

### INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

#### **MODEL QUESTION PAPER-I**

B.Tech VII Semester End Examinations, November - 2019

# **Regulations: IARE-R16 EMBEDDED SYSTEMS**

(Only for ECE)

Time: 3 hours Max. Marks: 70

# Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

|   |    | 1 1                                                                                                                                                          |         |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   |    | UNIT – I                                                                                                                                                     |         |
|   |    |                                                                                                                                                              |         |
| 1 | a) | Explain classification embedded systems based on complexity and performance requirements and give some examples.                                             | [7M]    |
|   | b) | Compare and contrast top-down and bottom-up design in embedded systems design process.                                                                       | [7M]    |
| 2 | a) | Define Quality attributes and witre the types of Quality attributes? Discuss the Operational Quality attributes of embedded computing applications.          | [7M]    |
|   | b) | Examine the architecture for an embedded system design process and Demonstrate the digital camera application with neat diagram.                             | [7M]    |
|   |    | UNIT – II                                                                                                                                                    |         |
| 3 | a) | Explain the difference between "pointer to constant data" " and "constant pointer to data" in Embedded C programming. Explain the syntax for declaring both. | [7M]    |
|   | b) | Sketch the diagram of keyboard interfacing and explain in detail about the each pin specifications?                                                          | [7M]    |
| 4 | a) | Explain the Basic techniques for reading from I/O port pins for building the Embedded hardware?                                                              | [7M]    |
|   | b) | Analyze the basic flow of control construct in,  i. Constant time statements  ii. Sequence of statements  iii. For loops  iv. While loops                    | [7M]    |
|   |    | UNIT – III                                                                                                                                                   |         |
| _ | ,  |                                                                                                                                                              | [7] (1) |

- a) Define Semaphores and task scheduling? Explain in detail about Semaphores, task states and [7M] scheduling.
  b) Discuss in detail about how to choose an RTOS with an example. Write the examples of RTOS [7M] employed in embedded product development?
- 6 a) Discuss in detail about the critical section object for process synchronization? Why critical [7M] section object is based synchronization.

UNIT - IV Explain the differences between 'Host Computer System' and 'Target System' in terms of their [7M] hardware and software. Compare the characteristics of various software architectures for embedded applications. [7M] b) Why in general Host machine is used for the developments of embedded system software. a) [7M] Explain various software development tools provided by a Host system? Explain the function and use of the following test equipment for embedded system b) [7M] development, i. Oscilloscope ii.

Differentiate the different functional and non-functional requirements that need to be evaluated

in the selection of RTOS. expalin in detail.

Ohm-meters

7

8

[7M]

#### UNIT - V

- Explain memory organization of ARM processor is different from conventional general purpose 9 [7M] processors memory organization. Give hardware and software at functional level for designing elevator controller using basic [7M] design principles using a RTOS.
- 10 Define CAN Bus? Explain in detail about the CAN Bus architecture and give its features and a) [7M] applications.
  - Demonstrate the various architectural features of one of the SHARC processors of your choice [7M] with its functional block diagram.



## **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

#### **COURSE OBJECTIVES:**

#### The course should enable the students to:

| I   | Imbibe knowledge about the basic functions, structure, concepts and applications of Embedded |
|-----|----------------------------------------------------------------------------------------------|
|     | Systems.                                                                                     |
| II  | Understand Real time operating system concepts.                                              |
| III | Analyze different tools for development of embedded software.                                |
| IV  | Be acquainted the architecture of advanced processors.                                       |

#### **COURSE OUTCOMES (COs):**

| CO Code | Description                                                                                    |
|---------|------------------------------------------------------------------------------------------------|
| CO 1    | Understand the basic concepts of embedded system and various applications and characteristics, |
|         | formalisms for system design of embedded system design                                         |
| CO 2    | Discuss the concepts of C and develop the C programming examples with Keil IDE, and            |
|         | understand the concepts of interfacing modules using embedded C.                               |
| CO3     | Understand the fundamentals of RTOS and its programming and task communication, Task           |
|         | synchronization with its issues and techniques.                                                |
| CO 4    | Develop an examples using embedded software and understand the debugging techniques            |
| CO 5    | Discuss the concepts of advanced processors like ARM and SHARC and protocols of I2C and        |
|         | CAN bus.                                                                                       |

#### **COURSE LEARNING OUTCOMES:**

| AEC016.01 Understand basic concept of embedded systems.                                       |                                                                                                        |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| AEC016.02                                                                                     | Analyze the applications in various domains of embedded system.                                        |  |  |  |  |
| AEC016.03                                                                                     | AEC016.03 Develop the embedded system and Design process and tools with examples.                      |  |  |  |  |
| AEC016.04                                                                                     | AEC016.04 Understand characteristics and quality attributes of embedded systems, formalisms for system |  |  |  |  |
|                                                                                               | design.                                                                                                |  |  |  |  |
| AEC016.05                                                                                     | Understand the basic programming of c and its looping structure.                                       |  |  |  |  |
| AEC016.06                                                                                     | Analyze the embedded C programming in Keil IDE, and compiling and building the hardware.               |  |  |  |  |
| AEC016.07                                                                                     | Understand different concepts of display and keyboard interfacing using embedded C.                    |  |  |  |  |
| AEC016.08 Understand different concepts of serial communication using embedded C and user int |                                                                                                        |  |  |  |  |
| AEC016.09                                                                                     | Remember the basics of operating system and its commands.                                              |  |  |  |  |
| AEC016.10                                                                                     | Understand and analyze the RTOS concepts for firmware development.                                     |  |  |  |  |
| AEC016.11                                                                                     | Remember how to choose an RTOS, task scheduling, semaphores and queues, hard real-time                 |  |  |  |  |
|                                                                                               | scheduling considerations.                                                                             |  |  |  |  |
| AEC016.12                                                                                     | Understand the task communication, its programming and Task synchronization with its issues            |  |  |  |  |
|                                                                                               | and techniques.                                                                                        |  |  |  |  |
| AEC016.13                                                                                     | Develop host and target machines for linking to embedded software.                                     |  |  |  |  |
| AEC016.14                                                                                     | Develop debugging techniques for testing on host machine with examples.                                |  |  |  |  |
| AEC016.15                                                                                     | Remember the advanced processors such as ARM and SHARC.                                                |  |  |  |  |
| AEC016.16                                                                                     | Understand the bus protocols such as I2C and CAN bus.                                                  |  |  |  |  |
| AEC016.17                                                                                     | Design an application based on advanced technological changes.                                         |  |  |  |  |
|                                                                                               |                                                                                                        |  |  |  |  |

#### MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES:

| SEE<br>Question No. |   | CLO<br>Code | Course learning Outcomes                                                | CO code | Blooms<br>Taxonomy<br>Level |
|---------------------|---|-------------|-------------------------------------------------------------------------|---------|-----------------------------|
|                     | a | AEC016.01   | Understand basic concept of embedded systems.                           | CO 1    | Understand                  |
| 1                   | b | AEC016.03   | Develop the embedded system and Design process and tools with examples. | CO 1    | Understand                  |

| SEE<br>Question No. |   | CLO<br>Code | Course learning Outcomes                                                                                          | CO code | Blooms<br>Taxonomy<br>Level |
|---------------------|---|-------------|-------------------------------------------------------------------------------------------------------------------|---------|-----------------------------|
| 2                   | a | AEC016.04   | Understand characteristics and quality attributes of embedded systems, formalisms for system design.              | CO 1    | Understand                  |
| 2                   | b | AEC016.02   | Analyze the applications in various domains of embedded system.                                                   | CO 1    | Understand                  |
| 3                   | a | AEC016.05   | Understand the basic programming of c and its looping structure.                                                  | CO 2    | Understand                  |
| 3                   | b | AEC016.07   | Understand different concepts of display and keyboard interfacing using embedded C.                               | CO 2    | Understand                  |
| 4                   | a | AEC016.08   | Understand different concepts of serial communication using embedded C and user interfacing                       | CO 2    | Understand                  |
| 4                   | b | AEC016.05   | Understand the basic programming of c and its looping structure.                                                  | CO 2    | Understand                  |
| 5                   | a | AEC016.10   | Understand and analyze the RTOS concepts for firmware development.                                                | CO 3    | Understand                  |
| 3                   | b | AEC016.09   | Remember the basics of operating system and its commands.                                                         | CO 3    | Remember                    |
| 6                   | a | AEC016.11   | Remember how to choose an RTOS, task scheduling, semaphores and queues, hard real-time scheduling considerations. | CO 3    | Remember                    |
|                     | b | AEC016.12   | Understand the task communication, its programming and Task synchronization with its issues and techniques.       | CO 3    | Understand                  |
| 7                   | a | AEC016.13   | Develop host and target machines for linking to embedded software.                                                | CO 4    | Understand                  |
| ,                   | b | AEC016.13   | Develop host and target machines for linking to embedded software                                                 | CO 4    | Understand                  |
| 8                   | a | AEC016.13   | Develop host and target machines for linking to embedded software                                                 | CO 4    | Understand                  |
| 0                   | b | AEC016.14   | Develop debugging techniques for testing on host machine with examples.                                           | CO 4    | Understand                  |
| 9                   | a | AEC016.15   | Remember the advanced processors such as ARM and SHARC.                                                           | CO 5    | Understand                  |
|                     | b | AEC016.16   | Understand the bus protocols such as I2C and CAN bus.                                                             | CO 5    | Understand                  |
| 10                  | a | AEC016.17   | Design an application based on advanced technological changes.                                                    | CO 5    | Understand                  |
|                     | b | AEC016.16   | Understand the bus protocols such as I2C and CAN bus.                                                             | CO 5    | Understand                  |