

 INSTITUTE OF AERONAUTICAL ENGINEERING

 (Autonomous)

 Dundigal, Hyderabad - 500 043

 Multimedia and Rich Internet Applications
 Course Code: A80547

 IV B. Tech II semester (JNTUH-R15)

 Prepared by:

 Ms. Y Harika Devi

 Assistant Professor

1

Multimedia and Rich Internet
Applications

2

UNIT-I

Multimedia

- A PC vendor: a PC that has sound capability, a DVD-ROM drive, and

perhaps the superiority of multimedia-enabled microprocessors that

understand additional multimedia instructions.

- A consumer entertainment vendor: interactive cable TV with

hundreds of digital channels available, or a cable TV-like service

delivered

over a high-speed Internet connection.

- A Computer Science (CS) student: applications that use multiple

modalities, including text, images, drawings (graphics), animation,

video, sound including speech, and interactivity.

• Multimedia and Computer Science:Graphics, HCI, visualization,

computer vision, data compression, graph theory, networking,

database systems.

3

Components of Multimedia
Multimedia involves multiple modalities of text, audio,images,

drawings, animation, and video. Examples of how these

modalities are put to use:

1. Video teleconferencing.

2. Distributed lectures for higher education.

3. Tele-medicine.

4. Co-operative work environments.

5. Searching in (very) large video and image databases for target

visual objects.

6. Augmented" reality: placing real-appearing computer graphics

and video objects into scenes.

7. Including audio cues for where video-conference participants are

located.

8. Building searchable features into new video, and enabling very
high to very low-bit-rate use of new, scalable multimedia
products. 4

Multimedia and Hypermedia

History of Multimedia:

1.Newspaper: perhaps the rst mass communication medium, uses

text, graphics, and images.

2.Motion pictures: conceived of in 1830's in order to observe

motion too rapid for perception by the human eye.

3.Wireless radio transmission: Guglielmo Marconi, at Pontecchio,

Italy, in 1895

4.Television: the new medium for the 20th century, established

video as a commonly available medium and has since changed the

world of mass communications.

5.The connection between computers and ideas about multimedia

covers what is actually only a short period:

1945 -Vannevar Bush wrote a landmark article describing what

amounts to a hypermedia system called Memex.
5

Hypermedia and Multimedia

 •Hypermedia: not constrained to be text-based, can include

other media, e.g., graphics, images, and especially the

continuous media | sound and video.

•The World Wide Web (WWW) | the best example of a

hypermedia application.

•Multimedia means that computer information can be

represented through audio, graphics, images, video, and

animation in addition to traditional media.

6

Examples of typical present multimedia applications include:

-Digital video editing and production systems.

-Electronic newspapers/magazines.

- World Wide Web.

-On-line reference works: e.g. encyclopedias, games, etc.

-Home shopping.

-Interactive TV.

-Multimedia courseware.

-Video conferencing.

- Video-on-demand.

-Interactive movies.
7

World Wide Web

• The W3C has listed the following goals for the WWW:

1. Universal access of web resources (by everyone every
where).

2. Electiveness of navigating available information.

3. Responsible use of posted material.

• History of the WWW

1960s-Charles Goldfarb et al. developed the Generalized
Markup Language (GML) for IBM.

8

HTML (Hypertext Markup Language)
• HTML: a language for publishing Hypermedia on the

World Wide Web defined using SGML:

1.HTML uses ASCII, it is portable to all different (possibly

binary incompatible) computer hardware.

2.The current version of HTML is version 4.01.

3.The next generation of HTML is XHTML | a reformulation of

HTML using XML.

HTML uses tags to describe document elements:

• <token params> defining a starting point,

• </token> | the ending point of the element.

• Some elements have no ending tags.

9

A very simple HTML page is as follows:

<HTML> <HEAD>

<TITLE>

A sample web page.

</TITLE>

<META NAME = "Author" CONTENT = "Cranky Professor">

</HEAD> <BODY>

<P>

We can put any text we like here, since this is a paragraph

element.

</P>

</BODY> </HTML>

Naturally, HTML has more complex structures and can be

mixed in with other standards.
10

XML (Extensible Markup Language)
• XML: a markup language for the WWW in which there is

modularity of data, structure and view so that user or

application can be able to define the tags (structure).

• Example of using XML to retrieve stock information from
a database according to a user query:

1. First use a global Document Type Definition (DTD)

that is already defined.

2. The server side script will abide by the DTD rules to

generate an XML document according to the query

using data from your database.

3. Finally send user the XML Style Sheet (XSL) depending

on the type of device used to display the information.

11

• The current XML version is XML 1.0, approved by the W3C

in Feb. 1998.

• XML syntax looks like HTML syntax, although it is much

more strict:

All tags are in lower case, and a tag that has only inline data

has to terminate itself, i.e., <token params />.

Uses name spaces so that multiple DTDs declaring diferent

elements but with similar tag names can have their elements

distinguished.

• DTDs can be imported from URIs as well.

12

• The following XML related specifications are also

standardized:

-XML Protocol: used to exchange XML information between

processes.

-XML Schema: a more structured and powerful language for

defining XML data types (tags).

-XSL: basically CSS for XML.

13

SMIL (Synchronized Multimedia Integration Language)

•Purpose of SMIL: it is also desirable to be able to publish

multimedia presentations using a markup language.

•A multimedia markup language needs to enable scheduling and

synchronization of different multimedia elements, and define

their interactivity with the user.

•The W3C established a Working Group in 1997 to come up

with specifications for a multimedia synchronization language

-SMIL 2.0 was accepted in August 2001.

•SMIL 2.0 is specified in XML using a modularization approach

similar to the one used in xhtml:

•1. All SMIL elements are divided into modules -sets of XML

elements, attributes and values that define one

conceptual functionality.
14

Overview of Multimedia Software Tools
• The categories of software tools briefly examined here are:

1. Music Sequencing and Notation

2. Digital Audio

3. Graphics and Image Editing

4. Video Editing

5. Animation

6. Multimedia Authoring

Music Sequencing and Notation

Cakewalk: now called Pro Audio.

-The term sequencer comes from older devices that stored

sequences of notes (\events", in MIDI).

15

Digital Audio

• Digital Audio tools deal with accessing and editing the

actual sampled sounds that make up audio:

• Cool Edit: A very powerful and popular digital audio

toolkit; emulates a professional audio studio-multi track

productions and sound le editing including digital signal

 processing effects.

• Sound Forge: a sophisticated PC-based program for

 editing audio WAV les.

• Pro Tools: a high-end integrated audio production and

editing environment -MIDI creation and manipulation;

powerful audio mixing, recording, and editing software.

16

Graphics and Image Editing

Adobe Illustrator: A powerful publishing tool from Adobe.

Uses vector graphics; graphics can be exported to Web.

•Adobe Photoshop: The standard in a graphics, image

processing and manipulation tool.

-Allows layers of images, graphics, and text that can be

separately manipulated for maximum flexibility.

•Macromedia Freehand: a text and web graphics editing

•Tool that supports many bitmap formats such as GIF, PNG,

 and JPEG.

17

Video Editing

• Adobe Premiere: an intuitive, simple video editing tool for

nonlinear editing, i.e., putting video clips into any order:

-Video and audio are arranged in tracks".

- A large library of built-in transitions, filters and motions

 for clips) effective multimedia productions with little efforts.

• Adobe After Effects: a powerful video editing tool that

enables users to add and change existing movies. Can add

many effects: lighting, shadows, motion blurring; layers.

• Final Cut Pro: a video editing tool by Apple; Macintosh

only.

18

Animation

• Multimedia APIs:

-Java3D: API used by Java to construct and render 3D graphics,

similar to the way in which the Java Media Framework is

used for handling media les.

1. Provides a basic set of object primitives (cube, splines,etc.)

for building scenes.

2. It is an abstraction layer built on top of OpenGL or DirectX

(the user can select which).

-DirectX : Windows API that supports video, images, audio and

3-D animation

-OpenGL: the highly portable, most popular 3-D API.

19

1-Bit Images

• Images consist of pixels (picture elements in digital images).

• A 1-bit image (also called binary image) consists of on and off

bits only and thus is the simplest type of image.

• Each pixel is stored as a single bit (0 or 1)

• It is also sometimes called a 1-bit monochrome (called Lena

image by scientists) image since it contains no color. See

Figure in next slide.

• Monochrome

20

8-Bit Gray-Level Images

• 8-bit image is one for which each pixel has a gray value

between 0 and 255.

• Each pixel is represented by a single byte.

• The entire image can be thought of as a two-

dimensional array of pixel values referred to as a bitmap.

• Image resolution refers to the number of pixels in a digital

image (higher resolution always yields better quality but

increases size)

21

24-Bit Color Images

• In a color 24-bit image, each pixel is represented by three

bytes, usually representing RGB.

• Since each value is in the range 0–255, this format supports

256×256×256, or a total of 16,777,216, possible combined

colors; which increases storage size.

• A 640 × 480 24-bit color image would require 921.6 KB of

storage. (without any compression applied)

• Compression is used to decrease the image size by simply

grouping pixels effectively.

22

Higher Bit-Depth Images

• In some fields such as medicine (security cameras, satellite

imaging) more accurate images are required to see the

patient’s liver, for example.

• To get such images, special cameras that view more than just

3 colors (RGB) are used.

• Such images are called multispectral (more than three colors)

or hyper spectral (224 colors for satellite imaging).

23

8-Bit Color Images

•Color quantizing example: reducing the number of colors

required to represent a digital image makes it possible to

reduce its file size.

•8-bit color image (so-called 256 colors). Files use the

concept of a lookup table (LUT) to store color information.

•For example:

– if exactly 23 pixels have RGB values (45, 200, 91)

– then store the value 23 in a three-dimensional array, at the

element indexed by the index values [45, 200, 91].

•This data structure is called a color histogram.

24

Notice that the difference between Fig. a, the 24-bit

image, and Fig. b, the 8-bit image, is reasonably small.

Fig. a, the 24-bit image

Fig. b, the 8-bit image

25

Another example for difference between Fig. c, the 24-bit

image, and Fig. d the 8-bit image, is reasonably small.

Fig. c, the 24-bit image

Fig. d, the 8-bit image

26

8-Bit Color Images

• Note the great savings in space for 8-bit images over 24-bit

ones:

• 640 ×480 8-bit color image requires only 300 KB of

storage.

• compared to 921.6 KB for a color image (again, without any

compression applied).

27

Color Lookup Tables

• The LUT is often called a palette.

• The idea is to store only the index, or code value, for each

pixel.

28

•A Color-picker consists of an array of fairly large blocks of

color (or a semi-continuous range of colors) such that a mouse-

click will select the color indicated.

-In reality, a color-picker displays the palette colors

associated with index values from 0 to 255.

- The below figure displays the concept of a color-picker: if

the user selects the color block with index value 2, then the

color meant is cyan, with RGB values (0, 255, 255).

29

Fig. Color-picker for 8-bit color: each block of the

color-picker corresponds to one row of the color LUT

30

GIF

•GIF standard supports interlacing — successive display of
pixels in widely-spaced rows by a 4-pass display process.

•Interlacing allows a quick sketch to appear when a web browser

displays the image, followed by more detailed fill-ins.

•The JPEG standard (below) has a similar display mode,

denoted progressive mode.

•GIF has two formats GIF87 (standard) and GIF89 supports

simple animation.

31

• Color Map is set up in a very simple fashion as in Fig. 3.14.

However, the actual length of the table equals 2(pixel+1) as

given in the Screen Descriptor.

Fig: GIF color map.

32

• Each image in the file has its own Image Descriptor,

defined as in Figure

Figure: GIF image descriptor.

33

Figure: JPEG image with low quality specified by user.

34

PNG
• PNG format: standing for Portable Network Graphics —

meant to supersede the GIF standard, and extends it in

important ways.

• Special features of PNG files include:

1.Support for up to 48 bits of color information — a large

increase.

2.Files may contain gamma-correction information for

correct display of color images, as well as alpha-channel

information for such uses as control of transparency.

3.The display progressively displays pixels in a 2-

dimensional fashion by showing a few pixels at a time over

seven passes through each

 8 X 8 block of an image.

35

TIFF
• TIFF: stands for Tagged Image File Format.

• The support for attachment of additional information (referred

to as “tags”) provides a great deal of flexibility.

1.The most important tag is a format signifier: what type of

compression etc. is in use in the stored image.

2.TIFF can store many different types of image: 1-bit,

grayscale, 8-bit color, 24-bit RGB, etc.

3.TIFF was originally a lossless format but now a new JPEG

tag allows one to opt for JPEG compression.

36

PS and PDF
• PostScript is an important language for typesetting, and many

high-end printers have a PostScript interpreter built into them.

• PostScript is a vector-based, rather than pixel based, picture

language: page elements are essentially defined in terms of

vectors.

• PostScript includes vector/structured graphics as well as text

• Several popular graphics programs, such as Adobe Illustrator,

use PostScript.

• Note, however, that the PostScript page description language

does not provide compression; in fact, PostScript files are just

stored as ASCII.

37

Color Science

• Light and Spectra

• Light is an electromagnetic wave. Its color is characterized by

the wavelength content of the light.

(a)Laser light consists of a single wavelength: e.g., a ruby laser

produces a bright, scarlet-red beam.

(b)Most light sources produce contributions over many

wavelengths.

(c)However, humans cannot detect all light, just contributions

that fall in the "visible wavelengths".

(d)Short wavelengths produce a blue sensation, long

wavelengths produce a red one.

38

Color Science
• Human Vision

• The eye works like a camera, with the lens focusing an image

onto the retina (upside-down and left-right reversed).

• The retina consists of an array of rods and three kinds of cones.

See images (rods_cones, rods_cones1).

• The rods come into play when light levels are low and produce

a image in shades of gray ("all cats are gray at night!").

• For higher light levels, the cones each produce a signal.

Because of their differing pigments, the three kinds of cones are

most sensitive to red (R), green (G), and blue (B) light.

• It seems likely that the brain makes use of differences R-G, G-

B, and B-R, as well as combining all of R, G, and B into a high-

light-level achromatic channel.

39

Color Science

• Spectral Sensitivity of the Eye

• The eye is most sensitive to light in the middle of the visible

Spectrum.

• The Blue receptor sensitivity is not shown to scale because it

is much smaller than the curves for Red or Green – Blue is a

late addition, in evolution.

• Figure shows the overall sensitivity as a dashed line – this

important curve is called the luminous-efficiency function.

– It is usually denoted V (λ) and is formed as the sum of the

response curves for Red, Green, and Blue.

40

Color Science

Fig. : Image formation model. 41

Color Science

• Camera Systems

• Camera systems are made in a similar fashion; a good camera

has three signals produced at each pixel location

(corresponding to a retinal position).

• Analog signals are converted to digital, truncated to integers,

and stored. If the precision used is 8-bit, then the maximum

value for any of R; G;B is 255, and the minimum is 0.

42

UNIT II

• An analog signal f (t) samples a time-varying image. So-

called progressive scanning traces through a complete picture

(a frame) row-wise for each time interval.

• A high-resolution computer monitor typically uses a time

 interval of 1/72 s.

• In TV and in some monitors and multimedia standards,

another system, interlaced scanning, is used.

• Here, the odd-numbered lines are traced first, then the even-

numbered lines.

• This results in “odd” and “even” fields—two fields make up

one frame.

43

Interlacing

• In fact, the odd lines (starting from 1) end up at the middle of

a line at the end of the odd field, and the even scan starts at a

half-way point.

• First the solid lines are traced P to Q, then R to S, and

so on, ending at T

• Then the even field starts at U and ends at V.

• The scan lines are not horizontal because a small voltage is

applied, moving the electron beam down over time.

44

Interlacing

 Interlacing was invented because, when standards were being

defined, it was difficult to transmit the amount of information

in a full frame quickly enough to avoid flicker, the double

number of fields presented to the eye reduces the eye

perceived flicker.

• The jump from Q to R and so on in Figure is called the

horizontal retrace, during which the electronic beam in the

CRT is blanked.

• The jump from T to U or V to P is called the vertical retrace.

45

NTSC Video

• NTSC stands for (National Television System Committee of

the U.S.A)

• The NTSC TV standard is mostly used in North America

and Japan.

• It uses a familiar 4:3 aspect ratio (i.e., the ratio of picture

width to height) and 525 (interlaced) scan lines per frame at

30 fps.

• Figure shows the effect of “vertical retrace and sync” and

“horizontal retrace and sync” on the NTSC video raster.

46

What is Raster Graphics?
• A raster graphics image is a dot matrix data structure representing a

generally rectangular grid of pixels, or points of color, viewable via

a monitor, paper, or other display medium. (=Bitmap)

• A raster is technically characterized by the width and height of the

image in pixels and by the number of bits per pixel (a color depth,

which determines the number of colors it can represent)

• Most computer images are stored in raster graphics formats.

• Raster graphics are resolution dependent, meaning they cannot

scale up to an arbitrary resolution without loss of apparent quality.

This property contrasts with the capabilities of vector graphics ,

which easily scale up to the quality of the device rendering them.

47

What is Raster Graphics
• The smiley face in the top left corner is a raster image. When

enlarged, individual pixels appear as squares. Zooming in

further, they can be analyzed, with their colors constructed by

adding the values for red, green and blue.

48

NTSC Video

• Figure 5.4 shows the effect of “vertical retrace and sync” and

“horizontal retrace and sync” on the NTSC video raster.

• Blanking information is placed into 20 lines reserved for

control information at the beginning of each field.

• Hence, the number of active video lines per frame is only 485.

• Similarly, almost 1/6 of the raster at the left side is blanked

for horizontal retrace and sync.

• The non blanking pixels are called active pixels.

• Image data is not encoded in the blanking regions, but other

information can be placed there, such as V-chip information,

stereo audio channel data, and subtitles in many languages.

49

NTSC Video

• NTSC video is an analog signal with no fixed horizontal

resolution.

• Therefore, we must decide how many times to sample the

signal for display.

• Each sample corresponds to one pixel output.

• A pixel clock divides each horizontal line of video into

samples.

• The higher the frequency of the pixel clock, the more

samples per line.

• Different video formats provide different numbers of samples

per line.

50

NTSC Video

 Table : Samples per line for various analog video

formats

Format Samples per line

VHS 240

S-VHS 400-425

Betamax 500

Standard 8m 300

Hi-8 mm 425

51

Sampling
• A sample is an intersection of channel and a pixel

• The diagram below depicts a 24-bit pixel, consisting of 3

samples for Red (channel) , Green (channel) , and Blue

(channel) .

• In this particular diagram, the Red sample occupies 9 bits, the

Green sample occupies 7 bits and the Blue sample occupies 8

bits, totaling 24 bits per pixel

52

http://en.wikipedia.org/wiki/Channel_(digital_image)
http://en.wikipedia.org/wiki/Channel_(digital_image)
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Pixel

Vertical Trace
• Alternatively referred to as a vertical blanking interval

or the vertical sync signal, vertical retrace is used to

describe the action performed within the computer

monitor that turns the monitor beam off when

 moving it from the lower-right corner of a monitor to the

upper-left of the monitor.

• This action takes place each time the beam has

completed tracing the entire screen to create an image.

53

PAL Video
• PAL (Phase Alternating Line) is a TV standard originally

invented by German scientists.

• This important standard is widely used in Western Europe,

China, India, and many other parts of the world.

• Because it has higher resolution than NTSC, the visual quality

of its pictures is generally better.

54

Digital Video

• The advantages of digital representation for video:

– Storing video on digital devices or in memory, ready to be

processed (noise removal, cut and paste, and so on) and

integrated into various multimedia applications.

– Direct access, which makes nonlinear video editing

simple.

– Repeated recording without degradation of image quality.

– Ease of encryption and better tolerance to channel noise.

55

CCIR and ITU-R Standards for Digital Video
• The CCIR is the Consultative Committee for International

Radio.

• One of the most important standards it has produced is

CCIR-601 for component digital video.

• This standard has since become standard ITU-R Rec. 601, an

international standard for professional video applications.

• It is adopted by several digital video formats, including the

popular DV video.

56

High-Definition TV

The discovery that viewers seated near the screen enjoyed a

level of participation (sensation of immersion) not

experienced with conventional movies.

•Apparently the exposure to a greater field of view, especially

the involvement of peripheral vision, contributes to the sense

of “being there.”

•The main thrust of High-Definition TV (HDTV) is not to

increase the “definition” in each unit area, but rather to

increase the visual field, especially its width.

•First-generation HDTV was based on an analog technology

developed by Sony and NHK in Japan in the late 1970s.

57

High-Definition TV

• Multiple sub-Nyquist Sampling Encoding (MUSE) was an

improved NHK HDTV with hybrid analog/digital

technologies that was put in use in the 1990s.

• It has 1,125 scan lines, interlaced (60 fields per second), and

a 16:9 aspect ratio. (compare with NTSC 4:3 aspect ratio)

• In 1987, the FCC decided that HDTV standards must be

compatible with the existing NTSC standard and must be

confined to the existing Very High Frequency (VHF) and

Ultra High Frequency (UHF) bands.

58

Ultra High Definition TV (UHDTV)

• UHDTV is a new development—a new generation of HDTV!

• The standards announced in 2012

• The aspect ratio is 16:9.

• The supported frame rate has been gradually increased to 120

fps.

59

Video Display Interfaces

• Interfaces for video signal transmission from some output

devices (e.g., set-top box, video player, video card, and etc.)

to a video display (e.g., TV, monitor, projector, etc.).

• There have been a wide range of video display interfaces,

supporting video signals of different formats (analog or

digital, interlaced or progressive), different frame rates, and

different resolutions

– analog interfaces, including Component Video, Composite

Video, and S-Video,

– and then digital interfaces, including DVI, HDMI, and

Display Port.

60

Analog Display Interfaces

• Analog video signals are often transmitted in one of three different

interfaces:

– Component video,

– Composite video, and

– S-video.

• Figure: shows the typical connectors for them

Fig.: Connectors for typical analog display interfaces. From left to

right: Component video, Composite video, S-video, and VGA

61

Analog Display Interfaces

• Composite Video

• When connecting to TVs or VCRs, composite video uses

only one wire (and hence one connector, such as a BNC

connector at each end of a coaxial cable or an RCA plug at

each end of an ordinary wire), and video color signals are

mixed, not sent separately.

• The audio signal is another addition to this one signal.

62

Analog Display Interfaces

• S-Video

• As a compromise, S-video (separated video, or super-video, e.g., in

S-VHS) uses two wires: one for luminance and another for a

composite chrominance signal.

• The reason for placing luminance into its own part of the signal is

that black-and white information is most important for visual

perception.

• As noted in the previous chapter, humans are able to differentiate

spatial resolution in the grayscale (“black and-white”) part much

better than for the color part of RGB images.

• Therefore, color information transmitted can be much less accurate

than intensity information.

• We can see only fairly large blobs of color, so it makes sense to

send less color detail.

63

Analog Display Interfaces

• Video Graphics Array (VGA)

• The Video Graphics Array (VGA) is a video display interface

that was first introduced by IBM in 1987, along with its PS/2

personal computers. It has since been widely used in the

computer industry with many variations, which are

collectively referred to as VGA.

• The initial VGA resolution was 640×480 pixels.

• The VGA video signals are based on analog component

RGBHV (red, green, blue, horizontal sync, vertical sync).

64

Digital Display Interfaces

• Given the rise of digital video processing and the monitors

that directly accept digital video signals, there is a great

demand toward video display interfaces that transmit digital

video signals.

• Such interfaces emerged in 1980s (e.g., Color Graphics

Adapter (CGA)

• Today, the most widely used digital video interfaces include

Digital Visual Interface (DVI), High-Definition Multimedia

Interface (HDMI), and Display Port, as shown in Fig.

Fig.: Connectors of different digital display interfaces. From left to right:

DVI, HDMI, Display Port
65

Digital Display Interfaces

• Digital Visual Interface (DVI)

• Digital Visual Interface (DVI) was developed by the Digital

Display Working Group (DDWG) for transferring digital

video signals, particularly from a computer’s video card to a

monitor.

• It carries uncompressed digital video and can be configured to

support multiple modes, including DVI-D (digital only), DVI-

A (analog only), or DVI-I (digital and analog).

• The support for analog connections makes DVI backward

compatible with VGA (though an adapter is needed between

the two interfaces).

66

Digital Display Interfaces

• Display Port

• Display Port is a digital display interface. It is the first display

interface that uses packetized data transmission, like the

Internet or Ethernet

• Display Port can achieve a higher resolution with fewer pins

than the previous technologies.

• The use of data packets also allows Display Port to be

extensible, i.e., new features can be added over time without

significant changes to the physical interface itself.

• Display Port can be used to transmit audio and video

simultaneously, or either of them.

• Compared with HDMI, Display Port has slightly more

bandwidth, which also accommodates multiple streams of

audio and video to separate devices. 67

D Video and TV

• the rapid progress in the research and development of 3D

technology and the success of the 2009 film Avatar have

pushed 3D video to its peak.

• The main advantage of the 3D video is that it enables the

experience of immersion be there, and really Be there!

• Increasingly, it is in movie theaters, broadcast TV (e.g.,

sporting events), personal computers, and various handheld

devices.

68

Monocular Cues
• The monocular cues that do not necessarily involve both eyes include:

– Shading—depth perception by shading and highlights

– Perspective scaling—converging parallel lines with distance and at

infinity

– Relative size—distant objects appear smaller compared to

 known

 same-size objects not in distance

– Texture gradient—the appearance of textures change

 when they recedeعجارتي in distance

– Blur gradient—objects appear sharper at the distance where the eyes

are focused, whereas nearer and farther objects are gradually blurred

– Haze—due to light scattering by the atmosphere, objects at distance

have lower contrast and lower color saturation

– Occlusion a far object occluded by nearer object(s)

– Motion parallax—induced by object movement and head movement,

such that nearer objects appear to move faster.
69

Binocular Cues

• The human vision system utilizes effective binocular vision, i.e.,

stereo vision or stereopsis (Greek word "stereos" which means firm or

solid).

• Our left and right eyes are separated by a small distance, on average

approximately 2.5 inches, or 65mm, which is known as the

interocular distance.

• As a result, the left and right eyes have slightly different views, i.e.,

images of objects are shifted horizontally.

• The amount of the shift, or disparity, is dependent on the object’s

distance from the eyes, i.e., its depth, thus providing the binocular cue

for the 3D percept.

• The horizontal shift is also known as horizontal parallax.

• The fusion of the left and right images into single vision occurs in the

brain, producing the 3D percept.

• Current 3D video and TV systems are almost all based on stereopsis
because it is believed to be the most effective cue. 70

3D Camera Models

• Simple Stereo Camera Model

• We can design a simple (artificial) stereo camera system in which

the left and right cameras are identical (same lens, same focal

length, etc.); the cameras’ optical axes are in parallel, pointing at the

Z-direction, the scene depth

• Toed-in Stereo Camera Model

• Human eyes can be emulated by so-called Toed-in Stereo Cameras,

in which the camera axes are usually converging يبراقت and not in

parallel.

• One of the complications of this model is that objects at the same

depth (i.e., the same Z) in the scene no longer yield the same

disparity In other words, the “disparity planes” are now curved.

• Objects on both sides of the view appear farther away than the

objects in the middle, even when they have the same depth Z.

71

• An analog signal: continuous measurement of pressure wave.

• Sound is 1-dimensional (amplitude values depend on a 1D variable, time)
as opposed to images which are 2D (x,y)

72

• • The graph in Fig. 6.1 has to be made digital in both time and
amplitude. To digitize, the signal must be sampled in each
dimension: in time, and in amplitude.

– (a) Sampling means measuring the quantity we are interested

in, usually at evenly-spaced intervals.
– (b) The first kind of sampling, using measurements only at

evenly spaced time intervals, is simply called, sampling. The
rate at which it is performed is called the sampling frequency.

– (c) For audio, typical sampling rates are from 8 kHz (8,000
samples per second) to 48 kHz. This range is determined by
the Nyquist theorem, discussed later.

– (d) Sound is a continuous signal (measurement of pressure).
Sampling in the amplitude or voltage dimension is called
quantization. We quantize so that we can represent the signal
as a discrete set of values.

73

•Fig. :Sampling and Quantization. (a): Sampling the
analog signal in the time dimension. (b): Quantization is
sampling the analog signal in the amplitude dimension.

(a) (b)

74

Signals can be decomposed into a weighted sum of sinusoids:
• Building up a complex signal by superposing sinusoids

75

 • Whereas frequency is an absolute measure, pitch is generally
relative — a perceptual subjective quality of sound.

– (a) Pitch and frequency are linked by setting the note A above

middle C to exactly 440 Hz.
– (b) An octave above that note takes us to another A note.

 An octave corresponds to doubling the frequency. Thus with
the middle “A” on a piano (“A4” or “A440”) set to 440 Hz,
the next “A” up is at 880 Hz, or one octave above.

– (c) Harmonics: any series of musical tones whose frequencies
are integral multiples of the frequency of a fundamental tone.

– (d) If we allow non-integer multiples of the base frequency, we
 allow non-“A” notes and have a more complex resulting

sound.

76

 • The Nyquist theorem states how frequently we must sample in
time to be able to recover the original sound.

– (a) Fig. (a) shows a single sinusoid: it is a single, pure,

frequency (only electronic instruments can create such sounds).
– (b) If sampling rate just equals the actual frequency, Fig. (b)

shows that a false signal is detected: it is simply a constant,
with zero frequency.

– (c) Now if sample at 1.5 times the actual frequency, Fig. (c)
shows that we obtain an incorrect (alias) frequency that is lower
than the correct one — it is half the correct one (the
wavelength, from peak to peak, is double that of the actual
signal).

– (d) Thus for correct sampling we must use a sampling rate equal
to at least twice the maximum frequency content in the signal.
This rate is called the Nyquist rate.

77

Fig. Aliasing.

(a): A single frequency.

(b): Sampling at exactly the frequency
produces a constant.

(c): Sampling at 1.5 times per cycle
produces an alias perceived frequency.

78

• Nyquist Theorem: If a signal is band-limited, i.e., there is
a lower limit f1 and an upper limit f2 of frequency
components in the signal, then the sampling rate should
be at least 2(f2 − f1).

• Nyquist frequency: half of the Nyquist rate.

 – Since it would be impossible to recover frequencies
higher than Nyquist frequency in any event, most
systems have an anti aliasing filter that restricts the
frequency content in the input to the sampler to a range at
or below Nyquist frequency.

79

Aliasing

• The relationship among the Sampling Frequency,

• True Frequency, and the Alias Frequency is as

 follows:

falias = fsampling − ftrue, for ftrue < fsampling < 2 × ftrue

• If true freq is 5.5 kHz and sampling freq is 8 kHz.

• Then what is the alias freq?

80

Signal to Noise Ratio (SNR)

• The ratio of the power of the correct signal and the noise
is called the signal to noise ratio (SNR) — a measure of
the quality of the signal.

• The SNR is usually measured in decibels (dB), where 1
dB is a tenth of a bel. The SNR value, in units of dB, is
defined in terms of base-10 logarithms of squared
amplitudes.

81

• • The usual levels of sound we hear around us are described in terms of decibels, as
a ratio to the quietest sound we are capable of hearing. Table 6.1 shows
approximate levels for these sounds.

• Table 1: Magnitude levels of common sounds, in decibels

Threshold of hearing 0

Rustle of leaves 10

Very quiet room 20

Average room 40

Conversation 60

Busy street 70

Loud radio 80

Train through station 90

Riveter 100

Threshold of discomfort 120

Threshold of pain 140

Damage to ear drum • 160

82

Merits of dB
• The decibel's logarithmic nature means that a very large

range of ratios can be represented by a convenient number.
This allows one to clearly visualize huge changes of some
quantity.

• The mathematical properties of logarithms mean that the
overall decibel gain of a multi-component system (such as
consecutive amplifiers) can be calculated simply by
summing the decibel gains of the individual components,
rather than needing to multiply amplification factors.
Essentially this is because log(A × B × C × ...) = log(A) +
log(B) + log(C) + …

• The human perception of sound is such that a doubling of
actual intensity causes perceived intensity to always
increase by the same amount, irrespective of the original
level. The decibel's logarithmic scale, in which a doubling
of power or intensity always causes an increase of
approximately 3 dB, corresponds to this perception.

83

Signal to Quantization Noise Ratio (SQNR)

• Aside from any noise that may have been present in the
original analog signal, there is also an additional error that
results from quantization.
– (a) If voltages are actually in 0 to 1 but we have only 8

bits in which to store values, then effectively we force
all continuous values of voltage into only 256 different
values.

– (b) This introduces a round off error. It is not really
“noise”.Nevertheless it is called quantization noise (or
quantization error).

84

Current signal value / peak signal value

•Fig. : Nonlinear transform for audio signals
•The μ-law in audio is used to develop a non uniform
quantization rule for sound: uniform quantization of r
gives finer resolution in s at the quiet end (s/sp near 0).

Tr
an

sf
o

rm
ed

 s
ig

n
al

85

Current signal value / peak signal value

•Fig. : Nonlinear transform for audio signals
•The μ-law in audio is used to develop a non uniform
quantization rule for sound: uniform quantization of r
gives finer resolution in s at the quiet end (s/sp near 0).

Tr
an

sf
o

rm
ed

 s
ig

n
al

Values in s get mapped to
values in r non-uniformly.
“Perceptual coder” –
allocates more bits to
intervals for which a small
change produces a large
change in perception.

86

Audio Filtering
• Prior to sampling and AD conversion, the audio signal is also usually

filtered to remove unwanted frequencies. The frequencies kept depend
on the application:
– (a) For speech, typically from 50Hz to 10kHz is retained, and

other frequencies are blocked by the use of a band-pass filter that
screens out lower and higher frequencies.

– (b)An audio music signal will typically contain from about
20Hz up to 20kHz.

– (c) At the DA converter end, high frequencies may reappear in
the output — because of sampling and then quantization.

– (d) So at the decoder side, a low pass filter is used after the DA
circuit.

87

Audio Quality vs. Data Rate

• The uncompressed data rate increases as more bits are
used for quantization. Stereo: double the bandwidth. to
transmit a digital audio signal.

– Table : Data rate and bandwidth in sample audio
applications

Quality Sample Rate
(Khz)

Bits per
Sample

Mono /
Stereo

Data Rate
(uncompressed)

(kB/sec)

Frequency Band
(KHz)

Telephone 8 8 Mono 8 0.200-3.4

AM Radio 11.025 8 Mono 11.0 0.1-5.5

FM Radio 22.05 16 Stereo 88.2 0.02-11

CD 44.1 16 Stereo 176.4 0.005-20

DAT 48 16 Stereo 192.0 0.005-20

DVD Audio 192 (max) 24(max) 6 channels 1,200 (max) 0-96 (max)

88

Fig.: Frequency Modulation. (a): A single frequency. (b): Twice the
frequency. (c): Usually, FM is carried out using a sinusoid argument to
a sinusoid. (d): A more complex form arises from a carrier frequency,
2πt and a modulating frequency 4πt cosine inside the sinusoid.

π π

π π π

89

• Wave Table synthesis: A more accurate way of generating
sounds from digital signals. Also known, simply, as
sampling.

• In this technique, the actual digital samples of sounds
from real instruments are stored. Since wave tables are
stored in memory on the sound card, they can be
manipulated by software so that sounds can be combined,
edited, and enhanced.

90

MIDI: Musical Instrument Digital Interface

• MIDI Overview
– (a) MIDI is a protocol adopted by the electronic music

industry in the early 80s for controlling devices, such
as synthesizers and sound cards, that produce music
and allowing them to communicate with each other.

– (b) MIDI is a scripting language — it codes “events”
that stand for the production of sounds. E.g., a MIDI
event might include values for the pitch of a single
note, its duration, and its volume.

91

– (c) The MIDI standard is supported by most

synthesizers, so sounds created on one synthesizer can

be played and manipulated on another synthesizer and

sound reasonably close.

– (d) Computers must have a special MIDI interface, but

this is incorporated into most sound cards.

– (e) A MIDI file consists of a sequence of MIDI

instructions (messages). So, would be quite small in

comparison to a standard audio file.

92

MIDI Concepts
• MIDI channels are used to separate messages.

– (a) There are 16 channels numbered from 0 to 15. The

channel forms the last 4 bits (the least significant bits)
of the message.

– (b) Usually a channel is associated with a particular
instrument: e.g., channel 1 is the piano, channel 10 is
the drums, etc.

– (c) Nevertheless, one can switch instruments
midstream, if desired, and associate another instrument
with any channel.

93

• System messages

(a) Several other types of messages, e.g. a general
message for all instruments indicating a change in
tuning or timing.

• The way a synthetic musical instrument responds to a
MIDI message is usually by simply ignoring any play
sound message that is not for its channel.

 If several messages are for its channel (say play multiple
notes on the piano), then the instrument responds,
provided it is multi-voice, i.e., can play more than a
single note at once (as opposed to violins).

94

• General MIDI: A standard mapping specifying what
instruments will be associated with what channels.
– (a) For most instruments, a typical message might be a

Note On message (meaning, e.g., a keypress and
release), consisting of what channel, what pitch, and
what “velocity” (i.e., volume).

– (b) For percussion instruments, however, the pitch data
means which kind of drum.

– (c) A Note On message consists of “status” byte —
which channel, what pitch — followed by two data
bytes. It is followed by a Note Off message, which
also has a pitch (which note to turn off) and a velocity
(often set to zero).

95

• • The data in a MIDI status byte is between 128 and 255;
each of the data bytes is between 0 and 127. Actual MIDI
bytes are 10-bit, including a 0 start and 0 stop bit.

96

• A MIDI device often is capable of programmability,
and also can change the envelope describing how the
amplitude of a sound changes over time.

• Fig.: shows a model of the response of a digital

instrument to a Note On message:

•

Fig. : Stages of amplitude versus time for a music note
97

Quantization and Transmission of Audio
• Coding of Audio: Quantization and transformation of data

are collectively known as coding of the data.
– a) For audio, the μ-law technique for compounding

audio signals is usually combined with an algorithm
that exploits the temporal redundancy present in audio
signals.

– b) Encoding differences in signals between the present
and a past time can reduce the size of signal values into
a much smaller range.

– c) The result of reducing the variance of values is that
lossless compression methods produce a bit stream
with shorter bit lengths for more likely values.

98

• Fig. : Sampling and Quantization.

(a) (b)

99

Current signal value / peak signal value

•Fig. : Nonlinear transform for audio signals
•The μ-law in audio is used to develop a non uniform quantization rule for sound:
uniform
quantization of r gives finer resolution in s at the quiet end (s/sp near 0).
•Encode in this non-uniform space - can use fewer quantization levels for same
perceptual quality (saw this in mat lab demo).

Tr
an

sf
o

rm
ed

 s
ig

n
al

100

PCM in Speech Compression
• • Assuming a bandwidth for speech from about 50 Hz to

about 10 kHz, the Nyquist rate would dictate a sampling rate
of 20 kHz.
– (a) Using uniform quantization, the minimum sample size

we could get away with would likely be about 12 bits.
Hence for mono speech transmission the bit-rate would be
240 kbps.

– (b) With non-uniform quantization, we can reduce the
sample size down to about 8 bits with the same perceived
level of quality, and thus reduce the bit-rate to 160 kbps.

– (c) However, the standard approach to telephony in fact
assumes that the highest-frequency audio signal we want
to reproduce is only about 4 kHz. Therefore the sampling
rate is only 8 kHz, and the compounded bit-rate.

101

• However, there are two small wrinkles we must also

address:

1. Since only sounds up to 4 kHz are to be considered,

all other frequency content must be noise. Therefore,

we should remove this high-frequency content from

the analog input signal. This is done using a band-

limiting filter that blocks out high, as well as very

low, frequencies.

–

102

•Fig. : Pulse Code Modulation (PCM). (a) Original analog signal
and its corresponding PCM signals. (b) Decoded staircase signal.
(c) Reconstructed signal after low-pass filtering.

Signal decoded
from sample
points

Reconstructed
signal after low-
pass filtering

103

The complete scheme for encoding and decoding
telephony signals is shown as a schematic in Figure below
As a result of the low-pass filtering, the output becomes
smoothed .

• Fig. : PCM signal encoding and decoding.
104

Differential Coding of Audio

• Audio is often stored not in simple PCM but instead in a
form that exploits differences — which are generally
smaller numbers, so offer the possibility of using fewer
bits to store.

 (a) If a time-dependent signal has some consistency over
time (“temporal redundancy”), the difference signal,
subtracting the current sample from the previous one,
will have a more peaked histogram, with a maximum
around zero.

105

 (b) For example, as an extreme case the histogram for

a linear ramp signal that has constant slope is flat,

whereas the histogram for the derivative of the signal

(i.e., the differences, from sampling point to sampling

point) consists of a spike at the slope value.

 (c) So if we then go on to assign bit-string code words

to differences, we can assign short codes to prevalent

values and long code words to rarely occurring ones.

106

Lossless Predictive Coding

n

• Predictive coding: simply means transmitting differences —
predict the next sample as being equal to the current sample; send
not the sample itself but the difference between previous and next.

– (a) Predictive coding consists of finding differences, and

transmitting these using a PCM system.

– (b) Note that differences of integers will be integers. Denote the

integer input signal as the set of values fn. Then we predict
values as simply the previous value.

fn fn 1

en fn fn

107

 (c) But it is often the case that some function of a

few of the previous values, fn−1, fn−2, fn−3, etc.,

provides a better prediction. Typically, a linear

predictor function is used:

2 to 4

fn ank fnk

k 1

108

• The idea of forming differences is to make the histogram
of sample values more peaked.

– (a) For example, Fig.(a) plots 1 second of sampled
speech at 8 kHz, with magnitude resolution of 8 bits
per sample.

– (b) A histogram of these values is actually centered
around zero, as in Fig.(b).

– (c) Fig.(c) shows the histogram for corresponding
speech signal differences. The difference values are
much more clustered around zero than are sample
values themselves.

– (d) As a result, a method that assigns short code words
to frequently occurring symbols will assign a short
code to zero and do rather well: such a coding scheme
will much more efficiently code sample differences
than samples themselves.

109

•Fig.: Differencing concentrates the histogram. (a): Digital speech
signal. (b): Histogram of digital speech signal values. (c): Histogram of
digital speech signal differences.

110

• One problem: suppose our integer sample values are in
the range 0..255. Then differences could be as much as -
255..255 —we’ve increased our dynamic range (ratio of
maximum to minimum) by a factor of two → need more
bits to transmit some differences.

– (a) A clever solution for this: define two new codes,

denoted SU and SD, standing for Shift-Up and Shift-
Down. Some special code values will be reserved for
these.

– (b) Then we can use code words for only a limited set
of signal differences, say only the range −15..16.
Differences which lie in the limited range can be coded
as is, but with the extra two values for SU, SD, a value
outside the range −15..16 can be transmitted as a series
of shifts, followed by a value that is indeed inside the
range −15..16.

111

• Fig. : Schematic diagram for Predictive Coding encoder
and decoder.

112

Introduction

• Compression: the process of coding that will effectively

reduce the total number of bits needed to represent certain

information.

• Figure 7.1 depicts a general data compression scheme, in

which compression is performed by an encoder and

decompression is performed by a decoder.

Fig.: A General Data Compression Scheme.

113

Basics of Information Theory

• What is entropy? is a measure of the number of specific

ways in which a system may be arranged, commonly

understood as a measure of the disorder of a system.

• As an example, if the information source S is a gray-level

digital image, each si is a gray-level intensity ranging from 0

to (2k − 1), where k is the number of bits used to represent

each pixel in an uncompressed image.

• We need to find the entropy of this image; which the number

of bits to represent the image after compression.

114

Distribution of Gray-Level Intensities

• Fig.: Histograms for Two Gray-level Images.
• Fig. (a) shows the histogram of an image with uniform

distribution of gray-level intensities, i.e., ∀i pi = 1/256.
Hence, the entropy of this image is:

• log2256 = 8
• Fig. (b) shows the histogram of an image with two

possible values (binary image). Its entropy is 0.92.

115

Run-Length Coding

• RLC is one of the simplest forms of data compression.

• The basic idea is that if the information source has the property that

symbols tend to form continuous groups, then such symbol and the

length of the group can be coded.

• Consider a screen containing plain black text on a solid white

background.

• There will be many long runs of white pixels in the blank space, and

many short runs of black pixels within the text. Let us take a

hypothetical single scan line, with B representing a black pixel and

Wrepresenting white:

116

Shannon–Fano Algorithm
• To illustrate the algorithm, let us suppose the symbols to be

coded are the characters in the word HELLO.

• The frequency count of the symbols is Symbol H E L O

 Count 1 1 2 1

• The encoding steps of the Shannon–Fano algorithm can be

presented in the following top-down manner:

• 1. Sort the symbols according to the frequency count of their

occurrences.

• 2. Recursively divide the symbols into two parts, each with

approximately the same number of counts, until all parts

contain only one symbol.

117

Shannon–Fano Algorithm
• A natural way of implementing the above procedure is to

build a binary tree.

• As a convention, let us assign bit 0 to its left branches and 1

to the right branches.

• Initially, the symbols are sorted as LHEO.

• As Fig. shows, the first division yields two parts: L with a

count of 2, denoted as L:(2); and H, E and O with a total

count of 3, denoted as H, E, O:(3).

• The second division yields H:(1) and E, O:(2).

• The last division is E:(1) and O:(1).

118

Shannon–Fano Algorithm

Fig.: Coding Tree for HELLO by Shannon-Fano. 119

Table : Result of Performing Shannon-Fano on HELLO

Symbol Count Log 1

2 pi
Code # of bits used

L 2 1.32 0 2

H 1 2.32 10 2

E 1 2.32 110 3

O 1 2.32 111 3

TOTAL # of bits: 10

120

Fig. Another coding tree for HELLO by Shannon- Fano.

121

Table : Another Result of Performing Shannon-Fano
• on HELLO (see Fig.)

Symbol Count Log2
 1

pi
Code # of bits used

L 2 1.32 00 4

H 1 2.32 01 2

E 1 2.32 10 2

O 1 2.32 11 2

TOTAL # of bits: 10

122

Shannon–Fano Algorithm

• The Shannon–Fano algorithm delivers satisfactory coding

results for data compression, but it was soon outperformed

and overtaken by the Huffman coding method.

• The Huffman algorithm requires prior statistical knowledge

about the information source, and such information is often

not available.

• This is particularly true in multimedia applications, where

future data is unknown before its arrival, as for example in

live (or streaming) audio and video.

• Even when the statistics are available, the transmission of the

symbol table could represent heavy overhead

• The solution is to use adaptive Huffman coding compression

algorithms, in which statistics are gathered and updated

dynamically as the data stream arrives.
123

Dictionary-Based Coding

•Unlike variable-length coding, in which the lengths of the

code words are different, LZW uses fixed-length code words

to represent variable length strings of symbols/characters that

commonly occur together, such as words in English text.

•As in the other adaptive compression techniques, the LZW

encoder and decoder builds up the same dictionary

dynamically while receiving the data—the encoder and the

decoder both develop the same dictionary.

124

Dictionary-Based Coding
• LZW proceeds by placing longer and longer repeated entries

into a dictionary, then emitting (sending) the code for an

element rather than the string itself, if the element has already

been placed in the dictionary.

• Remember, the LZW is an adaptive algorithm, in which the

encoder and decoder independently build their own string

tables. Hence, there is no overhead involving transmitting the

string table.

• LZW is used in many applications, such as UNIX compress,

GIF for images, WinZip, and others.

125

compression

• compression ratio for image data using lossless

compression techniques (e.g., Huffman Coding, Arithmetic

Coding, LZW) is low when the image histogram is

relatively flat.

• For image compression in multimedia applications, where a

higher compression ratio is required, lossy methods are

usually adopted.

• In lossy compression, the compressed image is usually not

the same as the original image but is meant to form a close

approximation to the original image perceptually

126

Distortion Measures

• To quantitatively describe how close the approximation is to

the original data, some form of distortion measure is

required.

• A distortion measure is a mathematical quantity that specifies

how close an approximation is to its original, using some

distortion criteria.

• When looking at compressed data, it is natural to think of the

distortion in terms of the numerical difference between the

original data and the reconstructed data.

127

• This section introduces some basic video compression
techniques and illustrates them in standards H.261 and
H.263—two video compression standards aimed mostly
at videoconferencing.

• The next two chapters further introduce several MPEG
video compression standards and the latest, H.264 and
H.265.

128

Lossy Compression

• Lossless compression algorithms do not deliver compression
ratios that are high enough. Hence, most multimedia
compression algorithms are lossy.

• What is lossy compression?

– The compressed data is not the same as the original data,
but a close approximation of it.

– Yields a much higher compression ratio than that of
lossless compression.

129

The Rate-Distortion Theory

• Provides a framework for
• the study of tradeoffs between

• Rate and Distortion.

• Rate: Average number of bits

• required to represent each symbol.

• Fig. : Typical Rate

 Distortion Function.

130

Quantization
• Reduce the number of distinct output values to a much

smaller set. It is the main source of the “loss” in lossy
compression.

• Three different forms of quantization:

• Uniform Quantization.

• Non uniform Quantization.

• Vector Quantization.

131

Transform Coding: DCT

• If Y is the result of a linear transform T of the input vector X
in such a way that the components of Y are much less
correlated, then Y can be coded more efficiently than X.

• If most information is accurately described by the first few
components of a transformed vector, then the remaining
components can be coarsely quantized, or even set to zero,
with little signal distortion.

132

Spatial Frequency and DCT
• Spatial frequency indicates how many times pixel values

change across an image block.

• The DCT formalizes this notion with a measure of how much

the image contents change in correspondence to the number
of cycles of a cosine wave per block.

• The role of the DCT is to decompose the original signal into

its DC and AC components; the role of the IDCT is to
reconstruct (re-compose) the signal.

133

• Fig. : The 1D DCT basis functions.

134

• Fig. (cont’d): The 1D DCT basis functions.

135

(a)

(b)

•Fig. : Examples of 1D Discrete Cosine Transform: (a) A DC signal f1(i), (b)
An AC signal f2(i).

136

(c)

(d)

•Fig. (cont’d): Examples of 1D Discrete Cosine Transform: (c) f3(i) =
f1(i)+f2(i), and (d) an arbitrary signal f(i).

137

Fig.: An example of 1D IDCT.

138

• Fig.:(cont’d): An example of 1D IDCT.

139

Introduction to Video Compression

• A video consists of a time-ordered sequence of frames,

i.e., images.

• An obvious solution to video compression would be

predictive coding based on previous frames.

 Compression proceeds by subtracting images: subtract in

time order and code the residual error.

• It can be done even better by searching for just the right

parts of the image to subtract from the previous frame.

140

Video Compression with Motion Compensation
• Consecutive frames in a video are similar — temporal

redundancy exists.

• Temporal redundancy is exploited so that not every frame of
the video needs to be coded independently as a new image.

• The difference between the current frame and other frame(s)
in the sequence will be coded — small values and low
entropy, good for compression.

• Steps of Video compression based on Motion Compensation
(MC):

1. Motion Estimation (motion vector search).

2. MC-based Prediction.

3. Derivation of the prediction error, i.e., the difference.

141

Motion Compensation

• Each image is divided into macro blocks of size N x N.

– By default, N = 16 for luminance images. For

chrominance images,

 N = 8 if 4:2:0 chroma sub sampling is adopted.

• Motion compensation is performed at the macro block level.

– The current image frame is referred to as Target Frame.

– A match is sought between the macro block in the Target

Frame and the most similar macro block in previous

and/or future frame(s) (referred to as Reference frame(s)).

– The displacement of the reference macro block to the

target macro block is called a motion vector MV.

– Figure 10.1 shows the case of forward prediction in

which the Reference frame is taken to be a previous

frame.
142

Fig. : Macroblocks and Motion Vector in Video Compression.

143

H.261
• H.261: An earlier digital video compression standard, its

principle of MC-based compression is retained in all later

video compression standards.

– - The standard was designed for videophone, video

conferencing and other audiovisual services over ISDN.

– - The video codec supports bit-rates of p x 64 kbps, where

 p ranges from 1 to 30 (Hence also known as p * 64).

– - Require that the delay of the video encoder be less than

150 msec so that the video can be used for real-time

bidirectional video conferencing.

144

Table :Video Formats Supported by H.261

145

Fig. : H.261 Frame Sequence.

146

H.261 Frame Sequence
• Two types of image frames are defined: Intra-frames (I-frames) and

Inter-frames (P-frames):

– - I-frames are treated as independent images. Transform coding

method similar to JPEG is applied within each I-frame, hence

“Intra”.

– - P-frames are not independent: coded by a forward predictive

coding method (prediction from a previous P-frame is allowed —

not just from a previous I-frame).

– - Temporal redundancy removal is included in P-frame coding,

whereas I-frame coding performs only spatial redundancy removal.

- To avoid propagation of coding errors, an I-frame is usually sent a couple

of times in each second of the video.

• Motion vectors in H.261 are always measured in units of full pixel and

they have a limited range of ± 15 pixels, i.e., p = 15.

147

Intra-frame (I-frame) Coding

148

Inter-frame (P-frame) Predictive Coding

• Figure shows the H.261 P-frame coding scheme

based on motion compensation:

– For each macro block in the Target frame, a

motion vector is allocated by one of the search

methods discussed earlier.

– After the prediction, a difference macro block is

derived to measure the prediction error.

– Each of these 8 x 8 blocks go through DCT,

quantization, zigzag scan and entropy coding

procedures.

149

Fig. : H.261 P-frame Coding Based on Motion Compensation.

150

Fig. : H.261 Encoder and Decoder.

151

Fig. (Cont'd): H.261 Encoder and Decoder.

152

MPEG

• MPEG: Moving Pictures Experts Group, established in

1988 for the development of digital video.

• It is appropriately recognized that proprietary interests

need to be maintained within the family of MPEG

standards:

– Accomplished by defining only a compressed bit

stream that implicitly defines the decoder.

– The compression algorithms, and thus the encoders,

are completely up to the manufacturers.

153

 Fig : The Need for Bidirectional Search.

The MB containing part of a ball in the Target frame cannot find

a good matching MB in the previous frame because half of the

ball was occluded by another object. A match however can

readily be obtained from the next frame.

154

Motion Compensation in MPEG-1 (Cont’d)

• MPEG introduces a third frame type — B-frames, and its

accompanying bi-directional motion compensation.

• The MC-based B-frame coding idea is illustrated in Fig. :

– Each MB from a B-frame will have up to two motion

vectors (MVs) (one from the forward and one from the

backward prediction).

– If matching in both directions is successful, then two MVs

will be sent and the two corresponding matching MBs are

averaged (indicated by ‘%’ in the figure) before comparing

to the Target MB for generating the prediction error.

– If an acceptable match can be found in only one of the

reference frames, then only one MV and its corresponding

MB will be used from either the forward or backward

prediction.
155

Fig : B-frame Coding Based on Bidirectional Motion Compensation.

156

Fig : MPEG Frame Sequence.

157

Typical Sizes of MPEG-1 Frames

• The typical size of compressed P-frames is significantly

smaller than that of I-frames — because temporal

redundancy is exploited in inter-frame compression.

• B-frames are even smaller than P-frames — because of

(a) the advantage of bi-directional prediction and (b) the

lowest priority given to B-frames.

Table : Typical Compression Performance of MPEG-1

Frames Type Size Compression

I 18kB 7:1

P 6kB 20:1

B 2.5kB 50:1

Avg 4.8kB 27:1

158

Fig : Layers of MPEG-1 Video Bitstream.

159

MPEG-4

• MPEG-4: a newer standard. Besides compression, pays

great attention to issues about user interactivities.

• MPEG-4 departs from its predecessors in adopting a new

 object-based coding:

– Offering higher compression ratio, also beneficial for

digital video composition, manipulation, indexing, and

retrieval.

– Figure illustrates how MPEG-4 videos can be

composed and manipulated by simple operations on

the visual objects.

160

Fig. : Composition and Manipulation of MPEG-4 Videos.

161

MPEG-4 (Cont’d)

• MPEG-4 (Fig. (b)) is an entirely new standard for:

(a) Composing media objects to create desirable audiovisual

scenes.

(b) Multiplexing and synchronizing the bit streams for these

media data entities so that they can be transmitted with

guaranteed Quality of Service (QoS).

(c) Interacting with the audiovisual scene at the receiving

end — provides a toolbox of advanced coding modules

and algorithms for audio and video compressions.

162

(a) (b)

163

MPEG-7
• The main objective of MPEG-7 is to serve the need of audio-

visual content-based retrieval (or audiovisual object retrieval)

in applications such as digital libraries.

• Nevertheless, it is also applicable to any multimedia

applications involving the generation (content creation) and

usage (content consumption) of multimedia data.

• MPEG-7 became an International Standard in September

2001 with the formal name Multimedia Content Description

Interface.

164

Applications Supported by MPEG-7

• MPEG-7 supports a variety of multimedia applications.

Its data may include still pictures, graphics, 3D models,

audio, speech, video, and composition information (how

to combine these elements).

• These MPEG-7 data elements can be represented in

textual format, or binary format, or both.

• Fig. illustrates some possible applications that will

benefit from the MPEG-7 standard.

165

• Fig. :Possible Applications using MPEG-7.

166

MPEG-21
• The development of the newest standard, MPEG-21: Multimedia

Framework, started in June 2000, and was expected to become
International Standard by 2003.

• The vision for MPEG-21 is to define a multimedia framework to
enable transparent and augmented use of multimedia resources
across a wide range of networks and devices used by different
communities.

• The seven key elements in MPEG-21 are:
– Digital item declaration — to establish a uniform and flexible

abstraction and interoperable schema for declaring Digital items.
– Digital item identification and description— to establish a framework

for standardized identification and description of digital items
regardless of their origin, type or granularity.

167

– Content management and usage — to provide an
interface and protocol that facilitate the management and
usage (searching, caching, archiving, distributing, etc.) of
the content.

– Intellectual property management and protection
(IPMP) — to enable contents to be reliably managed and
protected.

– Terminals and networks — to provide interoperable and
transparent access to content with Quality of Service
(QoS) across a wide range of networks and terminals.

– Content representation — to represent content in an
adequate way for pursuing the objective of MPEG-21,
namely “content anytime anywhere”.

– Event reporting — to establish metrics and interfaces for
reporting events (user interactions) so as to understand
performance and alternatives.

168

UNIT - III

•MPEG-1 adopts the CCIR601 digital TV format also

known as SIF (Source Input Format).

– 352 × 240 for NTSC video at 30 fps

– 352 × 288 for PAL video at 25 fps

– It uses 4:2:0 chroma sub sampling

• The MPEG-1 standard is also referred to as ISO/IEC 11172. It

has five parts: 11172-1 Systems, 11172-2 Video, 11172-3

Audio, 11172-4 Conformance, and 11172-5 Software.

169

MotionCompensatiin M P E G - 1
•Motion Compensation (MC) based video encoding in H.261

works as follows:

– In Motion Estimation (ME), each macro block (MB) of the

Target P-frame is assigned a best matching MB from the

previously coded I or P frame - prediction.

– prediction error: The difference between the MB and its

matching MB, sent to DCT and its subsequent encoding

steps.

– The prediction is from a previous frame — forward pre-

diction.

170

Previous frame Next frame Target frame

Fig : The Need for Bidirectional Search.

The MB containing part of a ball in the Target frame cannot find a good

matching MB in the previous frame because half of the ball was occluded

by another object. A match however can readily be obtained from the next

frame.

171

Target frame

DCT

Quantization

Entropy coding

Future reference frame Previous reference frame

%

Difference macroblock

Y

Cb

Cr

For each 8 8 block

Motion vectors

0011101…

Fig : B-frame Coding Based on Bidirectional Motion Compensation.

172

I

Time

Display order

Coding and
transmission order

I

I P B B P B B I B B

B B P B B P B B

M P E G Frame Sequence.

173

Slices in an M P E G - 1 Picture.

174

Table : Default Quantization Table (Q1) for Intra-Coding

8 16 19 22 26 27 29 34

16 16 22 24 27 29 34 37

19 22 26 27 29 34 34 38

22 22 26 27 29 34 37 40

22 26 27 29 32 35 40 48

26 27 29 32 35 40 48 58

26 27 29 34 38 46 56 69

27 29 35 38 46 56 69 83

Table : Default Quantization Table (Q2) for Inter-Coding

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

175

Typical Sizes of M P E G - 1 Frames

•The typical size of compressed P-frames is significantly

smaller than that of I-frames — because temporal redundancy

is ex- plotted in inter-frame compression.

•B-frames are even smaller than P-frames — because of (a) the

advantage of bi-directional prediction and (b) the

 lowest priority given to B-frames.

 Table : Typical Compression Performance of MPEG-1 Frames

Type Size Compression

I 18 kB 7:1

P 6 kB 20:1

B 2.5 kB 50:1

Avg 4.8 kB 27:1

176

Table : Profiles and Levels in M P E G - 2

Level Simple

Profile

SNR

Scalable

Profile

Spatially

Scalable

Profile

4:2:2

Profile

Multiview

Profile

High

High

*

Main

Profile

*

*

* *

*

High

Profile

*

*

* * *
1440

Main

Low * *

Table : Four Levels in the Main Profile of M P E G - 2

Level Max

Resolution

Max

fps

Max

Pixels/sec

Max coded

Data Rate (Mbps)

Application

High 1, 920 × 1, 152 60 62.7 × 106
80 film production

High 1440 1, 440 × 1, 152 60 47.0 × 106
60 consumer HDTV

Main 720 × 576 30 10.4 × 106
15 studio TV

Low 352 × 288 30 3.0 × 106
4 consumer tape equiv.

177

Top−field

Bottom−field

(a) Frame−picture vs. Field−pictures

. . .

I or P B P

(b) Field Prediction for Field−pictures

Fig.: Field pictures and Field-prediction for Field-pictures in M P E G - 2 .

178

(a) (b)

Fig :Zigzag and Alternate Scans of D C T Coefficients for

Progressive and Interlaced Videos in M P E G - 2 .

179

M P E G - 2 Scalabilities (Cont’ d)

•MPEG-2 supports the following scalabilities:

1. SNR Scalability — enhancement layer provides higher

SNR.

2. Spatial Scalability — enhancement layer provides

higher spatial resolution.

3. Temporal Scalability — enhancement layer facilitates higher

frame rate.

4. Hybrid Scalability — combination of any two of the above

three scalabilities.

5. Data Partitioning — quantized DCT coefficients are split

into partitions.
180

Spatial

interpolator

Spatial

decimator

Spatial

enhancement layer

encoder

Bits_enhanc

e

ase

Current
frame

Spatial base

layer

encoder

Bits_b
Example Weight Table

1.0
0.5

...

0

+

Interpolated MB

from Base layer

Predicted MB

from Enh. layer

atial

erpolation

Predicted MB

from Base layer

w Sp

Int

8 × 8

16 × 16

16 × 16

16 × 16

w

1 − w

(a) (b)

F ig. :Encoder for M P E G – 2 Spatial Scalability. (a) Block Diagram.

 (b) Combining Temporal and Spatial Predictions for Encoding

at Enhancement Layer.

181

Temporal Scalability

•The input video is temporally de multiplexed into two pieces,

each carrying half of the original frame rate.

•Base Layer Encoder carries out the normal single-layer cod-

ing procedures for its own input video and yields the output bits

tream Bits base.

•The prediction of matching MBs at the Enhancement Layer can

be obtained in two ways:

– Interlayer MC (Motion-Compensated) Prediction.

– Combined MC Prediction and Interlayer MC Prediction.

182

HybridScalability

•Any two of the above three scalabilities can be combined to

form hybrid scalability:

1. Spatial and Temporal Hybrid Scalability.

2. SNR and Spatial Hybrid Scalability.

3. SNR and Temporal Hybrid Scalability.

•Usually, a three-layer hybrid coder will be adopted which con-

sists of Base Layer, Enhancement Layer 1, and Enhancement

Layer 2.

183

A D P C M in Sp eechC o ding

•ADPCM forms the heart of the ITU’s speech

compression standards G.721, G.723, G.726, and G.727.

•The difference between these standards involves the bit-rate

(from 3 to 5 bits per sample) and some algorithm details.

•The default input is µ-law coded PCM 16-bit samples.

184

0

0.5

0.0

0.5

1.0

1.0

0

0.5

0.0

0.5

1.0

1.0

0

0.5

0.0

0.5

1.0

1.0

2000 4000 6000 8000

Time

(a)

2000 4000 6000 8000

Time

(b)

2000 4000 6000 8000

Time

(c)

Fig. Waveform of Word ”Audio”: (a) Speech sample, linear PCM at 8 kHz/16

bits per sample. (b) Speech sample, restored from G.721-compressed audio at

4 bits/sample. (c) Difference signal between (a) and (b).

185

O
u

tp
u

t

10 0

Input
5 10 5

Fig.: G.726 Quantizer

•The input value is a ratio of a difference with the factor

α.

•By changing α, the quantizer can adapt to change in the

range of the difference signal — a backward adaptive

quantizer.

186

Backward AdaptiveQuantizer

•Backward adaptive works in principle by noticing either of

the cases:

– too many values are quantized to values far from zero –

would happen if quantizer step size in f were too small.

– too many values fall close to zero too much of the time

— would happen if the quantizer step size were too large.

•Jayant quantizer allows one to adapt a backward quantizer

step size after receiving just one single output.

– Jayant quantizer simply expands the step size if the quan- tized

input is in the outer levels of the quantizer, and reduces the

step size if the input is near zero.

187

T h e Step Size of Jayant Quantizer

•Jayant quantizer assigns multiplier values Mk to each level,

with values smaller than unity for levels near zero, and values

larger than 1 for the outer levels.

•For signal fn, the quantizer step size ∆ is changed according to

the quantized value k, for the previous signal value fn−1, by the

simple formula

∆ ← Mk∆

188

Phase Insensitivity

•Phase is a shift in the time argument inside a function of

•A complete reconstituting of speech waveform is really un-

necessary, perceptually: all that is needed is for the amount of

energy at any time to be about right, and the signal will sound

about right.

time

.
– Suppose we strike a piano key, and generate a roughly sinusoidal

sound cos(ωt), with ω = 2πf .

–Now if we wait sufficient time to generate a phase shift π/2 and

then strike another key, with sound cos(2ωt + π/2), we generate a

waveform like the solid line in Fig. 13.3.

–This waveform is the sum cos(ωt) + cos(2ωt + π/2).

189

0.0 0.5 1.0 1.5 2.0 2.5 3.0

If we did not wait before striking the second note, then our waveform would

be cos(ωt) + cos(2ωt). But perceptually, the two notes would sound the same

sound, even though in actuality they would be shifted in phase.

190

Channel Vocoder

•Vocoders can operate at low bit-rates, 1–2 kbps. To do so, a

channel vocoder first applies a filter bank to separate out the

different frequency components:

Low-frequency

filter

Mid-frequency

filter

Noise

generator

Pulse

generator

 Low-frequency

filter

Mid-frequency

filter

High-frequency

filter

From 2nd analysis filter

From 3rd analysis filter

From 1st analysis filter

Multiplex, transmit,

demultiplex

High-frequency filter

Voiced/unvoiced

decision

Analysis filters Synthesis filters
.
. .

.
. .

.
. .

Pitch period

Pitch

Fig : Channel Vocoder

191

L P C Coding Process (cont’d)

• Since φ(i, j) can be defined as φ(i, j) = R(|i − j|), and when R(0) ≥ 0, the

matrix {φ(i, j)} is positive symmetric, there exists a fast scheme to

calculate the LP coefficients:

E(0) = R(0), i = 1

while i ≤ p

j = 1 j
ki = [R(i)− .i−1 ai−1R(i − j)]/E(i − 1)

ai−1

i = k i
for j = 1 to i − 1

ai
j j

= a i−1 − kiai
i−1

−j

E(i) = (1 − k2)Ei(i −

1)

i ← i +1 for

j = 1 to p a j = aJ
j

192

Th e Predictors for CELP

•CELP coders contain two kinds of prediction:

– LTP (Long time prediction): try to reduce redundancy in

speech signals by finding the basic periodicity or pitch that

causes a waveform that more or less repeats

– STP (Short Time Prediction): try to eliminate the redun-

dancy in speech signals by attempting to predict the next

sample from several previous ones

193

W(z)/A(z)

Adaptive

codebook

STP

Weighted

speech sw(n)

Original speech s(n)

Ga

W(z)
LTP

Weighted

synthesized

speech sˆw(n)

Stochastic

codebook

Gs

Weighted

error ew(n)

.
. .

.
. .

Fig CELP Analysis Model with Adaptive and Stochastic

Codebooks

194

Adaptive Codebook Searching

•Rationale:

– Look in a codebook of waveforms to find one that matches

the current sub frame

– Codeword: a shifted speech residue segment indexed by the

by the lag τ corresponding to the current speech frame or

sub frame in the adaptive codebook

– The gain corresponding to the codeword is denoted as g0

195

L Z W Close-Loop Codeword Searching

•Closed-loop search is more often used in CELP coders — also

called Analysis-By-Synthesis (A-B-S)

•speech is reconstructed and perceptual error for that is min-

imized via an adaptive codebook search, rather than simply

considering sum-of-squares

•The best candidate in the adaptive codebook is selected to

minimize the distortion of locally reconstructed speech

•Parameters are found by minimizing a measure of the differ-

ence between the original and the reconstructed speech

196

M B E Vocoder

•MBE utilizes the A-B-S scheme in parameter estimation:

– The parameters such as basic frequency, spectrum enve-

lope, and sub-band U/V decisions are all done via closed-

loop searching

– The criterion of the closed-loop optimization is based on

minimizing the perceptually weighted reconstructed speech

ε =
1

2π

error, which can be represented in frequency do- main as
¸ +π

−π
tt(ω)|Sw(ω) − Swr(ω)|dω

Sw(ω) – original speech short-time spectrum

Swr(ω) – reconstructed speech short-time spectrum

tt (ω) – spectrum of the perceptual weighting filter

197

M E L P Vocoder

•MELP: also based on LPC analysis, uses a multiband soft-

decision model for the excitation signal

•The LP residue is band passed and a voicing strength param-

eter is estimated for each band

•Speech can be then reconstructed by passing

 the excitation

through the LPC synthesis filter

•Differently from MBE, MELP divides the excitation into five

fixed bands of 0-500, 500-1000, 1000-2000, 2000-3000, and

3000-4000 Hz

198

Network effects from user contributions are the key to market
dominance in the Web 2.0 era.

—Tim O’Reilly

Link by link, click by click, search is building possibly the most lasting,
ponderous, and significant cultural artifact in the history of humankind:
the Database of Intentions.
—John Battelle, The Search

Web 2.0 is a massive social experiment...this is an opportunity to build
a new kind of international understanding…citizen to citizen, person to
person.
—Lev Grossman, TIME

One of the powerful things about networking technology like the
Internet or the Web or the Semantic Web...is that the things we’ve just
done with them far surpass the imagination of the people who
invented them.

—Tim Berners-Lee, interviewed by Peter Moon, IDG Now

Web 2.0

199

Introduction
• Mosaic browser introduced in 1993 web exploded in popularity.

• Continued to experience tremendous growth throughout the 1990s—
“dot-com bubble”

• Bubble burst in 2001
• In 2003, noticeable shift in how people and businesses were using the
web and developing web-based applications

– Web = companies use the web as a platform to create
collaborative, community-based sites (e.g., social networking sites,
blogs, wikis, etc.)

• Growth of Web 2.0 key factors

– Hardware keeps getting cheaper and faster, with memory capacities
and speeds increasing at a rapid rate

– Broadband Internet use has exploded

– Availability of abundant open source software has resulted in cheaper
(and often free) customizable software options

• Makes it easier to start new Web 2.0 companies and greatly
decreases the cost of failure

– Unlike Web 1.0, there are many easy-to-employ models available to
monetize Web 2.0 business

200

User-Generated Content
• Key to success for many of today’s leading Web 2.0 companies = user-generated content

– articles

– home videos

– Photos

– implicitly generated

• Collective Intelligence

– Collaboration can result in smart ideas

• Wikis

– Allow users to edit existing content and add new information

– Wikipedia

– Wikia

– Media•Wiki open source software

– SocialText

– Using wikis for project collaboration reduces e-mails and phone calls between
employees, while allowing the ability to closely track a project’s changes

• Collaborative Filtering

– Users might submit false or faulty information

• Wikipedia people deliberately adding false information to entries

• Web 2.0 companies rely on the community to help police their sites

• Collaborative filtering lets users promote valuable material and flag offensive or
inappropriate material

201

User-Generated Content (Cont.)

• Craigslist

– Popular classified ads website that has radically changed

the classified advertising market

– Ad postings on Craigslist are free

– Newspapers have experienced a decline in classified ad

sales

• Wisdom of Crowds

– Large diverse groups of people can be smarter than a small

group of specialists

202

Blogging

• History of Blogging

– Blogs are websites consisting of entries listed in reverse
chronological order

– Grown exponentially in recent years because of easy-to-use
blogging software and increasingly economical Internet
access

– Blogs can also now incorporate media, such as music or
videos

• Xanga or LiveJournal

• Blog Components

– Reader comments

– Trackbacks

– Blogroll

• Blogging and Journalism

– Encouraged citizen journalism

– Significant news resource

– Many bloggers are recognized as members of the media 203

Social Networking

• Social networking sites

– Allow users to keep track of their existing interpersonal
relationships and form new ones

• Network Effects

– Increased value of a network as its number of users grows

– Example = eBay—the more buyers and sellers that use the site,
the more valuable the site becomes to its users

– Set the user preferences to default to share content so users will
automatically contribute to the value of the network

– Network effects make it difficult to break into markets already
claimed by successful companies

• Friendster

– Early leader in social networking

• MySpace

– Most popular social networking site

– Pages are personal and customizable

– News Corp, which acquired MySpace in 2005 for $580 million 204

Social Networking (Cont.)
• Facebook

– Hitwise named Facebook the “preferred network among college students

– Facebook held an 85% market share of four-year U.S. universities and had over
31 million users

• LinkedIn

– Business-oriented social networking site

• stay in touch with professional contacts

• network with new contacts

• check references

• find a job or a potential employee

• privacy concerns are more

• Xing
– Xing is a professional networking site based out of Germany and populare in

Europe

• Second Life

– Second Life, developed by Linden Labs, is a 3D virtual world with millions of
inhabitants

– Users create avatars, digital representations of themselves that they can use to
meet other users with similar interests, conduct business, participate in group
activities, take classes and more

– Users can create objects and add scripts (to animate the objects) in the virtual
world

• Users to maintain rights to whatever they create, a dynamic marketplace
has emerged that does millions of dollars in transactions

205

Social Networking (Cont.)

• Gaia Online

– Popular teen virtual world.

• Play games, make friends and express their creativity

• Mobile Social Networking

– Google’s Dodgeball.com provides users with mobile access
to a network of friends in many cities.

206

Social Media
• Social media = any media shared online (e.g., videos, music, photos, news, etc

• YouTube

– Launched in late 2005 and is the leading Internet video site

– Entire site is based on user-generated content

– Can browse videos by category, tag, or by following “related video” links

– Users can subscribe to other users’ content, share videos with friends by e-mail,
or embed videos directly into their blogs or other websites

– YouTube was acquired by Google for $1.65 billion.

• Internet TV

– Many mass-media companies now offer full-length episodes of popular
television shows

– Limited by copyright issues

– Internet TV allows advertisers to target their markets more precisely than with
broadcast television

• Digg

– Features news, videos and podcasts, all posted and rated by users

– Gained popularity by allowing users to “digg” or “bury” posts and user
comments

– Digg uses collaborative filtering

• Last.fm

– Last.fm is an Internet radio website that uses Web 2.0 concepts to make music
recommendations and build communities

207

Social Media (Cont.)

• Digital Rights Management (DRM)

– Add software to media files to prevent them from being

misused

– Protect digital products from illegal distribution

• Podcasting

– Popularized by Apple’s iPod portable media player.

– Podcast is a digital audio file (e.g., an .mp3) that often

takes on the characteristics of a radio talk show

– Introduced a more democratic form of radio broadcasting

208

Tagging
• History of Tagging

– Tagging, or labeling content, is part of the collaborative nature of
Web 2.0

– Tag is any user-generated word or phrase that helps organize
web content and label it in a more human way

• Tag Clouds

– Visual displays of tags weighted by popularity.

• Folksonomies

– Classifications based on tags

– Formed on sites such as Flickr, Technorati and del.icio.us

• Flickr

– Flickr—a popular photo-sharing site—was launched in February
2004 and acquired by Yahoo! in 2005

– Key content-tagging site

• Technorati

– Social media search engine that uses tags to find relevant blogs
and other forms of social media

209

Social Bookmarking

• Social bookmarking sites = share your Internet

bookmarks (e.g., your favorite websites, blogs, and

articles) through a website.

– del.icio.us

– Ma.gnolia

– Blue Dot

– StumbleUpon

– Simpy

– Furl

210

Software Development
• Key to Web 2.0 software development

– KIS (keep it simple; keep it small

– Important given the “attention economy” (too much information, too little
time)

• The Webtop

– Web has now become an application, development, delivery, and execution
platform

– Webtop, or web desktop, allows you to run web applications in a desktop-
like environment in a web browser

– Operating-system–independent applications

• Software as a Service (SaaS)
– Application software that runs on a web server rather than being installed on

the client computer

– Many benefits

• Fewer demands on internal IT departments

• Increased accessibility for out-of-the-office use

• Easy way to maintain software on a large scale

• Examples: Most Google software and Microsoft’s Windows Live and
Office Live.

– Collaborating on projects with co-workers across the world is easier

– Information stored on a web server instead of on a single desktop 211

Software Development
• Perpetual Beta and Agile Development

– Shift away from the traditional software release cycle (i.e., new
software releases take months or years)

– Now a greater focus on agile software development, which refers to
development of fewer features at a time with more frequent releases

• Made possible by using the web as a platform

• The Internet is a dynamic medium

• Should not “overuse” betas

• Open Source

– Not always free, but the source code is available (under license) to
developers, who can customize it to meet their unique needs

• Linux operating systems Red Hat or Ubuntu

– Because the source code is available to everyone, users can look to
the community for bug fixes and plug-ins

– Over 150,000 open source projects are under development

• Examples: Firefox web browser, the Apache web server, the
MySQL database system, DotNetNuke and PHPNuke

212

Software Development

• Licensing: GNU Licenses and Creative Commons

– GNU General Public License (GPL)

• Allows redistribution of the project provided the source

code is included and the copyright information is left

intact

Others: GNU Lesser General Public License and the GNU Free

Documentation License, BSD license and the MIT license

– Creative Commons

• Deals with licensing issues for all types of digital media

213

Rich Internet Applications (RIAs)
• Rich Internet Applications (RIAs)

– Web applications that offer the responsiveness, “rich”
features and functionality approaching that of desktop
applications

• Ajax

– Asynchronous JavaScript and XML

– Allows partial page

– Creates a more responsive GUI, allowing users to continue
interacting with the page as the server processes requests

– Technologies that make up Ajax—XHTML, CSS,
JavaScript, the DOM, XML, and the XML HttpRequest
object

• Dojo

– Dojo is an open source JavaScript

• Flex

– RIA framework that allows you to build scalable, cross-
platform, multimedia-rich applications that can be
delivered over the Internet 214

Rich Internet Applications (RIAs) (Cont.)
• Silverlight

– Microsoft app formerly known as Windows Presentation Foundation Everywhere
(WPF/E)

– Competitor to Flex and Flash

– Uses a compact version of the .NET framework
– User interfaces built in Extensible Application Markup Language (XAML)—

Microsoft’s XML-based format for describing user interfaces

• JavaFX

– Sun Microsystems’ counterpart to Flex and Silverlight

– Consists of the JavaFX Script and JavaFX Mobile (for mobile devices

• Ruby on Rails
– Open source framework based on the Ruby scripting language that allows you to

build database-intensive
applications quickly, easily, and with less code

• Script.aculo.us

– Library for creating “eye candy” effects

– Built on the Prototype JavaScript framework

– Encapsulates the DOM and provides cross-browser processing capabilities

– Core effects include opacity, scale, morph, move, highlight and parallel

• JavaServer Faces

– Java-based web application framework

– Separates design elements from business logic and provides a set of user-interface
components (JSF components) that make developing RIAs simple 215

Rich Internet Applications (RIAs) (Cont.)

• ASP.NET Ajax

– Extension of the .NET framework for creating Ajax-

enabled applications

• Adobe Integrated Runtime and Google Gears

– AIR allows users to run Flex web applications on their

desktops even when they are not connected to the

Internet

– Google Gears allows use of web applications while

offline

216

Web Services, Mashups, Widgets and Gadgets

• Incorporating web services into new programs allows
people to develop new applications quickly

• APIs

• Provide applications with access to external services and
databases

– Examples: Sun’s Java API and Web Services APIs

• Mashups

– Combine content or functionality from existing web
services, websites and RSS feeds to serve a new
purpose

• Housingmaps.com

• Yahoo! Pipes

217

Web Services, Mashups, Widgets and Gadgets (Cont.)

• Widgets and Gadgets

– Mini applications designed to run either
 as stand-alone applications or as add-on features in
web pages

– Personalize your Internet experience by displaying real-
time weather conditions, aggregating RSS feeds, viewing
maps, receiving event reminders, providing easy access to
search engines and more.

• Amazon Web Services

– Amazon is a leading provider of web services

• REST (Representational State Transfer)-Based Web Services

– Architectural style for implementing web services

– Identified by a unique URL

218

Location-Based Services
• Location-Based Services (LBS)

– Applications that take your geographic location (city, state, location of your
mobile device, etc.) into consideration

– Global Positioning System (GPS)

– Local search

• Global Positioning System (GPS)

– Uses numerous satellites that send signals to a GPS receiver to determine its
exact location.

• Mapping Services

– Google Maps is one of the most popular mapping applications available
online.

– Google Earth provides satellite images of virtually any location on the planet

– MapQuest provides similar mapping services

– Additional mapping services include Yahoo! Local Maps and MSN Live
Search

– Companies such as NAVTEQ and Tele Atlas provide digital map data for in-
vehicle and portable navigation devices, websites, location-based services
and more

• GeoRSS and Geotagging

– Set of standards for representing geographical information in an RSS feed
(GeoRSS)

– Geotagging can be used to add location information (longitude, latitude, etc.)
219

XML, RSS, Atom, JSON and VoIP
• XML

– Extensible Markup Language that is a markup language that allows you to label data
based on its meaning

– Describes data in a way that is meaningful to both humans and computers

– Document Type Definition (DTD) or a schema, which defines the structure for the
document

– XML Vocabularies

• XHTML for web content

• CML for chemistry

• MathML for mathematical content and formulas

• XBRL for financial data

• RSS and Atom

– Sites that offer RSS and Atom feeds can maintain an “open connection” with their
readers

– Most major web browsers support RSS and Atom feeds

• JSON

– JavaScript Object Notation (JSON)

– Text-based data interchange format used to represent JavaScript objects as strings
and transmit them over a network

– Commonly used in Ajax applications

• VoIP

– Voice over Internet Protocol (VoIP) is the technology used to make free or
inexpensive phone calls over the Internet. 220

Web 2.0 Monetization Models

• Many Web 1.0 businesses discovered that popularity

(“eyeballs”) was not the same as financial success.

• Web 2.0 companies are paying more attention to

monetizing their traffic.

• Web 2.0 monetization is heavily reliant on advertising

– Example: Google’s AdSense.

221

Web 2.0 Business Models

• Technologies and collaborative nature of Web 2.0 have

opened up new business models

222

Future of the Web
• Computers have a hard time deciphering meaning from XHTML
content

• Web today involves users’ interpretations of what pages and
images mean, but the future entails a shift from XHTML to a more
sophisticated system based on XML, enabling computers to better
understand meaning.

• Web 2.0 companies use “data mining” to extract as much meaning
as they can from XHTML-encoded pages

• Tagging and Folksonomies

– Early hints a “web of meaning.”

– “loose” classification system

• Semantic Web

– Next generation in web development,

– “web of meaning”

– Depends heavily on XML and XML-based technologies

• Micro formats

– Standard formats for representing information aggregates that
can be understood by computers, enabling better search results
and new types of applications

223

 UNIT-IV
Rich Internet Applications (RIAS) with Adobe

Flash: Adobe Flash Introduction, Flash Movie Development,

Learning Flash with Hands-on Examples, Publish your flash

movie, Creating special effects with Flash, Creating a website

splash screen, action script, web sources.

Rich Internet Applications (RIAs) with Flex 3 –

Introduction, Developing with Flex 3, Working with

Components, Advanced Component Development, Visual

Effects and Multimedia

224

Introduction

• Flash

– Produce interactive, animated movies

• Web-based banner advertisements

• Interactive Web sites

• Games

• Web-based applications

– Provides tools for drawing graphics, generating animation

and adding sound and video

– Tools for coding in its scripting language, Action Script

• Flash Player plug-in

– Installed in a Web browser to play flash movies

225

Flash Movie Development
• Start page

– Contains a number of helpful options

• Create From Template

• Open a Recent Item

• Creating blank Flash document

– Click Flash Document under the Create New heading

• Tools section

– Contains tools that select, add and remove graphics from Flash

movies

• View section

– Contains two tools that modify what portion of stage

• Colors section

– Provides colors for shapes, lines, and filled areas

• Options section
– Contains settings for the active tool

226

Flash Movie Development
Toolbox e Main

menu

Timelin Frames Layers Panel windows

Actions panel Help panel Property Inspector Stage

Flash MX development environment. 227

Flash Movie Development

Line tool

Pen tool
Oval tool

Pencil tool
Free transform tool

Ink bottle tool

Dropper tool

Hand tool

Selection tool Subselection to ol
Lasso too l

Text tool

Rectangle tool
Brush tool

Fill transform tool
Paint bucket tool

Eraser tool

Zoom tool

r Stroke colo

Fill color

Tool Options

Fig.: Flash MX Toolbox.
228

Learning Flash with Hands-On Examples
• Open a new Flash movie file

– Select New from the File menu

– In the New Document dialog, select Flash Document under

General tab and click OK

– Choose Save As… from File menu

• Movie options

– Select Document Properties

• Frame Rate

– The speed at which movie frames display

• Dimensions

– Define size of movie as it displays on screen

• Background Color

– Stage color

– Click Background Color box to select background color 229

Learning Flash with Hands-On Examples

General tab Templates tab

Fig.: New Document dialog.

230

Learning Flash with Hands-On Examples

Background color Right click menu

Fig.: Flash MX 2004 Document Properties dialog.

231

Learning Flash with Hands-On Examples

New background

color

Hexadecimal color

notation

Color selection

eyedropper

Fig: Selecting a background color.

232

Creating a Shape with the Oval Tool
• Flash creates shapes using vectors

– Vectors are mathematical equations that define size, shape and

color

• Some graphics applications create raster graphics

– Defined by areas of colored pixels

• Oval

– Stroke color

• Color of a shape’s outline

– Fill color

• Color that fills the shape

– Black and White button

• Resets the stroke color to black and the fill color to white

– Swap Colors

• Switches the stroke and fill color 233

Creating a Shape with the Oval Tool

No color

Black and White

Stroke colo r

Fill color

Swap Colors

Fig. Setting the fill and stroke colors.

234

Creating a Shape with the Oval Tool

Keyframe

Fig.: Keyframe added to the timeline.

235

Creating a Shape with the Oval Tool

Making multiple selections with the selection tool.

236

Creating a Shape with the Oval Tool

Selection width and height Selection location

Stroke and fill color Stroke widt h Stroke styl e

Fig.: Modifying the size of a shape with the Property Inspector.

237

Creating a Shape with the Oval Tool

Gradient fill s
Red radial

gradient fill

Choosing a gradient fill.

238

Adding Text to a Button

Font type Font selector Font height

Text (fill) color

Bold

Italic

Text alignmen t

Character Spacing Linked URL Character position Edit format options

Setting the font face, size, weight and color with the Property Inspector.

Text tool

- Adds text to Flash movies

239

Adding Text to a Button

Adding text to the button.

240

Converting a Shape into a Symbol

• Flash movie

– Parent movie

• A scene

• Contains the entire movie including all graphics

and symbols

• Reusable movie elements

– Graphics

» Ideal for static images and basic animations

– Buttons

» Objects that perform button actions

– Movie clips

» Ideal for recurring animations

– Movie explorer

• Displays the movie structure 241

Converting a Shape into a Symbol

Selecting an object with the selection tool.

242

Converting a Shape into a Symbol

Creating a new symbol with the Convert to Symbol dialog.

243

Converting a Shape into a Symbol

Symbol list

New Symbol Folder

Create New Symbol

Symbol Properties Delete symbol

Library panel.
244

Converting a Shape into a Symbol

Movie Explorer for ceoassist.fla.

245

Editing Button Symbols

• Edit Symbols button

– Four frames

• Button states

–Up state

» Default state before user presses the button or

rolls over with mouse

–Over state

» User rolls over the button with mouse

–Down state

» Plays when user presses a button

• Hit state

–Not visible when viewing the movie

– Defines active area of the button 246

Editing Button Symbols

Main scene Active symbol Edit scene Edit symbols

Return to

main scene
Zoom

percentage

Keyframes

Button states

Modifying button states with a button’s editing stage.

Current frame

247

Adding Key frames

Selected

Over frame

Insert Keyframe

Frame options

Inserting a key frame.

248

Adding Sound to a Button

Sound added to the Down frame

Sound

Sync

Adding sound to a button.

249

Adding Sound to a Button

Sound name

Compression

Preprocessing

Sample rate

Sound clip size and

compression

Optimizing sound with the Sound Properties dialog.

250

Verifying Changes with Test Movie

Up state
Over state

GO button in its up and over states.

251

Adding Layers to a Movie

Rename a layer by

double clicking its

name

Insert a

new

layer

Delete laye r

Renaming a layer.

252

Adding Layers to a Movie

Left justify

Center

justify
Right

justif

y Full justify

Alias text

Setting text alignment with the Property Inspector.

253

Animating Text with Tweening
• Two methods to tween objects

– Shape tweening

• Morphs an object from one shape to another

– Motion tweening

• Moves objects around the stage

• Can be applied to symbols or grouped objects

254

Animating Text with Tweening

Adding a keyframe to create an animation.

255

Animating Text with Tweening

Motion tween

Creating a motion tween.

256

Animating Text with Tweening

Actions toolbox

Add script ite m

Check Syntax

Show Code Hints

Reference

Debug Options

Script Navigator stop action Script window View Options

Action applied to frame

Adding ActionScript to a frame with the Actions panel.
257

Adding a Text Field

Creating a text field.

Text field -Contains a string that changes every time the user

presses the button

258

Adding a Text Field

Text type

Line type Variable name

Creating a dynamic text field with the Property Inspector.

259

Adding Action Script

Adding an action to a button with the Actions panel.

Add Action Script to the button

Change the contents of the text field every time a user clicks the button

260

Creating a Projector (.exe) File with Publish

• Publish Flash in two formats

– Select Publish Settings… from File menu to open the

Publish Settings dialog

– Select Flash and Windows Projector checkboxes and

uncheck all others

– Click OK to enable the new settings

– Select Publish from File menu

261

Creating a Projector (.exe) File with Publish

Windows
Executable (.exe)

Flash (.fla)

Flash Player
Movie (.swf)

Published Flash files.

262

Manually Embedding a Flash Movie in a

Web Page

• Add Flash movies to Web sites

– object

• Makes movie viewable in Internet Explorer

– embed

• Makes movie viewable in Netscape

263

embedFlash.html
(1 of 2)

<head>

<title>Adding Flash to your Web site</title>

</head>

<body>

<!-- The following object tag tells the -->

<!-- Microsoft Internet Explorer browser to -->

<!-- play the Flash movie and where to find -->

<!-- the Flash Player plug-in if it is not -->

<!-- installed. -->

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

4

5 <!-- Embedding a Flash movie into a Web site.: embedFlash.html

6 <!-- Embedding a Flash movie into a Web site -->

7

8 <html xmlns = "http://www.w3.org/1999/xhtml">

9

10

11

12

13

14

15

16

17

18

19

20

21

264

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

embedFlash.html
(2 of 2)

22 <object classid =

"clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase = "http://download.macromedia.com/pub/shockwave/

cabs/flash/swflash.cab#version=7,0,0,0">

23

24

25

26 <param name = "movie" value = "CeoAssistant.swf" />

<!-- The following embed tag tells the Netscape -->

<!-- browser to play the Flash movie and where -->

<!-- to find the Flash Player plug-in if it is -->

<!-- not installed. -->

<embed src = "CeoAssistant.swf" pluginspage =

"http://www.macromedia.com/go/getflashplayer">

</embed>

<!-- Non-Flash viewing page content -->

<noembed>

This Web site contains the CEO Assistant 1.0

Flash movie. You must have the Flash Player

plug-in to view the Flash movie.

</noembed>

</object>

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 </body>

47 </html>

265

http://download.macromedia.com/pub/shockwave/
http://www.macromedia.com/go/getflashplayer

Importing and Manipulating Bitmaps
• Lasso tool

– Selects areas of shapes

– Magic wand

• Selects areas of similar colors

– Polygonal mode

• Selects straight-edged areas

• Eraser tool

– Removes shape areas by clicking and dragging across

• Paintbrush tool

– Applies color the same way the eraser removes color

• Paint behind

– Sets the tool to only paint in area void of color information

• Paint inside

– Paints inside a line boundary
266

Creating an Advertisement Banner

with Masking

• Masking

– Hides portion or layers

– Masking layer

• Hides objects in the layers beneath it

267

Creating an Advertisement Banner with Masking

Free

transform tool
anchor

Resizing an image with the free transform tool.

268

Creating an Advertisement Banner

with Masking

No Color

Rainbow

gradient fill

Creating the oval graphic.

269

Creating an Advertisement Banner with Masking

Mask layer

Masked layer

Locked for

editing

Creating a mask layer.

270

Adding Online Help to Forms

Right justify

Line-spacing

adjustment

Adjusting the line spacing with the Format Options panel.

271

Adding Online Help to Forms

Round Rectangle

Radius option

Creating a rectangle with rounded corners.

272

Adding Online Help to Forms

Creating multiple instances of a symbol with the Library panel.

273

Adding Online Help to Forms

Line type Text type

Input and password text field creation.

274

Adding Online Help to Forms

Frame Label field

Red flag indicates presence of frame label

Adding Frame Labels using the Property Inspector.

275

Adding Online Help to Forms

Width

Height

Position

Center alignment

Centering an image on the stage with the Property Inspector.

276

Adding Online Help to Forms

Frame 1 Frame 5

Frame 10

Shape tween

Creating a shape tween.

277

Adding Online Help to Forms

Adding the field symbol to the nameWindow movie clip.

278

Adding Online Help to Forms

Creating an animation with the form field symbol.

279

Adding Online Help to Forms

Edit scene Edit symbols

Symbol to

edit

Current

symbol

Duplicating movie clip symbols with the Library panel.

280

Adding Online Help to Forms

Frames for animation

Deleting a

letter from

each

subsequent

frame

Creating a frame-by-frame animation.

281

Adding Online Help to Forms

Bug2Bug.com help form.

282

Creating a Web-Site Introduction
• Preloader

– Simple animation that plays while the rest of the Web

page is loading

283

Creating a Web-Site Introduction

Rotate

times field

Creating a rotating object with the motion tween Rotate option.

284

Creating a Web-Site Introduction

Gradient color swatch

Gradient range

Inner color

Gradient preview

Hexadecimal value

Alpha value

Outer color

Changing gradient colors with the Color Mixer panel.

Fill type

285

Creating a Web-Site Introduction

Click and drag to add or remove a color

Adding an intermediate color to a gradient.

Resulting gradient

286

Creating a Web-Site Introduction

Up state

Hit state

Defining the hit area of a button.

287

Creating a Web-Site Introduction

Rotating

counter-

clockwise

Text

hyper-

linked

buttons

Creating an animation to preload images.

288

Action Script

• With the following functions, you can build

some fairly complex Flash movies

289

UNIT-V

Introduction
• Portability issues

– Hidden by Ajax toolkits, such as Dojo, Prototype and Script.aculo.us

– Toolkits provide powerful ready-to-use controls and functions that
enrich web applications and simplify JavaScript coding by making it
cross-browser compatible

• Achieve rich GUI in RIAs with

– Ajax toolkits

– RIA environments such as Adobe’s Flex, Microsoft’s Silverlight and
Java Server Faces

– Such toolkits and environments provide powerful ready-to-use controls
and functions that enrich web applications.

• Client-side of Ajax applications

– Written in XHTML and CSS

– Uses JavaScript to add functionality to the user interface

• XML and JSON are used to structure the data passed between the server
and the client

• XML Http Request

– The Ajax component that manages interaction with the server
290

Traditional Web Applications vs.

Ajax Applications
• Traditional web applications

– User fills in the form’s fields, then submits the form

– Browser generates a request to the server, which receives the request
and processes it

– Server generates and sends a response containing the exact page that
the browser will render

– Browser loads the new page and temporarily
 makes the browser window blank

– Client waits for the server to respond and reloads the entire page with

the data from the response

• While a synchronous request is being processed on the server, the user
cannot interact with the client web browser

• The synchronous model was originally designed for a web of hypertext
documents

– some people called it the “brochure web”

– model yielded “choppy” application performance
291

Classic web application reloading the page for every user

interaction.

292

Traditional Web Applications Vs. Ajax Applications

(Cont.)

• Request object sends the request to and awaits the response

from the server

– Requests are asynchronous, allowing the user to continue
interacting with the application while the server processes
the request concurrently

– When the server responds, the XMLHttpRequest object
that issued the request invokes a callback function, which
typically uses partial page updates to display the returned
data in the existing web page without reloading the entire
page

• Callback function updates only a designated part of the page

• Partial page updates help make web applications more

responsive, making them feel more like desktop applications

293

Ajax-enabled web application interacting with the server

asynchronously.

294

Rich Internet Applications (RIAs) with Ajax
• Classic XHTML registration form

– Sends all of the data to be validated to the server when the user clicks the
Register button

– While the server is validating the data, the user cannot interact with the
page

– Server finds invalid data, generates a new page identifying the errors in
the form and sends it back to the client—which renders the page in the
browser

– User fixes the errors and clicks the Register button again

– Cycle repeats until no errors are found, then the data is stored on the
server

– Entire page reloads every time the user submits invalid data

• Ajax-enabled forms are more interactive

– Entries are validated dynamically as the user enters data into the fields

– Asynchronous requests could also be used to fill some fields based on

295

Fig. Classic XHTML form: User submits entire form to server, which

validates the data entered (if any). Server responds indicating fields with

invalid or missing data.

296

Fig. Classic XHTML form: User submits entire form to server, which

validates the data entered (if any). Server responds indicating fields with

invalid or missing data.

297

Ajax-enabled form shows errors asynchronously when user moves to another field.

298

History of Ajax
• The term Ajax was coined by Jesse James Garrett of Adaptive

Path in February 2005, when he was presenting the previously
unnamed technology to a client

• Ajax technologies (XHTML, JavaScript, CSS, dynamic
HTML, the DOM and XML) have existed for many years

•In 1998, Microsoft introduced the XML Http Request object
to create and manage asynchronous requests and responses

•Popular applications like Flickr, Google’s Gmail and Google
Maps use the XML Http Request object to update pages
dynamically

•Ajax has quickly become one of the hottest technologies in
web development, as it enables WebTop applications to
challenge the dominance of established desktop applications

299

“Raw” Ajax Example using the XML HttpRequest

Object • XML Http Request object

– Resides on the client

– Is the layer between the client and the server that manages asynchronous
requests in Ajax applications

– Supported on most browsers, though they may implement it differently

• To initiate an asynchronous request

– Create an instance of the XML Http Request object

– Use its open method to set up the request, and its send method to initiate the
request

• When an Ajax application requests a file from a server, the browser
typically caches that file

– Subsequent requests for the same file can load it from the browser’s cache

• Security

– XML Http Request object does not allow a web application to request
resources from servers other than the one that served the web application

– Making a request to a different server is known as cross-site scripting (also
known as XSS)

– You can implement a server-side proxy—an application on the web
application’s web server—that can make requests to other servers on the
web application’s behalf

• W hen the third argument to XML HttpRequest method open is true, the request
is asynchronous

300

Software Engineering Observation

For security purposes, the XML HttpRequest object doesn’t

allow a web application to request resources from domain names

other than the one that served the application. For this reason,

the web application and its resources must reside on the same

web server (this could be a web server on your local computer).

This is commonly known as the same origin policy (SOP). SOP

aims to close a vulnerability called cross-site scripting, also

known as XSS, which allows an attacker to compromise a

website’s security by injecting a malicious script onto the page

from another domain. To learn more about XSS visit

en.wikipedia.org/wiki/XSS. To get content from another

domain securely, you can implement a server-side proxy—an

application on the web application’s web server—that can make

requests to other servers on the web application’s behalf.

301

“Raw” Ajax Example using the XML Http

Request Object (Cont.)
• An exception is an indication of a problem that occurs during a program’s execution

• Exception handling enables you to create applications that can resolve (or handle) exceptions—in
some cases allowing a program to continue executing as if no problem had been encountered

• try block
– Encloses code that might cause an exception and code that should not execute if an exception

occurs

– Consists of the keyword try followed by a block of code enclosed in curly braces ({})

• When an exception occurs

– try block terminates immediately

– catch block catches (i.e., receives) and handles an exception

• catch block

– Begins with the keyword catch

– Followed by an exception parameter in parentheses and a block of code enclosed in curly braces

• Exception parameter’s name

– Enables the catch block to interact with a caught exception object, which contains name and
message properties

• A callback function is registered as the event handler for the XMLHttpRequest object’s
onreadystatechange event
– Whenever the request makes progress, the XMLHttpRequest calls the onreadystatechange event

handler.

– Progress is monitored by the readyState property, which has a value from 0 to 4

– The value 0 indicates that the request is not initialized and the value 4 indicates that the request
is complete.

302

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4

5 <!-- Fig. 15.5: SwitchContent.html -->

6 <!-- Asynchronously display content without reloading the page. -->

7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <style type="text/css">

10 .box { border: 1px solid black;

padding: 10px } 11

12 </style>

13 <title>Switch Content Asynchronously</title>

14 <script type = "text/javascript" language = "JavaScript">

<!--

var asyncRequest; // variable to hold XMLHttpRequest objec t

15

16

17

18 // set up and send the asynchronous request

function getContent(url)

{

// attempt to create the XMLHttpRequest and make the re

19

20

21

22 try

{

asyncRequest = new XMLHttpRequest(); // create request object

// register event handler

asyncRequest.onreadystatechange = stateChange;

asyncRequest.open('GET', url, true); // prepare the request

asyncRequest.send(null); // send the request

23

24

25

26

27

28

29

30 } // end try

Outline

SwitchContent
ml

f 5)

.ht

(1 o

Create the reque st object and

Set the event handler for the
onreadystatechange

event to the function
stateChange

quest

The request will be a GET

request for the page located

at url, and it will be

asynchronous

The program attempts to

execute the code in the try

block. If an exception occurs,
the code in the catch block

will be executesdtore it in asyncRequest

303

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

catch (exception)

{
31

32

33 alert('Request failed.');

} // end catch

} // end function getContent

34

35

36

// displays the response data on the page

function stateChange()

{

37

38

39

40 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)

{ 41

42 document.getElementById('contentArea').innerHTML =

asyncRequest.responseText; // places text in contentArea 43

44 } // end if

} // end function stateChange

// clear the content of the box

function clearContent()

{

document.getElementById('contentArea').innerHTML = '';

45

46

47

48

49

50

51 } // end function clearContent

52 // -->

Outline

SwitchContent
.html

(2 of 5)

Notify the user that an error
occurred

If the request has

completed successfully,

use the DOM to update

the page with the

responseText
property of the request
object

304

53 </script>

54 </head>

55 <body>
56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

<h1>Mouse over a book for more information.</h1>

<img src =

"http://test.deitel.com/examples/iw3htp4/ajax/thumbs/cpphtp6.jpg"

onmouseover = 'getContent("cpphtp6.html")'

onmouseout = 'clearContent()'/>

<img src =

"http://test.deitel.com/examples/iw3htp4/ajax/thumbs/iw3htp4.jpg"

onmouseover = 'getContent("iw3htp4.html")'

onmouseout = 'clearContent()'/>

<img src =

"http://test.deitel.com/examples/iw3htp4/ajax/thumbs/jhtp7.jpg"

onmouseover = 'getContent("jhtp7.html")'

onmouseout = 'clearContent()'/>

<img src =

"http://test.deitel.com/examples/iw3htp4/ajax/thumbs/vbhtp3.jpg"

onmouseover = 'getContent("vbhtp3.html")'

onmouseout = 'clearContent()'/>

<img src =

"http://test.deitel.com/examples/iw3htp4/ajax/thumbs/vcsharphtp2.jpg"

onmouseover = 'getContent("vcsharphtp2.html")'

onmouseout = 'clearContent()'/>

Outline

SwitchContent
.html

(3 of 5)

305

http://test.deitel.com/examples/iw3htp4/ajax/thumbs/cpphtp6.jpg
http://test.deitel.com/examples/iw3htp4/ajax/thumbs/iw3htp4.jpg
http://test.deitel.com/examples/iw3htp4/ajax/thumbs/jhtp7.jpg
http://test.deitel.com/examples/iw3htp4/ajax/thumbs/vbhtp3.jpg
http://test.deitel.com/examples/iw3htp4/ajax/thumbs/vcsharphtp2.jpg

456

<img src =

"http://test.deitel.com/examples/iw3htp4/ajax/thumbs/chtp5.jpg"

onmouseover = 'getContent("chtp5.html")'

onmouseout = 'clearContent()'/>

77

78

79

80

81 <div class = "box" id = "contentArea"> </div>

82 </body>

83 </html>

Outline

SwitchContent
.html

(4 of 5)

This div is updated with

the description of the book

that the mouse is currently

hovering over

306

http://test.deitel.com/examples/iw3htp4/ajax/thumbs/chtp5.jpg

Outline

SwitchContent
.html

(5 of 5)

307

Using XML and the DOM
• When passing structured data between the server and the

client, Ajax applications often use XML because it consumes
little bandwidth and is easy to parse

• XML Http Request object response XML property

– contains the parsed XML returned by the server

• DOM method create Element

– Creates an XHTML element of the specified type

• DOM method set Attribute

– Adds or changes an attribute of an XHTML element

• DOM method append Child

– Inserts one XHTML element into another

• Inner HTML property of a DOM element

– Can be used to obtain or change
 the XHTML that is displayed in a particular
element

308

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4

5 <!-- Fig. 15.8: PullImagesOntoPage.html -->

6 <!-- Image catalog that uses Ajax to request XML data asynchronously. -->

7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title> Pulling Images onto the Page </title>

10 <style type = "text/css">

11

12

td { padding: 4px }

img { border: 1px solid black }

13 </style>

14 <script type = "text/javascript" language = "Javascript">

var asyncRequest; // variable to hold XMLHttpRequest object

// set up and send the asynchronous request to the XML file

function getImages(url)

{

// attempt to create the XMLHttpRequest and make the request try

{

asyncRequest = new XMLHttpRequest(); // create request object

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

// register event handler asyncRequest.onreadystatechange =

processResponse;

asyncRequest.open('GET', url, true); // prepare the request

asyncRequest.send(null); // send the request

} // end try

Outline

PullImagesOnto
Page.html

(1 of 6)

309

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

catch (exception)

{

alert('Request Failed');

} // end catch

} // end function getImages

// parses the XML response; dynamically creates a table using DOM and

// populates it with the response data; displays the table on the page

function processResponse()

{

// if request completed successfully and responseXML is non-null

30

31

32

33

34

35

36

37

38

39

40

41 if (asyncRequest.readyState == 4 && asyncRequest.status == 200 &&

asyncRequest.responseXML)

{

clearTable(); // prepare to display a new set of images

// get the covers from the responseXML

42

43

44

45

46

47 var covers = asyncRequest.responseXML.getElementsByTagName(

"cover") 48

49

50 // get base URL for the images

var baseUrl = asyncRequest.responseXML.getElementsByTagName(

"baseurl").item(0).firstChild.nodeValue;

51

52

53

54

55

// get the placeholder div element named covers

var output = document.getElementById("covers");

// create a table to display the images

var imageTable = document.createElement('table');

56

57

58

59

Outline

PullImagesOnto
Page.html

(2 of 6)

The XMLHttpRequest

object’s responseXML

property contains a DOM

document object for

the loaded XML document
Get a list of the covers

from the XML
document

Get the base URL for the

images to be displayed on the
page

310

// create the table's body

var tableBody = document.createElement('tbody');

var rowCount = 0; // tracks number of images in current row

var imageRow = document.createElement("tr"); // create row

// place images in row

for (var i = 0; i < covers.length; i++)

{

var cover = covers.item(i); // get a cover from covers array

// get the image filename

var image = cover.getElementsByTagName("image").

item(0).firstChild.nodeValue;

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

// create table cell and img element to display the image

var imageCell = document.createElement("td");

var imageTag = document.createElement("img"); 77

78

// set img element's src attribute

imageTag.setAttribute("src", baseUrl + escape(image));

imageCell.appendChild(imageTag); // place img in cell

imageRow.appendChild(imageCell); // place cell in row

rowCount++; // increment number of images in row

79

80

81

82

83

84

Outline

PullImagesOnto
Page.html

(3 of 6)

Insert each image based

on its filename and

baseurl

311

// if there are 6 images in the row, append the row to

// table and start a new row

if (rowCount == 6 && i + 1 < covers.length)

{

tableBody.appendChild(imageRow); imageRow =

document.createElement("tr");

rowCount = 0;

} // end if statement

} // end for statement

tableBody.appendChild(imageRow); // append row to table body

imageTable.appendChild(tableBody); // append body to table

output.appendChild(imageTable); // append table to covers div

} // end if

} // end function processResponse

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101 // deletes the data in the table.

102 function clearTable()

103 {

104 document.getElementById("covers").innerHTML = '';

105 }// end function clearTable

Outline

PullImagesOnto
Page.html

(4 of 6)

312

106 </script>

107</head>

108<body>

Simply Books

onclick = 'getImages("howto.xml")'/> How to Program Books

118

119

109 <input type = "radio" checked = "unchecked" name ="Books" value =
"all"

110 onclick = 'getImages("all.xml")'/> All Books

111 <input type = "radio" checked = "unchecked"

112 name = "Books" value = "simply"

113 onclick = 'getImages("simply.xml")'/>

114 <input type = "radio" checked = "unchecked"

115 name = "Books" value = "howto"

116 <input type = "radio" checked = "unchecked" name = "Books" value =

"dotnet"

onclick = 'getImages("dotnet.xml")'/> .NET Books
120 <input type = "radio" checked = "unchecked"

121 name = "Books" value = "javaccpp"

122 onclick = 'getImages("javaccpp.xml")'/> Java, C, C++ Books

123 <input type = "radio" checked = "checked" name = "Books" value = "none"

124 onclick = 'clearTable()'/> None

125

126 <div id = "covers"></div>

127</body>

128</html>

Outline

PullImagesOnto
Page.html

(5 of 6)

Load the correct XML

document when a radio
button is clicked

313

467

Outline

PullImagesOnto
Page.html

(6 of 6)

314

<link rel = "stylesheet" type = "text/css" href = "address.css" />

<script type = "text/javascript" src = "json.js"></script>

<script type = "text/javascript">

<!--

// URL of the web service

var webServiceUrl = '/AddressBookWebService/AddressService.asmx';

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4

5 <!-- Fig. 15.9 addressbook.html -->

6 <!-- Ajax enabled address book application. -->

7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Address Book</title>

10

11

12

13

14

15

16

17 var phoneValid = false; // indicates if the telephone is valid

var zipValid = false; //indicates if the zip code is valid 18

19

20 // get a list of names from the server and display them

function showAddressBook()

{

// hide the "addEntry" form and show the address book

21

22

23

24

25

document.getElementById('addEntry').style.display = 'none';

document.getElementById('addressBook').style.display = 'block';

var params = "[]"; // create an empty object

callWebService('getAllNames', params, parseData);

26

27

28

29 } // end function showAddressBook

30

Outline

addressbook.html

(1 of 18)

Hide the form for adding

an entry

Get a list of all the names

from the web service, and call

parseData when it’s loaded

315

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

// send the asynchronous request to the web service

function callWebService(method, paramString, callBack)
31

32

33 {

// build request URL string

var requestUrl = webServiceUrl + "/" + method;

34

35

36 var params = paramString.parseJSON();

37

for (var i = 0; i < params.length; i++)

{

// checks whether it is the first parameter and builds
// the parameter string
accordingly
if (i =

=
0)

38

39

40

41

42

43

44 requestUrl = requestUrl + "?" + params[i].param +

"=" + params[i].value; // add first parameter to url 45

46 else

requestUrl = requestUrl + "&" + params[i].param +

"=" + params[i].value; // add other parameters to url

} // end for

// attempt to send the asynchronous request

try

{

var asyncRequest = new XMLHttpRequest(); // create request

47

48

49

50

51

52

53

54

55

// set up callback function and store it

asyncRequest.onreadystatechange = function()

{

56

57

58

59 callBack(asyncRequest);

60 }; // end anonymous function

Outline

addressbook.html

(2 of 18)

Call a particular method by
appending method to the base

url Parse the

// build the parameter string to add to the urplarameters

Build the
parameter string

Set the callback function for

the request to callback with

the request object as a
parameter

316

// send the asynchronous request

asyncRequest.open('GET', requestUrl, true);

asyncRequest.setRequestHeader("Accept",

"application/json; charset=utf-8");

asyncRequest.send(); // send request

61

62

63

64

65

66

67 } // end try

68

69

catch (exception)

{

alert ('Request Failed');

} // end catch

} // end function callWebService

70

71

72

73

74

75

76

77

78

79

80

// parse JSON data and display it on the page function parseData(

asyncRequest)

{

// if request has completed successfully process the response

if (asyncRequest.readyState == 4 && asyncRequest.status == 200)

{

// convert the JSON string to an Object

var data = asyncRequest.responseText.parseJSON(); 81

82 displayNames(data); // display data on the page

} // end if

} // end function parseData

83

84

85

Outline

addressbook.html

(3 of 18)

Parse the JSON
text

Prepare and send
the request

317

Insert the name into

86 // use the DOM to display the retrieved address book en

87 function displayNames(data)

88 {

89 // get the placeholder element from the page

90 var listBox = document.getElementById('Names');

91 listBox.innerHTML = ''; // clear the names on the pa

92

93 // iterate over retrieved entries and display them o

94 for (var i = 0; i < data.length; i++)

95 {

96 // dynamically create a div element for each entr

97 // and a fieldset element to place it in

98 var entry = document.createElement('div');

99 var field = document.createElement('fieldset');

100 entry.onclick = handleOnClick; // set onclick eve

101 entry.id = i; // set the id

102 entry.innerHTML = data[i].First + ' ' + data[i

103 field.appendChild(entry); // insert entry into

104 listBox.appendChild(field); // display the fiel

tr
i

ge

n

t

y

nt

].

th

e

d

es

he pa

handl

Last;

fiel

ge

er

d

Cr

fiel

ent

Outline

addressbook.html

(4 of 18)

eate an XHTML

dset element for

the ry

the entry

105 } // end for

106 } // end function displayAll

107

108 // event handler for entry's onclick event

109 function handleOnClick()

110 {

111 // call getAddress with the element's content as a p

112 getAddress(eval('this'), eval('this.innerHTML')

113 } // end function handleOnClick

ar
a

);

meter Use this to give the

clicked element the
correct parameters

318

// search the address book for input

// and display the results on the page function search(

input)

{

// get the placeholder element and delete its content

var listBox = document.getElementById('Names');

listBox.innerHTML = ''; // clear the display box

115

116

117

118

119

120

121

122

123

124

125

126

// if no search string is specified all the names are displayed

if (input == "") // if no search value specified

{

showAddressBook(); // Load the entire address book

} // end if

else

{

var params = '[{"param": "input", "value": "' + input + '"}]';

params , parseData); callWebService("search",

} // end else

} // end function search

127

128

129

130

131

132

133

134

135

136

137

138

139

// Get address data for a specific entry function getAddress(

entry, name)

{

// find the address in the JSON data using the element's id

// and display it on the page

var firstLast = name.split(" "); // convert string to array 140

141 var requestUrl = webServiceUrl + "/getAddress?first="

+ firstLast[0] + "&last=" + firstLast[1]; 142

143

Outline

addressbook.html

(5 of 18)

Create a JSON

parameter object to
search for input

in the list of names

Assemble the web
service call

319

144 // attempt to send an asynchronous request

145 try

146 {

147 // create request object

148 var asyncRequest = new XMLHttpRequest();

149

150 // create a callback function with 2 parameters

151 asyncRequest.onreadystatechange = function()

152 {

153 displayAddress(entry, asyncRequest);

154 }; // end anonymous function

155

156 asyncRequest.open('GET', requestUrl, true);

157 asyncRequest.setRequestHeader("Accept",

158 "application/json; charset=utf-8"); // set response datatype

159 asyncRequest.send(); // send request

160 } // end try

161 catch (exception)

162 {

163 alert ('Request Failed.');

164 } // end catch

165 } // end function getAddress

166

Outline

addressbook.html

(6 of 18)

320

// clear the entry's data.

function displayAddress(entry, asyncRequest)

{

// if request has completed successfully, process the response
if (asyncRequest.readyState == 4 && asyncRequest.status == 200)

{

// convert the JSON string to an object

var data = asyncRequest.responseText.parseJSON();

var name = entry.innerHTML // save the name string

167

168

169

170

171

172

173

174

175

176 entry.innerHTML = name + '
' + data.Street +

'
' + data.City + ', ' + data.State 177

178 + ', ' + data.Zip + '
' + data.Telephone;

// clicking on the entry removes the address

entry.onclick = function()

{

clearField(entry, name);

}; // end anonymous function

} // end if

} // end function displayAddress

179

180

181

182

183

184

185

186

187

188

Outline

addressbook.html

(7 of 18)

Parse and display the

address details for an
entry

321

189 // clear the entry's data

190 function clearField(entry, name)

191 {

192 entry.innerHTML = name; // set the entry to display only the name

193 entry.onclick = function() // set onclick event

194 {

getAddress(entry, name); // retrieve address and display it

}; // end function

} // end function clearField

// display the form that allows the user to enter more data

function addEntry()

{

document.getElementById('addressBook').style.display = 'none';

document.getElementById('addEntry').style.display = 'block';

} // end function addEntry

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

// send the zip code to be validated and to generate city and state

function validateZip(zip)

{

// build parameter array

var params = '[{"param": "zip", "value": "' + zip + '"}]';

callWebService ("validateZip", params, showCityState);

} // end function validateZip

210

211

212

213

Outline

addressbook.html

(8 of 18)

Clear the address

from an entry and

reset the event

handler to display

the address again

when clicked

Make the zip-code

validation web

service call

322

214

215

216

// get city and state that were generated using the zip code

// and display them on the page function showCityState(

asyncRequest)
{ 217

218 // display message while request is being processed

219 document.getElementById('validateZip').

innerHTML = "Checking zip...";

// if request has completed successfully, process the response

if (asyncRequest.readyState == 4)

{

if (asyncRequest.status == 200)

{

// convert the JSON string to an object

var data = asyncRequest.responseText.parseJSON();

// update zip code validity tracker and show city and state

if (data.Validity == 'Valid')

{

zipValid = true; // update validity tracker

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

// display city and state

document.getElementById('validateZip').innerHTML = '';

document.getElementById('city').innerHTML = data.City;

document.getElementById('state').

innerHTML = data.State;

} // end if

Outline

addressbook.html

(9 of 18)

Notify the user that the

zip code is being
checked

323

else

{

zipValid = false; // update validity tracker

document.getElementById('validateZip').

innerHTML = data.ErrorText; // display the error

// clear city and state values if they exist

document.getElementById('city').innerHTML = '';

document.getElementById('state').innerHTML = '';

} // end else

} // end if

else if (asyncRequest.status == 500)

{

document.getElementById('validateZip').

innerHTML = 'Zip validation service not avaliable';

} // end else if

} // end if

} // end function showCityState

// send the telephone number to the server to validate format

function validatePhone(phone)

{

var params = '[{ "param": "tel", "value": "' + phone + '"}]';

callWebService("validateTel", params, showPhoneError);

} // end function validatePhone

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

Outline

addressbook.html

(10 of 18)

324

267 // show whether the telephone number has correct format

268 function showPhoneError(asyncRequest)

269 {

270 // if request has completed successfully, process the response

if (asyncRequest.readyState == 4 && asyncRequest.status == 200)

{

// convert the JSON string to an object

var data = asyncRequest.responseText.parseJSON();

271

272

273

274

275

276 if (data.ErrorText != "Valid Telephone Format")

{

phoneValid = false; // update validity tracker

} // end if else

277

278

279

280

281 {

phoneValid = true; // update validity tracker

} // end else

document.getElementById('validatePhone').

innerHTML = data.ErrorText; // display the error

} // end if

} // end function showPhoneError

282

283

284

285

286

287

288

289

290 // enter the user's data into the database

Outline

addressbook.html

(11 of 18)

Get the response from

the request object so we

can determine if the
phone number is valid

325

291

292

function saveForm()

{
293 // retrieve the data from the form

294 var first = document.getElementById('first').value;

295 var last = document.getElementById('last').value;

296 var street = document.getElementById('street').value;

297 var city = document.getElementById('city').innerHTML;

298 var state = document.getElementById('state').innerHTML;

299 var zip = document.getElementById('zip').value;

300 var phone = document.getElementById('phone').value;

301

302 // check if data is valid

303 if (!zipValid || !phoneValid)

304 {

305 // display error message

306 document.getElementById('success').innerHTML =

307 'Invalid data entered. Check form for more information';

308 } // end if

309 else if ((first == "") || (last == ""))

310 {

311 // display error message

312 document.getElementById('success').innerHTML =

313 'First Name and Last Name must have a value.';

314 } // end if

Outline

addressbook.html

(12 of 18)

326

else

{

// hide the form and show the addressbook

document.getElementById('addEntry')

.style.display = 'none';

document.getElementById('addressBook').

style.display = 'block';

// build the parameter to include in the web service URL

params = '[{"param": "first", "value": "' + first +

315

316

317

318

319

320

321

322

323

324

325 '"}, { "param": "last", "value": "' + last +

'"}, { "param": "street", "value": "'+ street +

'"}, { "param": "city", "value": "' + city +

'"}, { "param": "state", "value:": "' + state +

'"}, { "param": "zip", "value": "' + zip +

326

327

328

329

330 '"}, { "param": "tel", "value": "' + phone + '"}]';

// call the web service to insert data into the database

callWebService("addEntry", params, parseData);

331

332

333

334

335

336

} // end else

} // end function saveForm

//-->

Outline

addressbook.html

(13 of 18)

Create a JSON object

with all the data as

paramters for the web

service call to save the

data

327

337 </script>

338</head>

339<body onload = "showAddressBook()">
340 <div>

341 <input type = "button" value = "Address Book"

342 onclick = "showAddressBook()"/>

343 <input type = "button" value = "Add an Entry"

344 onclick = "addEntry()"/>

345 </div>

346 <div id = "addressBook" style = "display : block;">

347 Search By Last Name:

348

349

350

<input onkeyup = "search(this.value)"/>

<div id = "Names">

351 </div>

352 </div>

353 <div id = "addEntry" style = "display : none">

354 First Name: <input id = 'first'/>

355

356 Last Name: <input id = 'last'/>

357

358 Address:

359

360 Street: <input id = 'street'/>

361

362 City:

363

364 State:

365

366 Zip: <input id = 'zip' onblur = 'validateZip(this.value)'/>

Outline

addressbook.html

(14 of 18)

The search is done for every

onkeyup event, giving the form

live search functionality

328

484

367

368

369

370 Telephone:<input id = 'phone'

371 onblur = 'validatePhone(this.value)'/>

372

373

374

375 <input type = "button" value = "Submit"

376 onclick = "saveForm()" />

377

378 <div id = "success" class = "validator">

379 </div>

380 </div>

381</body>

382</html>

Outline

addressbook.html

(15 of 18)

329

485

Outline

addressbook.html

(16 of 18)

330

486

Outline

addressbook.html

(17 of 18)

331

Outline

addressbook.html

(18 of 18)

332

Dojo Toolkit
• Cross-browser compatibility, DOM manipulation and event handling can be
cumbersome, particularly as an application’s size increases

• Dojo

– Free, open source JavaScript library that simplifies Ajax development

– Reduces asynchronous request handling to a single function call

– Provides cross-browser DOM functions that simplify partial page updates

– Provides event handling and rich GUI controls

• To install Dojo

– Download the latest release from www.Dojotoolkit.org/downloads to your
hard drive

– Extract the files from the archive file to your web development directory or
web server

– To include the Dojo.js script file in your web application, place the
following script in the head element of your XHTML document:

<script type = "text/javascript" src = "path/Dojo.js">

where path is the relative or complete path to the Dojo toolkit’s files

• Edit-in-place

– Enables a user to modify data directly in the web page

– Common feature in Ajax applications

333

http://www.Dojotoolkit.org/downloads

Dojo Toolkit (Cont.)
• Dojo is organized in packages of related functionality

• dojo.require method

– Used to include specific Dojo packages

• dojo.io package functions communicate with the server

• dojo.event package simplifies event handling

• dojo.widget package provides rich GUI controls

• dojo.dom package contains DOM functions that are portable across
many different browsers

• Dojo widget

– Any predefined user interface element that is part of the Dojo
toolkit

– To incorporate an existing widget onto a page, set the dojoType
attribute of any HTML element to the type of widget that you
want it to be

• dojo.widget.byId method can be used to obtain a Dojo widget

• dojo.events.connect method links functions together

 334

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4

5 <!-- Fig. 15.11 Calendar.html -->

6 <!-- Calendar application built with dojo. -->

7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <script type = "text/javascript" src = "/dojo043/dojo.js"></script>

10 <script type = "text/javascript" src = "json.js"></script>

11 <script type = "text/javascript">

12 <!--

13 // specify all the required dojo scripts

14 dojo.require("dojo.event. "); // use scripts from event package

15 dojo.require("dojo.widget. "); // use scripts from widget package

16 dojo.require("dojo.dom. "); // use scripts from dom package

dojo.require("dojo.io. "); // use scripts from the io package

// configure calendar event handler

function connectEventHandler()

17

18

19

20

21 {

var calendar = dojo.widget.byId("calendar"); // get calendar

calendar.setDate("2007-07-04");

dojo.event.connect(

calendar, "onValueChanged", "retrieveItems");

} // end function connectEventHandler

22

23

24

25

26

27

Outline

Calendar.html

(1 of 11)

Import dojo

packages

Get the calendar, set the

date, and connect an

event handler so that

retrieveItems is

called when the calendar
is changed

335

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

// location of CalendarService web service

var webServiceUrl = "/CalendarService/CalendarService.asmx";

// obtain scheduled events for the specified date

function retrieveItems(eventDate)

{

// convert date object to string in yyyy-mm-dd format

var date = dojo.date.toRfc3339(eventDate).substring(0, 10);

28

29

30

31

32

33

34

35

36

37

38

// build parameters and call web service

var params = ’[{ "param":"eventDate", "value":"’ +

date + "'}]";

callWebService('getItemsByDate', params, displayItems);

} // end function retrieveItems

39

40

41

42

43 // call a specific web service asynchronously to get server data

function callWebService(method, params, callback)

{

// url for the asynchronous request

var requestUrl = webServiceUrl + "/" + method; var

params = paramString.parseJSON();

44

45

46

47

48

49

50

51

52

53

54

55

56

57

// build the parameter string to append to the url for (var i

= 0; i < params.length; i++)

{

// check if it is the first parameter and build

// the parameter string accordingly if (i == 0)

requestUrl = requestUrl + "?" + params[i].param +

"=" + params[i].value; // add first parameter to url

Outline

Calendar.html

(2 of 11)

Build a JSON object

to hold the date

parameter and call

web service the Import dojo

packages

336

else

requestUrl = requestUrl + "&" + params[i].param +
"=" + params[i].value; // add other parameters to url

} // end for

// call asynchronous request using dojo.io.bind

dojo.io.bind({ url: requestUrl, handler: callback,

accept: "application/json; charset=utf-8" });

} // end function callWebService

58

59

60

61

62

63

64

65

66

67

// display the list of scheduled events on the page

function displayItems(type, data, event)

{

if (type == 'error') // if the request has failed

68

69

70

71

72 {

alert('Could not retrieve the event'); // display error

} // end if

73

74

75

76

else

{

var placeholder = dojo.byId("itemList"); // get placeholder 77

78

79

placeholder.innerHTML = ''; // clear placeholder

var items = data.parseJSON(); // parse server data

// check whether there are events;

// if none then display message if (items == "")

{

placeholder.innerHTML = 'No events for this date.';

}

80

81

82

83

84

85

86

87

Outline

Calendar.html

(3 of 11)

dojo.io.bind

makes a call, sets a

callback handler, and

specifies what type of

data to accept

Get the placeholder
by its id

337

for (var i = 0; i < items.length; i++)

{

// initialize item's container

var item = document.createElement("div");

item.id = items[i].id; // set DOM id to database id

88

89

90

91

92

93

94

95

96

97

// obtain and paste the item's description

var text = document.createElement("div");

text.innerHTML = items[i].description;

text.id = 'description' + item.id;

dojo.dom.insertAtIndex(text, item, 0);

// create and insert the placeholder for the edit button

98

99

100

101 var buttonPlaceHolder = document.createElement("div");

dojo.dom.insertAtIndex(buttonPlaceHolder, item, 1);

// create the edit button and paste it into the container

102

103

104

105 var editButton = dojo.widget.

createWidget("Button", {}, buttonPlaceHolder);

editButton.setCaption("Edit");

106

107

108 dojo.event.connect(

editButton, 'buttonClick', handleEdit);

// insert item container in the list of items container

dojo.dom.insertAtIndex(item, placeholder, i);

} // end for

} // end else

} // end function displayItems

109

110

111

112

113

114

115

116

Outline

Calendar.html

(4 of 11)

Use dojo’s cross-

browser DOM features

to update the page

Create an edit

button for the event

338

117 // send the asynchronous request to get content for editing and

118 // run the edit-in-place UI

119 function handleEdit(event)

120 {

121 var id = event.currentTarget.parentNode.id; // retrieve id

122 var params = '[{ "param":"id", "value":"’ + id + ’"}]’;

callWebService('getItemById', params, displayForEdit);

} // end function handleEdit

123

124

125

126

127

128

129

// set up the interface for editing an item function

displayForEdit(type, data, event)

{

if (type == 'error') // if the request has failed

{

alert('Could not retrieve the event'); // display error

}

else

{

var item = data.parseJSON(); // parse the item

var id = item.id; // set the id

// create div elements to insert content

var editElement = document.createElement('div');

var buttonElement = document.createElement('div');

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

// hide the unedited content

var oldItem = dojo.byId(id); // get the original element

oldItem.id = 'old' + oldItem.id; // change element's id

oldItem.style.display = 'none'; // hide old element

editElement.id = id; // change the "edit" container's id

Outline

Calendar.html

(5 of 11)

Call the web service

to get the item to be

edited

339

// create a textbox and insert it on the page

var editArea = document.createElement('textarea');

editArea.id = 'edit' + id; // set textbox id

editArea.innerHTML = item.description; // insert description

dojo.dom.insertAtIndex(editArea, editElement, 0);

// create button placeholders and insert on the page

// these will be transformed into dojo widgets

var saveElement = document.createElement('div'); var

cancelElement = document.createElement('div');

dojo.dom.insertAtIndex(saveElement, buttonElement, 0);

dojo.dom.insertAtIndex(cancelElement, buttonElement, 1);

dojo.dom.insertAtIndex(buttonElement, editElement, 1);

// create "save" and "cancel" buttons var saveButton =

dojo.widget.createWidget("Button", {}, saveElement); var

cancelButton =

dojo.widget.createWidget("Button", {}, cancelElement);

saveButton.setCaption("Save"); // set saveButton label

cancelButton.setCaption("Cancel"); // set cancelButton text

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

// set up the event handlers for cancel and save buttons

dojo.event.connect(saveButton, 'buttonClick', handleSave);

dojo.event.connect(

cancelButton, 'buttonClick', handleCancel);

Outline

Calendar.html

(6 of 11)

340

// paste the edit UI on the page

dojo.dom.insertAfter(editElement, oldItem);

} // end else

} // end function displayForEdit

// sends the changed content to the server to be saved

function handleSave(event)

{

// grab user entered data

var id = event.currentTarget.parentNode.parentNode.id;

var descr = dojo.byId('edit' + id).value;

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

// build parameter string and call the web service

var params = '[{ "param":"id", "value":"' + id +

'"}, {"param": "descr", "value":"' + descr + '"}]';

callWebService('Save', params, displayEdited);

191 } // end function handleSave

192

193 // restores the original content of the item

194 function handleCancel(event)

195 {

196 var voidEdit = event.currentTarget.parentNode.parentNode;

197 var id = voidEdit.id; // retrieve the id of the item

dojo.dom.removeNode(voidEdit, true); // remove the edit UI 198

199

200

201

var old = dojo.byId('old' + id); // retrieve pre-edit version

old.style.display = 'block'; // show pre-edit version

old.id = id; // reset the id

} // end function handleCancel 202

203

Outline

Calendar.html

(7 of 11)

Cancel the edit by

removing the form

and showing the old

item

341

// displays the updated event information after an edit is saved

function displayEdited(type, data, event)

{

if (type == 'error')

{

alert('Could not retrieve the event');

}

else

{

editedItem = data.parseJSON(); // obtain updated description var

id = editedItem.id; // obtain the id

var editElement = dojo.byId(id); // get the edit UI

dojo.dom.removeNode(editElement, true); // delete edit UI var

old = dojo.byId('old' + id); // get item container

// get pre-edit element and update its description

var oldText = dojo.byId('description' + id);

oldText.innerHTML = editedItem.description;

old.id = id; // reset id

old.style.display = 'block'; // show the updated item

} // end else

} // end function displayEdited

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228 // when the page is loaded, set up the calendar event handler

229

230

dojo.addOnLoad(connectEventHandler);

// -->

Outline

Calendar.html

(8 of 11)

Set connectEventHandler

to be called onload

342

231 </script>

232 <title> Calendar built with dojo </title>
233</head>

234<body>

<div dojoType = "datePicker" style = "float: left"

widgetID = "calendar"></div>

235 Calendar

236

237

238 <div id = "itemList" style = "float: left"></div>

239</body>

240</html>

Outline

Calendar.html

(9 of 11)

343

500

Outline

Calendar.html

(10 of 11)

344

501

Outline

Calendar.html

(11 of 11)

345

