

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderaad - 500 043

Prepared

 By

Mr.R Mahendhar Reddy, Associate Professor,ECE

1

1960s’ CPU – designed with logic gates

LSI – Large Scale Integration

SSI to LSI – called Microprocessor

Microcomputer

 Intel – 4 bit microprocessor 4004 in 1971

8 bit microprocessor 8080

8-bit 8085 (8 bit data bus + 16 bit address bus)

16-bit 8086 (16 bit data bus + 20 bit address bus)

16 bit processors – 8088,80186,80188, 80286

32 bit processors – 80386 , 80486, 80586 (P)

What is Microprocessor?

2

 The word comes from the combination micro and
processor.

 Processor means a device that processes whatever. In this
context processor means a device that processes numbers,
specifically binary numbers, 0’s and 1’s.

 To process means to manipulate. It is a general term that
describes all manipulation. Again in this content, it means to
perform certain operations on the numbers that depend on
the microprocessor’s design.

 The microprocessor is a programmable device that “takes
in numbers, performs on them arithmetic or logical
operations according to the program stored in memory and
then produces other numbers as a result”.

What is Microprocessor?

3

 LSI to VLSI – called Microcontroller

 To build Microprocessor, memory and I/O devices on a single

chip

 Components

• Microprocessor

• A/D Converter

• D/A Converter

• Parallel I/O Interface

• Serial I/O Interface

• Timers and Counters

What is Microcontroller?

4

The salient features of 8085 μp are:

 It is a 8 bit microprocessor.

 It is manufactured with N-MOS technology.

 It has 16-bit address bus and hence can address up to 216 = 65536
bytes (64KB)

 memory locations through A0-A15.

 The first 8 lines of address bus and 8 lines of data bus are
multiplexed AD0 – AD7.

 Data bus is a group of 8 lines D0 – D7.

 It supports external interrupt request.

 A 16 bit program counter (PC)

 A 16 bit stack pointer (SP)

 Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

 It requires a signal +5V power supply and operates at 3.2 MHZ
single phase clock. It is enclosed with 40 pins DIP (Dual in line
package).

8085 Microprocessor

5

8085 Architecture

Figure: 8085 Micro Processor Architecture

 6

Flag register and GPR of 8085

Flag register

General Purpose registers:

Individual B, C, D, H and L

Combinations BC, DE and HL

7

 8085 instruction set consists of the following

instructions:

Data moving instructions.

Arithmetic - add, subtract, increment and decrement.

Logic - AND, OR, XOR and rotate.

Control transfer - conditional, unconditional, call

subroutine, return from subroutine and restarts.

 Input / Output instructions.

Other - setting/clearing flag bits, enabling/disabling

interrupts, stack operations, etc.

Instruction Set

8

 Register:

 references the data in a register or in a register pair.

 Register indirect:

 instruction specifies register pair containing address,

where the data is located.

 Direct, Immediate:

 8 or 16-bit data.

Addressing modes

9

 It is a 16-bit μp.

 8086 has a 20 bit address bus can access up to 220 memory locations

(1 MB).

 It can support up to 64K I/O ports.

 It provides 14, 16 -bit registers.

 It has multiplexed address and data bus AD0- AD15 and A16 – A19.

 It requires single phase clock with 33% duty cycle to provide internal

timing.

 8086 is designed to operate in two modes, Minimum and Maximum.

 It can prefetches upto 6 instruction bytes from memory and queues

them in order to speed up instruction execution.

 It requires +5V power supply.

 A 40 pin dual in line package.

UNIT-I

8086 microprocessor

10

 The 8086 architecture has two parts:

– Bus Interface Unit(BIU)

– Execution Unit(EU)

11

8086 block diagram

Figure: 8086 Microprocessor Architecture

12

 Bus Interface Unit contains

– Instruction queue,

– Segment registers,

– Instruction pointer, and

– Address adder.

 Execution Unit contains

– Control circuitry,

– Instruction decoder,

– ALU,

– Pointer and Index register,

– Flag register

13

Responsible for performing external bus operations

 The functions of BIU are:

• Instruction Fetch

• Instruction Queuing

• Operand Fetch & storage

• Address Relocation

• Bus control

 Idle state

 Address adder – fetching of physical address of next
instruction(CS+IP

Bus interface unit functions

14

 Decoding of Instructions

 Execution of instructions

 Steps

• EU extracts instructions from top of queue in BIU

• Decode the instructions

• Generates operands if necessary

• Passes operands to BIU & requests it to perform read or

write bus cycles to memory or I/o

• Perform the operation specified by the instruction on

operands

• Branch or jump instruction

Execution Unit Functions

15

 The types of registers are:

1. General Data Registers(AX, BX, CX, DX)

2. Segment Registers(CS, DS, ES, SS)

3. Pointers and Index Registers(IP, BP, SP)

4. Flag Registers(S,Z,P,C,T,I,D,AC,O)

Register Organization

16

 AX—16 bit accumulator(AH+AL)

 BX-offset storage(BH+BL)

 CX-default counter in case of string and loop

instructions(CH+CL)

 DX-General purpose register (DH+DL)

General Data Registers

17

 Code Segment Register(CS)

 Data Segment Register(DS)

 Extra Segment Register(ES)

 Stack Segment Register(SS)

Segment Registers

18

Flag Registers(S,Z,P,C,T,I,D,AC,O)

 A flag is a flip flop which indicates some conditions produced by the

execution of an instruction or controls certain operations of the EU .

 In 8086 The EU contains

• a 16 bit flag register

• 9 of the 16 are active flags and remaining 7 are undefined.

• 6 flags indicates some conditions- status flags

• 3 flags –control Flags

19

Programming model

Figure: 8086 Micro Processor Programming Model

 20

Memory Segmentation

21

Memory address, physical memory

organization

22

Address calculation

If the data segment starts at location 1000h and a data

reference contains the address 29h where is the actual

data?

23

The 20-bit Physical address is often represented as:

 Segment Base : Offset OR CS : IP

 CS 3 4 8 0 0 Implied Zero (from shft Left)

+IP 1 2 3 4

 3 5 A3 4 H

Generation of 20 bit physical address

24

 The Microprocessor 8086 is a 16-bit CPU available in different

clock rates and packaged in a 40 pin CERDIP or plastic package.

 The 8086 operates in single processor or multiprocessor

configuration to achieve high performance. The pins serve a

particular function in minimum mode (single processor mode) and

other function in maximum mode configuration (multiprocessor

mode).

 The 8086 signals can be categorized in three groups. The first are

the signal having common functions in minimum as well as

maximum mode.

 The second are the signals which have special functions for

minimum mode and third are the signals having special functions

for maximum mode.

Signal Description of 8086

25

 AD15-AD0: These are the time multiplexed memory I/O address and data lines.

 Address remains on the lines during T1 state, while the data is available on the data
bus during T2, T3, Tw and T4.

 These lines are active high and float to a tristate during interrupt acknowledge and
local bus hold acknowledge cycles.

 A19/S6,A18/S5,A17/S4,A16/S3: These are the time multiplexed address and status
lines.

 During T1 these are the most significant address lines for memory operations.

 During I/O operations, these lines are low. During memory or I/O operations, status
information is available on those lines for T2,T3,Tw and T4.

 The status of the interrupt enable flag bit is updated at the beginning of each clock
cycle.

 The S4 and S3 combined to indicate which

 segment register is presently being used

 for memory accesses as in below fig.

signal descriptions are common for both modes

26

 It contains two modes of operation

 i) Maximum mode of operation

 ii) Minimum mode of operation

8086 OPERATION’s

27

Maximum mode operation of 8086

28

Memory read timing in maximum mode

29

Memory write timing in maximum mode

memory write timing in maximum mode

30

31

Minimum mode of operation

32

write cycle timing diagram for minimum mode

Figure: write cycle timing diagram for minimum mode

 33

8086 Pin diagram

34

 The processor has the following interrupts:

 INTR is a maskable hardware interrupt. The interrupt can be
enabled/disabled using STI/CLI instructions or using more
complicated method of updating the FLAGS register with the
help of the POPF instruction.

 When an interrupt occurs, the processor stores FLAGS register
into stack, disables further interrupts, fetches from the bus one
byte representing interrupt type, and jumps to interrupt
processing routine address of which is stored in location 4 *
<interrupt type>. Interrupt processing routine should return
with the IRET instruction.

Interrupts of 8086

35

 NMI is a non-maskable interrupt. Interrupt is processed in the

same way as the INTR interrupt. Interrupt type of the NMI is 2,

i.e. the address of the NMI processing routine is stored in location

0008h. This interrupt has higher priority then the maskable

interrupt.

 Software interrupts can be caused by:

 INT instruction - breakpoint interrupt. This is a type 3 interrupt.

 INT <interrupt number> instruction - any one interrupt from

available 256 interrupts.

 INTO instruction - interrupt on overflow

 Single-step interrupt - generated if the TF flag is set. This is a type

1 interrupt. When the CPU processes this interrupt it clears TF flag

before calling the interrupt processing routine.

 Processor exceptions: Divide Error (Type 0), Unused Opcode

(type 6) and Escape opcode (type 7).

 Software interrupt processing is the same as for the hardware

interrupts.

36

UNIT-II

Assembly Language Programming

Fundamentals

37

 Machine Languages -“natural language” of a computer

 Low Level Languages-In low level language, instructions are

coded using mnemonics

 High Level Languages

Introduction To Programming Languages

38

[Label] Operation [Operands] [; Comment]

 Example: Examples of instructions with varying numbers of

fields.

 [Label] Operation [Operands] [; Comment]

 L1: cmp bx, cx ; Compare bx with cx all fields

present

 add ax, 25 operation and 2

operands

 inc bx operation

and 1 operand

 ret

operation field only

 ; Comment: whatever you wish !! comment field only

Format of Assembly Language Instructions

39

Type 1(MASM) TYPE 2(MASM) Kit

.model small

.data
 Mes db ‘HAI $’
 N1 db 20h
 N2 db 30h
.code
Start:
 Mov ax,@data
 Mov ds,ax
 Mov ax,N1
 Mov bx,N2
 Add ax,bx
 Int 3
End start

Assume CS:code segment, DS:Data segment
DATA SEGMENT
 Mes db ‘HAI$’
 N1 db 20h
 N2 db 30h
DATA ENDS

CODE SEGMENT
Start:
 Mov ax,data
 Mov ds,ax
 Mov ax,N1
 Mov bx,N2
 Add ax,bx
 Int 3
CODE ENDS
End start

Mov ax,20
Mov bx,30
Add ax,bx
Int 3

Program syntax

40

 The addressing mode describes the types of operands and the way

they are accessed for executing an instruction. According to the

flow of instruction execution, the instructions may be categorized

as

 1.Sequential control flow instructions and

 2. Control transfer instructions.

 Addressing Modes of 8086

41

 Addressing Modes of 8086(Contd…)

Sequential control flow instructions are the instructions

which after execution, transfer control to the next instruction

appearing immediately after it (in the sequence) in the

program. For example the arithmetic, logic, data transfer and

processor control instructions are Sequential control flow

instructions.

The control transfer instructions on the other hand transfer

control to some predefined address or the address somehow

specified in the instruction, after their execution. For example

INT, CALL, RET & JUMP instructions fall under this

category.

42

 The addressing modes for Sequential and control flow

instructions are explained as follows.

1. Immediate addressing mode:

 In this type of addressing, immediate data is a part of

instruction, and appears in the form of successive byte or bytes.

 Example: MOV AX, 0005H.

 In the above example, 0005H is the immediate data. The

immediate data may be 8-bit or 16-bit in size.

2. Direct addressing mode:

 In the direct addressing mode, a 16-bit memory address

(offset) directly specified in the instruction as a part of it.

 Example: MOV AX, [5000H].

43

3. Register addressing mode:

 In the register addressing mode, the data is stored in a

register and it is referred using the particular register. All the

registers, except IP, may be used in this mode.

 Example: MOV BX, AX

4. Register indirect addressing mode:

 Sometimes, the address of the memory location which

contains data or operands is determined in an indirect way, using the

offset registers. The mode of addressing is known as register indirect

mode.

 In this addressing mode, the offset address of data is in either

BX or SI or DI Register. The default segment is either DS or ES.

 Example: MOV AX, [BX].

44

5. Indexed addressing mode:

 In this addressing mode, offset of the operand is stored one

of the index registers. DS & ES are the default segments for index

registers SI & DI respectively.

 Example: MOV AX, [SI]

 Here, data is available at an offset address stored in SI in

DS.

6. Register relative addressing mode:

 In this addressing mode, the data is available at an effective

address formed by adding an 8-bit or 16-bit displacement with the

content of any one of the register BX, BP, SI & DI in the default

(either in DS & ES) segment.

 Example: MOV AX, 50H [BX]

45

7. Based indexed addressing mode:

 The effective address of data is formed in this addressing

mode, by adding content of a base register (any one of BX or

BP) to the content of an index register (any one of SI or DI).

The default segment register may be ES or DS.

 Example: MOV AX, [BX][SI]

8. Relative based indexed:

 The effective address is formed by adding an 8 or 16-bit

displacement with the sum of contents of any of the base

registers (BX or BP) and any one of the index registers, in a

default segment.

 Example: MOV AX, 50H [BX] [SI]

46

Addressing Modes for control transfer instructions:

1. Intersegment
• Intersegment direct

• Intersegment indirect

2. Intrasegment
• Intrasegment direct

• Intrasegment indirect

1. Intersegment direct:

 In this mode, the address to which the control is to be
transferred is in a different segment. This addressing mode provides
a means of branching from one code segment to another code
segment. Here, the CS and IP of the destination address are
specified directly in the instruction.

 Example: JMP 5000H, 2000H;

Jump to effective address 2000H in segment 5000H.

47

2. Intersegment indirect:

 In this mode, the address to which the control is to be transferred

lies in a different segment and it is passed to the instruction indirectly, i.e.

contents of a memory block containing four bytes, i.e. IP(LSB), IP(MSB),

CS(LSB) and CS(MSB) sequentially. The starting address of the memory

block may be referred using any of the addressing modes, except immediate

mode.

 Example: JMP [2000H].

 Jump to an address in the other segment specified at effective

address 2000H in DS.

 3. Intrasegment direct mode:

 In this mode, the address to which the control is to be transferred

lies in the same segment in which the control transfers instruction lies and

appears directly in the instruction as an immediate displacement value. In

this addressing mode, the displacement is computed relative to the content

of the instruction pointer.

 Example: JMP SHORT LABEL.

48

4. Intrasegment indirect mode:

 In this mode, the displacement to which the

control is to be transferred is in the same segment in which the

control transfer instruction lies, but it is passed to the instruction

directly. Here, the branch address is found as the content of a

register or a memory location.

 This addressing mode may be used in unconditional

branch instructions.

 Example: JMP [BX]; Jump to effective address stored in

BX

49

Classified into 10 categories:

1] Data Transfer

2] Arithmetic

3] Bit manipulation instructions

4] string

5]Iteration Control Instructions

6] program execution transfer instructions

7] Interrupt Control

8] high level language interface instructions

9] processor control instructions

10] External hardware instructions

INSTRUCTION SET OF 8086

50

 These instructions are used to transfer the data from source

operand to destination operand. All the store, move, load,

exchange, input and output instructions belong to this group.

 Note : Data Transfer Instructions do not affect any flags

Data Transfer instructions

51

1] MOV destination, source

 Note : source and destination cannot be memory location. Also

source and destination must be same type.

2] PUSH source : Copies word on stack.

3] POP destination: Copies word from stack into dest. Reg.

4] IN acc, port : Copies 8 or 16 bit data from port to

accumulator.

a) Fixed Port

b) Variable Port

5] OUT port, acc

Data Transfer Instructions

52

6] LES Reg, Mem: Load register and extra segment

 register with words from memory.

7] LDS Reg,Mem: Load register and data segment

 register with words from memory.

8] LEA Reg,Src: load Effective address.

 (Offset is loaded in specified register)

9] LAHF: Copy lower byte of flag register into AH

 register.

10] SAHF: Copy AH register to lower byte of flag

Data Transfer Instructions Cont…

53

11] XCHG destination, source: Exchange contents of source

and destination.

12] XLAT: Translate a byte in AL.

 This instruction replaces the byte in AL with byte pointed by

BX. To point desired byte in look up table instruction adds

contains of BX with AL (BX+ AL). Goes to this location and

loads into AL.

Data Transfer Instructions Cont …

54

Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

Mnemonic Meaning Format Operation Flags

affected

ADD Addition ADD D,S (S)+(D) (D)

 carry (CF)

ALL

ADC Add with

carry

ADC D,S (S)+(D)+(CF) (D)

 carry (CF)

ALL

INC Increment by

one

INC D (D)+1 (D) ALL but CY

AAA ASCII adjust

for addition

AAA If the sum is >9, AH

is incremented by 1

AF,CF

DAA Decimal

adjust for

addition

DAA Adjust AL for decimal

Packed BCD

ALL

55

Arithmetic Instructions – SUB, SBB, DEC, AAS, DAS, NEG

Mnemonic Meaning Format Operation Flags

affected

SUB Subtract SUB D,S (D) - (S) (D)

 Borrow (CF)

All

SBB Subtract

with

borrow

SBB D,S (D) - (S) - (CF) (D)

All

DEC Decrement

by one

DEC D (D) - 1 (D) All but CF

NEG Negate NEG D All

DAS Decimal

adjust for

subtraction

DAS Convert the result in AL to

packed decimal format

All

AAS ASCII

adjust for

subtraction

AAS (AL) difference

(AH) dec by 1 if borrow

CY,AC

56

Multiplication and Division

57

Multiplication

(MUL or IMUL)

Multiplicand Operand

(Multiplier)

Result

Byte*Byte AL Register or memory AX

Word*Word AX Register or memory DX :AX

Dword*Dword EAX Register or memory EAX :EDX

Division

(DIV or IDIV)

Dividend Operand

(Divisor)

Quotient: Remainder

Word/Byte AX Register or Memory AL : AH

Dword/Word DX:AX Register or Memory AX : DX

Qword/Dword EDX: EAX Register or Memory EAX : EDX

Multiplication and Division

58

Mnemonic Meaning Format Operation Flags Affected

AND

OR

XOR

NOT

Logical AND

Logical Inclusive

OR

Logical Exclusive

OR

LOGICAL NOT

AND D,S

OR D,S

XOR D,S

NOT D

(S) · (D) → (D)

(S)+(D) → (D)

(S) (D)→(D)

_

 (D) → (D)

OF, SF, ZF, PF,

CF

AF undefined

OF, SF, ZF, PF,

CF

AF undefined

OF, SF, ZF, PF,

CF

AF undefined

None

+

Bit manipulation instructions

Destination Source

Register

Register

Memory

Register

Memory

Accumulator

Register

Memory

Register

Immediate

Immediate

Immediate

Destinati

on

Register

Memory

i) Logical Instructions

59

CMP dest, source

 CF, ZF and SF are used

 Ex. CMP CX,BX

 CF ZF SF

 CX = BX 0 1 0

 CX> BX 0 0 0

 CX<BX 1 0 1

Logical Instructions Cont…

60

ii) Shift and Rotate Instructions

 SHR/SAL: shift logical left/shift arithmetic left

 SHR: shift logical right

 SAR: shift arithmetic right

 ROL: rotate left

 ROR: rotate right

 RCL: rotate left through carry

 RCR: rotate right through carry

61

Rotate Instructions
Mnem

-onic

Meaning Format Operation Flags

Affected

ROL Rotate

Left

ROL D,Count Rotate the (D) left by the

number of bit positions equal to

Count. Each bit shifted out from

the left most bit goes back into

the rightmost bit position.

CF

OF

undefined if

count ≠ 1

ROR Rotate

Right

ROR D,Count Rotate the (D) right by the

number of bit positions equal to

Count. Each bit shifted out from

the rightmost bit goes back into

the leftmost bit position.

CF

OF

undefined if

count ≠ 1

RCL Rotate

Left

through

Carry

RCL D,Count

Same as ROL except carry is

attached to (D) for rotation.

CF

OF

undefined if

count ≠ 1

RCR Rotate

right

through

Carry

RCR D,Count Same as ROR except carry is

attached to (D) for rotation.

CF

OF

undefined if

count ≠ 1 62

 An array of bytes or words located in memory

 Supported String Operations

– Copy (move, load)

– Search (scan)

– Store

– Compare

String?

63

 Source DS:SI, Destination ES:DI

– You must ensure DS and ES are correct

– You must ensure SI and DI are offsets into DS and ES

respectively

 Direction Flag (0 = Up, 1 = Down)

– CLD - Increment addresses (left to right)

– STD - Decrement addresses (right to left)

String Instruction Basics

64

1) MOVS/ MOVSB/ MOVSW

 Dest string name,src string name

 This instn moves data byte or word from location in DS to

location in ES.

2) REP / REPE / REPZ / REPNE / REPNZ

 Repeat string instructions until specified conditions exist.

 This is prefix a instruction.

STRING CONTROL

65

3)CMPS / CMPSB / CMPSW

 Compare string bytes or string words.

4) SCAS / SCASB / SCASW

 Scan a string byte or string word.

 Compares byte in AL or word in AX. String address is to be loaded in DI.

5) STOS / STOSB / STOSW

 Store byte or word in a string.

 Copies a byte or word in AL or AX to memory location pointed by DI.

6) LODS / LODSB /LODSW

 Load a byte or word in AL or AX

 Copies byte or word from memory location pointed by SI into AL or

 AX register.

STRING CONTROL Contd…

66

 These instructions are used to execute a series of instructions

for certain number of times.

 LOOP :Loop through a sequence of instructions until CX=0

 LOOPE/LOOPZ : Loop through a sequence of instructions

while ZF=1 and CX = 0

 LOOPNE/LOOPNZ : Loop through a sequence of instructions

while ZF=0 and CX =0

 JCXZ : jump to specified address if CX=0

Iteration control instructions

67

 These instructions are similar to branching or looping

instructions. These instructions include conditional &

unconditional jump or loop instructions.

 Unconditional transfer instructions

 CALL : Call a procedure, save return address on stack

 RET : Return from procedure to the main program.

 JMP : Goto specified address to get next instruction

Program Execution Transfer instructions

68

 JA/JNBE :Jump if above / jump if not below or equal

 JAE/JNB : Jump if above /jump if not below

 JBE/JNA : Jump if below or equal/ Jump if not above

 JC : jump if carry flag CF=1

 JE/JZ : jump if equal/jump if zero flag ZF=1

 JG/JNLE : Jump if greater/ jump if not less than or equal

 JGE/JNL : jump if greater than or equal/ jump if not less than

 JL/JNGE : jump if less than/ jump if not greater than or equal

 JLE/JNG : jump if less than or equal/ jump if not greater than

 JNC : jump if no carry (CF=0)

 JNE/JNZ : jump if not equal/ jump if not zero(ZF=0)

 JNO : jump if no overflow(OF=0)

 JNP/JPO : jump if not parity/ jump if parity odd(PF=0)

 JNS : jump if not sign(SF=0)

 JO : jump if overflow flag(OF=1)

 JP/JPE : jump if parity/jump if parity even(PF=1)

 JS : jump if sign(SF=1)

Conditional transfer instructions

69

• INT : Interrupt program execution, call service procedure

• INTO : Interrupt program execution if OF=1

• IRET : Return from interrupt service procedure to main

program

Interrupt instructions

70

 ENTER : enter procedure

 LEAVE :Leave procedure

 BOUND :Check if effective address within specified array

bounds

High level language interface instructions

71

 Flag set/clear instructions

 STC : Set carry flag CF to 1

 CLC : Clear carry flag CF to 0

 CMC : Complement the state of the carry flag CF

 STD : Set direction flag DF to 1 (decrement string pointers)

 CLD : Clear direction flag DF to 0

 STI : Set interrupt enable flag to 1(enable INTR input)

 CLI : Clear interrupt enable Flag to 0 (disable INTR input)

Processor control instructions

72

 HLT : Halt (do nothing) until interrupt or reset

 WAIT : Wait (Do nothing) until signal on the test pin is low.

 ESC : Escape to external coprocessor such as 8087 or 8089.

 LOCK : An instruction prefix. Prevents another processor

from taking the bus while the adjacent instruction executes.

External Hardware synchronization instructions

73

 Assembler Directives are directions to the assembler.

 Assembler directives are the commands to the assembler that

direct the assembly process.

 They indicate how an operand is treated by the assembler and

how assembler handles the program.

 They also direct the assembler how program and data should

be arranged in the memory.

Assembler Directives

74

ASSUME DB DW DD DQ

DT END ENDP ENDS EQU

EVEN EXTRN GLOBAL GROUP INCLUDE

LABEL LENGTH NAME OFFSET ORG

PROC PTR SEGMENT SHORT TYPE

List of Assembler Directives

75

 A macro is a group of repetitive instructions in a program

which are codified only once and can be used as many times as

necessary.

 Macro with in a macro is a nested MACRO

 A macro can be defined anywhere in program using the

directives MACRO and ENDM

MACROS

76

 Syntax of macro:

Read MACRO

 mov ah,02h

 int 21h

ENDM

Display MACRO

 mov dl,al

 Mov ah,01h

 int 21h

ENDM

77

 Display MACRO INF

 mov dx, offset inf

 mov ah,09h

 int 21h

 ENDM

The parameter MSG can be replaced by inf1 or inf2 while calling…

Calling macro:

 DISPLAY INF1

 DISPLAY INF2

INF1 db “hai$”

 INF2 db “Hello, How are you..? $”

Passing parameters to a macro

Here parameter is INF

78

Procedures Macros

Accessed by CALL and RET

mechanism during program execution

Accessed by name given to macro when

defined during assembly

Machine code for instructions only put

in memory once

Machine code generated for instructions

each time called

Parameters are passed in registers,

memory locations or stack

Parameters passed as part of statement

which calls macro

Procedures uses stack Macro does not utilize stack

A procedure can be defined anywhere in

program using the directives PROC and

ENDP

A macro can be defined anywhere in

program using the directives MACRO

and ENDM

Procedures takes huge memory for

CALL(3 bytes each time CALL is used)

instruction

Length of code is very huge if macro’s

are called for more number of times

Procedures Vs Macros

79

UINT III

I/O INTERFACE

80

81

8255-PROGRAMMABLE

PERIPHERAL INTERFACE

There are two reasons for using 8255 between 8086 and I/O

devices.

1) To achieve Speed compatibility between high speed

microprocessor and slow I/O devices.

2) Reducing hardware complexity by interfacing the I/O

devices through program.

82

Need of 8255 for I/O interfacing

83

Purpose of 8255

 It has 24 input/output lines

 24 lines divided into 3 ports

• Port A(8 bit)

• Port B(8 bit)

• Port C upper(4 bit), Port C Lower (4 bit)

All the above 3 ports can act as input or output ports

84

8255

85

Block Diagram

Figure: Block Diagram of 8255(PIC)

Data Bus buffer

 It is a 8-bit bidirectional Data bus.

 Used to interface between 8255 data bus with system bus.

 The internal data bus and Outer pins D0-D7 pins are connected
in internally.

 The direction of data buffer is decided by Read/Control Logic.

86

Read/Write Control Logic

 This is getting the input signals from control bus and Address

bus

 Control signal are RD and WR.

 Address signals are A0, A1, and CS.

 8255 operation is enabled or disabled by CS.

87

Group A and Group B control:

 Group A and B get the Control Signal from CPU and send
the command to the individual control blocks.

 Group A send the control signal to port A and Port C (Upper)
PC7-PC4.

 Group B send the control signal to port B and Port C
(Lower) PC3-PC0.

PORT A:

 This is a 8-bit buffered I/O latch.

 It can be programmed by mode 0 , mode 1, mode 2 .

88

PORT B:

 This is a 8-bit buffer I/O latch.

 It can be programmed by mode 0 and mode 1.

PORT C:

 This is a 8-bit Unlatched buffer Input and an Output latch.

 It is spitted into two parts.

 It can be programmed by bit set/reset operation.

 89

90

8255A pins

 PA7-PA0: These are eight port A lines that acts as either latched output

 or buffered input lines depending upon the control word

 loaded into the control word register.

 PC7-PC4: Upper nibble of port C lines. They may act as

 either output latches or input buffers lines.

 This port also can be used for generation of handshake lines

 in mode 1 or mode 2.

 PC3-PC0: These are the lower port C lines, other details are the same

 as PC7-PC4 lines.

 PB0-PB7: These are the eight port B lines which are used as latched

 output lines or buffered input lines in the same way as port A.

91

Pin Description

 RD : This is the input line driven by the microprocessor

 and should be low to indicate read operation to8255.

 WR : This is an input line driven by the microprocessor.

 A low on this line indicates write operation.

 CS : This is a chip select line. If this line goes low, it

 enables the 8255 to respond to RD and WR

 signals, otherwise RD and WR signal are neglected.

 A1-A0 : These are the address input lines and are driven

 by the microprocessor.

 RESET : The 8255 is placed into its reset state if this input

 line is a logical 1. All peripheral ports are set to

 the input mode.

92

Pin Description(Contd…)

BIT SET/RESET MODE

• The PORT C can be Set or Reset by sending OUT instruction to the

CONTROL registers.

I/O MODES:

MODE 0(Simple input / Output):

• In this mode , port A, port B and port C is used as individually

(Simply).

• Ports do not have Handshake or interrupt capability.

 93

Operating Modes

MODE 1 :(Input/output with Hand shake)

 In this mode, input or output is transferred by hand shaking

Signals.

 Handshaking signals is used to transfer data between whose data

transfer is not same.

 94

Computer

Printer

 DATA BUS

 STB

 ACK

 Busy

MODE 2:bi-directional I/O data transfer:

 This mode allows bidirectional data transfer over a single 8-bit data

bus using handshake signals.

 This feature is possible only Group A

 Port A is working as 8-biy bidirectional.

 PC3-PC7 is used for handshaking purpose.

 The data is sent by CPU through this port , when the peripheral

request it.

95

FOR BIT SET/RESET MODE:

• This is bit set/reset control word format.

 X X X

 Don’t care

 Bit select

 B0

 B1

 B2

96

D7 D6 D5 D4 D3 D2 D1 D0

0 1 2 3 4 5 6 7

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

BIT

SET/RESET

1=SET

0=RESET

BIT SET/RESET FLAG

 =0 Active

 PC0-PC7 is set or reset as per the status of D0.

 A BSR word is written for each bit

 Example:

 PC3 is Set then control register will be 0XXX0111.

 PC4 is Reset then control register will be 0XXX01000.

 X is a don’t care.

97

FOR I/O MODE

The mode format for I/O as shown in figure

 D7 D6 D5 D4 D3 D2 D1 D0

Group A

Port C Upper

1=Input

0=Output

Port B

1=Input

0=Output

Mode selection

00=mode 0

01=mode 1

1x=mode 2

98

Group B

Port C Lower

1=Input

0=Output

Port B

1=Input

0=Output

Mode selection

0=mode 0

1=mode 1

Mode set
flag=1=Active

 The control word for both modes is same.

 Bit D7 is used for specifying whether word loaded in to Bit

set/reset mode or Mode definition word.

 D7=1=Mode definition mode.

 D7=0=Bit set/Reset mode.

99

 lines A1-A0 with RD, WR and CS form the following operations
for 8255.

100

8255 Operations

 8255 has three operation modes: mode 0, mode 1, and mode 2

 Mode 0 - Simple Input or Output mode

 Mode 1 - Input or Output with Handshake mode

 Mode 2 - Bidirectional Data Transfer mode

101

Programming 8255

 In this mode, ports A, B are used as two simple 8-bit I/O ports & port

C as two independent 4-bit ports.

 Each port can be programmed to function as simply an input port or

an output port.

 The input/output features in Mode 0 are as follows.

 1. Outputs are latched.

2. Inputs are not latched.

3. Ports don’t have handshake or interrupt capability.

102

Mode 0 - Simple Input or Output

 Many I/O devices accept or release information slower than the

microprocessor.

 A method of I/O control called handshaking or polling,

synchronizes the I/O device with the microprocessor.

 An example is a parallel printer that prints a few hundred

characters per second (CPS).

103

Handshaking

 In this mode, handshake signals are exchanged between the MPU and peripherals
prior to data transfer.

 The features of the mode include the following:

1. Two ports (A and B) function as 8-bit I/O ports.
 They can be configured as either as input or output ports.

2. Each port uses three lines from port C as handshake signals.
 The remaining two lines of Port C can be used for simple I/O

 operations.

3. Input and Output data are latched.

4. Interrupt logic is supported.

104

Mode 1 - Input or Output with Handshake

 Example:

 The computer send the data to the printer large speed compared to

the printer.

 When computer send the data according to the printer speed at the

time only, printer can accept.

 If printer is not ready to accept the data then after sending the data

bus , computer uses another handshaking signal to tell printer that

valid data is available on the data bus.

 Each port uses three lines from port C as handshake signals

105

106

Mode 1 - Input or Output with Handshake

107

82C55: Mode 1 Strobed Input

 STB : The strobe input loads data into the port latch on a 0-to-1
transition.

 IBF : Input buffer full is an output indicating that the input latch
contain information.

 INTR : Interrupt request is an output that requests an interrupts.

 INTE : The interrupt enable signal is neither an input nor an
output; it is an internal bit programmed via the PC4 (port A) or
PC2 (port B) bits.

 PC7,PC6 : The port C pins 7 and 6 are general purpose I/O
pings that are available for any purpose.

108

8255: Mode 1 Strobed Input

109

82C55 : Mode 1 Output

 OBF : Output buffer full is an output that goes low when data is
latched in either port A or port B. Goes low on ~ACK.

 ACK : The acknowledge signal causes the ~OBF pin return to 0.
This is a response from an external device.

 INTR : Interrupt request is an output that requests an interrupt.

 INTE : The interrupt enable signal is neither an input nor an
output; it is an internal bit programmed via the PC6(Port A) or
PC2(port B) bits.

 PC5,PC4 : The port C pins 5 and 4 are general-purpose I/O pins
that are available for any purpose.

110

8255 : Mode 1 Output

 This mode is used primarily in applications such as data transfer

between two computers.

 In this mode, Port A can be configured as the bidirectional port,

Port B either in Mode 0 or Mode 1.

 Port A uses five signals from Port C as handshake signals for

data transfer.

 The remaining three signals from Port C can be used either as

simple I/O or as handshake for port B.

111

Mode 2 - Bidirectional Data Transfer

112
Figure: Mode 2 - Bidirectional Data Transfer

113

8255: Mode 2 Bi-directional Operation

•Timing diagram is a
combination of the
Mode 1 Strobed Input
and Mode 1 Strobed
Output Timing
diagrams.

114

Mode 2 Timing Diagram

 There are 2 control words in 8255.

• Mode Definition (MD) Control word and

• Bit Set / Reset (BSR) Control Word

 MD control word configures the ports of 8255 as input or output in

Mode 0, 1, or 2.

 PCBSR control word is used to set to 1 or reset to 0 any one

selected bit of Port C

115

8255 Control Words

116

8255 Control words
1.Mode Definition (MD) Control word

2. Bit Set / Reset (BSR) Control Word

Displays Interfacings

1. LCD Interfacing

2. LED Interfacing

INTERFACING LCD MODULE TO 8086

Introduction:

LCD or Liquid Crystal Display is an output device used in many

processor based applications like calculators, Xerox machines,

speedometers etc. The 8086 kit, which you use in the lab, also uses a

LCD display to view the data entered into and coming out of the

processor

117

118

16*2 LCD Module

119

16*2 LCD Pin Functions

120

121

Keyboard Interface

 In most keyboards, the key switches are connected in a matrix

of Rows and Columns.

 Getting meaningful data from a keyboard requires three major

tasks:

• Detect a key press

• Debounce the key press.

• Encode the key press (produce a standard code for the pressed

key).

 Logic ‘0’ is read by the microprocessor when the key is pressed.

122

Keyboard Interface(Contd…)

Key Debounce:

 Whenever a mechanical push-bottom is pressed or released

once, the mechanical components of the key do not change the

position smoothly; rather it generates a transient response. These may

be interpreted as the multiple pressures and responded accordingly.

123

Keyboard Interface(Contd…)

124

Keyboard Interface(Contd…)

125

Keyboard Interface(Contd…)

Led interfacing with 8086 using 8255

126

Seven segment LED Interfacing

127

7, 14, 16 LED Segments

128

Four seven segment displays

129

130

8 Digit LED Display

131

132

7 segment display
a

b

c

g

d

e

f
Digit-abcdefg-hex

0-1111110-7E 1-0110000-30

2-1101101-6D 3-1111001-79

4-0110011-33 5-1011011-5B

6-1011111-5F 7-1110000-70

8-1111111-7F 9-1111011-7B

A-1110111-77 B-0011111-1F

C-1001110-4E D-0111101-3D

E-1001111-4F F-1000111-47

133

Stepper Motor Interface

Fig.1 Internal schematic of a four

winding stepper motor

Fig.2 Winding arrangement of a

stepper motor.

Contd…

134

Stepper Motor Interface

135

Interfacing Analog to Digital Data Converters

General algorithm for ADC interfacing contains the following steps:

 Ensure the stability of analog input, applied to the ADC.

 Issue start of conversion pulse to ADC

 Read end of conversion signal to mark the end of conversion processes.

 Read digital data output of the ADC as equivalent digital output.

 Analog input voltage must be constant at the input of the ADC right from

the start of conversion till the end of the conversion to get correct results.

This may be ensured by a sample and hold circuit which samples the analog

signal and holds it constant for specific time duration. The microprocessor

may issue a hold signal to the sample and hold circuit.

 If the applied input changes before the complete conversion process is over,

the digital equivalent of the analog input calculated by the ADC may not be

correct.

136

Interfacing Analog to Digital Data Converters

Fig.1 Block Diagram of ADC 0808/0809

137

Interfacing Analog to Digital Data Converters

Fig.2 Pin Diagram of ADC

0808/0809

Fig.3 Timing Diagram Of ADC

0808.

138

Interfacing Analog to Digital Data Converters

Fig: Interfacing ADC0808 with 8086

139

Interfacing Digital To Analog Converters

Pin Diagram of DAC 0800

140

Interfacing Digital To Analog Converters

Fig:Interfacing DAC0800 with 8086

Interfacing with advanced

devices

141

 Address:

 If I/O, a value between 0000H and FFFFH is issued.

 If memory, it depends on the architecture:

• 20 -bits (8086/8088)

• 24 -bits (80286/80386SX)

• 25 -bits (80386SL/SLC/EX)

• 32 -bits (80386DX/80486/Pentium)

• 36 -bits (Pentium Pro/II/III)

Bus Architecture

142

 Data:

– 8 -bits (8085)

– 16 -bits (8086/80286/80386SX/SL/SLC/EX)

– 32 -bits (80386DX/80486/Pentium)

– 64 -bits (Pentium/Pro/II/III)

 Control:

– Most systems have at least 4 control bus connections

(active low).

– MRDC (Memory Read Control), MWRC , IORC (I/O Read

Control), IOWC

Bus Architecture

143

MEMORY

144

 Two basic types:

– ROM: Read-only memory

– RAM: Read-Write memory

 Four commonly used memories:

– ROM

– Flash (EEPROM)

– Static RAM (SRAM)

– Dynamic RAM (DRAM)

Memory Types

145

 The data pins are typically bi-directional in read-write
memories.

– The number of data pins is related to the size of the
memory location. For example, an 8-bit wide (byte-wide)
memory device has 8 data pins.

 Each memory device has at least one chip select (CS) or chip
enable (CE) or select (S) pin that enables the memory device.

– This enables read and/or write operations.

– If more than one are present, then all must be 0 in order to
perform a read or write.

Memory Chips

146

 SRAMs

– SRAMs used for caches have access times as low as 10ns .

 DRAMs

– SRAMs are limited in size (up to about 128Kb).

– DRAMs are available in much larger sizes, e.g., 64M X 1.

– DRAMs MUST be refreshed every 2 to 4 ms

– Since they store their value on an integrated capacitor that
loses charge over time.

SRAM vs. DRAM

147

Memory Address Decoding

148

 The processor can usually address a memory space that is

much larger than the memory space covered by an individual

memory chip.

 In order to splice a memory device into the address space of

the processor, decoding is necessary.

 For example, the 8088 issues 20-bit addresses for a total of

1MB of memory address space.

Memory Address Decoding

149

 The BIOS on a 2716 EPROM has only 2KB of memory and

11 address pins.

 A decoder can be used to decode the additional 9 address pins

and allow the EPROM to be placed in any 2KB section of the

1MB address space.

Ex. Memory Address Decoding

150

Figure: Memory Address Decoding
151

Ex. Memory Address Decoding

 To determine the address range that a device is mapped into:

152

 This 2KB memory segment maps into the reset location of the

8086/8088 (FFFF0H).

 NAND gate decoders are not often used. Rather the 3-to-8

Line Decoder (74LS138) is more common.

Ex. Memory Address Decoding

153

3-to-8 Line Decoder

 G2A, G2B, and G1 must be active.

 Each output of the decoder can be attached to an 2764
EPROM (8K X 8).

154

EPROM 2764 x 8

Figure: EPROM 2764 x 8
 155

156

 The semi conductor memories are of two types:

• Static RAM

• Dynamic RAM

 The semiconductor memories are organized as two-
dimensional arrays of memory locations.

 For Ex: 4K*8 or 4K byte memory contains 8-bit data and only
one o the 4096 locations can be selected at a time.

 For addressing 4k bytes of memory, 12 address lines are
required.

 For N memory locations, n address lines are required where n
= Log2N

 For 4096 Locations, n = log 24096

 N=12

 MEMORY INTERFACING WITH 8086

157

• While the CPU is executing a program, an interrupt breaks the

normal sequence of execution of instructions, diverts its

execution to some other program called “Interrupt Service

Routine (ISR).

• •After executing ISR, the control is transferred back again to

the main program which was being executed at the time of

interruption.

INTERRUPT STRUCTURE OF 8086

Interrupt Response

158

 While the CPU is executing a program, an interrupt breaks the

normal sequence of execution of instructions, diverts its

execution to some other program called “Interrupt Service

Routine (ISR).

 After executing ISR, the control is transferred back again to the

main program which was being executed at the time of

interruption.

 Nested interrupts.

 In 8086, there are two interrupts pins: 1. NMI 2. INTR

 NMI : Non Maskable Interrupt input pin which means that any

interrupt request at NMI input cannot to masked or disabled by

any means.

 INTR: It can be masked using the Interrupt Flag (IF).

159

 If more than one type of INTR interrupt occurs at a time, then
an external chip called programmable interrupt controller is
required to handle them. (eg: 8259 interrupt controller).

 There are two types of interrupts

1. External interrupts

 These interrupts are generated by external devices i.e out
side the processor (using NMI, INTR pins). Eg: Keyboard
interrupt.

1. Internal interrupts

 It is generated internally by the process circuit or by the
execution of an interrupt instruction. Eg: INT instruction,
overflow interrupt, divide by zero. At the end of each
instruction cycle, the 8086 checks to see if any interrupts
have been requested.

160

Types of interrupts

161

The first 1Kbyte of memory of 8086 (00000 to 003FF) is
set aside as a table for storing the starting addresses of
Interrupt Service Procedures (ISP).

Since 4-bytes are required for storing starting addresses of
ISPs, the table can hold 256 Interrupt procedures.

The starting address of an ISP is often called the Interrupt
Vector or Interrupt Pointer. Therefore the table is
referred as Interrupt Vector Table.

 In this table, IP value is put in as low word of the vector &
CS is put in high vector.

8086 Interrupt Vector Table

162

Structure of interrupt vector table

Figure: Structure of interrupt vector table

163

Figure: 8086 Interrupts

 164

 TYPE 0

 The divide error : whenever the results from a division

overflows or an attempt is made to divide by zero.

Special type interrupts

Type 2

The non-maskable interrupt occurs when a logic 1 is placed on the

NMI input pin to the microprocessor. non-maskable—it cannot be

disabled

 Type 3

A special one-byte instruction (INT 3) that uses this vector to access

its interrupt-service procedure. often used to store a breakpoint in a

program for debugging. 165

TYPE 4

Overflow is a special vector used with the INTO instruction. The

INTO instruction interrupts the program if an overflow condition

exists.

166

4. Interrupt Mask Register (IMR):

 This register stores the bits required to mask the

interrupts inputs. IMR operates on IRR at the direction of

the Priority Resolver.

5. Interrupt Control logic:

 This block manages the interrupt and interrupt

acknowledge signals to be sent to the CPU for serving

one of the 8 interrupt requests.

 This also accepts the interrupt acknowledge (INTA)

signal from CPU that causes the 8259A to release vector

address on to the data bus.

167

6. Data Bus Buffer:-

 This Tri-state bidirectional buffer interfaces internal 8259A bus

the microprocessor data bus.

 Control words, status & vector information pass through data

buffer during read or write operations.

7. Read/Write Control logic:-

 This circuit accepts and decodes commands from the CPU. This

block also allows the status of the 8259A to be transferred on to

the data bus.

168

8. Cascade Buffer/Comparator:-

– This block stores & compares the IDs of all the 8259As
used in the system.

– The 3 I/O pins CAS0 – CAS2 are outputs when the
8259A is used as a master.

– The same pins used as inputs when it is in the slave
mode.

– 8259A in master mode, sends the ID of the interrupting
slave device on these lines. In slave, will send its pre-
programmed vector address on the data bus during the
next INTA pulse.

169

1. One or more IR lines are raised high that set corresponding IRR bits.

2. 8259A resolves priority and sends an INT signal to CPU.

3. The CPU acknowledges with INTA pulse.

4. Upon receiving an INTA signal from the CPU, the highest priority

ISR bit is set and the corresponding IRR bit is reset. The 8259A does

not drive data bus during this period.

5. The 8086 will initiate a second INTA pulse. During this period

8259A releases an 8-bit pointer on to data bus from where it is read

by the CPU.

6. This completes the interrupt cycle. The ISR bit is reset at the end of

the second INTA pulse if automatic end of interrupt (AEOI) mode is

programmed. Otherwise ISR bit remains set until an appropriate EOI

command is issued at the end of interrupt subroutine.

Interrupt Sequence in an 8086 system

170

Once ICW1 is loaded, the following initialization procedure is

carried out internally.

a) The edge sense circuit is reset, i.e by default 8259A interrupts

are edge sensitive

b) IMR is cleared

c) IR7 input is assigned the lowest priority

d) Slave mode address is set to 7

e) Special mask mode is cleared and the status read is set to IRR

f) If IC4 =0, all the functions of ICW4 are set to zero . Master/slave

bit in ICW4 is used in the buffered mode only.

 ICW1 , ICW2 ---- are compulsory

 ICW3 , ICW4 -- are optional.

171

0 A7 A6 A5 1 LTIM ADI SNGL IC4

ICW1

 A0 D7 D6 D5 D4 D3 D2 D1 D0

1=ICW4 Needed

0= No ICW4

 Needed

1=Single

0= Cascaded

Call Address Interval

1=Interval of 4 bytes

0= Interval of 8 bytes

ADI=1 for 8086 based

system

A7-A5 of interrupt vector

address

MCs 80/85 mode only

Don’t care to 8086

1=Level triggered

0= Edge triggered

172

 A0 D7 D6 D5 D4 D3 D2 D1 D0

ICW2

1 T 7 T6 T5 T4 T3 A10 A9 A8

For 8085 system:
T7-T3 : they are filled by A15-A11 of the Interrupt Vector Address
A10-A8: these bits are same as the respective bits of vector address

For 8086 system:
T7-T3 : Interrupt type
A10-A8: 3 bits are 0, pointing to IR0.

173

 A0 D7 D6 D5 D4 D3 D2 D1 D0

ICW3

a) Master Mode: SP=1, in buffer mode M / S =1 in ICW4

1 S7 S6 S5 S4 S3 S2 S1 S0

b) Slave Mode: SP=0, in buffer mode M / S = 0 in ICW4

 A0 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 0 0 0 0 ID2 ID1 ID0

 Sn = 1 IRn input has a slave
 Sn = 0 IRn input does not have a slave

 ID2-ID0 000 to 111 for IR0-IR7 i.e slave1 to slave8
174

1 0 0 0 SFNM BUF M/S AEOI mPM

ICW4

 A0 D7 D6 D5 D4 D3 D2 D1 D0

0= 8085 system operation
1= 8086 system operation

1= Automatic End of
 Interrupt Mode is
 selected

1= 8259 is Master
0= 8259 is slave
If BUF=0, M/S is neglected

SFNM=1 : Specially Fully
Nested Mode is selected

1= Buffered mode
0= Un buffered mode

175

 Once ICW registers (accepting the interrupts) are initialized, 8259

is ready for its normal function.

 8259 has its own ways of handling the received interrupts called

as modes of operation. These can be selected by programming i.e

writing 3 OCW registers.

 OCW1: It is for mask the unwanted interrupt requests.

 OCW2: It controls the end of interrupt, the rotate mode and their

combination

 OCW3: It is for set or reset for special mask mode

Operation command words (OCWs)

176

 0

Figure: Operation Command Words

177

Figure: Operation Command Words

178

OCW 3

Figure: Operation Command Words

 179

UNIT-IV

Communication Interface

180

 Data communications refers to the ability of one computer to exchange data

with another computer or a peripheral

 Physically, the data comm. path may be a short, 5 to 10 feet ribbon cable

connecting a microcomputer and parallel printer; or it might be a high

speed telecommunications port connecting two computers thousands of

miles apart.

 Standard data communication interfaces and standards are needed

 Centronic’s parallel printer interface

 RS-232 defines a serial communications standard

 8251 USART (Universal Synchronous/Asynchronous

Receiver/Transmitter) is the key component for converting parallel data to

serial form and vice versa

 Two types of serial data communications are widely used

• Asynchronous communications

• Synchronous communications

Data Communications

181

Types of Transmission

182

Eliminates the need for a clock signal between
two microprocessor based systems

Asynchronous Communications

System 1 System 2

Transmit data

Receive data

Signal common

183

Asynchronous Transmission

• Asynchronous data transfer: sender provides a

synchronization signal to the receiver before

starting the transfer of each message
– does not need clock signal between the sender and the receiver

– slower data transfer rate

184

Data to be transmitted is sent out one character at a

time and the receiver end of the communication line

synchronization is performed by examining

synchronization bits that are included at the beginning

and at the end of each character.

Asynchronous Communications

185

 What is the data rate in bits/sec and character rate if the bit
time is 3.33 ms
• Bit rate = 1 / 3.33 ms = 300 bits/sec
• 11 x 3.33 ms = 36.63 ms required to transmit a character so

character rate = 1/36.63 ms = 27.3 char/sec

 Modems typically transmit data over the telephone
network at 9600, 14400, 28800 or 56K bps.

 Ex: If 1 MByte file is to be transmitted to another computer
using a modem calculate the transmission time
• 9600 bps: 1048576x10/ 9600 bits/sec = 1092 s = 18 minutes and

12 sec
• 28800 bps: 364 s = 6 minutes and 4 sec

Examples

186

Synchronous Transmission

• Synchronous data transfer: sender and receiver

use the same clock signal
– supports high data transfer rate

– needs clock signal between the sender and the receiver

– requires master/slave configuration

187

Synchronous Communications

System 1 System 2

Transmit data

Receive data

Signal common

clk

BISYNC: Each block of data
has synch characters. The
size of block data can be 100
or more bytes. BCC checks
for errors.

Serial Data Link Control: Developed by
IBM used for computer networking (Token
Ring). After Flag byte the network address
is sent. Control Byte stores information
about sequence of data etc. Data is
thousands of bits. 16 bit field is used for
error checking. 188

 8251A is a USART (Universal Synchronous Asynchronous Receiver

Transmitter) for serial data communication.

 Programmable peripheral designed for synchronous /asynchronous

serial data communication, packaged in a 28-pin DIP.

 Receives parallel data from the CPU & transmits serial data after

conversion.

 Also receives serial data from the outside & transmits parallel data to

the CPU after conversion.

 USART Introduction

189

Pin diagram

190

191

Block diagram of the 8251 USART

Figure: Block diagram of the 8251 USART
192

 Data Bus buffer

 Read/Write Control Logic

 Modem Control

 Transmitter

 Receiver

Sections of 8251A

1. Data Bus Buffer

 D0-D7 : 8-bit data bus used to read or write status, command word or

data from or to the 8251A

193

 Includes a control logic, six input signals & three buffer registers: Data

register, control register & status register.

 Control logic : Interfaces the chip with MPU, determines the functions of

the chip according to the control word in the control register & monitors

the data flow.

2. Read/Write Control logic

194

 CS – Chip Select : When signal goes low, the 8251A is selected by the MPU

for communication.

 C/D – Control/Data : When signal is high, the control or status register is
addressed; when it is low, data buffer is addressed. (Control register & status
register are differentiated by WR and RD signals)

 WR : When signal is low, the MPU either writes in the control register or
sends output to the data buffer.

 RD : When signal goes low, the MPU either reads a status from the status
register or accepts data from data buffer.

 RESET : A high on this signal reset 8252A & forces it into the idle mode.

 CLK : Clock input, usually connected to the system clock for communication
with the microprocessor.

Input signals

195

 16-bit register for a control word consist of two independent bytes

namely mode word & command word.

 Mode word : Specifies the general characteristics of operation such

as baud, parity, number of bits etc.

 Command word : Enables the data transmission and reception.

 Register can be accessed as an output port when the Control/Data

pin is high.

Control Register

196

 Checks the ready status of the peripheral.

 Status word in the status register provides the
information concerning register status and
transmission errors.

Status register

Data register

 Used as an input and output port when the C/D is low

197

 DSR - Data Set Ready : Checks if the Data Set is ready when
communicating with a modem.

 DTR - Data Terminal Ready : Indicates that the device is ready
to accept data when the 8251 is communicating with a modem.

 CTS - Clear to Send : If its low, the 8251A is enabled to
transmit the serial data provided the enable bit in the command
byte is set to ‘1’.

 RTS - Request to Send Data : Low signal indicates the modem
that the receiver is ready to receive a data byte from the
modem.

3. Modem Control

198

 Accepts parallel data from MPU & converts them
into serial data.

 Has two registers:
• Buffer register : To hold eight bits
• Output register : To convert eight bits into a stream of

serial bits.

4. Transmitter section

Transmit control

Output Register

Transmitter Buffer

OUT DX,AL

TxD

TxRDY
TxE
TxC

199

 The MPU writes a byte in the buffer register.

 Whenever the output register is empty; the contents of
buffer register are transferred to output register.

 Transmitter section consists of three output & one
input signals
• TxD - Transmitted Data Output : Output signal to transmit

the data to peripherals.

• TxC - Transmitter Clock Input : Input signal, controls the rate
of transmission.

• TxRDY - Transmitter Ready : Output signal, indicates the
buffer register is empty and the USART is ready to accept
the next data byte.

• TxE - Transmitter Empty : Output signal to indicate the
output register is empty and the USART is ready to accept
the next data byte.

200

Accepts serial data on the RxD pin and
converts them to parallel data.
Has two registers :

• Receiver input register
• Buffer register

5. Receiver Section

Receive Buffer

Receive control

Input Register

RxRDY

RxC

 RxD

Syndet/BDT

IN DX,AL

201

 When RxD goes low, the control logic assumes it is a
start bit, waits for half bit time, and samples the line
again. If the line is still low, the input register accepts
the following data, and loads it into buffer register at
the rate determined by the receiver clock.

 RxRDY - Receiver Ready Output: Output signal, goes
high when the USART has a character in the buffer
register & is ready to transfer it to the MPU.

 RxD - Receive Data Input : Bits are received serially on
this line & converted into a parallel byte in the receiver
input register.

 RxC - Receiver Clock Input : Clock signal that controls
the rate at which bits are received by the USART.

 202

Mode word & command word for 8251 USART

Figure: Mode word & command word for 8251 USART

203

Status word register of 8251

Figure: Status word register of 8251
204

 Standard for transfer of characters across copper
wire

 Produced by EIA

 Full name is RS-232-C

 RS-232 defines serial, asynchronous communication
• Serial - bits are encoded and transmitted one at a time (as

opposed to parallel transmission)

• Asynchronous - characters can be sent at any time and bits
are not individually synchronized

RS-232

205

DTE Connections

206

 25-pin connector

• 9-pin connector is more commonly found in IBM-PC but it
covers signals for asynchronous serial communication
only.

 Use male connector on DTE and female connector on DCE.

 Note: all signal names are viewed from DTE.

Mechanical Characteristics

207

25-Pin RS232 Connector

Figure: 25-Pin RS232 Connector
208

9-Pin RS232 Connector

Figure: 9-Pin RS232 Connector
209

 Single-ended

• one wire per signal, voltage levels are with respect to
system common (i.e. signal ground)

Mark: –3V to –15V

• represent Logic 1, Idle State (OFF)

 Space: +3 to +15V

• represent Logic 0, Active State (ON)

Usually swing between –12V to +12V

 Recommended maximum cable length is 15m, at
20kbps

Electrical Characteristics

210

TTL to RS-232

Line drivers and line receivers

211

RS-232 Frame Format

…
0b0

1b nb p
1s 2s

Start bit

ASCII
Parity Stop bit

111101000001111

Idle
A

Example

212

RS232 Logic Waveform

213

 TD: transmitted data

 RD: received data

DSR: data set ready

• indicate whether DCE is powered on.

DTR: data terminal ready

• indicate whether DTR is powered on

• turning off DTR causes modem to hang up the line

 RI: ring indicator

• ON when modem detects phone call.

Function of Signals

214

DCD: data carrier detect

• ON when two modems have negotiated successfully
and the carrier signal is established on the phone line

 RTS: request to send

• ON when DTE wants to send data

• Used to turn on and off modem’s carrier signal in
multi-point (i.e. multi-drop) lines

• Normally constantly ON in point-to-point lines

 CTS: clear to send

• ON when DCE is ready to receive data.

SG: signal ground

Function of Signals

215

Means to ask the transmitter to stop/resume
sending in data

 Required when:

• DTE to DCE speed > DCE to DCE speed

• (e.g. terminal speed = 115.2kbps and line speed =
33.6kbps, in order to benefit from modem’s data
compression protocol)

• without flow control, the buffer within modem will
overflow – sooner or later.

• the receiving end takes time to process the data and thus
cannot be always ready to receive

Flow Control

216

 RTS/CTS

 the transmitting end activates RTS to inform the receiving
end that it has data to send.

 if the receiving end is ready to receive, it activates CTS.

normally used between computer and modem.

• computer is always ready to receive data but modem is
not, because terminal speed > link speed

Hardware Flow Control

217

Xon/Xoff
when the buffer within the receiving end is nearly full, Xoff

is sent to the transmitting end to ask it to stop.

when data have been processed by the receiving end and
the buffer has space again, Xon is sent to the transmitting
end to notify it to resume

 advantage: only three wires are required (TD, RD and
GND).

disadvantage: confusion arises when the transmitted data
(e.g. a graphics file) contains a byte equal to 13H (Xoff).

Software Flow Control

218

Other Standards

219

8250/16450/16550 UART

220

UNIT-V

8051 Microcontroller

221

 The overall system cost is high.

 A large sized PCB is required for assembling all the
components.

 Overall product design requires more time.

 Physical size of the product is big.

 A discrete components are used, the system is not reliable.

222

Disadvantages of microprocessor

 As the peripherals are integrated into a single chip, the overall

system cost is very less.

 The product is of small size compared to micro processor

based system.

 The system design now requires very little efforts

 As the peripherals are integrated with a microprocessor the

system is more reliable.

 Though microcontroller may have on chip ROM,RAM and I/O

ports, addition ROM, RAM I/O ports may be interfaced

externally if required.

 On chip ROM provide a software security.

223

Advantages of Microcontroller based System

 meeting the computing needs of the task efficiently and cost
effectively.

• speed, the amount of ROM and RAM, the number of I/O
ports and timers, size, packaging, power consumption.

• easy to upgrade.

• cost per unit.

• Noise of environment.

 availability of software development tools

• assemblers, debuggers, C compilers, emulator, simulator,
technical support

 wide availability and reliable sources of the microcontrollers

224

Why we Choosing a Microcontroller

 ROM type

• 8031 no ROM

• 80xx mask ROM

• 87xx EPROM

• 89xx Flash EEPROM

 89xx

• 8951

• 8952

• 8953

• 8955

• 898252

• 891051

• 892051

225

Comparison of the 8051 Family Members

Example (AT89C51,AT89LV51)
AT= ATMEL(Manufacture)
C = CMOS technology
LV= Low Power(3.0v)

226

Comparison some of the 8051 Family Members

ROM RAM Timer

8051 4k 128 2

8031 - 128 2

8751 4k eprom 128 2

8052 8krom 256 3

8032 - 256 3

8752 8k eprom 256 3

 4K bytes internal ROM

 128 bytes internal RAM

 Four 8-bit I/O ports (P0 - P3).

 Two 16-bit timers/counters

 One serial interface

 64k external memory for code

 64k external memory for data

 210 bit addressable

227

8051 Basic Component

Microcontroller

228

The basic 8051 Core

 8-bit CPU optimized for control applications
 Capability for single bit Boolean operations.
 Supports up to 64K of program memory.
 Supports up to 64K of data memory.
 4 K bytes of on-chip program memory.
 Newer devices provide more.
 128 or 256 bytes of on-chip data RAM.
 Four 8 bit ports.
 Two 16-bit timer/counters
 UART.
 Interrupts.
 On-chip clock oscillator.

S.

No

Microprocessor Microcontroller

1 A microprocessor is a general purpose device

which is called a CPU

A microcontroller is a dedicated chip which is also

called single chip computer.

2 A microprocessor do not contain onchip

I/OPorts, Timers, Memories etc..

A microcontroller includes RAM, ROM, serial and

parallel interface, timers, interrupt circuitry (in

addition to CPU) in a single chip.

3 Microprocessors are most commonly used as

the CPU in microcomputer systems

Microcontrollers are used in small, minimum

component designs performing control-oriented

applications.

4 Microprocessor instructions are mainly

nibble or byte addressable

Microcontroller instructions are both bit

addressable as well as byte addressable.

5 Microprocessor instruction sets are mainly

intended for catering to large volumes of

data.

Microcontrollers have instruction sets catering to

the control of inputs and outputs.

Differences between 8086 and 8051

229

6 Microprocessor based system design is

complex and expensive

Microcontroller based system design is rather

simple and cost effective

7 The Instruction set of microprocessor is

complex with large number of instructions.

The instruction set of a Microcontroller is very

simple with less number of instructions. For, ex:

PIC microcontrollers have only 35 instructions.

8 A microprocessor has zero status flag A microcontroller has no zero flag.

230

Differences between 8086 and 8051 cont…

Block diagram of 8051

231
Figure: Block diagram of 8051

232

Block Diagram

CPU

On-chip
RAM

On-chip
ROM for
program
code

4 I/O Ports

Timer 0

Serial
Port OSC

Interrupt
Control

External interrupts

Timer 1

Timer/Counter

Bus
Control

TxD RxD P0 P1 P2 P3

Address/Data

Counter
Inputs

233

234

8051

Schematic Pin out

235

8051

Foot Print
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

RST

(RXD)P3.0

(TXD)P3.1

(T0)P3.4

(T1)P3.5

XTAL2

XTAL1

GND

(INT0)P3.2

(INT1)P3.3

(RD)P3.7

(WR)P3.6

Vcc

P0.0(AD0)

P0.1(AD1)

P0.2(AD2)

P0.3(AD3)

P0.4(AD4)

P0.5(AD5)

P0.6(AD6)

P0.7(AD7)

EA/VPP

ALE/PROG

PSEN

P2.7(A15)

P2.6(A14)

P2.5(A13)

P2.4(A12)

P2.3(A11)

P2.2(A10)

P2.1(A9)

P2.0(A8)

 8051
(8031)

(8751)

(8951)

236

Power-On RESET Circuit

30 pF

30 pF

8.2 K

10 uF
+

Vcc

11.0592 MHz

EA/VPP
X1

X2

RST

31

19

18

9

237

Port 0 with Pull-Up Resistors

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

DS5000

8751

8951

Vcc
10 K

P
o

rt

0

• Port 0

pins 32-39 （P0.0～P0.7）

– 8-bit R/W - General

Purpose I/O.

– Or acts as a multiplexed
low byte address and data
bus for external memory
design.

238

IMPORTANT PINS (IO Ports)

 One of the most useful features of the 8051 is that it contains four I/O ports (P0 -
P3).
Each port can be used as input or output (bi-direction).

 Port 1

（pins 1-8） （P1.0～P1.7）

• Only 8-bit R/W -

General Purpose I/O

239

IMPORTANT PINS (IO Ports)

 Port 2

 （pins 21-28（P2.0～
P2.7）

• 8-bit R/W - General

Purpose I/O

• Or high byte of the

address bus for

external memory

design

240

IMPORTANT PINS (IO Ports)

 Port 3

 （pins 10-17 （P3.0～P3.7）

• General Purpose I/O

• if not using any of the

internal peripherals (timers)

or external interrupts.

241

IMPORTANT PINS (IO Ports)

242

Port 3 Alternate Functions

243

Hardware Structure of I/O Pin

D Q

Clk Q

Vcc

 Internal
Pull-Up

Read latch

Read pin

Write to latch

Internal CPU
bus

M1

P1.X
pin P1.X

B1

B2

 Each pin of I/O ports

• Internally connected to CPU bus.

• A D latch store the value of this pin.

• Write to latch＝1：write data into the D latch.

 2 Tri-state buffer：

• B1: controlled by “Read pin”.

• Read pin＝1：really read the data present at the pin.

• B2: controlled by “Read latch”.

• Read latch＝1：read value from internal latch.

A transistor M1 gate

• Gate=0: open

• Gate=1: close
244

Hardware Structure of I/O Pin

245

Writing “1” to Output Pin P1.X

D Q

Clk Q

Vcc

 Internal
Pull-Up

Read latch

Read pin

Write to latch

Internal CPU
bus

M1

P1.X
pin P1.X

2. output pin is
Vcc 1. write a 1 to the pin

1

0 output 1

B1

B2

246

Writing “0” to Output Pin P1.X

D Q

Clk Q

Vcc

 Internal
Pull-Up

Read latch

Read pin

Write to latch

Internal CPU
bus

M1

P1.X
pin P1.X

2. output pin is
ground 1. write a 0 to the pin

0

1 output 0

B1

B2

247

Reading “High” at Input Pin

D Q

Clk Q

Vcc

 Internal
Pull-Up

Read latch

Read pin

Write to latch

Internal CPU bus

M1

P1.X pin

P1.X

2. MOV A,P1

external pin=High
1. write a 1 to the pin MOV

P1,#0FFH

1

0

3. Read pin=1 Read latch=0

1

B1

B2

248

Reading “Low” at Input Pin

D Q

Clk Q

Vcc

 Internal
Pull-Up

Read latch

Read pin

Write to latch

Internal CPU bus

M1

P1.X pin

P1.X

2. MOV A,P1

external pin=Low 1. write a 1 to the pin

MOV P1,#0FFH

1

0

3. Read pin=1 Read latch=0

0

B1

B2

249

250

Memory organization

External
DATA

Memory
(up to 64KB)

RAM

External
CODE

Memory
(up to 64KB)

ROM

8051 Chip

0000h

FFFFh

FFFFh

Internal RAM

SFRs

Internal code
Memory
(EEPROM)

0000h

 External Code Memory (64k)

 External RAM Data Memory (64k)

 Internal Code Memory

• 4k,8k,12k,20k

• ROM, EPROM, EEPROM

 Internal RAM

• First 128 bytes:

o 00h to 1Fh Register Banks.

o 20h to 2Fh Bit Addressable RAM.

o 30 to 7Fh General Purpose RAM.

 Next 128 bytes:
• 80h to FFh Special Function Registers.

251

Types of Memory

 /EA（pin 31）：External access

• /EA=‘0’ indicates that code is stored externally.

• /PSEN ＆ ALE are used for external ROM.

• For 8051 internal code, /EA pin is connected to Vcc.

• “/” means active low.

 /PSEN（pin 29）：program store enable.

• Output- connected to OE of ROM.

• Read signal – fetch from ROM

 ALE（pin 30): Address latch enable.

• It is an output pin and is active high.

• 8051 port 0 provides both address and data.

• The ALE pin is used for de-multiplexing the address and data

by connecting to the G pin of the 74LS373 latch.

252

External Memory

 May consist of internal or external program memory. The
amount of internal program memory varies depending on the
device.

 4K bytes typical in older devices.

 The MOVC instruction can be use to read code memory.

 To reference code memory I will use the notation:

 CM = CM(0,…,FFFFH) = CM(0,…,FFFFH; 7,…,0)

 This notation can be used to specify particular bits and bytes of
code memory.

 For example CM(1234H) refers to the byte of code memory at
address 1234H. CM(1234H;7) refers to the most significant bit
in that address.

253

Program or Code Memory

CM

MOVC A,@A + DPTR ;A CM(A+DPTR)
MOVC A,@A + PC ;A CM(A+PC)

PC = PC(15..0)

DPTR = DPTR(15..0)

254

• The original 8051 had 128 bytes of on-chip data RAM.

– This memory includes 4 banks of general purpose
registers at DM(00..1F)

– Only one bank can be active at a time.

– If all four banks are used, DM(20..7F) is available for
program data.

– DM(20..2F) is bit addressable as BADM(00..7F).

• DM(80,…,FF) contains the special function registers such
as I/O ports, timers, UART, etc.

– Some of these are bit addressable using BADM(80..FF)

• On newer versions of the 8051, DM(80,…,FF) is also use
as data memory. Thus, the special functions registers and
data memory occupy the same address space. Which is
accessed is determined by the instruction being used.

255

Data Memory

Data memory

XM

DM
MOV A,62H

MOV R1,#62H
MOV A@R1

MOV A,0A2H

MOV R1,#0A2H
MOV A@R1

256

Data Memory (DM)

257

258

Register set of 8051

A

B

R0

R1

R3

R4

R2

R5

R7

R6

DPH DPL

PC

DPTR

PC

Some 8051 16-bit Register

Some 8-bitt Registers of
the 8051

259

• The data pointer consists of a high byte(DPH) and a low byte

(DPL). Its function is to hold a 16 bit address. It may be

manipulated as a 16 bit data register or two independent 8 bit

register. It serves as a base register in indirect jumps, lookup

table instructions and external data transfer.

260

DPTR

CY AC F0 RS1 RS0 OV P

261

PROGRAM STATUS WORD (PSW)

R

S0

R

S

1

BANK SELECTION

0 0 00H – 07H BANK0

0 1 08H – 0FH BANK 1

1 0 10H – 17H BANK2

1 1 18H – 1FH BANK 3

 The register used to access
the stack is called SP (stack
pointer) register.

 The stack pointer in the
8051 is only 8 bits wide,
which means that it can
take value 00 to FFH.
When 8051 powered up,
the SP register contains
value 07.

262

Stack in the 8051

7FH

30H

2FH

20H

1FH

17H

10H

0FH

07H

08H

18H

00H
Register Bank 0

(Stack) Register Bank 1

Register Bank 2

Register Bank 3

Bit-Addressable RAM

Scratch pad RAM

 In 8051 microcontroller there certain registers which uses the

RAM addresses from 80h to FFh and they are meant for

certain specific operations .These registers are called Special

function registers (SFRs).Some of these registers are bit

addressable also.

 The list of SFRs and their functional names are given below.

In these SFRs some of them are related to I/O ports (P0,P1,P2

and P3) and some of them are meant for control operations

(TCON,SCON, PCON..) and remaining are the auxiliary

SFRs, in the sense that they don't directly configure the 8051.

263

SPECIAL FUNCTION REGISTERS (SFRs)

264

S.No Symbol Name of SFR Address (Hex)

1 ACC* Accumulator 0E0

2 B* B-Register 0F0

3 PSW* Program Status word

register

0DO

4 SP Stack Pointer Register 81

5

DPT

R

DPL Data pointer low byte 82

DPH Data pointer high byte 83

6 P0* Port 0 80

P1* Port 1 90

8 P2* Port 2 0A

9 P3* Port 3 0B

10 IP* Interrupt Priority control 0B8

11 IE* Interrupt Enable control 0A8

12 TMOD Tmier mode register 89

13 TCON* Timer control register 88

14 TH0 Timer 0 Higher byte 8C

15 TL0 Timer 0 Lower byte 8A

16 TH1 Timer 1Higher byte 8D

17 TL1 Timer 1 lower byte 8B

18 SCON* Serial control register 98

19 SBUF Serial buffer register 99

20 PCON Power control register 87

The 8051

 Assembly Language

265

 Register

 Direct

 Register Indirect

 Immediate

 Relative

 Absolute

 Long

 Indexed

266

Addressing Modes

267

Register Addressing Mode

8051 has access to eight working registers (R0 to R7)
 Instructions using register addressing are encoded using the
three least significant bits of the instruction opcode to specify
a register
 Example: ADD A,R7
 The opcode is 00101111. 00101 indicates the instruction and
the three lower bits, 111, specify the register.
Some instructions are specific to a certain register, such as
the accumulator, data pointer etc.
 Example: INC DPTR
A 1-byte instruction adding 1 to the data pointer
 Example: MUL AB
A 1-byte instruction multiplying unsigned values in accumulator
and register B

 Direct addressing can access any on-chip memory location

 Example: ADD A,55H

 Example: MOV P1, A

 Transfers the content of accumulator to Port 1 (address90H)
Although the entire of 128 bytes of RAM can be accessed using

direct addressing mode, it is most often used to access RAM loc.
30 – 7FH.

MOV R0, 40H
MOV 56H, A
MOV A, 4 ; ≡ MOV A, R4
MOV 6, 2 ; copy R2 to R6
 ; MOV R6,R2 is invalid !

268

Direct Addressing Mode

 R0 or R1 may operate as pointer registers (their content indicates an

address in internal RAM where data are written or read)

 In 8051 assembly language, indirect addressing is represented by an

@ before R0 or R1.

 Example: MOV A, @R0

– Moves a byte of data from internal RAM at location whose address is in

R0 to the accumulator

 In this mode, register is used as a pointer to the data.

 MOV A,@Ri ; move content of RAM loc. where address is held by
Ri into A (i=0 or 1)

 MOV @R1,B

269

Register Indirect Addressing Mode

 When the source operand is a constant rather than a variable,

 the constant can be incorporated into the instruction as a byte of

immediate address

 In assembly language, immediate operands are preceded by #

 Operand my be a numeric constant, a symbolic variable or an

 arithmetic expression using constants, symbols and operators.

 Assembler computes the value and substitutes the immediate

data into the instruction

 Example: MOV A,#12

MOV DPTR,#2343H

MOV P1,#65H

270

Immediate Addressing Mode

 Relative addressing is used with certain jump instructions

Relative address (offset) is an 8-bit signed value (-128 to 127)

which is added to the program counter to form the address of

next instruction.

 Prior to addition, the program counter is incremented to the

address following the jump (the new address is relative to the

next instruction, not the address of the jump instruction).

 This detail is of no concern to the user since the jump

destinations are usually specified as labels and the assembler

determines the relative offset.

 Advantage of relative addressing: position independent codes.

271

Relative Addressing

 Absolute addressing is only used with ACALL and AJMP.

 The 11 least significant bits of the destination address comes

from the opcode and the upper five bits are the current upper

five bits in the program counter (PC).

 The destination is in the same 2K (211) of the source.

272

Absolute Addressing

 Long addressing is used only with the LCALL and LJMP

instructions.

 These 3-bytes instructions include a full 16-bit destination

address as bytes 2 and 3.

 The full 64K code space is available.

 The instruction is long and position dependent.

 Example: LJMP, 8AF2H.

 Jumps to memory location 8AF2H.

273

Long addressing

 Indexed addressing uses a base register (either the program

counter or data pointer) and an offset (the accumulator) in

forming the effective address for a JMP or MOVC instruction

 Example: MOVC A, @A+DPTR

• This instruction moves a byte of data from code memory

to the accumulator. The address in code memory is found

by adding the accumulator to the data pointer

274

Indexed Addressing Mode

 The 8051 has 255 instructions

• Every 8-bit opcode from 00 to FF is used except for A5.

 The instructions are grouped into 5 groups

• Arithmetic

• Logic

• Data Transfer

• Boolean

• Branching

275

Instruction Groups

 ADD

• 8-bit addition between the accumulator (A) and a second

operand.

• The result is always in the accumulator.

• The CY flag is set/reset appropriately.

 ADDC

• 8-bit addition between the accumulator, a second operand

and the previous value of the CY flag.

• Useful for 16-bit addition in two steps.

• The CY flag is set/reset appropriately.

276

Arithmetic Instructions

Add 1E44H to 56CAH

 CLR C ; Clear the CY flag

 MOV A, 44H ; The lower 8-bits of the 1st number

 ADD A, CAH ; The lower 8-bits of the 2nd number

 MOV R1, A ; The result 0EH will be in R1. CY = 1.

 MOV A, 1EH ; The upper 8-bits of the 1st number

 ADDC A, 56H ; The upper 8-bits of the 2nd number

 MOV R2, A ; The result of the addition is 75H

The overall result: 750EH will be in R2:R1. CY = 0.

277

Example – 16-bit Addition

 DA

• Decimal adjust the accumulator.

• Format the accumulator into a proper 2 digit
packed BCD number.

• Operates only on the accumulator.

• Works only after the ADD instruction.

 SUBB

• Subtract with Borrow.

• Subtract an operand and the previous value of the
borrow (carry) flag from the accumulator.

• A A - <operand> - CY.

• The result is always saved in the accumulator.

• The CY flag is set/reset appropriately.
278

Arithmetic Instructions

Add 34 to 49 BCD

 CLR C ; Clear the CY flag

 MOV A, #34H ; Place 1st number in A

 ADD A, #49H ; Add the 2nd number.

 ; A = 7DH

 DA A ; A = 83H

279

Example – BCD addition

 INC

• Increment the operand by one.

• The operand can be a register, a direct address, an
indirect address, the data pointer.

 DEC

• Decrement the operand by one.

• The operand can be a register, a direct address, an
indirect address.

 MUL AB / DIV AB

• Multiply A by B and place result in A:B.

• Divide A by B and place result in A:B.

280

Arithmetic Instructions

 ANL / ORL

 Work on byte sized operands or the CY flag.

• ANL A, Rn

• ANL A, direct

• ANL A, @Ri

• ANL A, #data

• ANL direct, A

• ANL direct, #data

• ANL C, bit

• ANL C, /bit

281

Logical Operations

• XRL

– Works on bytes only.

• CPL / CLR

– Complement / Clear.

– Work on the accumulator or a bit.

• CLR P1.2

282

Logical Operations

 RL / RLC / RR / RRC

• Rotate the accumulator.

• RL and RR without the carryRLC and RRC rotate

through the carry.

 SWAP A

• Swap the upper and lower nibbles of the accumulator.

 No compare instruction.

• Built into conditional branching instructions.

283

Logical Operations

 MOV <destination>, <source>: allows data to be transferred
between any two internal RAM or SFR locations

 Stack operations (pushing and popping data) are also internal
data transfer instructions

 Pushing increments SP before writing the data

 Popping from the stack reads the data and decrements the SP

 8051 stack is kept in the internal RAM8-bit data transfer for
internal RAM and the SFR.

• MOV Rn, #data MOV A, Rn MOV A, direct

• MOV A, @Ri MOV A, #data MOV Rn, A

• MOV Rn, direct MOV direct, A MOV direct, Rn

• MOV direct, direct MOV direct, @Ri

• MOV direct, #data MOV @Ri, A

• MOV @Ri, direct MOV @Ri, #data

284

Data Transfer Instructions

 MOV

• 1-bit data transfer involving the CY flag

• MOV C, bit

• MOV bit, C

 MOV

• 16-bit data transfer involving the DPTR.

• MOV DPTR, #data

285

Data Transfer Operations

 MOVC

– Move Code Byte

• Load the accumulator with a byte from program

memory.

• Must use indexed addressing

• MOVC A, @A+DPTR

• MOVC A, @A+PC

286

Data Transfer Instructions

 MOVX

– Data transfer between the accumulator and a byte from

external data memory.

• MOVX A, @Ri

• MOVX A, @DPTR

• MOVX @Ri, A

• MOVX @DPTR, A

 PUSH / POP

– Push and Pop a data byte onto the stack.

– The data byte is identified by a direct address from the

internal RAM locations.

• PUSH DPL

• POP 40H

 287

Data Transfer Instructions

 XCH

– Exchange accumulator and a byte variable

• XCH A, Rn

• XCH A, direct

• XCH A, @Ri

 XCHD

– Exchange lower digit of accumulator with the lower digit of
the memory location specified.

• XCHD A, @Ri

• The lower 4-bits of the accumulator are exchanged with
the lower 4-bits of the internal memory location
identified indirectly by the index register.

• The upper 4-bits of each are not modified.
288

Data Transfer Instructions

 8051 contains a complete Boolean processor for single-bit

operations.

 All bit accesses use direct addressing

 Bits may be set or cleared in a single instruction

 Example: SETB P1.7 CLR P1.7

 This group of instructions is associated with the single-bit

operations of the 8051.

• The P, OV, and AC flags cannot be directly altered.

• This group includes:

oSet, clear, and, or complement, move.

oConditional jumps.

289

Boolean Operations

 CLR

– Clear a bit or the CY flag.

• CLR P1.1

• CLR C

 SETB

– Set a bit or the CY flag.

• SETB A.2

• SETB C

 CPL

– Complement a bit or the CY flag.

• CPL 40H ; Complement bit 40 of the bit

 addressable memory

290

Boolean Operations

 ORL / ANL

– OR / AND a bit with the CY flag.

• ORL C, 20H ; OR bit 20 of bit addressable

 memory with the CY flag

• ANL C, /34H ; AND complement of bit

34 of bit addressable memory with

the CY flag.

 MOV

– Data transfer between a bit and the CY flag.

• MOV C, 3FH ; Copy the CY flag to bit 3F

of the bit addressable memory.

• MOV P1.2, C ; Copy the CY flag to bit 2

of P1. 291

Boolean Operations

 JC / JNC

– Jump to a relative address if CY is set / cleared.

 JB / JNB

– Jump to a relative address if a bit is set / cleared.

• JB ACC.2, <label>

 JBC

– Jump to a relative address if a bit is set and clear the bit.

292

Boolean Operations

 The 8051 provides four different types of unconditional jump

instructions:

– Short Jump – SJMP

• Uses an 8-bit signed offset relative to the 1st byte of the

next instruction.

– Long Jump – LJMP

• Uses a 16-bit address.

• 3 byte instruction capable of referencing any location in

the entire 64K of program memory.

293

Branching Instructions

– Absolute Jump – AJMP

• Uses an 11-bit address.

• 2 byte instruction

– The upper 3-bits of the address combine with the 5-

bit opcode to form the 1st byte and the lower 8-bits

of the address form the 2nd byte.

• The 11-bit address is substituted for the lower 11-bits of

the PC to calculate the 16-bit address of the target.

– The location referenced must be within the 2K Byte

memory page containing the AJMP instruction.

– Indirect Jump – JMP

• JMP @A + DPTR
294

Branching Instructions

 The 8051 provides 2 forms for the CALL instruction:

– Absolute Call – ACALL

• Uses an 11-bit address similar to AJMP

• The subroutine must be within the same 2K page.

– Long Call – LCALL

• Uses a 16-bit address similar to LJMP

• The subroutine can be anywhere.

– Both forms push the 16-bit address of the next instruction

on the stack and update the stack pointer.

295

Branching Instructions

 The 8051 provides 2 forms for the return instruction:

– Return from subroutine – RET

• Pop the return address from the stack and continue

execution there.

– Return from ISV – RETI

• Pop the return address from the stack.

• Restore the interrupt logic to accept additional interrupts

at the same priority level as the one just processed.

• Continue execution at the address retrieved from the

stack.

• The PSW is not automatically restored.

296

Branching Instructions

 The 8051 supports 5 different conditional jump instructions.

– ALL conditional jump instructions use an 8-bit signed

offset.

– Jump on Zero – JZ / JNZ

• Jump if the A == 0 / A != 0

– The check is done at the time of the instruction

execution.

– Jump on Carry – JC / JNC

• Jump if the C flag is set / cleared.

297

Branching Instructions

 Jump on Bit – JB / JNB

• Jump if the specified bit is set / cleared.

• Any addressable bit can be specified.

 Jump if the Bit is set then Clear the bit – JBC

• Jump if the specified bit is set.

• Then clear the bit.

298

Branching Instructions

 Compare and Jump if Not Equal – CJNE

– Compare the magnitude of the two operands and jump if

they are not equal.

• The values are considered to be unsigned.

• The Carry flag is set / cleared appropriately.

• CJNE A, direct, rel

• CJNE A, #data, rel

• CJNE Rn, #data, rel

• CJNE @Ri, #data, rel

299

Branching Instructions

 Decrement and Jump if Not Zero – DJNZ

– Decrement the first operand by 1 and jump to the location

identified by the second operand if the resulting value is

not zero.

• DJNZ Rn, rel

• DJNZ direct, rel

 No Operation

– NOP

300

Branching Instructions

• The register used to
access the stack is called
SP (stack pointer)
register.

• The stack pointer in the
8051 is only 8 bits wide,
which means that it can
take value 00 to FFH.
When 8051 powered up,
the SP register contains
value 07.

301

Stack in the 8051

7F
H

30
H
2F
H

20
H 1F
H

17
H 10
H 0F
H

07
H

08
H

18
H

00
H

Register
Bank 0

(Stack)
Register
Bank 1

Register
Bank 2

Register
Bank 3

Bit-
Addressable

RAM

Scratch pad
RAM

Example:
 MOV R6,#25H
 MOV R1,#12H
 MOV R4,#0F3H
 PUSH 6
 PUSH 1
 PUSH 4

0BH

0AH

09H

08H

Start SP=07H

25

0BH

0AH

09H

08H

SP=08H

F3

12

25

0BH

0AH

09H

08H

SP=08H

12

25

0BH

0AH

09H

08H

SP=09H

302

Example:

 Write a program to copy a block of 10 bytes from RAM
location starting at 37h to RAM location starting at 59h.

Solution:

 MOV R0,#37h ; source pointer

 MOV R1,#59h ; dest pointer

 MOV R2,#10 ; counter

L1: MOV A,@R0

 MOV @R1,A

 INC R0

 INC R1

 DJNZ R2,L1

303

8051 REAL TIME CONTROL

304

 An interrupt is an external or internal event that interrupts the
microcontroller to inform it that a device needs its service.

Interrupts vs. Polling

 A single microcontroller can serve several devices.

 There are two ways to do that:

– interrupts

– polling.

Interrupts

305

 In Polling , the microcontroller ‘s program simply checks each
of the I/O devices to see if any device needs servicing. If so, it
performs the service.

 In the interrupt method, whenever any device needs
microcontroller ‘s service, it tells to microcontroller by
sending an interrupt signal.

 The program which is associated with the interrupt is called
the interrupt service routine (ISR) or interrupt handler.

306

 Finish current instruction and saves the PC on stack.

 Jumps to a fixed location in memory depend on type of
interrupt.

 Starts to execute the interrupt service routine until RETI
(return from interrupt).

 Upon executing the RETI the microcontroller returns to the
place where it was interrupted. Get pop PC from stack.

Steps in executing an interrupt

307

 Original 8051 has 6 sources of interrupts

1. Reset

2. Timer 0 overflow

3. Timer 1 overflow

4. External Interrupt 0

5. External Interrupt 1

6. Serial Port events buffer full, buffer empty, etc)

Interrupt Sources

308

 Each interrupt has a specific place in code memory where program
execution (interrupt service routine) begins.

External Interrupt 0 : 0003h

Timer 0 overflow : 000Bh

External Interrupt 1 : 0013h

Timer 1 overflow : 001Bh

Serial : 0023h

Timer 2 overflow(8052+) : 002bh

Interrupt Vectors

Note: that there are

only 8 memory

locations between

vectors.

309

Interrupt Enable (IE) register

 All interrupt are disabled after reset

 We can enable and disable them by IE

310

Enabling an interrupt

 by bit operation

 Recommended in the middle of program

•SETB EA ;Enable All

•SETB ET0 ;Enable Timer0 over flow

•SETB ET1 ;Enable Timer1 over flow

•SETB EX0 ;Enable INT0

•SETB EX1 ;Enable INT1

•SETB ES ;Enable Serial port

•

 by mov instruction

 Recommended in the first of program

• MOV IE, #10010110B

SETB IE.7

SETB IE.1

SETB IE.3

SETB IE.0

SETB IE.2

SETB IE.4

311

Disabling an interrupt

• CLRB EA ;Disable All

• CLRB ET0 ; Disable Timer0 over flow

• CLRB ET1 ; Disable Timer1 over flow

• CLRB EX0 ; Disable INT0

• CLRB EX1 ; Disable INT1

• CLRB ES ; Disable Serial port

•

312

 What if two interrupt sources interrupt at the same time?

 The interrupt with the highest PRIORITY gets serviced first.

 All interrupts have a power on default priority order.

1. External interrupt 0 (INT0)

2. Timer interrupt0 (TF0)

3. External interrupt 1 (INT1)

4. Timer interrupt1 (TF1)

5. Serial communication (RI+TI)

 Priority can also be set to “high” or “low” by IP reg.

Interrupt Priorities

313

IP.7: reserved

IP.6: reserved

IP.5: timer 2 interrupt priority bit(8052 only)

IP.4: serial port interrupt priority bit

IP.3: timer 1 interrupt priority bit

IP.2: external interrupt 1 priority bit

IP.1: timer 0 interrupt priority bit

IP.0: external interrupt 0 priority bit

Interrupt Priorities (IP) Register

314

 MOV IP , #00000100B
 or SETB IP.2 gives priority order

1. Int1
2. Int0
3. Timer0
4. Timer1
5. Serial

 MOV IP , #00001100B
 gives priority order

1. Int1
2. Timer1
3. Int0
4. Timer0
5. Serial

Interrupt Priorities Example

--- PX0 PT0 PX1 PT1 PS PT2 ---

315

 Counter/timer hardware is a crucial component of most embedded systems. ... In
some cases, a timer measures elapsed time (counting processor clock ticks). In
others, we want to count or time external events. The names counter and timer
can be used interchangeably when talking about the hardware.

 8051 has two 16-bit programmable timers/counters. They can be configured to
operate either as timers or as event counters. The names of the two counters are T0
and T1 respectively.

 The timer content is available in four 8-bit special function registers, viz,
TL0,TH0,TL1 and TH1 respectively.

 In the "timer" function mode, the counter is incremented in every machine cycle.
Thus, one can think of it as counting machine cycles. Hence the clock rate is 1/12

th of the oscillator frequency.

 In the "counter" function mode, the register is incremented in response to a 1 to 0
transition at its corresponding external input pin (T0 or T1). It requires 2 machine
cycles to detect a high to low transition. Hence maximum count rate is 1/24 th of
oscillator frequency.

TIMER/COUNTER

316

 The operation of the timers/counters is controlled by two
special function registers, TMOD and TCON respectively.

Timer Mode control (TMOD) Special Function Register:

 TMOD register is not bit addressable.

 TMOD Address: 89 H

Operation of Timer/Counter

317

Various bits of TMOD are described as follows -

318

Timer/ Counter control logic:

Figure: Timer/ Counter control logic Diagram
319

Timer Mode-0:

Timer modes of operation

In this mode, the timer is used as a 13-bit UP counter as follows.

The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit

count. Upper 3 bits of TLX are ignored. When the counter rolls

over from all 0's to all 1's, TFX flag is set and an interrupt is

generated.

The input pulse is obtained from the previous stage. If TR1/0 bit

is 1 and Gate bit is 0, the counter continues counting up. If TR1/0

bit is 1 and Gate bit is 1, then the operation of the counter is

controlled by input. This mode is useful to measure the width of a

given pulse fed to input.

Fig: Operation of Timer in Mode 2

320

 This mode is similar to mode-0 except for the fact that the Timer
operates in 16-bit mode.

Timer Mode-1:

Timer Mode-2: (Auto-Reload Mode)

This is a 8 bit counter/timer operation. Counting is performed

in TLX while THX stores a constant value. In this mode when the

timer overflows i.e. TLX becomes FFH, it is fed with the value

stored in THX. For example if we load THX with 50H then the

timer in mode 2 will count from 50H to FFH. After that 50H is

again reloaded. This mode is useful in applications like fixed time

sampling

Fig: Operation of Timer in Mode 1

321

Fig: Operation of Timer in Mode 2

Timer Mode-3:

Timer 1 in mode-3 simply holds its count. The effect is same as

setting TR1=0. Timer0 in mode-3 establishes TL0 and TH0 as two

separate counters.

Fig: Operation of Timer in Mode 3

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (TH0)

in Mode-3 while TR0 and TF0 are available to Timer-0 lower 8

bits(TL0). 322

Timer control (TCON) Special function register:

TCON is bit addressable. The address of TCON is 88H. It is

partly related to Timer and partly to interrupt.

The various bits of TCON are as follows.
TF1 : Timer1 overflow flag. It is set when timer rolls from all 1s to 0s.
It is cleared when processor vectors to execute ISR located at address
001BH.
TR1 : Timer1 run control bit. Set to 1 to start the timer / counter.
TF0 : Timer0 overflow flag. (Similar to TF1)
TR0 : Timer0 run control bit.

323

 IE1 : Interrupt1 edge flag. Set by hardware when an external
interrupt edge is detected. It is cleared when interrupt is
processed.

 IE0 : Interrupt0 edge flag. (Similar to IE1)

 IT1 : Interrupt1 type control bit. Set/ cleared by software to
specify falling edge / low level triggered external interrupt.

 IT0 : Interrupt0 type control bit. (Similar to IT1)
As mentioned earlier, Timers can operate in four different
modes. They are as follows

324

 Timer Delay = Delay Value × Timer Clock Cycle Duration

 Delay Value = how many counts before register(s) roll over

 Timer Clock Cycle Duration = 6/oscillator frequency

 Delay Value = Maximum Register Count – Timer Reload Value

 Maximum Register Count = 65535

Timer Delay and Timer Reload Value

325

 The serial port of 8051 is full duplex, i.e., it can transmit and
receive simultaneously.

 The register SBUF is used to hold the data. The special function
register SBUF is physically two registers. One is, write-only and is
used to hold data to be transmitted out of the 8051 via TXD. The
other is, read-only and holds the received data from external
sources via RXD. Both mutually exclusive registers have the same
address 099H.

Serial communication

326

Serial Port Control Register (SCON)

Register SCON controls serial data communication.

Address: 098H (Bit addressable)

Mode select bits

SM2: multi processor communication bit

REN: Receive enable bit

TB8: Transmitted bit 8 (Normally we have 0-7 bits

transmitted/received)

RB8: Received bit 8

TI: Transmit interrupt flag

RI: Receive interrupt flag 327

Power Mode control Register (PCON)

Register PCON controls processor powerdown, sleep modes and

serial data baud rate, only one bit of PCON is used with respect to

serial communication. The seventh bit (b7) (SMOD) is used to

generate the baud rate of serial communication.

SMOD: Serial baud rate modify bit

GF1: General purpose user flag bit 1

GF0: General purpose user flag bit 0

PD: Power down bit

IDL: Idle mode bit

Figure: PCON Register

328

 Serial port in mode-0

• Baud rate = oscillating frequency / 12

Generating the baud rates

 Serial port in mode-1

329

Serial port in mode-2

 If smod = 1 then baud rate = 1/32 *oscillator frequency

 If smod = 0 then baud rate = 1/64 *oscillator frequency

330

331

Baud rates for SMOD=0

Machine cycle freq. = 12 MHz / 12 = 1 MHz

and

1MHz / 32 = 28,800 Hz since SMOD = 0

332

Examples

333

 A 10khz square wave with 50% duty cycle

 XTAL = 12MHz

 ORG 0 ;Reset entry point

 LJMP MAIN ;Jump above interrupt

 ORG 000BH ;Timer 0 interrupt vector

T0ISR:CPL P1.0 ;Toggle port bit

 RETI ;Return from ISR to Main program

 ORG 0030H ;Main Program entry point

MAIN:MOV TMOD,#02H ;Timer 0, mode 2

 MOV TH0,#50 ;50 us delay

 SETB TR0 ;Start timer

 MOV IE,#82H ;Enable timer 0 interrupt

 SJMP main ;Do nothing just wait

 END

Programming Timer interrupts

334

Example

 Show the instructions to (a) enable the serial interrupt, Timer 0
interrupt, and external hardware interrupt 1 (EX1), and (b) disable
(mask) the Timer 0 interrupt, then (c) show how to disable all the
interrupts with a single instruction.

a) MOV IE, #10010110B

b) CLR IE.1

c) CLE IE.7

335

 Write a program using interrupts to simultaneously create 7 kHz and 500
Hz square waves on P1.7 and P1.6. XTAL = 12MHz

Timer0 & Timer1 Interrupt Example

71s

143s

1ms

2ms

P1.7

P1.6

8051

336

71s

143s

1ms

2ms

P1.7

P1.6

8051

Solution ORG 0

 LJMP MAIN

 ORG 000BH

 LJMP T0ISR

 ORG 001BH

 LJMP T1ISR

 ORG 0030H

MAIN: MOV TMOD,#12H

 MOV IE,#8AH

 MOV TH0,#-71

 MOV TH1,#0fcH

 MOV TL1,#18H

 SETB TR1

 SETB TR0

 SJMP main

T0ISR: CPL P1.7

 RETI

T1ISR: CLR TR1

 MOV TH1,#0fcH

 MOV TL1,#18H

 SETB TR1

 CPL P1.6

 RETI

 END

337

Example

 Write a program that continuously gets 8-bit data from P0 and
sends it to P1 while simultaneously creating a square wave of 200
ms period on pin P2.1. Use Timer 0 to create the square wave.
Assume that XTAL = 11.0592 MHz.

ORG 0000H

LJMP MAIN

//ISR FOR TIMER 0 TO GENERATE SQUARE WAVE

ORG 000BH

CPL P2.1

RETI

//

338

//MAIN PROGRAM FOR INITIALIZATION

ORG 0030H

MAIN: MOV TMOD, #02H

MOV P0, #0FFH

MOV TH0, #-92

MOV IE, #82H

SETB TR0

BACK: MOV A, P0

MOV P1, A

SJMP BACK

END

CONTINUE….

339

External interrupts INT0 and INT1

PROGRAMMING EXTERNAL HARDWARE
INTERRUPTS

340

Example
Assume that the INT1 pin is connected to a switch that is normally high.
Whenever it goes low, it should turn on an LED. The LED is connected to
P1.3 and is normally off. When it is turned on it should stay on for a
fraction of a second. As long as the switch is pressed low, the LED should
stay on.

ORG 0000H

 LJMP MAIN

//ISR FOR HARDWARE INTERRUPT

ORG 0013H

 SETB P1.3

MOV R3, #255

BACK: DJNZ R3, BACK

 CLR P1.3

RETI

// MAIN PROGRAM FOR INITIALIZATION

ORG 30H

MAIN: MOV IE, # 10000100B

HERE: SJMP HERE

END

341

 RI and TI flags and interrupts

– 1 interrupt is set for serial communication

– used to both send and receive data

– when RI or TI is raised the 8051 gets interrupted and jumps
to memory address location 0023H to execute the ISR

– the ISR must examine the TI and RI flags to see which one
caused the interrupt and respond accordingly

Programming the serial communication interrupt

342

Example
Write a program in which the 8051 reads data from P1 and writes it to
P2 continuously while giving a copy of it to the serial COM port to be

transferred serially. Assume that XTAL = 11.0592 MHz. Set the baud rate
at 9600.

ORG 0

LJMP MAIN

ORG 23H

LJMP SERIAL

ORG 30H

MAIN: MOV P1, #0FFH

MOV TMOD, #20H

MOV TH1, #0FDH

MOV SCON, #50H

MOV IE, #10010000B

343

SETB TR1

BACK: MOV A, P1

MOV SBUF, A

MOV P2, A

SJMP BACK

//SERIAL PORT ISR

ORG 100H

SERIAL: JB TI,TRANS

MOV A, SBUF

CLR RI

RETI

TRANS: CLR TI

RETI

END

CONTINUE…

344

TIMER-0 IN COUNTER MODE
 MOV A, TMOD

 ORL A, #05H

 MOV TMOD,A

 SETB TR0

 LCALL 68EAH

 LOOP: MOV DPTR, #0194H

 MOV A, TL0

 MOVX @DPTR,A

 INC DPTR

 MOV A, TH0

 MOVX @DPTR, A

 LCALL 6748H

 SJMP LOOP

Programming timers and counters

345

 MOV A, TMOD

 ORL A, #50H

 MOV TMOD,A

 SETB TR1

 LCALL 68EAH

 LOOP: MOV DPTR, #0194H

 MOV A, TL1

 MOVX @DPTR,A

 INC DPTR

 MOV A, TH1

 MOVX @DPTR, A

 LCALL 6748H

 SJMP LOOP

TIMER-1 IN COUNTER MODE

346

