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* Objective

— Accurately simulate the fluid flow
about atmospheric vehicles

— Measure -Forces, moments, pressure,
shear stress, heat transfer, flowfield
(velocity, pressure, vorticity,
temperature)
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Gallilean Transformation

Flight in atmosphere
Scale =L
Wind Tunnel - Model Scale= /
Stationary Walls Issues
Flow Quality - Uniformity and
Turbulence Level
Wind Tunnel Wall Interference
Reynolds Number Simulation
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Reynolds Number Scaling

 Most important on vehicles with partial
laminar flow. The transition is very sensitive
to Reynolds Number

e Use “trip strips”or roughness to cause
boundary layer transition on the model at
the same location as on the full scale vehicle
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Transonic Regime .7<M<1.2

* Must Match Reynolds Number and Mach Number

Re:pU"OL
U
m-e
C

Must change fluid density and viscosity to match Re and M
Cryogenic Wind Tunnels are designed for this reason
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Unit-Ii
WIND TUNNEL EXPERIMENTATION
CONSIDERATIONS
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History Whirling Arm
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Eiffel Tunnel
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Wright Brothers

The Wright Brother’s "Drift” Balance

(top view)
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Wind Tunnel Test Trend
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Wind Tunnel Layout

* Closed Return
* Open Return

* Double Return
* Annular Return
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Closed Return

(open test section)
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BOEING SUBSONIC WIND TUNNEL
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Open Return
Closed Test Section

Test Section .
18 inch Diameter Diffuser

= 25to 1 Contraction
Screens High Contraction Wind Tunnel
Top View

Exhaus

15 Hp. Dual
Centrifugal Blower

Exhaus

t

t

Louvers
for Speed
Adjustment
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Double Return

UNIVERSITY OF WASHINGTON
AERONAUTICALLABORATORY
Kirsten Wind Tunnel
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Annular Wind Tunnel

WIND TUNNELS OF NASA

Antiswirl vanes

W

Annular return

Deflactor A L A

150" 50"

Exitcone i

s AR ARRRRATAAAT]

Variable Density Tunnel, Being Used by NASA Staff
NASA Langley Research Center 3/15/1929 Image # EL-1996-00143
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Types of Wind Tunnels
e Subsonic
* Transonic
* Supersonic
* Hypersonic
* Cryogenic

e Specialty

— Automobiles
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Subsonic
Wind Tunnels
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40’ x 80’ and 80’ x 120’
NASA Ames
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Fans for 40x80 and 80x120

INSTITUTE OF AERONAUTICAL ENGINEERING



80'x120
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12 foot Pressure Tunnel
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an Blades

Exit Guide \anes ator

/Inlet Guide Vane 15,000 HP
1! s

Make-Up ﬂ{r

Model Support Compressor
Personnel Door

Access Valve
solation Valve
Turbulence Reduction Screens

Test Section
Run Mode

12ft Pressure Wind Tunnel a1
NASA Ames Research Center
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12-Foot Pressure Wind Tunnel: Specifications

Primary Use:
The facility is used primarily for high Reynolds number testing, including the development of high-lift
systems for commercial transports and military aircraft, high angle-of-attack testing of maneuvering
aircraft, and high Reynolds number research.
Capability:
Mach Number: 0-0.52
Reynolds Number per foot: 0.1 - 12X106
Stagnation Pressure, PSIA: 2.0 - 90
Temperature Range: 540 °- 610 ° R
Closed circuit, single return, variable density, closed throat, wind tunnel with exceptionally low turbulence
Model-support systems available:
Strut with variable pitch and roll capability
High angle-of-attack turntable system
Dual-strut turntable mechanism for high-lift testing
Semispan mounting system
Internal strain-gage balances used for force and moment testing
Capability for measuring multiple fluctuating pressures
Temperature-controlled auxiliary high-pressure (3000 psi)
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(DAY 922}
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Transonic
Wind Tunnels
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Wall interference is a

severe problem for transonic usgEs

wind tunnels.
Flow can “choke”
Shock wave across the
tunnel test section
Two Solutions
Porous Walls
Movable Adaptive Walls

Transonic Wind Tunnels
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The Unitary Plan wind tunnels are a set of three interconnected
tunnels that share a central main drive system that can be used
to drive either a transonic leg or a supersonic leg. The Unitary
Plan wind tunnels are as follows.

+ 11ft Transonic Wind Tunnel
+  Ox7ft Supersonic Wind Tunnel
* 8x7ft Supersonic Wind Tunnel

o sorese ‘ool Transtormer
\\ I’ ‘ 3-stage axial flow station
( fan Flow diversion / A Auxiliary equipment
"\ \ /A D”ve‘/ah/e P N o \\ building
8 x 7-foot supersonic

ﬁ @ test section
\; -

~ /“a*"f
’ \ mc(ors \ f
' N AN
5\
TN 73
1M x1 foot transonic . \ (
test section \\ P <
/ &
— -
T “
cooler

‘.r',; :m S~
/ rrrr%P valve

9 x 7-foot supersonlc
test section
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The 8x6/9x15 Complex at the NASA Lewis Research Center in
Cleveland, Ohio is, is unique in its dual capacity role as both a
high-speed and low speed test facility.
8x6 Functions & Capabilities

The 8x6 Foot Supersonic Wind Tunnel provides customers with a Facility cm :
scale aeropropulsion hardware:

8x6 Characteristics & Performance

Test section size 8ft H, 6ft W, 23.5ft L
Mach number range 0-2.0

Relative altitude 1000 - 35000 ft
Dynamic Pressure 3.6 - 4.8 x 106/ft
Stagnation Pressure 15.3 - 25 psia
Temperature 60 - 2500F

INSTITUTE OF AERONAUTICAL ENGINEERING




8x6 at
NASA Lewis
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9x15 at NASA Lewis
Back Leg of the 8x6
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Modane-Avrieux

S1IMA Wind Tunnel Atmospheric, closed-circuit, continuous
flow wind tunnel, from Mach 0.05 to Mach 1

: SIMA wind tunnel is equipped with two counterrotating fans, driven by Pelton
_";,....,.-,gw y L == turbines, the power of which is 88 MW;

' i ‘ Mach number is continuously adjustable from 0.05 to 1 by varying the fan
speed from 25 to 212 rpm.

Three interchangeatle test sections.
155 m Six to ten hours, according to the configuration, are required
to replace a test section by an other one.

Test section 1 Test section 2 Test section 3
selid or skolled walls solid walls s0lid walls
{about 1.7% porosity)
674 m
) ir Intakes e
— £

Q Air outlet Fans ‘ ) c = c

~ i =]

o s o

F= [
slots —

thick floor (40m? test section) Blown boundary layer floor wiith floor {45.4m? test section)
[ —] Highly Compressed {Mach number is limited to 0.45)
Air Processing 674 m
Preparation H i Preparation H i .
_— H —_— e Test section diametar: 8 m.
Platform i | @ | Platform Test section length | 14 m.
E Test section aerodynamic length 1 4.a 7 m,
@ 2| according to configuration and model suppart
R Intenchangeable o {length given for Mach = 0.5 £ 0.03}
: slots N
Engine Test Bed @ @ Test Sections ~——
@ thin floor (42.6m* test section) without floor (47 m? test section}
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16T at AEDC

A model of Boelng's 767 commercial jet
undergoes testing In one of AEDC's large
wind tunnels. The 767 1asis were the firstin a
serles of tests of Boelng's large commercilal
jets at the canter. AEDC signed a twenty year
alllance with Boeing to test commercial
aircralt,
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S2Ma Wind Tunnel

Transanic nozzle
Rectangular section : Height = 1770 mm

Width = 1750 mm
4450 1610, 2070

Adjuslaue  pron

Tl ihmsl

Full Parosity

Wall Porosity :

Solid vertical wall

Perforated roof and floor

Test seclion mean porosity : 2,9 %
Capahility of solid walls test saction

Shutting

n
o
—_—
Slide Plate
Wall &

Pressure I Air Slarage Tanss] | Air Dryers
R4, R3. Rd, R7.
Wacuum pipe —_ F b
ot
Gonfidential Model
Freparation Raoms —
[— | ]
2 Inlerchangeabls =
Tesl Seclions —
L
Selling Chamber
Adr Campressors
= Sonlrol
" Raom
i TneTrren L Tion| Waler
o Haant Turbines
= P = 55 Mty

Ejectors

Cold \;\fznor

Supersonic Nozzle

Rectangular section : Height = 1835 mm

5730

\idht = 1750 mm

2 windows
of the shadowgraph
at 451 mm upstream
and donwstream from
the test section center

field - 818 mm x 896 mm

15150

on each channel)

‘ 4022 ‘ {urigins X bloc
[
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Supersonic
Wind Tunnels
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- Test section
screens

Dry air storage
Drier

Oil remover ~
Compressor

N Return passage

Fig. 1:1 Diagrammatic layout of closed-circuit, continuous flow, supersonic wind

tunnel.

Storage tank
Silencer

Gate valve
Pressure regulator

Wide angle diffuser

Settling chamber
Fig. 1:2 Diagrammatic layout of intermittent blowdown tunriel.

Test section

Storage
cphere

Cooling tower Z

Yacuum pump

Fig. 1:3 Diagrammatic layout of intermittent indraft wind tunnel.
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Purdue University
Aerospace Sciences Laboratory
M=2.5 Supersonic
Blowdown Wind Tunnel

gul-Ck Perforated Plate T]:]/[ =2'15 Second Diffuser
CUNG o Seresn 0zzle Thiat
Valve
From S ! Plenum
Tank l Chamber

Farm \\ / \
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Hypersonic
Wind Tunnels
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High-pressure,
- test gas

Check
- valve

|

H@TSH®T TUNNEL

Arc

chamber Centrelled

Plastié cenditiens
diaphragm

" Biffuser

Vacuum
pump

Medel

Electredes
SH®CK TUNNEL
. Biaphragm ‘ Biaphragm Ceontrelled
Briver tube - Light gas ne. 1 ne. 2. cenditiens

Air
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Principle Operation Detonation Driven Shock Tunnel

Set- up and wave plan:
diaphragm diaphragms
s Y

T TR TR
R

damping detonation
section saction

low pressure
section

vessel
test section

contact
[ surface

-3 time

| refl,
shock

detonation shock

=¥ |ength
Initial conditions:
* low pressure section: test gas air, about 25 kPa for tailored cond.

e deton. section: oxyhydrogen- helium/ argon mixtures, max. 7 MPa
e damping section: expansion volume; low initial pressures
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High Enthalpy Shock Tunnel Géttingen (HEG)

Air Supply

100 MPa

The Facility

The free piston-driven shock tunnel
HEG consists of an air buffer, a com-
pression (driver) tube, separated from
an adjoining shock tube via a metal
diaphragm, and a subsequent nozzle
and test section. A piston is accelerated
through the compression tube by the
air in the buffer, compressing the driver
gas helium to high temperatures and
pressures, whereby the diaphragm rup-
tures, leading to propagation of a
strong shock through the shock tube.
This shock reflects from the end wall,
heating up the test gas (nitrogen, air,

4000 K 1, Diaphragm

carbon dioxide, etc) to high pressures
and temperatures - this gas reservoir
expands through the nozzle and pro-

2. Diaphragm

Dump
Tank

Test Section

Model
1000 K

3.6 g/m3

vides the free stream conditions in the
test section. Total available test time is
about 1 millisecond.

Condition 1 I i v v i
Po (MPa) 40 90 45 110 50 95
To (K) 9100 9700 7300 8100 6400 6500
hg (MJ/kg) 21 22 13 15 1 1
pee (Pa) 430 1200 470 1300 520 980
Too (K) 790 1040 550 720 470 480
pea (g/m?) 16 36 28 6.2 38 69
Moo 97 9.0 100 95 100 100
s (Mifs) 5900 6200 4800 5100 4400 4400

HEG standard operating conditions
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=ps &-11-98

&l Clean Stoinless Steel from Second-Throot Section Upstream
Unique Low-Noise Flow due to Laminor Nozzle-Woll Boundary Layer

(Slow) Butterfly Volve
17.5-in. Driver

I Tube, 1225-ft. long /BteedSlot Suction Plumking e
\ 55— Nozzl ] - L 3800
NRJLF__J? 2EE A . Cubic Ft
69 e [ Yocuum

Controction Wim&'owsf -
Max. 300 psig (20

bar) and 3I92F Fixed Second Throot \ /
(i80C). One 7-=. Dif fuser / —
run per hour, .

About 500N tDoukley Burst Dicphrogm

operoting cost. Sliding Sleewve

schematic of Boeing Moch-6 Ruiet-Flow Ludwieg Tuke
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The NASA Langley 8-Foot
High Temperature
Tunnel (8’ HTT)
enables the testing of large
hypersonic
airbreathing propulsion systems

m Air storage
Pt

Propulsion
model

Ditfuser —

Alr ejector -

. . To vent stack
at flight enthalpies from :
(Hg )
Mach 4 to Mach 7. Figure 2. Schematic drawing of the 8' HTT for
airbreathing propulsion testing.

Closure plug
assembly Air

__J.
=

Figure 3. Schematic drawing of the 8' HTT
combustor.
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Hypersonic Shock Tunnels
at Calspan

The performance chart shows that the high
enthalpy 96-inch tunnel is capable of
simultaneously duplicating velocity (total
enthalpy) and density altitude over a wide range
of hypersonic flight conditions. These test
conditions cover the widest range of any in the
country.

Reynolds Number - Per Foot

108 96-Inch Leg
48-Inch Leg 8
Altitude at Which Rg - Mg
Coordinates Exist in Free Flight
i \/ﬁ\ 50,000
E ;\75'.000
o P
>\100,ooo
6 =
10!
,f/ 125,000
—"
Y
’// /k’_"wﬂo&)
—"
5 sl 175,000
10° E : e
E - 200,000
L :
225,000
P :
10* i
250,000
L 275000;,.....}
103 E
102
0 a 8 12 6 20 2
Mach Number
Repax Based on Too e 1.10 TLOX

High T, Short Test Time Region (t<2 ms) T,>6000°R

Calspan Hypersonic Shock Tunnel Performance
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Ree = 1.1 x 106/t Re. = 7.9 x 106/t

Fig. 6 Effect of Reynolds number on 20-Inch Mach 6 CF 4 31-Inch Mach 10 Air 22-Inch Mach 15/20 He

windward heating rates for X-34 ai

Fig. 1 Facilities of the Aerothermodynamic Facilities Complex.
My =0, 00=0° and 8.4 = 0~
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NASA
1L-83-3314

PRINCIPAL COMPONENTS OF THE NTF CIRCUIT

TURNING VANES ool DOWNSTREAM UPSTREAM & FAN
SUPPORT SECTION ™"\ acCelLE CONTAINMENT

\ <2) HROUD
A - DOWNSTREAM

SHROUD, UPSTREAM

7 . " > NACELLE
GN, ‘f;rr <): i
EXHAUST : - -
PORTS< | ACOUSTIC 1 /—JT
< L el INJECTORS

S e e
& ‘ F———= 3
u&& ‘-ﬂ/'-—-ﬂ—l:s M'--l B 3y ||
s . | | ' ¥a .ﬂ == T T "
e \\\ :“" ——r —— —_—!
TRUSS SUPPORT FOR /' "\HgAT MODEL SUPPORT @
TEST SECTION\ . :
ik~ EXCHANGER o WINDOWSS \,4;»; HIGH SPEED DIFFUSER
(1% SV
é% ®\ R (e FIXED CONTRACTION,
: TEST SECTION,
WIDE-ANGLE DIFFUSER  CONTRACTION

MODEL SUPPORT SECTION
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Cryogenic
Wind Tunnels
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. GAS DENSITY-VELOCITY<LENGTH _ PVL
GAS VISCOSITY H

4 WAYS TO INCREASE TEST REYNOLDS NUMBER
USE A _HEAVY TEST GAS :

S DECREASE TEST TEMPERATURE OF

EFFECTS OF DECREASING TEMPERATURE

GAS PAOPERTES TEST CONDITIONS AT CONSTANT MACH NO
6

pVL  peadl
DENSITY(P) R= '——u - _u * MACH NO.

ESIEVISCOSTY (),

a0 200 40 0 00 200
STAGNATION TEMPERATURE, ¥
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NATIONAL TRANSONIC

FACILI

e —Tpen—

TY

« 200 »
Low-speed diffuser —— 19.7.dia. fan —
Tum 3 Tum2
> n
7
it <,
[
| { =
35.7 dia.
486 c 14.95:1 contraction
b 3 g
i ~~—16.8 dia
25dia.—/¢ et et
N . Tum 1
Tum 4
— 27-dia. plenum High-speed ditfuser
2 p 2.6° half-angle

Widae-angle diffusar Slotted test section
8.2by 8.2

Figure 6, Plan view of NTF tunnel circuit, All lincar dimensions are in fect.
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The Crrmincanic L niduwiniaa_Titha A+ f:F\-I"I-ingen (KRG)

Tube Dilametar 08m Siag. presa. fmax.) 10 kar
Langth 130m Temperaiura range 1004 HPK
Load. presa. max.) 125 kar Wach b 02610 0.95
Tast Sactlan Craaasactlan 04 xp3Hm* Ach rumaar ranga ;, i
Langih 20m Reynalds na. ¢max.) 60 -1
Wadal chard ¢y | DiBm Run ime D110

Adaptive wall test section
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Automobile
Wind Tunnels
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ACp=

P ot e S S R *.-T__.__ i \__ ———+3 " +0.003
b =i
0.02H— R B SIS (Sl 1S S by
0 0 \\
T gt He=l
0,03} — W R U I s e
Np=2° Mg =29 \
20,04 s |/
0'04 2 0 ] [ 6 8
x{m)
CENTRE OF TEST SECTION T
Boundary Iwar Belt flap 1’3-29
% ) ﬁr};—u r;r’jinF- o
chrg W L
Tunnel floor f fBreather Tep
Voo Vo

sTATION (1) STATION (2)
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Icing
Wind Tunnels
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Corner
Cc
ff’ .
e, ,IrTurmng
", | vanes
r',.,H
e
",
s,

Corner
D

Icing Tunnel
NASA Lewis Research Center

2100-ton
cooler

Flow

5000-hp fan

North control room —,
hY

NG

\

%

Varichron drive
control room

Q-

mph test

section (6 by 9 ft)

‘:j
()

Y
Y,
i)

o)

Spray-bar
control
room —

-

-

[

7

1. IE

e
South control room —

7

chamber

" Airlock

chamber

Shop
77" -~-— Model access door —

" Balance l

o]

—

!
/
7

Corner
B

Corner
A
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Wind Tunnel Power Requirements
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Energy Ratio

3
(ER), = JetEnergy  1/2pUsAy _ qUA

> Circuit Losses Y Losses 7P

Subscript O refers to the test section
P is the motor power
17 is the fan efficiency
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Wind Tunnel Circuit

1 _ __ _ __ 1 _

Transonic Wind Tunnel Circuit
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K = Pu~ P Local Pressure Loss Coefficient

g

Ko: Py — Pi2 :Ki

Pressure Loss Referred to Test Section

*  losses

AE =K 1/2pU;A, Section Energy Loss

JetEnergy  1/2pU;A, 1

ER), = = -
(ER), D Circuit Losses Y K 1/2pUsA, D K,
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Closed Re
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Example - Closed Return
Section -FH_H_H_Q—I % Total Loss

1 | Test Section .0093 5.1
2 | Diffuser .0391 21.3
3 [Corner #1 .0460 25.0
4 | Straight Section .0026 1.4
5 [Corner #2 .0460 25.0
6 | Straight Section .0020 1.1
7 | Diffuser .0160 8.9
8 |Corner#3 .0087 4.7
9 |Corner#4 .0087 4.7
10 | Straight Section .0002 !
11 |[Contraction .0048 2.7

Total 1834 100.0

1 1
(ER), = ¥ ¥
D> K, .1834
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Example - Open Return Tunnel

Section Ko % Total Loss
1 | Inlet Including Screens 021 14.0
2 | Contraction and Test Section .013 8.6
3 | Diffuser .080 53.4
4 | Discharge at Outlet .036 24.0
Total 150 100.0
1 1
(E.R), = - 150 6.67
>K,
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Turbulence Management
Stilling Section - Low eY(Sat\amlwm flow

Honeycomb - Reduces Large Swirl Comp t of Incoming Flow

K =030 K=022 K=020
Fig. 2:16 Some honeycombs and their losses.

Screens - Reduce Turbulence [Reduces Eddy size for Faster Decay]
- Used to obtain a uniform test section profile
- Provide a flow resistance for more stable fan operation
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Contraction

Establish Uniform Profile at Test Section
Reduce Turbulence
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Test Section

Test Section - Design criteria of Test Section Size and Speed
Determine Rest of Tunnel Design

Test Section Reynolds Number
Larger JET - Lower Speed - Less Power - More Expensive

Section Shape - Round-Elliptical, Square, Rectangular-Octagonal
with flats for windows-mounting platforms

Rectangular with filled corners

Not usable but requies power

For Aerodynamics Testing 7x10 Height/Width Ratio

Test Section Length - L= (1 to 2)w
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Diffuser
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Abrupt Corner without Vanes 77 = 1.0

=01l n=0138 n=020
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Emergency
Building Escape
Parachute System
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FAST ACTING YALVE

Fe

-

TESY SECTION

DIFFUSER
el [

MODEL INJECTION SYSTEM

SUPERSONIC CJECTOR

AR SUPPLY I
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WIND TUNNEL BALANCE
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3-component strain gauge balance
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Glenn

External Force Balance Research
ener

Model
Two Strut Mount
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PRESSURE, VELOCITY & TEMPERATURE
MEASUREMETNS
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Glenn

Pitot Tube Research
Center
S r = Density
- V = Velocity
p = Pressure
ﬁ q
Total pressure} P Static pressure

Pressure Transducer
Measure difference in lotal and static pressure
Bernoulli’'s Equation :
static pressure + dynamic pressure = total pressure

rx V2 =
I(I:"s+ ?) Py

Solve for Velocity : 2 _ 2{pt— ps) .
- ————————————— v

v

r

INSTITUTE OF AERONAUTICAL ENGINEERING




Prandtl Tube Center

@ Pitot-Static Tube il
—>

Bernoulli’s Equation : Measure difference in total and static pressure
static pressure + dynamic pressure = total pressure

Solve for Velocity: y?- 2(P,~ P,) <
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FLOW VISUALIZATION TECHNIQUES
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PRESSURE PROBES AND TRANSDUCERS
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Uniform Flow

T

Inviscid Flow

—_—

-
.
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BOUNDARY LAYER PROFILE USING PITOT STATIC PROBE

Boundary
Layer
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my £, parabolic
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camera
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