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Spherical Coordinates

Cylindrical Coordinates

Cartesian Coordinates
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Rectangular Coordinates

Or

X=r cos Φ,
Y=r sin Φ,
Z=z

X=r sin θ cos Φ,
Y=r sin θ sin Φ,
Z=z cos θ



• dx, dy, dz are infinitesimal 
displacements along X,Y,Z.

• Volume element is given by 

dv = dx dy dz

• Area element is 

da = dx dy or dy dz or dxdz

• Line element is 

dx or dy or dz

Ex: Show that volume of a cube of 
edge a is a3.
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Cartesian Coordinates
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Cylindrical coordinate system



• dr is infinitesimal displacement 

along r, r dφ is along φ and       

dz is along  z direction.

• Volume element is given by 

dv = dr r dφ dz

• Limits of integration of r, θ, φ

are

0<r<∞ , 0<z <∞ , o<φ <2π

Ex: Show that Volume of a 

Cylinder of radius ‘R’  and 

height ‘H’ is π R2H .
φ is azimuth angle
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Cylindrical coordinate system



Differential quantities:

Length element:

Area element:

Volume element:
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Limits of integration of r, θ, φ are 0<r<∞ , 0<z <∞ , o<φ <2π



• dr is infinitesimal displacement
along r, r dθ is along θ and r
sinθ dφ is along φ direction.

• Volume element is given by

dv = dr r dθ r sinθ dφ

• Limits of integration of r, θ, φ
are

0<r<∞ , 0<θ <π , o<φ <2π

Ex: Show that Volume of a sphere
of radius R is 4/3 π R3 .
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Spherical Coordinate System
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Try Yourself:

1)Surface area of the sphere= 4πR2 . 

Volume of a sphere of radius ‘R’



Spherical Coordinates: Volume element in space



System Coordinates dl1 dl2 dl3

Cartesian x,y,z dx dy dz

Cylindrical r, φ,z dr rdφ dz

Spherical r,θ, φ dr rdθ r sinθdφ

• Volume element :  dv = dl1 dl2 dl3

• If Volume charge density ‘ρ’ depends only on ‘r’:

Ex: For Circular plate: NOTE

Area element da=r dr dφ in both the 

coordinate systems (because θ=900)
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Points to remember



6 - 12

The gradient is the closest thing to an ordinary derivative, taking a

scalar-valued function into a vector field.

The simplest geometric definition is “the derivative of a function with

respect to distance along the direction in which the function changes

most rapidly,” and the direction of the gradient vector is along that most-

rapidly changing direction.

The Gradient operator
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Divergence in spherical coordinates
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The coordinate system is orthogonal if the surfaces made by setting the

value of the respective coordinates to a constant intersect at right angles.

In the spherical example this means that a surface of constant r is a sphere.

A surface of constant θ is a half-plane starting from the z-axis. These

intersect perpendicular to each other. If you set the third coordinate, φ , to

a constant you have a cone that intersects the other two at right angles.

volume
area
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Gauss’s Theorem

0 0
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lim lim
V V
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Fix a surface and evaluate the surface 
integral of        over the surface:v

r

S
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Recall the original definition of the divergence of a vector field:

k
VNow divide this volume into a lot of little volumes,           with 

individual bounding surfaces        . If you do the surface integrals of               
over each of these pieces and add all of them, the result is the 

original surface integral.

k
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Stokes’ Theorem

The expression for the curl in terms of integrals is

Use exactly the same reasoning as that was used in the case of the 
Gauss’s theorem, this leads to

d A v

r r
v 
r

1
h A 

1
A

1
n̂h

Let us first apply it to a particular volume, one that is very thin and small. 

Take a tiny disk of height        , with top and bottom area        . Let       be 

the unit normal vector out of the top area. For small enough values of 

these dimensions,                 is simply the value of the vector             

inside the volume times the volume
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Coulomb’s Law

• Coulomb‟s law is the “law of action” between charged 
bodies.

• Coulomb‟s law gives the electric force between two point 
charges in an otherwise empty universe.

• A point charge is a charge that occupies a region of space 
which is negligibly small compared to the distance 
between the point charge and any other object.  
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Coulomb’s Law
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12r
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Force due to Q1

acting on Q2

Unit vector in

direction of R12



18

Coulomb’s Law

• The force on Q1 due to Q2 is equal in

magnitude but opposite in direction to the

force on Q2 due to Q1.

1221 FF 
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Electric Field

• Consider a point charge
Q placed at the origin of
a coordinate system in
an otherwise empty
universe.

• A test charge Qt brought
near Q experiences a
force:
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r
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Electric Field

• The existence of the force on Qt can be

attributed to an electric field produced by Q.

• The electric field produced by Q at a point in

space can be defined as the force per unit

charge acting on a test charge Qt placed at that

point.

t

Q

Q Q

F
E

t

t
0

lim



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Electric Field

• The electric field describes the effect of a

stationary charge on other charges and is an

abstract “action-at-a-distance” concept, very

similar to the concept of a gravity field.

• The basic units of electric field are newtons

per coulomb.

• In practice, we usually use volts per meter.
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Electric Field

• For a point charge at the origin, the electric

field at any point is given by
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Electric Field

• For a point charge located at a point P’

described by a position vector

the electric field at P is given by
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Electric Field

• In electromagnetics, it is very popular to

describe the source in terms of primed

coordinates, and the observation point in terms

of unprimed coordinates.

• As we shall see, for continuous source

distributions we shall need to integrate over

the source coordinates.



Field due to Different Types of 
Charges
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Continuous Charge Distributions

•Cut source into small (“infinitesimal”) charges dq

•Each produces 

2

( )
ˆ

e

d q
d E k

r
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Steps:
•Draw a coordinate system on the diagram

•Choose an integration variable (e.g., x)

•Draw an infinitesimal element dx

•Write r and any other variables in terms of x

•Write dq in terms of dx

•Put limits on the integral

•Do the integral or look it up in tables.



Continuous Charge Distributions

2

0

1 λ  d x
E  = r ' .

4 π ε r '




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0 S

1   d S
E  = r ' .

4 π ε r '








2

0 V

1   d V
E  = r ' .

4 π ε r '








Charge distributed along a line:

Charge distributed over a surface:

Charge distributed inside a volume:

If the charge distribution is uniform, then , , and  can be taken outside the

integrals.



Electric Flux Density
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Electric Flux Density

Consider a point charge at the origin:

Q
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Electric Flux Density of a Point Charge

(1) Assume from symmetry the form of the field

(2) Construct a family of Gaussian surfaces

 rDaD
rr

ˆ

spheres of radius r where

 r0

spherical 

symmetry
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Electric Flux Density of a Point Charge

(3) Evaluate the total charge within the volume

enclosed by each Gaussian surface


V

evencl
dvqQ
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Electric Flux Density of a Point Charge

Q

R

Gaussian surface

QQ
encl


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Electric Flux Density of a Point Charge

(4) For each Gaussian surface, evaluate the

integral

DSsdD

S



  2
4 rrDsdD

r

S



magnitude of D

on Gaussian

surface.

surface area

of Gaussian

surface.



35

Electric Flux Density of a Point Charge

(5) Solve for D on each Gaussian surface

S

Q
D

encl


2
4

ˆ
r

Q
aD

r




2

00
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
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Electric Flux Density of a Spherical Shell of Charge

Consider a spherical shell of uniform charge density:



 


otherwise,0

,
0

braq
q

ev
a

b



Gauss Law, It’s Applications to 

Symmetrical Charge Distributions
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Gauss’s Law

• Gauss‟s law states that “the net electric flux

emanating from a close surface S is equal to

the total charge contained within the volume

V bounded by that surface.”

encl

S

QsdD 
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Gauss’s Law (Cont’d)

V

S
ds

By convention, ds

is taken to be outward

from the volume V.


V

evencl
dvqQ

Since volume charge

density is the most 

general, we can always write 

Qencl in this way.
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Applications of Gauss’s Law

• Gauss‟s law is an integral equation for the

unknown electric flux density resulting from a

given charge distribution.

encl

S

QsdD 
known

unknown
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Applications of Gauss’s Law (Cont’d)

• In general, solutions to integral equations must

be obtained using numerical techniques.

• However, for certain symmetric charge

distributions closed form solutions to Gauss‟s

law can be obtained.
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Applications of Gauss’s Law (Cont’d)

• Closed form solution to Gauss‟s law relies on

our ability to construct a suitable family of

Gaussian surfaces.

• A Gaussian surface is a surface to which the

electric flux density is normal and over which

equal to a constant value.



Electric Potential: Potential Field 

Due To Different Types of Charges
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Electrostatic Potential
• An electric field is a force field.

• If a body being acted on by a force is moved from one point to
another, then work is done.

• The concept of scalar electric potential provides a measure of the
work done in moving charged bodies in an electrostatic field.

• The work done in moving a test charge from one point to another in
a region of electric field:

 

b

a

b

a

ba ldEqldFW

a
b

q

F

ld
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Electrostatic Potential

• In evaluating line integrals, it is customary to take the dl in the

direction of increasing coordinate value so that the manner in

which the path of integration is traversed is unambiguously

determined by the limits of integration.

 


3

5

ˆ dxaEqW
xba
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Electrostatic Potential

• The electrostatic field is conservative:

– The value of the line integral depends only on the end 

points and is independent of the path taken.

– The value of the line integral around any closed path is 

zero.

0
C

ldE

C
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Electrostatic Potential

• The work done per unit charge in moving a test charge

from point a to point b is the electrostatic potential

difference between the two points:

 


b

a

ba

ab
ldE

q

W
V

electrostatic potential difference

Units are volts.



48

Electrostatic Potential

• Since the electrostatic field is conservative we can write

   aVbV

ldEldE

ldEldEldEV
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b
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P

P
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























00

0

0
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Electrostatic Potential

• Thus the electrostatic potential V is a scalar field that is

defined at every point in space.

• In particular the value of the electrostatic potential at any point

P is given by

   

P

P

ldErV

0 reference point
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Electrostatic Potential

• The reference point (P0) is where the potential is zero

(analogous to ground in a circuit).

• Often the reference is taken to be at infinity so that the

potential of a point in space is defined as

  




P

ldErV
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Electrostatic Potential and Electric Field

• The work done in moving a point charge from point a

to point b can be written as

    

 




b

a

abba

ldEQ

aVbVQVQW
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Electrostatic Potential and Electric Field

• Along a short path of length Dl we have

lEV

lEQVQW





or
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Electrostatic Potential and Electric Field

• Along an incremental path of length dl we have

• Recall from the definition of directional derivative:

ldEdV 

ldVdV 

>Thus

VE 



Potential Gradient and the Dipole 

field due to Dipole, Maxwell’s Two 

Equations for Electrostatic Field
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Charge Dipole

• An electric charge dipole consists of a pair of equal
and opposite point charges separated by a small
distance (i.e., much smaller than the distance at
which we observe the resulting field).

d

+Q -Q
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Dipole Moment

• Dipole moment p is a measure of the strength

of the dipole and indicates its direction

dQp 
+Q

-Q

d

p is in the direction from

the negative point charge to

the positive point charge



57

Electrostatic Potential Due to Charge Dipole

observation

point

d/2

+Q

-Q

z

d/2



P

Qdap
z

ˆ


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
Rr
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Electrostatic Potential Due to Charge Dipole 
(Cont’d)

   



R

Q
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Q
rVrV
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44

,
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cylindrical symmetry
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Electrostatic Potential Due to Charge Dipole 
(Cont’d)
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Electrostatic Potential Due to Charge Dipole in the Far-Field

• assume R>>d

• zeroth order approximation:

RR

RR









0V

not good

enough!
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Electrostatic Potential Due to Charge Dipole 
in the Far-Field (Cont’d)

• first order approximation from geometry:





cos
2
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2

d
rR

d
rR








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Electrostatic Potential Due to Charge Dipole in the Far-
Field (Cont’d)

• Taylor series approximation:
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Electrostatic Potential Due to Charge Dipole in 
the Far-Field (Cont’d)

 
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Electrostatic Potential Due to Charge Dipole in 
the Far-Field (Cont’d)

• In terms of the dipole moment:

2

0

ˆ

4

1

r

ap
V

r







Energy Density in Electrostatic 

Field



Energy Density in Electrostatic Field

• To determine the energy that is present in an

assembly of charges

• let us first determine the amount of work

required to assemble them.

• Let us consider a number of discrete charges

Q1, Q2,......., QN are brought from infinity to

their present position one by one.



Energy Density in Electrostatic Field

• Since initially there is no field present, the

amount of work done in bring Q1 is zero.

• Q2 is brought in the presence of the field of Q1,

the work done W1= Q2V21 where V21 is the

potential at the location of Q2 due to Q1.



It takes no work to bring in first charges 

1 0W 

Work needed to bring in q2 is :
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Work needed to bring in q3 is :

Work needed to bring in q4 is :
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Total work

W=W1+ W2+ W3 +W4
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Where is the energy stored?     In charge or in field ?

Both are fine in ES. But,it is useful to regard the energy

as being stored in the field at a density

2

0
2

E
  Energy per unit volume

The superposition principle,not for ES energy

20
1 1

2
W E d


 
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2 2 τ

2
W E d


 

20
1 2( )

2
to tW E E d


 

 

1 2 0 1 2( )W W E E d    
 

2 20
1 2 1 2( 2 )

2
E E E E d


   

 



Convection and Conduction 
Currents, Continuity Equation 

and Relaxation Time



 Current (in amperes) through a given area is the electric charge

passing through the area per unit time

 Current density is the amount of current flowing through a surface,

A/m2, or the current through a unit normal area at that point

 Current density

Convection and Conduction Currents

Current
d Q

I
d t



 Where

I
J

S






.
S

I J d S 



 Depending on how the current is produced, there are different

types of current density

• Convection current density

• Conduction current density

• Displacement current density

- Current generated by a magnetic field

 Does not involve conductors and does not obey Ohm‟s law

 Occurs when current flows through an insulating medium such as

liquid, gas, or vacuum

Convection and Conduction Currents

 Convection current density



 Where v is the velocity vector of the fluid

Convection and Conduction Currents

v v y

Q y
I S S v

t t
 

 
     

 
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 Conduction current density

 Current in a conductor

 Obeys Ohm‟s law

 Consider a large number of free electrons travelling in a

metal with mass (m), velocity (v), and scattering time (time

between electron collisions), τ

Convection and Conduction Currents

 The carrier density is determined by the number of electrons, n,

with charge, e

m v
F q E


  

v
n e  

 Conduction current density can then be calculated as
2

v

n e
J v E E

m


   

 This relationship between current concentration and electric field is

known as Ohm‟s Law.



 Continuity Equation

Continuity Equation and Relaxation Time

 Where Qin is the total charge enclosed by the closed surface.

Invoking divergence theorem

.
in

o u t
S

d Q
I J d S

d t
  

. .
v

S

J d S Jd v   
 But,

in v

v
v v

d Q dd
d v d v

d t d t d t


     

 Due to the principle of charge conservation, the time rate of

decrease of charge within a given volume must be equal to the net

outward current flow through the closed surface of the volume.

 Thus, the current coming out of the closed surface is



 From the above three equations, we can write as

 which is called the continuity of current equation.

 The continuity equation is derived from the principle of

conservation of charge

 It states that there can be no accumulation of charge at any point

 For steady currents,

 Hence,

 The total charge leaving a volume is the same as the total charge

entering it.
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
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Continuity Equation and Relaxation Time



 Utilizing the continuity equation and material properties such

as permittivity and conductivity, one can derive a time

constant

 We start with Ohm‟s and Gauss‟ Laws
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 Relaxation Time
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Continuity Equation and Relaxation Time
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Continuity Equation and Relaxation Time

 is the initial charge density. The relaxation time(Tr) is the time

it takes a charge placed in the interior of a material to drop by e-1

(=36.8%) of its initial value.

 For good conductors Tr is approx. 2*10-19 s.

 For good insulators Tr can be days



Capacitance- Parallel plate, Co-
axial and Spherical Capacitor



 Capacitance is an intuitive characterization of a capacitor. It tells you,

how much charge a capacitor can hold for a given voltage

 The property of a capacitor to „store electricity‟ may be called its

capacitance

 Generally speaking, to have a capacitor we must have two (or more)

conductors carrying equal but opposite charges

Capacitance

Figure 1. Charge carriers of conductor with opposite polarity



 Suppose we give Q coulomb of charge to one of the two plates of

capacitor, the potential difference V is established between the two

plates, then its capacitance is

 The capacitance C is a physical property of the capacitor and in

measured in farads (F)

 The charge Q on the surface of the plate and the potential difference

Vab between the plates can be represented in terms of electric field

Capacitance

a b

Q
C

V


.

.

b

a b
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E d SQ
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V
E d l


 







.E d S Q 
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b

a b a b

a

V V V E d l   

 Therefore, the capacitance C can be written as



• Choose a suitable coordinate system.

• Let the two conducting plates carry charges + Q and - Q

• Determine E using Coulomb's or Gauss's law and find V

• Finally, obtain C from

Capacitance

 Procedure for Obtaining Capacitance

 Capacitance can be determined using first method are as follows

 Capacitance can be obtained for any given two-conductor

capacitance by following either of these methods:

• Assuming Q and determining V in terms of Q (involving Gauss's

law)

• Assuming V and determining Q in terms of V (involving solving

Laplace's equation)

Q
C

V




Parallel-Plate Capacitor

S

Q

A
 

 the charge density is given by

 The flux passing through the medium and flux density is given by

. .
n S

S S

n S

Q

D d A Q d A
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 



 

  



 

Figure 2. Parallel plate conductors



Parallel-Plate Capacitor

 The charge density in terms of electric field as

D E

S

Q

A
 

 Where,

 But, we know,

S
E






 The above equation modifies to

 Also, the relation between electric field and electric potential can
be written as

Q
E
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.

d

Q
V E d l E d d
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Q A
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Q d
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
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 Thus, the parallel plate capacitor can be written as



Coaxial(Cylindrical)  Capacitor

 Consider length l of two coaxial conductors of inner radius a and

outer radius b (b > a) as shown in Figure 3

2
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Q E d A E d d l

Q E l
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 

  

 



 By applying Gauss's law to an arbitrary Gaussian cylindrical surface

of radius ρ (a < ρ < b), we obtain

Figure 3 Cylindrical conductors



Coaxial(Cylindrical)  Capacitor
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 The potential difference between the inner and outer conductors

can be written as

 Thus the capacitance of a coaxial cylinder is given by
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Spherical  Capacitor

 Consider the inner sphere of radius a and outer sphere of radius

b(b> a) separated by a dielectric medium with permittivity ε as

shown in Figure 4

2
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Figure 4. Spherical conductor

 By applying Gauss's law to an arbitrary Gaussian spherical surface

of radius r(a<r<b), we obtain



Spherical  Capacitor

S

Q

A
 

 Therefore, the potential difference between the inner and outer
sphere can be written as
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 Thus, the capacitance of a spherical capacitor is given by
4
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 By letting b ∞, C4πεa, which is the capacitance of a
spherical capacitor whose outer plate is infinitely large



Magnetostatics and Time 
varying fields

UNIT II



Biot-Savart Law

The Law of Biot-Savart is

1 1 1 2

2

1 2

2

4

I d
d

R




L a
H

(A/m)

To get the total field resulting from a

current, you can sum the contributions

from each segment by integrating

2

4
.

R
Id

R


 

L a
H (A/m)

Note: The Biot-Savart law is analogous to the Coulomb‟s law

equation for the electric field resulting from a differential charge
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Vector Magnetic Potential

• Vector identity: “the divergence of the curl of

any vector field is identically zero.”

• “If the divergence of a vector field is

identically zero, then that vector field can be

written as the curl of some vector potential

field.”

  0 A
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Vector Magnetic Potential (Cont’d)

• Since the magnetic flux density is solenoidal, it

can be written as the curl of a vector field

called the vector magnetic potential.

ABB  0
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Vector Magnetic Potential (Cont’d)

• The general form of the B-S law is

• Note that
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Vector Magnetic Potential (Cont’d)

• Furthermore, note that the del operator operates

only on the unprimed coordinates so that
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Vector Magnetic Potential (Cont’d)

• Hence, we have
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Vector Magnetic Potential (Cont’d)

• For a surface distribution of current, the vector

magnetic potential is given by

• For a line current, the vector magnetic potential is

given by
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Vector Magnetic Potential (Cont’d)

• In some cases, it is easier to evaluate the

vector magnetic potential and then use B

=  A, rather than to use the B-S law to

directly find B.

• In some ways, the vector magnetic potential A

is analogous to the scalar electric potential V.



99

Vector Magnetic Potential (Cont’d)

• In classical physics, the vector magnetic

potential is viewed as an auxiliary function

with no physical meaning.

• However, there are phenomena in quantum

mechanics that suggest that the vector

magnetic potential is a real (i.e., measurable)

field.



Forces due to Magnetic Fields, 

Ampere’s Force Law
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Ampere’s Law of Force

• Ampere’s law of force is the “law of action”

between current carrying circuits.

• Ampere’s law of force gives the magnetic force

between two current carrying circuits in an

otherwise empty universe.

• Ampere‟s law of force involves complete

circuits since current must flow in closed

loops.



Inductances and Magnetic 

Energy
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Flux Linkage

• To discuss about inductance, first we have to

know the flux linkage

• Consider two magnetically coupled circuits

C1

I1

S1 S2 C2

I2
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Flux Linkage (Cont’d)

• The magnetic flux produced I1 linking the
surface S2 is given by

• If the circuit C2 comprises N2 turns and the
circuit C1 comprises N1 turns, then the total
flux linkage is given by
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Mutual Inductance

• The mutual inductance between two circuits is

the magnetic flux linkage to one circuit per

unit current in the other circuit:
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Mutual Inductance
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Mutual Inductance (Cont’d)
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Mutual Inductance (Cont’d)

• The Neumann formula for mutual inductance

tells us that

– L12 = L21

– the mutual inductance depends only on the

geometry of the conductors and not on the current
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Self Inductance

• Self inductance is a special case of mutual

inductance.

• The self inductance of a circuit is the ratio of

the self magnetic flux linkage to the current

producing it:
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Self Inductance (Cont’d)

• For an isolated circuit, we call the self

inductance, inductance, and evaluate it using

I
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Energy Stored in Magnetic Field

• The magnetic energy stored in a region

permeated by a magnetic field is given by

dvHdvHBW

VV

m  
2

2

1

2

1
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Energy Stored in an Inductor

• The magnetic energy stored in an inductor is

given by

2

2

1
LIW

m
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Ampere’s Law of Force (Cont’d)

 Two parallel wires

carrying current in

the same direction

attract.

 Two parallel wires

carrying current in

the opposite

directions repel.

 

I1 I2

F12F21

 

I1 I2

F12F21
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Ampere’s Law of Force (Cont’d)

 A short current-

carrying wire

oriented

perpendicular to a

long current-carrying

wire experiences no

force.



I1

F12 = 0

I2
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Ampere’s Law of Force (Cont’d)

The magnitude of the force is inversely proportional

to the distance squared.

The magnitude of the force is proportional to the

product of the currents carried by the two wires.
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Ampere’s Law of Force (Cont’d)

• The direction of the force established by the
experimental facts can be mathematically
represented by

 
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Ampere’s Law of Force (Cont’d)

• The force acting on a current element I2 dl2 by

a current element I1 dl1 is given by

 
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Ampere’s Law of Force (Cont’d)

• The total force acting on a circuit C2 having a

current I2 by a circuit C1 having current I1 is

given by
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Ampere’s Law of Force (Cont’d)

• The force on C1 due to C2 is equal in

magnitude but opposite in direction to the

force on C2 due to C1.

1221
FF 
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Force on a Moving Charge

• The total force exerted on a circuit C carrying

current I that is immersed in a magnetic flux

density B is given by

 

C

BldIF



121

Force on a Moving Charge

• A moving point charge placed in a magnetic 

field experiences a force given by

BvQ

The force experienced 

by the point charge is 

in the direction into the 

paper.

BvQF
m

 vQlId 
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Lorentz Force

• If a point charge is moving in a region where both
electric and magnetic fields exist, then it
experiences a total force given by

• The Lorentz force equation is useful for
determining the equation of motion for electrons
in electromagnetic deflection systems such as
CRTs.

 BvEqFFF
me





Faraday’s Law and Transformer 
EMF, Motional EMF



 Steady current produces a magnetic field

 In 1831, Michael Faraday discovery that a time-varying magnetic field

would produce an electric current

 According to Faraday's experiments, a static magnetic field produces no

current flow, but a time-varying field produces an induced voltage

(electromotive force)

 induced emf (in volts), in any closed circuit is equal to the time rale of

change of the magnetic flux linkage by the circuit(Faraday‟s law)

 According to Faraday‟s, It can be expressed as

 Where,N is the number of turns in the circuit is the flux through each

turn.

 The negative sign shows to oppose the flux producing it( Lenz's law)

Faraday's Law of electromagnetic Induction

em f

d d
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d t d t

 
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 Induced emf (For a single turn N=1) in terms of E and B can be written

as

 The variation of flux with time may be caused in three ways

• By having a stationary loop in a time-varying B field

• By having a time-varying loop area in a static B field

• By having a time-varying loop area in a time-varying B field

 Induced emf (For a single turn N=1) in

terms of E and B can be written as
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Faraday's Law of electromagnetic Induction



 This emf induced by the time-varying current (producing the

time-varying B field) in a stationary loop is often referred to as

transformer emf

 A stationary conducting loop is in a time varying magnetic B

field

 By applying Stokes's theorem to the middle term
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Faraday's Law of electromagnetic Induction



Moving Loop in Static B Field (Motional emf)

 When a conducting loop is moving in a static B field, an emf is

induced in the loop

F q vB

 We define the motional electric field Em as
m

m

F
E v B

Q
  

 Moving with uniform velocity u as consisting

of a large number of free electrons, the emf

induced in the loop is

Faraday's Law of electromagnetic Induction

e m f
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 By applying Stokes's theorem
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 Faraday’s law of Induction:

 This describes the creation of an electric field by a changing

magnetic flux

 The law states that the emf, which is the line integral of the electric

field around any closed path, equals the rate of change of the

magnetic flux through any surface bounded by that path

 One consequence is the current induced in a conducting loop placed

in a time-varying B

Maxwell’s equations in integral form

Modified Ampere’s law:

 It describes the creation of a magnetic field by an electric field and

electric currents

 The line integral of the magnetic field around any closed path is the

given sum
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Maxwell’s Equations in Point 
form and Integral form for Time-

Varying Fields



 Maxwell equations in differential form

Maxwell’s equations in point form
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 The two Gauss‟s laws are symmetrical, apart from the absence of the

term for magnetic monopoles in Gauss‟s law for magnetism

 Faraday‟s law and the Ampere-Maxwell law are symmetrical in that

the line integrals of E and B around a closed path are related to the

rate of change of the respective fluxes

Maxwell’s equations in integral form
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 Gauss’s law (electrical):

 The total electric flux through any closed surface equals the net

charge inside that surface divided by eo

 This relates an electric field to the charge distribution that creates it

Maxwell’s equations in integral form

oS

q
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ε
  E A

 Gauss’s law (magnetism):

 The total magnetic flux through any closed surface is zero

 This says the number of field lines that enter a closed volume must

equal the number that leave that volume

 This implies the magnetic field lines cannot begin or end at any point

 Isolated magnetic monopoles have not been observed in nature
0
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 Faraday’s law of Induction:

 This describes the creation of an electric field by a changing

magnetic flux

 The law states that the emf, which is the line integral of the electric

field around any closed path, equals the rate of change of the

magnetic flux through any surface bounded by that path

 One consequence is the current induced in a conducting loop placed

in a time-varying B

Maxwell’s equations in integral form

Modified Ampere’s law:

 It describes the creation of a magnetic field by an electric field and

electric currents

 The line integral of the magnetic field around any closed path is the

given sum
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UNIT-III

Uniform Plane Waves



Reflection and Refraction of 

Uniform Plane Wave



 Till now, we have studied plane waves in various medium

 Let us try to explore how plane waves will behave at a media

interface

 Electromagnetic waves are often at the interface of boundary may

be reflected or refracted or changes direction at the interface

 When a radio wave reflects from a surface, the ratio of the two

(reflected wave/incident wave) is known as the „reflection

coefficient‟ of the surface

 How much of the incident wave has been transmitted through the

material is given by another ratio(transmitted wave /incident wave)

known as „transmission coefficient‟

Reflection and Refraction of Uniform Plane Wave



 Transmission and reflection ratio depends on the

• conductivity (σ),

• permittivity (ε) and

• permittivity (ε) of the material as well as material properties of

the air which the radio wave is incident

 Also some part of the wave will be transmitted through the material

• how much of the incident wave has been transmitted through

the material is also dependent on the material parameters

mentioned above

• It is given by another ratio known as „transmission coefficient‟

• It is the ratio of the transmitted wave divided by the incident

wave

Reflection and Refraction of Plane Wave contd..,



 In plane wave incident from media interface, consider two cases

• Normal incidence

• Obliquely incidence

 The electric and magnetic field expressions

• in all the regions of interest and apply the boundary

conditions to get the values of the transmission and

reflection coefficients

• Type of boundary interfaces for the solutions of

transmission and reflection coefficients

 dielectric –conductor interface (both normal and oblique

incidence)

• dielectric –dielectric interface (both normal and oblique

incidence)

Reflection and Refraction of Plane Wave contd..,



 At an interface between two media, the angles of incidence,

reflection, and refraction are all measured with respect to the

normal.

• Incidence angle (θi): angle at which the

incident wave makes with the normal to

the interface

• Reflection angle (θr): angle at which the

reflected wave makes with the normal to

the interface

• Transmission or refraction angle (θt):

angle at which the transmitted

(refracted) wave makes with the normal

to the interface

Reflection and Refraction of Plane Wave contd..,



 If a plane wave is incident obliquely upon a surface that is not a

conductor boundary, part of the wave is transmitted and part of it

reflected.

 In this case the transmitted wave will be refracted; that is the

direction of propagation will be altered.

 Consider a planar interface between two dielectric media. A

plane wave is incident at an angle from medium 1.
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wave

x

z

z=0
Medium 1
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(ε2,μ2)
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anr ant

A
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Reflected

wave
Refracted

wave

θt
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θr

 In the diagram incident ray 2 travels a

distance AO‟ where as the transmitted

ray 1 travels a distance OB, and reflected

ray 1 travels from O to A‟

Reflection and Refraction of Plane Wave contd..,



 Snell‟s Law of refraction 

• The angle of reflection is equal to the angle 
of incident
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Reflection of a Plane Wave at Normal 

Incidence

-Dielectric Boundary



Normal Incidence -Dielectric Boundary
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 Consider the  boundary is an interface between two dielectrics 

 We will consider the case of normal incidence, when the incident

wave propagation vector is along the normal to the interface between

two media

 Generally, consider a time harmonic x-polarized electric field

incident from medium 1 (µ1, ε1, σ1) to medium 2 (µ2, ε2, σ2)

 For the case of perfect dielectric

• σ1= σ2=0, ε1≠ ε2

• No loss or absorption of power



 We will assume plane waves with electric field vector oriented

along the x-axis and propagating along the positive z-axis

without loss of generality

 For z<0 (we will refer this region as region I and it is assumed

to be a medium1)

 When a plane electromagnetic wave incident on the surface of

perfect dielectric

• part of energy is transmitted

• part of it is reflected

 Let the wave incident on medium 1

the incident, reflected and transmitted fields

shown in Figure
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 The tangential components (the x-components) of the electric and 

magnetic field intensities must be continuous.  ( at interface z=0 )
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 The continuity of tangential components of the electric and 

magnetic fields require that 

 Rearranging  these two equations
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Normal Incidence -Dielectric Boundary contd..,
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 Special cases
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Normal Incidence - Dielectric Boundary contd..,

 Further more, the reflection and transmission  coefficient   
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 The permeabilities of all known dielectrics do not differ 

appreciably from free space, so that μ1= μ2= μ0
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 Similarly,



Reflection of a Plane Wave Normal 

Incidence

-Conducting  Boundary



 In z-direction ( x=constant )
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Oblique Incidence -

Conducting Boundary



Oblique Incidence - Conducting Boundary

 When EM Wave incident obliquely on the interface between two

media boundary, it can be decomposed into:

• Horizontal Polarization

• Vertical Polarization

 Horizontal Polarization, or transverse electric (TE) polarization 

The E Field vector is parallel to the boundary surface or

perpendicular to the plane of incidence

 Vertical Polarization, or transverse magnetic (TM) polarization 

The H Field vector is parallel to the boundary surface and the electric

vector is parallel to the plane of incidence



 Let us consider the wave incident on a perfect conductor

• The wave is totally reflected with the angle of incidence equal to

the angle of reflection

Oblique Incidence - Conducting Boundary



 Perpendicular Polarization 
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 Perpendicular Polarization 
 Assume the wave is propagating obliquely along an arbitrary

direction ar and the electric field vector is along y-direction(normal

to the plane of incidence x-z plane) and direction of propagation

 Using direction cosines the direction of propagation of incidence

wave can be written as
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 Similarly the direction of propagation of reflected wave (-z
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 Incident wave ( inside medium 1 )
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 Similarly, Magnetic field of the reflected wave can be written as 
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 Total field in medium 1 can be written as(standing wave in terms of

electric and magnetic field)
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 In z-direction ( x=constant )
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Oblique Incidence - Conducting 
Boundary



Oblique Incidence - Conducting Boundary

 Parallel  Polarization 
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 Parallel  Polarization 
 Assume the wave is propagating obliquely along an arbitrary

direction ar and the electric field vector is parallel to the plane of

incidence (x-z plane) and the magnetic field vector is normal to

the plane of incidence

 Using direction cosines the direction of propagation of incidence

wave can be written as

ˆ ˆ ˆs in c o s
n i x i z i

a a a  

 Similarly the direction of propagation of reflected wave (-z

direction ) can be written as

ˆ ˆ ˆs in c o s
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 Incident wave ( inside medium 1 )

 Reflected wave ( inside medium 1 )

 Boundary condition,  z = 0 
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( for all x)

 Total field in medium 1 can be written as(standing wave in terms of

electric and magnetic field)

Oblique Incidence - Conducting Boundary



 In z-direction : standing-wave1
,

x
E

1 y
H

1 1
/ s in

x i
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 The wave is non uniform plane wave 

1
,

z
E

1 y
H
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Reflection of a Plane Wave Oblique 
Incidence -Interface between 

dielectric media
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 The electric field phasors for the perpendicular polarization, with

reference to the system of coordinates in the figure

 Let us assume that the incident wave propagates in the

first quadrant of x-z plane and propagation makes an

angle θi with the normal

1
( sin cos )

( , ) i i
j x z

yi io
E x z a E e

   




1
( s in c o s )

1

( , ) ( i i
j x zio

i x zi i

E
H x z a c o s + a s in )e

  
 



 
 



 Let us assume that the reflected wave propagates in

the second quadrant of xz plane and reflection makes

an angle θr with the normal
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Oblique Incidence -Interface between dielectric media

 Perpendicular Polarization

θt

Medium 1

Medium
2



 Similarly the transmitted fields are

 Equating the tangential components of electric field

• electric field has only Ey component and it is tangential at the

interface z=0)
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 Similarly the magnetic field 

• magnetic field has two components: Hx and Hz , but only Hx is 

tangential at the interface z=0) 
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iy ry ty
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 Boundary at z=0 gives
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 If Ex and Hy are to be continuous at the interface z = 0 for all x,

then, this x variation must be the same on both sides of the

equations (also known as phase matching condition)
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 Now we can simplify above two equations by applying Snell‟s

1 1 2

1
c o s c o s c o s

i r t


  

  


   

 The above two equations has two unknowns τ and Г and it can be

solved easily as follows
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 Solving the equations and rearranging, we get

 For normal incidence, it is a particular case and put
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 In this case, electric field vector lies in the x-z plane
 Since the magnetic field is transversal to the plane of incidence such

waves are also called as transverse magnetic (TM) waves
 So let us start with H vector which will have only y component

 Similar to the previous case of perpendicular
polarization, we can write the reflected magnetic
field and electric field vectors as

 Parallel Polarization
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 Similarly the transmitted fields are

 Equating the tangential components of magnetic field

• electric field has only Hy component and it is tangential at the

interface z=0

 Similarly the magnetic field 

• magnetic field has two components: Ex and Ez , but only Ex is 

tangential at the interface z=0) 
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 Boundary at z=0 gives
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 If Ex and Hy are to be continuous at the interface z = 0 for all x,

then, this x variation must be the same on both sides of the

equations (also known as phase matching condition)
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 Now we can simplify above two equations by applying Snell‟s
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 The above two equations has two unknowns τ and Г and it can be

solved easily as follows
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 Therefore,
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 Note that cosine terms multiplication in the above equations is

different from the previous expression for perpendicular polarization
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Brewster Angle, Critical Angle



Critical Angle

When light travels from one medium to another it changes speed and

is refracted.

As the angle of incidence increases so does the angle of refraction.

When the angle of incidence reaches a value known as the critical

angle the refracted rays travel along the surface of the medium or in

other words are refracted to an angle of 90°.

The critical angle for the angle of incidence in glass is 42°.



Surface Impedance
It is defined as the ratio of the tangential component of the electric 

field to the surface current density at the conductor surface.

It is given by

where   Etan is the tangential component parallel to the surface of the 

conductor.

And   Js is the surface current density.
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Critical Angle

> When the angle of incidence of the light ray reaches the critical

angle (420) the angle of refraction is 900. The refracted ray travels

along the surface of the denser medium in this case the glass.

> According to the law of refraction
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Total Internal Reflection

>When the angle of incidence of the light ray is greater than the

critical angle then no refraction takes place. Instead, all the light is

reflected back into the denser material in this case the glass. This is

called total internal reflection.



Brewster Angle
For unpolarized waves the electric fields are in many directions as 
shown in figure, e.g. unpolarized light

Where as in polarized waves the electric field vector is either 
vertical or horizontal as shown in figure below.



Brewster Angle

We can convert unpolarized light into polarized light by passing the 
light through a polarizing filter.

When unpolarized wave is incident obliquely at Brewster angle θB, 
only the component with perpendicular polarization (Horizontal 
polarization) will be reflected, while component with parallel 
polarization will not be reflected.



Brewster Angle
It is also called as Polarizing angle.

At Brewster angle, the angle between reflected ray and refracted ray is 
900.



Normal Incidence - Conducting Boundary

 Consider the boundary is an interface with a perfect conductor

 The incident wave travels in a lossless medium (Medium 1 )
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Reflected wave ( inside 

medium 1 )
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 The boundary is an interface with a perfect

conductor(medium 2) both electric and magnetic fields

vanish.

 No wave is transmitted across the boundary into the z >

0 i.e.



 Total wave in medium 
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 Continuity of tangential component of the E-field at the 

boundary  z = 0 
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Normal Incidence - Conducting Boundary contd..,

 Incident and reflected field are of equal amplitude, so all incident

energy is reflected by a perfect conductor

 Negative sign indicates that the reflected field is shifted in phase

by 180° relative to incident field at the boundary

 The magnetic field must be reflected without phase reversal, If

both were reversed there would be no reversal of direction .



 In medium 1, the total field can be written as 

(α=0)  

Normal Incidence - Conducting Boundary contd..,
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 The space-time behavior of the total field in medium 

1(multiply with         )

 After multiplying a time factor and take a real instantaneous 

part of the fields in medium 1 as a function of z and t can be 

written  as 
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 From the total fields in medium 1, we conclude that there is a

standing wave in medium 1, which does not progress

 The magnitude of field varies sinusoidal with distance from the

reflecting plane

 Electric field has zero at the surface and multiple of half wave

length from the surface and maxima for magnetic field
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 It has a maximum value of twice the electric field strength of the

incident wave at the distance from the odd multiple of the quarter

wave length and zero for magnetic field



 The totally reflected wave combines with

the incident wave to form a standing wave

The total wave in medium 1 is not a

traveling wave

 It stands and does not travel, it consists of

two traveling waves Ei and Er of equal

amplitudes but in opposite directions.
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 The equations also shows that there is a 90° out of time

phase between the electric and magnetic fields

0 1
ˆ 2 s in co s ( )

2
x i

a E z t


  

0

1 1 1

1

ˆ( , ) R e [ ( ) ] 2 c o s c o s
j t i

y

E
H z t H z e a z t


 


 

 

Normal Incidence - Conducting Boundary contd..,



Brewster Angle
It is also called as Polarizing angle.

At Brewster angle, the angle between reflected ray and refracted ray is 

900.



UNIT-IV

Transmission line Characteristics



 If we are familiar with low frequency circuits and the circuit consists

of lumped impedance elements (R,L,C), we treat all lines(wires)

connecting the various circuit elements as perfect wires, with no

voltage drop and no impedance associated to them.

 As long as the length of the wires is much smaller than the wavelength

of the signal and at any given time, the measured voltage and current

are the same for each location on the same wire.

 Let us try to explore what happens, when the signal propagates as a

wave of voltage and current along the line at sufficiently high

frequencies

 For sufficiently high frequencies, wavelength is comparable to the

length of a conductor, so the positional dependence impedance

properties (position dependent voltage and current) of wire can not be

neglected, because it cannot change instantaneously at all locations.

Transmission line equivalent circuit



 So our first goal is to represent the uniform transmission line as a

distributed circuit and determine the differential voltage and current

behavior of an elementary cell of the distributed circuit.

 Once that is known, we can find a global differential equation that

describes the entire transmission line by considering a cascaded

network (subsections) of these equivalent models.

 So a uniform transmission line is represented as a distributed

circuit shown below

L series inductance

R series resistance

C shunt capacitance

G shunt conductance

Transmission line equivalent circuit



 Let us assume a differential length dz of transmission line ,V(z),I(z)

are voltage and current at point P and V(z)+dV, I(z)+dI are voltage

and current at point Q

QP

 The series impedance and shunt admittance determines the variation of

the voltage and current from input to output of the cell shown below

Transmission line equivalent circuit



 For a differential length dz of transmission line ,the series

impedance and shunt admittance of the elemental length can be

written as
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 From which we obtain a first order differential equation
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Transmission line equations



 We have a system of coupled first order differential equations that

describe the behavior of voltage and current on the transmission line

 It can be easily obtain a set of uncoupled equations by differentiating

with respect to the coordinate z
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 Substitute , in the above equations ,we obtain a second order

differential equations
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Transmission line equations



 γ is the complex propagation constant, which is function of

frequency

 α is the attenuation constant in nepers per unit length, β is the

phase constant in radians per unit length

 Let the constant term can be represented as propagation constant,

which is written as

 The transmission line equations can be written as

( )( )j G j C R j L         
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Transmission line equations



 Where, a,b,c, and d are the constants

 Above equations represent the standard solutions of the wave

equations, which are similar to the solution of uniform plane wave

equations.

 The terms and can be represented as backward and

forward wave along z-direction.

 The solution of the second order transmission line equation is
z z

z z

V a e b e

I c e d e

   

   

 

 

Transmission line equations

ze ze



Determination of constant 

terms A and B



Determination of the constant terms A and B

 To determine the constants a,b,c, and d , the above equations can be

written in terms of hyperbolic functions, where substitute

 Substitute above equations in the solutions of transmission line

equations V and I

z z

z z

V a e b e

I c e d e

   

   

 
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z

e z z
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

 

   

   

 Let the solutions of the transmission line wave equations can written as



 The constants a+b, a-b, c+d, and c-d can be replaced by another

constant terms A,B,C, and D respectively

 So, the above equations can be written as

 In order to reduce the four constant terms to two constant terms, we write

the relation between V and I by considering the following basic

differential equations

( ) c o sh ( ) s in h

( ) c o sh ( ) s in h

V a b z a b z

I c d z c d z
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Determination of the constant terms A and B



( co sh s in h )
( )

d A z B z
I R j L

d z

  
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 Substitute V in

( s in h co sh ( )A z B z I R j L       

 Differentiating in terms of z, we obtain

 So, the current I can be written in terms of constants A and B as 

( s in h c o s h
( )

A z B z I
R j L


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 Where γ is propagation constant, which is

( )( )G j C R j L     

Determination of the constant terms A and B



 Substitute γ in current equation, we obtain

( )( )
( s in h co sh

( )

G j C R j L
A z B z I

R j L
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Z
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 The above equation can be simplified and written as

 Where Z0 is another constant and can be called as characteristic

impedance along the line

0
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R j L
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Determination of the constant terms A and B



 So, the voltage and current wave equation in terms of constants A and

B can be re written as

0

c o s h s in h

1
( s in h c o s h )

V A z B z

I A z B z
Z
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 Now the constants A and B can be obtained by applying initial

conditions of the transmission line at Z=0

 Let Vs and Is be the source voltage and current respectively. At the

source end, Z=0 the voltage V= Vs, current I= Is, then the above

equations can be simplified as

0
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1
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Determination of the constant terms A and B



 Substitute A and B values in basic voltage and current equations
we obtain

0

0

c o s h s in h

s in h c o s h

s s

s
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V V z I Z z
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 These equations are called transmission line equations. The can
represent voltage and current at any point z from the source
voltage and current.
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 The constants A and B can be simplified as 

Determination of the constant terms A and B



 Substitute A and B values in basic voltage and current equations

we obtain
0

0

c o s h s in h

s in h c o s h

s s

s

s

V V z I Z z

V
I z I z

Z

   
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 These equations are called transmission line equations. The can

represent voltage and current at any point z from the source voltage

and current.

0

s

s

V A

I Z B



 

 The constants A and B can be simplified as 

Determination of the constant terms A and B



Input Impedance of 
Transmission Line from Load 

Impedance



 If the source voltage and source current is known to us, input

impedance of a transmission line is derived from source end as

 Similar expression can be derived from terminating voltage or current

is known

 This can be derived from a transmission line length l with known

terminating voltage and current

Transmission Line with Load Impedance

 

 

0

0

0

tan h

tan h

R

in

R

Z l Z
Z Z

Z Z l

 


 

 This can be start from basic transmission line equations with two

unknown constants A and B
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 Now the terminating voltage and current at a distance z=l can be written

as

 To derive the constants A the above voltage and current equations can

be multiplied with coshγl and sinhγl

Transmission Line with Load Impedance
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 Then we get the constants A as
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 Similarly, the constant B can be obtained by multiplying voltage

equation with sinhγl and current equation with coshγl , and adding

both the equations, we get B as

Transmission Line with Load Impedance

 Then substitute A and B constants in basic equation. we obtain voltage

and current at any point from the terminating point as

0
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 Where, l-z is the distance from the terminating end



 Now from the above expressions, the input impedance z=0 can be

written as

Transmission Line with Load Impedance
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Infinite Transmission Line



Infinite Transmission Line

>If a line of infinite length is considered then all the power fed into it

will be absorbed. The reason is as we move away from the input

terminals towards the load, the current and voltage will decrease

along the line and become zero at an infinite distance, because the

voltage drops across the inductor and current leaks through the

capacitor.

>By considering this hypothetical line of infinite line an important

terminal condition is formed.



Infinite Transmission Line
Let Vs be the sending end voltage and Is be the sending end current and 

Zs be the input impedance which is given by

Current at any point distance x from sending end is given by 

The value of c & d can now determined by considering an infinite line.

At the sending end x=0 and I =Is.

At the receiving end, I=0 and  x=∞.

Zs  =Vs/Is

-PxPx
de+ce=I

d+cI
s


 c=0  0



Infinite Transmission Line

Therefore

If                                then

Therefore

The above equation gives current at any point of an infinite line

And  

Similarly the above equation gives voltage at any point of an infinite line
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s
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
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Infinite line terminated in its Z0

When a finite length of line is joined with a similar kind of infinite line,

their total input impedance is same as that of infinite line itself,

because they together make one infinite line however the infinite line

alone presents an impedance Zo at its input PQ because the input

impedance of an infinite line is Zo.

It is therefore concluded that a finite line has an impedance Zo when it is

terminated in Zo.

Or A finite line terminated by its Zo behaves as an infinite line.

Let a finite length of „l‟ is terminated by its characteristic impedance Zo

and is having voltage and current VR and IR at terminating end.



Infinite line terminated in its Z0

Therefore

Dividing VR by IR we get Zo

R

R

I

V
=Zo

have weequations, generalin   I =I,V =Vl,= xPutting
RR

sinhpl  
Z

V
  - coshpl I=I

O

S

SR



Infinite line terminated in its Z0

Multiplying right hand side numerator and denominator by Z0, we get

Therefore

But Vs/Is is equal to the input impedance.

Thus the input impedance of a finite line terminated in its characteristic
impedance is the characteristic impedance of the line. Since the
input impedance of an infinite line is the characteristic impedance of
the line.



Characteristic Impedance, Phase 
Velocity



 The characteristic impedance, Z0 can be defined as:

0

R j L R j L
Z

G j C

 

 

 
 



 characteristic impedance (Zo) is the ratio of voltage to

current in a forward travelling wave, assuming there is no

backward wave

• Zo determines relationship between voltage and

current waves

• Zo is a function of physical dimensions and r

• Zo is usually a real impedance (e.g. 50 or 75

ohms)

 Characteristic impedance, Z0 :



Characteristic impedance, Z0 :

• Voltage waveform can be expressed in time domain as:

• The factors V0
+ and V0

- represent the complex quantities. The Φ± is

the phase angle of V0
±. The quantity βz is called the electrical length

of line and is measured in radians.

     0 0
, c os c os

z z
v z t V t z e V t z e

 
     

    
     



Phase Velocity

• Phase Velocity For a sinusoidal wave, or a waveform comprised of

many sinusoidal components that all propagate at the same velocity,

the waveform will move at the phase velocity of the sinusoidal

components We‟ve seen already that the phase velocity is

• vp=ω/k



Group Velocity

• When the various frequency components of a waveform have

different phase velocities

• The phase velocity of the waveform is an average of these

velocities (the phase velocity of the carrier wave), but the waveform

itself moves at a different speed than the underlying carrier wave

called the group velocity



Group vs Phase velocity 

• An analogy that may be useful for understanding the difference 

comes from velodrome cycling

• Riders race as a team and take turns as leader with the old leader 

peeling away and going to the back of the pack 

• As riders make their way from

the rear of the pack to the front

they are moving faster than

the group that they are in.



Group vs Phase velocity

• The phase velocity of a wave is

V=vp = λ T = fλ = ω/k

and comes from the change in the position of the wavefronts as a

function of time

• The waveform moves at a rate that depends on the relative position

of the component wavefronts as a function of time. This is the group

velocity and is

• vg = dω /dk



Condition for distortion less and 

minimum attenuation



Condition for Distortion Less Line

• A transmission line is said to be distortion less if the attenuation

constant is frequency independent.

• The phase constant is linearly dependent of frequency.

• From the general equations of α&β, The distortion less line results,

if the line parameters are such that,

R/L=G/C

 The attenuation constant and phase constant are

α= √RG and β= ω √LC



Condition for Minimum Attenuation

• From the equation the attenuation of a line is expressed by

attenuation constant DC as

α = ½

• It is observed that depends on the four primary constants in

addition to the frequency. The Value of L for minimum attenuation.

• Let us assume the three line constants C,G and R including are

constant and only L may be varied .

• Therefore, differentiating above value of , W.R.T L and equating

it to zero, we get



Condition for Minimum Attenuation:

then by solving above equation we get

R/L=G/C

This is the condition for minimum attenuation and

distortion less line.

= 0

= 0



Condition for Distortion Less Line

CONCLUSIONS:
• The phase velocity is independent of frequency because, the phase

constant of linearly depends upon frequency

• Both VP and Z0 remains the same for loss less line.

• A loss less line is also a distortion less line, but a distortion less line

is not necessarily loss less.

• Loss less lines are desirable in power transmission telephone lines

are to b distortion less.



UNIT-V

UHF Transmission Lines and 
Applications



UHF Transmission Lines

• UHF spectrum is used worldwide for land mobile radio systems for

commercial, industrial, public safety, and military purposes.

• Many personal radio services use frequencies allocated in the UHF

band, although exact frequencies in use differ significantly between

countries.

• Major telecommunications providers have deployed voice and data

cellular networks in UHF/VHF range. This allows mobile phones

and mobile computing devices to be connected to the public

switched telephone network and public internet.

• UHF radars are said to be effective at tracking stealth fighters, if not

stealth bombers



UHF Transmission Lines
• Ultra High Frequency lines commonly abbreviated as

U.H.F lines are one of the types of the transmission lines.

• Ultra high frequency lines have operational frequency

range from 300 to 3000 MHz or wavelength from 100 cm

to 10 cm.

• Under normal frequencies the transmission lines are used

as wave guides for transferring power and information

from one point to another.



UHF Transmission Lines

• At Ultra High Frequencies, the transmission lines can be used as

circuit elements like capacitor or an inductor .

• It means they can be used in circuits like a capacitor or an inductor.

Applications:

• UHF Television Broad casting fulfilled the demand for additional

over-the-air television channels in urban areas. Today, much of the

bandwidth has been reallocated to land mobile, trunked radioand

mobile telephone use. UHF channels are still used for digital

television



UHF Transmission Lines

• UHF spectrum is used worldwide for land mobile radio systems for

commercial, industrial, public safety, and military purposes.

• Many personal radio services use frequencies allocated in the UHF

band, although exact frequencies in use differ significantly between

countries.

• Major telecommunications providers have deployed voice and data

cellular networks in UHF/VHF range. This allows mobile phones

and mobile computing devices to be connected to the public

switched telephone network and public internet.

• UHF radars are said to be effective at tracking stealth fighters, if not

stealth bombers



Input impedance Relations; SC 
and OC lines



 Let the voltage and current transmission line equations at any point on

the line from the source end can be written as

 A transmission line, which is terminated with some load impedance

ZR at a distance „l „from the load

 The voltage and current at the terminating end is VR and IR

Input Impedance Relations
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 At z= l, the voltage and current can be written as

0

0

c o s h s in h

s in h c o s h

R s s

s

R s

V V l I Z l

V
I l I l

Z

   

    



 Now the load impedance from the terminating point can be written as

 By solving the above equation, we obtain

Input Impedance Relations
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 Where ZS is the source impedance, also called input impedance

 Above expression can be written in terms of hyperbolic tan

functions as
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 For a loss less line the input impedance can be written as

Input Impedance Relations
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 A special cases from the above general lossless line input impedance

relations

• When the line is terminated with characteristics impedance, ZR=Z0

• When the line is terminated with open circuited, ZR=infinity(∞)

• When the line is terminated with short circuited, ZR=0
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 Lossless Transmission line(α=0)



 For a loss less line the input impedance can be written as

Input Impedance Relations
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 The line is terminated with characteristic impedance, the input

impedance is equal to the characteristic impedance

 This condition is called matched load condition

 There is no reflections on the line
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Matched Load ZR=Z0



 For a loss less line the input impedance can be written as

Input Impedance Relations
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 Open Circuited, i.e. ZR=infinity(∞)
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 Short Circuited, i.e. ZR=0
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 If the line is terminated with open circuit or short circuit, the input

impedance can be purely imaginary
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 From the short circuit and open circuit impedance relations, the

characteristic impedance can be written as

Input Impedance Relations
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 The characteristic impedance of the line can be measured from open and

short circuit Transmission line
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Impedance Matching, Single 
Stub Matching



 Impedance matching is one of the important aspects of high

frequency circuit analysis.

 To avoid reflections and power loss from transmission line sections

impedance matching techniques can be used

• Quarter Wavelength Transformer,

• Stub Matching

 Single Stub Matching

 Double Stub Matching

Impedance Matching

 The quarter wave transformer needs special line of characteristics

impedance for every pair of resistances to be matched

 To add quarter wave transformer, cut the main line

 To avoid above difficulties, either open or short circuited transmission

line attached at some position parallel to line



Impedance Matching

 Adding of either open or short line in parallel to main line is call stub

 The main advantage of this stub matching is

• The length and characteristic impedance remains same

• Since the stub is added in shunt, there is no need to cut the main line

• The susceptance of the stub can be adjusted for perfect matching

 A short-circuited stub is less prone to leakage of electromagnetic

radiation and is somewhat easier to realize.

 Open circuited stub may be more practical for certain types of

transmission lines, for example microstrips where one would have to

drill the insulating substrate to short circuit the two conductors of the

line



Single Stub Matching

 Based on the number of parallel stubs connected to the line stub

matching techniques can be classified into two types

• Single-Stub Matching Technique

• Double- Stub Matching Technique

 A short-circuited section (stub) of a

transmission line connected in parallel to

the main transmission line is shown in

Figure

 The stub is connected in parallel, so it is

easy to deal with admittance analysis

instead of impedance

 Single Stub Matching



Single Stub Matching

 There are two design parameters for single stub matching

• The location of the stub with reference to the load can be

represented as dstub

• The length of the stub line Lstub

 For proper impedance matching, the admittance at the location of the

stub can be written as
0
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1
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 Location of the stub(dstub)

Single Stub Matching

 To determine the location of the short-circuited stubs, the input

impedance of a lossless transmission line and convert it to admittance
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 The normalized admittance can be written as

 Separating the real and imaginary parts by rationalizing
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 For no reflection, at a distance l=dstub the real part of the admittance

is unity

 At l=dstub

 Simplifying the above expression, we obtain
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 At this location the imaginary part of susceptance of bs can be

written as

 Therefore at length dstub the input admittance is



 Length of the stub(Lstub)

Single Stub Matching

 To determine the length of the short-circuited stub consider the short

circuited impedance and write in terms of admittance

 That is
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 The required normalized suspetance of the short circuited stub

 Equating with ysc
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 Converting into impedance

 Therefore, the length of short circuited stub is

for

for

 The drawback of this approach is that if the load is changed, the

location of insertion may have to be moved
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Smith Chart

 It is a polar plot of the complex reflection coefficient.

 It is the transformation of complex impedance into

reflection coefficient plane.

Figure 1: Transformation of Z into 



Smith Chart

• Construction of smith chart:-

• It consist of r-circles and x-circles

Fig-2: r-circles Fig-3: x-circles



Smith Chart

• Points to remember regarding smith chart:

 The value of r is always positive, x can be positive (for inducatance

impedance) and negative (for capacitance impedance)

 Apart from the r and x circles, we can draw the VSWR-circles or (S-
circles)(ALWAYS NOT SHOWN ON THE CHART)

Figure 4: Some points on smith chart



Smith Chart
 At point Psc on the chart r = 0 and x = 0, it represents short circuit point. Similarly

Poc on the chart r = infinity and x = infinity represents open circuit point.

 A complete revolution around the smith chart represents a distance of on the

line(360 degress).

 Clockwise movement on the chart is regarded as moving toward the generator.

Similarly, counter clockwise movement on the chart corresponds to moving towards

load.

 There are 3 scales around periphery of the smith chart

> Outermost scale used to determine distance on the from generator end in terms

of wave length.

> The next scale determines distance from the load end interms of WL

> Outermost scale used to determine distance on the from generator end in terms

of wave length.

> The innermost scale is a protractor and is primarily used in determining angle of

reflection coefficient



Smith Chart

 To the horizontal line upper part is  inductive in nature and bottom part is 
capacitive in nature.

 As shown in figure (4):

> The left most point A on the smith chart corresponds to and therefore 
represents ideal short-circuit load.

> The right most point B on the Smith chart corresponds to , and therefore 
represents ideal open circuit load.

>The upper most point C represents a pure inductive load of unity 
reactance and the lower most point D represents a pure capacitive load of 
unity reactance.

 Voltage Vmax occurs where impedance is maximum i.e point A and Vmin
occurs where impedance is minimum i.e point B.


