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Definition of Stress

Consider a small area δA on the surface of a body (Fig. 1.1). The force acting on this area is δF

This force can be resolved into two perpendicular components

 The component of force acting normal to the area called normal force and is denoted by δFn

 The component of force acting along the plane of area is called tangential force and is denoted 

by δFt

Fig 1.1 Normal and Tangential Forces on a surface
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When they are expressed as force per unit area they are called as normal 

stress and tangential stress respectively. The tangential stress is also

called shear stress.

• The normal stress

And shear stress

3



Definition of Fluid

 A fluid is a substance that deforms continuously in the face of tangential 

or shear stress, irrespective of the magnitude of shear stress .This 

continuous deformation under the application of shear stress constitutes a 

flow.

 In this connection fluid can also be defined as the state of matter that 

cannot sustain any shear stress.
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Example : Consider Fig 1.2

Fig 1.2 Shear stress on a fluid body

If a shear stress τ is applied at any location in a fluid, the element 011' which is initially at rest, will move to 022', then to 

033'. Further, it moves to 044' and continues to move in a similar fashion.

In other words, the tangential stress in a fluid body depends on velocity of deformation and vanishes as this velocity 

approaches zero. A good example is Newton's parallel plate experiment where dependence of shear force on the 

velocity of deformation was established.
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Solid 
 

Fluid 

   

 

 More Compact Structure 

 Attractive Forces between the 

molecules  

are larger therefore more closely 

packed 

 Solids can resist tangential stresses 

in static condition 

 Whenever a solid is subjected to 

shear stress 

a. It undergoes a definite 

deformationα or breaks 

b. α is proportional to shear 

stress upto some limiting 

condition 

 Solid may regain partly or fully its 

original shape when the tangential 

stress is removed 

 

 

 

 Less Compact Structure 

 Attractive Forces between the 

molecules  

are smaller therefore more loosely 

packed 

 Fluids cannot resist tangential 

stresses in static condition. 

 Whenever a fluid is subjected to 

shear stress 

a. No fixed deformation 

b. Continious deformation 

takes place 

until the shear stress is 

applied 

 A fluid can never regain its original 

shape, once it has been distorded by 

the shear stress 

 

 

Distinction Between Solid and Fluid
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Fig 1.3 Deformation of a Solid Body
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Property Symbol Definition Unit 

Density ρ 

The density p of a fluid is its mass per unit volume . If a fluid element 

enclosing a point P has a volume Δ  and mass Δm (Fig. 1.4), then density 

(ρ)at point P is written as 

 

 

However, in a medium where continuum model is valid one can write - 

 

(1.3) 

 

 

 

Fig 1.4 A fluid element enclosing point P 

 

kg/m3 

Specific 

Weight 
γ 

The specific weight is the weight of fluid per unit volume. The specific 

weight is given 

by     γ= ρg (1.4) 

Where g is the gravitational acceleration. Just as weight must be clearly 

distinguished from mass, so must the specific weight be distinguished from 

density. 

N/m3 
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Specific 

Volume 
v 

The specific volume of a fluid is the volume occupied by unit mass of fluid. 

Thus 

 

(1.5) 
 

m3/kg 

Specific 

Gravity 
s 

For liquids, it is the ratio of density of a liquid at actual conditions to the density of 

pure water at 101 kN/m2 , and at 4°C. 

The specific gravity of a gas is the ratio of its density to that of either hydrogen or 

air at some specified temperature or pressure. 

However, there is no general standard; so the conditions must be stated while 

referring to the specific gravity of a gas. 

- 
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Viscosity ( μ ) :

 Viscosity is a fluid property whose effect is understood when the fluid is in motion.

 In a flow of fluid, when the fluid elements move with different velocities, each element will 

feel some resistance due to fluid friction within the elements.

 Therefore, shear stresses can be identified between the fluid elements with different 

velocities.

 The relationship between the shear stress and the velocity field was given by Sir Isaac 

Newton.
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Consider a flow (Fig. 1.5) in which all fluid particles are moving in the same direction in such a way that the 

fluid layers move parallel with different velocities.

Fig 1.5 Parallel flow of a fluid Fig 1.6 Two adjacent layers of a moving fluid.
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 The upper layer, which is moving faster, tries to draw the lower slowly moving layer along with it by means of 

a force F along the direction of flow on this layer. Similarly, the lower layer tries to retard the upper one, 

according to Newton's third law, with an equal and opposite force F on it (Figure 1.6).

 Such a fluid flow where x-direction velocities, for example, change with y-coordinate is called shear flow of 

the fluid.

 Thus, the dragging effect of one layer on the other is experienced by a tangential force F on the respective 

layers. If F acts over an area of contact A, then the shear stress τ is defined as τ = F/A

Viscosity ( μ ) 

 Newton postulated that τ is proportional to the quantity Δu/ Δy where Δy is the distance of separation of the two 

layers and Δu is the difference in their velocities.

 In the limiting case of , Δu / Δy equals du/dy, the velocity gradient at a point in a direction perpendicular to the 

direction of the motion of the layer.

 According to Newton τ and du/dy bears the relation 
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• where, the constant of proportionality μ is known as the coefficient of viscosity or simply viscosity which is a 

property of the fluid and depends on its state. 

• Sign of τ depends upon the sign of du/dy.

• For the profile shown in Fig. 1.5, du/dy is positive everywhere and hence, τ is positive. 

• Both the velocity and stress are considered positive in the positive direction of the coordinate parallel to 

them.

Equation

Causes of Viscosity

 The causes of viscosity in a fluid are possibly attributed to two factors:

(i) intermolecular force of cohesion

(ii) molecular momentum exchange
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Due to strong cohesive forces between the molecules, any layer in a moving fluid tries to drag the adjacent layer to move 

with an equal speed and thus produces the effect of viscosity as discussed earlier. Since cohesion decreases with 

temperature, the liquid viscosity does likewise

Fig 1.7 Movement of fluid molecules between two adjacent moving layers
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 As the random molecular motion increases with a rise in temperature, the viscosity also increases accordingly. 

Except for very special cases (e.g., at very high pressure) the viscosity of both liquids and gases ceases to be a 

function of pressure.

 For Newtonian fluids, the coefficient of viscosity depends strongly on temperature but varies very little with 

pressure.

 For liquids, molecular motion is less significant than the forces of cohesion, thus viscosity of liquids decrease 

with increase in temperature.

 For gases, molecular motion is more significant than the cohesive forces, thus viscosity of gases increase with 

increase in temperature.
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Fig 1.8: Change of Viscosity of Water and Air under 1 atm
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No-slip Condition of Viscous Fluids

• It has been established through experimental observations that the relative velocity between the solid 

surface and the adjacent fluid particles is zero whenever a viscous fluid flows over a solid surface. This is 

known as no-slip condition.

 This behavior of no-slip at the solid surface is not same as the wetting of surfaces by the fluids. For 

example, mercury flowing in a stationary glass tube will not wet the surface, but will have zero velocity 

at the wall of the tube.

 The wetting property results from surface tension, whereas the no-slip condition is a consequence of fluid 

viscosity.
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Ideal Fluid

 Consider a hypothetical fluid having a zero viscosity ( μ = 0). Such a fluid is called an ideal fluid and the resulting 

motion is called as ideal or inviscid flow. In an ideal flow, there is no existence of shear force because of vanishing 

viscosity.

 All the fluids in reality have viscosity (μ > 0) and hence they are termed as real fluid and their motion is 

known as viscous flow.

 Under certain situations of very high velocity flow of viscous fluids, an accurate analysis of flow field 

away from a solid surface can be made from the ideal flow theory.
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Deformation of Fluids
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Newtonian Fluids 

• Fluids in which shear stress is directly proportional to rate of 
deformation are called Newtonian fluids 

• Most common fluids such as water, air, and gasoline are 
Newtonian under normal conditions 

• If a fluid is Newtonian then: 

 
 
• The constant of proportionality is called Absolute or Dynamic 

viscosity denoted by 

• The ratio of absolute viscosity to density is called Kinematic 
Viscosity and is denoted by 
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Non Newtonian Fluids 
 
 
 

• Fluids in which shear stress is not directly 
proportional to deformation rate are non- 
Newtonian    

• Examples are toothpaste and Lucite5 paint. 

• The paint is very “thick” when in the can, but 
becomes “thin” when sheared by brushing. 

• Toothpaste behaves as a “fluid” when squeezed from 
the tube. However, it does not run out by itself when 
the cap is removed. 

• There is a threshold or yield stress below which 
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Apparent Viscosity 

• The viscosity is normally constant but apparent 
viscosity depends upon shear rate and may be 
much higher at certain shear rates for non 
Newtonian fluids 

• Mathematically :  
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Types of Non Newtonian fluids 
• Fluids in which the apparent viscosity decreases with 

increasing deformation rate (n<1) are called 
pseudoplastic (or shear thinning) fluids. 

• Examples are polymer solutions, colloidal suspensions, 
and paper pulp in water 

• If the apparent viscosity increases with increasing 
deformation rate (n>1) the fluid is termed dilatant (or 
shear thickening). Suspensions of starch and of sand 
are examples of dilatant fluids 

• On the beach—if you walk slowly (and hence generate 
a low shear rate) on very wet sand, you sink into it, but 
if you jog on it (generating a high shear rate), it’s very 
firm. 
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Types of Non Newtonian fluids 

• A “fluid” that behaves as a solid until a minimum 
yield stress, τy, is exceeded and subsequently 

exhibits a linear relation between stress and rate of 
deformation is referred to as an ideal or Bingham 
plastic. The corresponding shear stress model is: 

 
 

• Clay suspensions, drilling muds, and toothpaste are 
examples of substances exhibiting this behavior 
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Types of Non Newtonian fluids 

• Thixotropic fluids: Non-Newtonian fluids in which 
apparent viscosity may be time-dependent i.e. 
show a decrease in η with time under a constant 
applied shear stress; many paints are thixotropic. 

• Rheopectic: Non Newtonian fluids that show an 
increase in η with time hence called Rheopectic. 

• Viscoelastic: After deformation some fluids partially 
return to their original shape when the applied 
stress is released; such fluids are called viscoelastic 
(many biological fluids work this way). 
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Surface tension 
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Surface tension 
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Surface tension 
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Viscous and Invicid flows 
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Reynolds No 

• A number given by 

• It is used to predict whether viscous forces 
acting on a body are negligible as compared to 
pressure forces or not 

• If Re is high, viscous forces are negligible 

• If it is low then the viscous forces are not 
negligible 

• If it is neither small nor large, no general 
conclusion can be drawn 
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Reynolds No 
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Various concepts 

• Inviscid Flow: A friction less flow is called 
inviscid flow. It has no Viscosity effects 

• Viscous Flow: A flow which involves force of 
friction is called viscous flow 

• Stagnation points: where velocity is zero 
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Boundary layer 
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Boundary layer 
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Boundary layer over a streamlined 
object 
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Laminar and Turbulent Flows 
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Laminar and Turbulent Flows 
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Compressible and incompressible flows 
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Compressible and incompressible flows 
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Internal and External Flows 
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Summary and Useful equations 
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Summary and Useful equations 
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UNIT-II 
Fluid Kinematics 
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Overview 

• Fluid Kinematics deals with the motion of fluids 
without considering the forces and moments which 
create the motion. 

• Items discussed in this Chapter. 

– Material derivative and its relationship to Lagrangian and 

Eulerian descriptions of fluid flow. 

– Flow visualization. 

– Plotting flow data. 

– Fundamental kinematic properties of fluid motion and 
deformation. 

– Reynolds Transport Theorem 
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Lagrangian Description 

• Lagrangian description of fluid flow tracks the 
position and velocity of individual particles. 

• Based upon Newton's laws of motion. 
• Difficult to use for practical flow analysis. 

– Fluids are composed of billions of molecules. 
– Interaction between molecules hard to describe/model. 

• However, useful for specialized applications 
– Sprays, particles, bubble dynamics, rarefied gases. 
– Coupled Eulerian-Lagrangian methods. 

• Named after Italian mathematician Joseph Louis 
Lagrange (1736-1813). 
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Eulerian Description 

• Eulerian description of fluid flow: a flow domain or control volume is 
defined by which fluid flows in and out. 

• We define field variables which are functions of space and time. 
– Pressure field, P=P(x,y,z,t) 
– Velocity field, 

 
 

V  V  x , y , z , t 

   

V  u  x , y , z , t  i  v  x , y , z , t  j  w  x , y , z , t  k 

– Acceleration field, a
 
 a

 
 x , y , z , t 

a
 
 a   

 
 a   

 
 a   





x 
x , y , z , t i 

y 
x , y , z , t j 

z 
x , y , z , t k 

 

– These (and other) field variables define the flow field. 

• Well suited for formulation of initial boundary-value problems (PDE's). 

• Named after Swiss mathematician Leonhard Euler (1707-1783). 
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Example: Coupled Eulerian-Lagrangian Method 
 
 

 

• Global Environmental 
MEMS Sensors (GEMS) 

• Simulation of micron-scale 
airborne probes. The probe 
positions are tracked using a 
Lagrangian particle model 
embedded within a flow 
field computed using an 
Eulerian CFD code. 
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Example: Coupled Eulerian-Lagrangian Method 
 

 

Forensic analysis of Columbia accident: simulation of shuttle 
debris trajectory using Eulerian CFD for flow field and Lagrangian 
method for the debris. 
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• To take the time derivative of, chain rule must be used. 
   

a
 


 V d t  V 


d x 

p a r t ic le 
 
 V d y 

p a r t ic le 
 
 V 

d z 
p a r t ic le 

 
 

p a r t ic le 

 t d t  x d t  y d t  z d t 

Acceleration Field 

• Consider a fluid particle and Newton's second law, 
 

F  m a 
particle particle particle 

 



• The acceleration of the particle is the time derivative of the 

particle's velocity.  
a 

p a r t ic le 



dV 

p a r t ic le 
 

 

dt  
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

Acceleration Field 
 

 

• Since 
d x 

p a r tic le 
 
 u , 

d y 
p a r tic le 

 
 v , 

d z 
p a r tic le 

 w
 

d t d t d t 
   

 V 
a 

p a r t ic le 


 t 

 V  V  V 
 u  v  w 

 x  y  z 

• In vector form, the acceleration can be written as   
  

a
 
 x , y , z , t   

d V
 

d t 

 
 V 

 V 

 t 
 V 

 

• First term is called the local acceleration and is nonzero only for unsteady 

flows. 

• Second term is called the advective acceleration and accounts for the 
effect of the fluid particle moving to a new location in the flow, where the 
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Material Derivative 

• The total derivative operator d/dt is call the material derivative 
and is often given special notation, D/Dt. 

   
  

D V d V  V 

   V  V 

D t d t  t 

• Advective acceleration is nonlinear: source of many 
phenomenon and primary challenge in solving fluid flow 
problems. 

• Provides ̀ `transformation'' between Lagrangian and Eulerian 
frames. 

• Other names for the material derivative include: total, particle, 
Lagrangian, Eulerian, and substantial derivative. 
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Flow Visualization 

• Flow visualization is the visual examination of flow- 
field features. 

• Important for both physical experiments and 
numerical (CFD) solutions. 

• Numerous methods 
– Streamlines and streamtubes 

– Pathlines 

– Streaklines 

– Timelines 

– Refractive techniques 

– Surface flow techniques 
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Streamlines 
• A Streamline is a curve that is 

everywhere tangent to the 
instantaneous local velocity 
vector. 

• Consider an arc length 
d r

 
  

 
 
 


d x i d y j d zk 

• d r
 
must be parallel to the local 

velocity vector 
   

V  u i  v j  w k 
 

• Geometric arguments results in 
the equation for a streamline 

d r d x d y d z 
  

V u v w 
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Streamlines

NASCAR surface pressure contours

and streamlines

Airplane 
surface 
pressure 
contours,

Airplane surface pressurere contours, Volume stream lines
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Pathlines 
 

 

• A Pathline is the actual path 
traveled by an individual fluid 
particle over some time period. 
Same as the fluid particle's 
material position vector 

 x 
p a r tic le 

 t  , y 
p a r tic le  t  , z 

p a r tic le  t  


Particle location at time t: 
  

t 
x  x 

s ta r t 
 

t 
s ta r t 

V d t 

Particle Image Velocimetry (PIV) 
is a modern experimental 
technique to measure velocity 
field over a plane in the flow 
field. 

• 

• 

• 
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Streaklines 

• A Streakline is the locus 
of fluid particles that 
have passed 
sequentially through a 
prescribed point in the 
flow. 

• Easy to generate in 
experiments: dye in a 
water flow, or smoke in 
an airflow. 
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Comparisons 

• For steady flow, streamlines, pathlines, and 
streaklines are identical. 

• For unsteady flow, they can be very different. 

– Streamlines are an instantaneous picture of the flow field 

– Pathlines and Streaklines are flow patterns that have a 
time history associated with them. 

– Streakline: instantaneous snapshot of a time-integrated 
flow pattern. 

– Pathline: time-exposed flow path of an individual particle. 
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Timelines 

• A Timeline is the locus 
of fluid particles that 
have passed 
sequentially through a 
prescribed point in the 
flow. 

• Timelines can be 
generated using a 
hydrogen bubble wire. 
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Plots of Data 

• A Profile plot indicates how the value of a 
scalar property varies along some desired 
direction in the flow field. 

• A Vector plot is an array of arrows indicating 
the magnitude and direction of a vector 
property at an instant in time. 

• A Contour plot shows curves of constant 
values of a scalar property for magnitude of a 
vector property at an instant in time. 
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Kinematic Description 

• In fluid mechanics, an element 
may undergo four fundamental 
types of motion. 
a) Translation 
b) Rotation 
c) Linear strain 
d) Shear strain 

• Because fluids are in constant 
motion, motion and deformation 
is best described in terms of rates 
a) velocity: rate of translation 
b) angular velocity: rate of rotation 
c) linear strain rate: rate of linear 

strain 
d) shear strain rate: rate of shear 

strain 
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Rate of Translation and Rotation 

• To be useful, these rates must be expressed in terms of velocity 
and derivatives of velocity 

• The rate of translation vector is described as the velocity 
vector. In Cartesian coordinates: 

   
V  u i  v j  w k 

 
 

• Rate of rotation at a point is defined as the average rotation 
rate of two initially perpendicular lines that intersect at that 
point. The rate of rotation vector in Cartesian coordinates: 

 

 


 
 1   w 

 
  

 v   






1   u 
 

  
 w   







1   v 
 

 

 u  




  i   j   k 

2    y  z  2    z  x  2    x  y 
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

Linear Strain Rate 

• Linear Strain Rate is defined as the rate of increase in length per unit length. 

• In Cartesian coordinates 

 u 

xx 
 x

 ,  
yy 


 v 
,   

 w 

 y 
z z 

 z 

 

 

• Volumetric strain rate in Cartesian coordinates 

1 D V  u  v  w 

        

V D t 
xx yy z z 

 x  y  z 

 

• Since the volume of a fluid element is constant for an incompressible flow, 
the volumetric strain rate must be zero. 


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

Shear Strain Rate

• Shear Strain Rate at a point is defin ed as half of the 
rate of decrease of the angle between two initially 
perpendicular lines that intersect at a point .

• Shear strain rate can be expressed in Cartesian 
coordinates as:

1   uxy

2 

 y

 v 


 x 

 ,  zx


1    w

2

 x

 u 
  , 

yz
 z

1  v

2  

 z

 w 

 y


     


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Shear Strain Rate 

• Purpose of our discussion of fluid element 
kinematics: 
– Better appreciation of the inherent complexity of fluid 

dynamics 

– Mathematical sophistication required to fully describe fluid 
motion 

• Strain-rate tensor is important for numerous reasons. 
For example, 
– Develop relationships between fluid stress and strain rate. 

– Feature extraction and flow visualization in CFD 
simulations. 
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Shear Strain Rate 
Example: Visualization of trailing-edge turbulent eddies 

for a hydrofoil with a beveled trailing edge 

 
 
 
 
 
 
 
 
 
 
 
 

Feature extraction method is based upon eigen-analysis of the strain-rate tensor. 
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Vorticity and Rotationality 
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Comparison of Two Circular Flows 
Special case: consider two flows with circular streamlines 
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Reynolds—Transport Theorem 
(RTT) 

• A system is a quantity of matter of fixed identity. No mass can 
cross a system boundary. 

• A control volume is a region in space chosen for study. Mass 
can cross a control surface. 

• The fundamental conservation laws (conservation of mass, 
energy, and momentum) apply directly to systems. 

• However, in most fluid mechanics problems, control volume 
analysis is preferred over system analysis (for the same reason 
that the Eulerian description is usually preferred over the 
Lagrangian description). 

• Therefore, we need to transform the conservation laws from a 
system to a control volume. This is accomplished with the 
Reynolds transport theorem (RTT). 
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Reynolds—Transport Theorem 
(RTT) 

 
 
 
 
 

There is a direct analogy between the transformation from 
Lagrangian to Eulerian descriptions (for differential analysis using 
infinitesimally small fluid elements) and the transformation from 
systems to control volumes (for integral analysis using large, 
finite flow fields). 
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Reynolds—Transport Theorem 
(RTT) 

• Material derivative (differential analysis): D b  b  




• General RTT, nonfixed CV (integral analysis): 

  V 
D t  t 

  b 

dB 
sys 

d t 




C V    t 
  b  d V 

C S 

 
 b V n d A 

 
 

 Mass Momentum Energy Angular 

momentum 

B, Extensive properties m 


mV  E 


H 

b, Intensive properties 1 


V e  r
 
 

 


V 

 

 
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Reynolds—Transport Theorem 
(RTT) 

• Interpretation of the RTT: 

– Time rate of change of the property B of the 
system is equal to (Term 1) + (Term 2) 

– Term 1: the time rate of change of B of the 
control volume 

– Term 2: the net flux of B out of the control 
volume by mass crossing the control surface 
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RTT Special Cases 

For moving and/or deforming control volumes, 
 

dB 
sys 

d t 




C V  t 
  b  d V 

C S 



 b V 
r
 n

 
d A 

 

 

 

• Where the absolute velocity V in the second term is 
replaced by the relative velocity 

Vr = V -VCS 

• Vr is the fluid velocity expressed relative to a 
coordinate system moving with the control volume. 

 
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RTT Special Cases 

For steady flow, the time derivative drops out, 

dB 
sys 

 
  

  b 
0 

 d V  


b V 
r
 n

 
d A  


b V 

r
 n

 
d A 

d t C V  t C S C S 

 



For control volumes with well-defined inlets and 
outlets 

dB 
sys 

 
d  b d V    b V A     b V A 

d t d t CV 
 

a vg a vg r , a vg  a vg a vg r , a vg 

o u t   in 
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UNIT-III 
Fluid Dynamics 
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Euler and Navier Stokes Equation: 

 

Euler’s Equation: The Equation of Motion of an Ideal Fluid 

 

Using the Newton's second law of motion the relationship between the velocity and pressure 

field for a flow of an inviscid fluid can be derived. The resulting equation, in its differential 

form, is known as Euler‟s Equation. The equation is first derived by the scientist Euler. 

Derivation: 
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The net forces acting on the fluid element along x, y and z directions can be written as

Since each component of the force can be expressed as the rate of change of momentum in the 

respective directions, we h ave 
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Expanding the material accelerations in Eqs in terms of their respective temporal and convective 

components we get
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Momentum Equation in Integral Form: 

 

Conservation of Momentum: Momentum Theorem  
In Newtonian mechanics, the conservation of momentum is defined by Newton‟s second law of 
motion.  
Newton’s Second Law of Motion  

The rate of change of momentum of a body is proportional to the impressed action and takes 
place in the direction of the impressed action.  
If a force acts on the body ,linear momentum is implied. 

If a torque (moment) acts on the body,angular momentum is implied. 

 

Reynolds Transport Theorem 

A study of fluid flow by the Eulerian approach requires a mathematical modeling for a control 

volume  either  in  differential or  in  integral  form.  Therefore  the  physical statements  of the  
principle of conservation of mass, momentum and energy with reference to a control volume 

become necessary. This is done by invoking a theorem known as the Reynolds transport theorem  
which relates the control volume concept with that of a control mass system in terms of a general 

property of the 

system. 

85



Statement of Reynolds Transport Theorem 

 

The theorem states that "the time rate of increase of property N within a control mass system is 
equal to the time rate of increase of property N within the control volume plus the net rate of efflux 
of the property N across the control surface”. 

Reynolds Transport Theorem 

 

After deriving Reynolds Transport Theorem according to the above statement we get  
 
 
 
 
 
 
 

 

In this equation 

N - flow property which is transported  
η - intensive value of the flow property  
Application of the Reynolds Transport Theorem to Conservation of Mass and Momentum 
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Angular Momentum Equation in Integral Form: 

 

Angular Momentum  
The angular momentum or moment of momentum theorem is also derived from below Eq in 
consideration of the property N as the angular momentum and accordingly η as the angular 
momentum per unit mass. Thus,  
 
 
 
 
 
 
 

 

where  
Control mass system is the angular momentum of the control mass system. . It has to be noted 
that the origin for the angular momentum is the origin of the position vector 
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UNIT-IV 
Boundary Layer Theory 
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= separated 

bdy layer 
 

 

 

• Re = Ux/; Re = Uc/; … 
• laminar and turbulent boundary layers 

• displaced inviscid outer flow 

• adverse pressure gradient and separa162tion 

thicker 

adverse pressure 

gradient 

leads to separation 

difficult to use theory 

EXTERNAL INCOMPRESSIBLE VISCOUS FLOWS
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Boundary Layer Provides Missing Link 

Between Theory and Practice 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Boundary layer, d, where viscous stresses

(i.e. velocity gradient) are important we’ll define

as where u(x,y) = 0 to 0.99 U¥ above boundary.
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In August of 1904 Ludwig Prandtl, a 29-year old professor presen 

a remarkable paper at the 3rd International Mathematical Congres 

Heidelberg. Although initially largely ignored, by the 1920s and 19 

the powerful ideas of that paper helped create modern fluid dyna 

out of ancient hydraulics and 19th-century hydrodynamics. 
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ct outer outer “inviscid” flow if separates 

• Prandtl assumed no slip condition 

• Prandtl assumed thin boundary layer region where shear force 

are important because of large velocity gradient 

• Prandtl assumed inviscid external flow 

• Prandtl assumed boundary so thin that within it p/y  0; v << 

u 

and /x << /y 

• Prandtl outer flow drives boundary layer boundary layer can 

greatly effe 
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BOUNDARY LAYER HISTORY 
 

 
 

- 1904 Prandtl 

Fluid Motion with Very Small Friction 
2-D boundary layer equations 

 
- 1908 Blasius 

The Boundary Layers in Fluids with Little Friction 
Solution for laminar, 0-pressure gradient flow 

 
- 1921 von Karman 

Integral form of boundary layer equations 
 

- 1924 Sir Horace Lamb 

Hydrodynamics ~ one paragraph on bdy layers 

- 1932 Sir Horace Lamb 

Hydrodynamics ~ entire section on bdy layers 

Theodore von Karman 
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 INTERNAL EXTERNAL 

FULLY 

DEVELOPED? 

CAN BE NEVER 

WAKE? NEVER USUALLY - PLATE IS 

EXCEPTION 

THEORY 

LAMINAR 

PIPES, DUCTS,.. FLAT PLATE & ZERO 

PRESSURE GRADIENT 

GROWING 

BOUNDARY 

LAYER? 

NOT WHEN 

FULLY 

DEVELOPED 

ALWAYS 

ADVERSE 

PRESSURE 

GRADIENT 

PIPE/DUCT=N0 

DIFFUSER=YES 

PLATE=MAYBE 

BODIES=USUALLY 
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ote – throughout figures  the oundary layer 

thickness*,d, is greatly exaggerated!

(disturbance layer*)

Airline industry had to

develop flat face rivets.
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Re = 20,000

Angle of attack = 6o 

Symmetric Airfoil

16% thick

138



Flat Plate (no pressure gradient) 

~ what is velocity profile? 

~ wall shear stress/drag? 

~ displacement of free stream? 

~ laminar vs turbulent flow? 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Immersed Bodies 

~ wall shear stress/drag? 

~ lift? 

~ minimize wake 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17 
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FLAT PLATE – ZERO PRESSURE GRADIENT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

171 
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Laminar Flow 

d/x ~ 5.0/Re 1/2 

THEORY 
x 
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No simple theory 

for Re < 1000; 

(can’t assume 

d is thin) 

“At these Rex number 

bdy layers so thin that 
displacement effect o 
outer inviscid layer is 
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eL = 10,000 Visualization is by air bubbles see that boundary+ layer, 

is thin and that outer free stream is displaced, d*, very little. 

+ Disturbance Thickness, d(x) (pg 412); boundary layer thickness, d(x) (pg 415 
174 

 

FLAT PLATE – ZERO PRESSURE GRADIENT 
 
 
 

outside d(x), U is constant so P is constant 

 
 
 
 
 

u(x,y) is not constant, d(x) is thin so 

assume P inside d(x) is impressed from the outside 
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FLAT PLATE – ZERO PRESSURE GRADIENT 

Rex  = Ux/

Assume Rextransition ~ 500,000 
x 

 
 

L 

 

ReL = Ux/
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176  





SIMPLIFYING ASSUMPTIONS OFTEN MADE FOR 

ENGINERING ANALYSIS OF BOUNDARY LAYER FLOWS 
 
 

145



Development of laminar boundary layer 

(0.01% salt water, free stream velocity 0.6 cm/s, thickness 

of the plate 0.5 mm, hydrogen bubble method). 
 
 
 
 
 
 
 
 
 
 

 

* 
* 

* 
* 

Rex  1000 

* 
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FLAT PLATE – ZERO PRESSURE GRADIENT: d(x) 

 
 
 
 
 
 
 
 
 
 
 

 
BOUNDARY OR DISTURBANCE LAYER 

147



d(x) d* 





BOUNDARY OR DISTURBANCE LAYER
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Boundary Layer Thickness 

d(x) 
 
 
 
 
 

 

Definition: 

u(x,d) = 0.99 of U=U=Ue 

(within 1 % of U) 

149



d is at y location where u(x,y) = 0.99 U 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Because the change in u in the boundary layer 
takes place asymptotically, there is some 

indefiniteness in determining d exactly. 
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NOTE: boundary layer is 

much thicker in turbulent flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Blasius showed theoretically for laminar flow that 

d/x = 5/(Rex)
1/2 (Rex = Ux/) 

d   x1/2 

 
Experimentally found* 

for turbulent flow that 

d   x4/5 
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NOTE: velocity gradient at wall 

(w =  du/dy) is significantly greater. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At same x: U/dL > U /dT 

At same x: wL < wT 
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streamline 

184 

From theory (Blasius 1908, student of 

Prandtl): 

d= 5x/(Rex
1/2) = 5x/(U/[x])1/2 = 51/2x1/2/U1/2 

dd/dx = 5 (/U)1/2  (½) x-1/2  = 2.5/(Rex)
1/2 

V/U = dy/dxstreamline = 0.84/(Rex
1/2) 

dy/dxstreamline  dd/dx so d not 

Note, boundary layer is not a streamlin 
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Behavior of a fluid particle traveling along a streamline 

through a boundary layer along a flat plate. 
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LAMINAR TO TURBULENT TRANSITION 
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NOTE: Turbulence is not initiated at 

Retr all along the width of the plate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Emmons spot ~ Rex = 200,000 
Spots grow approximately linearly downstream at downstream 

speed that is a fraction of the free stream velocity. 
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x=0

Turbulent boundary layer is thicker and grows fast

Transition not fixed but usually around Rex  ~500,000

(2x105-3x106, MYO)
For air at standard conditions and U = 30 m/s, xtr ~ 0.24 m

157



194 

Displacement Thickness 

d*(x) 
 
 

 

 
 
 

 

Definition: 

d* = 0 (

1 – u/U)dy 

d* 
is displacement of outer 

streamlines due to boundary layer 
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By definition, no flow passes through 
streamline, so mass through 0 to h at x = 0 

Displacement thickness d* 

 
 
 
 
 
 
 
 
 

  x = L  
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Uh = 0
h+d* udy = 0

h+d*  (U + u - U)dy 

Uh = 0
h+d* Udy + 0

h+d* (u - U)dy 

Uh = U(h + d*) + 0
h+d*(u - U)dy 

-Ud* = 0
h+d*(u -U)dy 
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displacement of outer 

streamlines due to d(x) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 d*  0 (1 – u/U)dy  0d(1 – u/U)dy
function of x!
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Blasius developed an exact solution (but numerical integration 

was necessary) for laminar flow with no pressure variation. 

Blasius could theoretically predict boundary layer thickness d(x), 

velocity profile u(x,y)/U vs y/d, and wall shear stress w(x). 

Von Karman and Poulhausen derived 

momentum integral equation 

(approximation) which can be 

used for both laminar (with and 

without pressure gradient) and 
162



MOMENTUM INTEGRAL EQUATION 

dP/dx is not a constant! 
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Deriving: 

MOMENTUM INTEGRAL EQ 

so can calculate d(x), w. 
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Surface Mass Flux Through Side ab 
 
 
 
 

w 
u(x,y) 
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Surface Mass Flux Through Side cd 
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Surface Mass Flux Through Side bc 
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Surface Mass Flux Through Side bc 
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Apply x-component of momentum eq. 

to differential control volume abcd 
 

Assumption : (1) steady (3) no body forces 
 
 
 
 
 
 
 
 
 

u 
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mf represents x-component of momentum fl 

Fsx will be composed of shear force on boun 
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Surface Momentum Flux Through Side ab 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

X-momentum 

Flux = u w 

cvuVdA 
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Surface Momentum Flux Through Side cd 
 

 

 

X-momentum 

Flux = 
 uVdA 
cv 

 
 

 

253 

 

 
u 
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Surface Momentum Flux Through Side bc 
 
 

 

 

 

X- momentum 

Flux = u 

cvuVdA 

U=Ue=U
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X-Momentum Flux Through Control Surface 

b-c c-d 

c-d a-b 
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IN SUMMARY 

X-Momentum Equation 
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UNIT-V 
Closed Conduit Flow 
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Closed Conduit Flow 

• Energy equation 

• EGL and HGL 

• Head loss 

– major losses 

– minor losses 

• Non circular conduits 
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Conservation of Energy 
 

• Kinetic, potential, and thermal 
energy 

 

 
 

Cross section 2 isd_o_w_n_s_t_re_a_m from cross section 1! 

hp = 

ht = 

hL = 

head supplied by a pump 

head given to a turbine 

 
head loss between sections 1 and 2 

  1 
 



p V 
2 

1 

2g 

    1   
 z  h 

1 p 
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

p 
 

V 
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2 

2g 

    2 
 z

 
2 
 h  h 

t L 
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Energy Equation Assumptions 
 
 
 
 

• Pressure is   hydrostatic _ in both cross sections 

– pressure changes are due to elevation only 

• section is drawn perpendicular to the 
streamlines (otherwise the 
term is incorrect) 

  kinetic _ energy 

• Constant 

• 

  density at the cross section 

Steady 

  1 



p 
 

V 
2 

flow 

1 

  1 
 z

 

2g 
1 
 h 

p 


  2  
  

  2  
p V 

2 


2 

2g 
 z 

2 
 h  h 

t L 

p  h 
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density 

Bernoulli Equation Assumption 

•  
Frictionless_ (viscosity can’t be a significant 

parameter!) 

• Along a streamline__ 

• Steady flow 

• Constant 
 
 
 
 
 

z 
V 

2 


p 
 const 

2g 
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Pipe Flow: Review 

• We have the control volume energy equation 
for pipe flow. 

• We need to be able to predict the head loss 
term. 

• How do we predict head loss? 
Dimensional analysis. 
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p V 
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 z

 

2g 
1 
 h 

p 


  2  
  

  2  
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2 

2g 
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Pipe Flow Energy Losses 
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Darcy-Weisbach equation 
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Friction Factor: Major losses 

• Laminar flow 

– Hagen-Poiseuille 

• Turbulent (Smooth, Transition, Rough) 

– Colebrook Formula 

– Moody diagram 

– Swamee-Jain 
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Laminar Flow Friction Factor 
 
 
 

 

 

  
 

 

 

h
f 

= 
128mLQ 

pr gD 
4 h

f 
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32mLV 
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2 
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D 2g 

Slope of -1 on log-log plot 
64m 64 
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L V 
2

 

h
f 

= f 
D 2 g 

Turbulent Pipe Flow Head Loss 
 

 

•  Proportio_nal 

•   Proportio_nal 

(almost) 

to the length of the pipe 

to the square of the velocity 

•  Increases with surface roughness 

• Is a function of density and viscosity 

• Is independ_en_tof pressure 
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L V 
2

 

h
f 

= f 
D 2g 

Smooth, Transition, Rough 
Turbulent Flow 

 
• Hydraulically smooth 

pipe law (von Karman, 
1930) 

• Rough pipe law (von 
Karman, 1930) 

• Transition function for 
both smooth and rough 
pipe laws (Colebrook) 

1 

f 
= 2 log 

ç
 

æRe f ö 
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= - 2 log 
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è e ø 

(used to draw the Moody diagram)  
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Moody Diagram 
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Pipe roughness 
 
 
 
 

pipe material pipe roughness  (mm)  

glass, drawn brass, copper 0.0015  

commercial steel or wrought iron 0.045  

asphalted cast iron 0.12  

galvanized iron 0.15  

cast iron 0.26  

concrete 0.18-0.6  

rivet steel 0.9-9.0  

corrugated metal 

PVC 

45 
0.12 
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hf 
RLQn 

D 
m 

Exponential Friction Formulas 

• Commonly used in commercial and industrial 
settings 

• Only applicable over   ran_ge of datacollected 

• Hazen-Williams exponential friction 
formula 

4.727 
USC units 

R  


C 

n 

 
10.675 

SI units 

 C
n 

h 
f 

10.675L  Q 


1.852 

 

D 
4.8704 

  SI units 
 C 

C = Hazen-Williams coefficient 296 
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Head loss: 
Hazen-Williams Coefficient 

 
C Condition 

150 PVC 

140 Extremely smooth, straight pipes; asbestos cement 

130 Very smooth pipes; concrete; new cast iron 

120 Wood stave; new welded steel 

110 Vitrified clay; new riveted steel 

100 Cast iron after years of use 

95 Riveted steel after years of use 

60-80 Old pipes in bad condition 
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Hazen-Williams 
vs 

Darcy-Weisbach 

• Both equations are empirical 

• Darcy-Weisbach is rationally based, 
dimensionally correct, and preferred . 

• Hazen-Williams can be considered valid only 
over the range of gathered data. 

• Hazen-Williams can’t be extended to other 
fluids without further experimentation. 

h 
10.675L  Q 

1.852 

f 
SI units 

D 
4.8704 

 C 

h
f 

= f 
8 

p g 

LQ
2

 

2 
D 

5 
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Head Loss: Minor Losses 

• Head loss due to 
outlet, inlet, bends, elbows, valves, pipe size 
changes 

• Losses due to expansions are greater than 
losses due to contractions 

• Losses can be minimized by gradual 
transitions 
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Minor Losses 

• Most minor losses can not be obtained 
analytically, so they must be measured 

• Minor losses are often expressed as a loss 
coefficient, K, times the velocity head. 
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Head Loss due to Sudden Expansion: 
Conservation of Energy 
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x 1 2 

V 
1 2 

Head Loss due to Sudden Expansion: 
Conservation of Momentum 
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Pressure is applied over all of 
section 1. 
Momentum is transferred over 
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area corresponding to 
upstream pipe diameter. 
V1 is velocity upstream. 
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Head Loss due to 
Sudden Expansion 
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h 
V 

K 
c c 

Contraction 
 
 

EGL 
 

 
2 

HGL 
  2 

 

2g 
 

 

 

 

 

 

 

 

 
 

 
 

vena contracta 

losses are reduced with a gradual contraction 

V1 V2 
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e 

e 

e 

Entrance Losses 
 
 
 
 

• Losses can be 
reduced by 
accelerating the 
flow gradually and 
eliminating the 
vena contracta 

 
 

 
 

 
 

 

K  1.0 

 

 

K  0.5 

K  0.04 
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Head Loss in Valves 
 

• Function of valve type and 
valve position 

• The complex flow path 
through valves often 
results in high head loss 

• What is the maximum 
value that Kv can have? 

h  K 
v v 

V 
2 

2g 
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Non-Circular Conduits: 
Hydraulic Radius Concept 

 
• A is cross sectional area 

• P is wetted perimeter 

• Rh is the “Hydraulic Radius” (Area/Perimeter) 

• Don’t confuse with radius! 
 

 

D = 4R
h

 

 

 

For a pipe 

We can use Moody diagram or Swamee Jain with D = 4R! 

L V 
2

 

h
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= f 
D 2g 

h
f 
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h 
2g 

p 2 

R
h 
= 

A 

P 
= 

D 
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p D 
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= 
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