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UNIT-I

Introductory Topics for 

Aerodynamics
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Conservation  Laws 

Observations  of  the  Relations 

between  Derived  Quantities

For any fluid system:  

1) Mass  is neither created nor destroyed.  

Conservation of Mass  - Continuity  

2) Momentum is neither created nor destroyed.   

Conservation of Momentum  (3 directions)  

3) Energy is neither created nor destroyed.   

Conservation of Energy  

mass 

mass  mass  x  velocity  

mass  x  velocity  

mass  x  velocity  

mass  x  velocity  2  

2  
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Velocity Potential
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In 3D, similarly it can be shown that
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Stream Function & Velocity Potential
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Stream lines/ Stream Function (Y)

Concept

Relevant Formulas

Examples

Rotation, vorticity

Velocity Potential(f)

Concept

Relevant Formulas

Examples

Relationship between stream function and velocity 

potential

Complex velocity potential



Stream Lines
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Consider 2D incompressible flow

Continuity Eqn
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Stream Function
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Assume
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Instead of two functions, Vx and Vy, we need to solve for 

only one function y - Stream Function

Order of differential eqn increased by one
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Stream Function
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What does Stream Function y mean?

Equation for streamlines in 2D are given by

y  = constant

Streamlines may exist in 3D also, but stream function does not

Why?  (When we work with velocity potential, we may get a 

perspective)

In 3D, streamlines follow the equation

x y z

dx dy dz

V V V
 



Velocity Potential vs Stream 

Function
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Stream Function () Velocity Potential ()
only 2D flow all flows

viscous or non-viscous flows

Irrotational (i.e. Inviscid or 

zero viscosity) flow

Incompressible flow (steady or 

unsteady)

Incompressible flow (steady 

or unsteady state)

compressible flow (steady 

state only)

compressible flow (steady or 

unsteady state)

Exists 

for

• In 2D inviscid flow (incompressible flow OR steady 
state compressible flow), both functions exist

• What is the relationship  between them?



Laplace equation

• We are going to be solving the Laplace equation in the context 
of electrodynamics

• Using spherical coordinates assuming azimuthal symmetry

– Could also be solving in Cartesian or cylindrical 
coordinates

– These would be applicable to systems with corresponding 
symmetry

• Begin by using separation of variables 

– Changes the system of partial differential equations to 
ordinary differential equations 

• Use of Legendre polynomials to find the general solution
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• Cartesian coordinates

– V is potential
– Harmonic!

• Spherical coordinates

– r is the radius
–  is the angle between the z-axis and the vector we’re 

considering
–  is the angle between the x-axis and our vector 
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UNIFORM FLOW 

Definitions

• a) Open Channel: Duct through which Liquid Flows with a Free
Surface - River, Canal

• b) Steady and Non- Steady Flow: In Steady Flows, all the
characteristics of flow are constant with time. In unsteady flows,
there are variations with time.
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THE UNIFORM FLOW 

The first and simplest example is that of a uniform flow with velocity U

directed along the x axis. 

and the streamlines are all parallel to the velocity direction (which is the 

x axis).

Equi-potential lines are obviously parallel to the y axis.

In this case the complex potential is 

UziW  
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THE SOURCE OR SINK

• source (or sink), the complex potential of which is 

• This is a pure radial flow, in which all the streamlines converge at 

the origin, where there is a singularity due to the fact that continuity 

can not be satisfied.

• At the origin there is a source, m > 0 or sink, m < 0 of fluid. 

• Traversing any closed line that does not include the origin, the mass 

flux (and then the discharge) is always zero. 

• On the contrary, following any closed line that includes the origin 

the discharge is always nonzero and equal to m.

z
m

iW ln
2

 



The flow field is uniquely determined upon deriving the complex 

potential W with respect to z. 

Iso  lines

Iso  lines

z
m

iW ln
2

 
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THE VORTEX 

• In the case of a vortex, the flow field is purely tangential. 

The picture is similar to that of a source 

but streamlines and equipotential lines 

are reversed. 

The complex potential is 

There is again a singularity at the origin, this time associated to the fact 

that the circulation along any closed curve including the origin is 

nonzero and equal to g. 

If the closed curve does not include the origin, the circulation will be 

zero.

ziiW ln
2


 
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Uniform Flow Past A Doublet with Vortex 

• The superposition of a doublet and a uniform flow gives the 
complex potential
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Uniform Flow Past A Doublet

• The superposition of a doublet and a uniform flow gives the 
complex potential
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•There exist a circular stream line of radium R, on which value of 

stream function is zero.

•Any stream function of zero value is an impermeable  solid wall.

•Plot shapes of iso-streamlines. 
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Non lifting flow over cylinder
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Actual: High separated

Flow and large wake region 

NO DRAG HIGH DRAG
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Kutta-Joukowski Theorem



SUMMARY OF ROTATING CYLINDER IN CROSS-FLOW

Rotating Cylinder
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• Rotating Cylinder Generates Lift

– Velocity is faster over the top of the cylinder than bottom

– Pressure is higher on the bottom than over the top

– lifting force is directed perpendicular to the cylinder velocity (or 

the free stream velocity if the cylinder is stationary)

• Predicts Zero Drag

– Notice vertical plane symmetry

– Inviscid flow approximation does not model drag physics
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UNIT-II

Thin Airfoil Theory
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Airfoil Nomenclature
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AIRFOIL NOMENCLATURE

• Mean Chamber Line: Set of points halfway between upper and 

lower surfaces

– Measured perpendicular to mean chamber line itself

• Leading Edge: Most forward point of mean chamber line

27



• Trailing Edge: Most reward point of mean chamber line

• Chord Line: Straight line connecting the leading and trailing 

edges

• Chord, c: Distance along the chord line from leading to 

trailing edge

• Chamber: Maximum distance between mean chamber line and 

chord line

– Measured perpendicular to chord line
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NACA FOUR-DIGIT SERIES

• First set of airfoils designed using this approach was NACA 
Four-Digit Series

• First digit specifies maximum camber in percentage of 
chord

• Second digit indicates position of maximum camber in 
tenths of chord

• Last two digits provide maximum thickness of airfoil in 
percentage of chord

Example: NACA 2415
• Airfoil has maximum thickness of 15%

of chord (0.15c)
• Camber of 2% (0.02c) located 40%

back from airfoil leading edge (0.4c) 
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AERODYNAMIC CHARETERISTICS

• Relative Wind: Direction of V∞

– We used subscript ∞ to indicate far upstream conditions

• Angle of Attack, a: Angle between relative wind (V∞) and 
chord line

30



• Total aerodynamic force, R, can be resolved into two force 
components

• Lift, L: Component of aerodynamic force perpendicular to relative 
wind

• Drag, D: Component of aerodynamic force parallel to relative wind
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Center of Pressure The center of pressure is the point where the total
sum of a pressure field acts on a body. In aerospace, this is the point
on the airfoil (or wing) where the resultant vector (of lift and drag)
acts.

As the airfoil angle of attack changes, the pressure field changes.
Due to this, the center of pressure changes with variation in the
angle of attack. In the airplane's normal range of flight attitudes, if
the angle of attack is increased, the center of pressure moves
forward; and if decreased, it moves rearward
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The resultant (or the pressure forces) also cause a moment on
the airfoil. As the angle of attack increases, the pitching
moment at a point (for example, the center of gravity) also
changes. However, the pitching moment remains constant at
a particular point, which is called the aerodynamic center.
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For symmetric airfoils in subsonic flight the aerodynamic 
center is located approximately 25% of the chord from the 
leading edge of the airfoil. This point is described as the 
quarter-chord point.

Thus the aerodynamic center does not change with variation 
in angle of attack. Due to this, the aerodynamic center, 
rather than the center of pressure is used in the analysis of 
longitudinal stability.
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Wing of infinite aspect ratio 

In aeronautics, the aspect ratio of a wing is the ratio of its span to
its mean chord. It is equal to the square of the wingspan divided
by the wing area. Thus, a long, narrow wing has a high aspect ratio,
whereas a short, wide wing has a low aspect ratio.

Aspect ratio and other features of the planform are often used to
predict the aerodynamic efficiency of a wing because the lift-to-
drag ratio increases with aspect ratio, improving fuel economy in
aircraft.
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Flow velocity over top of airfoil is faster than over bottom surface 
Streamtube A 

senses upper portion of airfoil as an obstruction. Streamtube A is 
squashed to 

smaller cross-sectional area

Mass continuity rAV=constant: IF A↓ THEN V↑
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Lift coefficient (or lift) linear variation with angle of attack, 

Cambered airfoils have positive lift when a=0

Symmetric airfoils have zero lift when a=0

At high enough angle of attack, the performance of the 

airfoil rapidly degrades → stall
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The aspect ratio is ratio of the square of the wingspan b to 
the projected[ wing area s which is equal to the ratio of the 
wingspan b to the mean aerodynamic chord

AR=b2/s
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HOW DOES AN AIRFOIL GENERATE LIFT?

• Lift due to imbalance of pressure distribution over top and 

bottom surfaces of airfoil (or wing)

– If pressure on top is lower than pressure on bottom 

surface, lift is generated

– Why is pressure lower on top surface?

• We can understand answer from basic physics:

– Continuity (Mass Conservation)

– Newton’s 2nd law (Euler or Bernoulli Equation)
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HOW DOES AN AIRFOIL GENERATE LIFT?

40

Streamtube A is squashed

most in nose region

(ahead of maximum thickness) 

A

B



The Kutta condition is a principle in steady-flow fluid dynamics 
especially aerodynamics that is applicable to solid bodies with 
sharp corners, such as the trailing edges of airfoils. It is named 
for German mathematician and aerodynamicist Martin Wilhelm 
Kutta.

In fluid flow around a body with a sharp corner, the Kutta
condition refers to the flow pattern in which fluid approaches the 
corner from both directions, meets at the corner, and then flows 
away from the body. None of the fluid flows around the corner, 
remaining attached to the body.

Kutta condition
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The Kutta condition is significant when using the Kutta–

Joukowski theorem to calculate the lift created by an airfoil with 

a cusped trailing edge. The value of circulation of the flow 

around the airfoil must be that value which would cause the 

Kutta condition to exist.
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Thin airfoil theory is a simple theory of airfoils that relates angle of
attack to lift for incompressible, inviscid flows. It was devised by
German-American mathematician Max Munk and further refined
by British aerodynamicist Hermann Glauert and others in the
1920s. The theory idealizes the flow around an airfoil as two-
dimensional flow around a thin airfoil. It can be imagined as
addressing an airfoil of zero thickness and infinite wingspan.

Thin airfoil theory was particularly notable in its day because it
provided a sound theoretical basis for the following important
properties of airfoils in two-dimensional flow
(1) on a symmetric airfoil, the center of pressure and aerodynamic
center lies exactly one quarter of the chord behind the leading

edge

Thin airfoil theory



(2) on a cambered airfoil, the aerodynamic center lies exactly one 
quarter of the chord behind the leading edge
(3) the slope of the lift coefficient versus angle of attack line 
is units per radian
As a consequence of the section lift coefficient of a symmetric 
airfoil of infinite wingspan is

=2Π𝛼l
c
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Linear Strength Vortex Panel Method for a Two Element 
Airfoil

Panel Methods

Panel methods break up an airfoil geometry into "panels" and
then solve for the flow around the panels. There are many
different panel method variations and each variation has its
own strengths and weaknesses.

Panel methods have two key features that distinguish
themselves from each other: the formulation of the boundary
conditions and the type of singularity element used to describe
the flow field around the airfoil.
element since it can model both lift and pressure.

45



These are the various assumptions that go into developing potential 
flow panel methods:
•Inviscid
•Incompressible ∇ ⋅ V = 0 

•Irrotational ∇ × V = 0 

•Steady  

However, the incompressible flow assumption may be removed from 
the potential flow derivation leaving:
•Potential Flow (inviscid, irrotational, steady) ∇ 2 ϕ = 0. 
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High lift airfoils
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High lift devices.

The most common high-lift device is the flap, a movable portion
of the wing that can be lowered to produce extra lift. When a
flap is lowered this re-shapes the wing section to give it more
camber. Flaps are usually located on the trailing edge of a wing,
while leading edge flaps are used occasionally.
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UNIT-III
Finite Wing Theory
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A vortex line is a line whose tangent is everywhere parallel to the local
vorticity vector. The vortex lines drawn through each point of a closed
curve constitute the surface of a vortex tube. Finally, a vortex
filament is a vortex tube whose cross-section is of infinitesimal
dimensions.

In fluid dynamics, circulation is the line integral around a closed 
curve of the velocity field. Circulation is normally denoted Γ 
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According to the Kelvin circulation theorem, which is named after Lord
Kelvin (1824-1907), the circulation around any co-moving loop in an
inviscid fluid is independent of time. The proof is as follows. The
circulation around a given loop

Kelvin and Helmhotz theorem

However, for a loop that is co-moving with the fluid, we have . Thus,
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One corollary of the Kelvin circulation theorem is that the fluid
particles that form the walls of a vortex tube at a given
instance in time continue to form the walls of a vortex tube at
all subsequent times.
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Helmholtz’s third theorem:
In the absence of rotational external forces, a fluid that is initially
irrotational remains irrotational.
Helmholtz’s theorems apply to inviscid flows. In observations of vortices
in real fluids the strength of the vortices always decays gradually due to
the dissipative effect of viscous forces.
Alternative expressions of the three theorems are as follows:
1. The strength of a vortex tube does not vary with time.
2. Fluid elements lying on a vortex line at some instant continue to lie on 

that vortex line. More simply, vortex lines move with the fluid. Also 
vortex lines and tubes must appear as a closed loop, extend to 
infinity or start/end at solid boundaries.

3. Fluid elements initially free of vorticity remain free of vorticity.
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Biot-Savart Law
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• The analogue of Coulomb’s Law is 
the Biot-Savart Law

• Consider a current loop (I)

• For element dℓ there is an 
associated element field dB

dB perpendicular to both dℓ and r - r’
Inverse square dependence on distance 
o/4p = 10-7 Hm-1

Integrate to get Biot-Savart Law
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Biot-Savart Law examples
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(1) Infinite straight conductor

dℓ and r, r’ in the page 
dB is into the page
B forms concentric circles about 
the conductor
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Biot-Savart Law examples
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(2) Axial field of circular loop 

Loop perpendicular to page, radius a

dℓ out of page at top and r, r’ in the page 
On-axis element dB is in the page, 
perpendicular to r - r’, at q to axis.

Magnitude of element dB

Integrating around loop, only z-component of dB contributes net result
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The Rankine vortex is a type of vortex in a viscous fluid. It is named
after its discoverer, William John Macquorn Rankine.
A swirling flow in a viscous fluid can be characterized by a forced
vortex in its central core, surrounded by a free vortex. In an inviscid
fluid, on the other hand, a swirling flow consists entirely of the free
vortex with a singularity at its center point instead of the forced
vortex core. The tangential velocity of a Rankine vortex.

Rankine vortex

Velocity distribution in a Rankine vortex.
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Flow past finite wings
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FINITE WING DESCRIPTION

inducedeffectivegeometric aaa 

59

• Drag is measured in direction of incoming relative wind (that is the 

direction that the airplane is flying)

• Lift vector is tilted back

• Component of L acts in direction parallel to incoming relative wind 

→ results in a new type of drag

Finite Wing Case

Induced Drag, Di



INDUCED DRAG
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• Calculation of angle ai is not trivial (MAE 3241)

• Value of ai depends on distribution of downwash along span of wing

• Downwash is governed by distribution of lift over span of wing

http://www.airliners.net/open.file?id=790618&size=L&sok=JURER  (ZNGPU (nvepensg,nveyvar,cynpr,cubgb_qngr,pbhagel,erznex,cubgbtencure,rznvy,lrne,ert,nvepensg_trarevp,pa,pbqr) NTNVAFG ('+"777"' VA OBBYRNA ZBQR))  beqre ol cubgb_vq QRFP&photo_nr=341


• Special Case: Elliptical Lift Distribution (produced by elliptical wing)

• Lift/unit span varies elliptically along span

• This special case produces a uniform downwash
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Key Results:

Elliptical Lift Distribution



Solving the Fundamental Equation of Finite Wing Theory requires us
to guess at a Γ (y) distribution and show it’s a correct guess. (The same
approach we used for the γ(x) distribution for thin airfoils.) As a first
guess we consider an elliptic distribution:

The Elliptical Lift Distribution

This distribution has circulation Γ0 at the root (y = 0) and Γ = 0 at the 

wingtips 
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Tapered Wings
• Taper ratio is defined as à Reduction of the amount of lift near the
wing-tip. à Tip vortex is weaker à Induced drag is smaller
• Taper also reduces structural weight
• As the chord at the root is unchanged the maximum lift is not

severely affected by taper
• If the taper is not too high, the stalling characteristics are

acceptable, even without twist
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Effect of wing taper on lift distribution

Twisted wings
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Wing twist (1)

• Wash-in: αtip > αroot 

• Wash-out: αtip < αroot
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Wings often have wash-out to reduce structural weight and
improve stall characteristics.

• The point of initial stalling should be sufficiently inboard,
around 0.4s from the wing root.
• This can be achieved with suitable twist. If the stall point is
too far outboard, a little washout will bring it inboard.
• However, a washout of more than 5o results in an
unacceptable increase in induced drag.
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Effect of Wing Sweep

In addition to reducing airfoil thickness, aircraft designers can 
also raise a wing’s Mcrit by sweeping it either forward or aft.  To 
understand how this works, consider the untapered, swept wing in 
Figure 4.34.  Sweeping the wing without changing its shape increases 
the effective chord length.  Figure 4.34 shows why this is true.

1 m
1 m

LE = 45o

V

The Effect of Wing Sweep on Streamwise Thickness-to-Chord Ratio
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The delta wing is a wing shaped in the form of a triangle. It is
named for its similarity in shape to the Greek uppercase
letter delta (Δ).

Delta wing

Canard delta – Many modern fighter aircraft, such as the JAS 39 
Gripen, the Eurofighter Typhoon and the Dassault Rafale use a 
combination of canards and a delta wing.
Tailed delta – adds a conventional tailplane (with horizontal tail 
surfaces), to improve handling. Common on Soviet types such as 
the Mikoyan-Gurevich MiG-21.
Cropped delta – tip is cut off. This helps avoid tip drag at high angles 
of attack. Used for example in all three Eurocanards (cropped, 
tailless delta combined with a canard).
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Swept wings that have platforms such as shown in Fig are called delta
wings. dominant aspect of this flow is the two vortices that are formed
along the highly swept leading edges, and that trail downstream over
the top of the wing. This vortex pattern is created by the following
mechanism. The pressure on the bottom surface of the wing is higher
than the pressure on the top surface
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Thus, the flow on the bottom surface in the vicinity of the leading
edge tries to curl around the leading edge from the bottom to
the top. If the leading edge is relatively sharp, the flow will
separate along its entire length. This separated flow curls into a
primary vortex above the wing just inboard of each leading edge.
The stream surface which has separated at the leading edge
loops above the wing and then reattaches along the primary
attachment line.

The primary vortex is contained within this loop. A secondary
vortex is formed underneath the primary vortex, with its own
separation line, and its own reattachment line.
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Source Panel Method

Steps to determine the solution:
1. Write down the velocities, ui , vi , in terms of contributions
from all the singularities. This includes qi , g from each panel and
the influence coefficients which are a function of the geometry
only.
2. Find the algebraic equations defining the “influence”
coefficients. To generate the system of algebraic equations:
3. Write down flow tangency conditions in terms of the velocities
(N eqn’s., N+1 unknowns).
4. Write down the Kutta condition equation to get the N+1
equation.
5. Solve the resulting linear algebraic system of equations for the
qi , g .
.
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6. Given qi , g , write down the equations for uti, the
tangential velocity at each panel control point.

7. Determine the pressure distribution from Bernoulli’s
equation using the tangential velocity on each panel. We
now carry out each step in detail. The algebra gets tedious,
but there’s no problem in carrying it out.

8. As we carry out the analysis for two dimensions, consider
the additional algebra required for the general three
dimensional case
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Vortex panel Method

PANEL is an exact implementation of the analysis given and is essentially the
program given by Moran.6 Other panel method programs are available in the
textbooks by Houghton and Carpenter,10 and Kuethe and Chow.11 Moran’s
program includes a subroutine to generate the ordinates for the NACA 4-digit
and 5-digit airfoils (see Appendix A for a description of these airfoil sections).

The main drawback is the requirement for a trailing edge thickness that’s
exactly zero. To accommodate this restriction, the ordinates generated
internally have been altered slightly from the official ordinates.

The extension of the program to handle arbitrary airfoils is an exercise. The
freestream velocity in PANEL is assumed to be unity, since the inviscid solution
in coefficient form is independent of scale. PANEL’s node points are distributed
employing the widely used cosine spacing function
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The Classical Vortex Lattice Method 

There are many different vortex lattice schemes. In this section we 
describe the “classical” implementation. Knowing that vortices can 
represent lift from our airfoil analysis, and that one approach is to 
place the vortex and then satisfy the boundary condition using the 
“1/4 - 3/4 rule,” we proceed as follows: 
1. Divide the planform up into a lattice of quadrilateral panels, and 

put a horseshoe vortex on each panel. 
2. Place the bound vortex of the horseshoe vortex on the 1/4 chord 

element line of each panel. 
3. Place the control point on the 3/4 chord point of each panel at the 

midpoint in the spanwise direction (sometimes the lateral panel 
centroid location is used) . 
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4. Assume a flat wake in the usual classical method. 
5. Determine the strengths of each Gn required to satisfy the 
boundary conditions by solving a system of linear equations. The 
implementation is shown schematically 
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Note that the lift is on the bound vortices. To understand why, consider
the vector statement of the Kutta-Joukowski Theorem, F = rV ´G .
Assuming the freestream velocity is the primary contributor to the
velocity, the trailing vortices are parallel to the velocity vector and
hence the force on the trailing vortices are zero.

More accurate methods find the wake deformation required to
eliminate the force in the presence of the complete induced flowfield.
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UNIT-IV

Flow past non-lifting bodies and 

interference effects
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INTRODUCTION

• Main function of the wing is to provide lift

– Modeled using lifting-line theory

– Uses method of singularities involving vortices

• Main function of the fuselage is to provide space for payload

– Design of a slender body which offers low drag

– Lift component of fuselage is relatively small

– Can be considered as a non-lifting body

– Modeled using method of singularities involving sources
and doublets
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ROAD MAP

• Study the aerodynamic characteristics of non-
lifting bodies like fuselage, using the slender
body theory

• Study the interference effects between wing 
and fuselage

• Briefly note the effect of propeller slipstream 
on wing/tail

• Briefly note a few aspects of flow over the 
whole airplane
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FLOW PAST NON-LIFTING BODIES

• Main function of the fuselage is to provide
space for passengers/cargo

– Design of a slender body which offers low drag

– Lift component of fuselage is relatively small

– Can be considered as a non-lifting body

• Analyze the flow over fuselage using the 
slender body theory

– Uses method of singularities involving sources and 
doublets
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SLENDER BODY THEORY

• Flow past a slender body

• Assumptions for modeling as a slender body
– Low slenderness ratio, R(x)/l << 1

– Small angle of attack, α << 1

– Small ratio of body radius to length, |dR(x)/dx| << 1
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SLENDER BODY THEORY

• Solve Laplace equation governing the flow

past the slender body, represented in

cylindrical coordinate system

• In this coordinate system, freestream velocity 

is
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SLENDER BODY THEORY

• Solve Laplace equation governing the flow past the slender

body, represented in cylindrical coordinate system

• In this coordinate system, freestream velocity is
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SLENDER BODY THEORY

• Boundary condition for Laplace equation
– Solid wall condition

– Surface of the body: 

– Q.n = 0 => 

• Application of boundary condition gives:

• =

• The above condition is superposition of:
– Longitudinal axisymmetric flow and

– Transverse flow
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AXISYMMETRIC LONGITUDINAL FLOW

• Laplace equation:

• Corresponding boundary condition:

• Modeled using method of singularities involving 

sources:
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AXISYMMETRIC LONGITUDINAL FLOW

• Using potential theory, solution for axisymmetric longitudinal 

flow:

86



TRANSVERSE FLOW

• Laplace equation:

• Corresponding boundary condition:

• Modeled using method of singularities involving doublets:
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TRANSVERSE FLOW

• Using potential theory, solution for transverse flow:
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COMPLETE SOLUTION FOR FLOW PAST SLENDER BODY 

(LIKE FUSELAGE)

• Adding up the potentials for longitudinal and transverse flows, we get:

• Conclusions from the above expressions:

– The side force distribution is zero and therefore the side force is also zero.

– The normal force distribution is proportional to the AOA and the rate of
change of cross-sectional area.

– The normal force distribution can become zero if the body’s ends are
pointed.

– The axial force can also become zero if the body’s ends are pointed

– For pointed slender bodies, there is no lift and pressure drag, but there is
an aerodynamic pitching moment.
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WING-BODY INTERFERENCE

• Interference effects can be of the same order of magnitude as

the aerodynamic effects of the individual parts

• Wing-fuselage interference

– Wing affects flow field around fuselage

– Fuselage affects flow field around wing

– Two cases to be discussed:

• Symmetric flow around the wing-fuselage system

• Asymmetric flow around the wing-fuselage system
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SYMMETRIC FLOW: EFFECT OF WING ON FUSELAGE

• Along the fuselage axis:

– Additive velocities normal to the fuselage axis are induced

by the wing

– Near wing-fuselage penetration, the flow is parallel to the 

wing chord
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SYMMETRIC FLOW: EFFECT OF WING ON FUSELAGE

• Fuselage is therefore in a curved flow

• Angle-of-attack distribution α(x) varies along the fuselage axis

• This induced AOA distribution, shows that fuselage is

subjected to an additive nose-up pitching moment
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SYMMETRIC FLOW: EFFECT OF FUSELAGE ON WING

• Component of the incident flow velocity normal to the

fuselage axis U.sinα ≈ Uα, generates additive upwash

velocities in the vicinity of the fuselage

• Induced velocities normal to the plane of the wing with an 

additive symmetric angle-of-attack distribution over the wing 

span (twist angle)
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ASYMMETRIC FLOW: EFFECT OF WING ON FUSELAGE

• Flow field of a wing-fuselage system at subsonic velocity in 
asymmetric, incident flow (angle of sideslip ≠ 0) :

• Flow fields divided into:
– Incident flow parallel to the plane of symmetry, of velocity U.cosβ ≈ U

– Cross flow normal to the plane of symmetry, of velocity U.sinβ ≈ Uβ
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CROSS FLOW ON WING-FUSELAGE SYSTEM

• Lift distributions over the wing span generated by the cross 

flow have reversed signs for high-wing and low-wing 

airplanes.

• The rolling moment due to sideslip:

– Positive for the high-wing airplane

– Zero for the mid-wing airplane

– Negative for the low-wing airplane
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CROSS FLOW ON WING-FUSELAGE SYSTEM
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EFFECTS OF PROPELLER STREAM ON THE WING/TAIL 

DOWNSTREAM

• Experimental studies showed that when the wing/tail was

under the effect of the slipstream (jet) from a propeller whose

axis was fixed in the direction of the undisturbed wind, the

rotation and the dynamic pressure changes in the jet resulted in

a nonsymmetrical variation in the lift. Study of the downwash

relations led to the result that the two portions into which the

jet is divided by the wing/tail did not again reunite behind the

wing/tail but that each portion experienced a lateral deviation

in the direction of the jet rotation.
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FLOW OVER WHOLE AIRPLANE

• Aircraft lift coefficient 

– Complete aircraft usually generates more lift than its wing 
alone

CLα (whole aircraft) = CLα (wing)+ CLα (horizontal tail)

• Aircraft drag coefficient

where: 

– CDOL = zero-lift drag coefficient, parasite drag coefficient

– e = Oswald (aircraft) efficiency factor

– AR = Aspect ratio of the wing
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UNIT-V

Boundary Layer Theory
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• In physics and fluid mechanics, a boundary layer is an

important concept and refers to the layer of fluid in the

immediate vicinity of a bounding surface where the effects of

viscosity are significant.

• In the Earth's atmosphere, the atmospheric boundary layer is the 

air layer near the ground affected by diurnal heat, moisture or 

momentum transfer to or from the surface. On 

an aircraft wing the boundary layer is the part of the flow close 

to the wing, where viscous forces distort the surrounding non-

viscous flow.

Boundary layer
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Boundary Layer and separation
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Flow separation 

• Flow separation occurs when: 

– the velocity at the wall is zero or negative and an inflection 

point exists in the velocity profile, 

– and a positive or adverse pressure gradient occurs in the 

direction of flow.
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Laminar flow

• Also known as 

streamline flow

• Occurs when the 

fluid flows in parallel 

layers, with no 

disruption between 

the layers

• The opposite of 

turbulent flow 

(rough)
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The turbulent boundary layer

• In turbulent flow, the boundary layer is defined as the thin region 

on the surface of a body in which viscous effects are important.

• The boundary layer allows the fluid to transition from the free 

stream velocity U to a velocity of zero at the wall.

• The velocity component normal to the surface is much smaller 

than the velocity parallel to the surface: v << u.

• The gradients of the flow across the layer are much greater than 

the gradients in the flow direction.

• The boundary layer thickness  is defined as the distance away 

from the surface where the velocity reaches 99% of the free-

stream velocity.
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The turbulent boundary layer
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BOUNDARY LAYER ON A FLAT PLATE

Consider the following scenario.

1. A steady potential flow has constant velocity U in the x 

direction.

2. An infinitely thin flat plate is placed into this flow so that the 

plate is parallel to the potential flow (0 angle of incidence).

Viscosity should retard the flow, thus creating a boundary layer on 

either side of the plate.  Here only the boundary layer on one 

side of the plate is considered.  The flow is assumed to be 

laminar.

Boundary layer theory allows us to calculate the drag on the 

plate!

x
y 

U

U

u

plate
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A steady, rectilinear potential flow in the x direction is described 

by the relations

According to Bernoulli’s equation for potential flows, the 

dynamic pressure of the potential flow ppd is related to the 

velocity field as

Between the above two equations, then, for this flow
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BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE

For the case of a steady, laminar boundary layer on a flat plate at 

0 angle of incidence, with vanishing imposed pressure gradient, 

the boundary layer equations and boundary conditions become 

(see Slide 15 of BoundaryLayerApprox.ppt with dppds/dx = 0)
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The definition of the displacement thickness for compressible flow is based on 

mass flow rate.
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• The effect of transverse surface curvature on the turbulent 

boundary layer is reviewed by recourse to experiments on axial 

flow along a circular cylinder. Three flow regimes are identified 

depending on values of the two controlling parameters, namely, 

the Reynolds number and the ratio of the boundary layer 

thickness to cylinder radius. 

• The boundary layer flow resembles a wake when both parameters 

are large. As expected, the effect of curvature is small when the 

Reynolds number is large and the boundary layer is thin. When 

the boundary layer is thick and the Reynolds number is small, 

which is typical of laboratory investigations, the effect of 

transverse curvature is felt throughout the boundary layer with 

evidence for relaminarization at the low Reynolds numbers. This 

review describes the experimental evidence and points out gaps 

that remain

Effect of curvature on boundary layer
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Temperature boundary layer

IfTs >Tf , the fluid temperature approaches asymptotically and 

the temperature profile at a distance x However, a thermal 

boundary may be defined (similar to velocity boundary) as 

the distance from the surface to the point where the 

temperature is within 1% of the free stream fluid temperature 

(Tf ). 111



• Outside the thermal boundary layer the fluid is assumed to be a 

heat sink at a uniform temperature ofTf . The thermal boundary 

layer is generally not coincident with the velocity boundary 

layer, although it is certainly dependant on it. 

• That is, the velocity, boundary layer thickness, the variation of 

velocity, whether the flow is laminar or turbulent etc are all the 

factors which determine the temperature variation in the 

thermal boundary layer.
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