
MATHEMATICAL TRANSFORM  TECHNIQUES(MTT) 

B.TECH IIISEM(MECH) 

 

 

 

 

 

    Mrs.B Praveena 
         Assistant Professsor 1 

INSTITUTE OF AERONAUTICAL ENGINEERING 

(Autonomous) 

Dundigal – 500043, Hyderabad 



Fourier Series 

Fourier Transform 

Laplace Transform 

Z-Transform 

Partial Diftferential Equations and Applications 

CONTENTS 

2 



TEXT BOOKS 

Advanced Engineering Mathematics by  

Kreyszig, John Wiley & Sons. 

 Higher Engineering Mathematics by Dr. B.S.  

Grewal, Khanna Publishers 

3 



REFERENCE BOOKS 

 S. S. Sastry, “Introduction methods of numerical  

analysis”, Prentice-Hall of India Private Limited,  5th 

Edition, 2005 

  G. Shanker Rao, “Mathematical Methods”, I. K.  

International Publications, 1st Edition, 2011. 

4 



UNIT-I 

Fourier Series 
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INTRODUCTION 

 Suppose that a given function f(x) defined in (-

π,π)  or (0, 2π) or in any other interval can be 

expressed  as a trigonometric series as 

f(x)=a0/2 + (a1cosx + a2cos2x +a3cos3x 

+…+ancosnx)+ (b1sinx + 

b2sin 2x+……..bnsinnx)+……..  

f(x) = a0/2+ ∑(ancosnx + bnsinnx) 
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 Where a and b are constants with in a desired  

range of values of the variable such series is known  

as the fourier series for f(x) and the constants a0,  

an,bn are called fourier coefficients of f(x) 

 
 It has period 2π and hence any function  

represented by a series of the above form will also  

be periodic with period 2π 
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POINTS OF DISCONTINUITY 

 In deriving the Euler’s formulae for  

a0,an,bn it was assumed that f(x) is  

continuous. Instead a function may have  

a finite number of discontinuities. Even  

then such a function is expressable as a  

fourier series. 
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DISCONTINUITY FUNCTION 

 For instance, let the function f(x) be 

defined by 

 f(x) = ø (x), c< x< x0 

 = Ψ(x), xo<x<c+2π 

  where x0 is thepoint of discontinuity in  

(c,c+2π). 
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DISCONTINUITY FUNCTION 

In such cases also we obtain the fourier  series for 

f(x) in the usual way. The values  of a0,an,bn are 

given by 

a0 = 1/π [ ∫ ø(x) dx + ∫ Ψ(x) dx ] 

an =1/π [ ∫ ø(x)cosnx dx + ∫ Ψ(x)cosnx dx 

  bn = 1/π [ ∫ ø(x)sinnx dx + ∫ Ψ(x)sinnx dx] 
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EULER’S FORMULAE 

 The fourier series for the function f(x) in the 

interval C≤ x ≤ C+2π is given by 

f(x) = a0/2+ ∑(ancosnx + bnsinnx) 

where a0 = 1/ π ∫ f(x) dx 

an = 1/ π ∫ f(x)cosnx dx  

bn = 1/ π ∫ f(x)sinnxdx 

These values of ao , an, bn are known as  

Euler’s formulae 
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EVEN AND ODD FUNCTIONS 

 A function f(x) is said to be even if f(- 
x)=f(x) and odd if f(-x) = - f(x). 

 If a function f(x) is even in (-π, π ), its  
fourier series expansion contains only  
cosine terms, and their coefficients are ao 

 and an. 

 f(x)= a0/2 + ∑ an cosnx 

 where ao= 2/ π ∫ f(x) dx 

 an= 2/ π ∫ f(x) cosnx dx 
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ODD FUNCTION 

 When f(x) is an odd function in (-π, π) its 

fourier expansion contains only sine terms. 

 And their coefficient is bn 

 f(x) = ∑ bn sinnx 

 where bn = 2/ π ∫ f(x) sinnx dx 
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HALF RANGE FOURIER SERIES 

 THE SINE SERIES: If it be required to express  
f(x) as a sine series in (0,π), we define an  
odd function f(x) in (-π, π ) ,identical with  
f(x) in (0,π). 

 Hence the half range sine series (0,π) is 
given by 

 f(x) = ∑ bn sinnx 

 Where bn = 2/ π ∫ f(x) sinnx dx 
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HALF RANGE SERIES 

 The cosine series: If it be required to  

express f(x) as a cosine series, we define  

an even function f(x) in (- (-π, π ) ,  

identical with f(x) in (0, π ) , i.e we extend  

the function reflecting it with respect to  

the y-axis, so that f(-x)=f(x). 
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HALF RANGE COSINE SERIES 

 Hence the half range series in (o,π) is 

given by 

 f(x) = a0/2 + ∑ an cosnx 

 where a0= 2/ π∫f(x)dx 

 an= 2/ π∫f(x)cosnxdx 
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CHANGE OF INTERVAL 

 So far we have expanded a given  

function in a Fourier series over the interval  

(-π,π)and (0,2π) of length 2π. In most  

engineering problems the period of the  

function to be expanded is not 2π but  

some other quantity say 2l. In order to  

apply earlier discussions to functions of  

period 2l, this interval must be converted  

to the length 2π. 
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PERIODIC FUNCTION 

 Let f(x) be a periodic function with period  

2l defined in the interval c<x<c+2l. We  

must introduce a new variable z such that  

the period becomes 2π. 
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CHANGE OF INTERVAL 

 The fourier expansion in the change of 

interval is given by 

 f(x) = a0/2+∑ancos nπx/l +∑ bn sin nπx/l 

 Where a0 = 1/l ∫f(x)dx 

 

 

an = 1/l ∫f(x)cos nπx/l dx  

bn = 1/l ∫f(x)sin nπx/l dx 
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EVEN AND ODD FUNCTION 

 Fourier cosine series : Let f(x) be even 

function in (-l,l) then 

 f(x) = a0/2 + ∑ ancos nπx/l 

 where a0 = 2/l ∫f(x)dx 

 an =2/l ∫f(x)cos nπx/l dx 
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FOURIER SINE SERIES 

 Fourier sine series : Let f(x) be an odd 
function in (-l,l) then 

 f(x) = ∑ bn sin nπx/l 

 where bn = 2/l ∫f(x)sin nπx/l dx 

 Once ,again here we remarks that the  
even nature or odd nature of the function  
is to be considered only when we deal  
with the interval (-l,l). 
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HALF-RANGE EXPANSION 

 Cosine series: If it is required to expand f(x)  

in the interval (0,l) then we extend the  

function reflecting in the y-axis, so that f(-  

x)=f(x).We can define a new function g(x)  

such that f(x)= a0/2 + ∑ ancos nπx/l 

 where a0= 2/l ∫f(x)dx 

 an= 2/l ∫f(x)cos nπx/l dx 
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HALF RANGE SINE SERIES 

 Sine series : If it be required to expand  

f(x)as a sine series in (0,l), we extend the  

function reflecting it in the origin so that f(- 

x) = f(x).we can define the fourier series in  

(-l,l) then, 

 f(x) = a0/2 + ∑ bn sin nπx/l 

 where bn = 2/l ∫f(x)sin nπx/l dx 
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UNIT-II 

Fourier  
Transform 
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FOURIER INTEGRAL  

TRANSFORMS 

 INTRODUCTION:A transformation is a  
mathematical device which converts  
or changes one function into another  
function. For example, differentiation  
and integration are transformations. 

  In this we discuss the application of  
finite and infinite fourier integral  
transforms which are mathematical  
devices from which we obtain the  
solutions of boundary value. 
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 We obtain the solutions of boundary value problems  

related toengineering. For example conduction of  

heat, free and forced vibrations of a membrane,  

transverse vibrations of a string, transverse  

oscillations of an elastic beam etc. 
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 DEFINITION: The integral transforms of a  

function f(t) is defined by 

 F(p)=I[f(t) = ∫ f(t) k(p,t )dt 

 Where k(p,t) is called the kernel of the  

integral transform and is a function of p  

and t. 
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FOURIER COSINE AND SINE  

INTEGRAL 

 When f(t) is an odd function cospt,f(t) is  

an odd function and sinpt f(t) is an even  

function. So the first integral in the right  

side becomes zero. Therefore we get 

 f(x) = 2/π∫sinpx 
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FOURIER COSINE AND SINE  

INTEGRAL 

 When f(t) is an odd function cospt,f(t) is  

an odd function and sinpt f(t) is an even  

function. So the first integral in the right  

side becomes zero. Therefore we get 

 f(x) = 2/π∫sinpx ∫f(t) sin pt dt dp 

  which is known as FOURIER SINE  

INTEGRAL. 
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 When f(t) is an even function, the second  

integral in the right side becomes  

zero.Therefore we get 

 f(x) = 2/π∫cospx ∫f(t) cos pt dt dp 

 which is known as FOURIER 

COSINEINTEGRAL. 
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FOURIER INTEGRAL IN  

COMPLEX FORM 

 Since cos p(t-x) is an even functionof p, 

we have 

 f(x) = 1/2π∫∫eip(t-x) f(t) dt dp 

 which is the required complex form. 
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INFINITE FOURIER TRANSFORM 

 The fourier transform of a function f(x) is 

given by 

 F{f(x)} = F(p) = ∫f(x) eipx dx 

 The inverse fourier transform of F(p) is  

given by 

 f(x) = 1/2π ∫ F (p) e-ipx dp 
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FOURIER SINE TRANSFORM 

 The finite Fourier sine transform of f(x) 

when 0<x<l, is definedas 

 Fs{f(x) = Fs (n) sin (nπx)/l dx where n is an 

integer and the function f(x) is given by 

  f(x) = 2/l∑ Fs (n) sin (nπx)/l is called the  

Inverse finite Fourier sine transform Fs(n) 
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FOURIER COSINE TRANSFORM 

 We have f(x) = 2/π∫cospx ∫f(t) cos pt dt dp 

 Which is the fourier cosine integral .Now 

 Fc(p) = ∫ f(x) cos px dx then 

  f(x) becomes f(x) =2/π∫ Fc(p) cos px dp  

which is the fourier cosine transform. 
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PROPERTIES 

 Linear property of Fourier transform 

 Change of Scale property 

 Shifting property 

 Modulation property 
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UNIT-III 

Laplace  
Transform 
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DEFINITION 

 Let f(t) be a function defined for all positive values  

of t. Then the Laplace transform of f(t), denoted by  

L{f(t)} or f(s) is defined by L{f(t)}=f(s)=∫e-st f(t) dt 

 Example 1:L{1}=1/s 

 Example 2:L{eat}=1/(s-a) 

 Example 3:L{Sinat}=a/(s2+a2) 
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FIRST SHIFTING THEOREM 

 If L{f(t)}=f(s), then L{eat f(t)}=f(s-a), s-a>0 is 

known as a first shifting theorem. 

 Example 1: By first shifting theorem the value of 

L{eatSinbt} is b/[(s-a)2+b2] 

 Example 2: L{eattn}=n!/(s-a)n+1 

 Example 3: L{eatSinhbt}=b/[(s-a)2-b2] 

 Example 4: L{e-atSinbt}=b/[(s+a)2+b2] 
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UNIT STEP 

FUNCTION(HEAVISIDES UNIT  

FUNCTION) 
 The unit step function is defined as H(t-a) or u(t-a)=0, if t<a and 

1 otherwise. 

 L{u(t-a)}=e-as f(s) 

 Example 1: The laplace transform of (t-2)3u(t-2) is 6e-2s/s4 

 Example 2: The laplace transform of e-3tu(t-2) is e-(s+3)/(s+3) 
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CHANGE OF SCALE PROPERTY 

 If L{f(t)}=f(s), then L{f(at)}=1/a f(s/a) is known 

as a change of scale property. 

 Example 1:By change of scale property the value 

of L{sin2at} is 2a2/[s(s2+4a2] 

 Example 2:If L{f(t)}=1/s e-1/s then by change of 
e- scale property the value of L{e-tf(3t)} is 

3/(s+1)/(s+1) 
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LAPLACE TRANSFORM OF  

INTEGRAL 

 If L{f(t)}=f(s) then L{∫f(u)du}=1/s f(s) is known 

as laplace transform of integral. 

 Example 1:By the integral formula, 

L{∫e-tcost dt}=(s+1)/[s(s2+2s+2)] 

 Example 2:By the integral formula,  

L{∫ ∫coshat dt dt}=1/[s(s2-a2)] 
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LAPLACE TRANSFORM OF tn f(t) 

 If f(t) is sectionally continuous and of exponential 

order and if L{f(t)}=f(s) then L{t.f(t)}=-f(s) 

 In general L{tn.f(t)}= (-1)n dn/dsn f(s) 

 Example 1: By the above formula the value of  

L{t cosat} is (s2-a2)/(s2+a2)2 

 Example 2: By the above formula the value of 

L{t e-t cosht} is (s2+2s+2)/(s2+2s)2 
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LAPLACE TRANSFORM OF f(t)/t 

 If L{f(t)}=f(s), then L{f(t)/t}= ∫f(s)ds, provided the 

integral exists. 

 Example 1: By the above formula, the value of 

L{sint/t} is cot-1s 

 Example 2: By the above formula, the value of  

L{(e-at – e-bt)/t}=log(s+b)/(s+a) 
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LAPLACE TRANSFORM OF  

PERIODIC FUNCTION 

 PERIODIC FUNCTION: A function f(t) is said to  

be periodic, if and only if f(t+T)=f(t) for some  

value of T and for every value of t. The smallest  

positive value of T for which this equation is true  

for every value of t is called the period of the  

function. 

 If f(t) is a periodic function then 

 L{f(t)}=1/(1-e-sT)∫e-st f(t) dt 
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INVERSE LAPLACE TRANSFORM 

 So far we have considered laplace transforms of  

some functions f(t). Let us now consider the  

converse namely, given f(s), f(t) is to be  

determined. If f(s) is the laplace transform of f(t)  

then f(t) is called the inverse laplace transform of  

f(s) and is denoted by f(t)=L-1{f(s)} 
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CONVOLUTION THEOREM 

 Let f(t) and g(t) be two functions defined for 

positive numbers t. We define 

 f(t)*g(t)=∫f(u)g(t-u) du 

 Assuming that the integral on the right hand side  

exists.f(t)*g(t) is called the convolution product of  

f(t) and g(t). 

 Example: By convolution theorem the value of L- 

1{1/[(s-1)(s+2)]} is (et-e-2t)/3 
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APPLICATION TO DIFFERENTIAL  

EQUATION 

 Ordinary linear differential equations with constant  
coefficients can be easily solved by the laplace  
tranform method, without the necessity of first  
finding the general solution and then evaluating  
the arbitrary constants. This method, in general,  
shorter than our earlier methods and is especially  
suitable to obtain the solution of linear non-  
homogeneous ordinary differential equations with  
constant coefficients. 
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SOLUTION OF A DIFFERENTIAL EQUATION BY LAPLACE 

TRANSFORM 

 Step 1:Take the laplace transform of both sides of the given  
differential equation. 

 Step 2:Use the formula 

 L{y'(t)}=sy(s)-y(0) 
 Step 3:Replace y(0),y'(0) etc., with the given initial 

conditions 

 Step 4:Transpose the terms with minus signs to the right 

 Step 5:Divide by the coefficient of y, getting y as a known  
function of s. 

 Step 6:Resolve this function of s into partial fractios. 
 Step 7:Take the inverse laplace transform of y obtained in 

step 5. This gives the required solution. 
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UNIT-IV 

Z- Transform 
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50 

 The z-transform is the most general concept for the 
transformation of discrete-time series. 

 The Laplace transform is the more general  
concept for the transformation of continuous time  
processes. 

 For example, the Laplace transform allows you to  
transform a differential equation, and its  
corresponding initial and boundary value  
problems, into a space in which the equation can  
be solved by ordinary algebra. 

 The switching of spaces to transform calculus  
problems into algebraic operations on transforms is  
called operational calculus. The Laplace and z  
transforms are the most important methods for this  
purpose. 
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 

The Laplace transform of a function f(t): 

 

0 

F ( s )  f ( t )e 
 st 

dt 

The one-sided z-transform of a function x(n): 

 

X ( z )   x ( n ) z 
 n 

n  0 

The two-sided z-transform of a function x(n): 

 

 
n   

x ( n ) z 
 n 

X ( z )  
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Note that expressing the complex variable z in polar form 

reveals the relationship to the Fourier transform: 

 

 

 

 
n   

 

 
n   

x ( n )e 
 i n 

X ( e 
i 

)  X ( )  

if r  1, x ( n )r 
 n 

e 
 i n 

, and X ( re 
i 

)  

x ( n )( re 
i 

) 
 n 

, or X ( re 
i 

)  

n   

which is the Fourier transform of x(n). 
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The z-transform of x(n) can be viewed as the Fourier transform of x(n) 

multiplied by an exponential sequence r-n, and the z-transform may  

converge even when the Fourier transform does not. 

By redefining convergence, it is possible that the Fourier transform 

may converge when the z-transform does not. 

For the Fourier transform to converge, the sequence must have finite  

energy, or: 

 

 
n   

x ( n ) r 
 n 

  
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 

 x ( n ) z 
 n 

X ( z )  

The power series for the z-transform is called a Laurent series: 

n   

The Laurent series, and therefore the z-transform, represents an 

analytic function at every point inside the region of convergence, and  

therefore the z-transform and all its derivatives must be continuous  

functions of z inside the region of convergence. 

In general, the Laurent series will converge in an annular region of the 

z-plane. 
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First we introduce the Dirac delta function (or unit sample 

function): 

 

 
1, n  0 

 ( n )   
 0 , n  0 

This allows an arbitrary sequence x(n) or continuous-time function 

f(t) to be expressed as: 

 
  

 

 
k   

 

f ( t )  

x ( n )  

f ( x ) ( x  t )dt 

x ( k ) ( n  k ) 

or 

 

 
1, t  0 

 ( t )  
 0 , t  0 
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These are referred to as discrete-time or continuous-time  

convolution, and are denoted by: 

 

 
x ( n )  x ( n ) *  ( n ) 

f ( t )  f ( t ) *  ( t ) 

We also introduce the unit step function: 

1, t  0 
or u ( t )   

 0 , t  0 

1, n  0 
u ( n )   

 0 , n  0 

Note also:  

u ( n )    ( k ) 

k    
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When X(z) is a rational function, i.e., a ration of  

polynomials in z, then: 

1. The roots of the numerator polynomial are  

referred to as the zeros of X(z), and 

2. The roots of the denominator polynomial are 

referred to as the poles of X(z). 

Note that no poles of X(z) can occur within the region of convergence 

since the z-transform does not converge at a pole. 

Furthermore, the region of convergence is bounded by poles. 
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Example 

x ( n )  a 
n 

u ( n ) 

The z-transform is given by: 

 1 
) 

n 

  

X ( z )   a 
n 

u ( n ) z 
 n 

  ( az 

n   n  0 

Which converges to: 

z  a 
 for z  a 

 1 
1  az 

1 z 
X ( z )  

Clearly, X(z) has a zero at z = 0 and a pole at z = a. 

 a 

Region of convergence 
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Convergence of Finite Sequences 
Suppose that only a finite number of sequence values are  

nonzero, so that: 
n 2 

 
n  n 1 

x ( n ) z 
 n 

X ( z )  

Where n1 and n2 are finite integers. Convergence requires 

x ( n )   for n 1   n  n 2  . 

So that finite-length sequences have a region of convergence 

that is at least 0 < |z| < , and may include either z = 0 or z = . 
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Inverse z-Transform 

 

The inverse z-transform can be derived by using Cauchy’s 

integral theorem. Start with the z -transform 

n   

x ( n ) z 
 n 

X ( z )  

Multiply both sides by zk-1 and integrate with a contour integral  

for which the contour of integration encloses the origin and lies  

entirely within the region of convergence of X(z): 

1 

1 

1 1 

x ( n ) 

C 

  x ( n ) is the inverse z - transform. 

 

 X ( z ) z 
k  1

dz 

 

 
n   

 z 
 n  k  1

dz 

C 

 

  
C n   

x ( n ) z 
 n  k  1

dz  X ( z ) z 
k  1

dz  

C 

2  i 

2  i 

2  i 2  i 
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Properties 

 Multiplication: 

But multiplication will affect the region of  
convergence and all the pole-zero  
locations will be scaled by a factor of a. 

 z-transforms are linear: 
Z ax ( n )  by ( n )  aX ( z )  bY ( z ) 

 The transform of a shifted sequence: 

0 
Z  x ( n  n )   z 

n 0 X ( z ) 

Z a n 
x ( n )   Z ( a 

 1
z ) 
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Convolution of Sequences 

e of both. of convergenc the regions 

Then 

W ( z )  X ( z )Y ( z ) for values of z inside 

 

x ( k )  W ( z )  

 

 

W ( z )  

x ( k ) y ( n  k ) w ( n )  

k   

 


 m   

 

y ( m ) z 
 m  z 

 k 


 

k   

let m  n  k 

 

 

x ( k ) y ( n  k )  z 
 n 


 

 

 

  

 

x ( k )  y ( n  k ) z 
 n 

n   

 

 
n   


 k   

 

 

  

 
k   
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UNIT-V 

Partial  
Differential  
Equations 
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INTRODUCTION 

 Equations which contain one or more partial  

derivatives are called Partial Differential  

Equations. They must therefore involve atleast two  

independent variables and one dependent variable.  

When ever we consider the case of two  

independent variables we shall usually take them  

to be x and y and take z to be the dependent  

variable.The partial differential coefficients 
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FORMATION 0F P.D.E 

 Unlike in the case of ordinary differential  

equations which arise from the elimination of  

arbitrary constants the partial differential equations  

can be formed either by the elimination of  

arbitrary constants or by the elimination of  

arbitrary functions from a relation involving three  

or more variables. 
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ELIMINATION OF ARBITRARY  

CONSTANTS 

 Consider z to be a function of two independent  
variables x and y defined by 

  f ( x,y,z,a,b ) = 0……….(1) in which a and b  
are constants. Differentiating (1) partially with  
respect to x and y, we obtains two differential  
equations,let it be equation 2 &3. By means of  
the 3 equations two constants a and b can be  
eliminated.This results in a partial differential  
equation of order one in the form  
F(x,y,z,p,q)=0. 
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ELIMINATION OF ARBITRARY  

FUNCTIONS 

 Let u= u(x,y,z) and v=v(x,y,z) be independent  

functions of the variables x,y,z and let  

ø(u,v)=0………….(1) be an arbitrary relation  

between them.We shall obtain a partial differential  

equation by eliminating the functions u and v. 

Regarding z as the dependent variable and  

differentiating (1) partially with respect to x and y,  

we get 
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LINEAR P.D.E 

 Equation takes the form  

Pp + Qq = R 

  a partial differential equation in p and q and  
free of the arbitrary function ø(u,v)=0 a partial  
differential equation which is linear. If the  
given relation between x,y,z contains two  
arbitrary functions then leaving a few  
exceptional cases the partial differential  
equations of higher order than the second will  
be formed. 
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SOLUTIONS OF P.D.E 

 Through the earlier discussion we can understand  

that a partial differential equation can be formed  

by eliminating arbitrary constants or arbitrary  

functions from an equation involving them and  

three or more variables. 

  Consider a partial differential equation of the form  

F(x,y,z,p,q)=0…….(1) 
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LINEAR P.D.E 

 If this is linear in p and q it is called a linear partial  

differential equation of first order, if it is non linear  

in p,q then it is called a non-linear partial  

differential equation of first order. 

 A relation of the type F (x,y,z,a,b)=0…..(2) from  

which by eliminating a and b we can get the  

equation (1) is called complete integral or  

complete solution of P.D.E 
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PARTICULAR INTEGRAL 

 A solution of (1) obtained by giving particular  

values to a and b in the complete integral (2) is  

called particular integral. 

 If in the complete integral of the form (2) we take  

f=(a,b). 
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COMPLETE INTEGRAL 

 A solution of (1) obtained by giving particular  

values to a and b in the complete integral (2) is  

called particular integral. 

 If in the complete integral of the form (2) we take  

f= aø() where a is arbitrary and obtain the envelope 

of the family of surfaces f(x,y,z,ø(a0) =0 
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GENERAL INTEGRAL 

 Then we get a solution containing an arbitrary  

function. This is called the general solution of (1)  

corresponding to the complete integral (2) 

 If in this we use a definite function ø(a), we obtain  

a particular case of the general integral. 
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SINGULAR INTEGRAL 

 If the envelope of the two parameter fmily of  

surfaces (2) exists, it will also be a solution of (1).  

It is called a singular integral of the equation (1). 

 The singular integral differs from the particular  

integral. It cannot be obtained that way. A more  

elaborate discussion of these ideas is beyond the  

scope. 
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LINEAR P.D.E OF THE FIRST  

ORDER 

 A differential equation involving partial  

derivatives p and q only and no higher order  

derivatives is called a first order equation. If p and  

q occur in the first degree, it is called a linear  

partial differential equation of first order, other  

wise it is called non- linear partial differential  

equation. 
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LAGRANGE’S LINEAR  

EQUATION 

 A linear partial differential equation of order one,  

involving a dependent variable and two  

independent variables x and y, of the form 

 Pp + Qq = R 

 Where P,Q,R are functions of x,y,z is called  

Lagrange’s linear equation. 
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PROCEDURE 

 Working rule to solve Pp+Qq=R 

 First step: write down the subsidary equations  

dx/P = dy/Q = dz/R 

 Second step: Find any two independent solutions  

of the subsidary equations. Let the two solutions  

be u=a and v=b where a and b are constants. 
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METHODS OF SOLVING  

LANGRANGE’S LINEAR EQUATION 

 Third step: Now the general solution of Pp+Qq=R is given  

by f(u,v) = 0 or u=f(v) 

 T o solve dx/P = dy/Q = dz/R 

 We have two methods 

 (i) Method of grouping 

 (ii) Method of multipliers 
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METHOD OF GROUPING 

 In some problems it is possible that two of the  

equations dx/P= dy/Q= dz/R are directly solvable  

to get solutions u(x,y)=constant or v(y,z)= constant  

or w(z,x) = constant. These give the complete  

solution. 
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METHOD OF GROUPING 

 Sometimes one of them say dx/P = dy/Q may give  

rise to solution u(x,y) = c1. From this we may  

express y, as a function of x. Using this dy/Q =  

dz/R and integrating we may get v(y,z) = c2. These  

two relations u=c1, v=c2 give rise to the complete  

solution. 
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METHOD OF MULTIPLIERS 

 If a1/b1 = a2/b2 = a3/b3 =……….=an/bn then each 

ratio is equal to 

 l1a1+l2a2+l3a3+……+lnan 

 l1b1+l2b2+l3b3+……+lnbn 

 consider dx/P = dy/Q = dz /R 

 If possible identify multipliers l,m,n not 

necessarily so that each ratio is equal to 
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METHOD OF MULTIPLIERS 

 If, l,m,n are so chosen that lP+mQ+nR=0 then ldx 

+ mdy + ndz =0, Integrating this we get u(x,y,z) =  

c1 similarlyor otherwise get another solution  

v(x,y,z) = c2 independent of the earlier one. We  

now have the complete solution constituted by  

u=c1, v= c2. 
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NON-LINEAR P.D.E OF FIRST ORDER 

 A partial differential equation which involves first  

order partial derivatives p and q with degree higher  

than one and the products of p and q is called a  

non- linear partial differential equations. 
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DEFINITIONS 

 Complete integral: A solution in which the number  

of arbitrary constants is equal to the number of  

arbitrary constants is equal to the number of  

independent variables is called complete integral  

or complete solution of the given equation 
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PARTICULAR INTEGRAL 

 Particular integral : A solution obtained by giving  

particular values to the arbitrary constants in the  

complete integral is called a particular integral. 

 Singular integral: Let f(x,y,z,p,q) = 0 be a partial  

differential equation whose complete integral is  

ø(x,y,z,p,q) =0 
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STANDARD FORM I 

 Equations of the form f(p,q)=0 i.e equations 

containing p and q only. 

 Let the required solution be z= ax+by+c 

 Where p=a , q=b.substituting these values in  

f(p,q)=0 we get f(a,b)=0 

 From this, we can obtainb in terms of a .Let 

b=ø(a). Then the required solution is 

 Z=ax + ø(a)y+c. 
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STANDARD FORM II 

 Equations of the form f(z,p,q)=0 i.e not containing 

x and y. 

 Let u=x+ay and substitute p and q in the given 

equation. 

 Solve the resulting ordinary differential equation in  

z and u. 

 Substitute x+ay for u. 
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STANDARD FORM III 

 Equations of the form f(x,p)=f(y,q) i.e  
equations not involving z and the terms  
containing x and p can be separated from those  
containing y and q.We assume each side equal  
to an arbitrary constant a, solve for p and q  
from the resulting equations 

 Solving for p and q, we obtain p= f(x,p) and  
q= f(y,q) since is a function of x and y we  
have pdx + q dy integrating which gives the  
required solution. 
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STANDARD FORM IV 

 CLAUIRT’S FORM : Equations of the form  

z=px+qy+f(p,q). An equation analogous to  

clairaut’s ordinary differential equation y=px+f(p).  

The complete solution of the equation  

z=px+qy+f(p,q). Is 

  z=ax+by+f(a,b). Let the required solution be  

z=ax+by+c 
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METHOD OF SEPARATION OF  

VARIABLES 

 When we have a partial differential equation  

involving two independent variables say x and y,  

we seek a solution in the form X(x), Y(Y) and  

write down various types of solutions. 
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Heat equation 
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wave equation 
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