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Subject
\
¢ Graduates:
> Midterm exam 30%
> Final exam 70%

e Course Materials

o Lecture notes
Power points slides
Class notes

o Textbooks

Engineering Mechanics: Statics 10t Edition by R.C.
Hibbeler




COURSE OBJECTIVES

The course should enable the students to:

Develop the ability to work comfortably with basic engineering mechanics
concepts required for analysing static structures.

|dentify an appropriate structural system to studying a given problem and
isolate it from its environment, model the problem using good free body
diagrams and accurate equilibrium equations.

|dentify and model various types of loading and support conditions that act
on structural systems, apply pertinent mathematical, physical and
engineering mechanical principles to the system to solve and analyze

the problem.

Solve the problem of equilibrium by using the principle of work and energy
in mechanical design and structural analysis.

Apply the concepts of vibrations to the problems associated with dynamic
behavior.
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COURSE OUTCOMES

After completing this course the student must
demonstrate the knowledge and ability to:

| .Classifying different types of motions in kinematics.
2.Categorizing the bodies in kinetics as a particle, rigid
body in translation and rotation.

3.Choosing principle of impulse momentum and virtual
work for equilibrium of ideal systems, stableand
unstable equilibriums

4.Appraising work and energy method for particle
motion and plane motion.

5.Apply the concepts of vibrations.
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KINEMATICS

KINETICS
NEWTON’S LAW

KINETICS
ENERGY & MOMENTUM

PARTICLE

Chapter 1

Chapter 2

Chapter 3

SYSTEM OF
PARTICLES

RIGID BODIES

Chapter 4
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/ Introduction to Mechanics

\ % What is mechanics?

Do #* Physical science deals
with the state of rest or Mechanics
motion of bodies under
the action of force " __1____

Statics Dynamics
# \Why we study mechanics? s S

#*This science form the '
groundwork for further Kinematics
study in the design and
analysis of structures

Kinetics

Engineering Mechanics — Dynamics : : : : 6
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Basic Terms

Essential basic terms to be understood

o)

o)

o)

Statics: dealing with the equilibrium of a rigid-body at rest

Rigid body: the relative movement between its parts are negligible
Dynamics: dealing with a rigid-body in motion

Length: applied to the linear dimension of a straight line or curved line
Area: the two dimensional size of shape or surface

Volume: the three dimensional size of the space occupied by substance

Force: the action of one body on another whether it’s a push or a pull
orce

Mass: the amount of matter in a body

I\ENeihght: the force with which a body is attracted toward the centre of the
art

Particle:a body of negligible dimension



>

Units of Measurement

e Four fundamental quantities in mechanics
> Mass
> Length
> Time
> Force
» Two different systems of units we dealing with during the
course
° Units (CGY)
Length in centimeter(cm)

Time in Seconds (s)
Force in kilograms (kg)

o International System of Units or Metric Units (SI)
Length in metre (m)
Time in Seconds (s)
Force in Newton (N)

Engineering Mechanics — Dynamics



/ Units of Measurement

\

*Summery of the four fundamental quantities
in the two system

SI Units US Units
Quantity _
Unit Symbol Unit Symbol
Mass kilogram kg slug -
Length meter m foot ft
Time second S second sec
Force newton N pound Ib




Units of Measurement

e Metric System (SI)
o Sl System offers major advantages relative to the FPS system

Widely used throughout the world

Use one basic unit for length © meter; while FPS uses many basic units
% inch,foot,yard, mile

S| based on multiples of 10, which makes it easier to use & learn whereas
FPS is complicated, for example

* Sl system =» | meter = 100 centimeters, | kilometer = 1000 meters, etc

* FPS system=> | foot = 12 inches, | yard = 3 feet, | mile = 5280 feet,etc
* Metric System (SI)

> Newton’s second law F = m.a
Thus the force (N) = mass (kg) X acceleration (m/s2)

o Therefore | Newton is the force required to give a mass of | kg
an acceleration of | m/s?
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/ Units of Measurement

e US. Customary System (FPS)

° Force (Ib) = mass (slugs) X acceleration (ft/sec?)
\ Thus (slugs) = Ib.sec?/ft
> Therefore | slug is the mass which is given an

a%clellebratlon of | ft/sec2 when acted upon by a force
o

e Conversion of Units

\

o Converting fram ane svsteam of Linit tg another;
Quantity FPS Equals S|
Force 11b m=—=> |4.448 N
Mass 1 slug m—> | 14.593 kg
Length 1 ft me=—=> |0.304 m

e The standard value of g (gravitational
acceleratlon)

o Sl units g =9.806 m/s2
> FPS units g = 32 174 ft/sec?




\
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Objectives

To provide an introduction of:

in Engineering Mechanics.

Engineering Mechanics — Dynamics
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Qutline
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 |. Engineering Mechanics
e 2. Fundamental Concepts
* 3. General Principles

* 4. StaticAnalysis

* 5. DynamicAnalysis

* 6. Future Studies




|. Engineering Mechanics

4
| >

- Rigid-body Mechanics
- Deformable-body Mechanics
- Fluid Mechanics

- Statics
- Dynamics

Engineering Mechanics — Dynamics
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1. Engineering Mechanics

o — Equilibrium Analysis of

particles and bodies

o — Accelerated motion of

particles and bodies

and
e Mechanics of Materials...

e Theory ofVibration...



2. Fundamentals Concepts

[

Basic Quantities

Units of Measurement

e m, kgs,N... (Sl Int.System of Units)

- Dimensional Homogeneity

- Significant Figures




4
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2. Fundamentals Concepts

Idealizations

— Consider mass but neglect size

— Neglect material properties

Engineering Mechanics — Dynamics
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3. General Principles

‘4
~

- Newton’s Laws of Motion
e First Law, Second Law, Third Law
e Law of Gravitational Attraction

- D’Alembert Principle :

- Impulse and Momentum

- Work and Energy

- Principle ofVirtualWork (Equilibrium)




4., Static Analysis

 Force and Equilibrium

* Force System Resultants
 Structural Analysis

e Internal forces

* Friction

* Centroid and Moments of Inertia

e Virtual Work and Stability




\
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5. Dynamic Analysis

» Kinematics of a Particle

» Kinetics: Force andAcceleration

* Work and Energy

e Impulse and Momentum (Impact)
e Planar Kinematics and Kinetics

* 3-D Kinematics and Kinetics

e Vibrations



UNIT-I

o KINEMATICS OF
PARTICLES IN
RECTILINEAR MOTION

Motion of a particle, rectilinear motion, motion curves, rectangular
components of curvilinear motion, kinematics of rigid body, types of
rigid body motion, angular motion, fixed axis rotation.
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\/ INTRODUCTION TO DYNAMICS
>

e Galileo and Newton (Galileo’s

experiments led to Newton’s laws)

e Kinematics — study of motion

e Kinetics — the study of what causes

changes in motion

e Dynamics is composed of kinematics

and kinetics

Engineering Mechanics — Dynamics -




Introduction
« Dynamics includes:

- Kinematics: study of the motion (displacement, velocity,
acceleration, & time) without reference to the cause of motion
(i.e. regardless of forces).

- Kinetics: study of the forces acting on a body, and the resulting
motion caused by the given forces.

 Rectilinear motion: position, velocity, and acceleration of a
particle as it moves along a straight line.

 Curvilinear motion: position, velocity, and acceleration of a
particle as it moves along a curved line.



RECTILINEAR MOTION OF PARTICLES
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Rectilinear Motion: Position,
Velocity & Acceleration

Engineering Mechanics — Dynamics 25



MECHANICS
Kinematics of Particles
Motion in One Dimension

Acceleration

“It goes from zero to 60 in about 3 seconds.”

© Sydney Harris

Engineering Mechanics — Dynamics
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Summary of properties of vectors

Properties of Vectors

Component
Property Explanation Figure representation
Equality A =B if |A| = |B| and their Z/ /* A =B,
directions are the same B A, =By
A =B
Addition C=A+B C,=A,+B,
C, =A,+B,
G, =A T8
Negative A = —Bif |B| = |A| and their i A, = —B,
of a vector directions are opposite / A’ Ay = —By
Az =—B z
t 4
— — — O_t
Subtraction C=A-B A +* B e e -
.
¢ 3 Cy=4,— B,
Multiplication B = sA has magnitude |B| = |s||7{ | = B, =5sA,
by a scalar and has the same direction as A A / sA B, =sA,
if 5 is positive or — A ifgirisaiégatidechanics — Dynamiés ;Y



POSITION, VELOCITY, AND
ACCELERATION

For linear motion x marks the position of an object.
Position units would be m, ft, etc.

Average velocity is

AX
At

Velocity units would be in m/s, ft/s, etc.
The instantaneous velocity is

im 4% _ dx
Eﬁé&%ﬁg%seﬁé\g ByRarmics dt 28

V =




The average acceleration is

v
At

The units of acceleration would be m/s2, ft/<2, ete.
The instantaneous acceleration is

d

. Ay dv ddx d=@x
a=lim .
40 At dt  dt dt  dt

Engineering Mechanics — Dynamics 29




Notice If vis a function of x, then

,_dv_dvdx_  dv
dt  dx dt )%
One more derivative
da_ Jerk

Engineering Mechanics — Dynamics



Consider the function . Plotted

X:_t3+6t2 """""""

vV =-3t>+12t

a=-b6ot+12

echanics — Dynamics



Rectilinear Motion: Position, Velocity &

Acceleration
o P . : : - i ea
D G Partlc_le moving alonggstralghtllne IS said
] e to be in rectilinear motion.
P O tm  Position coordinate of a particle is defined
o by (+ or -) distance of particle from a fixed
I«TI origin on the line.
x (m) « The motion of a particle is known if the

position coordinate for particle is known for
every value of time t. Motion of the particle
may be expressed in the form of a function,

e.q.,
X=6t2 -t

or in the form of a graph x vs. t.




Rectilinear Motion: Position, Velocity & Acceleration

P P
| X . Ax . « Consider particle which occupies position P
ol - o - at time t and P’at t+t,
(t) (t+ At) x
. AX
P e>0 Average velocity =
i : At
" X : . AX
Instantaneous velocity = Vv = lim
" : 0 | At—0 At
| P
T >

« Instantaneous velocity may be positive or
negative. Magnitude of velocity is referred

to as particle speed.

* From the definition of a derivative,

v= lim &% _dx

6
|
| ) At—>0 At dt
|
I
I
I

e.g., x=6t%—t3

v=9%_1o1 32
dt
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Rectilinear Motion: Position, Velocity & Acceleration

P v P uiAv  Consider particle with velocity v at time tand
.l .l - v’at t+ At
(6)  (t+Ar) * : . AV
Instantaneous acceleration =a = lim =2
At—0 At

« From the definition of a derivative,
Qo lim AV _dv_ d?x

A0 At dt (2
e.g. v=12t—3t?

a=_12_st
dt
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Rectilinear Motion: Position, Velocity & Acceleration

x(m)

32

 Consider particle with motion given by

X =6t2 —t3
v=9X_ 1ot 32
dt
2
a= VA 1o gt
dt  dt?

e att=0, x=0,v=0,a=12m/s?
e att=2s, x=16m,v=v,, =12m/s, a=0
e att=4s, X=Xpx=32M,v=0,a=-12m/s?

e att=6s, x=0,v=-36m/s, a=-24m/s?
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DETERMINATION OF THE
MOTION OF A PARTICLE

Three common classes of motion

Engineering Mechanics — Dynamics
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1. a:f(t)=%

dv = adt = f (t)dt

Engineering Mechanics — Dynamics



dt

t
dX = v, + [ f(t)dt
0

t

dx = v,dt +| [ f(t)dt

Engineering Mechanics — Dynamics
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dt




vt j j f(t)dt]dt
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2 a=f(x)=vd
dx

vdv =adx = f( x)dx
L(ve -V )= j f (x)dx

with \V = 3_1( then get X = X(1)

Engineering Mechanics — Dynamics



3. a=f(v)=L_yd

| dt dx
jf(v) jdtzt

J' X — J' VdV Both can lead to

(V)
X=X(t)

Engineering Mechanics — Dynamics




UNIFORM RECTILINEAR

MOTION
V = constant
a=0
dx
V=_"_
dt

X — X, :Ivdt = Vi

43



UNIFORMLY ACCELERATED
RECTILINEAR MOTION

a = constant
V =V, + al
X=X, +V,t+3at”

Also dV —a

dx
Ve =V 2a(x X )

1/27/2017 EQ ing Mechanics — Dynamics
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Determining the Motion of a Particle

 Recall, motion is defined if position x is known for all time t.

‘V:d_x acdv _dx gov_dvdx_dv
dt dt dt2 dt dxdt dx

« If the acceleration is given, we can determine velocity and
position by two successive integrations.

» Three classes of motion may be defined for:
- acceleration given as a function of time, a = f(t)
- acceleration given as a function of position, a = f(x)
- acceleration given as a function of velocity, a = f(v)
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Determining the Motion of a Particle

« Acceleration given as a functlon of tlme a = f(t):

a=f(t) = z‘t’ — dv = f (t)dt :>jdv jf(t)dt — VvV, = jf(t)dt

dx

V= = dx =vdt :>_[dx jvdt = X — xo_jvdt

«Acceleration given as a function of position, a = f(x):

dv
dx

dx  dx dx
V—E :>T:dt :fv—_([dt

1

a=f(X)=v=_ = vdv="f(x)dx :>jvdv jf(x)dx :;v -2V _jf(x)dx

Vo Xo

)
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Determining the Motion of a Particle

 Acceleration given as a function of velocity, a = f(v):

> ~dv dv e } dv —_t[dt ¢ dv .
=g T~ Thie Y Tligo
o) dv . vdv _de—_r vdv _]- vdv
a= (v)_v& = x_W :X _VW :>x—xo_VW
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Summary

Procedure:
1. Establish a coordinate system & specify an origin
2. Remember: x,v,a,t are related by:
2
dt dt dt2 dt dx dt

v A

3. When nneyrating, erurer USe v kriown) OraaG a con

Integration

V ——



Sample Problem 1

Ball tossed with 10 m/s vertical velocity from window 20 m above ground.

Determine:

« velocity and elevation above ground at timet,

« highest elevation reached by ball and corresponding time, and
« time when ball will hit the ground and corresponding velocity.

14/287/2017 Engineering Mechanics — Dynamics
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v(m/s)

10

0

Sample Problem 1

SOLUTION:
Velocity-time curve * Integrate twice to find v(t) and y(t).
TOONC 5% 9 W_go —9.81m/s2
- | dt
| v(t) t
| Jdv=—[9.81dt  w(t)-vo=-9.81t
__________ Vo 0
¢ v(t)=10" - L9.81 ul?
S s s?)

dy _\ -10-9.81t
dt

\ o ot
}dy = [(10-9.81t)dt  y(t)-yo =10t—19.81t*

B
“% Yo 0

Position-time
curve

) s

Vi|

1 m m
1.019 328  t(s) y(t)z 20m+ (10 ?)t — (4.9052} 2
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Sample Problem 1

v(m/s)
10 Velocity-time curve
0
W=
y (m) \°

Position-time
curve
I

|
1

0 1019 3.28

15/207/2017

 Solve for t at which velocity equals zero and evaluate
corresponding altitude.

v(t)= 10_ L9.8l %\Jt =0

S

t=1.019s

y({t)=20m + 10%} —(4.905892}2

y =20m+{10 %)(1.0195) (4 905 ™ )(1 019s)?

y=25.1m
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Sample Problem 1

y (m) \  Solve for t at which altitude equals zero and
evaluate corresponding velocity.

y(t)=20m+ (10?} - (4.90532}2 =0
S

\ t = —1.243s (meaningless)
B
© t=3.28s

Position-time
curve

v(t)=1o%— L9.8l :‘_Z\Jt

v(3.285)=10 %— L9.81 ;“_23(3.285)

v=_222M
S

15217/2017 Engineering Mechanics — Dynamics 51



What if the ball is tossed downwards with the same speed? (The
audience is thinking ...)

V,=-10m/s

—a =-9.81 m/s2

y0= +20 m

2iF B} BN Bl EID
- Bl B RN BRI ED
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Uniform Rectilinear Motion

Uniform rectilinear motion mmmpacceleration= 0 mmp velocity = constant

dX _\ — constant
dt

X t

[dx =v|dt

X0 0

X —Xg =Vt

X = Xq +Vt

15/237/2017 Engineering Mechanics — Dynamics
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Uniformly Accelerated Rectilinear Motion

Uniformly accelerated motion H acceleration = constant

dv_,_ constant —) jdv ajdt:>\/ Vo = at
dt . )
mm) V = Vg +at
3):—vo+at:>jdx I(Vo+at)dt:>x Xo—Vot+1at2

X0 0

-x:xo+vot+%at2

d V X

Also: v _ 5 _ constant vdv=a [dx — L (VZ -v3 =a(x—x

] =) = 2 0 0
Vo X0

X

2 _ 2 _
= Ve +2a(X Xo)

) v
15/247/2017 Engineering M@%mm fl’ee fa” 54



MOTION OF SEVERAL PARTICLES

When independent particles move along the same
line, independent equations exist for each.
Then one should use the same origin and time.
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Relative motion of two particles.
The relative position of B with respect to A

Xs, = Xg — X
A B A

The relative velocity of B witth respect tto A

Vg, =Vg —V
A B A

56



The relative acceleration of B with respect to A

Engineering Mechanics — Dynamics 57



Motion of Several Particles: Relative Motion

 For particles moving along the same

line, displacements should be measured
tpA—" from the same origin in the same
direction.

=Y

XB/A=XB — XA = relative position of B
with respect to A

XB = XA+XB/A

VB/A=VB—VA = relative velocity of B
with respect to A
Vg =Vp + VB/A‘

apa=ag—aa= relative acceleration of B

with respect to A
ag = apa + aBA
15/287/2017 Engineering Mechanics — Dynamics 58



Let’s look at some dependent motions.

Engineering Mechanics — Dynamics
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B Let's look at the
— relationships.
X, +2X_ = constant

System has one degree of v +2v =0
freedom since only one A °
coordinate can be chosen a + 2aB =0

independently.
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XA

e
|

B

System has 2 degrees of 2X +2X +X = constant
freedom. 5

Let's look at the relationships.
2a, +2a_+a_=0

Engineering Mechanics — Dynamics 61
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Sample Problem 2 Th

Ball thrown vertically from 12 m
level in elevator shaft with initial

velocity of 18 m/s. At same

Instant, open-platform elevator
passes 5 m level moving upward
at 2 m/s.

Determine (a) when and where
ball hits elevator and (b) relative

velocity of ball and elevator at

contact.

16/227/2017 Engineering Mechanics — Dynamics
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SOLUTION: Sample Problem 2

 Ball: uniformly accelerated motion
(given initial position and velocity).

 Elevator: constant velocity (given
Initial position and velocity)

 Write equation for relative position of
ball with respect to elevator and solve
for zero relative position, i.e., iImpact.

» Substitute impact time into equation
for position of elevator and relative
velocity of ball with respect to
elevator.
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Sample Problem 3

SOLUTION:
« Ball: uniformly accelerated rectilinear motion.

t=t

vo= 18 m/s

t=0
a =-981 m/s2 (

v =v +at:18T—L9.81 )t

2

B 0 S s

Yo=12m

m m . 2
YB = Yo +v0t+%at2 =12m+(18?)t—(4.9058—2)t

« Elevator: uniform rectilinear motion.

VE=2m
vp=2m/s S
— vy +vet=5m+{2M
_yp=5m YE = Yo +VEl= s
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Sample Problem 3

 Relative position of ball with respect to elevator:

YB/E = (12+18t —4.905t }(5+ 2t)=0

t = —0.39s (meaningless)
t=3.65s

~ « Substitute Impact time into equations for position of elevator
and relative velocity of ball with respect to elevator.

Ve = 5 +2(3.65)

YE=12.3m

VB/E = (18— 0.81t )—2
=16-9.81(3.65)

m

VB/E =-19.81

16/257/2017 Engineering Mechanics — Dynamics 65



Motion of Several Particles: Dependent Motion

» Position of a particle may depend on position of one
or more other particles.

« Position of block B depends on position of block A.
Since rope is of constant length, it follows that sum of
lengths of segments must be constant.

Xa + 2Xg = constant (one degree of freedom)

« Positions of three blocks are dependent.

2Xpa + 2Xg + Xc = constant (two degrees of freedom)

 For linearly related positions, similar relations hold
between velocities and accelerations.

20Xa, o WXg L XC_ or 2ys 4 2vg+ve=0

dt  dt  dt
o VA, o WVe Ve _ o 24,4 2ag+ac=0
gt dt  dt
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Applications

16/277/2017
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Sample Problem 4

Pulley D is attached to a collar which is pulled down at 3 in./s. At t = 0, collarA
starts moving down from K with constant acceleration and zero initial velocity.
Knowing that velocity of collar Ais 12 in./s as it passes L, determine the change
In elevation, velocity, and acceleration of block B when block A is at L.
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Sample Problem 4

0 SOLUTION:
L) ' b | L} . . . . .
(¥ado § | p " ;ﬂ\] » Define origin at upper horizontal surface with
R positive displacement downward.
YA K nt . o
"‘a,\ « Collar A has uniformly accelerated rectilinear

motion. Solve for acceleration and time t to reach L.

v4=(v A)f) +2aa[xa —(XA)O]

Qo
i o
=

l' . 2 .
: E vx = 12 1in./s M\ _ : _ n.
‘ A (12S |) 2ap@in.)  ap 982

Va = (Va )o+aat

12M- oMy 1 _13335
S 52
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Sample Problem 4

.  Pulley D has uniform rectilinear motion. Calculate
Ao h change of position at time t.

Xp = (XD )O-|— Vpl

Xp —(Xp ) = (3 ?-)(1.3333): 4in.

(\[))“ Nt

D’ |  Block B motion is dependent on motions of collar
“'“‘ EAm A and pulley D. Write motion relationship and
solve for change of block B position at time .

Total length of cable remains constant,
Xa + ZXD + XB = (XA )O+ Z(XD )O-I— (XB )O

[xa—(xa)o J+2]30 = (0 )o |+ X8 — (8 )o |- 0
(8in.)+2(4in.)+ [xg — (xg )g ] 0

XB — (XB )0:—16in.
17/207/2017 Engineering Mechanics — Dynamics 10




17/217/2017

Sample Problem 4

« Differentiate motion relation twice to develop
equations for velocity and acceleration of block B.

Xp + 2Xp + Xg = constant

Va +2vp +vg =0

(12%)+2(3%)+v8 oy v, = 18"

a,+ 2ap+ ag=0

(9'8—'2')+a8:o B="9,

Engineering Mechanics — Dynamics 1



Curvilinear Motion

A particle moving along a curve other than a straight line is said
to be in curvilinear motion.

http://news.yahoo.com/photos/ss/441/im:/070123/ids_photos_wl/r2207709100.jpg

17/227/2017 Engineering Mechanics — Dynamics 12



EURVELINEAR MOTION OF PARTECLES

POSITION VEETOR, VELOEITY, ANB
ACCELERATION




At

Engineering Mechanics — Dynamics _ ) 1/27/2017
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k

5
2
o
—t

<l

y \J a= AV
At

Note that the
acceleration is not
necessarily along the
direction of

the velocity.

75 Engineering Mechanics — Dynamics _ _ 1/27/2017 75
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DERIVATIVES OF VECTOR

FUNCTIONS
dP i AP :“m_ﬁ(u+4\u)—l5(u)_|
du Au—>OA_u L Au |
d(lz_s-l-(j_)_:dl3 I@_I_fd_ls
du du du du
d(fP) dny

Engineerin ing I\/Iec?du yn d u . 1/27/2017
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Rate of Change of a Vector
P =P Pj+Pk
X y Z

The rate of change of a vector is the
same with respect to a fixed frame and
with respect to a frame in translation,

78 Engineering Mechanics — Dynamics _ _ 1/27/2017
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RECTANGULAR COMPONENTS OF
VELOCITY AND ACCELERATION

r=Xxi+Vy]+ &
V=XH YV 7K
= XI—I—yj-I— 7K

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 79
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Velocity Components in Projectile Motion




MOTION RELATIVE TO A FRAME IN
TRANSLATION




B/ A
B/A

B/ A
 B/A

B

B
B

r*:r;+r*
VZV;+V
V =V +V
K

B



B/A

L

a,=a,+3,,

85
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TANGENTIAL AND NORMAL
COMPONENTS

Velocity is tangent to the path of a particle.
Acceleration is not necessarily in the same direction.

It is often convenient to express the acceleration in

terms of components tangent and normal to the path
of the particle.

Engineering Mechanics — Dynamics
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Plane Motion of a Particle
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dv e,

a=—8+V—
dt dt

As = pA6l

= lim 4 _ s

P= 305 A0~ do
X

de::de:d_eds:de;v_vé

dt dodsdt dop p°"
dveiVie

a=
dt t p 'n 90
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éZdVe+We
dt ' o '

a=ae +aef
t t n n

dv

V2
a't n :7

Discuss changing radius of curvature for highway cur
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Motion of a Particle in Space

The equations are the same.

Engineering Mechanics — Dynamics
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RADIAL AND TRANSVERSE
COMPONENTS

Plane Motion
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de’. de’ d b

dt  do dt g
de, de,do

it dodt 6
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V= d;:i

R )=re +I
dt dt( )=TE AR,

V=re+rdez=v. e+v,e),

V, =T vV, =10

Engineering Mechanics — Dynamics
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e’= 1Icos@+ Jsind

A

r

=—isin 6+ jcosf=¢",

dé@ A A . A
—— =—1c0s@— Jsin O=-¢

d HEngineering Mechanics — Dynamics
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V=rex+rde),
a=Tre+re +rée,+réde,+ro e,
q=F6, + 106, +108, +106,—r0 6

a=(r-r@?x +(r@+2ré .

a,=F-r0 a,=rf+2r0

av, dv,
a, # a, & ——
dt

Engineering Mechanics — Dynamics
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Extension to the Motion of a Particle in Space:
Cylindrical Coordinates

r=Re" +%&
v=Re +ROe” +7k
R 6

a=(R—-RO? e+ (R6’"+2R'6’)e; + 7k

Engineering Mechanics — Dynamics 98



Curvilinear Motion: Position, Velocity & Acceleration

« Position vector of a particle at time t is defined by a
vector between origin O of a fixed reference frame and
the position occupied by particle.

« Consider particle which occupies position P defined
by rattimetand P’defined by r’att+ At,
ve lim ¥ =%
At—0 At dt

= instantaneous velocity (vector)

v= lim As_ds

At—>0 At dt

= instantaneous speed (scalar)

z

1920712017 emginvABylg=critysl tamgent to path %



Curvilinear Motion: Position, Velocity & Acceleration

 Consider velocity vof particle at time t and velocity

viatt + A,
a= lim & =%
At—0 At dt

= instantaneous acceleration (vector)

* In general, acceleration vector is not tangent to
particle path and velocity vector.

12070/20 Engineering Mechanics — Dynamics (1)O
17



Rectangular Components of Velocity & Acceleration

H12071/20
17

» Position vector of particle P given by its
rectangular components:

r=xi +yj+zk

* \elocity vector,
O A g,

k=
i gt gt Xi+ Y

=Vy T+ Vy VK

« Acceleration vector,
2
a’:d XT+d yT d—k Xt Vj + Zk
dt2  dt? " dt?

=ayi+ay ak

Engineering Mechanics — Dynamics



Rectangular Components of Velocity & Acceleration

« Rectangular components are useful when
acceleration components can be integrated
Independently, ex: motion of a projectile.

ay =X=0 ay =Y=-¢ a,=7=0
with initial conditions,
Xo=Yo=2,=0 (v,), = (vy )0 = given
Therefore:

v,=(V), V= (vy )0— gt

x=(v, )t y:(vy)ot—igtz

e Motion in horizontal direction is uniform.

« Motion in vertical direction is uniformly accelerated.

« Motion of projectile could be replaced by two

Independent rectilinear motions.
1W2072/20 Engineering Mechanics — Dynamics 10
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Example

A projectile is fired from the edge of a 150-m cliff with an initial
velocity of 180 m/s at an angle of 30° with the horizontal. Find (a) the
range, and (b) maximum height.

180 m/s

Remember:

V =V,+al
— 2
X=X, + V,t+iat

v =vg +2a(X =X, )

192073/20 Engineering Mechanics — Dynamics éo
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Example

Car Ais traveling at a constant speed of 36 km/h. As A crosses
Intersection, B starts from rest 35 m north of intersection and moves
with a constant acceleration of 1.2 m/s2. Determine the speed, velocity
and acceleration of B relative to A 5 seconds after A crosses

Intersection. |
=
B
7]

39 1M

: . 9
~-1.2 m/s*

36 km/h

12074/20 Engineering Mechanics — Dynamics 10
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Tangential and Normal Components

y  \elocity vector of particle is tangent to path of

€ particle. In general, acceleration vector is not.
Wish to express acceleration vector in terms of
tangential and normal components.

- e;andef are tangential unit vectors for the
particle path at P and P’.  When drawn with

respect to the same origin, d‘e’t: é’t’ — é’t

6 = €+de;
From geometry: de,=d6
de =dée.

de,
, & _'_¢g
0] d H n
12075/20 Engineering Mechanics — Dyrarmies 10
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Tangential and Normal Components

Y

]921‘/;27)17

écngineering Mechanics — Dynamics

« With the velocity vector expressed as v=\e";

the particle acceleration may be written as
V X - déds
a0 g dE_dv,, de 0

“dt denVat dE 'Y 4o ds dt

but
de, ~ ds
@—gn de—dS dt =V
After substituting,
a= Ve Ve .
= — + — S =
dt t n at dt n p

Tangential component of acceleration reflects
change of speed and normal component reflects
change of direction.

Tangential component may be positive or
negative. Normal component always points

toward center of path curvature.

10
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Radial and Transverse Components

o |If particle position is given in polar coordinates, we can
express velocity and acceleration with components
. parallel and perpendicular to OP.

+ Particle positionvector: T =T€,

« Particle velocity vector:  y = i re ): ﬂé’ +r der
dt~ "7 dt © dt
0 ey ¢ r . - T~
.ﬂ-‘*»&'\ W, Vv _d—e + r%e — rer + r&e
r ° Similarly particle acceleration:
de; — &y d_9 — 6, a= (re+r€e )
dé dé R _
de, .5 A , d€,
ey _ ey do _e de dt ¢ ¢ dt
dt dodt Y dt do

= 6 + reedde rde s rle,~rée, =

- dey _ dey dH 5
]_’If207(71ﬂtn7 do N dgdt el @gwc(ns— |cs¥r + (I’@ + 2|‘6’)é’9 10




Sample Problem

VA:6OW
A

2500 ft
\.

A motorist is traveling on curved section of highway at 60 mph. The motorist
applies brakes causing a constant deceleration.

Knowing that after 8 s the speed has been reduced to 45 mph, determine the
acceleration of the automobile immediately after the brakes are applied.

12078/20
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Sample Problem

SOLUTION:

« Calculate tangential and normal components of
acceleration.

a,=2.75 ft/s2

Motion
72Ny o =2 (B6=B8)fts _ 7t
‘};"-1_, 7 At 8 S S
a, =3.10 ft/s2
1y ) it . _V2 _(88ﬁ/5)2 ZSlOE
" p  2500ft 52

60 mph =88ft/s

« Determine acceleration magnitude and direction
45mph = 66 ft/s

with respect to tangent to curve.

= [a%+a? = [(-275)2+3.10% |a=4.140
a at+an \/( 5)-+3.10 a 4_1452

180 _ g 1310
at 2.75

a=tan o = 48.4°

192079/20 Engineering Mechanics — Dynamics éo
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Sample Problem

Determine the minimum radius of curvature of the trajectory

described by the projectile. 180 m/s
V2 30°
Recall: g5 - f
n
P 150 m
2 Y

> p=\;—n »l

. ~< X
Minimum r, occurs for small v and large a,

4 Vv IS min and a,, Ismax
155.9)
p= ( 5 81) = 2480m

NAZ12017 Engineering Mechanics — Dynamics 11



Sample Problem

Rotation of the arm about O is defined by &= 0.15t2where £is in radians and
t in seconds. Collar B slides along the arm such that r = 0.9 - 0.12t2where r
IS In meters.

After the arm has rotated through 300, determine (a) the total velocity of the
collar, (b) the total acceleration of the collar, and (c) the relative acceleration
of the collar with respect to the arm.

NAA72007 Engineering Mechanics — Dynamics



Sample Problem

SOLUTION:
« Evaluate time t for &= 300°.
6= 0.15t 2
=30° =0.524rad t=1.869s

 Evaluate radial and angular positions, and first
and second derivatives at time t.

r=0.9-0.12t2 =0.481m
r=-0.24t=-0.449 ms

r=—0.24 m/s?

9= 0.15t %= 0.524rad
@=0.30t=0.561rads

6= 0.30 rad/s?

W1272/2 Engineering Mechanics — Dynamics 11
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V=0,€,.+0g€g
a=ae,.+ag9€yg

W1273/2
017

Sample Problem

 Calculate velocity and acceleration.
Vr=r=-0.449m§
Vg=rd = (0.481m)(0.561rad §) = 0.270 m§

V= V2 1V2 _tan~1 V6
Yy p=tan"- Y
Vy

v=0.524m/s  [=31.0°

ar=Tr-rg?
= —0.240 m/s? — (0.481m)(0.561rad §)
- = —0.391m/s?
v, =(-0.449 m /s)e, ag= ré +2ré

- (O.481m)(0.3rad/32 )+2(— 0.449 m $)(0.561rad g)
~ —0.359 m/s?

a= [a?+a? _tan~196
F 9 y=tan -2
ar

a=0.531m/s  y=42.6°

Engineering Mechanics — Dynamics 2



Sample Problem

 Evaluate acceleration with respect to arm.

Motion of collar with respect to arm is rectilinear
and defined by coordinater.

ag op= T=—0.240 m 42

AB/OA = (—0240 ln/SQ)er

W1274/2 Engineering Mechanics — Dynamics il
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UNIT-II

KINETICS OF PARTICLE

Introduction, definitions of matter, body, particle, mass, weight, inertia,
momentum, Newton’s law of motion, relation between force and mass,
motion of a particle in rectangular coordinates, D’Alembert’s principle,
motion of lift, motion of body on an inclined plane, motion of

connected bodies.

Engineering Mechanics — Dynamics -



Newton’'s Second Law of Motion

 If the resultant force acting on a particle is not

— 7 / zero, the particle will have an acceleration
* proportional to the magnitude of resultant and in

the direction of the resultant.

—>

F =ma
» If particle is subjected to several forces:

> F=ma

« \We must use a Newtonian frame of reference, i.e., one that I1s not

accelerating or rotating.

« If no force acts on particle, particle will not accelerate, i.e., it will
remain stationary or continue on a straight line at constant velocity.




Linear Momentum of a Particle

)

mv

= dv
F — ~ — v
Y F=md=m "
d, - d
< (mv)=2 (L
M=)
L =mV  Linear momentum

Sum of forces = rate of change of linear momentum

If Y F =0

P

f

Incipl

> linear momentum Is constant

f

nservation of linear momentum

Engineering Mechanics — Dynamics
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Equations of Motion _
 Newton’s second law > F=m

/ « Convenient to resolve into components:
: Z(FXT+ FyT+ FZIZ)b m(aXT+ayT+aZIZ)
> Fx=may > Fy=may > F;,=ma
> Fx=mx > Fy=my > F,=mz

» For tangential and normal components:

Engineering Mechanics — Dynamics
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Dynamic Equilibrium
» Alternate expression of Newton’s law:
Y F-ma=0
=0 —Ma == inertiavector

* If we include inertia vector, the system of
forces acting on particle is equivalent to zero.
The particle is said to be in dynamic
equilibrium.

* Inertia vectors are often called inertia
forces as they measure the resistance that
particles offer to changes in motion.

118
9
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Sample Problem 1

SOLUTION:

|
30"1 N\ - « Draw a free body diagram

'\ » Apply Newton’s law. Resolve

| p0 s Into rectangular components

An 80-kg block rests on a horizontal plane. Find the
magnitude of the force P required to give the block an
acceleration of 2.5 m/s2to the right. The coefficient of

Kinetic friction between the block and plane is m, =
0.25.

Engineering Mechanics — Dynamics l%@



Sample Problem 12.2

W =785 N
Psin30

30°

Pcos30 |f —

F
N

W =mg =80x9.81=785N |2, Fy =0:

F =z N=0.25N

1/27/2017

> Fy =ma:

Pcos30°-0.25N =(80)(2.5)

“m =80 kg — 200

N —Psin30°-785=0
Solve for Pand N
N = Psin30°+ 785
P cos30° —0.25(Psin30° + 785) = 200

P=534.7 N

Engineering Mechanics — Dynamics N — 1 O 5 2 . 4 1%N




Sample Problem 12.3
A

100 kg ©

N

i

VFEOOkg B

The two blocks shown start from rest. The

horizontal plane

and

the pulley are

frictionless, and the pulley is assumed to be

of  negligible

Mass.

Determine  the

acceleration of each block and the tension iIn

theicrord.

Engineering Mechanics — Dynamics
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Sample Problem 2

 Kinematic relationship: If A moves X to
the right, B moves down 0.5 X,

_ 1 _ 1
Xg = 2 Xa dg =3 d,
) Draw free body diagrams & apply Newton’s law:
> F, =m,a, == T,=(100)a,

_)L\a'\ Z Fy == mBaB - mBg — T2 :mBaB

m4 = 100 kg 300x9.81- T2 = (SOO)aB
T, = 2940-(300)a,
my =300 kg Z Fy — mCaC - T2 —_ 2T1 — O
B @ 2940-(300)a; 2T, =0 2940-(300)a, — 200a, =0

Wy =2940 N Mpap

2940-(300)a; —2x 200a; =0

A AT,
c@ = () a,=42m/s*| |a, =8.4m/s?’| |T,=840N| T,=1680 N
I

Engineering Mechanics — Dynamics l%@



Sample Problem 3

The 12-1b block B starts from rest and slides on
the 30-1b wedge A, which is supported by a
horizontal surface.

Neglecting friction, determine (a) the acceleration
of the wedge, and (b) the acceleration of the
block relative to the wedge.

Engineering Mechanics — Dynamics l%@



Draw free body diagrams for block & wedge
N,sing

a'Bn

W;sinéd = mgag,

12x05= 12 4
32 2

N, —W; cosfd=mgas,

w =8 =1611/s* N;sinfd=m,a, m)

N,coséd+W, =N,

But Ag, = —a, sin@!| Same normal acceleration (to maintain contact)

N,-Wgcos@=-mga,sind m) |N; -10.39=-

12><O.5a

32.2

A

17017 Mgdhmniimf

_ 2|, _ 2
B (a =5.08ft/s Eng&@ 2.W4m_[[$t/8

\

135




a, =—a, Ccosfd—a, sind=-12.67 ft /s’

a,, = —agsinfd+ag, cosd=-10.25 ft /s

85, = (—12.677-10.25 j ) (5.08i)
=-17.751 -10.25]

Engineering Mechanics — Dynamics
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~ Sample Problem 4

The bob of a 2-m pendulum describes an arc of a circle in a
vertical plane. If the tension in the cord is 2.5 times the weight of
the bob for the position shown, find the velocity and acceleration
of the bob in that position.



Sample Problem 5

e —

ma,

gcos30

LX“
30°

Resolve into tangential and normal components:

> Fi=ma;: mg sin30° = may
ar= g sin 30°

a;= 4.9 m 2

Y Fo=ma,: 2.5mg-mgcos30°=may
an=g(2.5 - cos30°)

N

ap = 16.03n1’s

 Solve for velocity in terms of normal acceleration.

W= Vs Jpon =@ mK6.03m4 ?)

v =15.66 ms

Engineering Mechanics — Dynamics l%g



Sample Problem 6

SOLUTION:

« The car travels in a horizontal circular
path with a normal component of
acceleration directed toward the center
of the path.The forces acting on the car
are Its weight and a normal reaction
from the road surface.

g= ]18° . .
_  Resolve the equation of motion for
Determine the rated speed of a the car into vertical and normal
highway curve of radius p= 400 ft components.

banked through an angle &= 18°. The

rated speed of a banked highway curve < Solve for the vehicle speed.
IS the speed at which a car should

travel if no lateral friction force is to

be exerted at its wheels.

Engineering Mechanics — Dynamics 134
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Sample Problem 7

» Resolve the equation of motion for
the car into vertical and normal

components.
> Fy=0: R cosd-W =0
R WV
cosé

> Fh=map: Rsiné?:wan

SOLUTION: g
2
 The car travels in a horizontal circular W sing = Wv*
path with a normal component of cosé g p

acceleration directed toward the center
of the path.The forces acting on the
car are its weight and a normal

reaction from the road surface. _ (32_2ﬁ /32 )(400ft)tan 18°

« Solve for the vehicle speed.
v2 = gptané

v =64.7 ft/s = 44.1mi /h

Engineering Mechanics — Dynamics l%@



Angular Momentum

From before, linear momentum: [ =mv
Now angular momentum iIs defined as the moment of momentum

—_

Ho=rxmv
H, isa vector perpendicular to the plane
containing r and mv

Resolving into radial & transverse components:
H, = mv,r = mr’d

Derivative of angular momentum with respect to time:
ﬁozfme+Fme:meV+Fxm§

Moment of F  about O

Sum of moments about O = rate of change of angular momentum

Engineering Mechanics — Dynamics l%ﬁ



Equations of Motion in Radial & Transverse Components

Y Fr =may = n('r— r9’2)
> Fg =mag =m(rd +2ré)

Engineering Mechanics — Dynamics 13;@



Central Force

When force acting on particle iIs directed

P toward or away from a fixed point O, the
particle Is said to be moving under a central
force.

O = center of force

Since line of action of the central force passes through O:

S Mg = Hg =0

mmm) i x mv= H, = constant

Engineering Mechanics — Dynamics l%§



Sample Problem 8

6=0,

A block B of mass m can slide freely on
a frictionless arm OA which rotates in a
horizontal plane at a constant rate &y,.

Knowing that B is released at a distance
r, from O, express as a function ofr

a) the component v, of the velocity of B
along OA, and

b) the magnitude of the horizontal force
exerted on B by the arm OA.

SOLUTION:

 Write the radial and transverse
equations of motion for the block.

* Integrate the radial equation to find an
expression for the radial velocity.

« Substitute known information into the
transverse equation to find an
expression for the force on the block.



Sample Problem 8

r=ré

dVr m—V dV—r

F v )
b = ¥ . . dv
r=vy=—1"
//0

r
O‘/—j-

Write radial and transverse equations of
motion:

ZFer a -}O=m(r'—r6'?2)
D Fo=m a, mF=m(rd+2rd)

dt

dr dt ' dr

ré’dr = vdv,

2 N2/{2 2
Ve _Qo(r —rO)

. 2
_ 2 2
V. —Ho(r —ro)v

F=2mé; (r*—r; )Vz

Engineering Mechanics — Dynamics
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UNIT-II

* IMPULSE AND
MOMENTUM,VIRTUAL

WORK

Impulse and momentum: Introduction; Impact, momentum, impulse,
Impulsive forces, units, law of conservation of momentum, Newton’s

law of collision of elastic bodies.

Coefficient of restitution, recoil of gun, impulse momentum
equation; Virtual work: Introduction, principle of virtual work,
applications, beams, lifting machines, simple framed structures.

Engineering Mechanics — Dynamics



Impulse = Momentum

Consider Newton’s 2nd  f, y Av
Law and the m i
Impulse-Momentum Theorem P _ Ay s Fre Ay
J= .’:‘lp 11 7
fe= Ay Fi = Impulse(])
Amv = Momentum (p)
Ns
Kg xm/s

Momentum 1s defined as “Inertia in Motion”
Units of Impulse:
Units of Momentum:



Impulse - Momentum Theorem

Ft =ImAvV

— ~
IMPULSE CHANGE IN MOMENTUM

This theorem reveals
some interesting
relationships such as the

INVERSE relationship

between
F t: change in momentum Ft = change in momentum | | M —
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Impulse - Momentum Relationships

T AT L TR

" % sy -v;r;;"\v /.- 4 '
mv = \"; 5y g Ft

Engineering Mechanics — Dynamics 139



Impulse - Momentum Relationships

FOR THE SAME FORCE, o
WHY 1S THE SPEED OF A fT =mAV
CANNONBALL GREATER \ /‘

WHEN SHOT FROM A Constant
CANNON WITH A
LONGER BARREL?

Since TIME is directly related
to the VELOCITY when the
force and mass are constant,
the LONGER the cannonball is
, —— In the barrel the greater the

%‘e velocity.

Also, you could say that the
force acts over a larger
1/27/2017 Engineering Nmmlgspw@ﬁ ent, thUS there iS 1%6



How about a collision?

Consider 2 objects speeding

toward each other. When they
% collide......

m1

m2

Due to Newton’s 3d Law the

FORCE they exert on each
other are EQUAL and
OPPOSITE.

I —> The TIMES of impact are also
equal.

1/27/2017

F=—F,

(Ft)1 —
J,=-1,

=
_(Ft) 2

t2 Therefore, the IMPULSES of the 2
objects colliding are also
EQUAL
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How about a collision?

If the Impulses are my mo
equal then the
M _OMENTUMS are
J =3
1 alscg equal!
P1=—P,
m,Av,=—m,AV,

Vif T2 vy
A
ml(v1 _Vol) =—-m, (V2 _Voz) %

>
mlvl o mlvol — _mZVZ +m2V02 Z pbefore - Z pafter

<€

MV + MoV, = MV +MyV,

Engineering Mechanics — Dynamics 142



Momentum is conserved!

The Law of Conservation of Momentum: “In the
absence of an external force (gravity, friction), the
total momentum before the collision is equal to
the total momentum after the collision.”

400 kg

m_b o Pocerucky = MV, = (500)(5) = 2500kg*m/s
‘Oﬁ% Poccar = (400)(2) =800kg*m/s
OF,—__O Pogotan = 3300kg*m/ s
S00 kg 400 ke Piruek=D00*3 =1500kg*m/s
. VT ST ) 400%4.5=1800kg*m/s
& 092_1 o Protas = 3300kg*m /s

Engineering Mechanics — Dynamics 143



Types of Collisions

A situation where the obiects DO NOT STICK is

i at rest — =
one type :‘@ @/ _ same speeds Qi
, o g\ —_
N, 0 ———.TT-
at rest s e o e e g
(a) ’f\,.\% ;O (b) : same speeds Q
—— -
=
greater speed = greater speed
% -
@ ® @

Notice that in EACH case, you have TWO objects BEFORE
and AFTER the collision.

Engineering Mechanics — Dynamics 144



A “no stick” type collision

Car Truck
mass (ki) 1000 mass (ki) 3000
wel. (/=) 200 wel. (m/=) 0.0
mom. (kg m/z) | 20000 mom. (kg m/z) 0

2pbefore = z:pafter

MV + MyVe, =MV, +MyV,
(1000)(20) + 0  (1000)(v,) + (3000)(10)
—10000 +1000v,

Vi= -10 m/s

Engineering Mechanics — Dynamics

145



Types of Collisions

Another type of collision is one where the
objects “STICK” together. Notice you have

TWO objects before the collision and ONE
object after the collision.

ngineering Mechanics — Dynamics 146



A “stick” type of collision

Car Truck
mass (kg) 1000 mass (k) 3000
wel. (m/s) 200 wel. (m/s) 0.0
mom. (kg m/fs) | 20000 mom. (kg m/s) 0

2Ppefore = 2Pafter
M,V + MLV, =|M;V;
(1000)(20) + 0= (4000)v;
20000 =|4000v;

Vi = 5ml/s

Engineering Mechanics — Dynamics
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before

This type Is often referred to
as “backwards inelastic™.
Notice you have ONE object

The “explosion” type
( we treat thisas a SYSTEM)
before the explosion and

TWO objects after the

alter explosion.
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Backwards Inelastic - Explosions

| Suppose we have a 4-kg rifle
loaded with a 0.010 kg bullet.
When the rifle is fired the
bullet exits the barrel with a
velocity of 300 m/s. How fast
does the gun RECOIL

backwards?
2Ppefore = 2Pafter
My Vy = m\Vv,+m.,V,
(4.010)(0) ={(0.010)(300) + (4)(v,)
0 =3 +4v,
Vo = -0.75m/s
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Collision Summary

Sometimes objects stick together or blow
apart. In this case, momentum is ALWAYS
conserved.

Z pbefore - Z pafter

MV, + MyVy, = MV, +M,V, > When 2 objects collide and DON’

M Vg, + MyVo, =M Vieas — > When 2 objects collide and stick to

MiotaVorotany = MyVy + MV, —— When 1 object breaks into 2 objec

Elastic Collision = Kinetic Energy 1s Conserved
Inelastic Collision = Kinetic Energy 1s NOT Conserved



Elastic Collision

Car Truck
mass (kg) 1000 mass (kg) 3000
wvel. (m/s) 200 wvel. (m/s) 0.0
mom. (kgm/s) | 20000 mom. (kg m/z) ]

KE.,. (Before) =1 mv , =0.5(1000)(20), = 200,000J

KE e (After ) = 0.5(3000)(10),, =150,000J
KE.,, (After) = 0.5(1000)(~10),, =50,000J

Since KINETIC ENERGY is conserved during the collision
we call thisan ELASTIC COLLISION.
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Inelastic Collision

Car Truck
mass (kg) 1000 mass (kg) 3000
wel. (m/fs) 200 wel. (m/fs) 0.0
mom. (kg m/fs) | 20000 mom. (kg m/z) 0

KE,,, (Before) = ;vaz =0.5(1000)(20), = 200,000J
KE rucwcar (After ) = 0.5(4000)(5) , = 50,000

Since KINETIC ENERGY was NOT conserved during the
collision we call this an INELASTIC COLLISION.
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Examplﬁny (m=80 kg) whizzes

around the rink with a velocity
of 6 m/s. She suddenly collides
with Ambrose (m=40 kg) who
is at rest directly in her path.
Rather than knock him over,
she picks him up and
continues in motion without
"braking." Determine the
velocity of Granny and
Ambrose.

BEFORE AFTER

How many objects do I have betore the ision?

2 pbzz P,

M;Voy + M3V, =MV
How many objeclts do I have after the (((m)(ﬁ) 4 (40) (O) — 120VT

V; = 4m/s



— A

Collisions in 2 Dimensions

+5.5 m/s

T E—
.

At rest

The figure to the left shows a
collision between two pucks
on an air hockey table. Puck A
has a mass of 0.025-kg and is
moving along the x-axis with a
velocity of +5.5 m/s. It makes
a collision with puck B, which
has a mass of 0.050-kg and is
initially at rest. The collision is
NOT head on. After the

collision, the two pucks fly
apart with angles shown in
the drawing. Calculate the
speeds of the pucks after the
collision.

R i

Before collision

After collision
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Collisions in 2 dimensions
D Po= . Py

MaVoxa + MgVog = MpVya + MgV,
(0.025)(5.5)+0 = (.025)(v, cos 65) + (.050)(vg c0s 37)

0.1375 = 0.0106v, +0.040v,

+5.5 m/s

e A A IEALL v -\‘-‘-B:"- —

£

- 0=mpv ,+mgv

VSING _ _
At rest n@— (0.025)¢r, sin 65) + (0.050)(—V; sin 37)
Before gllision After collision
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Collisions in 2 dimensions

0.1375 = 0.0106v, +0.040v,

VB — QJ%ZMAZ.lsm/S
/

0.1375 = 0.0106v, + (0.050)(0.757v, )
0.1375 = 0/0106v, + 0.03785v,
0.1375 =/0.04845v,

V,=2.84m /S

Engineering Mechanics — Dynamics ) _ 1/27/2017
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UNIT-IV

*» WORK ENERGY
METHOD

Work ener% method: Law of c?]nsaervatlon,qfenelgg,
aRa icationdf work ener ,E\et od to rt(ljcemo n

ahd connect slxstem, r eneF,gg'g |)3(Je to connected
systems, work energy applied to fiXed'axis rotation.
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Law of Conservation of Energy

Energy Transformations

* What you putinis
what you get out

* Total energy is
conserved

Engineering Mechanics — Dynamics



Practical Applications

\ o
W
>

» Gasoline converts to energy wiiICH roves
the car

* A battery converts stored chemical
energy to electrical energy

e Dams convert the kinetic energy of falling
water into electrical energy

Engineering Mechanics — Dynamics 15



Can You Think of Other Examples!?




Conservation of Mechanical Energy

1 m = Mass
2 h _
—Mmv-+m g - E v = velocity
2 g = gravitational acceleration
I I I h = height
Kinetic Potential Total
Energy Energy Energy

ILYA, did you

know that even
though it wasa
bumpy ride,
Low PE our energy
High KE remained

Hinimum PE
Ha=ximum KE

o,

As a coaster car loses height, it gains speed; PE is transformed
into KE. As a coasterdcar' gainsheightit'Yoses-speed; KE is
transformed into PE. The sum of the KE and PE i5 a constant.

constant!




Example of Conservation of

Lmv2 + mgh =E

2

Mechanical Energy
Potental Kinetc Total
Energy Energy

1 _f—

LLLTTTTTTT
+

LLLTTTTTTT E
3

-
[—
[—]




An Example

'

B0

@ Energy of a Falling Basepall

height = 5.0 m
GPE = mgh

= (0.2 kg)(5.0 m)(10 m/s2)
= 10J
KE =0J

TME = KE + GPE

=0J+10J
=10

TME = 10 J

Engineering Mechanics — Dynamics
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Another Example

Energy of a Falling Basepall

height = 3.75 m
GPE = mgh

@ = (0.2 kg)(3.75 m)(10 m/s2)
- TIE J
KE =2.5J

TME = KE + GPE
=25/ +7.5
=10J

T™E = 10 J

Engineering Mechanics — Dynamics
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Yet Another Example

Energy of a Falling Basepall

height = 2.5 m

GPE = mgh
= (0.2 kg)(2.5 m){10 m/sZ)
= 5,0.J
HE =5IEJ
@ T™E = KE + GPE

=104




\
>

Last Example

Energy of a Falling Basepall

height = 0 ™
GPE = mgh

= (0.2 kg)(0 m)(10 m/sZ)
=gJ
KE =10J

TME = KE + GPE

=q10J +0J
=q0J

TME = 10J

b




UNIT-V

» MECHANICAL
VIBRATIONS

Definitions and concepts, simple harmonic
motion, free vibrations, simple and compound
pendulum, torsion pendulum, free vibrations
without damping, general cases.
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Simple Harmonic Motion

 Harmonic Motion is any motion that repeats itself.
 Examples of Harmonic Motion.

rnatakana Frser (36 24 0000174 44 00000) :
iilH‘Hmiii.ﬂimmuMiﬂmﬂ
> Il _ 1 rl { ’ =l : F, Tl |

168




Simple
Harmonic
Motion..........
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Period Time for one oscillation

Frequency Number of oscillations in
one second
Displacement Distance from equilibrium

Amplitude Maximum displacement
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Simple harmonic motion is a special type of harmonic
motion.

Consider a mass on a spring.

The cart is in equilibrium, because the total force is
ZEr0.

The acceleration is also
(this doesn’t meaZili¥&s stationary)
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Lets look at the forces

force

—

dispt = -A
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—

dispt = -A/2

Engineering Mechanics — Dynamics 176



Force=0

dispt =0
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dispt = A/2
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force

—

dispt = A
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ﬂe

—

dispt = A

* Notice that as the displacement increases, the
restoring force increases.

* Notice that the restoring force is always in the
opposite direction to the displacement
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Now we'll look at the acceleration
acceleration

force

—

dispt = -A
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acceleration

force

—

dispt = -A/2

Engineering Mechanics — Dynamics 182



Acceleration =0

Force=0

dispt =0

Engineering Mechanics — Dynamics 183



acceleration
<

force

<

>

dispt = A/2

Engineering Mechanics — Dynamics 184



acceleration

force

—

dispt = A
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- acceleration

—

dispt = A

* Notice that as the displacement increases, the
acceleration increases.

* Notice that the acceleration is always in the
opposite direction to the displacement
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e The relation between acceleration and
displacement s .....

e Acceleration is proportional to displacement

* Acceleration is in opposite direction to
displacement.

a =— constant x y

27T
a=- xy o=
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Acceleration/position graph

acceleration

position




Acceleration/position graph

acceleration

position




-

a=—arX

Force/position graph

force

position

ma = —(Mma@*)X




Graphs of SHM

* We have looked at simple harmonic motion as
a function of position.

 Now we’ll look at it as a function of time



lisplacement

acceleration

Engineer

chanits — Dynamics
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http://www.ngsir.netfirms.com/englishhtm/SpringSHM.htm

reference

equilibrium
position

®none
O displacement
Ovelocity

Oacceleration

reference

Engineering Mechanics — Dynamics
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pring constant

)

ktlatmpning

pause

slow

reset

w B




Engineering Mechanics — Dynamics 194


http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=148
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Reference Circle

Red ball moves in SHM horizontally

Blue ball moves in a circle

Both have same period

Amplitude of SHM equals
radius of circle

Both have same horizontal
displacement
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To find the position of a swing at a certain time.

The period is 4.0s
The amplitude is 2.0m
Where is the swing 2.0s after release?
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The period is 4.0s
The amplitude is 2.0m
Where is the swing 1.0s after release?
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Where is the swing 0.5s after release?

Convert time to angle (1period = 360°)

0.5 3600 = 45°
0.505 = 45°

X

cos45’ = —

2

Engineering Mechanics — Dynamics



Where is the swing 2.5s after release?

Convert time to angle (1period = 360°)

2.5
4.0

x 360° = 225°

2.50s =225°

cos45° =2

2
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How long does it take to go 1.4m from the start?

(1) Calculate angle

cosf = 0.59
2

0 —

(2) Convert angle to time
(1period = 3609°)

60

60° = — of a period

= 1¢x 4.0s

Engineering Mechanics — Dynamics



* The top of an
amplitude

* How longi brium each
cycle?

e What is the e

displaceme

203




Equations 1
y = Asing 0= ot

|

y = Asinwt \/

V = A@COS it
a=—-Aw’sinwt

Engineering Mechanics — Dynamics




Equations 2

y = Acoswt f |
V = —Aa)sj:l ot \U/

a = —Aw’cosmt

Engineering Mechanics — Dynamics 205



Equations 3

y =—Acosmt |
vV = Awsin wt /m\

a = Aw’ coswt %
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y = Asinwt Voo =
V = A@wCO0S wit Vinax =
a =—-Aw’sinwt a .. =

a=—-wAsinot =—wy

Engineering Mechanics — Dynamics



Anisha is on a swing. Kate pulls her back 2.0m and lets her go. Her
period is 4.0s.

(a) Calculate her maximum speed. (where is it?)

(b) Calculate her maximum acceleration. (where is it?)
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Anisha is on a swing. Kate pulls her back 2.0m and lets her go. Her
period is 4.0s.

(a) Calculate her speed 0.50s after being released
(b) Calculate her acceleration 0.50s after being released

Engineering Mechanics — Dynamics 209



* Nikis bungee jumping. In one oscillation he
travels 12 m and it takes 8.0s.

* Tahistarts videoing him as he passes
through the mid position moving UP.

(a) Calculate his velocity 1.0s after the video
starts

(b) Calculate his acceleration 2.0s after the video
starts.



Mass on a Spring

* As the mass increases, the period... INCreases

* As the spring stiffness increases the period ...
Increases



Effect of mass:

* As the mass increases, the acceleration...
decreases (assuming constant force)

* As the acceleration decreases the period ...

INCreases

A larger mass means a longer period.
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Effect of spring stiffness:
F

= — F = kX
m
e As the stiffness increases, the restoring force...
Increases (assuming same displacement)

* As the restoring force increases the acceleration ...

Increases
e As the acceleration increases the period ... decreases

A stiffer spring means a shorter period.
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Summary

* mass > accelnd, period T

* stiffness 1 force 1 acceln 1 period

eq\l’uation
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derivation of the equation:

Extension .....
consider a mass on a spring.
a=C F =-kx
m
a:ﬁ a=—_X (le. aoc—x)
m m
a="Kyx a=—arX
m
K = o = (2T
m T

/k:272' T=27Z'\/§

/

/

'm T
Engineering Mechanics — Dynamics
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reference

equilibrium
position

®none
Ogpe.
O sfrain
(O total potential

O kinetic

reference
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Simple Pendulum

 This is where all the mass is concentrated in
one point.

~
S<
\'
~
~
~
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What provides the restoring force?

the restoring force Is
the Tension plus
Gravity

-
~ -
- -
~~o -

S —— -
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Why is the motion SHM?
]

the displacement increases,

the restoring force. increases.

the restoring force IS always
towards equilibrium

~ -
S~aa _———
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* This next bit is very important



Why does length affect period?
0]

~ -
-~ -
S~ —

For the same amplituda@if the pendulum is shorter,
the angle of the string to the vertical is greater.

The restoring force Is greater.

The acceleration is greater
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period of a pendulum

ITl= 27 \E S

How is length measured?

Engineering Mechanics — Dynamics



As the pendulum expands
down,

The mercury expands up

This keeps the center of
mass in the same place

Same length same period.

Dynamics 224




Energy of SHM



reference

equilibrium
position

®none
Ogpe.
O sfrain
(O total potential

O kinetic

reference
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pause
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a sprung system

ol
’l,“
-

ics : : : :
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/4

energy dissipation

hydraulic oil high pressure
nitrogen gas

plunger dividing
piston

ics 22
%]1% Engineering Mechanics — Dynamics 9 229
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Resonance

* Any elastic system has a natural period of
oscillation.

o If bursts of energy (pushes) are supplied
at the natural period, the amplitude will
Increase.

e This is called resonance

Engineering Mechanics — Dynamics 23



Engineering Mechanics _15)2‘/[}%1193 Engineering Mechanics — Dynamics 2 232



>

Examples of resonance




* The glass has a natural frequency of
vibration.

o If you tap the glass, it vibrates at the
natural frequency causing sound.

e If you put energy in at the natural
frequency, the amplitude increases.
This is resonance.

e If the amplitude gets high enough,the
glass can break.

Engineering Mechanics — Dynamics 23



Bay of Fundy

CANADA
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Bay of Fundy
The period of the tide is 12 hours.

- The time for a wave to move up the bay and
,backl- |

23
5 — Dynamics 6 236



/.

\ What is vibration?

e Vibrations are oscillations of a system about
an equilbrium position.

1 2 3 4 = &

A
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It is also an
everyday
phenomenon we
meet on
everyday life



Vi

\gseful Vibration Harmful vibration
Compressor

Ultrasonic
cleaning
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Displacement Velocity Acceleration

t@;‘ —

All mechanical systems
can be modeled by
containing three basic
components:

—’a

"=,

" 'h,.‘

’ v
]
'

"

(L
aw !

‘e 4

F=mxa

spring, damper, mass

When these components are subjected to constant force, they
react with a constant

displacement, velocity and acceleration
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Free vibration

\ ~® When a system is initially disturbed by a displacement,
\Lelocity or acceleration, the system begins to vibrate with a
. constant amplitude and frequency depend on its stiffness and

mass.

» This frequency is called as natural frequency, and the form
of the vibration is called as mode shapes

Displacement
d =D sinm.t

S/ AWASNEN
VY

i—T—P‘
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i If an external force applied to a
K . system, the system will follow the
' " de force with the same frequency.

- However, when the force frequency

< IS Increased to the system’s natural

frequency, amplitudes will

o, dangerously increase in this region.
rreaueney This phenomenon called as

Displacement
r

B
-

Frequency

B
L

Frequency
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\/ Watch thes&{iD
\B?'rdge collapse:

http:/ /www.youtube.com /watch?v=i-zcz] XSxnw

Hellicopter resonance:
http://www.youtube.com/watch?v=0FeXihUEXlc

Resonance vibration test:

http://www.youtube.com/watch?v=LV UuzEznHs

Flutter (Aeordynamically induced vibration) :

http:/ /www.youtube.com /watch?v=Ohwl.ojNerMU

Engineering Mechanics — Dynamics
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http://www.youtube.com/watch?v=OhwLojNerMU
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\ Modelling of vibrating systems
IM.ped (Rigid) Modelling Numerical Modelling

Single Degree of Freedom
SDOF

Element-based
methods
(FEM, BEM)

Statistical and Energy-based
methods

(SEA, EFA, etc.)

— A
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*Mathematical modeling of a physical system requires the
\electlon of a set of variables that describes the behavior of the
system.

DOF=1 DOF=2
Single degree of freedom Multi degree of freedom

(SHOF) =7 (MDOF}s 1~
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\ Equivalent model of systems

Machine

AW

(a)

(c)

Equivalent
stiffness of beam

Machine and
equivalent mass
of beam

Engineering Mechanics — Dynamics

w14x30 steel beam

(b)

Machine

%%

Beam

il“l
77

(d)

O

MDOF
DOF=2



&

\

uivalent model of systems

MDOF
DOF= 3 if body 1 has no

SDOF  DOF=2 rotation

_. DOF= t4aly as |—v

—-1.-'

(b)

\ rotation L St
Nz I
— ) >

g

(d)

Engineering Mechanics — Dynamics 24



\&)OF systems

AN F stress: GD
F Stiffness k= N

:FrDZIGFr
Shear Twx ™ 37 " DB

T=Fr

oefficient:

F: Force, D: Diameter, G: Shear modulus of the rod,
N: Number of turns, r: Radius

Parallel combination

Series combination

Iy

—x

AU

k * ky ks ks ky
g A ﬂ—wwwvwvwﬂkfvv\r m
H
n
x=x1—|—:x:2—|— —I—xﬂ=2xi
" i=1
- (E‘éf)x " F _
i=1 X = — eq "1
i"_|}{3f E?
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Elastic elements as springs

System Stiffness Coeff. SDOF Model
:/: ’/—A.E I—‘x . iE
z L
- L -
E, I
7 r  48E]
E T k= B LU
== L = 2
k
6
= J.G
e o= E m T
= L _
- I x
: L -
m
3E7
k _
Ix /77C777‘777 ‘[3
L2 e LR -
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Moment of Inertia

Slender rod
Thin disk = I =
[, = —mr*
2
& |
[), - Zmr
= 1
I = Zmr‘
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\/VV hat are the equivalent stiffnesses?

2k

2k
m W

m
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