
DISTRIBUTED SYSTEMS

Prepared By:

Mr. RM NOORULLAH

Mr. N V KRISHNA RAO

Mr. CH SRIKANTH

Mr. M RAKESH

Associate Professor
Associate Professor
Assistant Professor
Assistant Professor

UNIT 1

Characterization of Distributed Systems

2

Chapter 1 Characterization of

Distributed Systems

1. Introduction

2. Examples of distributed systems

3. Trends in distributed systems

4. Focus on resource sharing

5. Challenges

6. Case study: The World Wide Web

7. Summary

• Motivation:

Networks of computers are everywhere!
– Mobile phone networks

– Corporate networks

– Factory networks

– Campus networks

– Home networks

– In-car networks

– Planetary networks

Why networked?

• Influence:

Networked computers impact system designers

and implementers

1.1 Introduction

Desire to

share resources

3

4

Defining Distributed Systems

• “A system in which hardware or software components

located at networked computers communicate and

coordinate their actions only by message passing.”

[Coulouris]
– Networked computers could be far apart or in the same room

• relying on computer networking

• i.e. cluster and grid

• “A distributed system is a collection of independent

computers that appear to the users of the system as a

single computer.” [Tanenbaum]

5

Consequences of Distributed Systems

–Concurrency

• Autonomous: Computers carry out tasks independently

• Cooperative: Computers coordinate actions

–No global clock

• Hard to synchronize their clocks precisely

• Coordinate by exchanges messages

– Independent failures

• Part of network or node faults does stop the running of the

whole system

6

1.2 Examples of Distributed Systems

• Examples
– 1.2.1 Web search (Google)
– 1.2.2 Massively multiplayer online games (MMOGs)
– 1.2.3 Financial trading

7

Figure 1.1 Selected application domains and

associated networked applications

Finance and commerce eCommerce e.g. Amazon and eBay, PayPal,

online banking and trading

The information society Web information and search engines, ebooks,

Wikipedia; social networking: Facebook and MySpace.

Creative industries and

entertainment

online gaming, music and film in the home, user-

generated content, e.g. YouTube, Flickr

Healthcare health informatics, on online patient records,

monitoring patients

Education e-learning, virtual learning environments;

distance learning

Transport and logistics GPS in route finding systems, map services:

Google Maps, Google Earth

Science The Grid as an enabling technology for

collaboration between scientists

Environmental management sensor technology to monitor earthquakes, floods

or tsunamis

Figure 1.2

An example financial trading system

8

10

• Influential trends
– Emergence of pervasive networking technology

– Emergence of ubiquitous computing

coupled with the desire to support mobility

– Increasing demand of multimedia services

– View of distributed systems as a utility

• Sections
1. Pervasive networking and the modern Internet

2. Mobile and ubiquitous computing

3. Distributed multimedia systems

4. Distributed computing as a utility (cloud)

1.3 Trends in distributed systems

11

intranet

ISP

backbone



satellite link

desktop computer:

server:

network link:







Figure 1.3 Typical Portion of the Internet

The Internet is a vast collection of computer networks of many

different types and hosts supporting various types of services

Figure 1.4 Portable and handheld devices

Printer

Camera

Internet

Host intranet Home intranetWireless LAN

Mobile
phone

Lapto

p

WAP

gateway

Host site

Support continued access to Home intranet resources via wireless and provision to

utilize resources (e.g., printers) that are conveniently located (location-aware computing)

12

Figure 1.5 Cloud Computing

A cloud is a set of Internet-based application, storage and computing services

sufficient to support most users‘ needs, thus enabling them to largely or totally

dispense with local data storage and application software

13

14

1.4 Focus on Resource Sharing

• Users are accustomed to the benefits of resource

sharing
– Share hardware resources such as printers

– Share data such as files

– Share specific functionality such as search engines

• Service-oriented: client-server computing
– remote invocation of an operation to an object

15

1.5 Challenges
• 1.5.1 Heterogeneity

– networks, hardware, os, languages...
– solutions: middleware (i.e. corba), mobile code, virtual machines

• 1.5.2 Openness
– extended and re-implemented in various ways
– standard published interfaces, RFC (request for comments)

• 1.5.3 Security
– confidentiality, integrity, availability

• 1.5.4 Scalability
– effective with significant increase in resources

– cost and performance

• 1.5.5 Failure handling
– detecting

– masking: hide, less severe (retransmit)

– tolerating: ignore, timeout

– recovery: logs, rollback
– redundancy

• 1.5.6 Concurrency
– several clients access a shared resource at the same time

16

Challenges (Cont.)

• 1.5.7 Transparency
– Access transparency: enables local and remote resources to be accessed using

identical operations

– Location transparency: enables resources to be accessed without knowledge of

their physical or network location (for example, which building or IP address)

– Concurrency transparency: enables several processes to operate concurrently

using shared resources without interference between them

– Replication transparency: enables multiple instances of resources to be used to

increase reliability and performance without knowledge of the replicas by users

or application programmers

– Failure transparency: enables the concealment of faults, allowing users and

application programs to complete their tasks despite the failure of hardware or

software components

– Mobility transparency: allows the movement of resources and clients within a

system without affecting the operation of users or programs.

– Performance transparency: allows the system to be reconfigured to improve

performance as loads vary

– Scaling transparency: allows the system and applications to expand in scale

without change to the system structure or application algorithms

• 1.5.8 Quality of Service

17

1.6 Case Study: The World Wide Web

Three major parts

• HTML, Hyper Text Markup Language

• URL, Uniform Resource Locator

– http://servername[:port] [/pathname] [?arguments]

• HTTP, HyperText Transfer Protocol

– request-reply protocol (client-server)

internet mail– content types--MIME types, multipurpose

extensions

– one resource per request

– simple access control (mostly public)

http://servername/

Figure 1.7 Web Servers and Web Browsers

Internet

Browsers
Web servers

www.google.com

www.cdk5.net

www.w3c.org

Protocols

Activity.html

http://www.w3c.org/Protocols/Activity.html

http://www.google.com/search?q=kindberg

http://www.cdk5.net/

File system of
www.w3c.org

18

http://www.google.com/
http://www.cdk5.net/
http://www.cdk5.net/
http://www.cdk5.net/
http://www.w3c.org/
http://www.w3c.org/
http://www.w3c.org/
http://www.w3c.org/Protocols/Activity.html
http://www.google.com/search?q=kindberg
http://www.cdk5.net/
http://www.w3c.org/

19

Other Web Technologies

• web forms

• CGI programs, common gateway interface, run on the

server

• applets, run on the client

• RDF, resource description framework,

vocabulary for meta-data

• XML, extensible markup language, allow

meta-data information to be included

20

1.7 Summary

systems are• Computer networks and distributed

everywhere

•Resource sharing is the main motivating factor for

constructing distributed systems

• Challenges: heterogeneity,

openness, security, scalability, failure handling,

concurrency, transparency

Chapter 2

System Models

2

Chapter 2 System Models

1. Introduction

2. Physical models

3. Architectural models

4. Fundamental models

5. Summary

• A physical model considers
– the types of computers and devices that constitute a system
– their interconnectivity

• An architectural model defines
– the way in which the components of systems interact with one

another and

– the way in which they are mapped onto an

underlying network of computers

• Fundamental models take an abstract perspective
– in order to describe solutions to individual

issues faced by most distributed systems

• Why model?
– Each model is intended to provide an abstract, simplified but

consistent description of a relevant aspect of distributed

3system design

2.1 Introduction

2
4

2.2 Physical Models

• Baseline physical model: one in which hardware or

software components located at networked computers

communicate and coordinate their actions only by

passing messages

• Three generations
– Early distributed systems: late 1970s and early 1980s

• typical 10 and 100 nodes of LAN

– Internet-scale distributed systems: 1990s
• network of networks

– Contemporary distributed systems: 2000s (cloud)
• mobile devices and wireless networking

•Next-generation: distributed systems of systems?
– a complex system consisting of a series of subsystems

• that are systems in their own right, and

• that come together to perform a particular task or tasks

Figure 2.1

Generations of distributed systems

2
5

2
6

2.3 Architectural Models

• The architecture of a system is its structure in terms of

separately specified components.

– Its goal is to meet present and likely future demands.
– Major concerns are make the system reliable, manageable, adaptable,

and cost-effective.

• Architectural Model
– Goal: simplifies and abstracts the functions of individual components

– A three-stage approach
• Architectural elements: looking at the core underlying architectural elements

• Architectural patterns: examining composite architectural patterns that can be

used in isolation or in combination in developing more sophisticated distributed

systems solutions

• Associated middleware solutions: considering middleware platforms that are

available to support the various styles of programming

2
7

2.3.1 Architectural Elements

that are communicating in the

• Four key questions

1. What are the entities

distributed system?

2. How do they communicate or what communication

paradigm is used?

3. What roles and responsibilities do they have in the overall

architecture?

4. How are they mapped on to the physical

distributed infrastructure? (What is their placement?)

2
8

Communication Entities and Paradigms

• Communicating entities
– System-oriented perspective: processes

– Problem-oriented perspective: objects,

components, Web services

• Communication paradigms
– Interprocess communication: RPC, request-reply protocols

– Remote invocation: RMI
– Indirect communication: group

subscribe systems, message

communication,

queues, tuple

publish-

spaces,

distributed shared memory

Figure 2.2 Communicating entities and

communication paradigms

2
9

Figure 2.3

Clients invoke individual servers

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:

• Servers provide services
• Clients access services

Figure 2.4 A service provided by multiple servers

• Objects are partitioned/replicated
– Web: each server manages its objects
– NIS: replicated login/password info
– Cluster: closely coupled, scalable (search engines)

Server

Server

Service

Server

Client

Client

31

Figure 2.5 Web proxy server

• Cache: local copies of remote objects for faster access

• Browser cache

• Proxy server
– Additional roles: filtering, firewall

Client

Proxy
server

Web

server

Web

server
Client

32

Multiple Web proxy servers

Client

Proxy
server

Web
server

Web
server

Client

Client

Proxy
server

Web
server

Web
server

Client

Proxy
server

Figure 2.6 Web applets

• Running code locally vs. remotely
– Network bandwidth
– What examples have you seen?
– Security issues?

a) client request results in the downloading of applet code

Web

server

Web

serverClient Applet

Applet code

34

Client

b) client interacts with the applet

35

Mobile agents

• Running program that travels from one computer to
another
– Perform tasks on users‘ behalf
– Security issues

• How does it compare to one
client interacting with multiple servers?

– What if the program needs to access a lot of remote data?

• How does it compare with applets?
• Agents can provide functionality a

remote web site does not provide, but
allows access to data.

Peer to Peer

• Peers play similar roles
• No distinction of responsibilities

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Peer 4

Application

36

Figure 2.15 Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process

Crash Process

Omission Channel

37

Process

Process

Send-omission

Receive-
omission
Arbitrary
(Byzantine)

Process

or

channel

Process halts and remains halted. Other processes may
detect this state.
Process halts and remains halted. Other processes may
not be able to detect this state.

A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.
A process completes asend, but the message is not put
in its outgoing message buffer.
A message is put in a process’s incoming message
buffer, but that process does not receive it.
Process/channel exhibits arbitrary behaviour: it may

send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

38

Summary

1. Introduction

2. Physical models

3. Architectural models

4. Fundamental models

5. Summary

UNIT 2

Time and Global States

2

Chapter 1 Time and Global States

1. Introduction

2. Clocks, events and process states

3. Synchronizing physical clocks

4. Logical time and logical clocks

5. Global states

6. Distributed debugging

7. Summary

3

• Importance of time in distributed systems

– A quantity to timestamp events accurately

• To know what time a particular event occurs

• i.e. Recording when an e-commerce transaction occurs

– A synchronization source for several distributed algorithms

• To maintain consistency of distributed data

• i.e. Eliminating duplicate updates

– A timing source for multiple events

• To provide relative order of two events

• i.e. Ensuring the order of cause and effect

• Clocks in computers to establish

– Time at which an event occurred

– Duration of an event or interval between two events

– Sequence of a series of events or the order in which events occurred

1.1 Introduction

4

• A distributed system consists of a collection P of

N processes pi, i = 1,2,… N

– Each process pi has a state si

consisting of its variables (which it transforms

as it executes)

– Processes communicate only by messages (via a network)

• Actions of processes: Send, Receive, change own state

• Event: the occurrence of a single action that a process carries

out as it executes

• Events at a single process pi, can be placed in a total ordering

denoted by the relation i between the events. i.e.

– e i e’ if and only ifevent e occurs before event e’ at process pi

• A history of process pi: is a series of events ordered by i
– history(pi) = hi = <ei , ei , ei , …>

1.2 Clocks, Events and Process States

5

Clocks

To timestamp events, use the computer‘s clock

• At real time, t, the OS reads the time on the

computer‘s hardware clock Hi(t)

•It calculates the time on its software clock

Ci(t)=

Hi(t) + 
– e.g. a 64 bit value giving nanoseconds since some base time

– Clock resolution: period between updates of the clock value

•In general, the clock is not completely accurate
– but if Ci behaves well enough, it can be used to timestamp

events at pi

Skew between computer clocks in a distributed system

Computer clocks are not generally in perfect agreement

•Clock skew: the difference between the times on two clocks (at any instant)

•Computer clocks use crystal-based clocks that are subject to

physical variations

– Clock drift: they count time at different rates and so

diverge (frequencies of oscillation differ)

– Clock drift rate: the difference per unit of time from some ideal reference clock

– Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).

– High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Network

6

Figure 1.1

7

Coordinated Universal Time (UTC)

• UTC is an international standard for time keeping

– It is based on atomic time, but occasionally adjusted to astronomical time

– International Atomic Time is based on very accurate physical clocks (drift

rate 10-13)

• It is broadcast from radio stations on land

and satellite (e.g.

GPS)

• Computerswith receivers can synchronize their clocks

with these timing signals (by requesting time from GPS/UTC source)

– Signals from land-based stations are accurate to about 0.1-10 millisecond

– Signals from GPS are accurate to about 1 microsecond

8

1.3 Synchronizing physical clocks

Two models of synchronization

•External synchronization: a computer‘s clock Ci is synchronized

with an external authoritative time source S, so that:

– |S(t) - Ci(t)| < D for i = 1, 2, … N over an interval, I of real time

– The clocks Ci are accurate to within the bound D.

•Internal synchronization: the clocks of a pair of computers are

synchronized with one another so that:

– | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval, I of real time

– The clocks Ci and Cj agree within the bound D.

Internally synchronized clocks are not

necessarily externally synchronized, as they may drift

collectively
– if the set of processes P is synchronized externally within a bound D, it is

also internally synchronized within bound 2D (worst case polarity)

9

Clock correctness

• Correct clock: a hardware clock H is said to be correct if its

drift rate is within a bound  > 0 (e.g. 10-6 secs/ sec)

This means that the error in measuring the interval between real times t and

t’ is bounded:

– (1 -   (t’ - t) ≤ H(t’) - H(t) ≤ (1 +   (t’ -

t) (where t’>t)

– Which forbids jumps in time readings of hardware clocks

• Clock monotonicity: weaker condition of correctness

– t' > t  C(t’) > C(t)

– e.g. required by Unix make

– A hardware clock that runs fast can achieve monotonicity by adjusting the

values of and  such that Ci(t)= Hi(t) + 

• Faulty clock: a clock not keeping its correctness condition

– crash failure - a clock stops ticking

– arbitrary failure - any other failure

• e.g. jumps in time; Y2K bug

1.3.1 Synchronization in a synchronous system

A synchronous distributed system is one in which the following

bounds are defined :
–the time to execute each step of a process has known lower and upper

bounds

–each message transmitted over a channel is

received within a known

bounded time (min and max)

–each process has a local clock whose drift rate from real time has a known

bound

Internal synchronization in a synchronous system

– One process p1 sends its local time t to process p2 in a message m

– p2 could set its clock to t + Ttrans where Ttrans is the time to transmit m

– Ttrans is unknown but min ≤ Ttrans ≤ max

– uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2 10

1.3.2 Cristian‘s method for an asynchronous system

p Time server,S

• A time server S receives signals from a UTC source

– Process p requests time in mr and receives t in mt from S

– p sets its clock to t + Tround/2

– Accuracy ± (Tround/2 - min) :

• because the earliest time S puts t in message mt is min after p sent mr

• the latest time S puts t in message mt was min before mt arrived at p

• the time by S‘s clock when mt arrives is in the range [t+min, t + Tround - min]

• the width of the range is Tround - 2min

mr

mt

Figure 1.2

Tround is the round trip time recorded by p

min is the minimum transmission time

11

12

1.3.3 The Berkeley algorithm

• Problem with Cristian‘s algorithm
– a single time server might fail, so they suggest the

use of a group of synchronized servers

– it does not deal with faulty servers

• Berkeley algorithm (also 1989)
– An algorithm for internal synchronization of a group of computers

– A master polls to collect clock values from the others (slaves)

– The master uses round trip times to estimate the slaves‘ clock values

– It takes an average (eliminating any above some average round trip time

or with faulty clocks)

– It sends the required adjustment to the slaves (better than sending the

time which depends on the round trip time)

– Measurements

• 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

• If master fails, can elect a new master to take over (not in bounded time)

1.3.4 Network Time Protocol (NTP)

• A time service for the Internet - synchronizes clients to UTC

– Reliability from redundant paths, scalable, authenticates time sources

• Architecture

– Primary servers are connected to UTC sources

– Secondary servers are synchronized to primary servers

– Synchronization subnet - lowest level servers in users‘ computers

• strata: the hierarchy level

1

13

2 2

3 3 3

Figure 1.3 An example synchronization subnet in an NTP implementation

14

NTP - synchronization of servers

• The synchronization subnet can reconfigure if failures occur

– a primary that loses its UTC source can become a secondary

– a secondary that loses its primary can use another primary

• Modes of synchronization for NTP servers:

– Multicast

• A server within a high speed LAN multicasts time to others which set

clocks assuming some delay (not very accurate)

– Procedure call

• A server accepts requests from other computers

(like Cristian‘s algorithm)

• Higher accuracy. Useful if no hardware multicast.

– Symmetric

• Pairs of servers exchange messages containing time information

• Used where very high accuracies are needed (e.g. for higher levels)

15

Messages exchanged between a pair of NTP peers

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

• All modes use UDP

• Each message bears timestamps of recent events:
– Local times of Send and Receive of previous message

– Local times of Send of current message

• Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)

• In symmetric mode there can be a non-negligible delay between messages

Figure 1.4

16

Accuracy of NTP

• Estimations of clock offset and message delay
– For each pair of messages between two servers, NTP estimates an offset

oi (between the two clocks) and a delay di (total time for the two

messages, which take t and t‘)

Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t‘ - o

– This gives us (by adding the equations) :

di = t + t‘ = Ti-2 - Ti-3 + Ti - Ti-1

– Also (by subtracting the equations)

o = oi + (t‘ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2

– Using the fact that t, t‘>0 it can be shown that

oi - di /2 ≤ o ≤ oi + di /2 .
• Thus oi is an estimate of the offset and di is a measure of the accuracy

• Data filtering
– NTP servers filter pairs <oi, di>, estimating reliability from variation

(dispersions), allowing them to select peers; and synchronization

based on the lowest dispersion or min di ok
• A relatively high filter dispersion represents relatively unreliable data

– Accuracy of tens of milliseconds over Internet paths (1 ms on LANs)

17

1.4 Logical time and logical clocks

• Instead of synchronizing clocks, event ordering can be used

1. If two events occurred at the same process pi (i = 1, 2, … N) then they

occurred in the order observed by pi, that is order i

2. when a message, m is sent between two processes, send(m) happened

before receive(m)

• Lamport[1978] generalized these two relationships

into the

happened-before relation: e i e'
– HB1: if e i e' in process pi, then e  e'

– HB2: for any message m, send(m)  receive(m)

– HB3: if e  e' and e'  e'', then e  e''

Figure 1.5 Events occurring at three processes

p1

p2

p3

e f

• HB1: ab, cd, ef

• HB2: bc, df

• HB3: abcdf

• a||e: a and e are concurrent (neither ae nor ea)

a b m1

c d
m2

18

Physical

time

19

Lamport‘s logical clocks

• Each process pi has a logical clock Li

– a monotonically increasing software counter

– not related to a physical clock

• Apply Lamport timestamps to events with happened-before

relation
– LC1: Li is incremented by 1 before each event at process pi

– LC2:

(a)when process pi sends message m, it piggybacks t = Li

(b)when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before

timestamping the event receive (m)

a b

c d

e f

m1

m2

e e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply ee‘

1 2

3 4

51

p1

p2

p3

Physical

time

Figure 1.6

L(b)>L(e)

but b||e

20

Totally ordered logical clocks

• Some pairs of distinct events, generated by different processes,

may have numerically identical Lamport timestamps

– Different processes may have same Lamport time

• Totally ordered logical clocks

– If e is an event occurring at pi with local

timestamp Ti, and if e‘ is an event occurring at pj with local

timestamp Tj

– Define global logical timestamps for the events to be (Ti, i) and (Tj, j)

– Define (Ti, i) < (Tj, j) iff

• Ti < Tj or

• Ti = Tj and i < j

– No general physical significance since process identifiers are arbitrary

21

Vector clocks

• Shortcoming of Lamport clocks:

L(e) < L(e') doesn't imply e  e'

• Vector clock: an array of N integers for a system of N processes

– Each process keeps its own vector clock Vi to timestamp local events

– Piggyback vector timestamps on messages

• Rules for updating vector clocks:

– Vi[i] is the number of events that pi has timestamped

– Vi[i] (j≠ i) is the number of events at pj that pi has been affected by VC1:

Initially, Vi[j] := 0 for pi, j=1.. N (N processes)

VC2: before pi timestamps an event, Vi[i] := Vi[i]+1 VC3: pi piggybacks t = Vi

on every message it sends

VC4: when pi receives a timestamp t, it sets Vi[j] := max(Vi[j] , t[j]) for

j=1..N (merge operation)

• Compare vector timestamps
– V=V‘ iff V[j] = V‘[j] for j=1..N

– V<=V‘ iff V[j] <= V‘[j] for j=1..N

– V<V‘ iff V<= V‘ ^ V!=V‘

• Figure 2.7 shows
– af since V(a) < V(f)

– c || e since neither V(c) <= V(e) nor V(e) <= V(c)

Figure 1.7 Vector timestamps for events shown in Figure 1.5

a b

c d

e f

m 1

22

m 2

(1,0,0) (2,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

1.5 Global states

• How do we find out if a particular property is true in a distributed

system? For examples, we will look at:

– Distributed Garbage Collection
– Deadlock Detection

– Termination Detection

– Debugging p 2p1

message

garbage object

object

reference

a. Garbage collection

p 2p1 wait-for

wait-forb. Deadlock

p 2p1

activate

23

passive passivec. Termination

Figure 1.8

Detecting

global

properties

Distributed Garbage Collection

• Objects are identified as garbage when there are no longer

any references to them in the system

• Garbage collection reclaims memory used by those objects

• In figure 1.8a, process p2 has two objects that do not have any

references to other objects, but one object does have a

reference to a message in transit. It is not garbage, but the

other p2 object is

• Thus we must consider communication channels

as well as
object references to determine unreferenced objects

24

Deadlock Detection

• A distributed deadlock occurs when each of a collection of

processes waits for another process to send it a message, and

there is a cycle in the graph of the waits-for relationship

• In figure 1.8b, both p1 and p2 wait for a message from the other,

so both are blocked and the system cannot continue

25

Termination Detection

• It is difficult to tell whether a distributed algorithm has
terminated. It is not enough to detect whether each process

has halted

•In figure 1.8c, both processes are in

passive mode, but
there is an activation request in the network

•Termination detection examines multiple states like deadlock

detection, except that a deadlock may affect only a portion of

the processes involved, while termination detection must

ensure that all of the processes have completed

26

27

Distributed Debugging

• Distributed processes are complex to debug. One of many

possible problems is that consistency restraints must be

evaluated for simultaneous attribute values in multiple

processes at different instants of time (Section 1.6)

• All four of the distributed problems discussed in this section

have particular solutions, but all of them also illustrate the

need to observe global states. We will now look at a

general approach to observing global states

28

1.5.1 Global states and consistent cuts

• Without global time identified by perfectly synchronized clocks, the ability to

identify successive states in an individual process does not translate into the

ability to identify successive states in distributed processes

• We can assemble meaningful global states from local states recorded at

different local times in many circumstances, but must do so carefully and

recognize limits to our capabilities

• A general system P of N processes pi (i=1..N)
– pi‘s history: history(pi)=hi=<ei , ei , ei , …>

0 1 2

– finite prefix of pi‘s history: hi
k= <ei

0, ei
1, ei , …, ei >2 k

– state of pi immediately before the kth event occurs: si
k

– global history H=h1 U h2 U…U hN

– A cut of the system‘s execution is a subset of its global history that is a union of prefix

of process histories C=h1 U h2 U…U hN
c1 c2 cN

– A cut C is consist if, for each event it contains, it also contains all the events that

happened-before that event: For all events eC, f  e  fC
– A consistent global state is one that corresponds to a consistent cut

29

Figure 1.9 Cuts

m1 m2

p2
Physical

time

Consistent cut

Inconsistent cut

• Figure 2.9 gives an example of an inconsistent cutic and a consistent cutcc.

The distinguishing characteristic is that

– cutic includes the receipt of message m1 but not the sending of it, while

– cutcc includes the sending and receiving of m1 and cuts between the sending and

receipt of the message m2.

• A consistent cut cannot violate temporal causality by implying that a result

occurred before its cause, as in message m1 being received before the cut

and being sent after the cut.

e
0

e
1

e
2

e
3

1 1 1 1

p1

2 2e
0

e
1

2e
2

30

1.5.2 Global state predicates

• A Global State Predicate is a function that maps from the

set of global process states to True or False.

• Detecting a condition like deadlock or termination requires

evaluating a Global State Predicate.

• A Global State Predicate is stable: once a system enters a

state where it is true, such as deadlock or termination, it

remains true in all future states reachable from that state.

However, when we monitor or debug an application, we are

interested in non stable predicates.

31

1.5.3 The Snapshot Algorithm

• Chandy and Lamport defined a snapshot algorithm to determine global

states of distributed systems

• The goal of a snapshot is to record a set of process and channel states (a

snapshot) for a set of processes so that, even if the combination of recorded

states may not have occurred at the same time, the recorded global state is

consistent

– The algorithm records states locally; it does not gather global states at one site.

• The snapshot algorithm has some assumptions

– Neither channels nor processes fail

– Reliable communications ensure every message sent is received exactly once

– Channels are unidirectional

– Messages are received in FIFO order

– There is a path between any two processes

– Any process may initiate a global snapshot at any time

– Processes may continue to function normally during a snapshot

32

Snapshot Algorithm

• For each process, incoming channels are those which other processes can

use to send it messages. Outgoing channels are those it uses to send

messages. Each process records its state and for each incoming channel

a set of messages sent to it. The process records for each channel, any

messages sent after it recorded its state and before the sender recorded

its own state. This approach can differentiate between states in terms of

messages transmitted but not yet received

• The algorithm uses special marker messages, separate from other

messages, which prompt the receiver to save its own state if it has not

done so and which can be used to determine which messages to include

in the channel state.

•The algorithm is determined by two rules

– The marker receiving rule

– The marker sending rule

• Figure 14.10 shows the algorithm

33

Figure 1.10 Chandy and Lamport‘s

‗snapshot‘ algorithm

Marker receiving rule for process pi

On pi’s receipt of a marker message over channel c: if (pi has not yet recorded

its state) it

records its process state now;

records the state of c as the empty set;

turns on recording of messages arriving over other incoming channels;

else

pi records the state of c as the set of messages it has received over c

since it saved its state.

end if

Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c: pi sends one

marker message over c

(before it sends any other message over c).

34

Example

• Figure 1.11 shows an initial state for two processes.

• Figure 1.12 shows four successive states reached and

identified after state transitions by the two processes.

• Termination: it is assumed that all processes will have

recorded their states and channel states a finite time

after some process initially records its state.

35

1 2
(empty)<$1000, 0> p p <$50, 2000>

(empty)

c2

c1

1. Global state S0

2. Global state S1

3. Global state S2

4. Global state S3

1 2<$900, 0> p p <$50, 2000>

(empty)

c2 (Order 10, $100), M

c1

p1 p2<$900, 0> <$50, 1995>

(five widgets)

c2 (Order 10, $100), M

c1

1 2
(Order 10, $100)<$900, 5> p p <$50, 1995>

(empty)

c2

c1

(M = marker message)

p1 p2
c2

c1

account widgets

$1000 (none)

account widgets

$50 2000

Figure 1.12 Execution of

processes in Figure 2.11

Figure 1.11 Two processes and their initial states

36

Characterizing a state

Sinit Sfinal

Ssnap

• A snapshot selects a consistent cut from the history of the execution.

Therefore the state recorded is consistent. This can be used in an

ordering to include or exclude states that have or have not recorded their

state before the cut. This allows us to distinguish events as pre-snap or

post-snap events.

• The reachability of a state (figure 1.13) can be used to determine stable

predicates.

actual execution e0,e1,...

recording

begins
recording

ends

pre-snap: e'0,e'1,...e'R-1 post-snap: e' ,e'R R+1,...

Figure 2.13 Reachability between states in the snapshot algorithm

Chapter2

Coordination and Agreement

2

Chapter 2 Coordination and Agreement

1. Introduction

2. Distributed mutual exclusion
– A central server algorithm

– A ring-based algorithm

– An algorithm using multicast and logic clocks

– Maekawa‘s voting algorithm

3. Elections
– A ring-based election algorithm

– The bully election algorithm

4. Multicast communication
– Basic multicast

– Reliable multicast: total, FIFO and causal ordering

5. Consensus and related problems (agreement)
– Consensus, Byzantine Generals and interactive consensus

6. Summary

3

• Fundamental issue: for a set of processes, how to coordinate

their actions or to agree on one or more values?

– even no fixed master-slave relationship between the components

• Further issue: how to consider and deal with failures when

designing algorithms

• Topics covered

– mutual exclusion

– how to elect one of a collection of processes to perform a special role

– multicast communication

– agreement problem: consensus and byzantine agreement

2.1 Introduction

4

Failure Assumptions and Failure Detectors

• Failure assumptions of this chapter
– Reliable communication channels

– Processes only fail by crashing unless state otherwise

• Failure detector: object/code in a process that detects failures

of other processes

• unreliable failure detector
– One of two values: unsuspected or suspected

• Evidence of possible failures

– Example: most practical systems

• Each process sends ―alive/I‘m here‖ message to everyone else

• If not receiving ―alive‖ message after timeout, it‘s suspected

– maybe function correctly, but network partitioned

• reliable failure detector
– One of two accurate values: unsuspected or failure

– few practical systems

5

2.2 Distributed Mutual Exclusion

• Process coordination in a multitasking OS
– Race condition: several processes access and manipulate the same data

concurrently and the outcome of the execution depends on the particular

order in which the access take place

– critical section: when one process is executing in a critical section, no

other process is to be allowed to execute in its critical section

– Mutual exclusion: If a process is executing in its critical section, then no

other processes can be executing in their critical sections

• Distributed mutual exclusion
– Provide critical region in a distributed environment

– message passing

for example, locking files, lockd daemon in UNIX (NFS is stateless, no file-

locking at the NFS level)

6

Algorithms for distributed mutual exclusion

• Problem: an asynchronous system of N processes
– processes don't fail

– message delivery is reliable; not share variables

– only one critical region

– application-level protocol: enter(), resourceAccesses(), exit()

• Requirements for mutual exclusion
– Essential

• [ME1] safety: only one process at a time

• [ME2] liveness: eventually enter or exit

– Additional

• [ME3] happened-before ordering: ordering of enter() is the same as HB ordering

• Performance evaluation
– overhead and bandwidth consumption: # of messages sent

– client delay incurred by a process at entry and exit

– throughput measured by synchronization delay: delay between one's exit

and next's entry

7

A central server algorithm

• server keeps track of a token---permission to enter critical

region
– a process requests the server for the token

– the server grants the token if it has the token

– a process can enter if it gets the token, otherwise waits

– when done, a process sends release and exits

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p3p2

p1

Figure 2.1 Server managing a mutual exclusion token for a set of processes

8

A central server algorithm: discussion

• Properties

– safety, why?

– liveness, why?

– HB ordering not guaranteed, why?

• Performance

– enter overhead: two messages (request and grant)

– enter delay: time between request and grant

– exit overhead: one message (release)

– exit delay: none

– synchronization delay: between release and grant

– centralized server is the bottleneck

A ring-based algorithm

• Arrange processes in a logical ring to rotate a token
– Wait for the token if it requires to enter the critical section
– The ring could be unrelated to the physical configuration

• pi sends messages to p(i+1) mod N

– when a process requires to enter the critical section, waits for the token
– when a process holds the token

• If it requires to enter the critical section, it can enter
– when a process releases a token (exit), it sends to its neighbor

p
n

9

p
2

p
3

p
4

Token

• If it doesn‘t, just immediately forwards the token to its neighbor

p
1

Figure 2.3 A ring of

processes transferring a

mutual exclusion token

10

A ring-based algorithm: discussion

• Properties

– safety, why?

– liveness, why?

– HB ordering not guaranteed, why?

• Performance

– bandwidth consumption: token keeps circulating

– enter overhead: 0 to N messages

– enter delay: delay for 0 to N messages

– exit overhead: one message

– exit delay: none

– synchronization delay: delay for 1 to N messages

11

An algorithm using multicast and logical clocks

P3

34

Reply

34

41

• Multicast a request message for the token (Ricart and Agrawala [1981])
– enter only if all the other processes reply

– totally-ordered timestamps: <T, pi >

• Each process keeps a state: RELEASED, HELD, WANTED
– if all have state = RELEASED, all reply, a process can hold the token and enter

– if a process has state = HELD, doesn't reply until it exits
– if more than one process has state = WANTED,

process with the lowest timestamp will get all N-1 replies first

41

41

34

P1

P2

Reply
Reply

Figure 2.5 Multicast synchronization

On initialization
state := RELEASED;

To enter the section state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));

state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi))) then
queue request from pi without replying;
else

reply immediately to pi; end if
To exit the critical section
state := RELEASED;

reply to any queued requests;

Figure 2.4 Ricart and Agrawala‘s algorithm

12

13

An algorithm using multicast: discussion

• Properties
– safety, why?

– liveness, why?

– HB ordering, why?

• Performance

– bandwidth consumption: no token keeps circulating

– entry overhead: 2(N-1), why? [with multicast support: 1 + (N -

1) = N]

– entry delay: delay between request and getting all replies

– exit overhead: 0 to N-1 messages

– exit delay: none

– synchronization delay:delay for 1 message

(one last reply from the previous holder)

14

Maekawa‘s voting algorithm

•Observation: not all peers to grant it access
–Only obtain permission from subsets, overlapped by any two processes

•Maekawa‘s approach
–subsets Vi,Vj for process Pi, Pj

• Pi Vi, Pj  Vj

• Vi  Vj  , there is at least one common member

• subset |Vi|=K, to be fair, each process should have the same size

–Pi cannot enter the critical section until it has received all K reply messages

–Choose a subset
• Simple way (2N): place processes in a N by N matrix and let Vi be the union of the

row and column containing Pi

• Optimal (N): non-trivial to calculate (skim here)

–Deadlock-prone
• V1={P1, P2}, V2={P2, P3}, V3={P3, P1}

• If P1, P2 and P3 concurrently request entry to the critical section, then its possible that

each process has received one (itself) out of two replies, and none can proceed

• adapted and solved by [Saunders 1987]

15

Figure 2.6 Maekawa‘s algorithm

On initialization

state := RELEASED;

voted := FALSE;

For pi to enter the critical section state :=

WANTED;

Multicast request to all processes in Vi; Wait

until (number of replies received = K); state :=

HELD;

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)

then

queue request from pi without replying;

else

send reply to pi; voted := TRUE;

end if

For pi to exit the critical section state :=

RELEASED;

Multicast release to all processes in Vi;

On receipt of a release from pi at pj if

(queue of requests is non-empty) then

remove head of queue – from pk, say; send

reply to pk;

voted := TRUE;

else

voted := FALSE;

end if

16

2.3 Elections

• Election: choosing a unique process for a particular role
– All the processes agree on the unique choice

– For example, server in dist. mutex

• Assumptions
– Each process can call only one election at a time

– multiple concurrent elections can be called by different processes

– Participant: engages in an election
• each process pi has variable electedi = ?  (don't know) initially

• process with the largest identifier wins
– The (unique) identifier could be any useful value

• Properties
– [E1] electedi of a ―participant‖ process must be P (elected process=largest

id) or  (undefined)

– [E2] liveness: all processes participate and eventually set electedi !=  (or

crash)

• Performance
– overhead (bandwidth consumption): # of messages

– turnaround time: # of messages to complete anelection

17

A ring-based election algorithm

• Arrange processes in a logical ring
– pi sends messages to p(i+1) mod N

– It could be unrelated to the physical configuration
– Elect the coordinator with the largest id
– Assume no failures

• Initially, every process is a non-participant. Any process can call
an election
– Marks itself as participant
– Places its id in an election message
– Sends the message to its neighbor
– Receiving an election message

• if id > myid, forward the msg, mark participant

• if id < myid
– non-participant: replace id with myid: forward the msg, mark participant
– participant: stop forwarding (why? Later, multiple elections)

• if id = myid, coordinator found, mark non-participant, electedi := id, send elected

message with myid

– Receiving an elected message
• id != myid, mark non-participant, electedi := id forward the msg

• if id = myid, stop forwarding

Figure 2.7 A ring-based election in progress

• Receiving an election message:
– if id > myid, forward the msg, mark

participant

– if id < myid
• non-participant: replace id with myid:

forward the msg, mark participant
• participant: stop forwarding (why?

Later, multiple elections)

– if id = myid, coordinator found,
mark non-participant, electedi := id,
send elected message with myid

• Receiving an elected message:
– id != myid, mark non-participant,

electedi := id forward the msg24

18

15

9

4

3

28

17

24

1

– if id = myid, stop forwarding

Note: The election was started by

process 17.

The highest process identifier

encountered so far is 24.

Participant processes are shown

19

A ring-based election algorithm: discussion

• Properties
– safety: only the process with the largest id

can send an

elected message

– liveness: every process in the ring eventually

participates in the election; extra elections are stopped

• Performance
– one election, best case, when?

• N election messages

• N elected messages

• turnaround: 2N messages

– one election, worst case, when?
• 2N - 1 election messages

• N elected messages

• turnaround: 3N - 1 messages

– can't tolerate failures, not very practical

– Coordinator: announce the identity of the elected process

20

The bully election algorithm

• Assumption
– Each process knows which processes have higher

identifiers, and that it can communicate with all such

processes

• Compare with ring-based election

– Processes can crash and be detected by timeouts

• synchronous• timeout T = 2Ttransmitting Tprocessing(max transmission delay) + (max

processing delay)

• Three types of messages

– Election: announce an election

– Answer: in response to Election

– set electedi to the new coordinator

21

The bully election algorithm: howto

• Start an election when detect the coordinator has failed or
begin to replace the coordinator, which has lower identifier
– Send an election message to all processes with higher id's and waits for

answers (except the failed coordinator/process)
• If no answers in time T

– Considers it is the coordinator
– sends coordinator message (with its id) to all processes with lower id's

• else
– waits for a coordinator message and starts an election if T‘ timeout

– To be a coordinator, it has to start an election
• A higher id process can replace the current coordinator (hence ―bully‖)

– The highest one directly sends a coordinator message to all process with lower identifiers

• Receiving an election message
– sends an answer message back
– starts an election if it hasn't started one—send election messages to all

higher-id processes (including the ―failed‖ coordinator—the coordinator
might be up by now)

• Receiving a coordinator message

22

Figure 2.8 The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C

election

election

Stage 2

p
1

p
3

p
4

C

election

answer
p
2

answer

election
Stage 1

timeout

Stage 3

Eventually.....
coordinator

C

Stage 4

p
1

pp
2 3

p
4

election

answer

The election of coordinator p2, after the failure of p4 and then p3

23

The bully election algorithm: discussion

• Properties
– safety:

• a lower-id process always yields to a higher-id process

• However, it‘s guaranteed
– if processes that have crashed are replaced by processes with the same identifier since

message delivery order might not be guaranteed and

– failure detection might be unreliable

– liveness: all processes participate and know the coordinator at the end

• Performance
– best case: when?

• overhead: N-2 coordinator messages

• turnaround delay: no election/answer messages

– worst case: when?
• overhead:

• 1+ 2 + ...+ (N-2) + (N-2)= (N-1)(N-2)/2 + (N-2) election messages,

• 1+...+ (N-2) answer messages,

• N-2 coordinator messages,

• total: (N-1)(N-2) + 2(N-2) = (N+1)(N-2) = O(N2)

– turnaround delay: delay of election and answer messages

24

2.4 Multicast Communication

• Group (multicast) communication: for each of a group of

processes to receive copies of the messages sent to the group,

often with delivery guarantees

– The set of messages that every process of the group should receive

– On the delivery ordering across the group members

• Challenges
– Efficiency concerns include minimizing overhead activities and increasing

throughput and bandwidth utilization

– Delivery guarantees ensure that operations are completed

• Types of group
– Static or dynamic: whether joining or leaving is considered

– Closed or open
• A group is said to be closed if only members of the group can multicast to it. A

process in a closed group sends to itself any messages to the group

• A group is open if processes outside the group can send to it

25

Reliable Multicast

• Simple basic multicasting (B-multicast) is sending a message

to every process that is a member of a defined group

– B-multicast(g, m) for each process p  group g, send(p, message m)

– On receive(m) at p: B-deliver(m) at p

• Reliable multicasting (R-multicast) requires these properties

– Integrity: a correct process sends a message to only a member of

the group and does it only once

– Validity: if a correct process

sends a message, it will eventually

be delivered

– Agreement: if a message is delivered

to a correct process, all other

correct processes in the group will deliver it

26

Figure 2.10 Reliable multicast algorithm

Implementing reliable R-multicast over B-multicast
–When a message is delivered, the receiving process multicasts it
–Duplicate messages are identified (possible by a sequence number) and not

delivered

27

Types of message ordering

•Three types of message ordering
–FIFO (First-in, first-out) ordering: if a correct process delivers a

message before another, every correct process will deliver the first

message before the other

–Casual ordering: any correct process that delivers the second message

will deliver the previous message first

–Total ordering: if a correct process delivers a message before another,

any other correct process that delivers the second message will deliver

the first message first

•Note that
–FIFO ordering and casual ordering are only partial orders

–Not all messages are sent by the same sending process

–Some multicasts are concurrent, not able to be ordered by happened-

before

–Total order demands consistency, but not a particular order

Figure 2.12 Total, FIFO and causal ordering of

multicast messages

Notice

•the consistent ordering

of totally ordered

messages T1 and T2,

•the FIFO-related

messages F1 and F2 and

•the causally related

messages C1 and C3

– and

•the otherwise arbitrary

delivery ordering of

messages

F3

F1

F2

T2

T1

P1 P2 P3

Time

C3

C1

C2

Note that T1 and T2 are

delivered in opposite

order to the physical time

of message creation
28

29

Bulletin board example (FIFO ordering)
• A bulletin board such as Web Board at NJIT illustrates the desirability of consistency

and FIFO ordering. A user can best refer to preceding messages if they are delivered in

order. Message 25 in Figure 2.13 refers to message 24, and message 27 refers to

message 23.

• Note the further advantage that Web Board allows by permitting messages to begin

threads by replying to a particular message. Thus messages do not have to be

displayed in the same order they are delivered

Bulletin board:os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27

end

M.Walker Re: Mach

Figure 2.13 Display from bulletin board program

30

Implementing total ordering

• The normal approach to total ordering is to assign totally ordered

identifiers to multicast messages, using the identifiers to make ordering

decisions.

• One possible implementation is to use a sequencer process to assign

identifiers. See Figure 2.14. A drawback of this is that the sequencer can

become a bottleneck.

• An alternative is to have the processes collectively agree on identifiers. A

simple algorithm is shown in Figure 2.15.

Figure 2.14 Total ordering using a sequencer

31

32

Figure 2.15 The ISIS algorithm for total ordering

identified by i

2

1

1

2

1 Message
P2

P3

Algorithm for process p to multicast a message m to group g

1.p B-multicasts <m, i> to g, where i is a unique identifier for m

2.Each process q replies to the sender p with a proposal for the message‘s agreed

sequence number of Pq :=Max(Aq , Pq)+1
g g g

3.p collects all the proposed sequence numbers and selects the largest one a as the

next agreed sequence number. It then B-multicasts <i, a> to g.
4.Each process q in g sets Aq := Max(Aq ,a)

and attaches a to the message
g g

P1

P4

3 Agreed Sequence

3

3
2

Each process q in group g keeps

• Aq : the largest agreedg

sequence number it has

observed so far for the group g

• Pq : its own largest proposedg

sequence number

Implementing casual ordering

• Causal ordering using vector timestamps (Figure 2.16)
– Only orders multicasts, and ignores one-to-one messages between

processes

– Each process updates its vector timestamp before delivering a

message to maintain the count of precedent messages

Figure 2.16 Causal ordering

using vector timestamps

33

34

2.5 Consensus and related problems

• Problems of agreement

– For processes to agree on a value (consensus) after one or more of the

processes has proposed what that value should be

– Covered topics: byzantine generals, interactive

consistency, totally ordered multicast

• The byzantine generals problem: a decision

whether multiple armies should

attack or retreat, assuming that united action will be more successful than some attacking

and some retreating

• Another example might be space ship controllers deciding whether to proceed or

abort. Failure handling during consensus is a key concern

• Assumptions

– communication (by message passing) is reliable

– processes may fail

• Sometimes up to f of the N processes are faulty

Consensus Process

1

P3 (crashes)

P1 P2

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

1. Each process pi begins in an undecided state and proposes a single value

vi, drawn from a set D (i=1…N)

2. Processes communicate with each other, exchanging values

3. Each process then sets the value of a decision variable di and enters the

decided state

d1:=proceed d2:=proceed

35

Figure 2.17 Consensus

for three processes

Two processes propose ―proceed.‖

One proposes ―abort,‖ but then

crashes. The two remaining

processes decide proceed.

36

Requirements for Consensus

• Three requirements of a consensus algorithm

– Termination: Eventually every correct process sets its decision variable

– Agreement: The decision value of all correct processes is the same: if pi

and pj are correct and have entered the decided state, then di=dj (i,j=1,2,

…, N)

– Integrity: If the correct processes all proposed the same value, then any

correct process in the decided state has chosen that value

37

The byzantine generals problem

• Problem description
– Three or more generals must agree to attack or to retreat

– One general, the commander, issues the order

– Other generals, the lieutenants, must decide to attack or retreat

– One or more generals may be treacherous
• A treacherous general tells one general to attack and another to retreat

• Difference from consensus is that a single process supplies the

value to agree on

• Requirements
– Termination: eventually each correct process sets its decision variable

– Agreement: the decision variable of all correct processes is the same

– Integrity: if the commander is correct, then all correct processes agree on

the value that the commander has proposed (but the commander need

not be correct)

38

The interactive consistency problem

• Interactive consistency: all correct processes agree on a vector

of values, one for each process. This is called the decision

vector

– Another variant of consensus

• Requirements

– Termination: eventually each correct process sets its decision variable

– Agreement: the decision vector of all correct processes is the same

– Integrity: if any process is correct, then all correct processes decide the

correct value for that process

39

Relating consensus to other problems

• Consensus

Consensus

(C), Byzantine Generals (BG), and Interactive

(IC) are all problems concerned with making

decisions in the context of arbitrary or crash failures

•We can sometimes generate solutions for one problem in terms

of another. For example
– We can derive IC from BG by running BG N times, once for each process

with that process acting as commander

– We can derive C from IC by running IC to produce a vector of values at

each process, then applying a function to the vector‘s values to derive a

single value.

– We can derive BG from C by

• Commander sends proposed value to itself and each remaining process

• All processes run C with received values

• They derive BG from the vector of C values

Consensus in a Synchronous System

Figure 2.18 Consensus

in a synchronous system

40

• Up to f processes may have crash failures, all failures occurring during f+1 rounds.

During each round, each of the correct processes multicasts the values among

themselves

• The algorithm guarantees all surviving correct processes are in a position to agree

• Note: any process with f failures will require at least f+1 rounds to agree

41

Limits for solutions to Byzantine Generals

• Some cases of the Byzantine Generals problems have no

solutions

– Lamport et al found that if there are only 3 processes, there is no solution

– Pease et al found that if the total number of processes is less than three

times the number of failures plus one, there is no solution

• Thus there is a solution with 4 processes and 1 failure, if there

are two rounds

– In the first, the commander sends the values

– while in the second, each lieutenant sends the values it received

Figure 2.19 Three Byzantine generals

p1(Commander)

1:v1:v

p1(Commander)

1:x

42

1:w

2:1:v 2:1:w

p2 p3 p2 p3

3:1:u 3:1:x

Faulty processes are shown coloured

Figure 2.20 Four Byzantine generals

p1(Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

Faulty processes are shown coloured

p4

1:v

2:1:v 3:1:w

4:1:v 4:1:v

p1(Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

2:1:u 3:1:w

4:1:v 4:1:v

43

44

Asynchronous Systems

• All solutions to consistency and Byzantine generals problems

are limited to synchronous systems

• Fischer et al found that there are no solutions in an

asynchronous system with even one failure

• This impossibility is circumvented by masking faults or using

failure detection

• There is also a partial solution, assuming an adversary

process, based on introducing random values in the process to

prevent an effective thwarting strategy. This does not always

reach consensus

UNIT 3

Inter Process Communication

2

Chapter 1 Remote Invocation

1. Introduction

2. Request-reply protocols

3. Remote procedure call

4. Remote method invocation

5. Case study: Java RMI

6. Summary

3

• Programming Models for Distributed Communications

– Request-reply protocols: message passing in

client-server computing

– Remote Procedure Calls – Client programs call

procedures in server programs

– Remote Method Invocation – Objects invoke

methods of objects on distributed hosts

– Event-based Programming Model – Objects receive notice of

events in other objects in which they have interest

1.1 Introduction

Middleware

• Middleware: software that allows a level of programming

beyond processes and message passing
– Uses protocols based on messages between

processes to provide its higher-level abstractions

such as remote invocation and events

– Supports location transparency

– Usually uses an interface definition language (IDL) to define interfaces

Figure 1.1 Middleware Layer

Applications, services

Middleware
layers

UDP and TCP (Operating System)

RMI, RPC and events

(Remote invocation, indirect communication)

Underlying IPC primitives:

sockets, message passing, multicast, overlay networks

Interface

4

1.2 Request-reply Protocols

Figure 1.2 Request-reply communication

Client Server

doOperation

(wait)

(continuation)

Reply

message

Request

message getRequest

select object

execute

method

sendReply

•Typical client-server interaction Usually

synchronous, reliable

•Three operations:

client: doOperation

server: getRequest, sendReply
5

Operations of the request-reply protocol

Figure 1.3

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)

sends a request message to the remote server and returns the reply.

The arguments specify the remote server, the operation to be invoked and

the arguments of that operation.

public byte[] getRequest ();

acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);

sends the reply message reply to the client at its Internet address and port.

Figure 1.4 Request-reply message structure

messageType

requestId

remoteReference

operationId

arguments

int (0=Request, 1= Reply)

int

RemoteRef

int or Operation array of

bytes

Figure 1.5 RPC exchange protocols

R

RR

RR

A

Request

Request

Request

Reply

Reply Acknowledge reply

Client Server Client

Name Messages sent by

• R protocol: used when no value to be returned and the client requiring no

confirmation that the operation has been executed

• RR protocol: used for most client-server exchanges

• RRA protocol: The Acknowledge reply message contains the requestId from the

reply message being acknowledged to enable the server to discard entries from

its history

HTTP/1.1 200 OK resource data

Figure 1.7 HTTP Reply message

HTTP version status code reason headers message body

GET //www.dcs.qmw.ac.uk/index.html HTTP/ 1.1

URL or pathnamemethod HTTP version headers message body

Figure1.6 HTTP Request message

http://www.dcs.qmw.ac.uk/index.html

10

1.3 Remote Procedure Call

In RPC, procedures on remote machines can be called as if they

are procedures in the local address space.

1.3.1 Design Issues for RPC

• Three issues
– Interfaces

– Call semantics: Three main choices to provide different delivery guarantees
• Retry request messages: Controls whether to retransmit the request message until

either a reply is received or the server is assumed to have failed

• Duplicate filtering: Controls when retransmissions are used and whether to filter out

duplicate requests at the server

• Retransmission of results: Controls whether to keep a history of result messages

to enable lost results to be retransmitted without re-executing the operations at the server

– Transparency
• Remote calls should be made transparent in the sense that the syntax of a remote

call is the same as that of a local invocation, but differently expressed in their

interfaces

11

Interfaces

• Interfaces in Programming Languages
– Current PL allow programs to be developed as a set of modules that communicate with

each other. Permitted interactions between modules are defined by interfaces

– A specified interface can be implemented by different modules without the need to

modify other modules using the interface

• Interfaces in Distributed Systems
– When modules are in different processes or on different hosts there are limitations on

the interactions that can occur. Only actions with parameters that are fully specified and

understood can communicate effectively to request or provide

services to modules in another process

– A service interface allows a client to request and a server to provide particular services

– A remote interface allows objects to be passed as arguments to and results from

distributed modules

• Object Interfaces
– An interface defines the signatures of a set of methods, including arguments, argument

types, return values and exceptions. Implementation details are not included in an

interface. A class may implement an interface by specifying behavior for each method

in the interface. Interfaces do not have constructors

12

Invocation Semantics

• Error handling for delivery guarantees
– Retry request message: whether to retransmit the request message until

either a reply is received or the server is assumed to have failed
– Duplicate filtering: when retransmissions are used,

whether to filter out duplicate requests at the server
– Retransmission of results: whether to keep a history of result messages to

enable lost results to be retransmitted without re-executing the operations

• Choices of invocation semantics
– Maybe: the method executed once or not at all (no retry nor retransmit)
– At-least-once: the method executed at least once

– At-most-once: the method executed exactly once

Fault tolerance measures Invocation

semanticsRetransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply

Maybe

At-least-

once At-

most-onceFigure 1.9 Invocation semantics: choices of interest

13

1.3.2 Implementation of RPC

• client: "stub" instead of "proxy" (same function, different names)
– local call, marshal arguments, communicate the request

• server:
– dispatcher

– "stub": unmarshal arguments, communicate the results back

Request

Reply

CommunicationCommunication

module module dispatcher

client stub
procedure

server stub
procedure

client process server process

service

procedure
client
program

Figure 1.10 Role of client and server stub procedures in RPC

in the context of a procedural language

14

1.3.3 Case Study: Sun RPC

•Sun RPC: client-server in the SUN NFS (network file system)
–UDP or TCP; in other unix OS as well
–Also called ONC (Open Network Computing) RPC

•Interface Definition Language (IDL)
–initially XDR is for data representation, extended to be IDL
–less modern than CORBA IDL and Java

• program numbers instead of interface names
• procedure numbers instead of procedure names
• single input parameter (structs)

–rpcgen: compiler for XDR
• client stub; server main procedure, dispatcher, and server stub
• XDR marshalling, unmarshaling

•Binding (registry) via a local binder - portmapper
–Server registers its program/version/port numbers with portmapper

–Clientcontacts the portmapper at a fixed port with
program/version numbers to get the server port

–Different instances of the same service can be run on different computers at
different ports

•Authentication
–request and reply have additional fields
– unix style (uid, gid), shared key for signing, Kerberos

Figure 1.11 Files interface in Sun XDR

const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data { int length;

char buffer[MAX];

};

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data;

};

struct readargs { FileIdentifier f;

FilePointer position; Length

length;

};

program FILEREADWRITE {

version VERSION {

void WRITE(writeargs)=1; 1

Data READ(readargs)=2; 2

}=2;

} = 9999;

15

16

1.4 Remote Method Invocation

Commonalities between RMI and RPC

•Both support programming with interfaces

•Both typically constructed on top of request-reply protocols and

can offer a range of call semantics such as at-least-once and at-

most-once

•Both offer a similar level of transparency

Differences between RMI and RPC

•Object-oriented

•All objects in an RMI-based system have (global) unique object

references, such object references can be passed as

parameters, thus offering significantly richer parameter-passing

semantics than in RPC

17

1.4.1 Design Issues for RMI

Five Parts of the Object Model

–An object-oriented program consists of a collection of interacting objects

• Objects consist of a set of data and a set of methods

• In DS, object‘s data should be accessible only via methods

•Object References

– Objects are accessed by object references

– Object references can be assigned to variables,

passedas arguments, and returned as the result of a method

– Can also specify a method to be invoked on that object

•Interfaces

– Provide a definition of the signatures of a set of methods without

specifying their implementation

– Define types that can be used to declare the type of variables or of the

parameters and return values of methods

18

The Object Model (Cont.)

•Actions
– Objects invoke methods in other objects

– An invocation can include additional information as arguments to perform

the behavior specified by the method

– Effects of invoking a method
1. The state of the receiving object may be changed

2. A new object may be instantiated

3. Further invocations on methods in other objects may occur

4. An exception may be generated if there is a problem encountered

•Exceptions
– Provide a clean way to deal with unexpected events or errors

– A block of code can be defined to throw an exception when errors or

unexpected conditions occur. Then control passes to code that catches

the exception

•Garbage Collection
– Provide a means of freeing the space that is no longer needed

– Java (automatic), C++ (user supplied)

19

Distributed Objects

• Physical distribution of objects into different processes or

computers in a distributed system
– Object state consists of the values of its instance variables

– Object methods invoked by remote method invocation (RMI)

– Object encapsulation: object state accessed only by the object methods

• Usually adopt the client-server architecture
– Basic model

• Objects are managed by servers and

• Their clients invoke their methods using RMI

– Steps
1.The client sends the RMI request in a message to the server

2.The server executes the invoked method of the object

3.The server returns the result to the client in another message

– Other models
• Chains of related invocations: objects in servers may become clients of objects in

other servers

• Object replication: objects can be replicated for fault tolerance and performance

• Object migration: objects can be migrated to

enhancing performance andavailability

The Distributed Object Model

– Each process contains objects, some of which can receive remote

invocations are called remote objects (B, F), others only local invocations

– Objects need to know the remote object reference of an object in another

process in order to invoke its methods, called remote method invocations

– Every remote object has a remote interface that

specifies which of its methods can be invoked remotely

20

invocation

remote

invocation
remote

invocation

local

invocation

local

invocation

A
B

C

local

D

E

F

Figure 1.12 Remote and local method invocations

Two fundamentalconcepts: Remote Object

Remote InterfaceReference and

21

Five Parts of Distributed Object Model

remote

interface
m1

m2

m3

m4
m5
m6

Data

• Remote Object References
– accessing the remote object

– identifier throughout a distributed system

– can be passed as arguments

• Remote Interfaces
– specifying which methods can be invoked remotely

– name, arguments, return type

– Interface Definition Language (IDL) used for defining remote interface

remote object

{
implementation

of methods

Figure 1.13 A Remote Object and Its remote Interface

22

Five Parts of Distributed Object Model (cont.)

C

NM

Kremote
invocation

remote
invocation

• Actions
– An action initiated by a method invocation may result in further invocations

on methods in other objects located in difference processes or computers

– Remote invocations could lead to the instantiation of

new objects, ie. objects M and N of Figure 1.5

• Exceptions
– More kinds of exceptions: i.e. timeout exception

• RMI should be able to raise exceptions such as timeouts that are due to distribution

as well as those raised during the execution of the method invoked

• Garbage Collection
• Distributed garbage collections is generally achieved by cooperation between the

existing local garbage collector and an added module that carries out a form of

distributed garbage collection, usually based on reference counting

L

instantiate instantiate

Figure 1.14 Instantiating Remote Objects

23

Design Issues for RMI

• Two design issues that arise in extension of local

method invocation for RMI

– The choice of invocation semantics

cannot• Although local invocations are executed exactly once, this

always be the case for RMI due to transmission error

– Either request or reply message may be lost

– Either server or client may be crashed

–The level of transparency

• Make remote invocation as much like local invocation as

possible

24

RMI Design Issues: Transparency

• Transparent remote invocation: like a local call
– marshalling/unmarshalling
– locating remote objects
– accessing/syntax

• Differences between local and remote invocations
– latency:a remote invocation is usually severalorder of

magnitude greater than that of a local one
– availability: remote invocation is more likely to fail
– errors/exceptions: failure of the network? server? hard to tell

• syntax might need to be different to handle different local vs remote
errors/exceptions (e.g. Argus)

– consistency on the remote machine:
• Argus: incomplete transactions, abort, restore states [as if the call was

never made]

25

1.4.2 Implementation of RMI

–Two cooperating communication modules carry out the request-reply
protocols: message type, requestID, remote object reference
• Transmit request and reply messages between client and server
• Implement specific invocation semantics

– The communication module in the server
• selects the dispatcher for the class of the object to be invoked,
• passes on local reference from remote reference module,
• returns request

Request

Reply

Remote Communication Communication
modulemodulereference module

remote
object B

client

object A proxy for B

server

skeleton

&
dispatcher
for B‘s
class

servant

Remote reference
module

Figure 1.15 Role of proxy and skeleton in RMI

•Communication module

Implementation of RMI (cont.)

• Remote reference module
– Responsible for translating between local and remote object references

and for creating remote object references

– remote object table: records the correspondence

between local and remote object references
• remote objects held by the process (B on server)

• local proxy (B on client)

– When a remote object is to be passed for the first time,

the module is asked to create a remote object reference,

which it adds to its table

• Servant
– An instance of a class which provides the body of a remote object

– handles the remote requests

• RMI software
– Proxy: behaves like a local object, but represents the remote object

– Dispatcher: look at the methodID and call the corresponding method in the

skeleton

– Skeleton: implements the method
Generated automatically by an interface compiler

26

27

Implementation Alternatives of RMI
• Dynamic invocation

– Proxies are static—interface complied into client code

– Dynamic—interface available during run time
• Generic invocation; more info in ―Interface Repository‖ (COBRA)
• Dynamic loading of classes (Java RMI)

• Binder
– A separate service to locate service/object by name through table mapping for names

and remote object references

• Activation of remote objects
– Motivation: many server objects not necessarily in use all of the time

• Servers can be started whenever they are needed by clients, similar to inetd

– Object status: active or passive
• active: available for invocation in a running process

• passive: not running, state is stored and methods are pending

– Activation of objects:
• creating an active object from the corresponding passive object by creating a new instance of

its class

• initializing its instance variables from the stored state

– Responsibilities of activator
• Register passive objects that are available for activation

• Start named server processes and activate remote objects in them

• Keep track of the locations of the servers for remote objects that it has already activated

28

Implementation Alternatives of RMI (cont.)

• Persistent object stores
– An object that is guaranteed to live between activations of processes is

called a persistent object

– Persistent object store: managing the persistent objects
• stored in marshaled from on disk for retrieval

• saved those that were modified

– Deciding whether an object is persistent or not:
• persistent root: any descendent objects are persistent (persistent Java, PerDiS)
• some classes are declared persistent (Arjuna system)

• Object location
– specifying a location: ip address, port #, …

– location service for migratable objects
• Map remote object references to their probable current locations

• Cache/broadcast scheme (similar to ARP)
– Cache locations

– If not in cache, broadcast to find it

• Improvement: forwarding (similar to mobile IP)

29

1.4.3 Distributed Garbage Collection

• Aim: ensure that an object

– continues to exist if a local or remote reference to it is still held anywhere

– be collected as soon as no object any longer holds a reference to it

• General approach: reference count

• Java's approach

– the server of an object (B) keeps track of proxies

– when a proxy is created for a remote object

• addRef(B) tells the server to add an entry

– when the local host's garbage collector removes the proxy

• removeRef(B) tells the server to remove the entry

– when no entries for object B, the object on server is deallocated

1.5 Case Study: Java RMI
import java.rmi.*; import java.util.Vector;

public interface Shape extends Remote {

int getVersion() throws RemoteException;

GraphicalObject getAllState() throws RemoteException; 1

}

public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2

Vector allShapes() throws RemoteException;

int getVersion() throws RemoteException;

}

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject; import java.util.Vector;

public class ShapeListServant extends UnicastRemoteObject implements ShapeList {

30

1

3

private Vector theList; // contains the list of Shapes private int

version;

public ShapeListServant()throws RemoteException{...}

public Shape newShape(GraphicalObject g) throws RemoteException { 2

version++;

Shape s = new ShapeServant(g, version); theList.addElement(s);

return s;

}

public Vector allShapes()throws RemoteException{...} public int

getVersion() throws RemoteException { ... }

}

Java Remote interfaces

Shape and ShapreList

Java class

ShapeListServant

implements interface

ShapeList

31

Java class ShapeListServer with main method

Java client of ShapreList

aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList");

Vector sList = aShapeList.allShapes();

1

2

} catch(RemoteException e) {System.out.println(e.getMessage());

}catch(Exception e) {System.out.println("Client: " + e.getMessage());}

}

}

1

2

import java.rmi.*;

public class ShapeListServer{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager()); try{

ShapeList aShapeList = new ShapeListServant();

Naming.rebind("Shape List", aShapeList);

System.out.println("ShapeList server ready");

}catch(Exception e) {

System.out.println("ShapeList server main " + e.getMessage());}

}

}

import java.rmi.*; import java.rmi.server.*; import

java.util.Vector;

public class ShapeListClient{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager()); ShapeList

aShapeList = null;

try{

32

Naming class of Java RMIregistry

void rebind (String name, Remote obj)

This method is used by a server to register the identifier of a remote object

by name, as shown in Figure 1.13, line 3.

void bind (String name, Remote obj)

This method can alternatively be used by a server to register a remote

object by name, but if the name is already bound to a remote object

reference an exception is thrown.

void unbind (String name, Remote obj)

This method removes a binding.

Remote lookup(String name)

This method is used by clients to look up a remote object by name, as

shown in Figure 1.15 line 1. A remote object reference is returned.

String [] list()

This method returns an array of Strings containing the names bound in the

registry.

33

Jini

• Jini
– Jini technology is a service oriented architecture that defines a

programming model which both exploits and extends Java technology to

enable the construction of secure, distributed systems consisting of

federations of well-behaved network services and clients

–Allow a potential subscriber in one Java Virtual Machine (JVM) to

subscribe to and receive notifications of events in an object of interest in

another JVM

–Main objects
• event generators (publishers)

• remote event listeners (subscribers)

• remote events (events)

• third-party agents (observers)

–An object subscribes to events by informing the event generator about

the type of event and specifying a remote event listener as the target for

notification

34

Java RMI Callbacks

• Callbacks
– server notifying the clients of events

– why?
• polling from clients increases overhead on server

• not up-to-date for clients to inform users

– how
• remote object (callback object) on client for server to call

• client tells the server about the callback object, server put the client on a

list

• server call methods on the callback object when events occur

– client might forget to remove itself from the list
• lease--client expire

Chapter 2

Java RMI

2

Outline

• Part I. An Overview of RMI Applications

– A Quick Local Java RMI Example: Hello World (from Wiki)

• RmiServerIntf, RmiServer, RmiClient

• Part II. A Behavior-based Application - Building a Generic Compute Engine

II-A. Writing an RMI Server and RMI Clients

• Step 1. Designing Remote Interfaces

• Step 2. Implementing a Remote Interface

• Step 3. Creating a Client Program

• Step 4. Implementing the Task Interface

II-B. Compiling the Example Programs II-C. Running the Example Programs

3

Part I. An Overview of RMI Applications

• Java Remote Method Invocation (RMI) system
– Allows an object running in one JVM to invoke methods on an object running in

another JVM

– Provides the mechanism by which the server and the client communicate and pass

information back and forth
• Such an application is sometimes referred to as a distributed object application

• Often comprise two separate programs, a server and a client
– A typical server

• Creates some remote objects

• Makes references to these objects accessible, and

• Waits for clients to invoke methods on these objects

– A typical client
• Obtains a remote reference to one or more remote objects on a server and

• Then invokes methods on them

• Features
– One of the central and unique features of RMI is its ability to on-demand download

the definition of an object's class if the class is not defined in the receiver's JVM

– RMI passes objects by their actual classes, so the behavior of the objects is not

changed when they are sent to another JVM

4

Remote Interfaces, Objects, and Methods

• An object becomes remote by implementing a remote interface, which has

the following characteristics:
– A remote interface extends the interface java.rmi.Remote

– Eachmethod of the interface declares java.rmi.RemoteException

in its

throws clause, in addition to any application-specific exceptions

– Only those methods defined in a remote interface are available to be called from

the receiving Java virtual machine

• RMI passes a remote stub for a remote object
– The stub acts as the local representative, or proxy, for the remote object and

basically is, to the client, the remote reference

– The client invokes a method on the local stub, which is responsible for carrying out

the method invocation on the remote object

5

Steps to Create RMI Applications

distributed1. Designing and implementing the components of your

application
– Defining the remote interfaces

– Implementing the remote objects
– Implementing the clients

2. Compiling sources
– Use the javac compiler to compile the source files, including

• Declarations of the remote interfaces, their implementations, any other server classes, and

the client classes

3. Making classes network accessible
– Classes definitions are typically made network accessible through a web server

4. Starting the application
– Starting the application includes running the RMI remote object registry, the server,

and the client

A Quick Local Java RMI Example: Hello World
RmiServer.java

6

Creates the registry on the local host with the port

Server searches the registry on the host with the port

Server binds an remote interface to the name

Registry

Registry

void

Remote

LocateRegistry.createRegistry(int port)

LocateRegistry.getRegistry(String host, int port)

Naming.rebind/bind(String name, Remote obj)

Naming.lookup(String name) Client searches the name for the remote interface

RmiServerIntf.java

2.

1.
3.

4.

3.lookup

(//host/RmiName)
RmiClient LocateRegistry

(Local/Remote)

1.create/get 2.bind/rebind

Registry (RmiName)

RmiServer

4.Invoke

Method

RmiS

erverI

ntf

(Stub)https://en.wikipedia.org/wiki/Java_remote_method_invocation

RmiClient.java

rmi://host/RmiName

Distributed Object Applications
• Generic flow

– Locate remote objects
• Can register its remote objects with RMI's simple naming facility, the RMI registry

• Can pass and return remote object references as part of other remote invocations

– Communicate with remote objects
– Load class definitions for objects that are passed around

• The following illustration depicts an RMI distributed application that uses the

RMI registry to obtain a reference to a remote object
– The server calls the registry to associate (or bind) a name with a remote object

– The client looks up the remote object by its name in the server's registry and then

invokes a method on it

– The RMI system uses an existing web server to load class definitions, from server

to client and from client to server, for objects when needed

7

8

Part II. A Behavior-based Application

- Building a Generic Compute

Engine
• Function: enable a number of client machines to make use of a particularly

powerful machine to execute specified tasks (objects passed as arguments)

• Behavior-based application: download code dynamically
– RMI dynamically loads the task code into the compute engine's JVM and
– Runs the task without prior knowledge of the class that implements the task

• Steps: the compute engine is a remote object on the server that
– Takes tasks from clients

– Runs the tasks, and
– Returns any results

• Novel aspect: the tasks it runs do not need to be defined when the compute

engine is written or started
– New kinds of tasks can be created at any time and then given to the compute engine

to be run

– The only requirement of a task is that its class implement a particular interface

– The code needed to accomplish the task can be downloaded by the RMI system to

the compute engine

– The code is loaded and executed by the ComputeEngine

9

II-A. Writing an RMI Server and RMI Clients

• Writing an RMI server
– Step 1. Designing Remote Interfaces
•Compute.java - Compute RMI interface: provides methods to be invoked by clients

•Task.java - Task interface: client‘s submitted object to be passed and executed by server

– Step 2. Implementing a Remote Interface
•ComputeEngine.java - ComputeEngine class: implement server‘s Compute interface

– Implements the Compute interface

– Provides the rest of the code that makes up the server program, including a main method that

» Sets up a securitymanager

» Creates an instance of the remoteobject
» Registers it with the RMI registry

• Writing an RMI client
– Step 3. Creating a Client Program
•ComputePi.java - ComputePi class: client‘s main to invoke server‘s Compute interface

– Provides the rest of the code that makes up the client program, including a main method that

» Sets up a securitymanager

» Synthesizes a remote reference to theregistry

» Looks up the remoteobject
» Creates and submits the task

– Step 4. Implementing the Task Interface
•Pi.java - Pi class: a polymorphism implements the client‘s Task interface

Step 1. Design a Remote Interface

• The protocol of the compute engine
– Enables tasks to be submitted to the compute engine

– The compute engine to run those tasks, and
– The results of those tasks to be returned to the client

• Two interfaces
– The compute engine's remote interface, Compute, enables different tasks to be

submitted to the engine

– The client interface, Task, defines how compute engine executes a submitted task
• The type of the parameter to the executeTask method in the Compute interface

– Classes that implement the Task interface must also implementSerializable

• The Task interface has a type parameter, T
– Which represents the result type of the task'scomputation

• This interface's execute method returns
the result of the computation and thus its return type is T

package compute;

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Compute extends Remote {

<T> T executeTask(Task<T> t) throws RemoteException;

}

package compute;

public interface Task<T> {

T execute();

an RMI method

Compute.java

}

10

Task.java

Server‘s
Compute

interface

Client‘s Task interface

Compute.executeTask(Task)

Task.execute()

Step 2. Implement a Remote Interface
ComputeEngine implements server‘s Compute interface

11

package engine;

import java.rmi.RemoteException;

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

import java.rmi.server.UnicastRemoteObject;

import compute.Compute; import

compute.Task;

public class ComputeEngine implements Compute { public

ComputeEngine() {

super();

}

public <T> T executeTask(Task<T> t) { return

t.execute();

}

public static void main(String[] args) { if

(System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());

}

try {

String name = "Compute";

Compute engine = new ComputeEngine();

Compute stub =

(Compute) UnicastRemoteObject.exportObject(engine,0);

Registry registry = LocateRegistry.getRegistry();

registry.rebind(name, stub);

System.out.println("ComputeEngine bound");

} catch (Exception e) {

System.err.println("ComputeEngine exception:");

e.printStackTrace();

} } }

ComputeEngine.java •Declare the remote interfaces being

implemented

•Define the constructor for each remote

object
– Invoke superclass constructor for clarity

•Provide an implementation for

each remote method in the

remote interfaces
– Remote objects are essentially passed by

reference
• A remote object reference is a stub, which is a

client-side proxy that implements the complete set of

remote interfaces that the remote object implements

– Local objects are passed by copy, using
object serialization
• By default, all fields are copied except fields that are

marked static or transient

• Default serialization behavior can be overridden on a

class-by-class basis

•Create and install a security manager
– Enable passing classes for remote objects

received as arguments or return values

•Create and export remote objects
– Enable receive invocations from remote
– 0 means anonymous TCP port

•Register remote objects with the RMI

registry (or with another naming service,

i.e. JNDI) for bootstrapping

Step 3. Creating a Client Program

12

package client;

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

import java.math.BigDecimal;

import compute.Compute;

public class ComputePi {

public static void main(String args[]) { if

(System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());

}

try {

String name = "Compute";

Registry registry = LocateRegistry.getRegistry(args[0]);

Compute comp = (Compute) registry.lookup(name); Pi task =

new Pi(Integer.parseInt(args[1])); BigDecimal pi =

comp.executeTask(task); System.out.println(pi);

} catch (Exception e) { System.err.println("ComputePi

exception:"); e.printStackTrace();

}

}

}

Client.ComputePi invokes server‘s Compute interface

•Create and install a security manager
– Need to receive remote objects and download

class definitions as return values

•Synthesize a remote reference to the

registry on the server's host
– args[0] is the name of the remote host

• Invoke the lookup method on the registry

to look up the remote object

•Create a task (Pi object)
– args[1] is the number of decimal places

• Invoke executeTask method to submit the

task to the Compute remote object

ComputePi.java

Step 4. Implementing the Task Interface

13

* pi/4 = 4*arctan(1/5) - arctan(1/239)
* and a power series expansion of arctan(x) to

* sufficient precision.
*/

public static BigDecimal computePi(int digits) {
int scale = digits + 5;

BigDecimal arctan1_5 = arctan(5, scale);
BigDecimal arctan1_239 = arctan(239, scale);
BigDecimal pi = arctan1_5.multiply(FOUR).subtract(

arctan1_239).multiply(FOUR); return
pi.setScale(digits,
BigDecimal.ROUND_HALF_UP);

}

• Note that all serializable classes, whether they implement the
Serializable interface directly or indirectly, must declare a

private static final field named serialVersionUID to guarantee

serialization compatibility between versions

• Steps
1. ComputePi invokes Compute.executeTask with a Pi object (Task)

2. The code for the class is loaded by RMI into the Compute object's JVM

3. ComputeEngine invokes Task/Pi's execute() method

/**
*Compute the value, in radians, of the arctangent of
*the inverse of the supplied integer to the specified
*number of digits after the decimal point. The value
*is computed using the power series expansion for the
*arc tangent:
*
* arctan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 +
*(x^9)/9 ...
*/

public static BigDecimal arctan(int inverseX, int scale){
BigDecimal result, numer, term;

BigDecimal invX = BigDecimal.valueOf(inverseX);
BigDecimal invX2 =

BigDecimal.valueOf(inverseX * inverseX);

numer = BigDecimal.ONE.divide(invX,

scale, roundingMode);

result = numer; int i = 1;
do { numer =
numer.divide(invX2, scale, roundingMode); int denom = 2 *
i + 1;

term =

numer.divide(BigDecimal.valueOf(denom), scale,
roundingMode);

if ((i % 2) != 0) {
result = result.subtract(term);
} else {
result = result.add(term);

} i++;
} while (term.compareTo(BigDecimal.ZERO) != 0);

return result;
} }

Pi implements client‘s Task interface
package client;

import compute.Task;

import java.io.Serializable; import
java.math.BigDecimal;

public class Pi implements Task<BigDecimal>,Serializable{
private static final long serialVersionUID = 227L;
/** constants used in pi computation */ private static

final BigDecimal FOUR =
BigDecimal.valueOf(4);

/** rounding mode to use during pi computation */
private static final int roundingMode =
BigDecimal.ROUND_HALF_EVEN;

/** digits of precision after the decimal point */
private final int digits;

/** Construct to calculate pi to specified precision */
public Pi(int digits) {
this.digits = digits;

}

/** Calculate pi. */

public BigDecimal execute() { return computePi(digits);
}
/** Compute the value of pi to the specified number of
*digits after the decimal point. The value is

*computed using Machin's formula:

14

II-B. Compiling the Example Programs

•compute package – Compute and Task interfaces (compute.jar)

– A developer would likely create a Java Archive (JAR) file that contains the Compute

and Task interfaces for server classes to implement and client programs to use

•engine package – ComputeEngine implementation class

– The developer writes an implementation of the Compute interface and deploy that

service on a machine available to clients

•client package – ComputePi client code and Pi task implementation

– Developers of client programs can use the Compute and the Task interfaces,

contained in the JAR file, and independently develop a task and client program that

uses a Compute service

15

Building Interface, Server, and Client Classes

• Build a JAR File of RMI Interface Classes
– Build compute.jar

cd \home\rmiuser\src

javac compute\Compute.java compute\Task.java jar cvf compute.jar

compute*.class

– Distribute the jar file to developers or place in a network-accessible location
\somewhere\ or ~rmiuser\public_html\classes\

• Build the Server Classes
cd \home\server\src

javac –cp \somewhere\compute.jar engine\ComputeEngine.java

• Build the Client Classes
– Compile the codes

cd \home\cliuser\src

javac –cp \somewhere\compute.jar client\ComputePi.java client\Pi.java

– Place the task code at http://host:port/~cliuser/classes/
mkdir ~cliuser\public_html\classes\client

cp client\Pi.class ~cliuser\public_html\classes\client

16

II-C. Running the Example Programs

• Need to specify a security policy file so that the code is granted the security

permissions it needs to run
–server.policy for running server classes

grant codeBase "file:/home/server/src/" { permission

java.security.AllPermission;

};

–client.policy for running client classes
grant codeBase "file:/home/cliuser/src/" { permission

java.security.AllPermission;

};

• Start the RMI Registry
– Start the rmiregistry command (default on port 1099)
start rmiregistry or start rmiregistry 2001

• Use javaw if start is not available – run as background job

• Warning: classes visible to CLASSPATH environment varilable become remote available
–Should make sure that no CLASSPATH set or no classes under CLASSPAT to be downloaded remotely

Starting the Server and the Client

• Start the server with specified system properties
java -cp ~server\src;\somewhere\compute.jar

-Djava.rmi.server.codebase=file:./

-Djava.rmi.server.hostname=mycomputer.example.com

-Djava.security.policy=engine\server.policy

engine.ComputeEngine

• Start the client to submit Pi class
java -cp ~cliuser\src;\somewhere\compute.jar

-Djava.rmi.server.codebase=file:./client/

-Djava.security.policy=client\lient.policy

client.ComputePi mycomputer.example.com 45

a URL to the jar file
(Compute and Task

interfaces) or
file:./compute.jarhttp://jarfile-host/dirpath-of-the-jarfile/

Default by java.net.InetAddress.getLocalHost

a URL to the class definitions (Pi) from

this the server can be downloaded

(dir ended with ‗/‘)

3.141592653589793238462643383279502884197169399

17

http://jarfile-host/dirpath-of-the-jarfile/
http://jarfile-host/dirpath-of-the-jarfile/
http://jarfile-host/dirpath-of-the-jarfile/
http://jarfile-host/dirpath-of-the-jarfile/
http://jarfile-host/dirpath-of-the-jarfile/
http://jarfile-host/dirpath-of-the-jarfile/
http://jarfile-host/dirpath-of-the-jarfile/
http://jarfile-host/dirpath-of-the-jarfile/
http://jarfile-host/dirpath-of-the-jarfile/

18

Summary

• Two RMI examples

– A simple local ―Hello World‖ example

– A generic compute engine

• RMI often comprises

– Aninterface

• An RMI registry helps binding and looking up objects

• A JAR file is usually created, and distributed via the Web

– Two separate programs, a server andclients

• A security manager must be configured to support remote

UNIT 4

Distributed File Systems

2

Chapter 1 Distributed File Systems

1. Introduction

2. File service architecture

3. Case study: Sun Network File System

4. Case study: The Andrew File System

5. Enhancements and further developments

6. Summary

3

• Sharing of resources is a key goal for distributed

systems

– printers, storages, network bandwidths, memories, …

• Mechanisms for data sharing

– Web servers

– P2P file sharing

– Distributed storage systems
• Distributed file systems

• Distributed object systems

• Goal of distributed file service
– Enable programs to store and access remote files exactly as

they do local ones

1.1 Introduction

Figure 1.1 Storage systems and their properties

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

UNIX file system

Sun NFS

Web server

File system Distributed file

system

Web

Distributed shared memory

Remote objects (RMI/ORB)

Persistent object store

Peer-to-peer storage system

Ivy (DSM)

CORBA

CORBA Persistent
Object Service

OceanStore

1

1

1

1

2

Types of consistency:

1: strict one-copy. : slightly weaker guarantees. 2: considerably weaker guarantees.

4

1.1.1 Characteristics of file systems

• File system: responsible for organization, storage,

retrieval, naming, sharing and protection of files
– file: containing data and attributes (Fig 12.3)

– directory: mapping from text names to internal file identifiers

– file operation: system calls in UNIX (Fig. 12.4)

Directory module: relates file names to file IDs File module: relates file

IDs to particular files

Access control module: checks permission for operation requested File access

module:reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

Figure 1.2 File system modules
5

6

Figure 1.3 File attribute record structure

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

Figure 1.4 UNIX file system operations

filedes = open(name, mode)
filedes = creat(name, mode)

status = close(filedes)

Opens an existing file with the given name. Creates a new file
with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

Closes the open file filedes.

count = read(filedes, buffer, n) Transfers n bytes from the file referenced by filedes to buffer.

count = write(filedes, buffer, n) Transfers n bytes to the file referenced by filedes from buffer.

pos = lseek(filedes, offset,

whence)

status = unlink(name)

status = link(name1, name2)

status = stat(name, buffer)

Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

Removes the file name from the directory structure. If the file has

no other names, it is deleted.

Adds a new name (name2) for a file (name1). Gets the file

attributes for file name into buffer.

7

8

1.1.2 Distributed file system requirements

•Transparency:
–access, location, mobility, performance, scaling

•Concurrent file updates
–changes to a file by one client should not interfere with the operation of
other clients simultaneously accessing or changing the same file
–common services: advisory or mandatory file- or record-level locking

•File replication
–A file may be represented by severalcopies of its

contents at different locations
–advantages: load sharing and fault tolerance

•Hardware and operating system heterogeneity
•Fault tolerance
–The service continue to operate in the face of client and server failures

•Consistency
–An inevitable delay in the propagation of modifications to all sites

•Security

•Efficiency

9

1.1.3 Case studies

• Sun NFS (Network File System)
– introduced in 1985

– the first file service designed as a product

– RFC1813: NFS protocol version 3

– Each computer can act as both a client and a server

• Andrew File System (AFS)
– developed at CMU for use as a campus

computing and information system

– achieved by transferring whole files between server and client

computers and caching them at clients until the

server receives a more up-to-date version

1.2 File service architecture

nApplicati
progra
m

o Applicati
o
progra
m

n

Client module

Flat file service

Client computer Server computer

Directory service

Figure 1.5 File service architecture (Author‘s abstract model)

• Stateless file service architecture
– Flat file service: unique file identifiers (UFID)

– Directory service: map names to UFIDs

– Client module
• integrate/extend flat file and directory services

• provide a common application programming interface (can emulate different file interfaces)

• stores location of flat file and directory services
10

11

Flat file service interface

• RPC used by client modules, not by user-level programs
• Compared to UNIX

– no open/close
• Create is not idempotent

• at-least-once semantics
• reexecution gets a new file

– specify starting location in Read/Write
• stateless server

Read(FileId, i, n) -> Data

—throws BadPosition

Write(FileId, i, Data)

—throws BadPosition

Create() -> FileId

Delete(FileId)

GetAttributes(FileId) ->

Attr

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n
items from a file starting at item i and returns it in Data.

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file if necessary.

Creates a new file of length 0 and delivers a UFID for it.

Removes the file from the file store.

Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not

shaded in Figure 12.3).

Figure 12.6 Flat file service operations

12

Access control

• UNIX checks access rights when a file is opened
– subsequent checks during read/write are not necessary

• distributed environment
– server has to check

– stateless approaches

1. access check once when UFID is issued

– client gets an encoded "capability" (who can access and how)

– capability is submitted with each subsequent request

2. access check for each request.

– second is more common

Directory service operations

• A directory service interface translates text names to file identifiers and

performs a number of other services such as those listed among the sample

commands in figure 1.7. This is the remote procedure call interface to

extend the local directory services to a distributed model.

Lookup(Dir, Name) -> FileId

— throwsNotFound

AddName(Dir, Name, FileId)

— throws NameDuplicate

UnName(Dir, Name)

— throws NotFound

Locates the text name in the directory and returns the

relevant UFID. If Name is not in the directory, throws an

exception.

If Name is not in the directory, adds (Name, File) to the

directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

If Name is in the directory: the entry containing Name is

removed from the directory.
If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern) -> NameSeq Returns all the text names in the directory that match the

regular expression Pattern.

Figure 1.7 Directory service operations
13

14

File collections

• Hierarchical file system
– Directories containing other directories and files

– Each file can have more than one name (pathnames)
• how in UNIX, Windows?

• File groups
– a logical collection of files on one server

• a server can have more than one group

• a group can change server

• a file can't change to a new group (copying doesn't count)

• filesystems in unix

• different devices for non-distributed

• different hosts for distributed

32 bits 16 bits file group identifier IP address date

1.3 Case Study: Sun NFS

UNIX kernel

• Sun NFS
– Industry standard for local networks since the 1980‘s

– OS independent (originally unix implementation)

– rpc over udp or tcp

Client computer Server computer

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system
NFS

protocol

Application Application program program
UNIX

system calls

UNIX kernel

Virtual file systemVirtual file system

15

O
th

e
r

fi
le

s
y
s
te

m

Figure 1.8 NFS architecture

Schematic view of NFS architecture

Refer to Section 1.9 of the OS Textbook
16

17

Virtual file system

• Part of unix kernel to support access transparency

• NFS file handles, 3 components:
– i-node (index node)

• structure for finding the file

– filesystem identifier
• different groups of files

– i-node generation number
• i-nodes are reused

• incremented when reused

• VFS
– struct for each file system

– v-node for each open file
• file handle for remote file

• i-node number for local file

18

Access control, client integration, pathname translation

• Access control
– nfs server is stateless, doesn't keep open files for clients

– server check identity each time (uid and gid)

• Client integration
– nfs client emulates Unix file semantics

– in the kernel, not in a library, because:

• access files via system calls

• single client module for multiple user processes

• encryption can be done in the kernel

• Pathname translation
– pathname: /users/students/doc/abc

– server doesn't receive the entire pathname for translation, why?

– client breaks down the pathnames into parts

– iteratively translate each part

– translation is cached

Figure 1.9 server operations (simplified)

lookup(dirfh, name) -> fh, attr

create(dirfh, name, attr) ->

newfh, attr

remove(dirfh, name) status

getattr(fh) -> attr

setattr(fh, attr) -> attr

read(fh, offset, count) -> attr, data

write(fh, offset, count, data) -> attr

rename(dirfh, name, todirfh, toname)

-> status

link(newdirfh, newname, dirfh, name)

-> status

Returns file handle and attributes for the file name in the directory

dirfh.

Creates a new file name in directory dirfh with attributes attr and

returns the new file handle and attributes.

Removes file name from directory dirfh.

Returns file attributes of file fh. (Similar to the UNIX stat system

call.)

Sets the attributes (mode, user id, group id, size, access time and

modify time of a file). Setting the size to 0 truncates the file.

Returns up to count bytes of data from a file starting at offset. Also

returns the latest attributes of the file.

Writes count bytes of data to a file starting at offset. Returns the

attributes of the file after the write has taken place.

Changes the name of file name in directory dirfh to toname in

directory to todir. fh

Creates an entry newname in the directory newdirfh which refers to

file name in the directory dirfh.

19

Figure 1.9 NFS server operations (simplified)
cont.

symlink(newdirfh, newname, string)

-> status

readlink(fh) -> string

mkdir(dirfh, name, attr) ->

newfh, attr

rmdir(dirfh, name) -> status

readdir(dirfh, cookie, count) ->

entries

statfs(fh) -> fsstats

Creates an entry newname in the directory newdirfh of type symbolic

link with the value string. The server does not interpret the string but

makes a symbolic link file to hold it.

Returns the string that is associated with the symbolic link file

identified by fh.

Creates a new directory name with attributes attr and returns the new

file handle and attributes.

Removes the empty directory name from the parent directory dirfh.

Fails if the directory is not empty.

Returns up to count bytes of directory entries from the directory

dirfh. Each entry contains a file name, a file handle, and an opaque

pointer to the next directory entry, called a cookie. The cookie is used

in subsequent readdir calls to start reading from the following entry.

If the value of cookie is 0, reads from the first entry in the directory.

Returns file system information (such as block size, number of free

blocks and so on) for the file system containing a file fh.

20

21

Mount

• Mount service
– mounting: the process of including a new filesystem
– /etc/exports has filesystems that can be mounted by others
– clients use a modified mount command for remote filesystems
– communicates with the mount process on the server in a mount protocol
– hard-mounted

• user process is suspended until request is successful
• when server is not responding
• request is retried until it's satisfied

– soft-mounted
• if server fails, client returns failure after a small # of retries
• user process handles the failure

• Automounter
– what if a user process reference a file on a remote filesystem that is not mounted

– table of mount points (pathname) and servers
– NFS client sends the reference to the automounter

– automounter check find the first server that is up

– mount it at some location and set a symbolic link (original impl)
– mount it at the mount point (later impl)

– could help fault tolerance, the same mount point with multiple replicated servers.

Accessible file systems on an NFS client

jim ann jane joe

usersstudents

. . . vmunix usr nfs

Remote

mount

big jon

people

Server 1 Client Server 2

export

(root)

Remote

mount

bob . . .

x staff

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server

the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

Figure 1.10 Local and remote file systems accessible on an NFS client

22

23

Caching

• Server caching
– caching file pages, directory/file attributes

– read-ahead: prefetch pages following the most-recently read file pages

– delayed-write: write to disk when the page in memory is needed for other

purposes

– "sync" flushes "dirty" pages to disk every 30 seconds

– two write option
1. write-through: write to disk before replying to the client

2. cache and commit:

– stored in memory cache
– write to disk before replying to a "commit" request from the client

• Client caching
– caches results of read, write, getattr, lookup, readdir

– clients responsibility to poll the server for consistency

24

Client caching: reading

• timestamp-based methods for consistency validation
– Tc: time when the cache entry was last validated

– Tm: time when the block was last modified at the server

• cache entry is valid if:
1. T - Tc < t, where t is the freshness interval

• t is adaptively adjusted:

– files: 3 to 30 seconds depending on freq of updates

– directories: 30 to 60 seconds

2.Tmclient = Tmserver

• cache validation
– need validation for all cache accesses due to no share check

– condition ―1" can be determined by the client alone--performed first

– Reducing getattr() to the server [for getting Tmserver]

1.new value of Tmserver is received, apply to all cache entries from the same file

2.piggyback getattr() on file operations

3.adaptive alg for update t

– validation doesn't guarantee the same level of consistency as one-copy

25

Client caching: writing

• dirty: modified page in cache

• flush to disk: file is closed or sync from client

• bio-daemon (block input-output)
– read-ahead: after each read request, request the next file block from the

server as well

– delayed write: after a block is filled, it's sent to the server

– reduce the time to wait for read/write

26

Other optimization

• UDP packet is extended to 9KB to containing entire file block

(8KB for UNIX BSD FFS) and RPC message in a single packet
– Clients and servers of NFSv3 can negotiate sizes larger than 8 KB

• Piggybacked
– File status information cached at clients must be updated at least every 3

seconds for active files

– All operations that refer to files or directories are taken as implicit getattr

requests, and the current attribute values are piggybacked along with the

other results of the operation

27

Security, Performance

• Security
– stateless nfs server

– user's identity in each request

– Kerberos authentication during the mount process, which includes uid and

host address

– server maintain authentication info for the mount

– on each file request, nfs checks the uid and address

– one user per client

• Performance
– overhead/penalty is low

– main problems
• frequent getattr() for cache validation (piggybacking)
• relatively poor performance is write-through is used on

the server (delay- write/commit in current versions)

– write < 5%

– lookup is almost 50% (step by step pathname translation)

28

Summary for NFS

distributedAn excellent example of a simple, robust, high-performance

service

• access transparency: same system calls for local or remote files

• location transparency: could have a single name space for all files

(depending on all the clients to agree the same name space)

• mobility transparency: mount table need to be updated on each client (not

transparent)

• scalability: can usually support large loads, add processors, disks,

servers...

• file replication: read-only replication, no support for replication of files with

updates

• hardware and OS: many ports

• fault tolerance: stateless and idempotent

• consistency: not quite one-copy for efficiency

• security: added encryption--Kerberos

• efficiency: pretty efficient, wide-spread use

29

1.4 Case Study: the Andrew File

System
• Goal: provide transparent access to remote shared files

– like NFS and compatible with NFS

• Differing from NFS
– Primarily attributable to the scalability

• Caching of whole files in client nodes

• Two unusual design characteristics
– Whole file serving: the entire contents of

directories and files are transmitted to client computers

• 64KB chunks in AFS3

– Whole-file caching: clients permanently cache a copy of a file or a chunk

on its local disk

30

Scenario of AFS

• Open a new shared remote file
– A user process issues open() for a file not in the local cache

and then sends a request to the server

– The server returns the requested file

– The copy is stored in the client‘s local UNIX file system and

the resulting UNIX file descriptor is returned to the client

• Subsequent read,write and otheroperationson the

file are applied to the local copy

• When the process in the client issues close()
– if the local copy has been updated, its contents are sent back

to the server
• server updates the contents and the timestamps on the file

• the copy on the client‘s local disk is retained

31

Characteristics

• Good for shared files likely to remain valid for long periods
–infrequently updated

–normally accessed by only a single user Overwhelming majority of file

accesses

• Local cachecan be allocated a substantial

proportion of the disk space
–should be enough for a working set of files used by one user

• Assumptions about average and maximum file

size and reference locality
–Files are small; most are less than 10KB in size

–Read operations are much more common than writes

–Sequential access is much more common than random access

–Most files are written by only one user. When a file is shared, it is usually

only one user who modified it

–Files are referenced in bursts. A file referenced recently is very probably

referenced soon.

• Maybe good for distributed database applications

32

Venus and Vice: software components in AFS

Workstations Servers

UserVenus

program

Network

UNIX kernel

UNIX kernel

Vice

UserVenus

program

User
Venus

program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Figure 1.11 Distribution of processes in the Andrew File

System

33

File name space seen by clients of AFS

tmp bin cmu. . . vmunix

bin

Local Shared

/ (root)

Symbolic links

A special sub-tree (called /cmu) containing all of the

shared files

Figure 1.12 File name space seen by clients of AFS

34

UNIX file
system calls

Non-local file
operations

System call interception in AFS
Workstation

Local disk

Open, close and some other file system calls are

intercepted when refer to shared files

User
program

UNIX kernel

Venus

UNIX file system

Venus

Figure 1.13 System call interception in AFS

35

User process Unix Kernel Venus Net Vice

open(FileName,

mode)

If FileName refers to a

file in shared file space,

pass the request to

Venus.

Open the local file and

return the file

descriptor to the

application.

Check list of files in local cache. If not present

or there is no valid callback promise, send a

request for the file to the Vice server that is

custodian of the volume containing the file.

Place the copy of the file in the local file

system, enter its local name in the local cache

list and return the local name to UNIX.

→

←

Transfer a copy of the file

and a callback promise to

the workstation. Log the

callback promise.

read(FileDescriptor,

Buffer, length)

Perform a normal

UNIX read operation

on the local copy.

write(FileDescriptor,

Buffer, length)

Perform a normal

UNIX write operation

on the local copy

close(FileDescriptor) Close the local copy

and notify Venus that

the file has been

closed.

If the local copy has been changed, send a

copy to the Vice serve r that is the custodian of

the file. →
Replace the file contents and

send a callback to all other

clients holding callback

promises on the file.

Figure 1.14
Implementation of file system calls in AFS

Main components of Vice service interface

Fetch(fid) -> attr, data

Store(fid, attr, data)

Create() -> fid

Remove(fid)

SetLock(fid, mode)

ReleaseLock(fid)

RemoveCallback(fid)

BreakCallback(fid)

Returns the attributes (status) and, optionally, the contents of file

identified by the fid and records a callback promise on it.

Updates the attributes and (optionally) the contents of a specified

file.

Creates a new file and records a callback promise on it. Deletes the

specified file.

Sets a lock on the specified file or directory. The mode of the lock

may be shared or exclusive. Locks that are not removed expire

after 30 minutes.

Unlocks the specified file or directory.

Informs server that a Venus process has flushed a file from its

cache.

This call is made by a Vice server to a Venus process. It cancels the

callback promise on the relevant file.

Figure 1.15

36

37

1.5 Enhancements and further developments

NFS enhancements
WebNFS - NFS server implements a web-like service on a well-known port.

Requests use a 'public file handle' and a pathname-capable variant of

lookup(). Enables applications to access NFS servers directly, e.g. to read a

portion of a large file.

One-copy update semantics (Spritely NFS, NQNFS) - Include an open()

operation and maintain tables of open files at servers, which are used to

prevent multiple writers and to generate callbacks to clients notifying them of

updates. Performance was improved by reduction in gettattr() traffic.

Improvements in disk storage organisation
RAID - improves performance and reliability by striping data redundantly

across several disk drives

Log-structured file storage - updated pages are stored contiguously in

memory and committed to disk in large contiguous blocks (~ 1 Mbyte). File

maps (in memory with a persistent backup) are modified whenever an

update occurs. Garbage collection to recover disk space.

38

New design approaches

• Distribute file data across several servers
– Exploits high-speed networks (ATM, Gigabit Ethernet)

– Layered approach, lowest level is like a 'distributed virtual disk'

– Achieves scalability even for a single heavily-used file

• 'Serverless' architecture
– Exploits processing and disk resources in all available network nodes

• Service is distributed at the level of individual files

– Examples:
• xFS (section 12.5): Experimental implementation demonstrated a substantial performance gain

over NFS and AFS

• Frangipani (section 12.5): Performance similar to local UNIX file access

• Tiger Video File
• P2P systems: Napster, OceanStore (UCB), Farsite (MSR), Publius (AT&T research) - see web

for documentation on these very recent systems

• Replicated read-write files
– High availability

– Disconnected working
• re-integration after disconnection is a major problem if conflicting updates have occurred

– Examples:
• Bayou system (Section 14.4.2)

• Coda system (Section 14.4.3)

Chapter 2

Peer-to-Peer Systems

2

Chapter 2 Peer-to-Peer Systems

1. Introduction

2. Napster and its legacy

3. Peer-to-peer middleware

4. Routing overlays

5. Overlay case studies: Pastry, Tapestry

6. Application case studies

– Squirrel web cache

– OceanStore file store

– Ivy file system

7. Summary

2.1 Introduction

Paradigm Shift of Computing System Models

1980~

Terminal-Mainframe

(Super-computing)

1990~

Client-Server

(Micro-computing

/Personal Computer)

2000~

Peer-to-Peer

(Macro-computing)

RS-232 Dialup/10M Ethernet ADSL/100M+ Ethernet

3

VT100/DOS Windows 31/95 Linux/Windows XP
Figure 2.1

4

Client-server Model

U11

U12

U13

U21

U22

U31

S

U32

The server and the network

become the bottlenecks and

points of failure

•DDoS
•Flash Crowd

Clients Server
Service

Clients and servers each with distinct roles

Request

Figure 2.2

5

Peer-to-peer Model

― Peer-to-Peer (P2P) is a way of structuring distributed

applications such that the individual nodes have symmetric

roles. Rather than being divided into clients and servers each

with quite distinct roles, in P2P applications a node may act as

both a client and a server.‖

Excerpt from the Charter of Peer-to-Peer Research Group,

IETF/IRTF, June 24, 2003
http://www.irtf.org/charters/p2prg.html

Peers play similar roles No distinction of responsibilities

http://www.irtf.org/charters/p2prg.html

6

Content Distribution Networks

Hosting + Hierarchical Proxies

+ DNS Request Routing

(Akamai, CacheFlow, etc.)

U11

U12

U13

U21

U22

U31

S

U32

CR1

CR2

CR3

CRb

CRa

CR
Content Router

or Peer Node

Overlay Network

Name:
Addresses:
Aliases:

Name:
Addresses:
Aliases:

Name:
Address:
Aliases:

Name:
Addresses:
Aliases:

lb1.www.ms.akadns.net
207.46.20.60, 207.46.18.30, 207.46.19.30, 207.46.19.60, 207.46.20.30
www.microsoft.com, toggle.www.ms.akadns.net, g.www.ms.akadns.net

www.yahoo.akadns.net
66.94.230.33, 66.94.230.34, 66.94.230.35, 66.94.230.39, 66.94.230.40, …
www.yahoo.com

e96.g.akamaiedge.net 202.177.217.122
www.gio.gov.tw, www.gio.gov.tw.edgekey.net

a1289.g.akamai.net 203.133.9.9, 203.133.9.11
www.whitehouse.gov, www.whitehouse.gov.edgesuite.net

Figure 2.3

http://www.ms.akadns.net/
http://www.microsoft.com/
http://www.microsoft.com/
http://www.ms.akadns.net/
http://www.ms.akadns.net/
http://www.yahoo.akadns.net/
http://www.yahoo.com/
http://www.gio.gov.tw/
http://www.gio.gov.tw/
http://www.gio.gov.tw.edgekey.net/
http://www.whitehouse.gov/
http://www.whitehouse.gov/
http://www.whitehouse.gov.edgesuite.net/

7

Characteristics of P2P Systems

• Ensures that each user contributes resources to the

system

• All the nodes have the same

functional capabilities and responsibilities

• Their correct operation does not

depend on the existence of any centrally-

administered systems

• They can be designed to offer

a limited degree of anonymity to

the providers and users of resources

• A key issue: placement of data across many hosts
– efficiency

– load balance

– availability

8

Generations

• Early services
– DNS, Netnews/Usenet

– Xerox Grapevine name/mail service

– Lamport‘s part-time parliament algorithm

– Bayou replicated storage system

– classless inter-domain IP routing algorithm

• 1st generation – centralized search
– Napster

• 2nd generation – decentralized, unstructured
– Freenet, Gnutella, Kazaa, BitTorrent

• 3rd generation – decentralized, structured

– P2P middleware: Pastry, Tapestry, CAN, Chord, Kademlia

Example of Centralized P2P Systems:

Napster

• Announced in January 1999 by

Shawn Fanning for sharing MP3

files and pulled plug in July 2001

• Centralized server for search,

direct file transfer among peer

nodes

• Proprietary client-server protocol

and client-client protocol

• Relying on the user to choose a

‗best‘ source

• Disruptive, proof of concepts

• IPR and firewall issues

P P

Directory

9
Figure 2.4

Example of Decentralized P2P Systems:

Gnutella

Released by

• Open source

• 3/14/2000:

NullSoft/AOL, almost
immediately withdrawn, and

became open source

•Message flooding: serverless,

decentralized search

message broadcast,

by

direct

file transfer using HTTP

• Limited-scope query

2

10

2

11

22 2

3

31 Client
1

C S
Server

Servent (=Serv er + Cli ent)

Figure 2.5

Figure 2.6: Key elements in the Gnutella protocol

11

Example of Unstructured P2P Systems: Freenet

• Ian Clarke, Scotland, 2000

• Distributed depth-first search,

Exhaustive search

• File hash key,

lexicographically closest

match

• Store-and-forward file transfer

• Anonymity

• Open source

C S
3

12

21
4

5
6

Figure 2.7

Example of Hybrid P2P Systems:

FastTrack / KaZaA

• Proprietary software developed by
FastTrack in Amsterdam and
licensed to many companies

• Summer 2001, Sharman
networks,

founded in Vanuatu,
acquires FastTrack

• Hierarchical supernodes (Ultra-
peers)

• Dedicated authentication server and
supernode list server

• From user‘s perspective, it‘s like
Google.

• Encrypted files and control data
transported using HTTP

• Parallel download
• Automatically switch to new server

Supernodes in
overlay mesh

C

S

13

Figure 2.8

Example of Structured P2P Systems:

Chord

• Frans Kaashoek, et. al., MIT,

2001

• IRIS: Infrastructure for

Resilient
Internet Systems, 2003

• Distributed Hashing Table

• Scalable lookup service

• Hyper-cubic structure

2

10

14

4

6

12

8

0
1

3

5

79

11

13

15

14

Figure 2.9

Figure 2.10: Structured versus unstructured

peer-to-peer systems

16

Benefits from P2P

• Theory

– Dynamic discovery of information

– Better utilization of bandwidth, processor,

storage, and other resources

– Each user contributes resources to network
• Practice examples

– Sharing browser cache over 100Mbps lines

– Disk mirroring using spare capacity

– Deep search beyond the web

17

Figure 2.11 Distinctions between
IP and overlay routing for P2P applications

IP Application-level routing overlay

Scale Peer-to-peer systems can address more objects.

The GUID name space is very large and flat

(>2128), allowing it to be much more fully

occupied.

Load balancing

IPv4 is limited to 232 addressable nodes. The

IPv6 name space is much more generous

(2128), but addresses in both versions are

hierarchically structured and much of the space

is pre-allocated according to administrative

requirements.

Loads on routers are determined by network

topology and associated traffic patterns.

Network dynamics

(addition/deletion of

objects/nodes) Fault

tolerance

Object locations can be randomized and hence

traffic patterns are divorced from the network

topology.

Routing tables can be updated synchronously or

asynchronously with fractions of a second

delays.

Routes and object references can be replicated

n-fold, ensuring tolerance of n failures of nodes

or connections.

Target identification

Security and anonymity

IP routing tables are updated asynchronously on

a best-efforts basis with time constants on the

order of 1 hour.

Redundancy is designed into the IP network by

its managers, ensuring tolerance of a single

router or network connectivity failure. n-fold

replication is costly.

Each IP address maps to exactly one target node.

Addressing is only secure when all nodes are

trusted. Anonymity for the owners of addresses

is not achievable.

Messages can be routed to the nearest replica of

a target object.

Security can be achieved even in environments

with limited trust. A limited degree of

anonymity can be provided.

18

Distributed Computation

• Only a small portion of the CPU cycles of most computers is

utilized. Most computers are idle for the greatest portion of

the day, and many of the ones in use spend the majority of

their time waiting for input or a response.

• A number of projects have attempted to use these idle CPU

cycles. The best known is the SETI@home project, but other

projects including code breaking have used idle CPU cycles

on distributed machines.

• SETI@home project: a scientific experiment that uses

Internet-connected computers to analyze radio telescope

data in the Search for Extraterrestrial Intelligence (SETI)
http://setiathome.ssl.berkeley.edu/

http://setiathome.ssl.berkeley.edu/

19

Dangers and Attacks on P2P

• Poisoning (files with contents different to description)

• Polluting (inserting bad packets into the files)

• Defection (users use the service without sharing)

• Insertion of viruses (attached to other files)

• Malware (originally attached to the files)

• Denial of Service (slow down or stop the network traffic)

• Filtering (some networks don‘t allow P2P traffic)

• Identity attacks (tracking down users and disturbing them)

• Spam (sending unsolicited information)

20

2.2 Napster and its legacy

• The first large scale peer-to-peer network was Napster, set

up in 1999 to share digital music files over the Internet. While

Napster maintained centralized (and replicated) indices, the

music files were created and made available by individuals,

usually with music copied from CDs to computer files. Music

content owners sued Napster for copyright violations and

succeeded in shutting down the service. Figure 10.2

documents the process of requesting a music file from

Napster.

Figure 2.12 Napster: peer-to-peer file sharing

Napster server

Index1. File location
request

peers

3. File request

4. File delivered

2. List of peers
offering the file

5. Index update

Napster server

Index

21

22

Napster: Lessons Learned

• Napster created a network of millions of people, with

thousands of files being transferred at the same time.

• There were quality issues. While Napster displayed link
speeds to allow users to choose faster downloads, the fidelity

of recordings varied widely.

• Since Napster users were parasites of the recording
companies, there was some central control over selection of

music. One benefit was that music files did not need updates.

•There was no guarantee of availability for a particular item of
music.

23

2.3 Middleware for Peer-to-Peer

• A key problem in Peer-to-Peer applications is to provide a

way for clients to access data resources efficiently.
– Similar needs in client/server technology led to solutions like NFS.

– However, NFS relies on pre-configuration and is not scalable enough

for peer-to-peer.

• Peer clients need to locate and communicate with any

available resource, even though resources may be widely

distributed and configuration may be dynamic, constantly

adding and removing resources and connections.

24

Non-Functional Requirements for

Peer-to-Peer Middleware

• Global Scalability

• Load Balancing

• Local Optimization

• Adjusting to dynamic host availability

• Security of data

• Anonymity, deniability, and resistance to censorship (in some

applications)

25

2.4 Routing Overlays

• A routing overlay is a distributed algorithm for a middleware

layer responsible for routing requests from any client to a

host that holds the object to which the request is addressed.

Main tasks:
– Routing of requests to objects: locating nodes and objects

– Insertion and deletion of objects

– Node addition and removal

• Any node can access any object by routing each request

through a series of nodes, using information in the

intermediate nodes to locate the destination object. Global

User IDs (GUID) also known as opaque identifiers are used

as names, but do not contain location information

Figure 2.13 Distribution of information in a

routing overlay

Object:

26

Node:

D

C‘s routing knowledge

A‘s routing knowledge D‘s routing knowledge

B‘s routing knowledge

C

A

B

27

Overlay Networks

Overlay: a network on top of another (IP) networks
– links on one layer are network segments of lower layers
– tunneling, application adaptor, transparent router

Make the application control the routing

X

28

Routing Inefficiencies

• Principal categories of the routing inefficiencies
– Poor routing metrics

the number of• These routers make decisions by minimizing

independent autonomous systems (ASs)

– Restrictive routing policies
• Private relationships

– Single-path routing

• It can forward packets along non-optimal routes

• It can spread load unequally

29

2.5 Overlay case studies: Pastry, Tapestry

2.5.1 Pastry
Information on Pastry from the Microsoft Web Site (in

Bibliography)

• Each node in a Pastry network has a unique, uniform random identifier

(nodeId) in a circular 128-bit identifier space. When presented with a

message and a numeric 128-bit key, a Pastry node efficiently routes the

message to the node with a nodeId that is numerically closest to the key,

among all currently live Pastry nodes.

• The expected number of forwarding steps in the Pastry overlay network is

O(log N), while the size of the routing table maintained in each Pastry node

is only O(log N) in size (where N is the number of live Pastry nodes in the

overlay network). At each Pastry node along the route that a message

takes, the application is notified and may perform application-specific

computations related to the message.

30

Pastry

• Each Pastry node keeps track of its L immediate

neighbors in the nodeId space (called the leaf set),

and notifies applications of new node arrivals, node

failures and node recoveries within the leaf set.

• Pastry takes into account locality (proximity) in the

underlying Internet; it seeks to minimize the distance

messages travel, according to a scalar proximity

metric like the ping delay. Pastry is completely

decentralized, scalable, and self-organizing; it

automatically adapts to the arrival, departure and

failure of nodes.

31

Pastry Applications

utilize its• P2P applications built upon Pastry can

capabilities in many ways, including:

– Mapping application objects to Pastry nodes
– Inserting objects

– Accessing objects

– Availability and persistence

– Diversity

– Load balancing

– Object caching

– Efficient, scalable information dissemination

32

Figure 2.14: Basic programming interface for a

distributed hash table (DHT) as implemented by

the PAST API over Pastry

put(GUID, data)

The data is stored in replicas at all nodes responsible for the object

identified by GUID.

remove(GUID)

Deletes all references to GUID and the associated data.

value = get(GUID)

The data associated with GUID is retrieved from one of the nodes

responsible it.

Figure 2.15 Circular routing is correct but

inefficient

The dots depict live nodes.

The space is considered as

circular: node 0 is adjacent to

node (2128-1). The diagram

illustrates the routing of a

message from node 65A1FC

to D46A1C using leaf set

information alone, assuming

leaf sets of size 8 (l = 4). This

is a degenerate type of

routing that would scale very

poorly; it is not used in

practice.

0 FFFFF....F (2128-1)

D471F1

D467C4

D46A1C

D13DA3

65A1FC

33

34

Pastry Routing Tables

• To increase the efficiency of the Pastry system, a

routing table is maintained at each node. Figure 10.7

shows a portion of a routing table, while figure 10.8

shows how that information can reduce the number of

hops shown in figure 10.6. Figure 10.9 shows the

Pastry Routing Algorithm.

Figure 2.16 First four rows of a Pastry routing

table

35

Figure 2.17 Pastry routing example

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D4213F

D471F1

D467C4
D462BAD46A1C

Routing a message from node 65A1FC to D46A1C.

With the aid of a well-populated routing table the

message can be delivered in ~ log16(N) hops.

36

37

Figure 2.18 Pastry‘s routing algorithm

To handle a message M addressed to a node D (where R[p,i] is the element at column i,

row p of the routing table):

1.If (L-l < D < Ll) { //

the destination is within the leaf set or is the current node.

2.Forward M to the elementLi of the leaf set with GUID closest toD or the current node

A.

3.} else { // use the routing table to despatch M to a node with a closer GUID

4.find p, the length of the longest common prefix of

D and A. and i, the (p+1)th

hexadecimal digit ofD.

5.If (R[p,i] ? null) forwardM to R[p,i] // route M to a node with a longer common

prefix.

6.else { // there is no entry in the routing table

7.Forward M to any node in L or R with a common prefix of length i, but a GUID that

is numerically closer.

}

}

38

Tapestry

• Tapestry is another peer-to-peer model similar to Pastry.

• It hides a distributed hash table from applications behind a

Distributed object location and routing (DOLR) interface to

make replicated copies of objects more accessible by

allowing multiple entries in the routing structure.

• This allows for a more direct access to a nearby copy of data
resources, as shown in Figure 10.10.

39

Figure 2.19: Basic programming interface for

distributed object location and routing (DOLR)

as implemented by Tapestry

publish(GUID)

GUID can be computed from the object (or some part of it, e.g. its name).

This function makes the node performing a publish operation the host for

the object corresponding to GUID.

unpublish(GUID)

Makes the object corresponding to GUID inaccessible.

sendToObj(msg, GUID, [n])

Following the object-oriented paradigm, an invocation message is sent to an

object in order to access it. This might be a request to open a TCP

connection for data transfer or to return a message containing all or part of

the object’s state. The final optional parameter [n], if present, requests the

delivery of the same message to n replicas of the object.

Figure 2.20: Tapestry routing

4228

437A

4361

43FE

4664

4B4F

E791

4A6D

AA9357EC

4378

PhilÕs
Books

4378

PhilÕs
Books

4377 (Root for 4378)

publish path

Tapestry routings
for 4377

Location mapping
for 4378

Routes actually
taken by send(4378)

40

41

2.6 Application case studies:

Squirrel, OceanStore, Ivy

1. Squirrel web cache
– Computers on a local network form a Pastry overlay

• SHA-1 applied to the URL to produce a 128-bit GUID

– Client nodes include a local Squirrel proxy process
• If object not in the local cache, Squirrel routes a Get request via Pastry to the home

node

• If the home node has a fresh copy, it directly

responds to the client. If it has a stale copy or no copy, it issues

a get to the origin server.

– Evaluation
105 active clients in Cambridge and more than 36,000 in Redmond

•Each client contributes 100MB of disk storage

•Hit ratios: centralized - 29% (Redmond) and 38% (Cambridge)
– Similar simulation results achieved by the overlay

•Latency: mean 4.11 hops (Redmond) and 1.8 hops (Cambridge)
– Local transfer take only a few milliseconds

•Computation: average number of cache requests served for

other nodes by each node: 0.31 per minute

42

OceanStore

• The developers of Tapestry built OceanStore as a

prototype for a very large scale, incrementally

scalable persistent data store for multiple data

objects. It allows persistent storage of both

mutable and immutable data objects.

• Objects are structured in a manner similar to Unix

files, as illustrated in figure 10.13.

Figure 2.21: OceanStore object storage

d1 d2 d3 d5d4

root block

version i indirection blocks

d2

version i+1

d1 d3

certificate VGUID of current

version

VGUID of
version i

AGUID

data blocks

43

B
G

U
ID

 (
c
o

p
y
 o

n
 w

ri
te

)

44

Figure 2.22: Identifier types in OceanStore

Name Meaning Description

BGUID

VGUID

AGUID

block GUID

version GUID

active GUID

Secure hash of a data block

BGUID of the root block of a version Uniquely

identifies all the versions of an object

45

Ivy

•The Ivy file system emulates a Sun NFS server. Ivy maintains

a store of file updates in logs and reconstructs a particular

state from the logs. It does not allow file locking to allow for

the failure or withdrawal of nodes or connections. For

protection against malicious attacks, file changes are

associated with nodes and can omit a node when performing

a reconstruction. Conflicts in file contents due to partitions in

a network are dealt with by algorithm. Ivy architecture is

shown in figure 2.22.

Figure 2.23: Ivy system architecture

DHash server

Modifled NFS
Client module

Ivy server DHash server

Application

Kernel

Ivy node

DHash server

DHash server

DHash server

Application

46

UNIT 5

Transactions and Concurrency Control

2

Chapter 1 Transactions and

Concurrency Control

1. Introduction

2. Transactions

3. Nested transactions

4. Locks

5. Optimistic concurrency control

6. Timestamp ordering

7. Comparison of methods for concurrency control

8. Summary

3

• Transaction
– Definition: a sequence of sever operations that is

guaranteed by the server to be atomic in the presence of

multiple clients and server crashes

• The goal of transactions
– the objects managed by a server must remain in a consistent state

• when they are accessed by multiple transactions and

• in the presence of server crashes

• Recoverable objects
– can be recovered after their server crashes (recovery in Chapter 14)

– objects are stored in permanent storage

• Failure model
– transactions deal with crash failures of processes and omission failures of

communication

• Designed for an asynchronous system
– It is assumed that messages may be delayed

1.1 Introduction

4

Figure 1.1 Operations of the Account interface

create(name)  account

create a new account with a given name

lookUp(name)  account

return a reference to the account with the given name

branchTotal()  amount

return the total of all the balances at the branch

Operations of the Branch interface

deposit(amount)

deposit amount in the account

withdraw(amount)

withdraw amount from the account

getBalance()  amount

return the balance of the account

setBalance(amount)

set the balance of the account to amount

Used as an example. Each

Account is represented by a

remote object whose interface

Account provides operations

for making deposits and

withdrawals and for setting

and getting the balance.

and each Branch of the bank is

represented by a remote object

whose interface Branch provides

operations for creating a new

account, looking one up by name

and enquiring about the total

funds at the branch. It stores a

correspondence between account

names and their remote object

references

5

Atomic operations at server

• Simple synchronisation: without transactions

– when a server uses multiple threads it can

perform severalclient operations concurrently

– if we allowed deposit and withdraw to run concurrently we could get

inconsistent results

• Objects should be designed for safe concurrent access e.g. in

Java use synchronized methods, e.g.

– public synchronized void deposit(int amount) throws RemoteException

• Atomic operations are free from interference from concurrent

operations in other threads

– use any available mutual exclusion mechanism (e.g. mutex)

6

Client cooperation by means of synchronizing

server operations

• In some applications clients share resources via a server

and depend on one another to progress

– e.g. some clients update server objects and others access them

– e.g. one is a producer and another a consumer

– e.g. one sets a lock and the other waits for it to be released

• Servers implementation with multiple threads

– Not a good idea for a waiting client to

poll the server to see whether a resource is yet

available

• Unfair (later clients might get earlier turns)

– Java wait and notify methods allow threads to communicate with

one another and to solve these problems

• e.g. when a client requests a resource, the server thread waits until it is

notified that the resource is available

7

Failure model for transactions

Lampson‘s failure model deals with failures of disks, servers

and communication
–algorithms work correctly when predictable faults occur

–but if a disaster occurs, we cannot say what will happen

• Writes to permanent storage may fail
– e.g. by writing nothing or a wrong value

(write to wrong block is a disaster)

– reads can detect bad blocks by checksum

• Servers may crash occasionally
– when a crashed server is replaced by a new

process its memory is cleared and it carries out a

recovery procedure to get its objects‘ state

– faulty servers are made to crash so they do not produce arbitrary failures

– recipient can detect corrupt messages (by checksum)

– forged messages and undetected corrupt messages are disasters

8

1.2 Transactions

• Some applications require a sequence of client requests to a

server to be atomic in the sense that
1. they are free from interference by operations being performed on behalf

of other concurrent clients; and

2. either all of the operations must be completed successfully or they must

have no effect at all in the presence of server crashes.

• Retrospect:
– Transactions originate from database management systems

– Transactional file servers were built in the 1980s

– Transactions on distributed objects late 80s and 90s

– Middleware components e.g. CORBA Transaction service

• Transactions apply to recoverable objects and are intended to

be atomic
– Servers 'recover' - they are restated and get

their objectsfrom permanent storage

9

A client‘s banking transaction

• This transaction specifies a sequence of related operations
involving bank accounts named A, B and C and referred to as
a, b and c in the program

• The first two operations transfer $100 from A to B
• The second two operations transfer $200 from C to B

Transaction T:

a.withdraw(100);

b.deposit(100);

c.withdraw(200);

b.deposit(200);
Figure 16.2

10

Atomicity of transactions

The atomicity has two aspects
1.All or nothing

– It either completes successfully, and the effects of all of its
operations are recorded in the objects or

– It has no effect at all (if it fails or is aborted)

Two further aspects of its own
• failure atomicity: effects are atomic even when the server crashes;

• durability: after a transaction has completed
successfully, all its effects are saved in permanent

storage.

1.Isolation
– Each transaction must be performed without interference

from other transactions
• There must be no observation by other

transactions of a transaction's intermediate effects
• Concurrency control ensures isolation

11

Operations in the Coordinator interface

• Transaction capabilities may be added to a server of

recoverable objects

– each transaction is created and managed

by a Coordinator object whose interface follows:
Figure 16.3

openTransaction() -> trans;

starts a new transaction and delivers a unique TID trans. This

identifier will be used in the other operations in the transaction.

closeTransaction(trans) -> (commit, abort);

ends a transaction: a commit return value indicates that the

transaction has committed; an abort return value indicates that it

has aborted.

abortTransaction(trans);

aborts the transaction.

Transaction life histories

• A transaction is either successful (it commits)
– the coordinator sees that all objects are saved in permanent storage

• or it is aborted by the client or the server
– make all temporary effects invisible to other transactions

– how will the client know when the server has aborted its transaction?

– the client finds out next time it tries to access an object at the server

Successful Aborted by client Aborted by server

openTransaction

operation

operation

openTransaction

operation

operation

openTransaction

operation

operation

server aborts

transaction

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

Figure 1.4

12

13

1.2.1 Concurrency control

• Two well-known concurrent transaction problems
– Lost update

• a lost update occurs when two transactions both read the old value

of a variable and use it to calculate a new value

– Inconsistent retrievals
• inconsistent retrievals occur when a retrieval transaction observes

values that are involved in an ongoing updating transaction

• Assumption
– the operations deposit, withdraw, getBalance and

setBalance are synchronized operations

– that is, their effect on the account balance is atomic

14

The lost update problem

• The initial balances of accounts A, B, C are $100, $200, $300
Both transfer transactions increase B‘s balance by 10%

TransactionT :

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

TransactionU:

balance = b.getBalance();

b.setBalance(balance*1.1);

c.withdraw(balance/10)

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

c.withdraw(balance/10) $280

Figure 1.5

The net effect should be to increase B by 10% twice - 200, 220, 242, but

it only gets to 220. T‘s update is lost.

The inconsistent retrievals problem

• V transfers $100 from A to B while W calculates branch total (which

should be $600)

TransactionV:

a.withdraw(100) b.deposit(100)

TransactionW:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100 total =

total+b.getBalance() $300 total =

total+c.getBalance()

Figure 1.6

15

we see an inconsistent retrieval because V has only done the

withdraw part when W sums balances of A and B

16

Serial equivalence

• The same effect means

– the read operations return the same values

– the instance variables of the objects have the same values at the end

• If each one of a set of transactionshas

the correct effect when done on its own

then if they are done one at a time in some order the effect will

be correct

• A serially equivalent interleaving is one

in which the combined effect is the same as if the

transactions had been

done one at a time in some order

– The transactions are scheduled to avoid

overlapping access to the accounts accessed by both of

them

17

A serially equivalent interleaving of T and U

(lost updates cured)

• if one of T and U runs before the other, they can‘t get a lostupdate,

• the same is true if they are run in a serially equivalent ordering

TransactionT:

balance = b.getBalance()

b.setBalance(balance*1.1)

a.withdraw(balance/10)

TransactionU:

balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220

a.withdraw(balance/10) $80

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

c.withdraw(balance/10) $278

Figure 1.7

their access to B is serial, the other part can overlap

18

A serially equivalent interleaving of V and W

(inconsistent retrievals cured)

• if W is run before or after V, the problem will not occur

• therefore it will not occur in a serially equivalent ordering of V and W

• the illustration is serial, but it need not be

TransactionV:

a.withdraw(100); b.deposit(100)

TransactionW:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400

total = total+c.getBalance()

...

Figure 1.8

we could overlap the first line of W with the second line of V

Read and write operation conflict rules

• Conflicting operations: a pair of operations conflicts if their
combined effect depends on the order in which they were
performed

– e.g. read and write (whose effects are the result returned by read and the
value set by write)

read read No

read write Yes

write write Yes

Because the effect of a pair orfead operations

does not depend on the order in which they are

executed

Because the effect of aread and a write

operation depends on the order of their

execution Because the effect of a pair owf rite

operations depends on the order of their

execution

Figure 1.9

Operations of different ConflictReason transactions

19

Serial equivalence

defined in terms of conflicting operations

20

• For two transactions to be serially equivalent, it is necessary

and sufficient that

all pairs of conflicting operations of the two transactions be
executed in the same order at all of the objects they both access

• Consider
– T and U access i and j

• T: x = read(i); write(i, 10); write(j, 20);

• U: y = read(j); write(j, 30); z = read (i);

– serial equivalence requires that either

• T accesses i before U and T accesses j before U. or

• U accesses i before T and U accesses j before T

• Serial equivalence is used as a criterion for

designing concurrency control schemes. Three alternative

approaches
– Locking: used by most practical systems

– Optimistic concurrency control

– Timestamp ordering

A non-serially equivalent interleaving of

operations of transactions T and U

• Each transaction‘s access to i and j is serialized w.r.t one

another, but
– T makes all accesses to i before U does

– U makes all accesses to j before T does

therefore this interleaving is not serially equivalent

Figure 1.10TransactionT: TransactionU:

x = read(i)

write(i, 10)
y = read(j)

write(j, 30)

write(j, 20)
z = read (i)

21

22

1.2.2 Recoverability from aborts

If a transaction aborts, the server must make sure that other

concurrent transactions do not see any of its effects, we study

two problems:

• ‗dirty reads‘
– an interaction between a read operation in one transaction and an

earlier write operation on the same object (by a transaction that then

aborts)

– a transaction that committed with a ‗dirty read‘ is not recoverable

• ‗premature writes‘
– interactions between write operations on the same object by different

transactions, one of which aborts

For illustration, assume getBalance is a read

operation and

setBalance a write operation

23

A dirty read when transaction T aborts

U has committed, so it cannot be undone => dirty read

TransactionT:

a.getBalance()

a.setBalance(balance + 10)

TransactionU:

a.getBalance()

a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110

abort transaction

balance = a.getBalance() $110

a.setBalance(balance + 20) $160

commit transaction

Figure 1.11

24

Transaction T:

a.setBalance(105)

Transaction U:

a.setBalance(110)

$100

a.setBalance(105) $105

a.setBalance(110) $110

Premature writes – overwriting uncommitted values

Figure 1.12

Some database systems keep ‗before images‘ and restore them

after aborts

e.g. $100 is before image of T‘s write, $105 is before image of U‘s write

if U aborts we get the correct balance of $105,

But if U commits and then T aborts, we get $100 instead of $110

25

Strict executions of transactions

• Curing premature writes:
– if a recovery scheme uses before images

• write operations must be delayed until earlier transactions

that updated the same objects have either committed or aborted

• Strict executions of transactions
– to avoid both ‗dirty reads‘ and ‗premature writes‘.

• delay both read and write operations

– executions of transactions are called strict if both read and write

operations on an object are delayed until all transactions that previously

wrote that object have either committed or aborted.

– thestrict execution of transactions enforces the

desired property of isolation

• Tentative versions are used during progress of a transaction
– objects in tentative versions are stored in volatile memory

1.3 Nested transactions

Figure 1.13
T : top-level transaction

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

1T : 2T :

T11 : T12 : T21 :

T211 :

prov.commit

•Transactions may be composed of other transactions
– Several transactions may be started from within a transaction

– We have a top-level transaction and subtransactions which may

have their own subtransactions

prov. commit

abort

prov. commitprov. commit

prov. commit

commit

26

27

Nested transactions

• To a parent, a subtransaction is atomic with respect to failures

and concurrent access
– Transactions at the same level (e.g. T1 and T2) can run concurrently but

access to common objects is serialised

– A subtransactioncan fail independently of its parent and

other subtransactions
• When it aborts, its parent decides what to do, e.g. start another subtransaction or

give up

• Commitment
– A transaction may commit or abort only after its child transactions have

completed

– A subtransactiondecides independently to commit

provisionally or to

abort. Its decision to abort is final

– When a parent aborts, all of its subtransactions are aborted

– When a subtransaction aborts, parent can decide whether to abort or not

– If the top-level transaction commits, then all of the subtransactions that

have provisionally committed can commit too, provided that none of their

ancestors has aborted

28

Advantages of nested transactions

(over flat ones)

• Subtransactions may run concurrently with other

subtransactions at the same level

–this allows additional concurrency in a transaction.

–when subtransactions run in different servers, they can work in parallel.

• e.g. consider the branchTotal operation

• it can be implemented by invoking getBalance at every account in

the branch.

– these can be done in parallel when the branches have different servers

•Subtransactions can commit or abort independently
– this is potentially more robust

– a parent can decide on different actions according to whether a subtransaction

has aborted or not

29

Summary on transactions

We consider only transactions at a single server, they are:

• atomic in the presence of concurrent transactions

– which can be achieved by serially equivalent executions

• atomic in the presence of server crashes

– they save committed state in permanent storage (recovery Ch.14)

– they use strict executions to allow for aborts

– they use tentative versions to allow for commit/abort

• nested transactions are structured from sub-transactions

– they allow concurrent execution of sub-transactions

– they allow independent recovery of sub-transactions

30

1.4 Locks

• Transactions must be scheduled so that their effect on shared

objects is serially equivalent
a) all access by a transaction to a particular object must be serialized with

respect to another transaction‘s access

b) all pairs of conflicting operations of two transactions should be executed

in the same order

– A server can achieve serial equivalence by serializing access to objects,

e.g. by the use of locks

– to ensure (b), a transaction is not allowed any new locks after it has

released a lock

Two-phase locking - has a ‗growing‘ and a ‗shrinking‘ phase
– growing phase: new locks are acquired

– shrinking phase: the locks are released

31

A simple serializing mechanism: exclusive locks

•The server attempts to lock any object that is about to be used by any
operation of a client‘s transaction

– If a client requests access to an object that is locked by another client‘s transaction,
the request is suspended and the client must wait until the object is unlocked

openTransaction

bal = b.getBalance() waits forT’s

lock onB

lockB

b.setBalance(bal*1.1)

c.withdraw(bal/10)

closeTransaction

lockC

unlockB, C

Transaction T: :

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U:

balance = b.getBalance()
b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction

bal = b.getBalance() lock B

b.setBalance(bal*1.1)

a.withdraw(bal/10) lock A

closeTransaction unlockA, B

Figure 1.14

(same as 1.7)

32

Strict two-phase locking

• Any locks applied during the progress of a transaction are held

until the transaction commits or aborts
– Strict executions prevent dirty reads and premature

writes (if transactions abort)

– A transaction that reads or writes an object must be delayed until other

transactions that wrote the same object have committed or aborted

– For recovery purposes, locks are held until updated objects have been

written to permanent storage

• Granularity - apply locks to small things e.g. bank balances
– There are no assumptions as to granularity in the schemes we present

• Read operations of different transactionsdo not

conflict, so exclusive locks reduce concurrency more

than necessary
– The ‗many reader/single writer‘ scheme allows several transactions to

read an object or a single transaction to write it (but not both)

– It uses read locks and write locks

• read locks are sometimes called shared locks

33

Lock compatibility

The operation conflict rules tell us that:
1.If a transaction T has already performed a read operation on a particular

object, then a concurrent transaction U must not write that object until T

commits or aborts.

2.If a transaction T has already performed a write operation on a particular

object, then a concurrent transaction U must not read or write that object until

T commits or aborts.

For one object Lock requested
read write

Lock already set none

read

write

OK

OK

wait

OK

wait

wait

Figure 1.15

to enforce 1, a request for a write lock is delayed by the

presence of a read lock belonging to another transaction

to enforce 2, a request for a read lock or write lock is delayed

by the presence of a write lock belonging to another transaction

Lock promotion

• Locking prevents the inconsistent retrievals problem
– If the retrieval transaction comes first, its read locks

delay the update transaction

– If the retrieval transaction comes second, its request for read locks causes

it to be delayed until the update transaction has completed

• Lock promotion is required to prevent the lost update problem
– Lost updates occur when two transactions read an object and then use it

to calculate a new value

– Lost updates are prevented by making later transactions delay their reads

until the earlier ones have completed

• Each transaction sets a read lock when it reads and then promotes it to

a write lock when it writes the same object

• when another transaction requires a read lock it will be delayed

– Lock promotion: the conversion of a lock to a stronger lock – that is, a

lock that is more exclusive
34

36

Lock implementation

• The granting of locks will be implemented by a separate

object in the server that we call the lock manager

• The lock manager holds a set of locks,

for example in a hash table

• Each lock is an instance of the class Lock (Fig 1.17) and is

associated with a particular object

– its variables refer to the object, the holder(s) of the lock and its type

• The lock manager code uses wait (when an object is locked)

and notify when the lock is released

• The lock manager provides setLock and unLock operations

for use by the server

37

Figure 1.17 Lock class
public class Lock {

private Object object; private Vector

holders; private LockType lockType;
// the object being protected by the lock

// the TIDs of current holders

// the current type

public synchronized void acquire(TransID trans, LockType aLockType){

while(/*another transaction holds the lock in conflicing mode*/) {

try {

wait();

}catch (InterruptedException e){/*...*/ }

}

if(holders.isEmpty()) { // no TIDs hold lock holders.addElement(trans); lockType =

aLockType;

} else if(/*another transaction holds the lock, share it*/)){

if(/* this transaction not a holder*/) holders.addElement(trans);

} else if (/* this transaction is a holder but needs a more exclusive lock*/)

lockType.promote();

}

// remove this holder

}

public synchronized void release(TransID trans){

holders.removeElement(trans);

// set locktype to none

notifyAll();

}

}

38

Figure 1.18 LockManager class

public class LockManager { private Hashtable theLocks;

public void setLock(Object object, TransID trans, LockType lockType){ Lock
foundLock;

synchronized(this){
// find the lock associated with object
// if there isn’t one, create it and add to the hashtable
}
foundLock.acquire(trans, lockType);

}

// synchronize this one because we want to remove all entries public
synchronized void unLock(TransID trans) {

Enumeration e = theLocks.elements();
while(e.hasMoreElements()){
Lock aLock = (Lock)(e.nextElement());
if(/* trans is a holder of this lock*/) aLock.release(trans);
}
}

}

Deadlock with write locks

Operations Locks Operations Locks

a.deposit(100); write lockA

b.withdraw(100)

waits forU’s

lock on B

b.deposit(200) write lockB

a.withdraw(200); waits for T’s

lock on A

Figure 1.19

TransactionT TransactionU

39

The deposit and withdraw methods are atomic. Although they read as well

as write, they acquire write locks. T accesses A  B, U accesses B  A

When locks are used, each of T and U acquires a lock on one account and

then gets blocked when it tries to access the account the other one has locked.

We have a 'deadlock'.

Figure 1.20 The wait-for graph for Figure 1.19

• Definition of deadlock
– deadlock is a state in which each member of a group of transactions is

waiting for some other member to release a lock.

– a wait-for graph can be used to represent the

waiting relationships between current transactions

In a wait-for graph the nodes represent transactions and the edges

represent wait-for relationships between transactions

B
Waits for

Held by

Held by

UT U T

Waits for

A

Transaction

s wait for

one another

indirectly

via objects

40

Objects can be

omitted (as a

transaction

waits for only

one object)

A cycle in a wait-for graph

Suppose a wait-for graph contains a cycle T … U  …  V  T

–Each transaction waits for the next transaction in the cycle

–All of these transactions are blocked waiting for locks

–None of the locks can ever be released (the transactions are deadlocked)

–If one transaction is aborted, then its locks are released and that cycle is

broken

U

V

T

Figure 1.21

41

Another wait-for graph

• T, U and V share a read lock on C and

• W holds write lock on B (which V is waiting for)

• T and W then request write locks on C and deadlock occurs
– e.g. V is in two cycles - look on the left

C

T

U
V

Held by

Held by

Held by

T

U

V

W

W

B

Held by

Waits for

Figure 1.22

42

43

Deadlock prevention

• Deadlock prevention is unrealistic

– e.g. lock all of the objects used by a transaction when it starts

• unnecessarily restricts access to shared resources.

• it is sometimes impossible to predict at the start of a transaction which

objects will be used.

• Deadlock can also be prevented by requesting

locks on objects in a predefined order

– but this can result in premature locking and a reduction in concurrency

44

Deadlock detection

Deadlock detection: finding cycles in the wait-for graph

–After detecting a deadlock, a transaction must be selected to be aborted to

break the cycle

–The software for deadlock detection can be part of the lock manager

–It holds a representation of the wait-for graph so that it can check it for

cycles from time to time

–Edges are added to the graph and removed from the graph by the lock

manager‘s setLock and unLock operations

–When a cycle is detected, choose a transaction to be aborted and then

remove from the graph all the edges belonging to it

–It is hard to choose a victim - e.g. choose the oldest or the one in the most

cycles

45

Timeouts on locks

Lock timeouts can be used to resolve deadlocks

–Each lock is given a limited period in which it is invulnerable

• after this time, a lock becomes vulnerable

–Provided that no other transaction is competing for the locked object, the

vulnerable lock is allowed to remain

–But if any other transaction is waiting to access the object protected by a

vulnerable lock, the lock is broken

• (that is, the object is unlocked) and the waiting transaction resumes

–The transaction whose lock has been broken is normally aborted

Problems with lock timeouts
Locks may be broken when there is no deadlock

If the system is overloaded, lock timeouts will happen more often

and long transactions will be penalised

It is hard to select a suitable length for a timeout

46

1.5 Optimistic concurrency control

• The likelihood of two transactions conflicting is low
– a transaction proceeds without restriction until the closeTransaction

(no waiting, therefore no deadlock)

– it is then checked to see whether it has

come into conflict with other transactions

– when a conflict arises, a transaction is aborted

• Each transaction has three phases
– Working phase

• the transaction uses a tentative version of the objects it accesses (dirty reads can‘t

occur as we read from a committed version or a copy of it)

• the coordinator records the readset and writeset of each transaction

– Validation phase
• at closeTransaction the coordinator validates the transaction (looks for conflicts)

• if the validation is successful the transaction can commit.

• if it fails, either the current transaction, or one it conflicts with is aborted

– Update phase
• If validated, the changes in its tentative versions are made permanent.

• read-only transactions can commit immediately after passing validation

47

Validation of transactions

We use the read-write conflict rules
– to ensure a particular transaction is serially equivalent with respect to all other

overlapping transactions

•Each transaction is given a transaction number

when it starts validation (the number is kept if it commits)

•The rules ensure serializability of transaction Tv

(transaction being validated) with respect to transaction Ti

Validation can be simplified by omitting rule 3

(if no overlapping of validate and update phases)

Tv Ti Rule

write

read

write

read

write

write

1. Ti must not read objects written by Tv

2. Tv must not read objects written by Ti

3. Ti must not write objects written by Tv

Tv mustnot write objects written by Ti

and

forward

backwar

d

48

Validation of transactions

The earlier committed transactions are T1, T2 and T3. T1 committed before

Tv started.(earlier means they started validation earlier)

•Backward validation: check Tv with preceding overlapping transactions

–Rule1(Tv‗swritevsTi‗sread)is satisfied because reads of earlier

transactions were done before Tv entered validation (and possible updates)

–Rule 2 - check if Tv‘s read set overlaps with write sets of earlier Ti

–T2 and T3 committed before Tv finished its working phase.
– Rule3 - (writevs write) assume no overlap of validate and commit.

Earlier committed

transactions

Working Validation Update

T1

Tv

Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

Figure 1.28

49

Backward validation of transaction Tv

boolean valid = true; for (int Ti

= startTn+1; Ti <= finishTn; Ti++){

Backward Validation of Transactions

if (read set of Tv intersects write set of Ti) valid = false;

}

•startTn is the biggest transaction number assigned to some other

committed transaction when Tv started its working phase

•finishTn is biggest transaction number assigned to some other

committed transaction when Tv started its validation phase

•In figure, StartTn + 1 = T2 and finishTn = T3. In backward validation,

the read set of Tv must be compared with the write sets of T2 and T3.

•the only way to resolve a conflict is to abort Tv

to carry out this algorithm, we must keep write sets of recently committed transactions

50

Forward validation

• Rule 1. the write set of Tv is compared with the read sets of all overlapping
active transactions

– In Figure 16.28, the write set of Tv must be compared with the read sets of
active1 and active2.

• Rule 2. (read Tv vs write Ti) is automatically fulfilled because the
active transactions do not write until after Tv has completed.

Forward validation of transaction Tv boolean valid = true;

for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;

}

• Read only transactions always pass validation

• The scheme must allow for the fact that read sets of active transactions

may change during validation

• As the other transactions are still active, we may abort them or Tv

• if we abort Tv, it may be unnecessary as an active one may anyway abort

51

Comparison of forward and backward validation

• In conflict, choice of transaction to abort
– forward validation allows flexibility, whereas backward validation allows

only one choice (the one being validated)

• In general read sets > than write sets.
– backward validation

• compares a possibly large read set against the old write sets

• overhead of storing old write sets

– forward validation
• checks a small write set against the read sets of active transactions
• need to allow for new transactions starting during validation

• Starvation
– after a transaction is aborted, the client must restart it, but there is no

guarantee it will ever succeed

• In both cases, aborted transactions are not guaranteed future

success

• Deadlock is less likely than starvation because locks make
transactions wait

52

1.6 Timestamp ordering concurrency control

Each operation in a transaction is validated when it is carried out

–if an operation cannot be validated, the transaction is aborted

–each transaction is given a unique timestamp when it starts.

• The timestamp defines its position in the time sequence of transactions.

–requests from transactions can be totally ordered by their timestamps.

•Basic timestamp ordering rule (based on operation conflicts)
– A request to write an object is valid only if that object was last read and

written by earlier transactions.

– A request to read an object is valid only if that object was last written by

an earlier transaction

•This rule assumes only one version of each object

•Refine the rule to make use of the tentative versions

– to allow concurrent access by transactions to objects

Operation conflicts for timestamp ordering

Rule Tc Ti

1. write read

2. write write

Tc must not write an object that has been read by any Ti where Ti >Tc this
requires that Tc ≥ the maximum read timestamp of the object.

this requires that Tc > write timestamp of the committed object.

3. read write Tc must not read an object that has been written by any Ti whereTi >Tc this

requires that Tc > write timestamp of the committed object.

Tc must not write an object that has been written by any Ti where Ti >Tc

• Refined rule

– tentative versions are committed in the order

of their timestamps (wait if necessary) but there is no

need for the client to wait

– but read operations wait for earlier transactions to finish
• only wait for earlier ones (no deadlock)

– each read or write operation is checked with the conflict rules

Figure 1.29

53

54

• As usual write operations are in tentative objects

• Each objecthas a write timestamp and a set

of tentative versions

• Each with its own write timestamp and a set of read timestamps

• When a write operation is accepted it is

put in a tentative version and given a write timestamp

• When a read operation is accepted it is directed to the tentative

version with the maximum write timestamp less than the

transaction timestampTc is the current transaction, Ti are other

transactions

• Ti>Tc means Ti is later than Tc

• When a write operation is accepted it is

put in a tentative version and given a write timestamp

55

Write operations and timestamps

• this illustrates the versions and timestamps, when we do T3 write. for write to be
allowed, T3≥ maximum read timestamp (not shown)

• In cases (a), (b) and (c) T3> w.t.s on committed version and a tentative version with
w.t.s T3 is inserted at an appropriate place in the list of versions
• In case (d), T3< w.t.s on committed version and the transaction is aborted

(c) T3 write

(a) T3 write (b) T3 write

write(d)T3

object produced by

transaction Ti

(with write timestamp

Ti)

T1<T2<T3<T4

Time

Before

After

T2

T2 T3

Time

Before

After

T2

T2 T3

T1

T1

Time

Before

After

T1

T1

T4

T3 T4

Time

Transaction

aborts
Before

After

T4

T4

Tentative

Committed

Ti

Ti

Key:

Figure 1.30

56

Timestamp ordering write rule

• by combining rules 1 (write/read) and 2 (write/write) we have

the following rule for deciding whether to accept a write

operation requested by transaction Tc on object D

– rule 3 does not apply to writes

if (Tc ≥ maximum read timestamp on D &&

Tc > write timestamp on committed version of D)

perform write operation on tentative version of D with write timestamp Tc

else /* write is too late */ Abort transaction Tc

57

Timestamp ordering read rule

• by using Rule 3 we get the following rule for deciding what to
do about a read operation requested by transaction Tc on
object D. That is, whether to
– accept it immediately,
– wait or
– reject it

if (Tc > write timestamp on committed version of D) {

let Dselected be the version of D with the maximum write timestamp ≤ Tc

if (Dselected is committed)

perform read operation on the version Dselected

else

Wait until the transaction that made version Dselected commits or aborts then reapply

the read rule

} else

Abort transaction Tc

Page 504

58

Read operations and timestamps

•Illustrates the timestamp, ordering read rule, in each case we have T3 read. In each

case, a version whose write timestamp is <= T3 is selected

•In cases (a) and (b) the read operation is directed to a committed version,
– in (a) this is the only version. In (b) there is a later tentative version

•In case (c) the read operation is directed to a tentative version and the transaction

must wait until the maker of the tentative version commits or aborts

•in case (d) there is no suitable version and T3 must abort

(b) T3 read

Time

read

proceeds

Selected

T2

Time

read

proceeds

Selected

T2 T4

Time

read waits

Selected

T1 T2

Time

Transaction

aborts
T4

Key:

Committed

Ti

Ti

(a) T3 read

(c) T3 read (d) T3 read

Tentative

object produced

by transaction Ti

(with write

timestamp Ti)

T1 < T2 < T3 < T4

Figure 1.31

59

Transaction commits with timestamp ordering

• when a coordinator receives a commit request, it will always

be able to carry it out because all operations have been

checked for consistency with earlier transactions

– committed versions of an object must be created in timestamp order

– the server may sometimes need to wait, but the client need not wait

– to ensure recoverability, the server will save the

‗waiting to be committed versions‘ in permanent storage

• the timestamp ordering algorithm is strict because

– the read rule delays each read operation until

previous transactions that had written the object had committed

or aborted

– writing the committed versions in order ensures that the write operation

is delayed until previous transactions that had written the object have

committed or aborted

60

Remarks on timestamp ordering

concurrency control

The method avoids deadlocks, but is likely to suffer from restarts

•modification known as ‗ignore obsolete

write‘ rule is an improvement

– If a write is too late it can be ignored instead of aborting the transaction,

because if it had arrived in time its effects would have been overwritten

anyway.

– However, if another transaction has read the object, the transaction with

the late write fails due to the read timestamp on the item

•multiversion timestamp ordering

– allows more concurrency by keeping multiple committed versions

• late read operations need not be aborted

– there is not time to discuss the method now

Timestamps in transactions T and U

T U

Timestamps and versions of objects A

B C

openTransaction

bal = b.getBalance()

openTransaction

b.setBalance(bal*1.1)

bal = b.getBalance() wait for T

a.withdraw(bal/10) commit

bal = b.getBalance()

b.setBalance(bal*1.1) c.withdraw(bal/10)

RTS WTS RTS WTS RTS WTS

{} S {} S

{} S

{T}

S, T

S, T

T T

{U}

T, U

S, U

61

Figure 1.32

Late write operation would invalidate a read

Time

T4 write;T5 read;T3 write;T3 read;

T2

T3
T1

T3

T5

T1 < T2 < T3 < T4 < T5

Key:

TentativeCommitted

Ti

Tk

62

Ti
Tk

object produced by

transaction Ti (with write

timestamp Ti and read

timestamp Tk)

Figure 1.33

63

1.7 Comparison of methods for
concurrency control

• pessimistic approach (detect conflicts as they arise)
– timestamp ordering: serialisation order decided statically

– locking: serialisation order decided dynamically

– timestamp ordering is better for transactions where reads >> writes,

– locking is better for transactions where writes >> reads

– strategy for aborts

• timestamp ordering – immediate

• locking– waits but can get deadlock

• optimistic methods
– all transactions proceed, but may need to abort at the end

– efficient operations when there are few conflicts, but

aborts lead to repeating work

• the above methods are not always adequate e.g.

– in cooperative work there is a need for user notification

– applications such as cooperative CAD need user involvement in conflict

resolution

64

Summary

• Operation conflicts form a basis for the derivation of

concurrency control protocols.
– protocols ensure serializability and allow for

recovery by using strict executions

– e.g. to avoid cascading aborts

• Three alternative strategies are possible in

scheduling an operation in a transaction:

– (1) to execute it immediately, (2) to delay it, or (3) to abort it

– strict two-phase locking uses (1) and (2), aborting in the case of deadlock

• ordering according to when transactions access common objects

– timestamp ordering uses all three - no deadlocks

• ordering according to the time transactions start.

– optimistic concurrency control allows transactions to proceed without any

form of checking until they are completed.

• Validation is carried out. Starvation can occur.

Chapter 2

Distributed Transactions

2

Chapter 2 Distributed Transactions

1. Introduction

2. Flat and nested distributed transactions

3. Atomic commit protocols

4. Concurrency control in distributed transactions

5. Distributed deadlocks

6. Transaction recovery

7. Summary

3

2.1 Introduction

• distributed transaction: a flat or nested transaction

that accesses objects managed by multiple servers

• When a distributed transaction comes to an end

– either all of the servers commit the transaction

– or all of them abort the transaction

• One of the servers is coordinator,

it must ensure the same outcome at all of the

servers

• The ‗two-phase commit protocol‘ is

the most

commonly used protocol for achieving this

4

2.2 Flat and nested

distributed transactions

• A flat client transaction completes each of its requests before going on to the next one.

Therefore, each transaction accesses servers‘ objects sequentially

• In a nested transaction, the top-level transaction can open subtransactions, and each

subtransaction can open further subtransactions down to any depth of nesting

– In the nested case, subtransactions at the same level can run concurrently, so T1 and T2 are

concurrent, and as they invoke objects in different servers, they can run in parallel

Client

X

Y

Z

X

Y

M

NT1

T2

T11

Client

P

T

T
12

T
21

T
22

(a) Flat transaction (b) Nested transactions

T

T

Figure 2.1

Figure 2.2 Nested banking transaction

• Client transfers $10 from A to C and then transfers $20 from B to D

• requests can be run in parallel- with several

servers, the nested transaction is more efficient

a.withdraw(10)

b.withdraw(20)

c.deposit(10)

d.deposit(20)

Client A

B

C

T
1

T
2

T
3

T
4

T

D

X

5

Y

Z

T =openTransaction

openSubTransaction

a.withdraw(10);

openSubTransaction
b.withdraw(20);

openSubTransaction
c.deposit(10);
openSubTransaction

d.deposit(20);

closeTransaction

6

The coordinator of a flat distributed transaction

• Servers execute requests in a distributed transaction
– when it commits they must communicate with one another to

coordinate their actions

– a client starts a transaction by sending an

openTransaction
request to a coordinator in any server

• it returns a TID unique in the distributed system(e.g. server ID + local

transaction number)

• at the end, it will be responsible for committing or aborting it

– each server managing an object accessed by the transaction

is a participant - it joins the transaction (next slide)
• a participant keeps track of objects involved in the transaction

• at the end it cooperates with the coordinator in carrying out the commit

protocol

– note that a participant can call

abortTransaction in coordinator

7

Figure 2.3 A flat distributed banking transaction

• Note that the TID (T) is passed with each request e.g. withdraw(T,3)
• a client‘s (flat) banking transaction involves accounts A, B, C and D at servers

BranchX, BranchY and BranchZ

• Each server is shown with a participant, which joins the transaction by invoking the
join method in the coordinator. openTransaction goes to the coordinator

.

participant

participant

C D

BranchZ

Client

BranchY

B

A

participantjoin

join

BranchX

join

T

a.withdraw(4);

c.deposit(4);

b.withdraw(3);

d.deposit(3);

b.withdraw(T, 3);

openTransaction
closeTransaction

T = openTransaction
a.withdraw(4);
c.deposit(4);
b.withdraw(3);

d.deposit(3);

closeTransaction

Note: the coordinator is in one of the servers, e.g. BranchX

8

The join operation

• The interface for Coordinator is shown in Figure 2.3

– it has openTransaction, closeTransaction and abortTransaction

– openTransaction returns a TID which is passed with each operation so

that servers know which transaction is accessing its objects

• The Coordinator interface provides an additional method, join,

which is used whenever a new participant joins the transaction:

– join(Trans, reference to participant)

– informs a coordinator that a new participant has joined the transaction

Trans.

– the coordinator records the new participant in its participant list.

– the fact that the coordinator knows all the participants and each

participant knows the coordinator will enable them to collect the

information that will be needed at commit time.

9

2.3 Atomic commit protocols

• Transaction atomicity requires that at the end,
– either all of its operations are carried out or none of them

• In a distributed transaction, the client has requested

the operations at more than one server

• One-phase atomic commit protocol
– the coordinator tells the participants whether to commit or abort

– this does not allow one of the servers to decide to abort – it may have

discovered a deadlock or it may have crashed and been restarted

• Two-phase atomic commit protocol
– is designed to allow any participant to choose to abort a transaction

– phase 1 - each participant votes. If it votes to commit, it is prepared. It

cannot change its mind. In case it crashes, it must save updates in

permanent store

– phase 2 - the participants carry out the joint decision

• The decision could be commit or abort - participants record it

in permanent store

or abort

10

2.3.1 The two-phase commit protocol

• During the progress of a transaction, the only

communication between coordinator and participant is

the join request

– The client request to commit or abort goes to the coordinator
• if client or participant request abort, the coordinator

informs the participants immediately

• if the client asks to commit, the 2PC comes into use

• Two-phase commit (2PC)
– voting phase: coordinator asks all participants if

they can commit

• if yes, participant records updates in permanent storage and then votes

– completion phase: coordinator tells all participants to commit

11

Figure 2.4 Operations for

two-phase commit protocol
Participant interface

•canCommit?(trans)-> Yes / No

– Call from coordinator to participant to ask whether it can commit a

transaction. Participant replies with its vote

•doCommit(trans)

– Call from coordinator to participant to tell participant to commit its part of a

transaction

•doAbort(trans)

– Call from coordinator to participant to tell participant to abort its part of a

transaction

Coordinator interface

•haveCommitted(trans, participant)

– Call from participant to coordinator to confirm that it has committed the

transaction

•getDecision(trans) -> Yes / No

– Call from participant to coordinator to ask for the decision on a transaction

after it has voted Yes but has still had no reply after some delay. Used to

recover from server crash or delayed messages

Phase 1 (voting phase):

1.The coordinator sends a canCommit? request to each of the participants in the

transaction.

2.When a participant receives a canCommit? request it replies with its vote (Yes or

No) to the coordinator. Before voting Yes, it prepares to commit by saving objects in

permanent storage. If the vote is No the participant aborts immediately.

Phase 2 (completion according to outcome of vote):

3.The coordinator collects the votes (including its own).

(a) If there are no failures and all the votes are Yes the coordinator decides to

commit the transaction and sends a doCommit request to each of the

participants.

(b) Otherwise the coordinator decides to abort the transaction and sends doAbort

requests to all participants that voted Yes.

4.Participants that voted Yes are waiting for a doCommit or doAbort request from the

coordinator. When a participant receives one of these messages it acts accordingly

and in the case of commit, makes a haveCommitted call as confirmation to the

coordinator.
12

Figure 2.5 The two-phase commit protocol

13

Figure 2.6

Communication in two-phase commit protocol

doAbort to participants.

canCommit?

Yes

doCommit

haveCommitted

1

3 committed

done

•Time-out actions in the 2PC

• to avoid blocking forever when a process crashes or a message is lost

–uncertain participant (step 2) has voted yes. it can‘t decide on its

own

• it uses getDecision method to ask coordinator about outcome

–participant has carried out client requests, but has not had a

Commit?from the coordinator. It can abort unilaterally

–coordinator delayed in waiting for votes (step

1). It can abort and send

prepared to commit

(waiting for votes) 2

4

prepared to commit

(uncertain)

committed

Participant

step status

Coordinator

step status

14

Performance of the two-phase commit protocol

• If there are no failures, the 2PC involving N

participants requires
– N canCommit? messages and replies, followed

by N doCommit messages.
• the cost in messages is proportional to 3N, and the cost in time is three

rounds of messages.

• The haveCommitted messages are not counted

– there may be arbitrarily many server and

communication failures

– 2PC is guaranteed

possible to specify

to complete eventually, but

a time limit within which it

it is not

will be

completed
• delays to participants in uncertain state

• some 3PCs designed to alleviate such delays

– they require more messages and more rounds for the normal case

15

2.3.2 Two-phase commit protocol

for nested transactions

• Recall Fig 17.1(b), top-level transaction T and subtransactions

T1, T2, T11, T12, T21, T22

• A subtransaction starts after its parent and finishes before it

• When a subtransaction completes, it makes

an independent decision either to commit provisionally

or to abort.

– A provisional commit is not the same as being prepared: it is a local

decision and is not backed up on permanent storage.

– If the server crashes subsequently, its replacement will not be able to

carry out a provisional commit.• A two-phase commit protocol is needed for nested

transactions

– it allows servers of provisionally committed

transactions that have crashed to abort them when they

recover.

16

Figure 2.7

Operations in coordinator for nested transactions
openSubTransaction(trans) -> subTrans

Opens a new subtransaction whose parent is trans and returns a

unique subtransaction identifier.

getStatus(trans)-> committed, aborted, provisional

Asks the coordinator to report on the status of the transaction trans.

Returns values representing one of the following: committed,

aborted, provisional.

•This is the interface of the coordinator of a subtransaction.
– It allows it to open further subtransactions

– It allows its subtransactions to enquire about its status

•Client starts by using OpenTransaction to open a top-level transaction.

– This returns a TID for the top-level transaction

– The TID can be used to open a subtransaction
• The subtransaction automatically joins the parent and a TID is returned.
• The TID of a subtransaction is an extension of its parent's TID, so that a subtransaction

can work out the TID of the top-level transaction.

• The client finishes a set of nested transactions by calling closeTransaction or

abortTransacation in the top-level transaction.

17

Transaction T decides whether to commit

T11

22

T12

T21

abort (at M)

provisional commit (at X)

aborted (at Y)

provisional commit (at N)

provisional commit (at N)

T provisional commit (at P)

T1

T2

T

• Recall that

1. A parent can commit even if a subtransaction aborts

2. If a parent aborts, then its subtransactions must abort

• In figure, each subtransaction has either provisionally committed or aborted

• T12 has provisionally committed and T11 has aborted, but the fate of T12 depends on its

parent T1 and eventually on the top-level transaction, T.

• Although T21 and T22 have both provisionally committed, T2 has aborted and this means

that T21 and T22 must also abort

• Suppose that T decides to commit although T2 has aborted, also that T1 decides to

commit although T11 has aborted

Figure 17.8

18

Figure 2.9 Information held by coordinators of

nested transactions

Coordinator of

transaction

Child

transactions

Participant Provisional

commit list

Abort list

T T1, T2 yes T1, T12 T11, T2

T1 T11, T12 yes T1, T12 T11

T2 T21, T22 no (aborted) T2

T11

T12, T21

no (aborted)

T12 but notT21 T21, T12

T11

T22 no (parent aborted) T22

• When a top-level transcation commits it carries out a 2PC
• Each coordinator has a list of its subtransactions

• At provisional commit, a subtransaction reports its status and the status of
its descendents to its parent

• If a subtransaction aborts, it tells its parent

• T12 and T21 share a coordinator as they both run at server N

•When T2 is aborted it tells T (no information about descendents)

•A subtransaction (e.g. T21 and T22) is called an orphan if one of its ancestors aborts

19

Figure 2.10 canCommit? for

hierarchic two-phase commit protocol

canCommit?(trans, subTrans) -> Yes / No

Call a coordinator to ask coordinator of child subtransaction

whether it can commit a subtransaction subTrans. The first

argument trans is the transaction identifier of top-level

transaction. Participant replies with its vote Yes / No.

• Top-level transaction is coordinator of 2PC. Participant list:
– the coordinators of all the subtransactions that have provisionally committed

– but do not have an aborted ancestor

– E.g. T, T1 and T12 in Figure 2.8

– if they vote yes, they prepare to commit by saving state in permanent store
• The state is marked as belonging to the top-level transaction

• The 2PC may be performed in a hierarchic or a flat manner

• Hierarchic 2PC - T asks canCommit? to T1 and T1 asks canCommit? to

T12

• The trans argument is used when saving the objects in permanent storage

• The subTrans argument is use to find the subtransaction to vote on. If

absent, vote no.

20

Figure 2.11 canCommit? for

flat two-phase commit protocol

canCommit?(trans, abortList) -> Yes / No

Call from coordinator to participant to ask whether it can commit a

transaction. Participant replies with its vote Yes / No.

•Flat 2PC
– the coordinator of the top-level transaction sends canCommit?

messages to the coordinators of all of the subtransactions in the

provisional commit list.

–in our example, T sends to the coordinators of T1 and T12.

–the trans argument is the TID of the top-level transaction

–the abortList argument gives all aborted subtransactions
• e.g. server N has T12 prov committed and T21 aborted

–On receiving canCommit, participant
• looks in list of transactions for any that match trans (e.g. T12 and T21 at N)

• it prepares any that have provisionally committed and are not in abortList

and votes yes

• if it can't find any it votes no

21

Time-out actions in nested 2PC

• With nested transactions delays can occur in the same

three places as before

– when a participant is prepared to commit

– when a participant has finished but has not

yet received

canCommit?

– when a coordinator is waiting for votes

• Fourth place:
– provisionally committed subtransactions of aborted

subtransactions e.g. T22 whose parent T2 has aborted

– use getStatus on parent, whose

coordinator should remain active for a while

– If parent does not reply, then abort

22

Summary of 2PC

• A distributed transaction involves several different servers.
– A nested transaction structure allows

• additional concurrency and

• independent committing by the servers in a distributed transaction.

• Atomicity requires that the servers participating in a

distributed transaction either all commit it or all abort it.

•Atomic commit protocols are designed to achieve this effect,

even if servers crash during their execution.

•Ehe 2PC protocol allows a server to abort unilaterally.
– it includes timeout actionsto deal with

delays due to servers crashing.

– 2PC protocol can take an unbounded amount of time to complete

but is guaranteed to complete eventually.

