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UNIT - I

FLUID STATICS



Fluid

 A fluid is defined as:

“A substance that continually deforms (flows) under

an applied shear stress regardless of the magnitude

of the applied stress”.

 It is a subset of the phases of matter and includes

liquids, gases, plasmas and, to some extent, plastic

solids.



SI Units



Important Terms

 Density ():
Mass per unit volume of a substance.
 kg/m3 in SI units
 Slug/ft3 in FPS system of units

 Specific weight ():
Weight per unit volume of substance.
 N/m3 in SI units
 lbs/ft3 in FPS units

 Density and Specific Weight of a fluid are related as:

 Where g is the gravitational constant having value 9.8m/s2 or

32.2 ft/s2.
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Important Terms

 Specific Volume (v):

Volume occupied by unit mass of fluid.

 It is commonly applied to gases, and is usually expressed in
cubic feet per slug (m3/kg in SI units).

 Specific volume is the reciprocal of density.

/1 vlumeSpecificVo



Important Terms

 Specific gravity:

It can be defined in either of two ways:

a. Specific gravity is the ratio of the density of a substance to

the density of water at 4°C.

b. Specific gravity is the ratio of the specific weight of a

substance to the specific weight of water at 4°C.
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Example
The specific wt. of water at ordinary temperature and

pressure is 62.4lb/ft3. The specific gravity of mercury is

13.56. Compute density of water, Specific wt. of mercury,

and density of mercury.

Solution:

(Where Slug = lb.sec2/ ft)

3
mercury

3
mercury

3

/3.26938.156.133.
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Example

A certain gas weighs 16.0 N/m3 at a certain temperature and

pressure. What are the values of its density, specific volume,

and specific gravity relative to air weighing 12.0 N/m3

Solution:

1.33316/12 s               

/γ γsgravity    Specific  3.

/kgm 0.6131/1.631u                 

1/ρ   υ volumeSpecific  2.

kg/m  16.63116/9.81  ρ                

  /g γ ρDensity   1.

airf

3

3















Example
The specific weight of glycerin is 78.6 lb/ft3. compute its density

and specific gravity. What is its specific weight in kN/m3

Solution:

3

3

3

3

w

3

kN/m 12.36  9.81x1260                             

g x                               

 kN/min  weight Specific 3.

Kg/m 1260                                 

 kg/m1.260x1000         so                    

1.260  78.6/62.4 s   

 /   sgravity    Specific 2.

slugs/ft 2.44  78.6/32.2                       

 g /   Density  1.
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Example

Calculate the specific weight, density, specific volume and

specific gravity of 1litre of petrol weights 7 N.

Solution:

Given Volume = 1 litre = 10-3 m3

Weight = 7 N

1.   Specific weight, 

w = Weight of Liquid/volume of Liquid

w = 7/ 10-3 = 7000 N/m3 

2. Density,  =  /g 

 = 7000/9.81 = 713.56 kg/m3



Solution (Cont.):

3. Specific Volume = 1/ 

 1/713.56 

=1.4x10-3 m3/kg

4. Specific Gravity  = s =

Specific Weight of Liquid/Specific Weight of  Water

= Density of Liquid/Density of Water

s = 713.56/1000 = 0.7136 



Example
If the specific gravity of petrol is 0.70.Calculate its Density,

Specific Volume and Specific Weight.

Solution:

Given

Specific gravity = s = 0.70

1. Density of Liquid,   s x density of water

= 0.70x1000

= 700 kg/m3

2. Specific Volume      = 1/ 

 1/700

 1.43 x 10-3 

3. Specific Weight, = 700x9.81 = 6867 N/m3 



Compressibility

 It is defined as:

“Change in Volume due to change in Pressure.”

 The compressibility of a liquid is inversely proportional to

Bulk Modulus (volume modulus of elasticity).

 Bulk modulus of a substance measures resistance of a

substance to uniform compression.

 Where; v is the specific volume and p is the pressure.

 Units: Psi, MPa , As v/dv is a dimensionless ratio, the units

of E and p are identical.
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Example 
At a depth of 8km in the ocean the pressure is 81.8Mpa. Assume

that the specific weight of sea water at the surface is 10.05 kN/m3

and that the average volume modulus is 2.34 x 103 N/m3 for that

pressure range.

(a) What will be the change in specific volume between that at the

surface and at that depth?

(b) What will be the specific volume at that depth?

(c) What will be the specific weight at that depth?



Solution:
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Viscosity

 Viscosity is a measure of the resistance of a fluid to deform
under shear stress.

 It is commonly perceived as thickness, or resistance to flow.

 Viscosity describes a fluid's internal resistance to flow and
may be thought of as a measure of fluid friction. Thus, water
is "thin", having a lower viscosity, while vegetable oil is
"thick" having a higher viscosity.

 The friction forces in flowing fluid result from the cohesion
and momentum interchange between molecules.

 All real fluids (except super-fluids) have some resistance to
shear stress, but a fluid which has no resistance to shear stress

is known as an ideal fluid.

 It is also known as Absolute Viscosity or Dynamic
Viscosity.



Viscosity



Dynamic Viscosity

 As a fluid moves, a shear stress is developed

in it, the magnitude of which depends on the

viscosity of the fluid.

 Shear stress, denoted by the Greek letter (tau),

τ, can be defined as the force required to slide

one unit area layer of a substance over

another.

 Thus, τ is a force divided by an area and can

be measured in the units of N/m2 (Pa) or lb/ft2.



Dynamic Viscosity

 Figure shows the velocity gradient in a moving fluid.

 Experiments have shown that:
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Dynamic Viscosity

 The fact that the shear stress in the fluid is directly

proportional to the velocity gradient can be stated

mathematically as

 where the constant of proportionality m (the Greek letter miu)

is called the dynamic viscosity of the fluid. The term absolute

viscosity is sometimes used.
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Kinematic Viscosity

 The kinematic viscosity ν is defined as:

“Ratio of absolute viscosity to density.”



m
 



Newtonian Fluid

 A Newtonian fluid; where stress is directly
proportional to rate of strain, and (named for Isaac
Newton) is a fluid that flows like water, its stress versus
rate of strain curve is linear and passes through the
origin. The constant of proportionality is known as the
viscosity.

 A simple equation to describe Newtonian fluid behavior
is

 Where m = absolute viscosity/Dynamic viscosity or
simply viscosity

 = shear stress

dy

du
m 





Example
Find the kinematic viscosity of liquid in stokes whose

specific gravity is 0.85 and dynamic viscosity is 0.015
poise.

Solution:

Given S = 0.85

m = 0.015 poise

= 0.015 x 0.1 Ns/m2 = 1.5 x 10-3 Ns/m2

We know that S = density of liquid/density of water

density of liquid = S x density of water

  0.85 x 1000  850 kg/m3

Kinematic Viscosity ,

u  m/   1.5 x 10-3/850

 1.76 x 10-6 m2/s = 1.76 x 10-6 x 104cm2/s

= 1.76 x 10-2 stokes.



Example
A 1 in wide space between two horizontal plane surface is

filled with SAE 30 Western lubricating oil at 80 F. What

force is required to drag a very thin plate of 4 sq.ft area

through the oil at a velocity of 20 ft/mm if the plate is 0.33

in from one surface.
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Example
Assuming a velocity distribution as shown in fig., which is a

parabola having its vertex 12 in from the boundary,

calculate the shear stress at y= 0, 3, 6, 9 and 12 inches.

Fluid’s absolute viscosity is 600 P.



Solution

m 600 P= 600 x 0.1=0.6 N-s/m2 =0.6 x (1x2.204/9.81 x 3.282)

=0.6 x 0.020885=0.01253 lb-sec/ft2

Parabola Equation Y=aX2

120-u= a(12-y) 2

u=0 at y=0  so a= 120/122=5/6

u=120-5/6(12-y) 2 du/dy=5/3(12-y)

=m du/dy 

y (in) 0 3 6 9 12

du/dy 20 15 10 5 0

 0.251 0.1880 0.1253 0.0627 0



Ideal Fluid

 An ideal fluid may be defined as:

“A fluid in which there is no friction i.e Zero viscosity.”

 Although such a fluid does not exist in reality, many fluids

approximate frictionless flow at sufficient distances, and so

their behaviors can often be conveniently analyzed by

assuming an ideal fluid.



Real Fluid

 In a real fluid, either liquid or gas, tangential or

shearing forces always come into being whenever

motion relative to a body takes place, thus giving

rise to fluid friction, because these forces oppose

the motion of one particle past another.

 These friction forces give rise to a fluid property

called viscosity.



Surface Tension

 Cohesion: “Attraction between molecules of same surface”

It enables a liquid to resist tensile stresses.

 Adhesion: “Attraction between molecules of different surface”

It enables to adhere to another body.

 “Surface Tension is the property of a liquid, which enables it

to resist tensile stress”.

 At the interface between liquid and a gas i.e at the liquid

surface, and at the interface between two immiscible (not

mixable) liquids, the attraction force between molecules form

an imaginary surface film which exerts a tension force in the

surface. This liquid property is known as Surface Tension.



Surface Tension

 As a result of surface tension, the liquid surface has a

tendency to reduce its surface as small as possible. That is

why the water droplets assume a nearly spherical shape.

 This property of surface tension is utilized in manufacturing

of lead shots.

 Capillary Rise: The phenomenon of rising water in the tube of

smaller diameter is called capillary rise.



Manometer:

 Manometer is an improved form of a piezometer

tube. With its help we can measure comparatively

high pressures and negative pressure also.

Following are few types of manometers.

1. Simple Manometer

2. Micro-manometer

3. Differential manometer

4. Inverted differential manometer



Simple Manometer:

 It consists of a tube bent in U-Shape, one

end of which is attached to the gauge point

and the other is open to the atmosphere.

 Mercury is used in the bent tube which is

13.6 times heavier than water. Therefore it

is suitable for measuring high pressure as

well.

Procedure:

1. Consider a simple Manometer connected to

a pipe containing a light liquid under high

pressure. The high pressure in the pipe will

force the mercury in the left limb of U-tube

to move downward, corresponding the rise

of mercury in the right limb.



Simple Manometer:

2. The horizontal surface, at which the heavy and light liquid meet in

the left limb, is known as datum line.

Let h1 = height of light liquid in the left limb above datum.

h2 = height of heavy liquid in the right limb above datum.

h= Pressure in the pipe, expressed in terms of head of water.

s1=Sp. Gravity of light liquid.

s2=Sp. Gravity of heavy liquid.

3. Pressure in left limb above datum = h +s1h1

4. Pressure in right limb above datum = s2h2

5. Since the pressure is both limbs is equal So,

h +s1h1 = s2h2

h= (s2h2 - s1h1)



Simple Manometer:

To measure negative pressure:

In this case negative pressure will suck the light liquid which

will pull up the mercury in the left limb of U-tube.

Correspondingly fall of liquid in the right limb.

6. Pressure in left limb above datum = h +s1h1 + s2h2

7. Pressure in right limb = 0

8. Equating, we get

h = -s1h1-s2h2 = -(s1h1+s2h2)



Example
A simple manometer containing mercury is used to measure the

pressure of water flowing in a pipeline. The mercury level in the open

tube is 60mm higher than that on the left tube. If the height of water in

the left tube is 50mm, determine the pressure in the pipe in terms of

head of water.

Solution:

mm 766h        

81650h        

Equating;

mm 816       

606.13       

Z- Zabove limbright  in the head Pressure

mm 50h       

)501(sh       

  Z- Zabove limbleft  in the head Pressure
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Example
A simple manometer containing mercury was used to find the

negative pressure in pipe containing water. The right limb of the

manometer was open to atmosphere. Find the negative pressure,

below the atmosphere in the pipe.



(Vacuum) 68.67kPa                                                

-68.67kPa                                                

68.67kN/m-  9.81x(-7)                                                

h   p  pipe in the pressure Gauge

-7mmm -700h        

0700h        

Equating;

0       

Z- Zabove limbright  in the head Pressure

mm 700h       
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  Z- Zabove limbleft  in the head Pressure

2

2211





















xxhhh

Solution:



Example
Figure shows a conical vessel having its outlet at A to which U tube

manometer is connected. The reading of the manometer given in

figure shows when the vessel is empty. Find the reading of the

manometer when the vessel is completely filled with water.



    

2.72mh  Equating;
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mm 4300.43m(2x0.115)0.2  readingmanometer  and     

0.115m     x

27.2x2.725.72     x

: pressures  theEquating   

27.2x2.722x)(0.2 13.6     

limbleft  in the head Pressure    

2x 0.2       

:case in this readingmanometer  that know     We

5.72x5.72)1(x  limbright  in the head Pressure    

5.72x32.72x3h x       

limbright  in the water ofheight   totalTherefore    

limb.left  in theamount  same by the up go levelmercury      the

and limb,right  in the metersby x down  goes levelmercury  let the result, a As    

r. with watefilled completely be  to vesselheConsider t  2.
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Differential Manometer:

 It is a device used for measuring the difference of pressures,

between the two points in a pipe, on in two different pipes.

 It consists of U-tube containing a heavy liquid (mercury)

whose ends are connected to the points, for which the

pressure is to be found out.

Procedure:

 Let us take the horizontal surface Z-Z, at which heavy liquid

and light liquid meet in the left limb, as datum line.

 Let, h=Difference of levels (also known as differential

manomter reading)

ha, hb= Pressure head in pipe A and B, respectively.

s1, s2= Sp. Gravity of light and heavy liquid respectively.



Differential Manometer:

1. Consider figure (a):

2. Pressure head in the left limb above

Z-Z = ha+s1(H+h)= ha+s1H+s1h

3. Pressure head in the right limb above

Z-Z = hb+s1H+s2h

4. Equating we get,

ha+s1H+s1h = hb+s1H+s2h

ha-hb=s2h-s1h = h(s2-s1)



Differential Manometer:

Two pipes at different levels:

1. Pressure head in the left limb above

Z-Z = ha+s1h1

2. Pressure head in the right limb above

Z-Z = s2h2+s3h3+hb

3. Equating we get,

ha+s1h1 = s2h2+s3h3+hb

Where;

h1= Height of liquid in left limb

h2= Difference of levels of the heavy liquid in the right and

left limb (reading of differential manometer).

h3= Height of liquid in right limb

s1,s2,s3 = Sp. Gravity of left pipe liquid, heavy liquid, right

pipe liquid, respectively.



Example
A U-tube differential manometer connects two pressure pipes A and B.

The pipe A contains carbon Tetrachloride having a Sp. Gravity 1.6

under a pressure of 120 kPa. The pipe B contains oil of Sp. Gravity 0.8

under a pressure of 200 kPa. The pipe A lies 2.5m above pipe B. Find

the difference of pressures measured by mercury as fluid filling U-

tube.

Solution:

20.4m
9.81

200p
   B, pipein  head Pressure

12.2m
9.81

120p
         

A, pipein  head pressure that know We

 water.of head of in termsmercury             

by measured pressure of Differnce hLet 

13.6s and 2.5mh          

200kPa;p 0.8,s 120kPa;p 1.6,s :Given

b
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 mm 328  m 0.328h        

h) x (0.8 20.4h 13.6  16.2        

Equating;

h) x (0.8 20.4  s20.4       

Z- Zabove B Pipein  head Pressure

h 13.6  16.2       

h x 13.6 2.5) x (1.6  12.2       
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b
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Inverted Differential Manometer:

 Type of differential manometer in which an inverted U-tube is used.

 Used for measuring difference of low pressure.

1. Pressure head in the left limb above Z-Z = ha-s1h1

2. Pressure head in the right limb above Z-Z = hb-s2h2-s3h3

3. Equating we get, ha-s1h1 = hb-s2h2-s3h3

(Where; ha, hb are Pressure in pipes A and B

expressed in terms of head of liquid, respectively)



UNIT - II

FLUID KINEMATICS AND DYNAMICS



Fluid Kinematics

c Branch of fluid mechanics which deals with response of fluids  

in motion without considering forces and energies in them.

c The study of kinematics is often referred to as the geometry of  

motion.

Flow around cylindrical object

CAR surface pressure contours
and streamlines



Types of Flow

c Ideal and Real flow

c Incompressible and compressible

c Laminar and turbulent flows

c Steady and unsteady flow

c Uniform and Non-uniform flow



Ideal and Real flow

c Real fluid flows implies friction effects. Ideal fluid flow is hypothetical;  

it assumes no friction.

Velocity distribution of pipe flow



Compressible and incompressible flows

c Incompressible fluid flows assumes the fluid have constant density  

while in compressible fluid flows density is variable and becomes  

function of temperature and pressure.

P1 P2

v1

v2

v2

P1

P2

v1

v2

Incompressible fluid Compressible fluid



Laminar and turbulent flow

c The flow in laminations (layers) is  
termed as laminar flow while the case  
when fluid flow layers intermix with  
each other is termed as turbulent flow.

Laminar flow

5
5

Transition of flow from Laminar to turbulent

Turbulent flow

c Reynold’s 
number is used to  
differentiate between 
laminar and  turbulent flows.



Steady and Unsteady flows

 Steady flow: It is the flow in  which 

conditions of flow remains  constant 

w.r.t. time at a particular  section but 

the condition may be  different at 

different sections.

 Flow conditions: velocity, pressure,  

density or cross-sectional area etc.

 e.g., A constant discharge through  a 

pipe.

 Unsteady flow: It is the flow in  

which conditions of flow changes w.r.t. 

time at a particular section.

 e.g.,A variable discharge through a  

pipe

Longitudinal Section

X

V

X

V

t
 0; V  contt

 0; V  variable
t

V



Uniform and Non-uniform flow

c Uniform flow: It is the flow in  

which conditions of flow  

remains constant from section  

to section.

c e.g., Constant discharge though  

a constant diameter pipe

c Non-uniform flow: It is the  

flow in which conditions of flow  

does not remain constant from  

section to section.

c e.g., Constant discharge through  

variable diameter pipe

Longitudinal Section

X

V

X

V  
 0; V  contt

x

 0; V  variable
V

V

Longitudinal Section
X

�x
5
7



One, Two and Three Dimensional Flows

c Although in general all fluids flow three-dimensionally, with pressures

and velocities and other flow properties varying in all directions, in

many cases the greatest changes only occur in two directions or even

only in one. In these cases changes in the other direction can be

effectively ignored making analysis much more simple.

c Flow is one dimensional if the flow parameters (such as velocity,

pressure, depth etc.) at a given instant in time only vary in the

direction of flow and not across the cross-section

Longitudinal section of rectangular channel Cross-section Velocity profile

Mean

velocityWater surface



One, Two and Three Dimensional Flows

c Flow is two-dimensional if it can be  

assumed that the flow parameters  

vary in the direction of flow and in  

one direction at right angles to this  

direction

c Flow is three-dimensional if the flow  

parameters vary in all three directions  

of flow

Two-dimensional flow over a weir

Three-dimensional flow in stilling basin



Path line and stream line

c Pathline: It is trace made by single  
particle over a period of time.

c Streamline show the mean  
direction of a number of particles at  
the same instance of time.

c Character of Streamline

c 1. Streamlines can not cross each
other. (otherwise, the cross point will
have two tangential lines.)

c 2. Streamline can't be a folding line,  
but a smooth curve.

c 3. Streamline cluster density reflects  
the magnitude of velocity. (Dense  
streamlines mean large velocity;  while 
sparse streamlines mean small  velocity.
） Flow around cylindrical object



Streakline and streamtubes

c A Streakline is the locus of  
fluid particles that have passed  
sequentially through a  
prescribed point in the flow.

c It is an instantaneous picture of  
the position of all particles in  
flow that have passed through a  
given point.

c Streamtube is an imaginary  
tube whose boundary  
consists of streamlines.

c The volume flow rate must  
be the same for all cross  
sections of the stream tube.



Continuity

c Matter cannot be created or destroyed

- (it is simply changed in to a different  

form of matter).

c This principle is know as the  

conservation of mass and we use it in the  

analysis of flowing fluids.

c The principle is applied to fixed  

volumes, known as control volumes  

shown in figure:

An arbitrarily shaped control volume.

For any control volume the principle of conservation of mass says

Mass entering per unit time -Mass leaving per unit time

= Increase of mass in the control volume per unit time



Continuity Equation

A stream tube

c For steady flow there is no increase in the mass within the control  

volume, so

Mass entering per unit time = Mass leaving per unit time

c Derivation:

c Lets consider a stream tube.

c ρ1, v1 and A1 are mass density,
velocity and cross-sectional area at
section 1. Similarly, ρ2, v2 and A2 are
mass density, velocity and cross-
sectional area at section 2.

c According to mass 

conservation

M1  1 A1V1

M 2  2 A2V2

dM 

dM 

CV

dt

CV

dt
M1  M 2 

1 A1V1     2 A2V2 



Continuity Equation

c For steady flow condition

c Similarly

c Assuming incompressible fluid,

c Therefore, according to mass conservation for steady flow of  
incompressible fluids volume flow rate remains same from section  
to section.

dMCV / dt  0

1 A1V1    2 A2V2    0  1 A1V1     2 A2V2

M  1 A1V1     2 A2V2

c Hence, for stead flow condition, mass flow rate 
at section 1= mass  flow rate at section 2. i.e., mass flow 
rate is constant.G  1gA1V1    2gA2V2

1   2   

A1V1     A2V2 Q1   Q2
 Q3   Q4Q1   Q2



EQUATION FOR STEADY MOTION OF AN IDEAL

FLUID ALONG A STREAMLINE, AND BERNOULLI'S

THEOREM

 Referring to Fig., let us consider frictionless steady flow of an

ideal fluid along the streamline. We shall consider the forces

acting in the direction of the streamline on a small element of

the fluid in the stream tube, and we shall apply Newton's

second law, that is F = ma.

 The cross-sectional area of the

element at right angles to the

streamline may have any shape and

varies from A to A + dA.

 Recalling that in steady flow the

velocity does not vary at a point

(local acceleration = 0), but that it

may vary with position (convective

acceleration 0).



Bernoulli's Theorem:

 The mass of the fluid element is m =  ds(A + 1/2dA) =  dsA

when we neglect second order terms. The forces tending to

accelerate or decelerate this mass along s are:

(a) the pressure forces:

(b) the weight component in the direction of motion:

 Applying ƐF = ma along the streamline, we get,

dpAdAAdppdAdpppA 







 ))((

2

1

pgAdz
ds

dz
pgdsAdAA 








  cos

2

1

apdsApgAdzdpA )(



Bernoulli's Theorem:

 Dividing by the volume dsA,

 This states that the pressure gradient along the streamline

combined with the weight component in that direction causes

the acceleration a of the element. Recalling that a = V(dV/ds)

for steady flow (Equation 4.24), we get:

 Multiplying by ds/p and rearranging,

pa
ds

dz
pg

ds

dp


ds

dV
pV

ds

dz
pg

ds

dp


(5.5)          0 VdVgdz
p

dp



Bernoulli's Theorem:

 We commonly refer to this equation as the one-dimensional

Euler3 equation, because Leonhard Euler (1707-1783), a

Swiss mathematician, first derived it in about 1750.

 It applies to both compressible and incompressible flow, since

the variation of p over the elemental length ds is small.

 Dividing through by g, we can also express Eq. (5.5) as:

(5.6)         0
2

2


g

V
ddz

dp





Assumptions:

1. It assumes viscous (friction) effects are negligible

2. It assumes the flow is steady

3. The equation applies along a streamline

4. It assumes the fluid to be incompressible

5. It assumes no energy is added to or removed from

the fluid along the streamline



Problem:

 Glycerin (specific gravity 1.26) in a processing plant flows in

a pipe at a rate of 700 L/s. At a point where the pipe diameter

is 600 mm, the pressure is 300 kPa. Find the pressure at a

second point where the pipe diameter is 300 mm if the second

point is 1.0 m lower than the first point, neglect the head loss.



Solution:



The force due the flow around a pipe bend

Consider a pipe bend with a constant cross 

section lying in the horizontal plane and turning 

through an angle of θ



 Because the fluid changes direction, a force (very large 
in the case of water supply pipes,) will act in the bend. 
If the bend is not fixed it will move and eventually 
break at the joints. We need to know how much force a 
support (thrust block) must withstand.

 Step in Analysis:

1. Draw a control volume

2. Decide on co-ordinate axis system

3. Calculate the total force (rate of change of 

momentum)

4. Calculate the pressure force

5. Calculate the body force

6. Calculate the resultant force



 The control volume is draw in the above figure, 

with faces at the inlet and outlet of the bend and 

encompassing the pipe walls.

 It is convenient to choose the co-ordinate axis so 

that one is pointing in the direction of the inlet 

velocity.

 In the above figure the x-axis points in the direction 

of the inlet velocity.



 Calculate the total force:

In the x-direction:

In the y-direction:
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 Calculate the pressure force

F p = pressure force at 1 - pressure force at 2

Fpx = p1 A1 cos 0 – p2 A2 cos θ = p1 A1 – p2 A2

cos θ

Fpy = p1 A1 sin 0 – p2 A2 sin θ =  – p2 A2 sin θ

 Calculate the body force

There are no body forces in the x or y directions. The 

only body force is that exerted by gravity (which  

acts into the paper in this example - a direction we 

do not need to consider).

Fbx = Fby = 0



 Calculate the resultant force

FRx = Ftx - Fpx - Fbx

FRy = Fty - Fpy - Fby
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And

The force on the bend is the same magnitude but in 

the opposite direction

R = - Fresultant
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UNIT - III

BOUNDAR LAYER THEORY 

AND FLOW THROUGH PIPES



Description of Boundary Layer

w: wall shear stresses

U 

In the immediate vicinity of the boundary surface, the velocity of the fluid

the velocity of theincreases gradually from zero at boundary surface to  

mainstream. This region is known as BOUNDARY LAYER.

Large velocity gradient leading to appreciable shear stress: 
y  0

  u 
 m  

 y 

The nominal thickness of BOUNDARY LAYER is defined as the distance from  

the boundary where the velocity of fluid is 99 % of free stream velocity



Description of Boundary Layer

U 

shear stress:   u 
  m  

 y 

Shear stress acting at the plate surface

sets up a shear force which opposes

the fluid motion, and fluid close to the

wall is decelerated.

Theoretical understanding on Boundary layer development is very important to  

determine the velocity gradient and hence shear forces on the surface.

w: wall shear stresses

Consists of two layers:

CLOSE TO BOUNDARY : large velocity 

gradient, appreciable viscous forces.  

OUTSIDE BOUNDARY LAYER: viscous 

forces are negligible, flow may be  treated as 

non-viscous or inviscid.



The boundary layer thickness increases as the distance x from leading edge is

increases. This is because of viscous forces that dissipate more and more energy

of fluid stream as the flow proceeds and large group of particles are slow downed.

In laminar boundary layer the particles are moving along stream lines.

The disturbance in fluid flow in boundary layer is amplified and the flow become

unstable and the fluid flow undergoes transition from laminar to turbulent flow.

This regime is called transition regime.

Development of Boundary Layer



After going through transition zone of finite length the flow becomes completely

turbulent which is characterized by three dimensional, random motion of

fluctuation induced bulk motion parcel of fluid.

LAMINAR BOUNDARY LAYER PROFILE – PARABOLIC

TURBULENT BOUNDARY LAYER – PROFILE BECOMES LOGARITHMIC

Development of Boundary Layer



BL depends on Reynold’s number & also on the surface roughness. Roughness of

the surface adds to the disturbance in the flow & hastens the transition from laminar

to turbulent.

For laminar flow
  u 

  m  
 y

For Turbulent flow 



 u
  m   

 y

Where ε is the eddy viscosity and  

is often much larger than µ

.

Development of Boundary Layer



Boundary Layer Thickness for  Laminar and 

Turbulent

For Turbulent flow

The boundary layer thickness is governed by parameters like incoming velocity,  

kinematic viscosity of fluid etc.

For laminar flow

Re
lam

x

 
5.0x Pohlhausen  

(Exact solution) Re
lam

x

 
5.835x Blassius

(Approximate solution)

1
5Re

tur 
0.377x



Flow Patterns and Regimes within Laminar  and Turbulent Boundary 

Layer

As mentioned above, very close to the plane surface the flow remains laminar and  a 

linear velocity profile may be assumed.

In this region, the velocity gradient is governed by the fluid viscosity

m

  u  
 

 y 



Flow Patterns and Regimes within Laminar  and Turbulent Boundary 

Layer

In turbulent flow, owing to the random motion of the fluid particles, eddy patterns are

set up in the boundary layer which sweep small masses of fluid up and down through

the boundary layer, moving in a direction perpendicular to the surface and the mean

flow direction.



Flow Patterns and Regimes within Laminar  and Turbulent Boundary 

Layer

Conversely, slow-moving fluid is lifted into the upper levels, slowing down the fluid

stream and, by doing so, effectively thickening the boundary layer, explaining the

more rapid growth of the turbulent boundary layer compared with the laminar one.

Owing to these eddies, fluid from the upper higher-velocity areas is forced into the

slower-moving stream above the laminar sublayer, having the effect of increasing

the local velocity here relative to its value in the laminar sublayer.

In order to explain this

process, the eddy viscosity, ε

should be added in Shear

stress formulation.

   m     u

 y



Effect of Pressure Gradient On Boundary  Layer Development

The presence of a pressure gradient ∂p/∂x effectively means a ∂u/∂x term, i.e. the  

flow stream velocity changes across the surface.

for example, consider a curved surface, then the velocity variation can be  

shown as:



Effect of Pressure Gradient on Boundary  Layer Development

downstream direction, then

If the pressure decreases in the

the

boundary layer tends to be reduced in

thickness, and this case is termed a

favorable pressure gradient.

If the pressure

downstream  

boundary layer

direction,

thickens

then

rapidly;

increases in the

the

this

an adversecase is referred to as  

pressure gradient.



A conduit is any pipe, tube, or duct that is completely filled with a 
flowing fluid. Examples include a pipeline transporting liquefied 
natural gas, a microchannel transporting hydrogen in a fuel cell, and a 
duct transporting air for heating of a building. A pipe that is partially 
filled with a flowing fluid, for example a drainage pipe, is classified as 
an open-channel flow.

The main goal of this chapter is to describe how to predict head loss. 
Predicting head loss involves classifying flow as laminar or turbulent 
and then using equations to calculate head losses in pipes and 
components.



10.1 Classifying Flow

The flow in a conduit may be classified as: (a) whether the flow is 
laminar or turbulent, and (b) whether the flow is developing or fully 
developed. 

Laminar Flow and Turbulent Flow

Flow in a conduit is classified as being either laminar or turbulent, 
depending on the magnitude of the Reynolds number. The original 
research involved visualizing flow in a glass tube as shown in Fig. 
10.1a. Reynolds 1 in the 1880s injected dye into the center of the tube 
and observed the following:

- When the velocity was low, the streak of dye flowed down the tube 
with little expansion, as shown in Fig. 10.1b. However, if the water in 
the tank was disturbed, the streak would shift about in the tube.

- If velocity was increased, at some point in the tube, the dye would all at 
once mix with the water as shown in Fig. 10.1c.

- When the dye exhibited rapid mixing (Fig. 10.1c), illumination with an 
electric spark revealed eddies in the mixed fluid as shown in Fig. 
10.1d.



Figure 10.1 Reynolds' experiment.

(a) Apparatus.

(b) Laminar flow of dye in tube.

(c) Turbulent flow of dye in tube.

(d) Eddies in turbulent flow.



Reynolds showed that the onset of turbulence was related to a π-group
that is now called the Reynolds number (Re = ρVD/μ) in honor of
Reynolds' pioneering work. Reynolds discovered that if the fluid in the
upstream reservoir was not completely still or if the pipe had some
vibrations, then the change from laminar to turbulent flow occurred at
Re ~ 2100. However, if conditions were ideal, it was possible to reach
a much higher Reynolds number before the flow became turbulent.
Reynolds also found that, when going from high velocity to low
velocity, the change back to laminar flow occurred at Re ~ 2000.
Based on Reynolds' experiments, engineers use guidelines to establish
whether or not flow in a conduit will be laminar or turbulent. The
guidelines used in this text are as follows:

(10.1)



The range (2000 ≤ Re ≤ 3000) corresponds to a the type of flow that is 

unpredictable because it can changes back and forth between laminar 

and turbulent states. 

Recognize that precise values of Reynolds number versus flow regime 

do not exist. Thus, the guidelines given in Eq. (10.1) are approximate 

and other references may give slightly different values. For example, 

some references use Re = 2300 as the criteria for turbulence.

There are several equations for calculating Reynolds number in a pipe



Derivation of the Darcy-Weisbach Equation

To derive the Darcy-Weisbach equation, consider Fig. 10.4. Assume fully 

developed and steady flow in a round tube of constant diameter D. 

Situate a cylindrical control volume of diameter D and length L 

inside the pipe. Define a coordinate system with an axial coordinate in 

the streamwise direction (s direction) and a radial coordinate in the r 

direction.



The net efflux of momentum is zero because the velocity 

distribution at section 2 is identical to the velocity distribution at 

section 1. The momentum accumulation term is also zero 

because the flow is steady. Thus, Eq. (10.5) simplifies to ΣF = 0.  

Forces are shown in Fig. 10.5. Summing forces in the streamwise 

direction gives

(10.5)

Figure 10.5 Force diagram.

Since, sin  = (z/L), the equation 

becomes,



Next, apply the energy equation to the control volume shown in Fig. 

10.4. Recognize that hp = ht = 0, V1 = V2, and α1 = α2. Thus, the 

energy equation reduces to

Combine the equation from the momentum and the above (form 

the energy) and replace L by L. Also, introduce a new symbol hf

to represent head loss in pipe.

Rearrange the right side of Eq. (10.9).



Define a new π-group called the friction factor f that gives the ratio of 

wall shear stress (o) to kinetic pressure (ρV2/2):

In the technical literature, the friction factor is identified by several 

different labels that are synonymous: friction factor, Darcy friction 

factor, Darcy-Weisbach friction factor, and the resistance 

coefficient. There is also another coefficient called the Fanning 

friction factor, often used by chemical engineers, which is related 

to the Darcy-Weisbach friction factor by a factor of 4.

This text uses only the Darcy-Weisbach friction factor. Combining 

the previous equations, gives the Darcy-Weisbach equation:



To use the Darcy-Weisbach equation, the flow should be fully developed 
and steady. The Darcy-Weisbach equation is used for either laminar 
flow or turbulent flow and for either round pipes or nonround conduits 
such as a rectangular duct.

The Darcy-Weisbach equation shows that head loss depends on the 
friction factor, the pipe-length-to-diameter ratio, and the mean velocity 
squared. 

The key to using the Darcy-Weisbach equation is calculating a value of 
the friction factor f.



Moody Diagram



Minor Losses

 In addition to head loss due to friction, there are always 
other head losses due to pipe expansions and contractions, 
bends, valves, and other pipe fittings.  These losses are 
usually known as minor losses (hLm). 

 In case of a long pipeline, the minor losses maybe negligible 
compared to the friction losses, however, in the case of short 

pipelines, their contribution may be significant.



Losses due to pipe fittings

where hLm= minor loss

K = minor loss coefficient 

V = mean flow velocity

g2

V
Kh

2

Lm 

Typical K values

Type K 

Exit (pipe to tank) 1.0

Entrance (tank to pipe) 0.5

90 elbow 0.9

45 elbow 0.4

T-junction 1.8

Gate valve 0.25 - 25



Sudden Enlargement

 As fluid flows from a smaller pipe into a larger pipe through 
sudden enlargement, its velocity abruptly decreases; causing 
turbulence that generates an energy loss.  

 The amount of turbulence, and therefore the amount of energy, is 
dependent on the ratio of the sizes of the two pipes.  

 The minor loss (hLm)is calculated from;

(4.16a)

where is KE is the coefficient of expansion, and the values depends on the

ratio of the pipe diameters (Da/Db) as shown below.

g2

V
Kh

2
a

ELm 

Da/Db 0.0 0.2 0.4 0.6 0.8

K 1.00 0.87 0.70 0.41 0.15

Values of KE vs. Da/Db



Flow at Sudden Enlargement



Sudden Contraction

The energy loss due to a sudden contraction can be calculated using 
the following;

(4.16b)

The KC is the coefficient of contraction and the values depends on 

the ratio of the pipe diameter (Db/Da) as shown below.

g2

V
Kh

2
b

CLm 

Db/Da 0.0 0.2 0.4 0.6 0.8 1.0

K 0.5 0.49 0.42 0.27 0.20 0.0

Values of KC vs. Db/Da

Flow at sudden contraction



Example 

 Water at 10C  is flowing at a rate of 0.03 m3/s through a pipe.  The pipe 
has 150-mm diameter, 500 m long, and the surface roughness is estimated 
at 0.06 mm.  Find the head loss and the pressure drop throughout the 
length of the pipe. 

Solution:
 From Table 1.3 (for water):  = 1000 kg/m3 and m =1.30x10-3 N.s/m2

V = Q/A   and A=R2

A = (0.15/2)2 = 0.01767 m2

V = Q/A  =0.03/.0.01767 =1.7 m/s

Re = (1000x1.7x0.15)/(1.30x10-3) = 1.96x105   > 2000   turbulent flow

To find , use Moody Diagram with Re and relative roughness (k/D).

k/D = 0.06x10-3/0.15 = 4x10-4

From Moody diagram,      0.018

The head loss may be computed using the Darcy-Weisbach equation.

The pressure drop along the pipe can be calculated using the relationship:  

ΔP=ghf = 1000 x 9.81 x 8.84

ΔP = 8.67 x 104 Pa

.m84.8
81.9x2x15.0

7.1x500
x018.0

g2

V

D

L
h

22
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UNIT - IV

TURBO MACHINERY



Force exerted by the jet on a stationary plate

Impact of Jets

The jet is a stream of liquid comes out from nozzle with a high velocity under 

constant pressure. When the jet impinges on plates or vanes, its momentum is 

changed and a hydrodynamic force is exerted. Vane is a flat or curved plate fixed 

to the rim of the wheel

1. Force exerted by the jet on a stationary plate

a) Plate is vertical to the jet

b) Plate is inclined to the jet

c) Plate is curved

2. Force exerted by the jet on a moving plate

a) Plate is vertical to the jet

b) Plate is inclined to the jet

c) Plate is curved



Impulse-Momentum Principle

From Newton's 2nd Law:

F = m a = m (V1- V2) / t

Impulse of a force is given by the change in momentum caused by the force

on the body.

Ft = mV1 – mV2 = Initial Momentum – Final Momentum 

Force exerted by jet on the plate in the direction of jet, F = m (V1 – V2) / t

= (Mass / Time) (Initial Velocity – Final Velocity)

= (ρQ) (V1 – V2) = (ρaV) (V1 – V2)



Force exerted by the jet on a stationary plate

Plate is vertical to the jet

F = aV2

If Plate is moving at a velocity of ‘U’ m/s,

F = a(V-U)2



Problems:
1. A jet of water 50 mm diameter strikes a flat plate held normal to the direction of jet.

Estimate the force exerted and work done by the jet if

a. The plate is stationary

b. The plate is moving with a velocity of 1 m/s away from the jet along the line of jet.

The discharge through the nozzle is 76 lps.

2. A jet of water 50 mm diameter exerts a force of 3 kN on a flat vane held

perpendicular to the direction of jet. Find the mass flow rate.



Force exerted by the jet on a stationary plate

Plate is inclined to the jet

FN = aV2 sin 

Fx = FN sin 

Fx = FN cos 



Force exerted by the jet on a moving plate

Plate is inclined to the jet

FN = a(V-U)2 sin 

Fx = FN sin 

Fx = FN cos 



Problems:
1. A jet of data 75 mm diameter has a velocity of 30 m/s. It strikes a flat plate inclined

at 450 to the axis of jet. Find the force on the plate when.

a. The plate is stationary

b. The plate is moving with a velocity of 15 m/s along and away from the jet.

Also find power and efficiency in case (b)

2. A 75 mm diameter jet having a velocity of 12 m/s impinges a smooth flat plate, the

normal of which is inclined at 600 to the axis of jet. Find the impact of jet on the plate

at right angles to the plate when the plate is stationery.

a. What will be the impact if the plate moves with a velocity of 6 m/s in the direction

of jet and away from it.

b. What will be the force if the plate moves towards the plate.



Force exerted by the jet on a stationary plate

Plate is Curved and Jet strikes at Centre

F = aV2 (1+ cos )



Force exerted by the jet on a moving plate

Plate is Curved and Jet strikes at Centre

F = a(V-U)2 (1+ cos )



Problems:
1. A jet of water of diameter 50 mm strikes a stationary, symmetrical curved plate

with a velocity of 40 m/s. Find the force extended by the jet at the centre of plate

along its axis if the jet is deflected through 1200 at the outlet of the curved plate

2. A jet of water from a nozzle is deflected through 600 from its direction by a curved

plate to which water enters tangentially without shock with a velocity of 30m/s

and leaver with a velocity of 25 m/s. If the discharge from the nozzle is 0.8 kg/s,

calculate the magnitude and direction of resultant force on the vane.



Force exerted by the jet on a stationary plate

(Symmetrical Plate)

Plate is Curved and Jet strikes at tip

Fx = 2aV2 cos 



Force exerted by the jet on a stationary plate

(Unsymmetrical Plate)

Plate is Curved and Jet strikes at tip

Fx = aV2 (cos  + cos )



Problems:

1. A jet of water strikes a stationery curved plate tangentially at one end at an angle

of 300 . The jet of 75 mm diameter has a velocity of 30 m/s. The jet leaves at the

other end at angle of 200 to the horizontal. Determine the magnitude of force exerted

along ‘x’ and ‘y’ directions.



Force exerted by the jet on a moving plate

Considering Relative Velocity,

Fx = aVr1 (Vr1 cos  + Vr2 cos )

Fx = aVr1 (VW1 + VW2)

OR

If  < 900



Force exerted by the jet on a moving plate

If  = 900

Considering Relative Velocity,

Fx = aVr1 (Vr1 cos  – Vr2 cos )

OR

Fx = aVr1 (VW1)



Force exerted by the jet on a moving plate

If  = 900

Considering Relative Velocity,

Fx = aVr1 (Vr1 cos  – Vr2 cos )

OR

Fx = aVr1 (VW1 – VW2)



Impact of jet on a series of flat vanes mounted radially on the periphery of a 

circular  wheel

F = aV (V-U)



Impact of jet on a series of flat vanes mounted radially on the periphery of a 

circular  wheel

F = aV (V-U) (1+ cos )



Problems:

1. A jet of water of diameter 75 mm strikes a curved plate at its centre with a velocity

of 25 m/s. The curved plate is moving with a velocity of 10 m/s along the direction of

jet. If the jet gets deflected through 1650 in the smooth vane, compute.

a) Force exerted by the jet.

b) Power of jet.

c) Efficiency of jet.

2. A jet of water impinges a curved plate with a velocity of 20 m/s making an angle of

200 with the direction of motion of vane at inlet and leaves at 1300 to the direction of

motion at outlet. The vane is moving with a velocity of 10 m/s. Compute.

i) Vane angles, so that water enters and leaves without shock.

ii) Work done per unit mass flow rate



Force exerted by the jet on a moving plate (PELTON WHEEL)

Considering Relative Velocity,

Fx = aVr1 (Vr1  – Vr2 cos )

OR

Fx = aVr1 (VW1 – VW2)

Work done / sec = F.U

Power = F. U

F.U

½ mV2
Efficiency  =



Force exerted by the jet on a moving plate (PELTON WHEEL)

Considering Relative Velocity,

Fx = aVr1 (Vr1  – Vr2 cos )

OR

Fx = aVr1 (VW1 – VW2)

Work done / sec = F.U

Power = F. U

F.U

½ mV2
Efficiency  =



Hydraulic machinery

• Turbine is a device that extracts energy from a

fluid (converts the energy held by the fluid to

mechanical energy)

• Pumps are devices that add energy to the fluid

(e.g. pumps, fans, blowers and compressors).



Turbines

• Hydro electric power is the most remarkable

development pertaining to the exploitation of

water resources throughout the world

• Hydroelectric power is developed by hydraulic

turbines which are hydraulic machines.

• Turbines convert hydraulic energy or hydro-

potential into mechanical energy.

• Mechanical energy developed by turbines is

used to run electric generators coupled to the

shaft of turbines



Types of turbines

Turbines can be classified on the basis of:

• Head and quantity of water available

• Hydraulic action of water

• Direction of flow of water in the runner

• Specific speed of turbines

• Disposition of the shaft of the runner



• Based on head and quantity of water

According to head and quantity of water available, the 

turbines can be classified into

a) High head turbines

b) Medium head turbines

c) Low head turbines

a) High head turbines

High head turbines are the turbines which work

under heads more than 250m. The quantity of water

needed in case of high head turbines is usually small.

The Pelton turbines are the usual choice for high heads.

Classification of turbines



• Based on head and quantity of water

b) Medium head turbines

The turbines that work under a head of 45m to 250m

are called medium head turbines. It requires medium

flow of water. Francis turbines are used for medium

heads.

c) Low head turbines

Turbines which work under a head of less than 45m

are called low head turbines. Owing to low head,

large quantity of water is required. Kaplan turbines

are used for low heads.

Classification of turbines



• Based on hydraulic action of water

According to hydraulic action of water, turbines can be 

classified into

a) Impulse turbines

b) Reaction turbines

a) Impulse turbines

If the runner of a turbine rotates by the impact or

impulse action of water, it is an impulse turbine.

b) Reaction turbines

These turbines work due to reaction of the pressure

difference between the inlet and the outlet of the runner.

Classification of turbines



• Based on direction of flow of water in the runner

Depending upon the direction of flow through the 

runner, following types of turbines are there

a) Tangential flow turbines

b) Radial flow turbines

c) Axial flow turbines

d) Mixed flow turbines

a) Tangential flow turbines

When the flow is tangential to the wheel circle, it is a

tangential flow turbine. A Pelton turbine is a Tangential

flow turbine.

Classification of turbines



• Based on direction of flow of water in the runner

b) Radial flow turbines

In a radial flow, the path of the flow of water remains in the radial

direction and in a plane normal to the runner shaft. No pure

radial flow turbine is in use these days.

c) Axial flow turbines

When the path of flow water remains parallel to the axis of the

shaft, it is an axial flow turbine. The Kaplan turbine is axial flow

turbine

d) Mixed flow turbines

When there is gradual change of flow from radial to axial in the

runner, the flow is called mixed flow. The Francis turbine is a

mixed flow turbine.

Classification of turbines



• Based on specific speed of turbines

Specific speed of a turbine is defined as the speed of a

geometrically similar turbine which produces a unit

power when working under a unit head.

The specific speed of Pelton turbine ranges between 8-

30, Francis turbines have specific speed between 50-

250, Specific speed of Kaplan lies between 250-850.

• Based on disposition of shaft of runner

Usually, Pelton turbines are setup with horizontal shafts,

where as other types have vertical shafts.

Classification of turbines



Main dimensions for the Pelton runner



The ideal Pelton runner

Absolute velocity from nozzle:
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The real Pelton runner

 For a real Pelton runner there will always be losses.

We will therefore set the hydraulic efficiency to:

96.0h 

The absolute velocity from the nozzle will be:

995.0c99.0 u1 

C1u can be set to 1,0 when dimensioning the turbine.

This gives us:
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Runner diameter

Rules of thumb:

D = 10  · ds Hn < 500 m

D = 15  · ds Hn =  1300 m

D < 9,5 · ds must be avoided 

because water will be lost

D > 15 · ds is for very high head 

Pelton



Speed number
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 The water enters the turbine through the outer periphery of the 
runner in the radial direction and leaves the runner in the axial 
direction, and hence it is called „mixed flow turbine‟. 

 It is a reaction turbine and therefore only a part of the available 
head is converted into the velocity head before water enters the 
runner. 

 The pressure head goes on decreasing as the water flows over the 
runner blades. 

 The static pressure at the runner exit may be less than the 
atmospheric pressure and as such, water fills all the passages of 
the runner blades.

 The change in pressure while water is gliding over the blades is 
called „reaction pressure‟ and is partly responsible for the rotation 
of the runner. 

 A Francis turbine is suitable for medium heads (45 to 400 m) and 
requires a relatively large quantity of water.

Francis turbines



Variations of Francis



Variations of Francis



Parts of A Francis Turbine



Hydraulic efficiency of Francis Hydraulic System
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Spiral Casing 

• Spiral Casing : The fluid enters from the penstock to a spiral 
casing which completely surrounds the runner. 

• This casing is known as scroll casing or volute. 

• The cross-sectional area of this casing decreases uniformly along 
the circumference to keep the fluid velocity constant in 
magnitude along its path towards the stay vane/guide vane.



UNIT - V

CENTRIFUGAL AND 

RECIPROCATING PUMPS



Types of Pumps

 Positive displacement
 piston pump

Diaphragm pump

 peristaltic pump

 Rotary pumps
 gear pump

 two-lobe rotary pump

 screw pump

 Jet pumps

 Turbomachines

 axial-flow (propeller 

pump)

 radial-flow (centrifugal 

pump)

 mixed-flow (both axial 

and radial flow)



Reciprocating action pumps

 Piston pump

 can produce very high pressures

 hydraulic fluid pump

 high pressure water washers

diaphragm pump



Positive Displacement Pumps

 What happens if you close a valve on the effluent 

side of a positive displacement pump?

 What does flow rate vs. time look like for a piston 

pump?
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Centrifugal Pumps

2

2
p

V
h

g
=velocity head

 Centrifugal pumps accelerate a liquid

 The maximum velocity reached is the velocity of the 

periphery of the impeller

 The kinetic energy is converted into potential energy 

as the fluid leaves the pump

 The potential energy developed is approximately 

equal to the ________ ____ at the periphery of the 

impeller

 A given pump with a given impeller diameter and 

speed will raise a fluid to a certain height regardless 

of the fluid density



Radial Pumps

Impeller

Vanes

Casing

Suction Eye Impeller

Discharge

centrifugal

Flow Expansion

diameter rotational speed

 also called _________ pumps

 broad range of applicable flows and heads

 higher heads can be achieved by increasing the 

_______ or the ________ ______ of the impeller

2

2
p

V
h

g
=



Head-Discharge Curve

Theoretical 

head-discharge 

curve

Actual head-

discharge curve

Q

 circulatory flow -

inability of finite 

number of blades to 

guide flow

 friction - ____

 shock - incorrect angle 

of blade inlet ___

 other losses

 bearing friction

 packing friction

 disk friction

 internal leakage

V2

V2

ph

2 2

p

H

h g
C

Dw
=

3Q

Q
C

D
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Pump Power Requirements

w pP Qhg=

s

w
P

P

P
e 

m

s
m

P

P
e 

p

m

P m

Qh
P

e e

g
=

water

pump

shaft

motor

Water power

Subscripts

w = _______

p = _______

s = _______

m = _______



Impeller Shape vs. Power Curves
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Affinity Laws

 With speed, , held constant:
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Pump Example

 Given a pump with shape factor of 4.57, a diameter 

of 366 mm, a 2-m head, a speed of 600 rpm, and 

dimensionless performance curves (previous slide).

 What will the discharge be?

 How large a motor will be needed if motor 

efficiency is 95%?

Exercise
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Pumps in Parallel or in Series

 Parallel

 Flow ________

Head ________

 Series

 Flow ________

Head ________

 Multistage

adds

same

same

adds



Cavitation in Water Pumps

 water vapor bubbles 

form when the pressure 

is less than the vapor 

pressure of water

 very high pressures 

(800 MPa or 115,000 

psi) develop when the 

vapor bubbles collapse 0
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Net Positive Suction Head

 NPSHR - absolute pressure in excess of vapor 
pressure required at pump inlet to prevent cavitation

 given by pump manufacturer

 determined by the water velocity at the entrance to the 
pump impeller

 NPSHA - pressure in excess of vapor pressure 
available at pump inlet

 determined by pump installation (elevation above reservoir, 
frictional losses, water temperature)

 If NPSHA is less than NPSHR cavitation will occur



Net Positive Suction Head

1
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2
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gg g
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Total head -pv!

NPSHR increases with Q2!

Elevation datum
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= - + At cavitation!
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How much total head in excess of vapor pressure is available?



NPSHA

2
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NPSHr Illustrated

Pv

Pressure in excess of 

vapor pressure required 

to prevent cavitationNPSHr

NPSHr can exceed atmospheric pressure!



NPSH problem

Determine the minimum 

reservoir level relative to the 

pump centerline that will be 

acceptable. The NPSHr for the 

pump is 2.5 m. Assume you 

have applied the energy 

equation and found a head loss 

of 0.5 m.

18°C

?

Exercise



Pumps in Pipe Systems

60 m

1 km

Pipe diameter is 0.4 m 
and friction factor is 
0.015. What is the pump 
discharge?

    
hp  z2  z1  hl

    
hp  f(Q)

1 m1 m

2

ph a bQ= -often expressed as
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2

2g
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Pumps in Pipe Systems
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Priming

    
CH 

p

 2
D

2

    p  CH  2
D

2

2 2

p

H

h g
C

Dw
=

density

1.225 kg/m3

 The pressure increase created is 

proportional to the _______ of the fluid 

being pumped.

 A pump designed for water will be 

unable to produce much pressure 

increase when pumping air

 Density of air at sea level is __________

 Change in pressure produced by pump is 

about 0.1% of design when pumping air 

rather than water!



Priming Solutions

 Applications with water at less than 

atmospheric pressure on the suction side of the 

pump require a method to remove the air from 

the pump and the inlet piping

 Solutions

 foot valve

 priming tank

 vacuum source

 self priming

foot valve

to vacuum pumppriming tank



Self-Priming Centrifugal Pumps

 Require a small volume of liquid in the pump

 Recirculate this liquid and entrain air from the 

suction side of the pump

 The entrained air is separated from the liquid and 

discharged in the pressure side of the pump

http://www.gouldspumps.com/download_files/3796/3796_priming.stm


Estimate of Pump rpm

 The best efficiency is obtained when S=1

 Given a desired flow and head the approximate 

pump rpm can be estimated!

( )
3 4

p

Q
S

gh

w
=

( )
3 4

pgh

Q
w »

Pump for flume in DeFrees Teaching Lab…

Q = 0.1 m3/s, hp = 4 m.

Therefore  = 50 rads/s = 470 rpm

Actual maximum rpm is 600!



Pump Selection

 Material Compatibility

 Solids

 Flow

 Head

 NPSHa

 Pump Selection software

 A finite number of pumps will come close to meeting 

the specifications!
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