bandpass signal if the ratio K = Fy /(Fy — FL) is
exactly an integer.
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Over sampling -ADC

Consider a Nyquist rate ADC in which the signal is sampled at the desired
precision and at a rate such that Nyquist's sampling criterion is just
satisfied.

M Bandwidth for audio is 20 Hz < f < 20 kHz
B Antialiasing filter required has very demanding specification

|H(jw)| = 0dB, f < 20 kHz
H(jw)| < 96 dB, f > % kHz

B Requires high order analogue filter such as elliptic filters that have very
nonlinear phase characteristics

M hard to design, expensive and bad for audio quality.
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Nyquist Rate Conversion Anti-aliasing Filter.

| H(w) I

A co \
B.ﬂ. n AW x‘d_-{'ﬁ» \\

;o -: S
/{_.; fs  f
z
arli-aliasing fller brnyition
ban A
Consider oversampling the signal at, say, 64 times the Nyquist rate but

with lower precision. Then use multirate techniques to convert sample rate
back to 44.1 kHz with full precision.

M New (over-sampled) sampling rate is 44.1 x 64 KkHz.
B Requires simple antialiasing filter

|H(jw)| =0dB, f < 20kHz
. 44.1
[H(jw)| < 96 dB, f > (44.1 x 64) — —— kHz

M Could be implemented by simple filter (eg. RC network)

B Recover desired sampling rate by downsampling process. 569



Oversampled Conversion Antialiasing Filter

L) ..
{ T = = . E -
‘ / /
: 7
— 2z _
A gGio A 4 lhe s
»)QF: ﬁsz‘(é’q'

Ban ot banntion
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Overall System

x(6) A H6) [ —{Ane [ (2) [y g4 | =[]
)

) f

dhﬂda:ﬂbu?_ 2822 4 kHz LU Hnaes
F"ikj*"-ﬂ{u Emr’”Pu”jﬂ Jéawnf::ﬂ:mp{-zr
rate (ﬁlém‘ﬂ"?afw’)
gumple AA ,ﬂ,cﬂ'jt:#a.(
#ilyer (oopass dig Ll

el

S
(FIRr] @QQ—!EH-&

M This is a simplified version
M In these lectures we will study blocks like GG(z) and | 64
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Sub band coding

Consider guantizing the samples of a speech signal. How many bits are
required?

M In general, 16 bits precision per sample is normally used for audio.
This gives an adequate dynamic range.

M |n practice, certain frequency bands are less important perceptually
because they contain less significant information

¥ bands with less information or lower perceptual importance may be
quantized with lower precision - fewer bits.

M Divide the spectrum of the signal into several subbands then allocate
bits to each band appropriately.
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Sub band coding

M 16 bits per sample, 10 kHz sampling frequency gives
W 160 kbits/s

M Divide into 2 bands: high frequency and low frequency subbands.
W High frequencies of speech are less important to intelligibility.
W Therefore use only 8 bits per sample

B The sampling frequency can be reduced by a factor of 2 since
bandwidth is halved, still satisfying Nyquist criterion.

W5 x16+5x8=120 kbits/s
M 4:3 compression

W Reconstructed signal has no noticeable reduction is signal quality.
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Digital filter banks

A digital filter bank is a collection of digital filters, with a common
input or a common output.

X In] CRa I K S =y

i : n @ Hi(z): analysis filters
nput o L (o e v 1{ (z): analy
y . ! @ Xxi|n|: subband signals
(ﬁ@fé’) B Xt D] |Lﬂr:;-m_,&l_ﬁ;i @ F;(z): synthesis filters
-PIHLY:?,LE B ol SH‘_ﬂﬂ\E}"fx?EP}M—k— o SlMO VS. MISO

@ Typical frequency response for analysis filters:

T Can be

X X :;: @ marginally overlapping

%\/ i Hl— @ non-overlapping
~ —— . .
@ (substantially) overlapping
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Finite Word length Effects



Finite Wordlength Effects

* Finite register lengths and A/D converters
cause errors In:-

(1)  Input quantisation.

(1) Coefficient (or multiplier)
guantisation

(111) Products of multiplication truncated
or rounded due to machine length
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Finite Wordlength Effects

* Quantisation
e, (k)

t Output

QHIH ;
e (k)
rJ_IrJ Input

371



Finite Wordlength Effects

* The pdf for e using Eounding

e

Q Q
2 2
Q/2

* Noise power 52 - | e’p(e).de = E{e’}

or , ~Q/2
2 _Q

12

O
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Finite Wordlength Effects

* Let input signal be sinusoidal of unity
amplitude. Then total signal power | _ 1

2

P

* |f b bits used for binary then Q = 2/2b
so that o2 = 272° /3
 Hence

2_3 +2b
P/(T = 2.2

OF sSN\R =1.8+6b dB
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%

Finite Wordlength Effects

» Consider a simple example of finite
precision on the coefficients a,b of second

order system with poles =10

1
1

H (2) = —

1—az ~ + bz

1

H(z) =
1- 2 p cos 0.7 + ,oz.z_2

2

e Where a=2pcos g b=p
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Finite Wordlength Effects

bit pattern [2pcos @, p° p
000 0 0

001 0.125 0.354
010 0.25 0.5
011 0.375 0.611
100 0.5 0.707
101 0.625 0.791
110 0.75 0.866
111 0.875 0.935
1.0 1.0 1.0




Finite Wordlength Effects

 Finite wordlength computations
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Limit-cycles: "Effective Pole"
Model: Deadband

Observe that for ; ;y_ 1 | .
(l+byiz +b,z )
instability occurs when |, |- 1
l.e. poles are
* (1) either on unit circle when complex

* (11) or one real pole Is outside unit
circle.

Instability under the "effective pole" model
IS considered as follows
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Finite Wordlength Effects

* In the time domain with H(Z):Y(Z/

X (2)

y(n)=x(n)-byy(n-1)-b,y(n-2)

« With |p,|—> 1 for instability we have

Q[bzy(n - 2)

* Where ¢

]

indistinguishable from y(n - 2)
IS quantisation
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Finite Wordlength Effects

 With rounding, therefore we have

b,y(n-2)+0.5 y(n - 2)
are indistinguishable (for integers)
or b,y(n-2)+05=y(n-2)

e Hence +0.5
y(n-2)=
1-b

2

 With both positive and negative numbers
+0.5

1_‘b2‘

y(n-2) =

379



Finite Wordlength Effects

+ 0.5
1_‘b2‘

* The range of integers

constitutes a set of integers that cannot be
Individually distinguished as separate or from the
asymptotic system behaviour.

* The band of integers { 0.5 0.5 J

— ,  +
1_‘b2‘ 1_‘b2‘

IS known as the "deadband".

* In the second order system, under rounding, the
output assumes a cyclic set of values of the
deadband. This is a limit-cycle.
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Finite Wordlength Effects

* Consider the transfer function

G(Z):/ _1 )
(1+byz +b,z )

Yk = X¢ — blyk—l - bz Yk-2

* If poles are complex then impulse response
IS given by n,

pk
h, = .
sin @

sin [(k +1)0]
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Finite Wordlength Effects
* Where p=.b, ¢ =cos 1£_%@j

* If , -1 thenthe response is sinusiodal
with frequency

1 —1(—b/j
@ = —COS
T 2

* Thus product quantisation causes instability
Implying an "effective “ b, = 1.
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Finite Wordlength Effects

* Notice that with infinite precision the
response converges to the origin

 With finite precision the reponse does not
converge to the origin but assumes
cyclically a set of values —the Limit Cycle
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Finite Wordlength Effects

* Assume {e,(k)} ,{e,(k)j ..... are not
correlated, random processes etc.

o, =o, = h K)o 7 - Q/

Hence total OUtpUt noise power
2 2 2 27 2k SIN 2[(k +1)0 |
0 =0g +t0g,p =2 2 P .2

12 «-o sin &

O

-Db

 WhereQ =2 and

h, (k) = h, (k) = pk.Sin L(k +1)0]; k>0
sin @
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¢ |e

Finite Wordlength Effects

1+ ,02

1

1-p"

.1+ ,04—2,02COS 20 |
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Finite Wordlength Effects

e For FFT "™ — >< — B(n+1)
B(n) — O— B(n+1)
?W(n)

A(n+1)= A(n) +W (n).B(n)

B(n+1)= A(n) —W (n).B(n)
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Finite Wordlength Effects
 FFT

A+ +B(n+1) =2

A(n +1)]" =2/Am)°

A(n) = N2 A(N)]
« AVERAGE GROWTH: 1/2 BIT/PASS
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Finite Wordlength Effects

IMAG( 1 0

o FFT

1.0 |10

-1.0

REAL

A (n+1)=A (n)+B, (n)C(n) - By(n)S(n)

A (n+1)|<|A ]+ B, (M]cm|-|B, (s

A (N +1)
A ()

« PEAK GROWTH: 1.21.. BI

<1.0+lc(n)=Is(n)|=2.414 ..

S/PASS
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Finite Wordlength Effects

 Linear modelling of product quantisation

x(n) X (n)

Q[]

 Modelled as

x(n) %9 - X(n)=x(n)+q(n)
q(n)
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Finite Wordlength Effects

 For rounding operations g(n) is uniform
distributed between -2, < and where Q Is

the quantisation step (iz.e. In a wordlength of
bits with sign magnitude representation or

mod2, o =27
« Adiscrete-time system with quantisation at

the output of each multiplier may be
considered as a multi-input linear system
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Finite Wordlength Effects

4y (). A, (N)-. q, (N)

{(x(n)}— h(y +——{y(n)}

0 Then
P 0

y(n) = ZX(r)h(n—r)+ qu (r).h; (n—l’)1
Z1 2 |

r=0

* where h, (n) IS the |mpulse response of the
system from . the output of the multiplier

to y(n).
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Finite Wordlength Effects

* For zero input 1.e. x(n) =0,vn we can write

y(n) < z\qﬂ\ z\h (n—r)

A=1 r=0

. where 19,/ is the maximum ofa, (r), v4.r
which Is not more than Q
2

. P =
° I€ ‘y(n)‘ ZL ‘h (n—r)‘J
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Finite Wordlength Effects

e However

s [h, ()< = hn)
n=0 n=0
 And hence

yml< P25 hm)
2 n=0

* |e we can estimate the maximum swing at
the output from the system parameters and
guantisation level
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Finite Precision Numerical
Effects



Quantization in Implementing Systems

» Consider the following system

x[n] v[n] v[n]
— D @ > > D/C
X (1) t 1 1 Yell)
r 7! r
o

« A more realistic model would be
o x[n] o 0 x[n] NN v[n] v[n]

> > > Op, > DiC F——
x.(1) \f vl

L
2
o

T Up 7L ]t
a a= QB[:}’]
* In order to analyze it we would prefer
e a .?[H]‘ = v[n] v[n] | ‘
x (1) “p \-Jfr/ NS :+ o V(1)

] —
] —

e;[n] -1 e |n]




Effects of Coefficient Quantization in IR Systems

When the parameters of a rational system are quantized
— The poles and zeros of the system function move

If the system structure of the system Iis sensitive to
perturbation of coefficients

— The resulting system may no longer be stable

— The resulting system may no longer meet the original specs
We need to do a detailed sensitivity analysis

— Quantize the coefficients and analyze frequency response

— Compare frequency response to original response

We would like to have a general sense of the effect of
quantization



Effects on Roots

Zbkz_k . Zﬁkz_k
H(z) = oo Quantiza ., &

N - N
1 — Z akz’k tion 1 - Z ékz_k
k=1 k-1

Each root is affected by quantization errors in ALL coefficient
Tightly clustered roots can be significantly effected

— Narrow-bandwidth lowpass or bandpass filters can be very
sensitive to quantization noise

The larger the number of roots in a cluster the more sensitive it
becomes

This is the reason why second order cascade structures are less
sensitive to quantization error than higher order system

— Each second order system is independent from each other



Poles of Quantized Second-Order Sections

« Consider a 2nd order system with complex-conjugate pole pair

f [11]

-

L
T -

-

yin]

* The pole locations after quantization will be on the arid noint

Fm

Fm z-plane z-plane
.00 F—— o Realizable pole positions LO :
<« 3-bits
= \\
0.75 O Unit circle
NN 7-bits —>
0.50 )_'_"‘-1,1_\ \\\ . 0.5 1=
0.25 — l\\ \ \
I|
i
0 0.25 0.50 0.75 1.00 e 0 1.0 e
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Coupled-Form Implementation of Complex-Conjugate Pair

Equivalent implementation of the N
second order system z”
rsin g
vinl
Z_]
But the quantization grid this time is
Gm z-plane Im 2-plane
o Realizable pole positions :
100 f
s
0.75¢ . . \&J,\_kUm't circle
\\lh\
0.50¢ . / / \‘\_
\'\.
0.25¢ :—1
II
0 0.25 0.50 0.75 1.00 Re e
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Effects of Coefficient Quantization in FIR Systems

No poles to worry about only zeros
Direct form is commonly used for FIR systems
M

H(z) = Y hlnjz™"

Suppose the coefficients are quantized

H(z) = ZM:ﬁ[n]z_” = H(z)+ AH(z) AH(z) = Z_:Ah[n]z‘”

Quantized system is linearly related to the quantization error

> H(z)

> AH(z)

Again quantization noise is higher for clustered zeros
However, most FIR filters have spread zeros



Round-Off Noise in Digital Filters

by

i

i}
ot Ll b >

. - C =
_Dn‘ference equations x[n] v[n]
implemented with finite- 1Y A 7!
precision arithmetic are b, a
non-linear systems q <

Second order direct form | 1y
system

Model with quantization o——
effect b,

Density function error Il
terms for rounding

L
Y
ot

Y
I
Y
Y
A

b ]
=0

-1y egln] (P

p.le) e > T f <

|
A J -y eq[n] ex[n] y 1

|
ro | >
gy ==
—_—



Analysis of Quantization Error
Combine all error terms to single location to get

e|n]

¥

by
o >

- )
x|[n|

¥

—> o
v|n] =y|n]+ f|n]

771 A A Yz

b,

O——-0

| eln]=e,[n]+ e,[n]
Y 'qr:—l

b, a, +e2[n]+e3[n]+e4[n]
N G L <« 5

i

O———

The variance of e[n] in the general case is

-2B
si=M+1+N)
N
The contribution of e[n] to the output is

fln] =Y a,fln - k]+ e[n]

k=1

12

The variance of the output error term f[n] is

-2B

5 .
c§=(M+1+N)12 D

h ]’ He(z)=1/A(2)




Round-Off Noise in a First-Order System

Suppose we want to implement the following stable system

H(z):l_zZl al <1

The quantization error noise variance is

12 12 |k1 ~Jaf

2—28 0 2—ZB © . 2—25 1
6i=M+1+N)=— S | ] =2=—3 " =2 [ |
N 12 =, )I
Noise variance increases as |a| gets closer to the unit circle

As [a] gets closer to 1 we have to use more bits to compensate for the
Increasing error

e[n] = e [n] + e |n]




Zero-Input Limit Cycles in Fixed-Point Realization of IIR Filters

For stable IR systems the output will decay to zero when the input
becomes zero

A finite-precision implementation, however, may continue to oscillate
indefinitely

Nonlinear behaviour very difficult to analyze so we sill study by example
Example: Limit Cycle Behavior in First-Order Systems

y[n] = ay[n - 1]+ x|n] ‘a‘< 1

Y
J
Y

o

k- i
[ g

Assume x[n] and y[n-1] x|n]
are implemented by 4 bit




Example Cont’d
y[n] = ay[n - 1]+ x|[n] ‘a‘< 1

« Assume that a=1/2=0.100b and the input is

7 5[n]= (0.111 b)s[n]

x[n]= —
8

 If we calculate the output for values of n

0=

y[n]

Q(yI[n])

/7/8=0.111b

7/8=0.111b

7/16=0.011100b

1/2=0.100b

1/4=0.010000b

1/4=0.010b

1/8=0.001000b

1/8=0.001b

DI W N = O3

1/16=0.00010b

1/8=0.001b

O -
OO =
ool =
oo | —

V[n] (a= %}

o0 | =
——e

A finite input caused an oscillation with period 1

0 |

(]

7 H



Example: Limit Cycles due to Overflow

Consider a second-order system realized by
yIn]=x]+Qa,yln - 1)+ Qla,y[n - 2])

— Where Q() represents two’s complement rounding

— Word length is chosen to be 4 bits
Assume a,=3/4=0.110b and a,=-3/4=1.010b
Also assume

v[-1]=3/4=0.110 b and y[-2]=-3/4 =1.010 b
The output at sample n=0 is
y[0] = 0.110 b x 0.110b + 1.010 b x 1.010b

= 0.100100b + 0.100100b

After rounding up we get
y[0]= 0.101b  + 0.101b = 1.010b = -3/4
Binary carry overflows into the sign bit changing the sign

When repeated for n=1
y[0]=1.010b +1.010b =0.110 =3/4



Avoiding Limit Cycles

Desirable to get zero output for zero input: Avoid limit-cycles
Generally adding more bits would avoid overflow

Using double-length accumulators at addition points would
decrease likelthood of limit cycles

Trade-off between limit-cycle avoidance and complexity
FIR systems cannot support zero-input limit cycles



