
EMBEDDED SYSTEM DESIGN (AEC551)

B.Tech -ECE-VI Sem

IARE-R16

Prepared By

Mr. N Nagaraju, Assistant Professor, ECE

UNIT-I

EMBEDDED COMPUTING

Definition

• Embedded computing system: any device that
includes a programmable computer but is not
itself a general-purpose computer.

• Take advantage of application characteristics
to optimize the design:

– don’t need all the general-purpose bells and
whistles.

Embedding a computer

CPU

mem

input

output analog

analog

embedded

computer

Early history

• Late 1940’s: MIT Whirlwind computer was
designed for real-time operations.

– Originally designed to control an aircraft simulator.

• First microprocessor was Intel 4004 in early
1970’s.

• HP-35 calculator used several chips to
implement a microprocessor in 1972.

Early history, cont’d.

• Automobiles used microprocessor-based
engine controllers starting in 1970’s.

– Control fuel/air mixture, engine timing, etc.

– Multiple modes of operation: warm-up, cruise, hill
climbing, etc.

– Provides lower emissions, better fuel efficiency.

Automotive embedded systems

• Today’s high-end automobile may have 100
microprocessors:

– 4-bit microcontroller checks seat belt;

– microcontrollers run dashboard devices;

– 16/32-bit microprocessor controls engine.

BMW 850i brake and stability control system

• Anti-lock brake system (ABS): pumps brakes to
reduce skidding.

• Automatic stability control (ASC+T): controls
engine to improve stability.

• ABS and ASC+T communicate.

– ABS was introduced first---needed to interface to
existing ABS module.

BMW 850i, cont’d.

brake

sensor

brake

sensor

brake

sensor

brake

sensor

ABS
hydraulic

pump

Application Areas

• TV
• stereo
• remote control
• phone / mobile phone
• refrigerator
• microwave
• washing machine
• electric tooth brush
• oven / rice or bread cooker
• watch
• alarm clock
• electronic musical instruments
• electronic toys (stuffed animals, handheld toys, pinballs, etc.)
• medical home equipment (e.g. blood
pressure, thermometer)
• …
• *PDAs?? More like standard computer system+

Consumer Products

Application Areas

• Medical Systems
– pace maker, patient monitoring systems, injection systems, intensive

care units, …

• Office Equipment
– printer, copier, fax, …

• Tools
– multimeter, oscilloscope, line tester, GPS, …

• Banking
– ATMs, statement printers, …

• Transportation
– (Planes/Trains/[Automobiles] and Boats)

• radar, traffic lights, signalling systems, …

Application Areas

• Automobiles

– engine management, trip computer, cruise control,
immobilizer, car alarm,

– airbag, ABS, ESP, …

• Building Systems

– elevator, heater, air conditioning, lighting, key card
entries, locks, alarm systems, …

• Agriculture

– feeding systems, milking systems, …

• Space

– satellite systems, …

Application Areas

Application Areas

Embedded Systems vs General-Purpose
Systems

• Embedded System is a special-
purpose computer system
designed to perform one or a
few dedicated functions --
Wikipedia

– In general, it does not provide
programmability to users, as
opposed to general purpose
computer systems like PC

– Embedded systems are virtually
everywhere in your daily life

Embedded Systems (Cont)

• Even though embedded systems cover a wide
range of special-purpose systems, there are
common characteristics
– Low cost

• Should be cheap to be competitive
– Memory is typically very small compared to a

general purpose computer system

– Lightweight processors are used in embedded
systems

– Low power
• Should consume low power especially in case of

portable devices

• Low-power processors are used in embedded
systems

Embedded Systems (Cont)

– High performance
• Should meet the computing requirements

of applications
– Users want to watch video on portable

devices
» Audio should be in sync with video

– Gaming gadgets like playstation should
provide high performance

– Real-time property
• Job should be done within a time limit

– Aerospace applications, Car control
systems, Medical gadgets are critical in
terms of time constraint – Otherwise, it
could lead to catastrophe such as loss of life

• Will talk more about this

Embedded Systems (Cont)

• It is challenging to satisfy the characteristics

– You may not be able to achieve high performance
while maintaining low power consumption and
making use of cheap components

– So, you got to do your best in a given
circumstance to be competitive in the market

HW/SW Stack of Embedded Systems

• Identical to the general-computer systems

OS / Device Drivers

Hardware

Application Software

Components of Embedded Systems

• Hardware
– It is mainly composed of processor (1 or more), memory,

I/O devices including network devices, timers, sensors etc.

Components of Embedded Systems

• Software
– System software

• Operating systems
– Many times, a multitasking (multithreaded) OS is required, as embedded

applications become complicated
» Networking, GUI, Audio, Video
» Processor is context-switched to process multiple jobs

– Operating system footprint should be small enough to fit into memory of
an embedded system

» In the past and even now, real-time operating systems (RTOS) such
as VxWorks or uC/OS-II have been used because they are light-
weighted in terms of memory requirement

» Nowadays, little heavy-weighted OSs such as Windows-CE or
embedded Linux (uClinux) are used, as embedded processors
support computing power and advanced capabilities such as MMU
(Memory Management Unit)

• Device drivers for I/O devices

Components of Embedded Systems (Cont)

• Software (cont.)

– Application software

• Run on top of operating system

• Execute tasks that users wish to perform
– Web surfing, Audio, Video playback

Real-Time System

• Real-time operating system (RTOS)
– Multitasking operating system intended for real-time applications

– RTOS facilitates the creation of real-time systems

– RTOS does not necessarily have a high throughput

– RTOS is valued more for how quickly and/or predictably it can respond
to a particular event

• Hard real-time systems are required to complete a critical task within a
guaranteed amount of time

• Soft real-time systems are less restrictive

– Implementing real-time system requires a careful design of scheduler
• System must have the priority-based scheduling

– Real-time processes must have the highest priority

– Priority inheritance (next slide)
» Solve the priority inversion problem

• Process dispatch latency must be small

A General-Purpose Computer System

CPU

North

Bridge

South

Bridge

Main

Memory

(DDR2)

FSB

(Front-Side Bus)

DMI

(Direct Media I/F)
Hard disk

USB

PCIe card

Peripheral

devices

Graphics

card

But, don’t forget the big picture!

Present, Near Future and More…

• Core 2 Duo – based Systems

Keep in mind that CPU and computer systems are evolving at a fast pace

CPU

North

Bridge

South

Bridg

e

Main

Memo

ry

(DDR2)

FSB

(Front-Side Bus)

DMI

(Direct Media I/F)

• Core i7– based Systems

CPU

IOH

(Input/Output

Hub)

South

Bridg

e

Main

Memo

ry

(DDR3)

DMI

(Direct Media I/F)

Quickpath (Intel) or

Hypertransport (AMD)

x86 History (as of 2008)

x86 History (Cont.)
32-bit

(i386)

32-bit

(i586)

64-bit

(x86_64)

32-bit

(i686)

8-bit 16-bit 4-bit

Core i7

2009

x86?

• What is x86?
– Generic term referring to processors from Intel, AMD and VIA
– Derived from the model numbers of the first few generations of

processors:
• 8086, 80286, 80386, 80486 x86

– Now it generally refers to processors from Intel, AMD, and VIA
• x86-16: 16-bit processor
• x86-32 (aka IA32): 32-bit processor * IA: Intel Architecture
• x86-64: 64-bit processor

• Intel takes about 80% of the PC market and AMD takes about
20%
– Apple also have been introducing Intel-based Mac from Nov. 2006

Core i7-based Systems

• Core i7 860 (Lynnfield) –
based system

• Core i7 920 (Bloomfield)
– based system

Software Stack

Computer Hardware

(CPU, Chipset, PCIe cards

...)

BIOS

(AMI, Phoenix

Technologies …)

Operating System

(Linux, Vista, Mac OS …)

Applications

(MS-office, Google

Earth…)
API

(Application Program I/F)

BIOS provides

common I/Fs

Design goals

• Performance.

– Overall speed, deadlines.

• Functionality and user interface.

• Manufacturing cost.

• Power consumption.

• Other requirements (physical size, etc.)

Levels of abstraction

requirements

specification

architecture

component

design

system

integration

Top-down vs. bottom-up

• Top-down design:

– start from most abstract description;

– work to most detailed.

• Bottom-up design:

– work from small components to big system.

• Real design uses both techniques.

Stepwise refinement

• At each level of abstraction, we must:

– analyze the design to determine characteristics of
the current state of the design;

– refine the design to add detail.

Requirements

• Plain language description of what the user
wants and expects to get.

• May be developed in several ways:

– talking directly to customers;

– talking to marketing representatives;

– providing prototypes to users for comment.

Functional vs. non-functional requirements

• Functional requirements:

– output as a function of input.

• Non-functional requirements:

– time required to compute output;

– size, weight, etc.;

– power consumption;

– reliability;

– etc.

Our requirements form

name

purpose

inputs

outputs

functions

performance

manufacturing cost

power

physical size/weight

Example: GPS moving map requirements

• Moving map
obtains position
from GPS, paints
map from local
database.

lat: 40 13 lon: 32 19

I-78

S
c
o

tc
h

 R
o

a
d

GPS moving map needs

• Functionality: For automotive use. Show major roads
and landmarks.

• User interface: At least 400 x 600 pixel screen. Three
buttons max. Pop-up menu.

• Performance: Map should scroll smoothly. No more
than 1 sec power-up. Lock onto GPS within 15
seconds.

• Cost: $120 street price = approx. $30 cost of goods
sold.

GPS moving map needs, cont’d.

• Physical size/weight: Should fit in hand.

• Power consumption: Should run for 8 hours
on four AA batteries.

GPS moving map requirements form

name GPS moving map

purpose consumer-grade
moving map for driving

inputs power button, two
control buttons

outputs back-lit LCD 400 X 600

functions 5-receiver GPS; three
resolutions; displays
current lat/lon

performance updates screen within
0.25 sec of movement

manufacturing cost $100 cost-of-goods-
sold

power 100 mW

physical size/weight no more than 2: X 6:,
12 oz.

Specification

• A more precise description of the system:

– should not imply a particular architecture;

– provides input to the architecture design process.

• May include functional and non-functional
elements.

• May be executable or may be in mathematical
form for proofs.

GPS specification

• Should include:

– What is received from GPS;

– map data;

– user interface;

– operations required to satisfy user requests;

– background operations needed to keep the
system running.

Architecture design

• What major components go satisfying the
specification?

• Hardware components:

– CPUs, peripherals, etc.

• Software components:

– major programs and their operations.

• Must take into account functional and non-
functional specifications.

GPS moving map block diagram

GPS

receiver

search

engine
renderer

user

interfacedatabase

display

GPS moving map hardware architecture

GPS

receiver

CPU

panel I/O

display frame

buffer

memory

GPS moving map software architecture

position database

search
renderer

timer
user

interface

pixels

Designing hardware and software components

• Must spend time architecting the system
before you start coding.

• Some components are ready-made, some can
be modified from existing designs, others
must be designed from scratch.

System integration

• Put together the components.

– Many bugs appear only at this stage.

• Have a plan for integrating components to
uncover bugs quickly, test as much
functionality as early as possible.

System modeling

• Need languages to describe systems:

– useful across several levels of abstraction;

– understandable within and between
organizations.

• Block diagrams are a start, but don’t cover
everything.

Object-oriented design

• Object-oriented (OO) design: A generalization
of object-oriented programming.

• Object = state + methods.

– State provides each object with its own identity.

– Methods provide an abstract interface to the
object.

Objects and classes

• Class: object type.

• Class defines the object’s state elements but
state values may change over time.

• Class defines the methods used to interact
with all objects of that type.

– Each object has its own state.

OO design principles

• Some objects will closely correspond to real-
world objects.

– Some objects may be useful only for description
or implementation.

• Objects provide interfaces to read/write state,
hiding the object’s implementation from the
rest of the system.

UML

• Developed by Booch et al.

• Goals:

– object-oriented;

– visual;

– useful at many levels of abstraction;

– usable for all aspects of design.

UML object

d1: Display

pixels: array[] of pixels

elements

menu_items

pixels is a

2-D array

comment

object name

class name

attributes

UML class

Display

pixels

elements

menu_items

mouse_click()

draw_box
operations

class name

The class interface

• The operations provide the abstract interface
between the class’s implementation and other
classes.

• Operations may have arguments, return
values.

• An operation can examine and/or modify the
object’s state.

Choose your interface properly

• If the interface is too small/specialized:

– object is hard to use for even one application;

– even harder to reuse.

• If the interface is too large:

– class becomes too cumbersome for designers to
understand;

– implementation may be too slow;

– spec and implementation are probably buggy.

Relationships between objects and classes

• Association: objects communicate but one
does not own the other.

• Aggregation: a complex object is made of
several smaller objects.

• Composition: aggregation in which owner
does not allow access to its components.

• Generalization: define one class in terms of
another.

Class derivation

• May want to define one class in terms of
another.

– Derived class inherits attributes, operations of
base class.

Derived_class

Base_class

UML

generalization

Class derivation example

Display

pixels

elements

menu_items

pixel()

set_pixel()

mouse_click()

draw_box

BW_display Color_map_display

base

class

derived class

Multiple inheritance

Speaker Display

Multimedia_display

base classes

derived class

Links and associations

• Link: describes relationships between objects.

• Association: describes relationship between
classes.

Link example

• Link defines the contains relationship:

message

msg = msg1

length = 1102

message

msg = msg2

length = 2114

message set

count = 2

Association example

message

msg: ADPCM_stream

length : integer

message set

count : integer

0..* 1

contains

contained messages # containing message sets

Stereotypes

• Stereotype: recurring combination of
elements in an object or class.

• Example:

– <<foo>>

Behavioral description

• Several ways to describe behavior:

– internal view;

– external view.

State machines

a b

state state name

transition

Event-driven state machines

• Behavioral descriptions are written as event-
driven state machines.

– Machine changes state when receiving an input.

• An event may come from inside or outside of
the system.

Types of events

• Signal: asynchronous event.

• Call: synchronized communication.

• Timer: activated by time.

Signal event

<<signal>>

mouse_click

leftorright: button

x, y: position

declaration

a

b

mouse_click(x,y,button)

event description

Call event

c d

draw_box(10,5,3,2,blue)

Timer event

e f

tm(time-value)

Example state machine

region

found

got menu

item

called

menu item

found

object

object

highlighted

start

finish

mouse_click(x,y,button)/

find_region(region)

input/output

region = menu/

which_menu(i) call_menu(I)

region = drawing/

find_object(objid) highlight(objid)

Sequence diagram

• Shows sequence of operations over time.

• Relates behaviors of multiple objects.

Sequence diagram example

m: Mouse d1: Display u: Menu

mouse_click(x,y,button)
which_menu(x,y,i)

call_menu(i)

time

UNIT-II

8051 Microcontroller

77

Block Diagram

78

• Internal ROM and RAM

• I/O Ports with programmable Pins

• ALU

• Working Registers

• Timers and Counters

• Serial Data Communication.

Introduction

79

Specific Features

• 8 bit CPU with registers A and B

• 16 bit PC and DPTR(data pointer).

• 8 bit Program Status Word(PSW)

• 8 bit Stack Pointer(SP)

• 4K Internal ROM

• 128bytes Internal RAM

4 register banks each having 8 registers

16 bytes, which may be addressed at the bit level.

80 bytes of general purpose data memory

80

Specific Features

• 32 i/o pins arranged as four 8 bit ports:P0 to P3

• Two 16 bit timer/counters:T0 and T1

• Full duplex serial data receiver/transmitter: SBUF

• Control registers: TCON, TMOD, SCON, PCON, IP and IE

• Two external and Three internal interrupt sources.

• Oscillator and Clock Circuits.

81

8051 Programming Model

82

• They are both 16 bit registers.

• Each is to hold the address of a byte in memory

• PC contains the address of the next instruction to be
executed. (does not have internal address)

• DPTR is made up of two 8 bit register DPH and DPL;

• DPTR contains the address of internal & external code and
data that has to be accessed.

Program Counter & Data Pointer(DPTR)

83

A and B CPU registers

• Totally 34 general purpose registers or working registers.

• Two of these A and B hold results of many instructions,
particularly math and logical operations of 8051 CPU.

• The other 32 are in four banks, B0 – B3 of eight registers each
named as R0 to R7.

• A(accumulator) is used for addition, subtraction,
multiplication, division, Boolean bit manipulation and for data
transfers (between 8051 and any external memory).

• But B register can only be used for multiplication and division
operations.

84

Flag bits and the PSW register

• Program Status Word Register
CY AC F0, GF0,

GF1

RS1 OVRS0 P--

CYPSW.7Carry flag

ACPSW.6Auxiliary carry flag

--PSW.5Available to the user for general purpose

RS1PSW.4Register Bank selector bit 1

RS0PSW.3Register Bank selector bit 0

OVPSW.2Overflow flag

--PSW.1User define bit

PPSW.0Parity flag Set/Reset odd(1)/even(0) parity

RS1 RS0 Register Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH

85

•Two flag bits are stored in PCON(Power control) registers also.

•They are the GF1 (3rd) and GF0(2nd) bits

•They are general purpose user flag bit 1 and 0 respectively

•They can be set or cleared by the program

Flag bits and the PSW register

86

• 128 bytes of RAM memory space allocation in the 8051

7FH

30H

2FH

20H

1FH

17H

10H

0FH

07H

08H

18H

00H
Register Bank 0

(Stack) Register Bank 1

Register Bank 2

Register Bank 3

Bit-Addressable RAM

General purpose RAM

Memory Organization

87

Internal RAM organization

88

Stack in the 8051

• The register used to access
the stack is called SP (stack
pointer) register.

• The stack pointer in the
8051 is only 8 bits wide,
which means that it can
take value 00 to FFH. When
8051 powered up, the SP
register contains value 07.

7FH

30H

2FH

20H

1FH

17H

10H

0FH

07H

08H

18H

00H
Register Bank 0

(Stack) Register Bank 1

Register Bank 2

Register Bank 3

Bit-Addressable RAM

Scratch pad RAM

89

Stack in the 8051

90

Special Function Registers
Name Function Name Function

A Accumulator PSW Pgm Status Word

B Arithmetic SCON Serial Port Control

DPH Addressing Ext
Memory

SBUF Serial Port data buffer

DPL Addressing Ext
Memory

SP Stack Pointer

IE Interrupt enable TMOD Timer/Counter mode
control

IP Interrupt Priority TCON Timer/Counter control

P0 I/O Port Latch TL0 Timer0 lower byte

P1 I/O Port Latch TH0 Timer0 higher byte

P2 I/O Port Latch TL1 Timer1 lower byte

P3 I/O Port Latch TH1 Timer1 higher byte

PCON Power Control

91

Pin Description of the 8051

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1

(T0)P3.4
(T1)P3.5

XTAL2
XTAL1

GND

(INT0)P3.2

(INT1)P3.3

(RD)P3.7
(WR)P3.6

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)

EA
ALE/PROG

PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

8051

92

Pins of 8051（1/4）

• Vcc（pin 40）：

– Vcc provides supply voltage to the chip.

– The voltage source is +5V.

• GND（pin 20）：ground

• XTAL1 and XTAL2（pins 19,18）：

– These 2 pins provide external clock.

93

Pins of 8051（2/4）

• RST（pin 9）：reset

– It is an input pin and is active high（normally low）.

• Upon applying a high pulse to RST, the
microcontroller will reset and all values in registers
will be lost.

94

Pins of 8051（3/4）

• /EA（pin 31）：external access

– The /EA pin is connected to GND to indicate the code is
stored externally.

– For 8051, /EA pin is connected to Vcc. Program fetches
the address 0000H through 0FFFH are directed to
internal ROM.

– Program fetches the address 1000H through FFFFH are
directed to external ROM

– “/” means active low.

• /PSEN（pin 29）: program store enable

– This is an output pin and is connected to the OE pin of
the ROM

95

Pins of 8051（4/4）

• ALE（pin 30）：address latch enable

– It is an output pin and is active high.

– 8051 port 0 provides both address and data.

– When ALE=0, P0 provides data D0-D7.

– When ALE=1, P0 provides address A0-A7.

– The ALE pin is used for de-multiplexing the address and data
by connecting to the G pin of the 74LS373 latch.

• I/O port pins

– The four ports P0, P1, P2, and P3.

– Each port uses 8 pins.

– All I/O pins are bi-directional.

96

Pins of I/O Port

• The 8051 has four I/O ports

– Port 0 （pins 32-39）：P0（P0.0～P0.7）

– Port 1（pins 1-8） ：P1（P1.0～P1.7）

– Port 2（pins 21-28）：P2（P2.0～P2.7）

– Port 3（pins 10-17）：P3（P3.0～P3.7）

– Each port has 8 pins.

• Named P0.X （X=0,1,...,7）, P1.X, P2.X, P3.X

• Ex：P0.0 is the bit 0（LSB）of P0

• Ex：P0.7 is the bit 7（MSB）of P0

• These 8 bits form a byte.

• Each port can be used as input or output (bi-direction).

97

Port 0（pins 32-39）

• When connecting an 8051 to an external memory, the 8051
uses ports to send addresses and read instructions.

– 16-bit address：P0 provides both address A0-A7,

– P2 provides address A8-A15.

– Also, P0 provides data lines D0-D7.

• When P0 is used for address/data multiplexing, it is
connected to the 74LS373 to latch the address.

I/O Port Programming

98

Port 1（pins 1-8）

• Port 1 is denoted by P1.

– P1.0 ~ P1.7

– P1 as an output port (i.e., write CPU data to the
external pin)

– P1 as an input port (i.e., read pin data into CPU bus)

99

I/O Port Programming

Port 3（pins 10-17）
• Although port 3 is configured as an output port upon reset,

this is not the way it is most commonly used.

• Port 3 has the additional function of providing signals.

– Serial communications signal：RxD, TxD

– External interrupt：/INT0, /INT1

– Timer/counter：T0, T1

– External memory accesses ：/WR, /RD

100

I/O Port Programming

Port 3 Alternate Functions

17RDP3.7

16WRP3.6

15T1P3.5

14T0P3.4

13INT1P3.3

12INT0P3.2

11TxDP3.1

10RxDP3.0

PinFunctionP3 Bit

101

I/O Port Circuits (Port-0)

• Each port has D type o/p latch for each pin

• The SFR for each port is made-up of these eight latches

• Eight latches for port0 are addressed at location 80H

• The data on latches does not have to be the same as that on the pins

• The signal “write to latch” acts as clock i/p for D flip-flop. The data from
the internal bus is data-in in response to a “write to latch” signal from CPU

102

I/O Port Circuits (Port-0)

• The two data paths, that read the latch or pin data using two separate
buffers.

• Upper buffer is enabled when latch data is read and lower buffer when pin
state is read.

• The Qbar or Q o/p after inversion from D FF is connected at the gate i/p
of driver FET. The ON and OFF state of the driver FET due to the data
available at the o/p of latch decides the status of the o/p pin.

• It is possible to read Q o/p of the latch by activating “read latch” signal
from the CPU. The actual port status can be read by activating “read pin”
signal.

103

104

I/O Port Circuits

• Port 0 and port 2 drivers are switchable to internal address/data and
address bus respectively, by internal “control logic”. The switching is
required to access external memory.

• Port3 has multi function pins, each pin of port3 can be programmed to use
as i/o or as one of the alternate function. This is achieved by the another
control i/p “alternate o/p function”.

105

I/O Port Circuits

• The port pin can be configured as an i/p by writing ‘1’ in the latch bit of
the corresponding pin, it turn OFF the o/p driver FET. Then for ports 1,2,3
the pin is pulled high by the internal pull up, but can be pulled down/low
by an external source.

• There is no pull up for port0, therefore its o/p pin floats when ‘1’ is written
in the latch bit, so port 0 is said to be “time bi-directional”, because when
configured as an i/p it floats.

• On the other hand the o/p of ports 1,2,3 are pulled high with pull
registers, when configured as an i/p, thus they are sometimes called
“quasi bi-directional” ports.

106

I/O Port Circuits

External Memory

• The designer is not limited by the amount of internal RAM
and ROM available on chip.

107

External Memory

• The designer is not limited by the amount of internal RAM
and ROM available on chip.

• Two separate external memory spaces are available by the
16 bit PC and DPTR and by different control pins for
enabling external ROM and RAM Chips.

• The reason for adding external memory, particularly
program memory is when project is in the prototype stage,
the expense in-time and money of having a masked internal
ROM made for each program “try” is prohibitive.

108

External Memory

• 4K on chip EPROM for erased and reprogram.

• To program EPROM 8751 specialized programmers are
required.

• If the program size exceeds more than 4K external memory
is required.

• If /EA pin is grounded when using 8051, and program code
is present in external EPROM of 64K size.

• External RAM, which is accessed by the DPTR may need
when 128 bytes of internal storage is not sufficient.
External RAM up to 64K size may also be added to 8051.

109

External Memory

• External ROM is accessed whenever the /EA pin is
connected to GND or when the PC contains an address
higher than the last address in the internal 4K ROM (0FFFH)

110

External Memory

• Port 0 is multiplexed, it first provides the lower byte of the 16-bit
memory address, then acts as a bidirectional data bus to write or
read a byte of memory data.

• Port 2 provides the high byte of the memory address during the
entire memory read/write cycle.

• The lower address byte from port 0 must be latched into an
external register to save the byte. Address byte save is
accomplished by the ALE clock pulse that provides the correct
timing, Port 0pins then free to serve as a data bus.

• If the memory access is for a byte of program code in the ROM, the
/PSEN pin will go low to enable the ROM to place a byte of program
code on the data bus.

111

External Memory

• If the access is for a RAM byte, the /WR and /RD pins will go
low enabling data to flow b/w RAM and data bus.

• ROM may be expanded to 64K by using a 27512 type EPROM.

• The use of external memory consumes many of the port pins,
leaving only port 1 and parts of port 3 for general I/O.

112

8051 Addressing Modes

• The CPU can access data in various ways,
which are called addressing modes

1. Immediate

2. Register

3. Direct

4. Register indirect

5. External Direct

113

Immediate Addressing Mode
• The source operand is a constant.

• The immediate data must be preceded by the pound sign, “#”

• Can load information into any registers, including 16-bit DPTR
register
– DPTR can also be accessed as two 8-bit registers, the high byte DPH and

low byte DPL

114

Register Addressing Mode
• Use registers to hold the data to be manipulated.

115

• The source and destination registers must match in size.
MOV DPTR,A will give an error

• The movement of data between Rn registers is not allowed
MOV R4,R7 is invalid

Direct Addressing Mode

• It is most often used the direct addressing mode to access
RAM locations 30 – 7FH.

• The entire 128 bytes of RAM can be accessed.

• Contrast this with immediate addressing mode, there is no
“#” sign in the operand.

116

SFR Registers & their Addresses

MOV 0E0H,#55H ;is the same as

MOV A,#55H ;which means load 55H into A (A=55H)

MOV 0F0H,#25H ;is the same as

MOV B,#25H ;which means load 25H into B (B=25H)

MOV 0E0H,R2 ;is the same as

MOV A,R2 ;which means copy R2 into A

MOV 0F0H,R0 ;is the same as

MOV B,R0 ;which means copy R0 into B

117

Stack and Direct Addressing Mode

• Only direct addressing mode is allowed for pushing or popping the stack.

• PUSH A is invalid.

• Pushing the accumulator onto the stack must be coded as PUSH 0E0H.

118

Register Indirect Addressing Mode

• A register is used as a pointer to the data.

• Only register R0 and R1 are used for this purpose.

• R2 – R7 cannot be used to hold the address of an
operand located in RAM.

• When R0 and R1 hold the addresses of RAM
locations, they must be preceded by the “@” sign.

119

Register Indirect Addressing Mode
• Write a program to copy the value 55H into RAM memory locations 40H

to 41H using (a) direct addressing mode, (b) register indirect addressing
mode without a loop, and (c) with a loop.

120

Register Indirect Addressing Mode
• The advantage is that it makes accessing data dynamic

rather than static as in direct addressing mode.

• Looping is not possible in direct addressing mode.

• Write a program to clear 16 RAM locations starting at RAM
address 60H.

121

External Direct

• External Memory is accessed.

• There are only two commands that use External
Direct addressing mode:

– MOVX A, @DPTR
MOVX @DPTR, A

• DPTR must first be loaded with the address of
external memory.

122

8051 Instruction Set

• 8051 instructions have 8-bit opcode

• There are 256 possible instructions of which 255
are

• implemented

123

MOV Instruction

• MOV destination, source ; copy source to destination.

• MOV A,#55H ;load value 55H into reg. A

MOV R0,A ;copy contents of A into R0

;(now A=R0=55H)

MOV R1,A ;copy contents of A into R1

;(now A=R0=R1=55H)

MOV R2,A ;copy contents of A into R2

;(now A=R0=R1=R2=55H)

MOV R3,#95H ;load value 95H into R3

;(now R3=95H)

MOV A,R3 ;copy contents of R3 into A

;now A=R3=95H

124

ADD Instruction

• ADD A, source ;ADD the source operand to the
accumulator

• MOV A, #25H ;load 25H into A

MOV R2,#34H ;load 34H into R2

ADD A,R2 ;add R2 to accumulator

;(A = A + R2)

125

Structure of Assembly Language

ORG 0H ;start (origin) at location 0

MOV R5,#25H ;load 25H into R5

MOV R7,#34H ;load 34H into R7

MOV A,#0 ;load 0 into A

ADD A,R5 ;add contents of R5 to A

;now A = A + R5

ADD A,R7 ;add contents of R7 to A

;now A = A + R7

ADD A,#12H ;add to A value 12H

;now A = A + 12H

HERE: SJMP HERE ;stay in this loop

END ;end of asm source file

126

Data Types & Directives

ORG 500H

DATA1: DB 28 ;DECIMAL (1C in Hex)

DATA2: DB 00110101B ;BINARY (35 in Hex)

DATA3: DB 39H ;HEX

ORG 510H

DATA4: DB “2591” ; ASCII NUMBERS

ORG 518H

DATA6: DB “My name is Joe” ;ASCII CHARACTERS

127

Multiplication of Unsigned Numbers

MUL AB ; A B, place 16-bit result in B and A

MOV A,#25H ;load 25H to reg. A

MOV B,#65H ;load 65H in reg. B

MUL AB ;25H * 65H = E99 where B = 0EH and A = 99H

Table 6-1:Unsigned Multiplication Summary (MUL AB)

Multiplication Operand 1 Operand 2 Result

byte byte A B A=low byte,

B=high byte

128

Division of Unsigned Numbers

DIV AB ; divide A by B

• MOV A,#95H ;load 95 into A

• MOV B,#10H ;load 10 into B

• DIV AB ;now A = 09 (quotient) and B = 05 (remainder)

129

Table 6-2:Unsigned Division Summary (DIV AB)

Division Numerator Denominator Quotient Remainder

byte / byte A B A B

Unconditional Jump Instructions

• All conditional jumps are short jumps

– Target address within -128 to +127 of PC

• LJMP (long jump): 3-byte instruction

– 2-byte target address: 0000 to FFFFH

– Original 8051 has only 4KB on-chip ROM

• SJMP (short jump): 2-byte instruction

– 1-byte relative address: -128 to +127

130

Call Instructions

• LCALL (long call): 3-byte instruction

– 2-byte address

– Target address within 64K-byte range

• ACALL (absolute call): 2-byte instruction

– 11-bit address

– Target address within 2K-byte range

131

8051 Peripheral Overview

1. Timers

2. Serial Port

3. Interrupts

132

8051 Timer/Counter

133

OSC ÷12

TLx
(8 Bit)

/ 0C T

/ 1C T

INT PIN

Gate

TR

T PIN

THx
(8 Bit)

TFx
(1 Bit)

INTERRUPT

TMOD Register

134

GATE:

When set, timer/counter x is enabled, if INTx pin is high

and TRx is set.

When cleared, timer/counter x is enabled, if TRx bit set.

C/T*:

When set, counter operation (input from Tx input pin).

When cleared, timer operation (input from internal clock).

TMOD Register

135

The TMOD byte is not bit addressable.

TCON Register

136

8051 Timer Modes

137

Timer 0

Mode 3

Mode 2

Mode 1

Mode 0

Mode 2

Mode 1

Mode 0

Timer 1

8051 TIMERS

OSC ÷12

TL0
/ 0C T

/ 1C T

0INT PIN

Gate

0TR

0T PIN

TH0

INTERRUPT

TIMER 0

TF0

138

TL0
(5 Bit)

INTERRUPT

TIMER 0 – Mode 0

OSC ÷12
/ 0C T

/ 1C T

0INT PIN

Gate

0TR

0T PIN

TH0
(8 Bit)

TF0

13 Bit Timer / Counter

Maximum Count = 1FFFh (0001111111111111)

139

TL0
(8 Bit)

INTERRUPT

TIMER 0 – Mode 1

OSC ÷12
/ 0C T

/ 1C T

0INT PIN

Gate

0TR

0T PIN

TH0
(8 Bit)

TF0

16 Bit Timer / Counter

Maximum Count = FFFFh (1111111111111111)

140

TH0
(8 Bit)

Reload

TIMER 0 – Mode 2

8 Bit Timer / Counter with AUTORELOAD

TL0
(8 Bit)

OSC ÷12
/ 0C T

/ 1C T

0INT PIN

Gate

0TR

0T PIN

TH0
(8 Bit)

TF0 INTERRUPT

Maximum Count = FFh (11111111)
141

TL0
(8 Bit)

INTERRUPT

TIMER 0 – Mode 3

OSC ÷12
/ 0C T

/ 1C T

0INT PIN

Gate

0TR

0T PIN

TF0

Two - 8 Bit Timer / Counter

OSC ÷12

1TR

TH0
(8 Bit)

INTERRUPTTF1

142

OSC ÷12

TL1
/ 0C T

/ 1C T

Gate

TH1

INTERRUPT

TIMER 1

TF1

1INT PIN

1TR

1T PIN

143

TL1
(5 Bit)

INTERRUPT

TIMER 1 – Mode 0

OSC ÷12
/ 0C T

/ 1C T

Gate

TH1
(8 Bit)

TF1

13 Bit Timer / Counter

Maximum Count = 1FFFh (0001111111111111)

1INT PIN

1TR

1T PIN

144

TL1
(8 Bit)

INTERRUPT

TIMER 1 – Mode 1

OSC ÷12
/ 0C T

/ 1C T

Gate

TH1
(8 Bit)

TF1

16 Bit Timer / Counter

Maximum Count = FFFFh (1111111111111111)

1INT PIN

1TR

1T PIN

145

TH1
(8 Bit)

Reload

TIMER 1 – Mode 2

8 Bit Timer / Counter with AUTORELOAD

TL1
(8 Bit)

OSC ÷12
/ 0C T

/ 1C T

Gate

TH1
(8 Bit)

TF1 INTERRUPT

Maximum Count = FFh (11111111)

1INT PIN

1TR

1T PIN

146

Programming Timers

• Example: Indicate which mode and which timer are
selected for each of the following.

(a) MOV TMOD, #01H (b) MOV TMOD, #20H (c)
MOV TMOD, #12H

• Solution: We convert the value from hex to binary.
(a) TMOD = 00000001, mode 1 of timer 0 is selected.

(b) TMOD = 00100000, mode 2 of timer 1 is selected.

(c) TMOD = 00010010, mode 2 of timer 0, and mode 1 of
timer 1

are selected.

147

Programming Timers

• Find the timer’s clock frequency and its period for
various 8051-based system, with the crystal
frequency 11.0592 MHz when C/T bit of TMOD is 0.

• Solution:

148

1/12 × 11.0529 MHz = 921.6 MHz;

T = 1/921.6 kHz = 1.085 us

8051 Serial Port

149

Basics of Serial Communication

• Computers transfer data in two ways:
– Parallel: Often 8 or more lines (wire conductors) are used

to transfer data to a device that is only a few feet away.

– Serial: To transfer to a device located many meters away,
the serial method is used. The data is sent one bit at a
time.

150

Basics of Serial Communication

• Serial data communication uses two methods
– Synchronous method transfers a block of data at a time

– Asynchronous method transfers a single byte at a time

• There are special IC’s made by many manufacturers
for serial communications.
– UART (universal asynchronous Receiver transmitter)

– USART (universal synchronous-asynchronous Receiver-
transmitter)

151

Asynchronous – Start & Stop Bit

• Asynchronous serial data communication is widely
used for character-oriented transmissions
– Each character is placed in between start and stop bits,

this is called framing.
– Block-oriented data transfers use the synchronous

method.

• The start bit is always one bit, but the stop bit can
be one or two bits

• The start bit is always a 0 (low) and the stop bit(s) is
1 (high)

152

Asynchronous – Start & Stop Bit

153

Data Transfer Rate
• The rate of data transfer in serial data

communication is stated in bps (bits per second).

• Another widely used terminology for bps is baud
rate.
– It is modem terminology and is defined as the number of

signal changes per second
– In modems, there are occasions when a single change of

signal transfers several bits of data

• As far as the conductor wire is concerned, the baud
rate and bps are the same.

154

8051 Serial Port

• Synchronous and Asynchronous

• SCON Register is used to Control

• Data Transfer through TXd & RXd pins

• Some time - Clock through TXd Pin

• Four Modes of Operation:

155

Mode 0 :Synchronous Serial Communication
Mode 1 :8-Bit UART with Timer Data Rate
Mode 2 :9-Bit UART with Set Data Rate
Mode 3 :9-Bit UART with Timer Data Rate

Registers related to Serial Communication

1. SBUF Register

2. SCON Register

3. PCON Register

156

SBUF Register

• SBUF is an 8-bit register used solely for serial communication.

• For a byte data to be transferred via the TxD line, it must be
placed in the SBUF register.

• The moment a byte is written into SBUF, it is framed with the
start and stop bits and transferred serially via the TxD line.

• SBUF holds the byte of data when it is received by 8051 RxD
line.

• When the bits are received serially via RxD, the 8051 deframes
it by eliminating the stop and start bits, making a byte out of
the data received, and then placing it in SBUF.

157

SBUF Register

• Sample Program:

158

SCON Register

159

SM0 SM1 SM2 REN TB8 RB8 TI RI

Enable Multiprocessor

Communication Mode

Set to Enable

Serial Data

reception

9th Data Bit

Sent in Mode 2,3

9th Data Bit

Received in Mode 2,3

Set when Stop bit Txed

Set when a Cha-

ractor received

8051 Serial Port – Mode 0

The Serial Port in Mode-0 has the following
features:

1. Serial data enters and exits through RXD

2. TXD outputs the clock

3. 8 bits are transmitted / received

4. The baud rate is fixed at (1/12) of the oscillator frequency

160

8051 Serial Port – Mode 1

The Serial Port in Mode-1 has the following
features:

1. Serial data enters through RXD

2. Serial data exits through TXD

3. On receive, the stop bit goes into RB8 in SCON

4. 10 bits are transmitted / received

1. Start bit (0)

2. Data bits (8)

3. Stop Bit (1)

5. Baud rate is determined by the Timer 1 over flow rate.

161

8051 Serial Port – Mode 2

The Serial Port in Mode-2 has the following
features:

1. Serial data enters through RXD

2. Serial data exits through TXD

3. 9th data bit (TB8) can be assign value 0 or 1

4. On receive, the 9th data bit goes into RB8 in SCON

5. 11 bits are transmitted / received
1.Start bit (0)

2.Data bits (9)

3.Stop Bit (1)

6. Baud rate is programmable

162

8051 Serial Port – Mode 3

The Serial Port in Mode-3 has the following
features:

1. Serial data enters through RXD

2. Serial data exits through TXD

3. 9th data bit (TB8) can be assign value 0 or 1

4. On receive, the 9th data bit goes into RB8 in SCON

5. 11 bits are transmitted / received
1.Start bit (0)

2.Data bits (9)

3.Stop Bit (1)

6. Baud rate is determined by Timer 1 overflow rate.

163

Programming Serial Data Transmission
1. TMOD register is loaded with the value 20H, indicating the use of timer

1 in mode 2 (8-bit auto-reload) to set baud rate.

2. The TH1 is loaded with one of the values to set baud rate for serial data
transfer.

3. The SCON register is loaded with the value 50H, indicating serial mode
1, where an 8- bit data is framed with start and stop bits.

4. TR1 is set to 1 to start timer 1

5. TI is cleared by CLR TI instruction

6. The character byte to be transferred serially is written into SBUF
register.

7. The TI flag bit is monitored with the use of instruction JNB TI, xx to see
if the character has been transferred completely.

8. To transfer the next byte, go to step 5

164

Programming Serial Data Reception
1. TMOD register is loaded with the value 20H, indicating the use of timer 1

in mode 2 (8-bit auto-reload) to set baud rate.

2. TH1 is loaded to set baud rate

3. The SCON register is loaded with the value 50H, indicating serial mode 1,
where an 8- bit data is framed with start and stop bits.

4. TR1 is set to 1 to start timer 1

5. RI is cleared by CLR RI instruction

6. The RI flag bit is monitored with the use of instruction JNB RI, xx to see if
an entire character has been received yet

7. When RI is raised, SBUF has the byte, its contents are moved into a safe
place.

8. To receive the next character, go to step 5.

165

Doubling Baud Rate

• There are two ways to increase the baud rate of
data transfer
1. By using a higher frequency crystal

2. By changing a bit in the PCON register

• PCON register is an 8-bit register.

166

•When 8051 is powered up, SMOD is zero

•We can set it to high by software and thereby double the baud rate.

Doubling Baud Rate (cont…)

167

8051 Interrupts

168

INTERRUPTS

• An interrupt is an external or internal event
that interrupts the microcontroller to inform it
that a device needs its service

• A single microcontroller can serve several
devices by two ways:

1. Interrupt

2. Polling

169

Interrupt Vs Polling

1. Interrupts
– Whenever any device needs its service, the device notifies the

microcontroller by sending it an interrupt signal.

– Upon receiving an interrupt signal, the microcontroller
interrupts whatever it is doing and serves the device.

– The program which is associated with the interrupt is called the
interrupt service routine (ISR) or interrupt handler.

2. Polling
– The microcontroller continuously monitors the status of a

given device.

– When the conditions met, it performs the service.

– After that, it moves on to monitor the next device until every
one is serviced.

170

Interrupt Vs Polling
• The polling method is not efficient, since it wastes much of

the microcontroller’s time by polling devices that do not
need service.

• The advantage of interrupts is that the microcontroller can
serve many devices (not all at the same time).

• Each devices can get the attention of the microcontroller
based on the assigned priority.

• For the polling method, it is not possible to assign priority
since it checks all devices in a round-robin fashion.

• The microcontroller can also ignore (mask) a device request
for service in Interrupt.

171

Steps in Executing an Interrupt
1. It finishes the instruction it is executing and saves the address of

the next instruction (PC) on the stack.

2. It also saves the current status of all the interrupts internally (i.e:
not on the stack).

3. It jumps to a fixed location in memory, called the interrupt vector
table, that holds the address of the ISR.

4. The microcontroller gets the address of the ISR from the
interrupt vector table and jumps to it.

5. It starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine which is RETI
(return from interrupt).

6. Upon executing the RETI instruction, the microcontroller returns
to the place where it was interrupted.

172

Six Interrupts in 8051

Six interrupts are allocated as follows:

1. Reset – power-up reset.

2. Two interrupts are set aside for the timers.
– one for timer 0 and one for timer 1

3. Two interrupts are set aside for hardware external
interrupts.
– P3.2 and P3.3 are for the external hardware interrupts

INT0 (or EX1), and INT1 (or EX2)

4. Serial communication has a single interrupt that
belongs to both receive and transfer.

173

What events can trigger Interrupts?

• We can configure the 8051 so that any of the
following events will cause an interrupt:

– Timer 0 Overflow.
– Timer 1 Overflow.
– Reception/Transmission of Serial Character.
– External Event 0.
– External Event 1.

• We can configure the 8051 so that when Timer 0
Overflows or when a character is sent/received, the
appropriate interrupt handler routines are called.

174

8051 Interrupt Vectors

175

8051 Interrupt related Registers

• The various registers associated with the use of
interrupts are:

– TCON - Edge and Type bits for External Interrupts 0/1

– SCON - RI and TI interrupt flags for RS232

– IE - Enable interrupt sources

– IP - Specify priority of interrupts
176

Enabling and Disabling an Interrupt

• Upon reset, all interrupts are disabled (masked),
meaning that none will be responded to by the
microcontroller if they are activated.

• The interrupts must be enabled by software in
order for the microcontroller to respond to them.

• There is a register called IE (interrupt enable) that
is responsible for enabling (unmasking) and
disabling (masking) the interrupts.

177

Interrupt Enable (IE) Register

178

• EA : Global enable/disable.

• --- : Reserved for additional interrupt hardware.

• ES : Enable Serial port interrupt.

• ET1 : Enable Timer 1 control bit.

• EX1 : Enable External 1 interrupt.

• ET0 : Enable Timer 0 control bit.

• EX0 : Enable External 0 interrupt.

MOV IE,#08h

or

SETB ET1

--

Enabling and Disabling an Interrupt
• Example: Show the instructions to (a) enable the serial interrupt,

timer 0 interrupt, and external hardware interrupt 1 and (b)
disable (mask) the timer 0 interrupt, then (c) show how to disable
all the interrupts with a single instruction.

• Solution:

– (a) MOV IE,#10010110B ;enable serial, timer 0, EX1
• Another way to perform the same manipulation is:

– SETB IE.7 ;EA=1, global enable

– SETB IE.4 ;enable serial interrupt

– SETB IE.1 ;enable Timer 0 interrupt
– SETB IE.2 ;enable EX1

– (b) CLR IE.1 ;mask (disable) timer 0 interrupt only

– (c) CLR IE.7 ;disable all interrupts
179

Interrupt Priority
• When the 8051 is powered up, the priorities are assigned according

to the following.

• In reality, the priority scheme is nothing but an internal polling
sequence in which the 8051 polls the interrupts in the sequence
listed and responds accordingly.

180

Interrupt Priority

• We can alter the sequence of interrupt priority by assigning a higher
priority to any one of the interrupts by programming a register
called IP (interrupt priority).

• To give a higher priority to any of the interrupts, we make the
corresponding bit in the IP register high.

181

Interrupt Priority (IP) Register

182

PS PT1 PX1 PT0 PX0Reserved

Serial Port

Timer 1 Pin

INT 1 Pin Timer 0 Pin

INT 0 Pin

Priority bit=1 assigns high priority
Priority bit=0 assigns low priority

UNIT-III

INTRODUCTION TO EMBEDDED C AND
APPLICATIONS

An Embedded C Program the simplest
form

184

void main()
{

while (1) //do forever
;

}

void main()
{

printf(“begin measuring speed”);
while(1) //do forever
;

}

Turn on/off LED

185

Output a 0 to turn on LED

Output a 1 to turn off LED

Variable Types and Sizes

186

Type Size(Bits) Range

bit 1 0,1

char 8 -128 to 127

unsigned char 8 0 to 255

int 16 -32768 to 32767

short int 16 -32768 to 32767

unsigned int 16 0 to 65535

signed int 16 -32768 to 32767

long int 32

unsigned long int 32

signed long int 32

float 32 +-1.175e-38 to +-
3.4e38

double 32 +-1.175e-38 to +-
3.4e38

Constants

187

Numerical Constants
decimal 1234
binary 0b10101011
hexadecimal 0xff
octal 0777

Character Constants
character representation Equivalent Hex Value

TAB ‘\t’ ‘\x09’
LF (new line) ‘\n’ ‘\x0a’
CR ‘\r’ ‘\x0d’
Backspace ‘\b’ ‘\x08’
--
--

example printf(“c = %d\n”, c) //
printf(“c = %d\n\r”, c) //

Operators

188

Arithmetic Operators
Multiply *
Divide /
Modulo %
Addition +
Subtraction -
Negation -

Bitwise Operators
Ones complement ~
Left Shift <<
Right Shift >>
AND &
Exclusive OR ^
OR |

Beware division:

• If second argument is integer, the

result will be integer (rounded):

5 / 10 0 whereas 5 / 10.0 0.5

• Division by 0 will cause overflow

Bitwise Operations

189

Given an unsigned char y = 0xC9
operation result
x = ~y x = 0x36
x = y <<3 x = 0x48
x = y>>4 x = 0x0C
x = y&0x3F x = 0x09
x = y^1 x = 0xC8
x = y | 0x10 x = 0xD9

other examples:
unsigned char z
z = PINA & 0x06;
PORTB = PORTB | 0x60;
PORTB = PORTB & 0xfe;

Logical Operators

190

Logical operator
AND &&
OR ||

x =5 and y =2
(x && y) is true, because both are non-zero
(x & y) is false, because 00000101 bitwise AND 00000010 equal to zero

(x || y) is true, because either value is non-zero
(x | y) is true, b101 bitwise OR b010 is b111 (non-zero)

I/O Operations

191

unsigned char z;

void main (void)
{

DDRB = 0xff; // set port B as output port
DDRA = 0x00; // set port A as input port

while (1)
{

z = PINA; // read port A
PORTB = z + 1; // write to port B

}
}
// DDRx register is used to set which bits are to be used for output/input
// DDRB = 0xc3; 11000011--, upper two bits and lower two bits for
// output

I/O operations

192

unsigned char i; // temporary variable

DDRA = 0x00; // set PORTA for input

DDRB = 0xFF; // set PORTB for output

PORTB = 0x00; // turn ON all LEDs initially

while(1){

// Read input from PORTA.

// This port will be connected to the 8 switches

i = PINA;

// Send output to PORTB.

// This port will be connected to the 8 LEDs

PORTB = i;

}

I/O operations

193

Turn on an LED connected to PB3
PORTB |= 0xF7; // b11110111; PORTB=0x00 initially;
Must do the whole port

Turn on an LED connected to PB3
PORTB.3 = 0 ; // access the bit 3 of port B, turn on the LED

for (delay = 0; delay < 10000; delay++); // declare delay as int somewhere

PORTB.3 = 1; // turn off the LED

I/O operation

194

Check if user pushed the button connected to PA5
swInput = PINA;
swInput = ~PINA;
if(swInput & 0x20) …

Division

195

Beware division:

• If second argument is integer, the

result will be integer (rounded):

5 / 10 0 whereas 5 / 10.0 0.5

• Division by 0 will cause a problem

Relational Operators

196

Relational Operators

Is Equal to ==

Is Not equal to !=

Less Than <

Less Than or Equal to <=

Greater than >

Greater Than or equal to >=

x = 3 and y =5

(x == y) FALSE

(x != y) TRUE

(x < y) TRUE

(x<=y) TRUE

(x>y) FALSE

(x >= y) FALSE

Data format

197

Conversion specifier Description

%d display as a signed decimal integer

%6d at least 6 characters wide

%u display as an unsigned decimal integer

%x display as an unsigned hexadecimal integer

%e display a floating point value in exponential

notation, such as 9.4567e2

%f display a floating point value in fixed point

notation, such as 945.67

%6f at least 6 characters wide

%.2f 2 characters after decimal point

%6.2f at least 6 characters wide and 2 after decimal

point

Assignment Operators

198

x = y assign y to x
x++ post-increment x
++x pre-increment x
x-- post-decrement x
--x pre-decrement x

x += y assign (x+y) to x
x -= y assign (x-y) to x
x *= y assign (x*y) to x
x /= y assign (x/y) to x
x %= y assign (x%y) to x

int x=5;
int y;
y = ++x;
/* x == 6, y == 6 */

int x=5;
int y;
y = x++;
/* x == 6, y == 5 */

Do While loop

199

do // mix up the numbers

{ // while waiting for button release.

first ^= seed>>1; // Exclusive ORing in the moving seed

second ^= seed>>2;

third ^= seed>>3;

seed++; // keep rolling over the seed pattern

}

while(PINA.0 == 0); // while the button is pressed

For Loop

200

for(count = 0; count < 5; count++) // flash light while moving..

{

for(delay = 0; delay < 10000; delay++)

; // just count up and wait

PORTB.1 = 0; // turn the LED on..

for(delay = 0; delay < 10000; delay++)

;

PORTB.1 = 1; // turn the LED off..

}

If Then Else

201

if((first == 3) && (second == 3) && (third == 3))

printf("Paid out: JACKPOT!!\n"); // Three "Cherries"

else if((first == 3) || (second == 3) || (third == 3))

printf("Paid out: One Dime\n"); // One "Cherry"

else if((first == second) && (second == third))

printf("Paid out: One Nickle\n"); // Three of a kind

else

printf("Paid out: ZERO\n"); // Loser..

UNIT-IV
INTRODUCTION TO REAL – TIME

OPERATING SYSTEMS

Tasks and Task States
• A task is the basic building block of software in an RTOS and is usually a

subroutine.
• The RTOS starts a task by specifying its corresponding subroutine,

priority, stack etc.
• The task can have 3 states :-

1. Running – The task code is currently being executed by the
microprocessor. Except in multi-processor systems, only one task is
in running state.

2. Ready – The task is waiting to execute but another task is currently
running.

3. Blocked – The task cannot run even if the microprocessor is free. It
might be waiting for an external event or a response. e.g. a push-
button task stays blocked until the button is pushed.

• Most RTOSs have other states like suspended, waiting, dormant etc.
but these are just sub-divisions of one of the three states above.

Tasks and Task States (contd.)
The Scheduler
• A scheduler in the RTOS decides which task to run.
• Unlike Unix or Windows the scheduler is simple – the task in the

ready state that has the highest priority will run.
• It is the user’s responsibility to ensure that the highest priority task

doesn’t hog the processor.
• Fig. 6.1 from Simon shows the task states. Also the following

definitions will be assumed:
– Block – move into blocked state
– Run – move into the running state
– Switch – change which task runs

• A few results from the fig. are as follows:
– A task can be blocked only by its own decision and not by the

scheduler or another task. Hence a task can only enter the
blocked state from the running state.

– A task will remain blocked until the event it is waiting for occurs.
– Only a scheduler can move a task to the running state from the

ready state.

Tasks and Task States (contd.)

• Some common questions about the scheduler and task states are
How does a scheduler know that a task is blocked or unblocked?
The task calls RTOS functions to indicate which functions it is
waiting for and if they have happened.
What if all tasks are blocked?
It is the user’s responsibility to ensure this doesn’t happen.
Unless an interrupt or event unblocks a task, tasks will stay in this
state (deadlock).
What if two tasks with same priority are ready?
Depends on the RTOS. Some require distinct priorities, some
time-slice between the 2 tasks.
If a higher priority task unblocks, is the current running task
moved to the ready state right away?
This will happen only if the RTOS is preemptive.

Tasks and Task States (contd.)

Example
The following pseudo-code e.g. (fig. 6.2 Simon) illustrates tasks in RTOS.

// “Button Task”

void vButtonTask () // High priority

{

while (TRUE)

{

!! Block until user pushes a button

!! Quick: respond to the user

}

}

// “Levels Task”

void vLevelsTask () // Low priority

{

while (TRUE)

{

!! Read float levels in tank

!! Calculate average float level

Tasks and Task States (contd.)

!! Do a lot of calculations

!! Select next tank

}

}

• The code is from the underground tank monitoring system.
• Task vLevelsTask uses as much computing time possible to

determine the gasoline level and is hence kept at a lower priority.
• vButtonTask will pre-empt the lower priority task whenever it is

ready, finish servicing the pushed button, and then block.
• Tasks can be independent of one another in an RTOS.
• To insert the tasks in the RTOS, it must be initialized (InitRTOS())

tasks must be started and their priorities specified (StartTask())
and the OS needs to be started (StartRTOS()).

• Once the OS is started, function never returns.

Tasks and Data

• Each of the tasks have a set of register, a program counter and a
stack.

• Tasks can also communicate using shared (global) variables.
• Fig. 6.6 illustrates this. It is basically the previous underground tank

example code with some additional functions.
• The two tasks share the tankData array

Tasks and Data (contd.)

Shared-Data Problem
• The above code will have bugs because they are sharing the same variable and the

lower priority task might be pre-empted in the middle of a data write operation.
• A similar problem occurs when 2 tasks call the same function.

void Task1 (void)

{

.

.

vCountErrors(9);

.

.

}

void Task1 (void)

{

.

.

vCountErrors(11);

.

.

}

Tasks and Data (contd.)

static int cErrors;

void vCountErrors(int cNewErrors)

{

cErrors +=cNewErrors;

}

• As both tasks call vCountErrors they hence share the variable
cErrors causing potential bugs.

Reentrancy
• A function that can be called by multiple tasks and still work correctly is

called reentrant.
• The 3 rules that determine if a function is reentrant are :-

1. The function must not use variables nonatomically unless they are stored on
the stack of the calling task or are the local variables of that task.

2. The function must not call functions that are not reentrant
3. It must not use hardware nonatomically.

Tasks and Data (contd.)

Review of C Variable Storage
• The following code (fig. 6.9)shows which variables are

stored in memory instead of stack and can hence cause
problems.

static int static_int;

int public_int;

int initialized =4;

char *string = “Where am I stored?”;

void *vPointer;

void function (int parm, int *parm_ptr)

{

static int static_local;

int local;

.

.

}

Tasks and Data (contd.)

• static_int – stored in memory and hence a shared variable

• public_int – Same as above. However in addition, functions in other C files can also
access this variable.

• intitialized– Ditto.

• string – Same

• vPointer – Same

• parm – stored on stack so will not cause a problem

• parm_ptr – stack. Will not cause problem as long as every task passes a different value
for it.

• static_local – stored in memory. Only difference between it and static_int is
that the other can be accessed by other functions in the C file while this variable can only be
accessed by function.

• local – stack.

Tasks and Data (contd.)

Gray Areas of Reentrancy
• The following code falls in the gray area between reentrant and

nonreentrant functions.
static int errors;

void vCountErrors()

{

++errors;

}

• Where it falls depends on the processor e.g. an 8051 might translate
++errors as 8-9 assembly instructions in which case it is
nonatomic while an 8086 microprocessor might just give

INC (errors)

RET

In which case ++errors is atomic making the function reentrant.

Semaphores and Shared Data

• Semaphores are one way of protecting shared variables.
• Name is derived from the old railroad days when they were used to

share a segment of rail between more than one train.

RTOS Semaphores
• Consider two functions for dealing with the RTOS binary semaphores

– TakeSemaphore and ReleaseSemaphore.
• If a task has called TakeSemaphore to take the semaphore, any

other task calling it will block until the semaphore is released
(ReleaseSemaphore).

• Fig. 6.12 solves the shared-data problem of fig. 6.6 using a
semaphore.

Semaphores and Shared Data (contd.)

• With this new setup consider the scenario where the ‘levels
task’ (vCalculateTankLevels) has just taken the semaphore
and is pre-empted by the higher priority ‘push button’ task.
– The RTOS will move the higher priority task to the running state.

– When this task tries to lock the semaphore, it will block.

– The OS will then run the task which has the semaphore (levels task)
until it releases it.

– As soon as this happens, the RTOS will switch back to the higher
priority task which is now unblocked.

Semaphores and Shared Data (contd.)

Reentrancy and Semaphores
• The following code shows how a shared function shown before can be made

reentrant by using semaphores.

void Task1(void)

{ .

.

vCountErrors(5);

.

}

void Task2(void)

{ .

.

vCountErrors(10);

.

}

static int cErrors;

static NU_SEMAPHORE semErrors;

Semaphores and Shared Data (contd.)

void vCountErrors (int cNewErrors)

{

NU_Obtain_Semaphore (&semErrors, NU_SUSPEND);

cErrors +=cNewErrors;

NU_Release_Semaphore (&semErrors);

}

• Functions and data structures beginning with “NU” are those used in an RTOS called Nucleus.

Multiple Semaphores
• RTOSs normally allow the users to have multiple semaphores that are distinctly identified by

a parameter (semErrors in above code) and are independent of each other.
• This speeds task responses – a high priority task does not have to be blocked by a lower

priority one as long as it is using a different semaphore.
• It is the users responsibility to remember which semaphore protects which shared data – the

OS will not do that.

Semaphores and Shared Data (contd.)

Semaphores as Signaling Devices
• Semaphores can be used to communicate between a task and another task

or an interrupt routine.
• Fig. 6.16 – Simon shows a printer example.
• A task stores formatted reports, to be printed, into memory.
• The printer interrupts after each line, on which the ISR feeds it the next line.
• This is done by having the task wait on a semaphore after it has formatted a

report. The ISR will release the semaphore once the report has been printed
and the task can start on the next report.

• Note – the semaphore has been initialized as already taken. Hence the task
can only take the semaphore after the first report. This is acts as initializing
the process for the task.

Semaphores and Shared Data (contd.)

Semaphores Problems
• Forgetting to take it – Semaphores only work if tasks actually remember to

use them while accessing shared data.

• Forgetting to release the semaphore – This will cause all tasks using the
semaphore to be eventually blocked forever.

• Holding it for too long – Higher priority tasks might loose their deadlines if
some lower priority task holds the semaphore for too long.

A problem that can happen is if a low priority task C has a semaphore and a
higher priority task B that does not use the semaphore pre-empts it in
between.

Now suppose the highest priority task A comes along and is blocked on the
semaphore. As B has a higher priority than C it will run instead and might
block A for long enough that it misses its deadline.

This is called priority inversion. Some RTOSs temporarily give task A’s priority
to C (and hence prevent B from pre-empting C).

Semaphores and Shared Data (contd.)

• Causing a deadly embrace (deadlock) – The following
code (fig. 6.18) illustrates this problem.

int a,b;

AMXID hSemaphoreA;

AMXID hSemaphoreB;

void Task1 ()

{

ajsmrsv (hSemaphoreA, 0, 0);

ajsmrsv (hSemaphoreB, 0, 0);

a = b;

ajsmrls (hSemaphoreA);

ajsmrls (hSemaphoreB);

}

void Task2 ()

{

ajsmrsv (hSemaphoreB, 0, 0);

ajsmrsv (hSemaphoreA, 0, 0);

Semaphores and Shared Data (contd.)

b = a;

ajsmrls (hSemaphoreB);

ajsmrls (hSemaphoreA);

}

• Functions ajsmrsv (reserve semaphore) and ajsmrls (release
semaphore) are from an RTOS AMX.

• The additional parameters in ajsmrsv are the time-out and priority.
• Now suppose Task1 has just reserved hSemaphoreA and is pre-empted

by Task2. Task2 reserves hSemaphoreB but when it tries to reserve
hSemaphoreA it is blocked.

• The RTOS switches to Task1 which tries to reserve hSemaphoreB and
is blocked by Task2. Hence the 2 tasks block each other and are caught
in a deadlock.

• Hence use of semaphores should be avoided where possible.

Semaphores and Shared Data (contd.)

Semaphores Variants
• Some systems allow semaphores that can be taken multiple time. Taking them

decrements their count and releasing increments it. They are hence called
counting semaphores

• Semaphores that can only be released by the task that took them are resource
semaphores. Though they prevent shared-data bugs, they cannot be used for task
inter-communication.

• A semaphore that deals with priority inversion is commonly called a mutex
semaphore or mutex (mutually exclusive).

Methods to Protect Shared Data
• The 2 basic methods are disabling interrupts and using semaphores.
• A third method is disabling task switches, but this has no effect on interrupt

routines.
• Note – interrupts are not allowed to take semaphores so they cannot be used if

the data is shared between the task code and the ISR.

• Besides shared variables and semaphores, tasks can communicate with each other
using queues, mailboxes and pipes.

• E.g. if there are 2 tasks Task1 and Task2 that have to report each error they
encounter, they can do so by reporting it through a queue to a separate
ErrorsTask and going back to their own functions.

• ErrorsTask can be lower priority and hence the two main tasks are not
delayed.

Some Ugly Details
• Most RTOSs require queues to be initialized before being used. Some OSs also

require the user to allocate memory for them
• An additional parameter is required to distinguish among queues.
• If a task tries to write to a queue that is full, the RTOS generally returns an error, or

in some cases it might block the task until another task reads the queue. The code
should deal with these errors.

• RTOSs include functions that read from queues if they have data and return an
error if they don’t.

• Many RTOSs only allow a fixed amount of data that can be written in one call. A
common method is to allow the user to write the number of bytes taken up by a
void pointer in one function call.

Message Queues, Mailboxes, and Pipes

Message Queues, Mailboxes, and Pipes (contd.)

Pointers and Queues
• Fig. 7.2 (Simon) shows how a void pointer is used to write to the queue.
• Users who want to send only a small amount of data can typecast the data as a void pointer.
• Another method involves allocating a data buffer (using malloc) and passing a pointer to

that buffer to the queue.

Mailboxes
• Mailboxes are similar to queues. They have variations in different RTOSs as follows :-

– Most RTOSs allow only one message in a mailbox though some might allow more.
– Some OSs have unlimited message length mailboxes. The total messages in all the

mailboxes however is limited and this is distributed among individual mailboxes.
– Some RTOSs allow priorities in mailboxes – higher priority mailboxes will be read first

Message Queues, Mailboxes, and Pipes (contd.)

• In the RTOS Multitask! mailboxes are creating during the system
configuration. This allows the following mailbox functions to be used

int sndmsg (unsigned int uMbId, void *p_vMsg, unsigned int

uPriority);

void *rcvmsg (unsigned int uMbId, unsigned int uTimeout);

void *chkmsg (unsigned int uMbId);

• uMbid identifies the mailbox. sndmsg adds p_vMsg into the mailbox
with the priority indicated by uPriotity.

• rcvmsg returns the highest priority message from the mailbox. If it is
empty, the calling task blocks. uTimeout limits the time the task will
wait.

• chkmsg returns the first message in the mailbox. If it is empty, it
immediately returns NULL

Message Queues, Mailboxes, and Pipes (contd.)

Pipes
• Pipes are also similar to queues. Like mailboxes they have variations in different RTOSs.

– Some RTOSs allow variable message lengths to be written to pipes.
– In some RTOSs pipes are byte-oriented e.g. if Tasks A and B wrote 5 and 10 bytes respectively to the

pipe and if Task C reads 7 bytes, it will get 5 bytes of A and 2 of B. The remaining bytes of B will
remain in the pipe

– Some RTOSs use C library functions fread and fwrite to read and write to pipes

Which to Use?
• Since queues, mailboxes and pipes vary in each RTOS, the user should read the

corresponding documentation and determine which would best suit his communication
requirement.

Pitfalls
• Although the above 3 mechanisms simplify sharing data they can also introduce several bugs.

– User should ensure that tasks write to the correct mailboxes otherwise there might be errors.

Message Queues, Mailboxes, and Pipes (contd.)

– If a task writes an integer to a queue and the second task is expecting
a character this will cause errors. Sometimes the compiler might not
find the bug.

– Running out of space when a task needs to write data is another
problem. The common solution is to make the pipe or queue large
enough.

– Passing pointers from through a queue, mailbox or pipe creates shared
data unintentially. Consider fig. 7.4. It does not use a data buffer.

If the RTOS switches from to vMainTask to
vReadTemperaturesTask while it was comparing
iTemperatures[0] to iTemperatures[1] this translates into the
shared-data problem discussed in Ch-4 and 6.

Timer Functions

• Embedded systems generally require to track time.

• A cell phone preserves battery by turning its display off after a few seconds. Network connections re-
transmit data if an acknowledgement is not received within a certain period.

• Most RTOSs have a delay function that delays or blocks a task for a certain time period.

• e.g. in the U.S. each of the tones representing a digit in a phone call must sound for 1/10th of a second
followed by the same period of silence between tones.

This can be done by utilizing the function taskDelay(100) that delays the task for 100ms

Questions
• How do I know that taskDelay takes milliseconds as its parameter?

You don’t. In VxWorks for e.g. taskDelay takes system ticks as the parameter

• How accurate are these delays?

They are accurate to the nearest tick. The RTOS sets up a hardware timer often called a heartbeat timer to
periodically interrupt and bases its timings on the interrupt.

Note – the task will unblock after it receives all the interrupts specified by the delay function, however it
will run if no other higher priority task is ready.

Timer Functions (contd.)

• How does the RTOS know how to setup the timer hardware ?

RTOSs are microprocessor-dependent and hence the engineers that wrote the RTOS know
which processor it will run on and hence can program the corresponding timer. If the timer
hardware is non-standard, the user is required to write his own timer setup and interrupt
routines that will be called by the RTOS.

Many vendors provide board support packages (BSPs) that help users to write driver
software for any special hardware they are using

• What is the “normal length” for a system tick?

There isn’t one. Short system times provide accurate timings with the added disadvantage of
occupying the processor more and reducing throughput. The designer must make a trade-off
between the two.

• What if the system requires extremely accurate timing?

The user can either use short system ticks or use a separate dedicated hardware timer for
functions requiring accurate times and the RTOS for all other timings. The advantage of using
the OS is that one timer handles many operations simultaneously.

Timer Functions (contd.)

Other Timing Services
• RTOSs offer many timing services based on the system tick like deciding the

time a task should wait on a semaphore or mailbox etc.
• However user should exercise caution e.g. a higher priority task might

timeout waiting on a semaphore and not get the shared data. The user code
should handle such potential problems. A better design would be to allow a
lower priority task get the shared data so the high priority task can continue
its work.

• Fig. 7.7 shows a use of the timing services, where a function is called after
waiting a given no. of system ticks.

• The code is written in VxWorks and basically handles hardware for a radio.
• Turning off the radio only requires turning the power off, however turning it

on requires :–
– First the power must be turned on.
– After 12 ms the radio frequency must be set
– 3 ms later the transmitter or receiver can be turned on and the radio is ready.

Events

• An event is basically a Boolean flag that tasks can set or reset for other tasks to wait on.
Listed below are some of its features.

– When an event occurs the RTOS unblocks all tasks waiting on it.
– RTOSs normally form groups of events and a task can wait for a subset of events of that group.
– Different RTOSs deal differently when resetting events. Some do this automatically while some

require the user code to do this.

Comparison of Methods for Intertask Communication
• Here is a comparison between using queues, pipes, mailboxes or events for intertask

communication
– Semaphores are usually the fastest and simplest.
– Events are slightly more complicated than semaphores and use a little more processor time.

However a task can wait for any one of several events simultaneously but only for one semaphore.
– Queues allow a lot of data as opposed to just events to be sent between tasks which makes them

more flexible than events. However (1) Handling these messages is more microprocessor-intensive
and (2) They can also cause more bugs.
Mailboxes and pipes share all these charecteristics.

Memory Management

• RTOSs prefer allocating and freeing fixed-size buffers rather than using C functions like
malloc and free, as they are faster and more predictable.

• The MultiTask! RTOS consists of pools that have a certain number of same-size memory
buffers.

• reqbuf and getbuf allocate a buffer from the pool. The difference between the two is that
the former returns a NULL pointer if the pool is empty while the latter blocks the task
void *getbuf (unsigned int PoolId, unsigned int Timeout);

void *reqbuf (unsigned int PoolId);

void relbuf (unsigned int PoolId, void *p_vBuffer);

• The buffer size returned depends on the pool. relbuf frees a buffer
• MultiTask! like typical RTOSs needs to be told where the memory is (init_mem_pool).

int init_mem_pool (

unsigned int PoolId,

void *p_vMemory,

unsigned int BufSize,

unsigned int BufCount,

unsigned int PoolType);

Memory Management (contd.)

• PoolId – identifier

• p_vMemory – points to the pool memory block

• BufSize and BufCount – indicate size and count of
buffer

• PoolType – indicates if buffers will be used by tasks or by
interrupt routines.

Interrupt Routines in an RTOS Environment

• Most RTOSs require interrupt routines to follow 2 rules :-
– An ISR must not call any RTOS function that might block the caller. Hence ISRs must not get

semaphores, read from queues or empty mailboxes etc.
– An ISR must not call any RTOS function that might cause the OS to switch tasks unless the

RTOS knows that an ISR, and not a task is running. Hence ISRs must not release semaphores,
write to queues or mailboxes, set events etc. – unless the RTOS knows that this is being done
by the RTOS. If the ISR breaks this rule, the RTOS might switch control away from it thinking it
is a task and the ISR might not get completed.

Rule 1: No Blocking
• Fig. 7.12 shows a nuclear reactor. The ISR and task code share the temperature

through a semaphore.
• The code violates Rule 1 and will not work.
• If vTaskTestTemperatures is interrupted when it had the semaphore, the ISR

would try to get the semaphore (GetSemaphore) and block.

Interrupt Routines in an RTOS Environment (contd.)

• Hence the ISR and task vTaskTestTemperatures would be caught in a deadlock.
• Some functions never block and can hence be called by the ISR e.g. a function that returns the status

of a semaphore

Rule 2: No RTOS Calls without Fair Warning
• Suppose a low priority task is interrupted. If the ISR now writes to a mailbox (breaks rule 2!) what

should ideally happen is that the RTOS should unblock tasks waiting on the mailbox and return to
the ISR, eventually completing it.

• However what actually happens is that as soon as the tasks are unblocked, the RTOS thinks that the
current task (ISR) is not the highest priority and instead of returning to the ISR it starts executing the
highest priority task in the ready queue.

• Fig. 7.16 shows a solution. The RTOS intercepts all interrupts and calls the ISR. It thus knows it is
entering an ISR and that it must return to it instead of switching to a high priority task.

• Fig. 7.17 shows another method. The ISR calls an RTOS function that tells it that it is running and so
the RTOS will not switch to another task when it writes to a mailbox.

• After the ISR completes, it calls another RTOS function and the scheduler runs the highest priority
task

• A third method is to provide separate special functions for ISRs. Hence OSSemPost for the ISR will
be OSSemPost.

• In case of nested interrupts all the ISRs should inform the RTOS that they are executing, otherwise
after completing a high priority ISR, the OS might switch over to a task and forget to execute the
remaining lower priority ISRs.

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Introduction

– Application programs are typically developed, compiled, and run on host system

– Embedded programs are targeted to a target processor (different from the development/host
processor and operating environment) that drives a device or controls

– What tools are needed to develop, test, and locate embedded software into the target processor and
its operating environment?

– Distinction

– Host: Where the embedded software is developed, compiled, tested, debugged, optimized, and prior
to its translation into target device. (Because the host has keyboards, editors, monitors, printers,
more memory, etc. for development, while the target may have not of these capabilities for
developing the software.)

– Target: After development, the code is cross-compiled, translated – cross-assembled, linked (into
target processor instruction set) and located into the target

• Introduction – 1

• Cross-Compilers –

– Native tools are good for host, but to port/locate embedded code to target, the host must have a
tool-chain that includes a cross-compiler, one which runs on the host but produces code for the
target processor

– Cross-compiling doesn’t guarantee correct target code due to (e.g., differences in word sizes,
instruction sizes, variable declarations, library functions)

• Cross-Assemblers and Tool Chain

– Host uses cross-assembler to assemble code in target’s instruction syntax for the target

– Tool chain is a collection of compatible, translation tools, which are ‘pipelined’ to produce a
complete binary/machine code that can be linked and located into the target processor

– (See Fig 9.1)

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Linker/Locators for Embedded Software
• Native linkers are different from cross-linkers (or locators) that perform additional tasks

to locate embedded binary code into target processors

• Address Resolution –
– Native Linker: produces host machine code on the hard-drive (in a named file), which the

loader loads into RAM, and then schedules (under the OS control) the program to go to the
CPU.

– In RAM, the application program/code’s logical addresses for, e.g., variable/operands and
function calls, are ordered or organized by the linker. The loader then maps the logical
addresses into physical addresses – a process called address resolution. The loader then loads
the code accordingly into RAM (see Fig 9.2). In the process the loader also resolves the
addresses for calls to the native OS routines

– Locator: produces target machine code (which the locator glues into the RTOS) and the
combined code (called map) gets copied into the target ROM. The locator doesn’t stay in the
target environment, hence all addresses are resolved, guided by locating-tools and directives,
prior to running the code (See Fig 9.3 and Fig 9.4)

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Locating Program Components – Segments

• Unchanging embedded program (binary code) and constants must be kept in ROM to
be remembered even on power-off

• Changing program segments (e.g., variables) must be kept in RAM

• Chain tools separate program parts using segments concept

• Chain tools (for embedded systems) also require a ‘start-up’ code to be in a separate
segment and ‘located’ at a microprocessor-defined location where the program starts
execution

• Some cross-compilers have default or allow programmer to specify segments for
program parts, but cross-assemblers have no default behavior and programmer must
specify segments for program parts

• (See Fig 9.5 - locating of object-code segments in ROM and RAM)

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Locating Program Components – Segments – 1

• Telling/directing the locator where (which segments) to place parts

• E.g., Fig 9.6

– The –Z tells which segments (list of segments) to use and the start-address
of the first segment

– The first line tells which segments to use for the code parts, starting at
address 0; and the second line tells which segments to use for the data
parts, starting at x8000

– The proper names and address info for the directing the locator are
usually in the cross-compiler documentation

– Other directives: range of RAM and ROM addresses, end of stack address
(segment is placed below this address for stack to grow towards the end)

– Segments/parts can also be grouped, and the group is located as a unit

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Initialized Data and Constant Strings

• Segments with initialized values in ROM are shadowed (or copied
into RAM) for correct reset of initialized variables, in RAM, each
time the system comes up (esp. for initial values that are take
#define constants, and which can be changed)

• In C programs, a host compiler may set all uninitialized variable to
zero or null, but this is not generally the case for embedded
software cross-compilers (unless the startup code in ROM does so

• If part(s) of a constant string is(are) expected to be changed during
run-time, the cross-compiler must generate a code to allow
‘shadowing’ of the string from ROM

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Locator Maps and Executing Out of RAM

• Output file of locators are Maps – list addresses of all segments

• Maps are useful for debugging

• An ‘advanced’ locator is capable of running (albeit slowly) a startup code
in ROM, which (could decompress and) load the embedded code from
ROM into RAM to execute quickly since RAM is faster, especially for RISC
microprocessors

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Getting Embedded Software into Target System

• Moving maps into ROM or PROM, is to create a ROM using
hardware tools or a PROM programmer (for small and changeable
software, during debugging)

• If PROM programmer is used (for changing or debugging software),
place PROM in a socket (which makes it erasable – for EPROM, or
removable/replaceable) rather than ‘burnt’ into circuitry

• PROM’s can be pushed into sockets by hand, and pulled using a chip
puller

• The PROM programmer must be compatible with the format
(syntax/semantics) of the Map

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Getting Embedded Software into Target System – 1

• ROM Emulators – Another approach is using a ROM emulator
(hardware) which emulates the target system, has all the ROM
circuitry, and a serial or network interface to the host system. The
locator loads the Map into the emulator, especially, for debugging
purposes.

• Software on the host that loads the Map file into the emulator must
understand (be compatible with) the Map’s syntax/semantics

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

• Getting Embedded Software into Target System – 2

• Using Flash Memory

– For debugging, a flash memory can be loaded with target Map code using a
software on the host over a serial port or network connection (just like using an
EPROM)

– Advantages:

• No need to pull the flash (unlike PROM) for debugging different embedded
code

• Transferring code into flash (over a network) is faster and hassle-free

• New versions of embedded software (supplied by vendor) can be loaded into
flash memory by customers over a network - Requires a) protecting the flash
programmer, saving it in RAM and executing from there, and reloading into
flash after new version is written and b) the ability to complete loading new
version even if there are crashes and protecting the startup code as in (a)

• Modifying and/or debugging the flash programming software requires moving
it into RAM, modify/debug, and reloading it into target flash memory using
above methods

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

UNIT-V
INTRODUCTION TO ADVANCED

ARCHITECTURES

ARM instruction set

• ARM versions.

• ARM assembly language.

• ARM programming model.

• ARM memory organization.

• ARM data operations.

• ARM flow of control.

ARM versions

• ARM architecture has been extended over
several versions.

• We will concentrate on ARM7.

ARM assembly language

• Fairly standard assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1

ARM programming model

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

31 0

N Z C V

Endianness

• Relationship between bit and byte/word
ordering defines endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0 bit 31

little-endian big-endian

ARM data types

• Word is 32 bits long.

• Word can be divided into four 8-bit bytes.

• ARM addresses can be 32 bits long.

• Address refers to byte.

– Address 4 starts at byte 4.

• Can be configured at power-up as either little-
or bit-endian mode.

ARM status bits

• Every arithmetic, logical, or shifting operation
sets CPSR bits:

– N (negative), Z (zero), C (carry), V (overflow).

• Examples:

– -1 + 1 = 0: NZCV = 0110.

– 231-1+1 = -231: NZCV = 1001.

ARM data instructions

• Basic format:
ADD r0,r1,r2

– Computes r1+r2, stores in r0.

• Immediate operand:
ADD r0,r1,#2

– Computes r1+2, stores in r0.

ARM data instructions

• ADD, ADC : add (w.
carry)

• SUB, SBC : subtract (w.
carry)

• RSB, RSC : reverse
subtract (w. carry)

• MUL, MLA : multiply
(and accumulate)

• AND, ORR, EOR

• BIC : bit clear

• LSL, LSR : logical shift
left/right

• ASL, ASR : arithmetic
shift left/right

• ROR : rotate right

• RRX : rotate right
extended with C

Data operation varieties

• Logical shift:

– fills with zeroes.

• Arithmetic shift:

– fills with ones.

• RRX performs 33-bit rotate, including C bit
from CPSR above sign bit.

ARM comparison instructions

• CMP : compare

• CMN : negated compare

• TST : bit-wise AND

• TEQ : bit-wise XOR

• These instructions set only the NZCV bits of
CPSR.

ARM move instructions

• MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

ARM load/store instructions

• LDR, LDRH, LDRB : load (half-word, byte)

• STR, STRH, STRB : store (half-word, byte)

• Addressing modes:

– register indirect : LDR r0,[r1]

– with second register : LDR r0,[r1,-r2]

– with constant : LDR r0,[r1,#4]

ARM ADR pseudo-op

• Cannot refer to an address directly in an
instruction.

• Generate value by performing arithmetic on
PC.

• ADR pseudo-op generates instruction required
to calculate address:
ADR r1,FOO

Example: C assignments

• C:
x = (a + b) - c;

• Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

C assignment, cont’d.

SUB r3,r3,r2 ; complete computation of x

ADR r4,x ; get address for x

STR r3,[r4] ; store value of x

Example: C assignment

• C:
y = a*(b+c);

• Assembler:
ADR r4,b ; get address for b

LDR r0,[r4] ; get value of b

ADR r4,c ; get address for c

LDR r1,[r4] ; get value of c

ADD r2,r0,r1 ; compute partial result

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

C assignment, cont’d.

MUL r2,r2,r0 ; compute final value for y

ADR r4,y ; get address for y

STR r2,[r4] ; store y

Example: C assignment

• C:
z = (a << 2) | (b & 15);

• Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

MOV r0,r0,LSL 2 ; perform shift

ADR r4,b ; get address for b

LDR r1,[r4] ; get value of b

AND r1,r1,#15 ; perform AND

ORR r1,r0,r1 ; perform OR

C assignment, cont’d.

ADR r4,z ; get address for z

STR r1,[r4] ; store value for z

Additional addressing modes

• Base-plus-offset addressing:
LDR r0,[r1,#16]

– Loads from location r1+16

• Auto-indexing increments base register:
LDR r0,[r1,#16]!

• Post-indexing fetches, then does offset:
LDR r0,[r1],#16

– Loads r0 from r1, then adds 16 to r1.

ARM flow of control

• All operations can be performed conditionally,
testing CPSR:
– EQ, NE, CS, CC, MI, PL, VS, VC,

HI, LS, GE, LT, GT, LE

• Branch operation:
B #100

– Can be performed conditionally.

Example: if statement

• C:
if (a > b) { x = 5; y = c + d; } else x = c - d;

• Assembler:
; compute and test condition

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b

LDR r1,[r4] ; get value for b

CMP r0,r1 ; compare a < b

BLE fblock ; if a ><= b, branch to false block

If statement, cont’d.

; true block

MOV r0,#5 ; generate value for x

ADR r4,x ; get address for x

STR r0,[r4] ; store x

ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value of d

ADD r0,r0,r1 ; compute y

ADR r4,y ; get address for y

STR r0,[r4] ; store y

B after ; branch around false block

If statement, cont’d.

; false block

fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value for d

SUB r0,r0,r1 ; compute a-b

ADR r4,x ; get address for x

STR r0,[r4] ; store value of x

after ...

Example: switch statement

• C:
switch (test) { case 0: … break; case 1: … }

• Assembler:
ADR r2,test ; get address for test

LDR r0,[r2] ; load value for test

ADR r1,switchtab ; load address for switch table

LDR r1,[r1,r0,LSL #2] ; index switch table

switchtab DCD case0

DCD case1

...

Example: FIR filter

• C:
for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

• Assembler
; loop initiation code

MOV r0,#0 ; use r0 for I

MOV r8,#0 ; use separate index for arrays

ADR r2,N ; get address for N

LDR r1,[r2] ; get value of N

MOV r2,#0 ; use r2 for f

FIR filter, cont’.d

ADR r3,c ; load r3 with base of c

ADR r5,x ; load r5 with base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]

LDR r6,[r5,r8] ; get x[i]

MUL r4,r4,r6 ; compute c[i]*x[i]

ADD r2,r2,r4 ; add into running sum

ADD r8,r8,#4 ; add one word offset to array index

ADD r0,r0,#1 ; add 1 to i

CMP r0,r1 ; exit?

BLT loop ; if i < N, continue

ARM subroutine linkage

• Branch and link instruction:
BL foo

– Copies current PC to r14.

• To return from subroutine:
MOV r15,r14

Nested subroutine calls

• Nesting/recursion requires coding convention:
f1 LDR r0,[r13] ; load arg into r0 from stack

; call f2()

STR r14,[r13]! ; store f1’s return adrs

STR r0,[r13]! ; store arg to f2 on stack

BL f2 ; branch and link to f2

; return from f1()

SUB r13,#4 ; pop f2’s arg off stack

LDR r13!,r15 ; restore register and return

SHARC instruction set

• SHARC programming model.

• SHARC assembly language.

• SHARC memory organization.

• SHARC data operations.

• SHARC flow of control.

SHARC programming model

• Register files:

– R0-R15 (aliased as F0-F15 for floating point)

• Status registers.

• Loop registers.

• Data address generator registers.

• Interrupt registers.

SHARC assembly language

• Algebraic notation terminated by semicolon:

R1=DM(M0,I0), R2=PM(M8,I8); ! comment

label: R3=R1+R2;

data memory access program memory access

SHARC memory space

IOP registers
0x0

256

forbidden

normal word

addressing

short word

addressing

0x20000

0x40000

interrupt vectors

SHARC data types

• 32-bit IEEE single-precision floating-point.

• 40-bit IEEE extended-precision floating-point.

• 32-bit integers.

• Memory organized internally as 32-bit words.

SHARC micro architecture

• Modified Harvard architecture.

– Program memory can be used to store some data.

• Register file connects to:

– multiplier

– shifter;

– ALU.

SHARC mode registers

• Most important:

– ASTAT: arithmetic status.

– STKY: sticky.

– MODE 1: mode 1.

Rounding and saturation

• Floating-point can be:

– rounded toward zero;

– rounded toward nearest.

• ALU supports saturation arithmetic (ALUSAT
bit in MODE1).

– Overflow results in max value, not rollover.

Multiplier

Fixed-point operations can accumulate into local
MR registers or be written to register file.
Fixed-point result is 80 bits.

Floating-point results always go to register file.

Status bits: negative, under/overflow, invalid,
fixed-point undeflow, floating-point unerflow,
floating-point invalid.

ALU/shifter status flags

ALU:

– zero, overflow, negative, fixed-point carry,
inputsign, floating-point invalid, last op was
floating-point, compare accumulation registers,
floating-point under/oveflow, fixed-point overflow,
floating-point invalid

Shifter:

– zero, overflow, sign

Flag operations

• All ALU operations set AZ (zero), AN
(negative), AV (overflow), AC (fixed-point
carry), AI (floating-point invalid) bits in ASTAT.

• STKY is sticky version of some ASTAT bits.

Example: data operations

• Fixed-point -1 + 1 = 0:

– AZ = 1, AU = 0, AN = 0, AV = 0, AC = 1, AI = 0.

– STKY bit AOS (fixed point underflow) not set.

• Fixed-point -2*3:

– MN = 1, MV = 0, MU = 1, MI = 0.

– Four STKY bits, none of them set.

• LSHIFT 0x7fffffff BY 3: SZ=0,SV=1,SS=0.

Multifunction computations

Can issue some computations in parallel:

– dual add-subtract;

– fixed-point multiply/accumulate and
add,subtract,average

– floating-point multiply and ALU operation

– multiplication and dual add/subtract

Multiplier operand from R0-R7, ALU operand
from R8-R15.

SHARC load/store

• Load/store architecture: no memory-direct
operations.

• Two data address generators (DAGs):

– program memory;

– data memory.

• Must set up DAG registers to control
loads/stores.

DAG1 registers

I0

I1

I2

I3

I4

I5

I6

I7

M0

M1

M2

M3

M4

M5

M6

M7

L0

L1

L2

L3

L4

L5

L6

L7

B0

B1

B2

B3

B4

B5

B6

B7

Data address generators

Provide indexed, modulo, bit-reverse indexing.

MODE1 bits determine whether primary or
alternate registers are active.

BASIC addressing

• Immediate value:
R0 = DM(0x20000000);

• Direct load:
R0 = DM(_a); ! Loads contents of _a

• Direct store:
DM(_a)= R0; ! Stores R0 at _a

Post-modify with update

• I register holds base address.

• M register/immediate holds modifier value.

R0 = DM(I3,M3) ! Load

DM(I2,1) = R1 ! Store

• Circular buffer: L register is buffer start index,
B is buffer base address.

Data in program memory

• Can put data in program memory to read two
values per cycle:

F0 = DM(M0,I0), F1 = PM(M8,I9);

• Compiler allows programmer to control which
memory values are stored in.

Example: C assignments

• C:
x = (a + b) - c;

• Assembler:
R0 = DM(_a) ! Load a

R1 = DM(_b); ! Load b

R3 = R0 + R1;

R2 = DM(_c); ! Load c

R3 = R3-R2;

DM(_x) = R3; ! Store result in x

Example, cont’d.

• C:
y = a*(b+c);

• Assembler:
R1 = DM(_b) ! Load b

R2 = DM(_c); ! Load c

R2 = R1 + R2;

R0 = DM(_a); ! Load a

R2 = R2*R0;

DM(_y) = R23; ! Store result in y

Example, cont’d.

• Shorter version using pointers:

! Load b, c

R2=DM(I1,M5), R1=PM(I8,M13);

R0 = R2+R1, R12=DM(I0,M5);

R6 = R12*R0(SSI);

DM(I0,M5)=R8; ! Store in y

Example, cont’d.

• C:
z = (a << 2) | (b & 15);

• Assembler:
R0=DM(_a); ! Load a

R0=LSHIFT R0 by #2; ! Left shift

R1=DM(_b); R3=#15; ! Load immediate

R1=R1 AND R3;

R0 = R1 OR R0;

DM(_z) = R0;

SHARC program sequencer

Features:

– instruction cache;

– PC stack;

– status registers;

– loop logic;

– data address generator;

Conditional instructions

Instructions may be executed conditionally.

Conditions come from:

– arithmetic status (ASTAT);

– mode control 1 (MODE1);

– flag inputs;

– loop counter.

SHARC jump

• Unconditional flow of control change:
JUMP foo

• Three addressing modes:

– direct;

– indirect;

– PC-relative.

Branches

Types: CALL, JUMP, RTS, RTI.

Can be conditional.

Address can be direct, indirect, PC-relative.

Can be delayed or non-delayed.

JUMP causes automatic loop abort.

Example: C if statement

• C:
if (a > b) { x = 5; y = c + d; }

else x = c - d;

• Assembler:
! Test

R0 = DM(_a); R1 = DM(_b);

COMP(R0,R1); ! Compare

IF GE JUMP fblock;

C if statement, cont’d.

! True block

tblock: R0 = 5; ! Get value for x

DM(_x) = R0;

R0 = DM(_c); R1 = DM(_d);

R1 = R0+R1;

DM(_y)=R1;

JUMP other; ! Skip false block

C if statement, cont’d.

! False block

fblock: R0 = DM(_c);

R1 = DM(_d);

R1 = R0-R1;

DM(_x) = R1;

other: ! Code after if

Fancy if implementation

• C:

if (a>b) y = c-d; else y = c+d;

• Use parallelism to speed it up---compute both
cases, then choose which one to store.

Fancy if implementation, cont’d.

! Load values

R1=DM(_a); R2=DM(_b);

R3=DM(_c); R4=DM(_d);

! Compute both sum and difference

R12 = r2+r4, r0 = r2-r4;

! Choose which one to save

comp(r8,r1);

if ge r0=r12;

dm(_y) = r0 ! Write to y

DO UNTIL loops

DO UNTIL instruction provides efficient looping:
LCNTR=30, DO label UNTIL LCE;

R0=DM(I0,M0), F2=PM(I8,M8);

R1=R0-R15;

label: F4=F2+F3;

Loop length Last instruction in loop

Termination

condition

Example: FIR filter

• C:
for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

FIR filter assembler

! setup

I0=_a; I8=_b; ! a[0] (DAG0), b[0] (DAG1)

M0=1; M8=1 ! Set up increments

! Loop body

LCNTR=N, DO loopend UNTIL LCE;

! Use postincrement mode

R1=DM(I0,M0), R2=PM(I8,M8);

R8=R1*R2;

loopend: R12=R12+R8;

Optimized FIR filter code

I4=_a; I12=_b;

R4 = R4 xor R4, R1=DM(I4,M6),

R2=PM(I12,M14);

MR0F = R4, MODIFY(I7,M7);

! Start loop

LCNTR=20, DO(PC,loop) UNTIL LCE;

loop: MR0F=MR0F+42*R1 (SSI), R1=DM(I4,M6),

R2=PM(I12,M14);

! Loop cleanup

R0=MR0F;

SHARC subroutine calls

• Use CALL instruction:
CALL foo;

• Can use absolute, indirect, PC-relative
addressing modes.

• Return using RTS instruction.

PC stack

PC stack: 30 locations X 24 instructions.

Return addresses for subroutines, interrupt
service routines, loops held in PC stack.

Example: C function

• C:
void f1(int a) { f2(a); }

• Assembler:
f1: R0=DM(I1,-1); ! Load arg into R0

DM(I1,M1)=R0; ! Push f2’s arg

CALL f2;

MODIFY(I1,-1); ! Pop element

RTS;

Important programming reminders

• Non-delayed branches (JUMP, CALL, RTS, RTI)
do not execute 2 following instructions.
Delayed branches are available.

• Cache miss costs at least one cycle to allow
program memory bus to complete.

Important programming reminders,
cont’d

• Extra cache misses in loops:

– misses on first and last loop iteration if data
memory is accessed in last 2 instructions of loop;

– 3 misses if loop has only one instruction which
requires a program memory bus access.

• 1-instr. loops should be executed 3 times, 2-
instr. loops 2 times to avoid NOPs.

Important programming reminders,
cont’d

• NOPs added for DAG register write followed
by DAG data addressing in same register bank.

• Can program fixed wait states or ACK.

• Interrupt does not occur until 2 instructions
after delayed branch.

• Initialize circular buffer by setting L to positive
value, loading B to base.

Important programming reminders,
cont’d

• Some DAG register transfers are disallowed.

• When given 2 writes to same register file in
same cycle, only one actually occurs.

• Fixed- to floating-point conversion always
rounds to 40 bits.

• Only DM bus can access all memory spaces.

Important programming reminders,
cont’d

• When mixing 32-bit and 48-bit words in a
block, all instructions must be below data.

• 16-bit short words are extended to 32 bits.

• For dual data access, use DM for data-only
access, PM for mixed data/instruction block.
Instruction comes from cache.

• A variety of conditions cause stalls.

Networking for Embedded Systems

• Why we use networks.

• Network abstractions.

• Example networks.

Network elements

PE

PE

PE

network

communication link

distributed computing platform:

PEs may be CPUs or ASICs.

Networks in embedded systems

PE

PE sensor

PE actuator

initial processing

more processing

Why distributed?

• Higher performance at lower cost.

• Physically distributed activities---time
constants may not allow transmission to
central site.

• Improved debugging---use one CPU in
network to debug others.

• May buy subsystems that have embedded
processors.

Network abstractions

• International Standards Organization (ISO)
developed the Open Systems Interconnection
(OSI) model to describe networks:

– 7-layer model.

• Provides a standard way to classify network
components and operations.

OSI model

physical mechanical, electrical

data link reliable data transport

network end-to-end service

transport connections

presentation data format

session application dialog control

application end-use interface

OSI layers

• Physical: connectors, bit formats, etc.

• Data link: error detection and control across a
single link (single hop).

• Network: end-to-end multi-hop data
communication.

• Transport: provides connections; may
optimize network resources.

OSI layers, cont’d.

• Session: services for end-user applications:
data grouping, checkpointing, etc.

• Presentation: data formats, transformation
services.

• Application: interface between network and
end-user programs.

Hardware architectures

• Many different types of networks:

– topology;

– scheduling of communication;

– routing.

Point-to-point networks

• One source, one or more destinations, no data
switching (serial port):

PE 1 PE 2 PE 3

link 1 link 2

Bus networks

• Common physical connection:

PE 1 PE 2 PE 3 PE 4

header address data ECC packet format

Bus arbitration

• Fixed: Same order of resolution every time.

• Fair: every PE has same access over long
periods.

– round-robin: rotate top priority among Pes.

A,B,C A,B,C

fixed

round-robin

A B C A B C

A B C AB C

Crossbar

in1 in2 in3 in4

out1

out2

out3

out4

Crossbar characteristics

• Non-blocking.

• Can handle arbitrary multi-cast combinations.

• Size proportional to n2.

Multi-stage networks

• Use several stages of switching elements.

• Often blocking.

• Often smaller than crossbar.

Message-based programming

• Transport layer provides message-based
programming interface:

send_msg(adrs,data1);

• Data must be broken into packets at source,
reassembled at destination.

• Data-push programming: make things happen
in network based on data transfers.

I2C bus

• Designed for low-cost, medium data rate
applications.

• Characteristics:

– serial;

– multiple-master;

– fixed-priority arbitration.

• Several microcontrollers come with built-in I2C
controllers.

I2C physical layer

master 1 master 2

slave 1 slave 2

SCL

SDL
data line

clock line

I2C data format

SCL

SDL

...

MSBstart

...

ack

...

I2C electrical interface

SDL

+• Open collector interface:

SCL

+

I2C signaling

• Sender pulls down bus for 0.

• Sender listens to bus---if it tried to send a 1
and heard a 0, someone else is simultaneously
transmitting.

• Transmissions occur in 8-bit bytes.

I2C data link layer

• Every device has an address (7 bits in
standard, 10 bits in extension).

– Bit 8 of address signals read or write.

• General call address allows broadcast.

I2C bus arbitration

• Sender listens while sending address.

• When sender hears a conflict, if its address is
higher, it stops signaling.

• Low-priority senders relinquish control early
enough in clock cycle to allow bit to be
transmitted reliably.

I2C transmissions

multi-byte write

read from slave

write, then read

S adrs 0 data data P

S adrs 1 data P

S adrs 0 data S adrs 1 data P

Multiprocessor networks

• Multiple DSPs are often connected by high-
speed networks for signal processing:

DSP DSP

DSP DSP

SHARC link ports

• Six per CPU.

• Four bits per link port.

• Packets have 32- or 48-bit payload.

• Can be controlled by DMA.

• Are half-duplex---must be turned around by
program.

Ethernet

• Dominant non-telephone LAN.

• Versions: 10 Mb/s, 100 Mb/s, 1 Gb/s 10 Gb/s.

• Goal: reliable communication over an
unreliable medium.

Ethernet topology

• Bus-based system, several possible physical
layers:

A B C

CSMA/CD

• Carrier sense multiple access with collision
detection:

– sense collisions;

– exponentially back off in time;

– retransmit.

Exponential back-off times

time

Ethernet packet format

preamble
start

frame

source

adrs

dest

adrs

data

payload
length padding CRC

Ethernet performance

• Quality-of-service tends to non-linearly
decrease at high load levels.

• Can’t guarantee real-time deadlines. However,
may provide very good service at proper load
levels.

Internet Protocol

• Internet Protocol (IP) is basis for Internet.

• Provides an internetworking standard:
between two Ethernets, Ethernet and token
ring, etc.

• Higher-level services are built on top of IP.

IP in communication

physical

data link

network

transport

presentation

application

session

physical

data link

network

transport

presentation

application

session

physical

data link

network

node A router
node B

IP

IP packet

• Includes:

– version, service type, length

– time to live, protocol

– source and destination address

– data payload

• Maximum data payload is 65,535 bytes.

IP addresses

• 32 bits in early IP, 128 bits in IPv6.

• Typically written in form xxx.xx.xx.xx.

• Names (foo.baz.com) translated to IP address
by domain name server (DNS).

Internet routing

• Best effort routing:

– doesn’t guarantee data delivery at IP layer.

• Routing can vary:

– session to session;

– packet to packet.

Higher-level Internet services

• Transmission Control Protocol (TCP) provides
connection-oriented service.

• Quality-of-service (QoS) guaranteed services
are under development.

The Internet service stack

IP

UDP

SNMP

TCP

User

Datagram

Protocol

FTP HTTP SMTP telnet

