

## INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

### **MODEL QUESTION PAPER-I**

B.Tech IV Semester End Examinations, May - 2019

# Regulation: IARE-R18 SIGNALS AND SYSTEMS

(Electronics and Communication Engineering)

Time: 3 Hours Max Marks: 70

Answer any ONE question from each Module
All questions carry equal marks
All parts of the question must be answered in one place only

#### **MODULE - I**

1 a) Discuss orthogonality in complex functions.

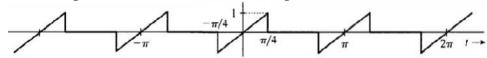
[7M]

b) Derive the expression for component vector of approximating the function  $f_1$  (t)over  $f_2$ (t) and also prove that the component vector becomes zero if the  $f_1$ (t) and  $f_2$ (t) are orthogonal.

[7M]

2 a) sketch the following signals

$$(i)f(t) = r(t+2) - r(t+1) - r(t-1) + r(t-2) \quad (ii)f(t) = r(t) - r(t-1) - u(t-1)$$


b) Find the even and odd components of the signal  $x(t) = \cos(\omega_0 t + \pi/3)$ .

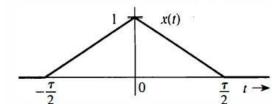
[7M]

#### **MODULE - II**

3 a) Find the trigonometric Fourier series for the signal x(t) shown below.

[7M]




b) Derive the necessary expression to represent the function f(t) using Trigonometric Fourier Series.

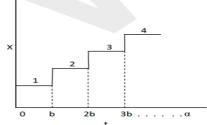
[7M]

4 a) Compute the Fourier transform of the signal x(t) applying differentiation in time property of Fourier transform.

[7M]

[7M]




b) Define Hilbert Transform. What is its significance with signals. Obtain the Fourier transform of impulse signal.

#### **MODULE - III**

- 5 Obtain the impulse response of an LTI system defined by dy(t)/dt + 2y(t) = x(t). [7M] Also obtain the response of this system when excited by  $e^{-2t}u(t)$ .
  - Find the impulse response of the RC high pass filter shown in figure. Also find the transfer [7M] function. What would be its frequency response?
- 6 Check the following systems with respect to the properties i) linearity (ii) invariant (iii) [7M] Causality (iv) stability. (a)  $y(t) = \sin x(t)$  (b)  $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$ . Consider two functions x(t) = u(t+1) and h(t) = u(t-2). Find convolution of
  - [7M] x(t) and h(t) using graphical method.

#### **MODULE - IV**

7 Find the Laplace transform of the stair case wave form shown in fig [7M]



- Find the Laplace transform following signals and its ROC (i)  $x(t) = \delta(t) \frac{4}{3}e^{-t}u(t) + \frac{1}{3}e^{2t}u(t)$  (ii)  $x(t) = e^{-|a|t}$ [7M]
- If  $X(z) = 1+2z^{-1}+4z^{-2}$ . Find the initial and final values of the corresponding 8 [7M] sequence x (n).
  - Determine Z Transform of the following b) [7M]  $i)(1/4)^n u(n) - \cos(n\pi/4) u(n) ii)2^n u(n-2)$

#### MODULE - V

- 9 What are the disadvantages of under-sampling? For a signal x(t), calculate Nyquist [7M] rate and Nyquist interval.  $x(t) = 3\cos 25\pi t - 10\sin 200\pi t + \cos 300\pi t$ .
  - [7M] b) A continuous time signal is given as  $x(t) = 8 \cos 200\pi t$ . Determine i) Minimum sampling rate
    - ii) If f<sub>s</sub>=400Hz, what is discrete time signal obtained after sampling. iii) If f<sub>s</sub>=150Hz, what is discrete time signal obtained after sampling.
- 10 [7M] a) Find the auto correlation function of a signal  $R(z) = e^{-2\alpha |T|}$  and also determine the spectral density of the process.
  - Find the energy spectral density of the signal x(t) = 10 Sinc 10t. Also find its total energy. [7M]



## **INSTITUTE OF AERONAUTICAL ENGINEERING**

## (Autonomous)

Dundigal, Hyderabad - 500 043

## **COURSE OBJECTIVES:**

| The course should enable the students to: |                                                                                                                |  |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Ι                                         | Classify signals and systems and their analysis in time and frequency domains.                                 |  |  |  |  |
| II                                        | Study the concept of distortion less transmission through LTI systems, convolution and correlation properties. |  |  |  |  |
| III                                       | Understand Laplace and Z-Transforms their properties for analysis of signals and systems.                      |  |  |  |  |
| IV                                        | Identify the need for sampling of CT signals, types and merits and demerits of each type.                      |  |  |  |  |

## **COURSE OUTCOMES (COs):**

| CO 1 | Apply the knowledge of linear algebra to represent any arbitrary signals in terms of complete sets of orthogonal functions and classify the signals and systems based on their properties.  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 2 | Analyze the spectral characteristics of continuous-time periodic and a periodic signals using Fourier analysis.                                                                             |
| CO 3 | Understand the properties of linear time invariant system, ideal filter characteristics through distortion less transmission and its bandwidth, causality with convolution and correlation. |
| CO 4 | Apply the Laplace transform and Z- transform and their Region of convergence (ROC) properties for analysis of continuous-time and discrete-time signals and systems respectively.           |
| CO 5 | Understand the process of sampling to convert an analog signal into discrete signal and the effects of under sampling and study correlation, spectral densities.                            |

## **COURSE LEARNING OUTCOMES (CLOs):**

| AECB14.01 | Apply the knowledge of vectors to find an analogy with signals.                                   |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| AECB14.02 | Understand Orthogonal signal space and orthogonal functions.                                      |  |  |  |  |
| AECB14.03 | Introduce the basic classification of signals in both continuous and discrete domain, exponential |  |  |  |  |
|           | and sinusoidal signals, standard test signals                                                     |  |  |  |  |
| AECB14.04 | Introduce the basic classification of systems in both continuous and discrete domain              |  |  |  |  |
| AECB14.05 | Representation of Fourier series for a periodic signal.                                           |  |  |  |  |
| AECB14.06 | Deduce Fourier Transform from Fourier series                                                      |  |  |  |  |
| AECB14.07 | Compute Fourier Transform of Periodic Signal                                                      |  |  |  |  |
| AECB14.08 | Introduce the special transform-Hilbert transform                                                 |  |  |  |  |
| AECB14.09 | Analyze time variance for linear systems.                                                         |  |  |  |  |
| AECB14.10 | Understand the concept of distortion less transmission through a system                           |  |  |  |  |
| AECB14.11 | Analyze Causality and Paley-Wiener criterion for physical realization.                            |  |  |  |  |
| AECB14.12 | Understand the concept of convolution through graphical representation                            |  |  |  |  |
| AECB14.13 | Introduce the concepts of Laplace transform for conversion to S-domain.                           |  |  |  |  |
| AECB14.14 | Represent Region of Convergence for Laplace transforms and properties of Laplace Transforms.      |  |  |  |  |
| AECB14.15 | Understand the Z-Transform for discrete signals with issues of Region of Convergence              |  |  |  |  |
| AECB14.16 | Analyze the properties of Z-Transforms.                                                           |  |  |  |  |
| AECB14.17 | Categorical analysis of sampling into different types.                                            |  |  |  |  |
| AECB14.18 | Understand how to reconstruct signals after sampling                                              |  |  |  |  |
| AECB14.19 | Understand cross correlation and auto correlation concepts.                                       |  |  |  |  |
| AECB14.20 | Analyze Power Spectral and Energy Spectral Characteristics                                        |  |  |  |  |
|           |                                                                                                   |  |  |  |  |

## MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

| SEE<br>Question<br>No |   | Course Learning Outcomes |                                                                                      |          | Blooms            |
|-----------------------|---|--------------------------|--------------------------------------------------------------------------------------|----------|-------------------|
|                       |   |                          |                                                                                      | Outcomes | Taxonomy<br>Level |
| 1                     | a | AECB14.02                | Understand Orthogonal signal space and orthogonal functions.                         | CO 1     | Remember          |
|                       | b | AECB14.02                | Understand Orthogonal signal space and orthogonal functions.                         | CO 1     | Understand        |
| 2                     | a | AECB14.02                | Introduce the basic classification of signals in both continuous and discrete domain | CO 1     | Remember          |
|                       | b | AECB14.03                | Introduce the basic classification of signals in both continuous and discrete domain | CO 1     | Understand        |
| 3                     | a | AECB14.05                | Representation of Fourier series for a periodic signal.                              | CO 2     | Understand        |
|                       | b | AECB14.05                | Representation of Fourier series for a periodic signal.                              | CO 2     | Remember          |
| 4                     | a | AECB14.06                | Deduce Fourier Transform from Fourier series                                         | CO 2     | Understand        |
|                       | b | AECB14.08                | Introduce the special transform-Hilbert transform                                    | CO 2     | Remember          |
| 5                     | a | AECB14.09                | Analyze time variance for linear systems.                                            | CO 3     | Understand        |
|                       | b | AECB14.09                | Analyze time variance for linear systems.                                            | CO 3     | Understand        |
| 6                     | a | AECB14.11                | Analyze Causality and Paley-Wiener criterion for physical realization.               | CO 3     | Understand        |
|                       | b | AECB14.12                | Understand the concept of convolution through graphical representation.              | CO 3     | Understand        |
| 7                     | a | AECB14.14                | Introduce the concepts of Laplace transform for conversion to S-domain.              | CO 4     | Understand        |
|                       | b | AECB14.14                | Introduce the concepts of Laplace transform for conversion to S-domain.              | CO 4     | Understand        |
| 8                     | a | AECB14.15                | Understand the Z-Transform for discrete signals with issues of Region of Convergence | CO 4     | Understand        |
|                       | b | AECB14.16                | Analyze the properties of Z-Transforms.                                              | CO 4     | Understand        |
| 9                     | a | AECB14.17                | Categorical analysis of sampling into different types.                               | CO 5     | Remember          |
|                       | b | AECB14.17                | Categorical analysis of sampling into different types.                               | CO 5     | Understand        |
| 10                    | a | AECB14.19                | Understand cross correlation and auto correlation concepts.                          | CO 5     | Understand        |
|                       | b | AECB14.20                | Analyze Power Spectral and Energy Spectral<br>Characteristics                        | CO 5     | Understand        |

**Signature of Course Coordinator** 

HOD, ECE