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Subject 
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30% 

70% 

 Graduates: 
◦ Midterm exam 

◦ Final exam 

 Course Materials 
◦ Lecture notes 
 Power points slides 

 Class notes 

◦ Textbooks 
 Engineering Mechanics: Statics 10th  Edition by R.C.  

Hibbeler 
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COURSE OBJECTIVES 
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The course should enable the students to: 

III. 

I. Develop the ability to work comfortably with basic engineering mechanics  

concepts required for analysing static structures. 

II. Identify an appropriate structural system to studying a given problem and  

isolate it from its environment, model the problem using good free body  

diagrams and accurate equilibrium equations. 

Identify and model various types of loading and support conditions that act  

on structural systems, apply pertinent mathematical, physical and  

engineering mechanical principles to the system to solve and analyze 

the problem. 

IV. Solve the problem of equilibrium by using the principle of work and energy  

in mechanical design and structural analysis. 

V. Apply the concepts of vibrations to the problems associated with dynamic  

behavior. 
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COURSE OUTCOMES 
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After completing this course the student must  

demonstrate the knowledge and ability to: 

1.Classifying different types of motions in kinematics. 

2.Categorizing the bodies in kinetics as a particle, rigid  

body in translation and rotation. 

3.Choosing principle of impulse momentum and virtual  

work for equilibrium of ideal systems, stable and 

unstable equilibriums 

4.Appraising work and energy method for particle  

motion and plane motion. 

5.Apply the concepts of vibrations. 
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KINEMATICS 

KINETICS  

NEWTON’S LAW 

KINETICS  

ENERGY & MOMENTUM 

PARTICLE SYSTEM OF 

PARTICLES 

RIGID BODIES 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 3 

Chapter 4 

Chapter 5 

Course Outline 
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Introduction to Mechanics 

Mechanics 

Statics Dynamics 

Kinematics Kinetics 
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What is mechanics? 

Physical science deals 

with the state of rest or  

motion of bodies under  

the action of force 

Why we study mechanics? 

This science form the  

groundwork for further  

study in the design and  

analysis of structures 
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Basic Terms 
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 Essential basic terms to be understood 

◦ Statics: dealing with the equilibrium of a rigid-body at rest 

◦ Rigid body: the relative movement between its parts are negligible 

◦ Dynamics: dealing with a rigid-body in motion 

◦ Length: applied to the linear dimension of a straight line or curved line 

◦ Area: the two dimensional size of shape or surface 

◦ Volume: the three dimensional size of the space occupied by substance 

◦ Force: the action of one body on another whether it’s a push or a pull  
force 

◦ Mass: the amount of matter in a body 

◦ Weight: the force with which a body is attracted toward the centre of the  
Earth 

◦ Particle: a body of negligible dimension 
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Units of Measurement 
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 Four fundamental quantities in mechanics 

◦ Mass 

◦ Length 

◦ Time 

◦ Force 

 Two different systems of units we dealing with during the 
course 

◦   Units (CGS) 
 Length in centimeter(cm) 

 Time in Seconds (s) 

 Force in kilograms (kg) 

◦ International System of Units or Metric Units (SI) 
 Length in metre (m) 

 Time in Seconds (s) 

 Force in Newton (N) 
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Units of Measurement 
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Quantity 

SI Units US Units 

Unit Symbol Unit Symbol 

Mass kilogram kg slug - 

Length meter m foot ft 

Time second s second sec 

Force newton N pound lb 

Summery of the four fundamental quantities  

in the two system 
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Units of Measurement 
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 Metric System (SI) 

◦ SI System offers major advantages relative to the FPS system 

 Widely used throughout the world 

 Use one basic unit for length  meter; while FPS uses many basic units 
 inch, foot, yard, mile 

 SI based on multiples of 10, which makes it easier to use & learn whereas 
FPS is complicated, for example 

 SI system 1 meter = 100 centimeters, 1 kilometer = 1000 meters, etc 

 FPS system 1 foot = 12 inches, 1 yard = 3 feet, 1 mile = 5280 feet, etc 

 Metric System (SI) 

◦ Newton’s second law F = m.a 

 Thus the force (N) = mass (kg)  acceleration (m/s2) 

◦ Therefore 1 Newton is the force required to give a mass of 1 kg  
an acceleration of 1 m/s2 
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Units of Measurement 
 U.S. Customary System (FPS) 
◦ Force (lb) = mass (slugs)  acceleration (ft/sec2 ) 
 Thus (slugs) = lb.sec2/ft 

◦ Therefore 1 slug is the mass which is given an 
acceleration of 1 ft/sec2 when acted upon by a force  
of 1 lb 

 Conversion of Units 
◦ Converting from one system of unit to another; 

 The standard value of g (gravitational  
acceleration) 
◦ SI units g = 9.806 m/s2 

◦ FPS units g = 32.174 ft/sec2 

Quantity FPS Equals SI 

Force 1 lb 4.448 N 

Mass 1 slug 14.593 kg 

Length 1 ft 0.304 m 
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Objectives 
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To provide an introduction of: 

※ Fundamental concepts, 

※ General principles, 

※ Analysis methods, 

※ Future Studies 

in Engineering Mechanics. 
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Outline 
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 1. Engineering Mechanics 

 2. Fundamental Concepts 

 3. General Principles 

 4. Static Analysis 

 5. Dynamic Analysis 

 6. Future Studies 
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1. Engineering Mechanics 
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 Mechanics : 

- Rigid-body Mechanics 

- Deformable-body Mechanics 

- Fluid Mechanics 

 Rigid-body Mechanics : 

- Statics 

- Dynamics 
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 Statics – Equilibrium Analysis of 

particles and bodies 

 Dynamics – Accelerated motion of 

particles and bodies 

Kinematics and Kinetics 

 Mechanics of Materials… 

 Theory of Vibration… 

1. Engineering Mechanics 
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2. Fundamentals Concepts 
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Basic Quantities 

 Length, Mass,Time, Force 

Units of Measurement 

 m, kg, s, N… (SI, Int. System of Units) 

- Dimensional Homogeneity 

- Significant Figures 
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2. Fundamentals Concepts 
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Idealizations 

 Particles 

– Consider mass but neglect size 

 Rigid Body 

– Neglect material properties 

 Concentrated Force 

 Supports and Reactions 
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3. General Principles 
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- Newton’s Laws of Motion 

 First Law, Second Law,Third Law 

 Law of Gravitational Attraction 

- D’Alembert Principle : F+(-ma)=0 

- Impulse and Momentum 

- Work and Energy 

- Principle of Virtual Work (Equilibrium) 
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4. Static Analysis 
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 Force and Equilibrium 

 Force System Resultants 

 Structural Analysis 

 Internal forces 

 Friction 

 Centroid and Moments of Inertia 

 Virtual Work and Stability 
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5. Dynamic Analysis 
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 Kinematics of a Particle 

 Kinetics: Force and Acceleration 

 Work and Energy 

 Impulse and Momentum (Impact) 

 Planar Kinematics and Kinetics 

 3-D Kinematics and Kinetics 

 Vibrations 
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UNIT-I  
KINEMATICS OF  

PARTICLES IN 
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RECTILINEAR MOTION 
Motion of a particle, rectilinear motion, motion curves, rectangular  

components of curvilinear motion, kinematics of rigid body, types of  

rigid body motion, angular motion, fixed axis rotation. 
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INTRODUCTION TO DYNAMICS 

Engineering Mechanics – Dynamics 22 

 Galileo and Newton (Galileo’s  

experiments led to Newton’s laws) 

 Kinematics – study of motion 

 Kinetics – the study of what causes 

changes in motion 

 Dynamics is composed of kinematics 

and kinetics 
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Introduction 
• Dynamics includes: 

- Kinematics: study of the motion (displacement, velocity,  

acceleration, & time) without reference to the cause of motion  

(i.e. regardless of forces). 

- Kinetics: study of the forces acting on a body, and the resulting  

motion caused by the given forces. 

 

 
• Rectilinear motion: position, velocity, and acceleration of a  

particle as it moves along a straight line. 

• Curvilinear motion: position, velocity, and acceleration of a 

particle as it moves along a curved line. 
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RECTILINEAR MOTION OF PARTICLES 

24 



Rectilinear Motion: Position, 
Velocity & Acceleration 
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Acceleration 

MECHANICS 

Kinematics of Particles 

Motion in One Dimension 
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Summary of properties of vectors 
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POSITION, VELOCITY, AND 
ACCELERATION 

 
For linear motion x marks the position of an object.  
Position units would be m, ft, etc. 

Average velocity is 

t 

Velocity units would be in m/s, ft/s, etc. 
The instantaneous velocity is 

v 
 x 

dt 
v  lim

 x 
 

dx 
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The average acceleration is 

a  
v 

t 

The units of acceleration would be m/s2, ft/s2, etc. 

The instantaneous acceleration is 

t 0 t 
a  lim 

2 
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dt dt dt dt 

v 
 

dv 
 

d dx 
 

d 2 x 



dt dx dt dx 
a  

dv 
 

dv dx 
 v 

dv 

One more derivative 

dt 

da 
 Jerk 

Notice If v is a function of x, then 
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Consider the function 

x  t 3  6t 2 

v  3t 2  12t 

a  6t  12 

x(m) 

0 

16 

32 

2 4 

t(s) 

6 
t(s) 

Plotted 

a(m/s2) 

12 

0 

-12 

-24 

2 4 6 

0 

v(m/s) 
12 

-12 

-24 

-36 

2 4 
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Rectilinear Motion: Position, Velocity &  
Acceleration 

• Particle moving along a straight line is said 

to be in rectilinear motion. 

• Position coordinate of a particle is defined  

by (+ or -) distance of particle from a fixed  

origin on the line. 

• The motion of a particle is known if the  

position coordinate for particle is known for  

every value of time t. Motion of the particle  

may be expressed in the form of a function,  

e.g.,  
3 

x  6t 2  t 

or in the form of a graph x vs. t. 
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Rectilinear Motion: Position, Velocity & Acceleration 

• Consider particle which occupies position P 

at time t and P’ at t+t, 

t 
Average velocity  

x 

Instantaneous velocity  v  lim 
x 

t0 t 

• Instantaneous velocity may be positive or  

negative. Magnitude of velocity is referred  

to as particle speed. 

• From the definition of a derivative, 

dt 
Engineering Mechanics – Dynamics 

v  
dx 

 12t  3t 2 

v  lim 
x 

 
dx 

t0 t dt 

e.g., x  6t 2  t 3 
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Rectilinear Motion: Position, Velocity & Acceleration 

dt 

dt 2 

a  
dv 

 12  6t 

e.g. v  12t  3t 2 

t dt 

v dv d 2 x 
a  lim   

t0 

• Consider particle with velocity v at time t and 

v’ at t+t, 

Instantaneous acceleration   a  lim 
v 

t0 t 

 
 
• From the definition of a derivative, 
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Rectilinear Motion: Position, Velocity & Acceleration 

• Consider particle with motion given by 

x  6t 2  t3 

dt 
v  

dx 
 12t  3t 2 

dv d 2 x 

Engineering Mechanics – Dynamics 

a      12  6t  
dt  dt 2 

• at t = 0, x = 0, v = 0, a = 12 m/s2 

 
• at t = 2 s, x = 16 m, v = vmax  = 12 m/s, a = 0 

 
• at t = 4 s, x = xmax = 32 m, v = 0, a = -12 m/s2 

 
• at t = 6 s, x = 0, v = -36 m/s, a = -24 m/s2 
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DETERMINATION OF THE  
MOTION OF A PARTICLE 

Three common classes of motion 
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 
0 

0 v  v  

dt 

dv  adt  f ( t )dt 
t 

1. a  f ( t )  dv 

0 
dt 

f ( t )dt  dx  v 

t 

 
0 

0 f ( t )dt 
dt 
dx  v  
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t 

 
0 

0 f ( t )dt 
dt 
dx  v  

 

 
t  t 

0 0 

x  x0  v0 t    f ( t )dt dt 

 

  t 

0 

dx  v0 dt   f ( t )dtdt 
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 

 

0 0 

t  t 
x  x0  v0t    f ( t )dtdt 



x 

 
xo 

f (x)dx 
0 2 

1 (v2  v2 )  

dt 

dx 
with v  then get x  x(t) 

2. a  f ( x )  v 
dv 

Engineering Mechanics – Dynamics 40 

dx 

vdv  adx  f ( x )dx 



v t 
dv 

v0 0 

x v 

x0 v0 

vdv 
 dx   f ( v ) 

Both can lead to 

x  x( t ) 

or 

dt dx 

Engineering Mechanics – Dynamics 41 

3. a  f ( v )  
dv 

 v 
dv 

 f ( v ) 
  dt  t 
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UNIFORM RECTILINEAR 
MOTION 

v  constant 
a  0 

v  
dx 

dt 

x  x0   vdt  vt 

x 
Engineeri

x
ng M0echani


cs – Dyn

v
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Also 
dx 

v 
dv 

 a 

UNIFORMLY ACCELERATED  
RECTILINEAR MOTION 

a  constant 

v  v0  at 

2 o 0 x  x  v t  1 at 2 

1/27/2017 43 

v2  v2  2a( x  x ) 
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Determining the Motion of a Particle 

 
• Recall, motion is defined if position x is known for all time t. 

• If the acceleration is given, we can determine velocity and  

position by two successive integrations. 
 

• Three classes of motion may be defined for: 

- acceleration given as a function of time, a = f(t) 

- acceleration given as a function of position, a = f(x) 

- acceleration given as a function of velocity, a = f(v) 

v  
dx 

a  
dv 

dt dt 

d 2 x 

dt 2 
a  a  

dv 
 

dv dx 
 v 

dv  

dt dx dt dx 
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Determining the Motion of a Particle 
• Acceleration given as a function of time, a = f(t): 

a  f (t) 
 
 

dv 
 dv  

dt 

v 

 f (t)dt   
v0 

t 

dv   f (t)dt  
0 

t 

v  v0   f (t)dt 
0 

v  
dx  

dt 
 dx  vdt 

x t 

  dx  vdt 
x0 0 

t 

 x  x0  vdt 
0 

2 2 

0 

1 1 

2 2 

v x x 

v0 x0 x0 

dv a  f (x)  v 
dx 

 v  v  f (x)dx  vdv  f (x)dx   vdv   f (x)dx  

•Acceleration given as a function of position, a = f(x): 

0 

14/257/2017 Engineering Mechanics – Dynamics 

x 

x dx dx  

dt 

dx  

v v 
v    dt   

t 

 dt 
0 
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Determining the Motion of a Particle 

v 

dv  

dt 

dv  

f (v) 

dv  

f (v) 

dv  

f (v) 
a  f (v)    t 

v 

 dt   
0 

t v 

 dt   
0 v0 

x v 
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x0 v0 v 

dv  

dx 

vdv  

f (v) 

vdv  

f (v) 

vdv  

f (v) 
a  f (v)  v  dx    dx   

v 

 x  x0   
0 

• Acceleration given as a function of velocity, a = f(v): 

46 



Summary 

Procedure: 

1. Establish a coordinate system & specify an origin 

2. Remember: x,v,a,t are related by: 

3. When integrating, either use limits (if 

integration 

dt dt 
v  

dx 
a  

dv d 2 x 

dt 2 
a  dt dx dt dx 

known) or add a constant of 

a  
dv 

 
dv dx 

 v 
dv 

14/277/2017 Engineering Mechanics – Dynamics 47 



Sample Problem 1 

Ball tossed with 10 m/s vertical velocity from window 20 m above ground. 

 
Determine: 

• velocity and elevation above ground at time t, 

• highest elevation reached by ball and corresponding time, and 

• time when ball will hit the ground and corresponding velocity. 
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Sample Problem 1 

dt 

t vt  

v0 0 

vt  v0  9.81t 

dv 
 a  9.81m s2 

 dv   9.81dt 

  
 s2  s 

vt   10 
m 

 

9.81 

m  
t 

2 

dt 

t yt  

y0 0 

yt  y0  10t  1 9.81t 2 

dy 
 v  10  9.81t 

 dy   10  9.81t dt 

2 

s  

m  
 
 

m  
t  4.905 

2 
t 

 
 

s 
 

  

 
yt   20 m  10 

SOLUTION: 

• Integrate twice to find v(t) and y(t). 
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Sample Problem 1 
• Solve for t at which velocity equals zero and evaluate  

corresponding altitude. 

s s  
 

2 
 

 
vt   10 

m 
 


9.81 

m  
t  0 

t  1.019s 

2 

2 

1.019 s 
m m 
2 

 
s  

 
 
 

 
1.019 s 4.905 

 
 

s 
 

  

 

 
 s  

m  m   
 

s 
 

  

 

y  20 m  10 

t  4.905 
2 

t yt   20 m  10 

y  25.1m 

15/207/2017 Engineering Mechanics – Dynamics 50 



Sample Problem 1 
• Solve for t at which altitude equals zero and  

evaluate corresponding velocity. 

2 
 
 s  

m  m   
 

s 
 

  

 
t  4.905 

2 
t  0 yt   20 m  10 

t  1.243s meaningles s 

t  3.28s 

s 

s 

 
2 

 
 s  

 
2 

 
 s  

v3.28s  10 
m 

 

9.81 

m  3.28s 

vt   10 
m 

 

9.81 

m  
t 

s 
v  22.2 

m 
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What if the ball is tossed downwards with the same speed? (The 

audience is thinking …) 

vo= - 10 m/s 
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Uniform Rectilinear Motion 
Uniform rectilinear motion acceleration = 0 velocity = constant 

dt 
x t 

 dx  v dt 

x0 0 

x  x0  vt  

x  x0  vt 

dx 
 v  constant 
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Uniformly Accelerated Rectilinear Motion 
Uniformly accelerated motion acceleration = constant 

v  v  at 
t 

 
dt 

v  v0  at 

0 dv  a dt 

0 

v 

 
v0 

dv 
 a  constant 

2 

2 0 0 

0 

0 
dt 

t 

x  x0  v0t  1 at 2 

x  x  v t  1 at 2 v  at dt dx    at 
dx 

 v  0 

x 

 
x0 

0 0 
2 2 1 

2 dx 

v2   v2  2ax  x  
0 0 

ax  x  v  v  v dv  a dx 

x0 

v
 dv 

 a  constant 
x 

 
v 

 
v0 

Also: 
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MOTION OF SEVERAL PARTICLES 

When independent particles move along the same  
line, independent equations exist for each. 
Then one should use the same origin and time. 
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Relative motion of two particles. 

 
The relative position of B with respect to A 

xB  xB  xA 
A 

 

The relative velocity of B with respect to A 

 

vB  vB  vA 
A 
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The relative acceleration of B with respect to A 

A 
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A 
B B 

a  a  a 



Motion of Several Particles: Relative Motion 

• For particles moving along the same  

line, displacements should be measured  

from the same origin in the same  

direction. 

xB A  xB  xA  relative position of B 

with respect to A 
A B A B x  x  x 

vB  A  vB  vA  relative velocity of B 

with respect to A 
vB  vA  vB A 

aB A  aB  aA  relative acceleration of B 

with respect to A 

15/287/2017 

aB  aA  aB A 
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Let’s look at some dependent motions. 



  A 

C D 

E F 

G 

System has one degree of  
freedom since only one  
coordinate can be chosen  
independently. 

xA 

xB 

A B 
x  2x  cons tant 

v  2v  0 
A B 

a  2a  0 
A B 

B  Let’s look at the 
relationships. 
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System has 2 degrees of 
freedom. 

C    

  A 

B    

xA 

xC 

xB 

2x  2x  x  cons tant 
A B C 

A B C 
2v  2v  v  0 

2a  2a  a  0 
Let’s look at the relationships. 

A 

Engineering Mechanics – Dynamics 

B C 
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Ball thrown vertically from 12 m  

level in elevator shaft with initial  

velocity of 18 m/s. At same  

instant, open-platform elevator  

passes 5 m level moving upward  

at 2 m/s. 

Determine (a) when and where  

ball hits elevator and (b) relative  

velocity of ball and elevator at  

contact. 

Sample Problem 2 
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SOLUTION: Sample Problem 2 

• Ball: uniformly accelerated motion 

(given initial position and velocity). 

• Elevator: constant velocity (given  

initial position and velocity) 

• Write equation for relative position of  

ball with respect to elevator and solve  

for zero relative position, i.e., impact. 

 

 
• Substitute impact time into equation  

for position of elevator and relative  

velocity of ball with respect to  

elevator. 
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Sample Problem 3 

SOLUTION: 

• Ball: uniformly accelerated rectilinear motion. 

2 2 
2 
1 

0 0 

s 

B 

B 0 

s  
 
 

m  m  
t  4.905 

2 
t 

 
 

s 
 

  

 
y  y  v  t  at  12 m  18 

 
 s  

v  v  at  18 
m 

 

9.81 

m  

2 
t 

• Elevator: uniform rectilinear motion. 

  
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 
s 

 y  y  v t  5 m   2 
m t 

s 
vE  2 

m 

E 0 E 
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Sample Problem 3 

• Relative position of ball with respect to elevator: 

 

yB E  12 18t  4.905t 2  5  2t   0 

t  0.39s meaningles s 

t  3.65s 

• Substitute impact time into equations for position of elevator  

and relative velocity of ball with respect to elevator. 

yE  5  23.65 
yE  12.3m 

vB E  18  9.81t  2 

 16  9.813.65 

s 
vB E  19.81 

m 
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Motion of Several Particles: Dependent Motion 

• Position of a particle may depend on position of one  

or more other particles. 

• Position of block B depends on position of block A.  

Since rope is of constant length, it follows that sum of  

lengths of segments must be constant. 

xA  2xB  constant (one degree of freedom) 

• Positions of three blocks are dependent. 

2xA  2xB  xC  constant (two degrees of freedom) 

• For linearly related positions, similar relations hold  

between velocities and accelerations. 
 

2 
dxA  2 

dxB   
dxC  0 or 2vA  2vB  vC  0 

dt dt dt 

2 
dvA  2 

dvB   
dvC  0 or 2a A  2aB  aC  0 

dt dt dt 
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Applications 
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Sample Problem 4 

Pulley D is attached to a collar which is pulled down at 3 in./s. At t = 0, collar A 

starts moving down from K with constant acceleration and zero initial velocity.  

Knowing that velocity of collar A is 12 in./s as it passes L, determine the change  

in elevation, velocity, and acceleration of block B when block A is at L. 
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Sample Problem 4 

SOLUTION: 

• Define origin at upper horizontal surface with  

positive displacement downward. 

• Collar A has uniformly accelerated rectilinear 

motion. Solve for acceleration and time t to reach L. 

2 s 

in. in. 
2 

12 
s 

 
  

 

A 

  aA  9  2aA 8in. 

A 
2  2aA xA  xA   
0 0 

v2  v 

s 

16/297/2017 Engineering Mechanics – Dynamics 

s2 
t  1.333 s 12 

in. 
 9 

in. 
t 

vA  vA 0  aAt 
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Sample Problem 4 

 
s 

 
  

D D 0 x  x   3 
in. 1.333s  4 in. 

• Pulley D has uniform rectilinear motion. Calculate 

change of position at time t. 

xD  xD 0  vDt 

• Block B motion is dependent on motions of collar  

A and pulley D. Write motion relationship and  

solve for change of block B position at time t. 

Total length of cable remains constant, 

xA  2xD  xB  xA 0  2xD 0  xB 0 

xA  xA 0  2xD  xD 0  xB  xB 0  0 

8in. 24 in. xB  xB 0  0 

xB  xB 0  16in. 
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Sample Problem 4 

   
 

s 
  

s 
 

 
B 

12 
in.   23 

in.   v  0 

• Differentiate motion relation twice to develop  

equations for velocity and acceleration of block B. 

xA  2xD  xB  constant 

vA  2vD  vB  0 

s 
B 

v  18 
in. 

2 
9 

s 

aA  2aD  aB  0 

 in.  
 a  0   B 

  
s2 

aB  9 
in. 
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Curvilinear Motion 

http://news.yahoo.com/photos/ss/441/im:/070123/ids_photos_wl/r2207709100.jpg 

17/227/2017 Engineering Mechanics – Dynamics 

A particle moving along a curve other than a straight line is said  

to be in curvilinear motion. 
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CURVILINEAR MOTION OF PARTICLES  

POSITION VECTOR, VELOCITY, AND 

ACCELERATION 

x 

z 

y 
r
 

r

 

v
 
 r

 

t 
s  s 

P’ 

 s  r
 

P 

dt 

  
v
  


t                        
lim r  dr 
t 0 t 

dt 
v  

ds 

Let’s find the instantaneous velocity. 
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P 

P’ 

r

 

r
 

v
 

v
 ' 

x 

y 

t 
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z 

a
 
 v

 

v
 
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P 

P’ 

r 
 

r

 

dt 

 

v
 

v
 ' 

x 

y 

x 

z 

y 

t 
a
 
 v

 

 
v a  lim v  dv 

  
t 0 t 

Note that the  
acceleration is not  
necessarily along the  
direction of 
the velocity. 
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DERIVATIVES OF VECTOR 
FUNCTIONS 

du 
dP  lim P 

  

u0 u  

 

u 
 lim  

P( u  u )  P( u )
 

u0 

 

 
  

du 

 

du 

 

du 

   
d( P  Q )  dP  

dQ 
 f dP 

 df 
P  

du 
 

d( fP ) 

du 
 
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du 

  

du 

  

du 

 
 d( P  Q ) 

 dP  Q  P  
dQ 

 

du du 

 
  

du 

  
d( P  Q ) 

 dP  Q  P  
dQ 

dP  ̂dP   x  

du 
 ĵ   	z k̂ 

du 
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du 

dPy 
i  dP  

du 

 
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Rate of Change of a Vector 

 

 
P  P ̂i  P ̂j  P k̂ 

x y z 

 

 

 

The rate of change of a vector is the  
same with respect to a fixed frame and  
with respect to a frame in translation. 
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RECTANGULAR COMPONENTS OF  
VELOCITY AND ACCELERATION 

r
 
 x̂ i  ŷ j  zk̂  

v
 
 x̂i  y̂j  zk̂ 

a
 
 xî y̂j  zk̂ 
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x 

y 

r
 

ŷj 

xî 

x 

z 

y 

P 

v
 

v ̂ i 
x 

v ĵ 
y 

v k̂ 
z 

a
 

1/27/2017 

zk̂ 

80
z 
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z 

y 

a ĵ 
y 

ˆ a k 
z 

a î 
x 

x 

a
 
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Velocity Components in Projectile Motion 

 

a
x  

 x  0  

v
x 

 x  v
xo 

Engineering Mechanics – Dynamics 82 

xo 
x  v t 

a  z  0 
z 

v  z    v  0 
z zo 

z  0  1  
2 yo 

a  y  g 
y 

v   y    v  gt 
y yo 

y  v t  gt 2 



x 

z 

y 

x’ 

z’ 

y’ 

O 

A 

B 

r
 

 r
 

 r
 

B A B / A 

MOTION RELATIVE TO A FRAME IN 
TRANSLATION 
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B 
r
 B / A 

r
 

A 
r 
 
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B A B / A 
r
 

 r
 

 r
 

r
  r

  r
 

B A B / A 

v
 

 v
 

 v
 

B A B / A 

v
  v

  v
 

B A B / A 

B / A 
a
 

 a
 

 a
 

B A 
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r
  r

  r
 

B A B / A 

A B / A 
a
 

B 
 a

 
 a

 



Velocity is tangent to the path of a particle.  

Acceleration is not necessarily in the same direction.  

It is often convenient to express the acceleration in 

terms of components tangent and normal to the path  
of the particle. 

TANGENTIAL AND NORMAL 
COMPONENTS 
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O x 

y 

t 
v
 
 vê 

t 
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ê 

t 

Plane Motion of a Particle 
 

ê' 

t 
ê 

 ê 
n 

 
 

n 
ê' P’ 

P 



lim 
êt 

 0   n  0 
 ê lim 

êt 

  
lim 

 2 sin 2 
 ê 

n  0  

t ê  
dê 

n 
ˆ  e  

 

 
 
 

 
 ê lim 

n 
 2 

sin 2 
 0 

t 
ê 

t 
ê' 

ê 
t 

 

1/27/2017 88 Engineerinng Mechandics– Dynamics 88 Engineering Mechanics – Dynamics 



 

d 
t 

n 
ê  

dê 

v
 
 vê 

t 

t e ̂  
 dv dv 

dt dt 
a   

dt 
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ˆ de t  v 



n  

O x 

y 

ê 
t 

t 
ê' 

P 

 
P’ 

 s 

s   

s ds  

d 
   lim 

 0  

t 
ˆ 

dt 

 dv 

dt 

ˆ de 
v t a  e  

v 
 

v 
ê 

dt d ds dt d  

dê t  
dê t d ds 

 
dê t 

a 
 

 
dv 

ˆ 
v2 

ˆ 
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e  e 

dt t  n 



a 
 

 
dv 

ˆ 
v2 

ˆ e  e 

dt t  n 

a
     
 a ê  a ê 

t t n n 

dv 
at  

dt 

v2 

an   

Discuss changing radius of curvature for highway cur 

Engineering Mechanics – Dynamics 91 



Motion of a Particle in Space 

The equations are the same. 

O x 

y 

t 
ê 

t 
ê' 

n 
ê 

n 
ê' P’ 

P 

z 
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RADIAL AND TRANSVERSE 
COMPONENTS 

x 

y 

P 

r 
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ê 

Plane Motion 
 

ê 

r
 

 



êr êr 

ê r 

ê

 ê

  ê 

 

dêr 

d 
 ê r  ê 

dê

  

d 

dt d dt 

dê r  
dê r 

 

d 
  ê 

dt d dt 
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dê   
dê  

r 

d 
  ê 



vr  r v  r 

 
v
 
 

dr 

dt dt 
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r r r  
d 

( rê )  rê  rê 

v
 
 rêr  r ê  vr ê r  v ê 



y 
r 

ê 

ê 

r
 

 
x 

 

ê r  î cos  ĵ sin  

 

dê r 

d 
 ̂ i sin   ĵ cos  ê 

r  ̂ i cos  ĵ sin   ê 
dê

  

d 

 
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v
 
 rêr  r ê 

a
     
 rêr  r êr  rê  rê  r ê 

a
 

 rêr   r ê  r ê  rê  r êr 2 

 

 
a
      
 ( r  r2   )ê  ( r  2r )ê 

r  

dt 

dv 
r 

r 
a  

dt 
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a  
 

dv 

2 

r 
  r  r a  

 a  r  2r 

Note 



Extension to the Motion of a Particle in Space: 
Cylindrical Coordinates 

 

r
   

 Rê  zk̂  
r 

 

v
    
 Rê  Rê   zk̂ 

R  

 
a
      
 ( R     R2 )ê  ( R 2R )ê  zk̂ 

R  
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Curvilinear Motion: Position, Velocity & Acceleration 

• Position vector of a particle at time t is defined by a  

vector between origin O of a fixed reference frame and  

the position occupied by particle. 

 

• Consider particle which occupies position P defined  

by  r
    at time t and P’ defined by r

 at t + t, 

 
dr 

t0 t dt 

  
v
    

 lim 
r 

 instantaneous velocity (vector) 

 
v  lim  

s 
 

ds 

t0 t dt 

 instantaneous speed (scalar) 
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Curvilinear Motion: Position, Velocity & Acceleration 

 
dv 

  

t0 t dt 
a
     
 lim 

v 

• Consider velocity v
 
of particle at time t and velocity 

v
 at t + t, 

 instantaneous acceleration (vector) 

 
• In general, acceleration vector is not tangent to  

particle path and velocity vector. 

11/2070/20

17 
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Rectangular Components of Velocity & Acceleration 

 

• Position vector of particle P given by its 

rectangular components: 

r
 
 xi

 
 y


j  zk 

• Velocity vector, 

zk k 
dt dt dt 

z 

 
 vx i

 
 v y 


j  v k 

v
 
 

dx
i
 

 
dy 

j  
dz  

 xi
 
 y 


j   

 

• Acceleration vector, 

z 

11/2071/20

17 
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 

   

 ax i
 
 a y 


j  a k 

a   i   j   k  xi  y j  zk  
dt 2  dt 2  dt 2 

 d 2 x d 2 y  d 2 z  

10

1 



    
0 0 x y 

x0  y0  z0  0 v  v  given 

Rectangular Components of Velocity & Acceleration 

• Rectangular components are useful when  

acceleration components can be integrated  

independently, ex: motion of a projectile. 

ax   x  0 ay   y  g az  z  0 

with initial conditions, 

Therefore: 

• Motion in horizontal direction is uniform. 

• Motion in vertical direction is uniformly accelerated. 

• Motion of projectile could be replaced by two  

independent rectilinear motions. 
11/2072/20

17 
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  

0 0 

2 

0 0 

1 

2 
x y 

vx   vx  vy   vy   gt 

x  v  t y  v t  gt 

10

2 



x 

v  v0  at 

0 0 2 
x  x  v t  1 at2 

  

11/2073/20
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2 2 

0 0 
v  v  2a x  x 

Example 

A projectile is fired from the edge of a 150-m cliff with an initial  

velocity of 180 m/s at an angle of 30° with the horizontal. Find (a) the  

range, and (b) maximum height. 

y 

Remember: 

10

3 



Example 

Car A is traveling at a constant speed of 36 km/h. As A crosses  

intersection, B starts from rest 35 m north of intersection and moves  

with a constant acceleration of 1.2 m/s2. Determine the speed, velocity  

and acceleration of B relative to A 5 seconds after A crosses  

intersection. 

11/2074/20
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Tangential and Normal Components 

• Velocity vector of particle is tangent to path of  

particle. In general, acceleration vector is not.  

Wish to express acceleration vector in terms of  

tangential and normal components. 

• 

particle path at P and P’.  

respect to the same origin, 

t t e
       

and e
 are tangential unit vectors for the 

When drawn with 

det  et  et 

et  et  det 

det  d From geometry: 

t n 
de  de 

n 

det  

d 
 e 

d 

det 

11/2075/20
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t n t n 

dv  

dt 

dv v2 

dt  

v2 

 
a  e  e a  a  

Tangential and Normal Components 

t • With the velocity vector expressed as v
 
 ve

 

t t 
dt dt dt dt 

the particle acceleration may be written as 

d ds 

d ds dt 
a  

dv 
 

dv 
e  v 

det  
dv 

e  v 
det 

ds  

dt n  v  d  ds 
d 

t  e
 

but 
de
 

After substituting, 

• Tangential component of acceleration reflects 

1/27/2017 

change of speed and normal component reflects  

change of direction. 

• Tangential component may be positive or  

negative. Normal component always points  

toward center of path curvature. 
Engineering Mechanics – Dynamics 10
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r  rer 

Radial and Transverse Components 

• If particle position is given in polar coordinates, we can  

express velocity and acceleration with components  

parallel and perpendicular to OP. 

 de
 

de
 

 

d d 
    er 

  r  e 

dt d  dt 
 e

 r   r 

dt dt d 

de
 

de
 

d d 

dt 

d 

 d  

dt 

de
 

de
 

 er 
   

  r 
r r 

d dr de 

dt dt dt 
v  re  e  r • Particle velocity vector: 

  

r 

• Similarly, particle acceleration: 
 d  

dt 

de 

dt dt 

r  

 
  

d d

  

dt 

a  re  r e 

 re  r 
der  r e  e   r  r 

 rer  re dt 
 r e  r e  rer 

r
 
 re

 
r 

• Particle position vector: 

r 
dt dt 

 r  v  
dr 

e  r 
d 

e  re  re 

    2 

r  a  r  r  e  r  2r e 11/2077/2017 Engineering Mechanics – Dynamics 10
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Sample Problem 

A motorist is traveling on curved section of highway at 60 mph. The motorist  

applies brakes causing a constant deceleration. 

Knowing that after 8 s the speed has been reduced to 45 mph, determine the 

acceleration of the automobile immediately after the brakes are applied. 

11/2078/20
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Sample Problem 

60 mph  88ft/s  

45 mph  66 ft/s 

ft 

2500 ft 

s2 8 s 

88 ft s2 
 3.10 

s2 

v2 

t 

SOLUTION: 

• Calculate tangential and normal components of  

acceleration. 

a  
v 

 
66  88ft s 

 2.75
 ft  

an   
 

 

t 

• Determine acceleration magnitude and direction 

with respect to tangent to curve. 

a  a2  a2   2.752  3.102 

t n s2 
a  4.14

 ft  

  tan 1 an   tan 1 3.10 

at 2.75 
  48.4 

11/2079/20
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Sample Problem 

Determine the minimum radius of curvature of the trajectory  

described by the projectile. 
 

v2 

an   
 

Recall: 

2 

  
v 

an 

Minimum r, occurs for small v and large an 

155.92 

9.81 
   2480 m 

v is min and an is max 

an 

a 

11/1270/2017 Engineering Mechanics – Dynamics 11
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Sample Problem 

Rotation of the arm about O is defined by  = 0.15t2 where  is in radians and  

t in seconds. Collar B slides along the arm such that r = 0.9 - 0.12t2 where r  

is in meters. 

After the arm has rotated through 30o, determine (a) the total velocity of the  

collar, (b) the total acceleration of the collar, and (c) the relative acceleration  

of the collar with respect to the arm. 

11/1217/2017 Engineering Mechanics – Dynamics 11
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Sample Problem 
SOLUTION: 

• Evaluate time t for  = 30o. 

  0.15t 2 

 30  0.524 rad t  1.869 s 

 
• Evaluate radial and angular positions, and first  

and second derivatives at time t. 

r  0.9  0.12 t 2  0.481 m 

r  0.24 t  0.449 m s 

r  0.24 m s2 

  0.15t 2 0.524 rad 

  0.30 t  0.561rad s 

  0.30 rad s2 

11/1272/2
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Sample Problem 

  tan1 v 

vr 

v  v2  v2 

r  

• Calculate velocity and acceleration. 

vr  r  0.449 m s 

v  r  0.481m0.561rad s  0.270 m s 

v  0.524m s   31.0 

   tan1 a 

ar 

a  a2  a2 

r  

ar  r  r2 

 0.240 m s2  0.481m0.561rad s2 

 0.391m s2 

a  r  2r 

 0.481m0.3rad s2  2 0.449 m s0.561rad s 

 0.359 m s2 

a  0.531m s   42.6 
11/1273/2
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Sample Problem 
• Evaluate acceleration with respect to arm. 

Motion of collar with respect to arm is rectilinear  

and defined by coordinate r. 

aB OA  r  0.240 m s2 

11/1274/2
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UNIT-II 

KINETICS OF PARTICLE 
Introduction, definitions of matter, body, particle, mass, weight,  inertia, 

momentum, Newton’s law of motion, relation between force  and mass, 

motion of a particle in rectangular coordinates,  D’Alembert’s principle, 

motion of lift, motion of body on an inclined  plane, motion of 

connected bodies. 

1/27/2017 115 Engineering Mechanics – Dynamics 
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Newton’s Second Law of Motion 
• If the resultant force acting on a particle is not  

zero, the particle will have an acceleration  

proportional to the magnitude of resultant and in  

the direction of the resultant. 

F  ma 

• If particle is subjected to several forces: 

F  ma 

• We must use a Newtonian frame of reference, i.e., one that is not 

accelerating or rotating. 

• If no force acts on particle, particle will not accelerate, i.e., it will 

remain stationary or continue on a straight line at constant velocity. 

Engineering Mechanics – Dynamics 116 11
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Linear Momentum of a Particle 

dt 


 d mv   d L  
dt dt 

 F  ma  m 
dv 

L  mv Linear momentum 

F  L Sum of forces = rate of change of linear momentum 

If F  0 linear momentum is constant 

Principle of conservation of linear momentum 

Engineering Mechanics – Dynamics 117 11

7 



Equations of Motion 
• Newton’s second law 

  
F  ma  

• Convenient to resolve into components: 

x y z z 

    
a i  a j  a k  

 Fz   maz 

 Fz   mz 

 Fy  ma y 

 Fy  my 

 Fx  max 

 Fx  mx 

 Fxi
 

 Fy 

j  F  k  m 

• For tangential and normal components: 

t 

dv v2 

dt 
F  m 

F t  mat 

 

F n   man 

F n   m 
 

Engineering Mechanics – Dynamics 118 11
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Dynamic Equilibrium 

ma 

• Alternate expression of Newton’s law: 

F  ma  0 

• If we include inertia vector, the system of  

forces acting on particle is equivalent to zero.  

The particle is said to be in dynamic  

equilibrium. 

 

• Inertia vectors are often called inertia  

forces as they measure the resistance that  

particles offer to changes in motion. 

inertia vector 

Engineering Mechanics – Dynamics 119 11
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Sample Problem 1 

An 80-kg block rests on a horizontal plane. Find the  

magnitude of the force P required to give the block an  

acceleration of 2.5 m/s2 to the right. The coefficient of  

kinetic friction between the block and plane is mk =  

0.25. 

Engineering Mechanics – Dynamics 120 

SOLUTION: 

• Draw a free body diagram 

• Apply Newton’s law. Resolve  

into rectangular components 

12

0 



W  mg  80  9.81  785N  

F  k N  0.25N 

Sample Problem 12.2 

 Fx  ma : 

P cos30  0.25N  802.5 

 200 

 Fy  0 : 

N  Psin 30  785 

P cos30  0.25Psin 30  785  200 

Pcos30 

Psin30 

N  Psin30  785  0 

Solve for P and N 

12N1 

P  534.7 N 

N 1052.4 1/27/2017 Engineering Mechanics – Dynamics 12
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Sample Problem 12.3 

The two blocks shown start from rest. The  

horizontal plane and the pulley are  

frictionless, and the pulley is assumed to be  

of negligible mass. Determine the  

acceleration of each block and the tension in 

the1/c27o/2r01d7 . Engineering Mechanics – Dynamics 12
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Fx   mAaA 

Fy   mBaB 

O 
x 

 
y 

Sample Problem 2 

• Kinematic relationship: If A moves xA to  

the right, B moves down 0.5 xA 

1 1 
B 2 A B 2 A x  x a  a 

Draw free body diagrams & apply Newton’s law: 

Fy   mC aC 

2940-300aB   2T1   0 

T1   100aA 

mB g  T2   mBaB 

300  9.81  T2   300aB  

T2   2940-300aB 

T2  2T1   0 

2940-300aB   200aA   0 

2940-300aB   2 200aB   0 

B 
a  4.2 m / s2 

A 
a  8.4 m / s2 T1  840 N 

Engineering Mechanics – Dynamics 123 

T2 1680 N 
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Sample Problem 3 

The 12-lb block B starts from rest and slides on  

the 30-lb wedge A, which is supported by a  

horizontal surface. 

Neglecting friction, determine (a) the acceleration  

of the wedge, and (b) the acceleration of the  

block relative to the wedge. 
Engineering Mechanics – Dynamics 124 

Block 

 

 
Wedge 
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N1 

WBcosq 

WBsinq 

N 1 

aBn 

aBt WB 

1 N cosq 

WB sin  mBaBt 

32.2 
Bt Bt 

12  0.5  
12 

a  a  16.1 ft / s2 

aA 

1 
32.2 

A 
0.5N  

30 
a N1 sin  mAaA 

N1 cos WA  N2 N1 WB cos  mBaBn 

But aBn  aA sin Same normal acceleration (to maintain contact) 

N1 WB cos  mBaA sin 1 
32.2 

A 
N 10.39  

12  0.5 
a 

a  5.08 ft / s2 a  2.54 ft / s2 

Draw free body diagrams for block & wedge 

N1sinq 

1/27/A2017 Engi neerBinng Mechanics – Dynamics 12
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N1 

aBn  

aBt WBcosq 

WBsinq 

N 1 

WB 

1 N cosq 

N1sinq 

Bx Bt Bn 
a  a cos  a 

aA 

By Bt Bn 
a  a sin  a 

sin  12.67 ft / s2 

cos  10.25 ft / s2 
aB / A  aB  aA 

aB / A  12.67i 10.25 j  5.08i  
 17.75i 10.25 j 

30° 

20.5 

Engineering Mechanics – Dynamics 126 12
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Sample Problem 4 

The bob of a 2-m pendulum describes an arc of a circle in a  

vertical plane. If the tension in the cord is 2.5 times the weight of  

the bob for the position shown, find the velocity and acceleration  

of the bob in that position. 

Engineering Mechanics – Dynamics 127 12
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Sample Problem 5 
Resolve into tangential and normal components: 

 Ft  mat : 

at  g sin 30 

mg sin 30  mat 

at  4.9 m s2 

 Fn  man : 2.5mg  mg cos 30  man 

an  g2.5  cos 30 

an   16.03m s2 

• Solve for velocity in terms of normal acceleration. 

2  an  2 m 16.03m s  
v2 

an v     
 

v  5.66 m s 

mgsin30 

Engineering Mechanics – Dynamics 128 

mgcos30 
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Sample Problem 6 

Determine the rated speed of a  

highway curve of radius  = 400 ft  

banked through an angle  = 18o. The  

rated speed of a banked highway curve  

is the speed at which a car should  

travel if no lateral friction force is to  

be exerted at its wheels. 

Engineering Mechanics – Dynamics 129 

SOLUTION: 

• The car travels in a horizontal circular  

path with a normal component of  

acceleration directed toward the center  

of the path.The forces acting on the car  

are its weight and a normal reaction  

from the road surface. 

• Resolve the equation of motion for  

the car into vertical and normal  

components. 

• Solve for the vehicle speed. 

12
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Sample Problem 7 

SOLUTION: 

• The car travels in a horizontal circular  

path with a normal component of  

acceleration directed toward the center  

of the path.The forces acting on the  

car are its weight and a normal  

reaction from the road surface. 

• Resolve the equation of motion for  

the car into vertical and normal  

components. 

 Fy  0 : 

W 

cos 
R  

R cos W  0 

 Fn  man : 

W v2 

g  

W 

cos 

g 

sin  

R sin  
W 

an 

• Solve for the vehicle speed. 

v2  g tan 

 32.2 ft s2 400 ft tan18 

v  64.7 ft s  44.1mi h 
Engineering Mechanics – Dynamics 130 13
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Derivative of angular momentum with respect to time: 

HO  r  mv  r  mv  v  mv  r  ma 

 r  F 

 MO 

Sum of moments about O = rate of change of angular momentum 

L  mv 

Angular Momentum 

From before, linear momentum: 

Now angular momentum is defined as the moment of momentum 

HO  r  mv 

HO is a vector perpendicular to the plane 

containing r and mv 

Resolving into radial & transverse components: 
2 

O  H  mv r  mr  

about O Moment of F 

Engineering Mechanics – Dynamics 131 13
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Equations of Motion in Radial & Transverse Components 

 F  ma  mr  2r 

Engineering Mechanics – Dynamics 132 

 Fr  mar  mr  r2  
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Central Force 

When force acting on particle is directed  

toward or away from a fixed point O, the  

particle is said to be moving under a central  

force. 

 
O = center of force 

 

Since line of action of the central force passes through O: 

MO   HO   0 

r  mv  HO  constant 
Engineering Mechanics – Dynamics 133 13
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Sample Problem 8 

A block B of mass m can slide freely on  

a frictionless arm OA which rotates in a  

horizontal plane at a constant rate 0 . 

Engineering Mechanics – Dynamics 134 

Knowing that B is released at a distance 

r0 from O, express as a function of r 

a) the component vr of the velocity of B 

along OA, and 

b) the magnitude of the horizontal force 

exerted on B by the arm OA. 

SOLUTION: 

• Write the radial and transverse 

equations of motion for the block. 

• Integrate the radial equation to find an  

expression for the radial velocity. 

• Substitute known information into the 

transverse equation to find an 

expression for the force on the block. 

13
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Sample Problem 8 

Write radial and transverse equations of  

motion: 

r r F  m a 

F    m a 

r  vr  
dvr  

dvr dr 
 vr 

dvr 

  2 2 2 2 

0 r 0 
v   r  r 

  
1 2  

2 2 2 

0 0 
F  2m  r  r 

0  mr  r 2  

F  mr  2r  

r  r 2 

dt dr dt dr 

But vr  r 
2 r 

r 

dv 

dr 
r  v 2 

r r 
r dr  v dv 

r 

o 
r 2dr vr dvr  

vr 

 
0 

 
ro 

  
1 2  

2 2 

0 r 0 
v   r  r 

Engineering Mechanics – Dynamics 135 13
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UNIT-III 

IMPULSE AND  
MOMENTUM,VIRTUAL  
WORK 

Impulse and momentum: Introduction; Impact, momentum, impulse,  

impulsive forces, units, law of conservation of momentum,  Newton’s 

law of collision of elastic bodies. 

 

Coefficient of restitution, recoil of gun, impulse momentum  

equation; Virtual work: Introduction, principle of virtual work,  

applications, beams, lifting machines, simple framed structures. 

1/27/2017 136 Engineering Mechanics – Dynamics 
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Impulse = Momentum 

Consider Newton’s 2nd 

Law and the 
definition of 
acceleration 

Ns 

Kg x m/s 

Momentum is defined as “Inertia in Motion” 

Units of Impulse: 

Units of Momentum: 
1/27/2017 137 Engineering Mechanics – Dynamics 13
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Impulse – Momentum Theorem 

Ft  mv 

IMPULSE CHANGE IN MOMENTUM 
 

This theorem reveals  

some interesting  

relationships such as the 

INVERSE relationship 

t 
Engineering Mechanics – Dynamics 138 

TIMFE 

between FORmCEavnd 

 



Impulse – Momentum Relationships 
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Impulse – Momentum Relationships 

fT  mV 

Constant 
 

Since TIME is directly related  

to the VELOCITY when the  

force and mass are constant,  

the LONGER the cannonball is  

in the barrel the greater the  

velocity. 

Also, you could say that the  

force acts over a larger 

ent, thus there is 1/27/2017 140 Engineering Mechdaniicss p– Dlayncameicms 14
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How about a collision? 
Consider 2 objects speeding  

toward each other. When they  
collide...... 

 
Due to Newton’s 3rd Law the  

FORCE they exert on each  
other are EQUAL and  
OPPOSITE. 

 
The TIMES of impact are also  

equal. 

Therefore, the IMPULSES of the 2  
objects colliding are also  
EQUAL 2 1 

J1  J2 

(Ft )  (Ft ) 

t1  t2 F1  F2 

1/27/2017 141 Engineering Mechanics – Dynamics 14
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How about a collision? 

If the Impulses are 
equal then the 

also equal! 1 J 2 

m1v1  m2v2 

m1 (v1  vo1 )  m2 (v2  vo 2 ) 

m1v1   m1vo1   m2v2   m2vo2 

p1   p2 

J 
M


OMENTUMS are 

 pbefore 
  pafter 

m1vo1  m2vo2  m1v1  m2v2 

Engineering Mechanics – Dynamics 142 



Momentum is conserved! 
The Law of Conservation of Momentum: “In the  

absence of an external force (gravity, friction), the  
total momentum before the collision is equal to 
the total momentum after the collision.” 

po(truck)  mvo  (500)(5)  2500kg * m / s  

po(car)  (400)(2)  800kg * m / s 

po(total)  3300kg * m / s 

ptruck  500 *3  1500kg * m / s  

pcar  400 * 4.5  1800kg * m / s  

ptotal  3300kg * m / s 
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Types of Collisions 

A situation where the objects DO NOT STICK is 
one type of collision 

Notice that in EACH case, you have TWO objects BEFORE  

and AFTER the collision. 
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A “no stick” type collision 

pbefore = pafter 

m1vo1  m2vo2  m1v1  m2v2 

(1000)(20)  0  (1000)(v1 )  (3000)(10) 

10000  1000v1 

v1   -10 m/s 
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Types of Collisions 

Another type of collision is one where the  
objects “STICK” together. Notice you have  
TWO objects before the collision and ONE  
object after the collision. 
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A “stick” type of collision 

20000  4000vT 

vT  
Engineering Mechanics – Dynamics 147 

pbefore = pafter 

m1vo1  m2vo2  mT vT 

(1000)(20)  0  (4000)vT 

5 m/s 



The “explosion” type 

This type is often referred to 

as “backwards inelastic”.  

Notice you have ONE object  

( we treat this as a SYSTEM)  

before the explosion and  

TWO objects after the  

explosion. 
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Backwards Inelastic - Explosions 

0  3  4v2 

v2  
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Suppose we have a 4-kg rifle  
loaded with a 0.010 kg bullet.  
When the rifle is fired the  
bullet exits the barrel with a  
velocity of 300 m/s. How fast  
does the gun RECOIL  
backwards? 

pbefore = pafter 

mT vT  m1v1  m2v2 

(4.010)(0)  (0.010)(300)  (4)(v2 ) 

-0.75 m/s 



Collision Summary 

m1v01  m2v02  m1v1  m2v2  

m1v01  m2v02  mtotalvtotal 

mtotalvo(total)   m1v1   m2v2 

Sometimes objects stick together or blow  
apart. In this case, momentum is ALWAYS  
conserved. 

 pbefore 
  pafter 

When 2 objects collide and DON’ 

When 2 objects collide and stick to  

When 1 object breaks into 2 objec 
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Elastic Collision = Kinetic Energy is Conserved  

Inelastic Collision = Kinetic Energy is NOT Conserved 



Elastic Collision 

KEcar (Before)  12 mv  0.5(1000)(20)  200,000J 
2 2 

 

KEtruck ( After )  0.5(3000)(10)  150,000J 
2 

 KEcar ( After )  0.5(1000)(10)  50,000J 
2 

 
 

Since KINETIC ENERGY is conserved during the collision  

we call this an ELASTIC COLLISION. 
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Inelastic Collision 

KEcar (Before)  12 mv  0.5(1000)(20)  200,000J 
2 2 

 

KEtruck/ car ( After )  0.5(4000)(5)  50,000J 
2 

 

 

Since KINETIC ENERGY was NOT conserved during the  

collision we call this an INELASTIC COLLISION. 
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ExampGlraenny (m=80 kg) whizzes 
around the rink with a velocity  
of 6 m/s. She suddenly collides  
with Ambrose (m=40 kg) who  
is at rest directly in her path. 
Rather than knock him over,  
she picks him up and  
continues in motion without  
"braking." Determine the  
velocity of Granny and  
Ambrose. 

How many objects do I have before the collision? 
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2   b a 

vT  

p  p 

m1vo1   m2vo 2  mT vT 

How many objec1ts do I have after the c(o8lli0si)o(n6? )  (40)(0)  120vT 

4 m/s 



Collisions in 2 Dimensions 
The figure to the left shows a  

collision between two pucks  
on an air hockey table. Puck A  
has a mass of 0.025-kg and is 
moving along the x-axis with a  
velocity of +5.5 m/s. It makes  
a collision with puck B, which  
has a mass of 0.050-kg and is  
initially at rest. The collision is  
NOT head on. After the 
collision, the two pucks fly 

vA 
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A v sin 

vAcos 

vBcos

  vB 

vBsin  apart with angles shown in  
the drawing. Calculate the  
speeds of the pucks after the  
collision. 



Collisions in 2 dimensions 
 pox   px 

mAvoxA  mBvoxB  mAvxA  mBvxB 

(0.025)(5.5)  0  (.025)(vA cos 65)  (.050)(vB cos 37) 

vA 

v B 

vAcos 

A v sin 

B v cos 
B v sin 

0  (0.025)(vA sin 65)  (0.050)(vB sin 37) 

0.0300vB  0.0227vA 

vB  0.757vA 

0  mAvyA  mBvyB 

0.1375  0.0106vA  0.040vB 

 

 poy   py 
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Collisions in 2 dimensions 

0.1375  0.0106vA  0.040vB 

vB  0vB.70.75577(2.8v4)A 2.15m / s 

0.1375  0.0106vA  (0.050)(0.757vA ) 

0.1375  0.0106vA  0.03785vA 

0.1375  0.04845vA 

vA  2.84m / s 
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WORK ENERGY 

METHOD 

UNIT-IV 

1/27/2017 Engineering Mechanics – Dynamics 157 

Work energy method: Law of conservation of energy, 
application of work energy, method to particle motion 
and connected system, work energy applied to connected 
systems, work energy applied to fixed axis rotation. 
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Law of Conservation of Energy 

• What you put in is  
what you get out 

 
• Total energy is 

conserved 

15
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Practical Applications 

 Gasoline converts to energy which moves 

the car 

 A battery converts stored chemical 

energy to electrical energy 

 Dams convert the kinetic energy of falling  

water into electrical energy 

15
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Can You Think of Other Examples? 
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Conservation of Mechanical Energy 

1 
mv2  mgh  E 

2 

Total  

Energy 

Potential  

Energy 

Kinetic  

Energy 

m = mass 

v = velocity 

g = gravitational acceleration  

h = height 

ILYA, did you  

know that even  

though it was a  

bumpy ride,  

our energy  

remained  

constant! 
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Example of Conservation of 
Mechanical Energy 

2  

1  
m v 2    m g h    E  

Constant 

16
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An Example 
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Another Example 
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Yet Another Example 
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Last Example 
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MECHANICAL 

VIBRATIONS 

UNIT-V 
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Definitions and concepts, simple harmonic  

motion, free vibrations, simple and compound  

pendulum, torsion pendulum, free vibrations  

without damping, general cases. 

16
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Simple Harmonic Motion 

• Harmonic Motion is any motion that repeats itself. 

• Examples of Harmonic Motion. 
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Period 

Displacement 

Time for one oscillation 

Frequency Number of oscillations in 
one second 

Amplitude Maximum displacement 

Distance from equilibrium 



• Simple harmonic motion is a special type of harmonic 
motion. 

 

• Consider a mass on a spring. 

• The cart is in equilibrium, because the total force is 
zero. 

• The acceleration is also 
(this doesn’t meazneriots. stationary) 
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Lets look at the forces 

force 

dispt = -A 
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force 

dispt = -A/2 
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Force = 0 

dispt = 0 
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force 

dispt = A/2 
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force 

dispt = A 
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force 

dispt = A 
 
• Notice that as the displacement increases, the 

restoring force increases. 

 
• Notice that the restoring force is always in the 

opposite direction to the displacement 
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Now we’ll look at the acceleration 

dispt = -A 

acceleration 

force 
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dispt = -A/2 

acceleration 

force 
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Force = 0 

dispt = 0 
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Acceleration =0 



dispt = A/2 

acceleration  

force 
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dispt = A 

acceleration 

force 
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acceleration 

dispt = A 
 
• Notice that as the displacement increases, the 

acceleration increases. 

 
• Notice that the acceleration is always in the 

opposite direction to the displacement 
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• The relation between acceleration and 
displacement is ….. 

 
• Acceleration is proportional to displacement 

• Acceleration is in opposite direction to 
displacement. 

a   constant  y 

a   2  y 
T 

  
2 



Acceleration/position graph 

acceleration 
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position 



Acceleration/position graph 

acceleration 
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position 

y  mx  c 

a  mx 

a  2 x 



Force/position graph 

force 
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position 

a  2 x 

F  ma  (m2 )x 
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Graphs of SHM 

• We have looked at simple harmonic motion as 
a function of position. 

• Now we’ll look at it as a function of time 



• raphs 
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http://www.ngsir.netfirms.com/englishhtm/SpringSHM.htm


graphical treatment 
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• 
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http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=148
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• 

http://www.edumedia-sciences.com/a266_l2-shm.html


Reference Circle 

Engineering Mechanics – Dynamics 196 



Reference Circle 

Red ball moves in SHM horizontally 

Blue ball moves in a circle  

Both have same period 

 
Amplitude of SHM equals  
radius of circle 

 
Both have same horizontal  
displacement 
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To find the position of a swing at a certain time. 

The period is 4.0s 

The amplitude is 2.0m 

Where is the swing 2.0s after release? 
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The period is 4.0s 

The amplitude is 2.0m 

Where is the swing 1.0s after release? 
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Where is the swing 0.5s after release? 

4.0 

Convert time to angle (1period = 360o) 

0.5 
 3600  450 

450 

2.0m 

x 

2 

x 
cos 450  

0.50s  450 
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Where is the swing 2.5s after release? 

 
Convert time to angle (1period = 360o) 

4.0 

2.5 
 3600  2250 

450 

2.0m 

x 

2 
cos 450  

x 

2.50s  2250 
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How long does it take to go 1.4m from the start? 

 
(1) Calculate angle 

(2) Convert angle to time  

(1period = 360o) 

  

600 

2.0m 

2 
cos  

0.59 

600   
60 

of a period 
360 

600  1
6  4.0s 

1.41m 0.59m 
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• The top of the sky tower is oscillating with an 
amplitude of 2.0 m and a period of 14 s. 

 
• How long is it more than 0.80m from equilibrium each 

cycle? 

 
• What is the horizontal acceleration when the  

displacement is maximum? 
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Equations 1 

y  Asin   t 

 
y  Asint 

v  A cost 

a  A2 sint 
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Equations 2 

 
y  Acost 

v  A sint 

a  A2 cost 

Engineering Mechanics – Dynamics 205 



Equations 3 

y  Acost 

v  A sint 

a  A2 cost 
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y  Asint 

v  A cost 

a  A2 sint 

ymax  A 

vmax  A 

max a   A2 

a  2 Asint  2 y 

a  2 y 



Anisha is on a swing. Kate pulls her back 2.0m and lets her go. Her  
period is 4.0s. 
(a) Calculate her maximum speed. (where is it?) 

 

(b) Calculate her maximum acceleration. (where is it?) 
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Anisha is on a swing. Kate pulls her back 2.0m and lets her go. Her  
period is 4.0s. 

(a) Calculate her speed 0.50s after being released 
(b) Calculate her acceleration 0.50s after being released 
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• Nik is bungee jumping. In one oscillation he  
travels 12 m and it takes 8.0s. 

 
• Tahi starts videoing him as he passes  

through the mid position moving UP. 

 
(a) Calculate his velocity 1.0s after the video  

starts 

(b) Calculate his acceleration 2.0s after the video  
starts. 
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Mass on a Spring 

• As the mass increases, the period… increases 

• As the spring stiffness increases the period … 
increases 



Effect of mass: 

decreases 

• As the acceleration decreases the period … 

increases 

 
A larger mass means a longer period. 

(assuming constant force) 

m 

• As the mass increases, the acceleration… 
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a  
F 



Effect of spring stiffness: 

• As the stiffness increases, the restoring force… 

• As the acceleration increases the period … 

A stiffer spring means a shorter period. 

m 
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a  
F 

increases (assuming same displacement) 

• As the restoring force increases the acceleration … 

increases 
decreases 

F  kx 



m 
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k 
T  2 

Summary 

• mass ↑ acceln↓ period ↑ 

 
• stiffness ↑ force ↑ acceln ↑ period 

eq
↓

uation 



Extension …..derivation of the equation: 

consider a mass on a spring. 
 

a  
F 

F  -kx  
m 

m 
a  

kx a   
k 

x (i.e. 
m 

a  x) 

m 
a  

k 
x a  2 x 

k 
 2  ( 

2 
)2 

m 
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m T k 

m T 

k 
 

2 
T  2 



energy of motion 
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Simple Pendulum 

• This is where all the mass is concentrated in 
one point. 
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What provides the restoring force? 

the restoring force is  

the Tension plus  

Gravity 
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Why is the motion SHM? 

As the displacement increases, 

 

the restoring force. increases. 

 

the restoring force is always 

towards equilibrium 
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• This next bit is very important 



Why does length affect period? 

For the same amplitude, if the pendulum is shorter, 

the angle of the string to the vertical is greater. 

The restoring force is greater.  

The acceleration is greater  

So the period is shorter 
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period of a pendulum 

l 

g 
T  2 

How is length measured? 
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As the pendulum expands 
down, 
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The mercury expands up 

 

This keeps the center of  
mass in the same place 

 

Same length same period. 
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Energy of SHM 



energy of motion 
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a sprung system 
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dampers 
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energy dissipation 

plunger 

hydraulic oil 

dividing  

piston 

high pressure 

nitrogen gas 
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bridge dampers 
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Resonance 
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 Any elastic system has a natural period of 

oscillation. 

 
 If bursts of energy (pushes) are supplied  

at the natural period, the amplitude will  

increase. 

 
 This is called resonance 

23
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Examples of resonance 
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 The glass has a natural frequency of  

vibration. 

 If you tap the glass, it vibrates at the  

natural frequency causing sound. 

 If you put energy in at the natural  

frequency, the amplitude increases.  

This is resonance. 

 If the amplitude gets high enough, the  

glass can break. 
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Bay of Fundy 
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Bay of Fundy 
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The period of the tide is 12 hours. 

The time for a wave to move up the bay and  

back is 12 hours 
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What is vibration? 

 Vibrations are oscillations of a system about  

an equilbrium position. 

23
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Vibration… 

It is also an  
everyday  
phenomenon we  
meet on  
everyday life 

23
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Vibration … 
Useful Vibration Harmful vibration 

Noise 

Destruction 

Compressor 

Ultrasonic  

cleaning 

Testing 

Wear 

Fatigue 
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Vibration parameters 

All mechanical systems  

can be modeled by  

containing three basic  

components: 

spring, damper, mass 

When these components are subjected to constant force, they 

react with a constant 

displacement, velocity and acceleration 

24
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Free vibration 

Equilibrium pos. 

 When a system is initially disturbed by a displacement,  

velocity or acceleration, the system begins to vibrate with a  

constant amplitude and frequency depend on its stiffness and  

mass. 

 This frequency is called as natural frequency, and the form 

of the vibration is called as mode shapes 
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Forced Vibration 

If an external force applied to a  

system, the system will follow the  

force with the same frequency. 

However, when the force frequency  

is increased to the system’s natural  

frequency, amplitudes will  

dangerously increase in this region.  

This phenomenon called as  

“Resonance” 

’ 
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Bridge collapse:  

http://www.youtube.com/watch?v=j-zczJXSxnw 

Hellicopter resonance:  

http://www.youtube.com/watch?v=0FeXjhUEXlc 

Resonance vibration test:  

http://www.youtube.com/watch?v=LV_UuzEznHs  

Flutter (Aeordynamically induced vibration) :  

http://www.youtube.com/watch?v=OhwLojNerMU 

Watch these … 
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Lumped (Rigid) Modelling Numerical Modelling 

 
Element-based  

methods  

(FEM, BEM) 

 

 

Statistical and Energy-based 

methods 

(SEA, EFA, etc.) 

Modelling of vibrating systems 
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•Mathematical modeling of a physical system requires the  

selection of a set of variables that describes the behavior of the  

system. 

 

•The number of degrees of freedom for a system is the number  

of kinematically independent variables necessary to completely  

describe the motion of every particle in the 

system 

DOF=1 

Single degree of freedom 

(SDOF) 

DOF=2 

Multi degree of freedom  

(MDOF) 

Degree of Freedom (DOF) 
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Equivalent model of systems 
Example  

1: 

Example  

2: 

SDOF 

DOF=1 

MDOF 

DOF=2 
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Equivalent model of systems 
Example 

3: 
SDOF 

MDOF 

DOF=2 

DOF= 3 if body 1 has no  

rotation 

DOF= b4odiyf1body 1 has 

rotation 
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SDOF systems 
 Helical springs 

F: Force, D: Diameter, G: Shear modulus of the rod, 

Shear 

stress: 
Stiffness 

coefficient: 

N: Number of turns, r : Radius 

 Springs in combinations: 

Parallel combination Series combination 
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Elastic elements as springs 
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Moment of Inertia 
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What are the equivalent stiffnesses? 
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