
1

DEPARTMENT OF INFORMATION TECHNOLOGY

OBJECT ORIENTED ANALYSIS AND DESIGN

B Tech III Year II Semester (JNTUH-R15)

Prepared

by

Mr. E.Sunil Reddy.

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

2 2

UNIT-I

Introduction to UML

3 3

What is the UML?

• “The Unified Modeling Language is a family of

graphical notations, backed by a single meta-model, that

help in describing and designing software systems,

particularly software systems built using the object-

oriented style.”

• UML first appeared in 1997

• UML is standardized. Its content is controlled by the

Object Management Group (OMG), a consortium of

companies.

4 4

What is the UML?

• Unified

– UML combined the best from object-oriented

software modeling methodologies that were in

existence during the early 1990’s.

– Grady Booch, James Rumbaugh, and Ivor Jacobson

are the primary contributors to UML.

5 5

What is the UML?
• Modeling

– Used to present a simplified view of reality in order to

facilitate the design and implementation of object-

oriented software systems.

– All creative disciplines use some form of modeling as

part of the creative process.

– UML is a language for documenting design

– Provides a record of what has been built.

– Useful for bringing new programmers up to speed.

6

Chapter 1. Why We Model
In this chapter

 The importance of modeling

· Four principles of modeling

· Object-oriented modeling

7

 Importance of modeling :

 A model is a simplification of reality.

We build models so that we can better understand the

system we are developing.

Through modeling, we achieve four aims

1. Models help us to visualize a system as it is or as we

want it to be.

2. Models permit us to specify the structure or behavior

of a system.

3. Models give us a template that guides us in

constructing a system.

4. Models document the decisions we have made.

Principles of Modeling

8

· Four principles of modeling:

1. The choice of what models to create has a profound

influence on how a problem is attacked and how a

solution is shaped.

2. Every model may be expressed at different levels of

precision.

3. The best models are connected to reality.

4. No single model is sufficient. Every nontrivial system is

best approached through a small set of nearly

independent models.

9 9

A Conceptual Model of the UML

• A conceptual model needs to be formed by an individual

to understand UML.

• UML contains three types of building blocks: things,

relationships, and diagrams.

• Things

– Structural things

• Classes, interfaces, collaborations, use cases,

components, and nodes.

– Behavioral things

• Messages and states.

10 10

A Conceptual Model of the UML
– Grouping things

• Packages

– Annotational things

• Notes

• Relationships: dependency, association, generalization

and realization.

• Diagrams: class, object, use case, sequence, collaboration,

statechart, activity, component and deployment.

Conceptual Model of the UML

11

Building Blocks of the UML:

The vocabulary of the UML encompasses three kinds of

building blocks:

1. Things

2. Relationships

3. Diagrams

Conceptual Model of the UML

• Things in the UML

• There are four kinds of things in the UML:

• 1. Structural things

• 2. Behavioral things

• 3. Grouping things

• 4. Annotational things

12

Conceptual Model of the UML

• Structural Things

• Structural things are the nouns of UML models. These

are the mostly static parts of a model, representing

elements that are either conceptual or physical. In all,

there are seven kinds of structural things.

• Classes

• Interface

• Cases

• Active Classes

• Components

• Nodes

• Collaborations 13

Conceptual Model of the UML

14

Figure : Classes

Classes:

a class is a description of a set of objects

that share the same attributes, operations,

relationships, and semantics. A class

implements one or more interfaces.

Graphically, a class is rendered as a

rectangle, usually including its name,

attributes, and operations

Conceptual Model of the UML

• an interface is a collection of operations

that specify a service of a class or

component. An interface rarely stands

alone. Rather, it is typically attached to the

class or component that realizes the

interface

15

 Interface:

Figure :Interfaces

Conceptual Model of the UML

• Collaborations:

• a collaboration defines an

interaction .These collaborations

therefore represent the implementation

of patterns that make up a system.

Graphically, a collaboration is

rendered as an ellipse with dashed

lines, usually including only its name

16

Figure:

Collaborations

Conceptual Model of the UML

• Use Cases:

• A use case is realized by a

collaboration. Graphically, a use

case is rendered as an ellipse

with solid lines, usually including

only its name

17

Figure :Use Cases

Conceptual Model of the UML

• Active Classes:

• an active class is rendered just like a

class, but with heavy lines, usually

including its name, attributes, and

operations

18

Figure :Active Classes

Conceptual Model of the UML

• Components:

• A component typically

represents the physical packaging

of otherwise logical elements,

such as classes, interfaces, and

collaborations. Graphically, a

component is rendered as a

rectangle with tabs, usually

including only its name.

19

Figure :Components

Conceptual Model of the UML

• Nodes:

• a node is a physical element that

exists at run time and represents a

computational resource, generally

having at least some memory and,

often, processing capability. A set of

components may reside on a node

and may also migrate from node to

node. Graphically, a node is rendered

as a cube, usually including only its

name.
20

Figure :Nodes

Conceptual Model of the UML

Behavioral Things:

 Behavioral things are the dynamic parts of UML

models. These are the verbs of a model, representing

behavior over time and space. In all, there are two

primary kinds of behavioral things.

1. Messages

2. States

21

Conceptual Model of the UML

• Messages:

• an interaction is a behavior that comprises a set of

messages exchanged among a set of objects within a

particular context to accomplish a specific purpose.

Graphically, a message is rendered as a directed line,

almost always including the name of its operation.

• States:

• a state machine is a behavior that specifies the sequences

of states an object or an interaction goes through during

its lifetime in response to events, together with its

responses to those events.

22

Conceptual Model of the UML

Grouping Things:

• Grouping things are the organizational

parts of UML models. These are the boxes

into which a model can be decomposed. In

all, there is one primary kind of grouping

thing, namely, packages.

• Packages:

• A package is a general-purpose mechanism

for organizing elements into groups.

Graphically, a package is rendered as a

tabbed folder, usually including only its

name and, sometimes, its contents

23

Figure: Packages

24 24

What is the UML?

• Language

– UML is primarily a graphical language that follows a

precise syntax.

– UML 2 is the most recent version

– UML is standardized. Its content is controlled by the

Object Management Group (OMG), a consortium of

companies.

Conceptual Model of the UML

• Annotational Things:

• Annotational things are the explanatory parts of UML

models. These are the comments you may apply to

describe, illuminate, and remark about any element in a

model.

• There is one primary kind of annotation thing, called a

note. A note is simply a symbol for rendering constraints

and comments attached to an element or a collection of

elements.

25

Figure 2-11 Notes

26 26

How We Got to the UML

• OO modeling languages made their appearance in the late

70’s. Smalltalk was the first widely used OO language.

• As the usefulness of OO programming became

undeniable, more OO modeling languages began to

appear.

• By the start of the 90’s there was a flood of modeling

languages, each with its own strengths and weaknesses.

27 27

How We Got to the UML

• In 1994 the UML effort officially began as a

collaborative effort between Booch and Rumbaugh.

Jacobson was soon after included in the effort.

• The goal of UML is to be a comprehensive modeling

language (all things to all people) that will facilitate

communication between all members of the development

effort.

28 28

UML Diagrams

• UML 2 supports 13 different types of diagrams

• Each diagram may be expressed with varying degrees of

detail

• Not all diagrams need be used to model a SW system

• The UML does not offer an opinion as to which diagrams

would be most helpful for a particular type of project

29 29

UML

Diagrams

30 30

What is Legal UML?

• Even though UML is standardized by the OMG

developers will take liberties with syntax.

• These “liberties” have a way of becoming standard

conventions in later releases of the language.

• The same holds true for natural languages.

31 31

The UML is not Enough

 Even if the UML is your primary modeling language,

don’t hesitate to use other diagrams to model your

design.

32 32

Architecture

• Architecture refers to the different perspectives from

which a complex system can be viewed.

• The architecture of a software-intensive system is best

described by five interlocking views:

– Use case view: system as seen by users, analysts and

testers.

– Design view: classes, interfaces and collaborations that

make up the system.

– Process view: active classes (threads).

– Implementation view: files that comprise the system.

– Deployment view: nodes on which SW resides.

33 33

Software Development Life Cycle

• UML is involved in each phase of the software

development life cycle.

• The UML development process is

– Use case driven

– Architecture-centric

– Iterative and incremental

UNIT-II

Basic structural modeling

Advanced structural modeling

Class and object diagram

34

CLASSES
Classes

A Class is a description of set of objects that share same

attributes, operations, relationships and semantics .

Name

Every class must have a name that distinguishes it from

other classes.

Temperature
sensor

Customer

wall

Business
rules::FraudAge

nt

Attributes

-an attribute is a named property of a class that

describes range of values that instances of the

property may hold.

Eg:

Custom
er Name

Address
Phone

Birthdat
e

wall
Height:float
Width :float

Thickness:float
Isloadbearing

:boolean=false

Attributes and their
classes

Attributes

Operations

-An operation is the implementation of a service that can be

requested from any object of the class to affect behavior

.

Rectangle

Add()
Grow()
Move()

Isempty()

Eg operation

Temperatu
re sensor

Organizing attributes and relationships

-To better organize long lists of attributes and operations

you prefix each group with descriptive category by

using stereotypes .

Fraud agent <<constructo
r>>

New()
New(p:policy

)
<<process>>
Process(o:or

der)

Responsibilities
-a responsibility is a contract or an obligation of a class.

-when you create a class you are making a statement that all

objects of that class have the same kind of state and behaviour

.

FraudAgent Responsibili
ties

-determine
a risk of

customer
order

-handle
customer
specific
criteria

Common modeling techniques

-Modeling the vocabulary of a system

To model the vocabulary of a system

1) Identify those things that users to describe the problem

.use crc cards and usecase based analysis to help find

these abstractions.

Custom
er
Name
Addres

s
Phone

BirthDa
te

Transacti
on

Action
Commit()
Rollback(

)
Wassucc
essfull()

Modeling the vocabulary of a system

contd….
2)For each abstraction, identify a set of responsibilities.

Make sure that each class is crisply defined and that

there is a good balance of responsibilities among all your

classes.

3)Provide the attributes and operations that are needed to

carry out these responsibilities for each class

Modeling the Distribution of responsibilities in a System

To model the distribution of responsibilities in a System

1)Identify a set of classes that work together closely to

carryout some behavior.

 Model

Responsibili
ties manage
the state of
the models

View
Responsibili

ties
Render the
model on
the screen

Manage
movement
and resizing
of the view

Modeling the Distribution of responsibilities

in a System contd…

 2)Identify a set of responsibilities for each of these classes.

3)Look at this set of classes as a whole, split classes that

have too many responsibilities into smaller abstractions,

collapse tiny classes that have trivial responsibilities into

larger ones, and reallocate responsibilities so that each

abstraction reasonably stands on its own.

4)Consider the ways in which those classes collaborate

with one another, and redistribute their responsibilities

accordingly so that no class within a collaboration does

too much or too little.

Modeling Non software things

1)Model the thing you are abstracting as a class.

2)If you want to distinguish these things from the uml

defined building blocks, create new building block by

using stereotype to specify these new semantics and

to give a distinctive

 Visual cue.

Accounts

receivable Agent

Robot

Processorder()
Changeorder()

Status()

Modeling Nonsoftware things

contd…

3) If the thing you are modeling is some kind of

hardware that itself contains software, consider

modeling it as a kind of node, as well, so that you can

further expand on its structure.

<<Type>>
Int

{values
range from
-2**31-1

to +2**31}

<<Enume
ration>>
Boolean

False
True

<<Enume
ration>>

status
Idle

Working
error

2) If you need to specify the range of values associated with this

type, use constraints.

Modeling Primitive Types
contd…

Relationships
• A relationship is a connection among things. In

object-oriented modeling, the three most
important relationships are dependencies,
generalizations, and associations.

• Graphically, a relationship is rendered as a path,
with different kinds of lines used to distinguish
the kinds of relationships.

48

Relationships cont..

 • Dependency

A dependency is a using relationship that states that a

change in specification of one thing (for example,

class Event) may affect another thing that uses it (for

example, class Window), but not necessarily the

reverse.

• Graphically, a dependency is rendered as a dashed

directed line

• Generalization

-A generalization is a relationship between a general

thing (called the super class or parent)and a more

specific kind of that thing (called the subclass or child).

-Generalization is sometimes called an "is-a-kind-of"

relationship: one thing (like the class BayWindow) is-

a-kind-of a more general thing (for example, the class

Window).

• Association

-An association is a structural relationship that

specifies that objects of one thing are connected to

objects of another. Given an association connecting

two classes, you can navigate from an object of one

class to an object of the other class, and vice versa.

-An association that connects exactly two classes is

called a binary association. Although it's not as

common, you can have associations that connect

more than two classes; these are called n-ary

associations. Graphically, an association is

rendered as a solid line connecting the same or

different classes. Use associations when you want to

show structural relationships.

Association contd…

 There are four adornments that apply to associations

Name

- An association can have a name, and you use that

name to describe the nature of the relationship. So

that there is no ambiguity about its meaning, you can

give a direction to the name by providing a direction

triangle that points in the direction you intend to read

the name, as shown in Figure

Association

• Multiplicity

-An association represents a structural relationship

among objects. In many modeling situations, it's

important for you to state how many objects may be

connected across an instance of an association.

- This "how many" is called the multiplicity of an

association's role, and is written as an expression that

evaluates to a range of values or an explicit value as

in Figure

• Aggregation

 -A plain association between two classes represents a

structural relationship between peers, meaning that both

classes are conceptually at the same level, no one more

important than the other. Sometimes, you will want to

model a "whole/part" relationship, in which one class

represents a larger thing (the "whole"), which consists of

smaller things (the "parts"). This kind of relationship is

called aggregation, which represents a "has-a" relationship,

Aggregation contd….

Common Modeling Techniques

Modeling simple dependencies

-To model this using relationship

1) Create a dependency pointing from the class with the

operation to the class used as a parameter in the

operation.

Modeling simple dependencies

Modeling Single Inheritance

 To model inheritance relationships,

 1) Given a set of classes, look for responsibilities,

attributes, and operations that are common to two or

more classes.

 2) Elevate these common responsibilities, attributes, and

operations to a more general class. If necessary, create a

new class to which you can assign these elements (but be

careful about introducing too many levels).

 3) Specify that the more-specific classes inherit from the

more-general class by placing a generalization

relationship that is drawn from each specialized class to

its more-general parent.

Modeling Single Inheritance

Modeling Structural Relationships

• To model structural relationships,

1)For each pair of classes, if you need to navigate from

objects of one to objects of another, specify an

association between the two. This is a data-driven

view of associations.

2) For each pair of classes, if objects of one class need

to interact with objects of the other class other than as

parameters to an operation, specify an association

between the two. This is more of a behavior-driven

view of associations.

Modeling Structural Relationships

contd….

3) For each of these associations, specify a multiplicity

(especially when the multiplicity is not *, which is the

default), as well as role names (especially if it helps to

explain the model).

4) If one of the classes in an association is structurally or

organizationally a whole compared with the classes at

the other end that look like parts, mark this as an

aggregation by adorning the association at the end near

the whole

Modeling Structural Relationships

contd….

. A note is a graphical symbol for rendering constraints or

comments attached to an element or a collection of elements.

Graphically, a note is rendered as a rectangle with a dog-

eared corner, together with a textual or graphical comment.

 A stereotype is an extension of the vocabulary of the UML,

allowing you to create new kinds of building blocks similar

to existing ones but specific to your problem. Graphically, a

stereotype is rendered as a name enclosed by guillemets and

placed above the name of another element. As an option, the

stereotyped element may be rendered by using a new icon

associated with that stereotype.

Modeling Structural Relationships

contd….
• A tagged value is an extension of the properties of a

UML element, allowing you to create new information in

that element's specification. Graphically, a tagged value is

rendered as a string enclosed by brackets and placed

below the name of another element.

 A constraint is an extension of the semantics of a UML

element, allowing you to add new rules or to modify

existing ones. Graphically, a constraint is rendered as a

string enclosed by brackets and placed near the

associated element or connected to that element or

elements by dependency relationships. As an alternative,

you can render a constraint in a note.

Modeling Structural Relationships

contd….

• Notes

• A note that renders a comment has no semantic

impact, meaning that its contents do not alter the

meaning of the model to which it is attached. This is

why notes are used to specify things like

requirements, observations, reviews, and

explanations, in addition to rendering constraints.

Other Adornments
 -Adornments are textual or graphical items that are added to an

element's basic notation and are used to visualize details from

the element's specification.

- For example, the basic notation for an association is a line, but

this may be adorned with such details as the role and

multiplicity of each end.

• Tagged Values
- a tagged value is rendered as a string enclosed by

brackets and placed below the name of another element.
That string includes a name (the tag), a separator (the
symbol =), and a value (of the tag). You can specify just
the value if its meaning is unambiguous, such as when the
value is the name of enumeration

Tagged Values

Documentation

 - Specifies a comment, description, or explanation of

the element to which it

 is attached.

Common Modeling Techniques

Modeling Comments

• To model a comment

 1) Put your comment as text in a note and place it

adjacent to the element to which it refers. You can

show a more explicit relationship by connecting a

note to its elements using a dependency relationship.

Modeling Comments

 2) Remember that you can hide or make visible the elements of

your model as you see fit. This means that you don't have to

make your comments visible everywhere the elements to

which it is attached are visible. Rather, expose your

comments in your diagrams only insofar as you need to

communicate that information in that context.

3) If your comment is lengthy or involves something richer than

plain text, consider putting your comment in an external

document and linking or embedding that document in a note

attached to your model.

4) As your model evolves, keep those comments that record

significant decisions that cannot be inferred from the model

itself, and unless they are of historic interest discard the

others.

To model a comment

Modeling New Building Blocks

 • To model new building blocks,

 Make sure there's not already a way to express what you want

by using basic UML. If you have a common modeling

problem, chances are there's already some standard

stereotype that will do what you want.

2) If you're convinced there's no other way to express these

semantics, identify the primitive thing in the UML that's most

like what you want to model (for example, class, interface,

component, node, association, and so on) and define a new

stereotype for that thing. Remember that you can define

hierarchies of stereotypes so that you can have general kinds

of stereotypes along with their specializations (but as with

any hierarchy, use this sparingly).

Modeling New Building Blocks

contd…

3) Specify the common properties and semantics that go

beyond the basic element being stereotyped by

defining a set of tagged values and constraints for the

stereotype.

4) If you want these stereotype elements to have a

distinctive visual cue, define a new icon for the

stereotype.

Modeling New Building Blocks

• Modeling New Properties

 -To model new properties

1) First, make sure there's not already a way to express

what you want by using basic UML. If you have a

common modeling problem, chances are that there's

already some standard tagged value that will do what

you want.

 2) If you're convinced there's no other way to express

these semantics, add this new property to an individual

element or a stereotype. The rules of generalization

apply• tagged values defined for one kind of element

apply to its children.

Modeling New Properties

Modeling New Semantics

 • To model new semantics,

 1) First, make sure there's not already a way to express what

you want by using basic UML. If you have a common

modeling problem, chances are that there's already some

standard constraint that will do what you want.

 2) If you're convinced there's no other way to express these

semantics, write your new semantics as text in a constraint

and place it adjacent to the element to which it refers. You

can show a more explicit relationship by connecting a

constraint to its elements using a dependency relationship.

 3) If you need to specify your semantics more precisely and

formally, write your new semantics using OCL

 Modeling New Semantics

Diagrams

Modeling Different Views of a System

To model a system from different views

1) Decide which views you need to best express the

architecture of your system and to expose the technical

risks to your project. The five views of an architecture

described earlier are a good starting point.

2) For each of these views, decide which artifacts you need

to create to capture the essential details of that view. For

the most part, these artifacts will consist of various UML

diagrams.

Modeling Different Views of a System

contd…
3)As part of your process planning, decide which of these

diagrams you'll want to put under some sort of formal or

semi-formal control. These are the diagrams for which

you'll want to schedule reviews and to preserve as

documentation for the project.

4) Allow room for diagrams that are thrown away. Such

transitory diagrams are still useful for exploring the

implications of your decisions and for experimenting

with changes.

Modeling Different Views of a System

 -Use case view

 Use case diagrams

 Activity diagrams (for behavioral modeling)

 - Design view

 Class diagrams (for structural modeling) Interaction diagrams (for

behavioral

 modeling)

 Statechart diagrams (for behavioral modeling)

-Process view

 Class diagrams (for structural modeling) Interaction diagrams (for

behavioral

 modeling)

-Implementation view

 Component diagram

 -Deployment view

 Deployment diagrams

Modeling Different Levels of Abstraction

• Consider the needs of your readers, and start with a

given model.

• If your reader is using the model to construct an

implementation, she'll need diagrams that are at a lower

level of abstraction, which means that they'll need to

reveal a lot of detail. If she is using the model to present

a conceptual model to an end user, she'll need diagrams

that are at a higher level of abstraction, which means that

they'll hide a lot of detail.

• Depending on where you land in this spectrum of low-

to-high levels of abstraction, create a diagram at the right

level of abstraction by hiding or revealing the following

four categories of things from your model

– Building blocks and relationships:

 Hide those that are not relevant to the intent of your diagram

or the needs of your reader.

 Adornments:

 Reveal only the adornments of these building blocks and

relationships that are essential to understanding your intent.

– Flow:

 In the context of behavioral diagrams, expand only those

messages or transitions that are essential to understanding

your intent.

 Stereotypes:

 In the context of stereotypes used to classify lists of things,

such as attributes and operations, reveal only those

stereotyped items that are essential to understanding your

intent.

Modeling Different Levels of Abstraction

- To model a system at different levels of abstraction by

creating models at different levels of abstraction

• Consider the needs of your readers and decide on the

level of abstraction that each should view, forming a

separate model for each level.

In general, populate your models that are at a high level of

abstraction with simple abstractions and your models that

are at a low level of abstraction with detailed abstractions.

Establish trace dependencies among the related elements of

different models.

• there are four common situations you'll encounter when

modeling a system at different levels of abstraction:

 Use cases and their realization:

 Use cases in a use case model will trace to collaborations in a

design model.

 Collaborations and their realization:

 Collaborations will trace to a society of classes that work

together to carry out the collaboration.

 Components and their design:

 Components in an implementation model will trace to the

elements in a design model.

 Nodes and their components:

 Nodes in a deployment model will trace to components in an

implementation model

Figure Interaction Diagram at a High Level of Abstraction

87

Modeling Different Levels of Abstraction
Figure Interaction at a Low Level of Abstraction

Modeling Complex Views

• To model complex views,

• First, convince yourself there's no meaningful way

to present this information at a higher level of

abstraction, perhaps eliding some parts of the diagram

and retaining the detail in other parts.

• If you've hidden as much detail as you can and your

diagram is still complex, consider grouping some of

the elements in packages or in higher level

collaborations, then render only those packages or

collaborations in your diagram.

Modeling Complex Views contd…

• If your diagram is still complex, use notes and

color as visual cues to draw the reader's attention

to the points you want to make.

• If your diagram is still complex, print it in its

entire and hang it on a convenient large wall. You

lose the interactivity an online version of the diagram

brings, but you can step back from the diagram and

study it for common patterns.

Advanced Classes

• A classifier is a mechanism that describes structural and

behavioral features.

• Classifiers include classes, interfaces, data types, signals,

components, nodes, use cases, and subsystems.

• The UML provides a number of other kinds of classifiers to

help you model.

• Interface

 A collection of operations that are used to specify a

service of a class or a component

• Data type

 A type whose values have no identity, including primitive

built-in types (such as numbers and strings), as well as

enumeration types (such as Boolean)

 Signal

• The specification of an asynchronous stimulus communicated

between instances

 component

• A physical and replaceable part of a system that conforms to and

provides the realization of a set of interfaces

 Node

• A physical element that exists at run time and that represents a

computational resource, generally having at least some memory and

often processing capability

 Use case

• A description of a set of a sequence of actions, including variants,

that a system performs that yields an observable result of value to a

particular actor

 Subsystem

• A grouping of elements of which some constitute a specification of

the behavior offered by the other contained elements

Advanced Classes contd…

Visibility

- UML, you can specify any of three levels of visibility.

1. public

 Any outside classifier with visibility to the given

classifier can use the feature specified by prepending

the symbol +.

 2. protected

 Any descendant of the classifier can use the feature;

specified by prepending the symbol #.

 3. private

 Only the classifier itself can use the feature; specified

by prepending the symbol.

• Scope

1. instance

• Each instance of the classifier holds its own value

for the feature.

2. classifier

• There is just one value of the feature for all

instances of the classifier.

• Multiplicity

- The number of instances a class may have is called its

multiplicity. Multiplicity is a specification of the range

of allowable cardinalities an entity may assume.

• Attributes
• In its full form, the syntax of an attribute in the UML is

• [visibility] name [multiplicity] [: type] [= initial-value]
[{property-string}]

• There are three defined properties that you can use with

attributes.

1.changeable

2. addOnly

 3. frozen

Operations

• In its full form, the syntax of an operation in the UML is

 [visibility] name [(parameter-list)] [: return-type] [{property-

string}]

• In an operation's signature, you may provide zero or

more parameters, each of which follows the syntax

• [direction] name : type [= default-value]

• Direction may be any of the following values

 1) in

 2) out

 3) inout

-there are four defined properties that you can use with

operations.

1)IsQuery

2)Sequential

3)Guarded

4)Concurrent

• Template Classes

- A template is a parameterized element. In such

languages as C++ and Ada, you can write template

classes, each of which defines a family of classes

(you can also write template functions, each of which

defines a family of functions).

• template<class Item, class Value, int Buckets>

class Map {

 public:

 virtual Boolean bind(const Item&, constValue&);

 virtual Boolean isBound(const Item&) const;

 ...

 };

Standard Elements

The UML defines four standard stereotypes that apply

to classes.

1)Metaclass

2)Powertype

3)Streotype

4)Utility

Modeling semantics of class

1) Specify the responsibilities of the class. A

responsibility is a contract or obligation of a type or

class and is rendered in a note (stereotyped as

responsibility) attached to the class, or in an extra

compartment in the class icon.

 2) Specify the semantics of the class as a whole using

structured text, rendered in a note (stereotyped as

semantics) attached to the class.

Modeling semantics of class contd…

3) Specify the body of each method using structured text

or a programming language, rendered in a note

attached to the operation by a dependency relationship.

4) Specify the pre- and post conditions of each operation,

plus the invariants of the class as a whole, using

structured text. These elements are rendered in notes

(stereotyped as precondition, post condition, and

invariant) attached to the operation or class by a

dependency relationship.

Modeling semantics of class contd…

5) Specify a state machine for the class. A state machine

is a behavior that specifies the sequences of states an

object goes through during its lifetime in response to

events, together with its responses to those events.

6) Specify a collaboration that represents the class. A

collaboration is a society of roles and other elements

that work together to provide some cooperative

behavior that's bigger than the sum of all the

elements. A collaboration has a structural part, as well

as a dynamic part, so you can use collaborations to

specify all dimensions of a class's semantics.

Advanced Relationships

 -A relationship is a connection among things. In object-

oriented modeling, the four most important

relationships are dependencies, generalizations,

associations, and realizations.

-Graphically, a relationship is rendered as a path, with

different kinds of lines used to distinguish the

different relationships.

Advanced Relationships contd…

• Dependency

 -there are eight stereotypes that apply to dependency

relationships.

1.Bind

2.Derive

3.Friend

4.Instanceof

5.Instantiate

6.Powertype

7.Refine

8.Use

Advanced Relationships contd…

• There are two stereotypes that apply to dependency

relationships among packages.

1)access

2)Import

• There are two stereotypes that apply to dependency

relationships among usecases.

1)Extend

2) Include

Advanced Relationships contd…
• three stereotypes when modeling interactions among

objects.

1)Become

2)Call

3)Copy

• One stereotype you'll encounter in the context of state

machines is

1)Send

2)Trace

Advanced Relationships contd…
• Generalization

A generalization is a relationship between a general

thing (called the superclass or parent) and a more

specific kind of that thing (called the subclass or

child).

• The four constraints that may be applied to

generalization relationships.

1.Complete

2.Incomplete

3.Disjoint

4.Overlapping

Association

 • Navigation

- Given a plain, unadorned association between two

classes, such as Book and Library, it's possible to

navigate from objects of one kind to objects of the

other kind.

• Visibility

- Given an association between two classes, objects of

one class can see and navigate to objects of the other,

unless otherwise restricted by an explicit statement of

navigation

Qualification

Interface Specifier

• Composition

• Aggregation turns out to be a simple concept with

some fairly deep semantics. Simple aggregation is

entirely conceptual and does nothing more than

distinguish a "whole" from a "part."

• Simple aggregation does not change the meaning of

navigation across the association between the whole

and its parts, nor does it link the lifetimes of the

whole and its parts

Composition

Constraints

1.Implicit

2.Ordered

3.Changable

4.Addonly

5.Frozen

• Realization

• A realization is a semantic relationship between

classifiers in which one classifier specifies a contract

that another classifier guarantees to carry out.

• Common Modeling Techniques

• Modeling Webs of Relationships

• Don't begin in isolation. Apply use cases and

scenarios to drive your discovery of the relationships

among a set of abstractions.

• In general, start by modeling the structural

relationships that are present. These reflect the static

view of the system and are therefore fairly tangible.

• Next, identify opportunities for

generalization/specialization relationships; use

multiple inheritance sparingly.

Modeling Webs of Relationships

 • Only after completing the preceding steps should you

look for dependencies; they generally represent more-

subtle forms of semantic connection.

• For each kind of relationship, start with its basic form

and apply advanced features only as absolutely

necessary to express your intent.

• Remember that it is both undesirable and unnecessary

to model all relationships among a set of abstractions in

a single diagram or view. Rather, build up your system's

relationships by considering different views on the

system. Highlight interesting sets of relationships in

individual diagrams.

• An interface is a collection of operations that are used

to specify a service of a class or a component.

• Names

 An interface name must be unique within its enclosing

package.

• Operations

 An interface is a named collection of operations used

to specify a service of a class or of a component.

• Relationships

 Like a class, an interface may participate in

generalization, association, and dependency

relationships.

Types and Roles

Common Modeling Techniques

Modeling the Seams in a Systemeling the Seams in a

System

• Within the collection of classes and components in

your system, draw a line around those that tend to be

tightly coupled relative to other sets of classes and

components.

• Refine your grouping by considering the impact of

change. Classes or components that tend to change

together should be grouped together as collaborations.

Modeling the Seams in a Systemeling

the Seams in a System

 • Consider the operations and the signals that cross these

boundaries, from instances of one set of classes or components

to instances of other sets of classes and components.

- Package logically related sets of these operations and signals as

interfaces.

• For each such collaboration in your system, identify the

interfaces it relies on (imports) and those it provides to others

(exports). You model the importing of interfaces by

dependency relationships, and you model the exporting of

interfaces by realization relationships.

• For each such interface in your system, document its

dynamics by using pre- and postconditions for each operation,

and use cases and state machines for the interface as a whole.

Modeling Static and Dynamic Types

• To model a dynamic type

• Specify the different possible types of that object by

rendering each type as a class stereotyped as type (if

the abstraction requires structure and behavior) or as

interface (if the abstraction requires only behavior).

• Model all the roles the class of the object may take on

at any point in time. You can do so in two ways:

 First, in a class diagram, explicitly type each role that

the class plays in its association with other classes.

Doing this specifies the face instances of that class

put on in the context of the associated object.

 Second, also in a class diagram, specify the class-to-

type relationships using generalization.

To model a dynamic type

• In an interaction diagram, properly render each instance

of the dynamically typed class. Display the role of the

instance in brackets below the object's name.

• To show the change in role of an object, render the

object once for each role it plays in the interaction, and

connect these objects with a message stereotyped as

become.

To model a dynamic type

contd…

Packages

• Names

 A package name must be unique within its enclosing

package.

Packages contd…

 • Owned Elements

 -A package may own other elements, including classes,

interfaces, components, nodes, collaborations, use

cases, diagrams, and even other packages.

• Visibility

 -You can control the visibility of the elements owned

by a package just as you can control the visibility of

the attributes and operations owned by a class

Packages contd…

• Importing and Exporting

 Suppose you have two classes named A and B sitting

side by side. Because they are peers, A can see B and

B can see A, so both can depend on the other. Just

two classes makes for a trivial system, so you really

don't need any kind of packaging.

Importing and Exporting

Generalization

 • There are two kinds of relationships you can have

between packages: import and access dependencies,

used to import into one package elements exported

from another, and generalizations, used to specify

families of packages.

• Standard Elements

1.Facade

2.Framework

3.Stub

4.Subsytem

5.System

• Common Modeling Techniques

• Modeling Groups of Elements

• To model groups of elements,

• Scan the modeling elements in a particular

architectural view and look for clumps defined by

elements that are conceptually or semantically close

to one another.

• Surround each of these clumps in a package.

Modeling Groups of Elements

contd….

• For each package, distinguish which elements should

be accessible outside the package. Mark them public,

and all others protected or private. When in doubt,

hide the element.

• Explicitly connect packages that build on others via

import dependencies.

• In the case of families of packages, connect

specialized packages to their more general part via

generalizations.

Modeling Groups of Elements

Modeling Architectural Views

 • To model architectural views,

• Identify the set of architectural views that are

significant in the context of your problem. In practice,

this typically includes a design view, a process view,

an implementation view, a deployment view, and a

use case view.

• Place the elements (and diagrams) that are necessary

and sufficient to visualize, specify, construct, and

document the semantics of each view into the

appropriate package

Modeling Architectural Views

• As necessary, further group these elements into their

own packages.

• There will typically be dependencies across the

elements in different views. So, in general, let each

view at the top of a system be open to all others at

that level

CLASS AND OBJECT DIAGRAM

Class diagram

Class diagram

• It’s a diagram that shows set of classes ,interfaces

,collaboration and either relationships .

 Common properties

• It shows the same common properties as all other

diagrams .

 Contents

Class diagram contain the following things

1. Classes

2. Interfaces

3. Collaboration

4. Dependency ,Generalization, association

Common modeling techniques

Modeling simple collaboration

To model a collaboration .

 1. Identify the mechanism you want to model .

2. For each mechanism identify the classes ,interfaces

and collaboration .

3. Use scenarios to walk through these things .

4. Be sure to populate these elements with their

contents .

Modeling a logical database schema

To model a schema

1. Identify those classes in the model whose state must

transcend the lifetime of their application.

2. Create class diagram that contain these classes and

mark them as persistent .

3. Explain structural details of these classes .

4. Watch for common pattern that complicate physical

database design .

5. Consider the behavior of these classes by expending

operations .

6. Use tools to transform logical design to physical

design .

Modeling a Logical Database

139

1..*

School

{ persistent}
name : Name

address : String

phone : Number

addStudent()

removeStudent()

getStudent()

getAllStudents()

addDepartment()

removeDepartment()

getDepartment()

getAllDepartments()

Student

{ persistent}

name : Name

studentId : Number

Instructor

{ persistent}

name : Name

Department
{ persistent}

name : Name

addInstructor()

removeInstructor()
getInstructor()

getAllInstructors()

Course

{ persistent}

name : Name

courseId : Number

1..*

1..*

1..*

1..*

1..*

1..*
*

0..1

0..1 chairperson

* * *

Forward and Reverse Engineering

Forward Engineering

 - It is the process of transforming a model intocode

through a mapping to an implementation language .

To forward engineer a class diagram

1) Identify the rules for mapping to your implentation

language .

2) Depending upon the semsntics of the language you

have to constrain .

3) Use tagged values to specify your tagged values.

4) Use tools to forward engineer your models .

Reverse Engineering

-transforming code to uml model.

To reverse engineer a class diagram

1) Identify the rules for mapping from your language.

2) Use tools point to code you would like to reverse

engineer.

3) Use tool, create a class diagram by querying the

model.

Public abstract class EventHandler

{

 EventHandler sucessor;

 private Integer CurrentEventId;

 private String source;

 EventHandler()

 { }

 public void handlerequest(){ }

}

Object Diagram

Object diagram

-it is a diagram that shows set of objects and their

relationships at a point in time .

Contents :

-objects

-links

Object diagram contains notes and constraints .

Modeling object structures

To model object structures

1) Identify the mechanism you would like to model.

2) For each mechanism ,identify classes

,interfaces,other elements.

3) Consider one scenario that work through this

mechanism .

4) Expose the state and atrribute value of each such

object to understand .

5) Similarly expose the links ,instances,associationns

among them

Forward and Reverse Engineer

To reverse engineer an object diagram

1) Choose the target you want to reverse engineer.

2) Use tool or simply walkthrough a scenario.

3) Identify the set of objects that collaborate in the

context .

4) As necessary to understand their semantics expose

these objects .

5) Identify links among objects .

6) If your diagrams end up complicated ,prune it by

eliminating objects that are not germane.

UNIT III

BASIC BEHAVIOURAL MODELING-I

BASIC BEHAVIORAL MODELING -II

INTERACTION

An interaction is a behavior that comprises a set of

messages exchanged among a set of objects within a

context to accomplish a purpose. A message is a

specification of a communication between objects

that conveys information with the expectation that

activity will ensue.

CONTEXT

 You'll find interactions in the collaboration of objects

that exist in the context of your system or subsystem

 Object and Roles :

 The object that participate in an interaction is either

concrete or prototypical

LINKS

• A link is a semantic connection among objects.

• In general, a link is an instance of an association.

• Following fig. shows, wherever a class has an

association to another class, there may be a link

between the instances of the two classes; wherever

there is a link between two objects, one object can

send a message to the other object.

LINKS contd…

Link contd….

• Association – corresponding object is visible

by association.

• self - dispatches of operation.

• Global – represents enclosing scope.

• Local – local scope

• Parameter – parameter visibility.

MESSAGE

When you pass a message, the action that results is an executable
statement that forms an abstraction of a computational procedure.
An action may result in a change in state.

• UML can model several kind of actions:

• call - invoke an operation

• return - return a value to the caller

• send - send signal to an object

• create - creates an object

• destroy - destroys an object

 Following figure shows visual distinction among different kind of
messages

MESSAGE contd..

SEQUENCING

When an object passes a message to another object (in

effect, delegating some action to the receiver), the

receiving object might in turn send a message to

another object, which might send a message to yet a

different object, and so on. This stream of messages

forms a sequence.

Procedural Sequence

Flat Sequence

Creation ,Modification and destruction :

To specify if an object or link enters and/or leaves

during an interaction you can attach one of the

following constraints to the element:

 New – link is created.

 Destroyed – link is destroyed.

 Transient – link is created during execution

 of enclosing interaction.

Modeling a flow control

To model a flow of control

• Set the context for the interaction, whether it is the
system as a whole, a class, or an individual operation.

• Set the stage for the interaction by identifying which
objects play a role; set their initial properties,
including their attribute values, state, and role.

• If your model emphasizes the structural organization
of these objects, identify the links that connect them,
relevant to the paths of communication that take place
in this interaction. Specify the nature of the links
using the UML's standard stereotypes and constraints,
as necessary.

Modeling a flow control contd..

• In time order, specify the messages that pass from
object to object. As necessary, distinguish the
different kinds of messages; include parameters and
return values to convey the necessary detail of this
interaction.

• Also to convey the necessary detail of this interaction,
adorn each object at every moment in time with its
state and role.

Eg. Flow of control by time

Eg. Flow of control by organization

INTERACTION DIAGRAMS

Interaction diagrams are not only important for

modeling the dynamic aspects of a system, but also

for constructing executable systems through forward

and reverse engineering.

• A sequence diagram is an interaction diagram that

emphasizes the time ordering of messages.

• A collaboration diagram is an interaction diagram

that emphasizes the structural organization of the

objects that send and receive messages.

INTERACTION DIAGRAMS contd…

Interaction diagrams commonly contain

• Objects

• Links

• Messages

SEQUENCE DIAGRAM

COLLABORATION DIAGRAM

Modeling flow control by Time ordering

• Set the context for the interaction, whether it is a system, subsystem,
operation, or class, or one scenario of a use case or collaboration.

• Set the stage for the interaction by identifying which objects play a
role in the interaction. Lay them out on the sequence diagram from
left to right, placing the more important objects to the left and their
neighboring objects to the right.

• Set the lifeline for each object. In most cases, objects will persist
through the entire interaction. For those objects that are created and
destroyed during the interaction, set their lifelines, as appropriate,
and explicitly indicate their birth and death with appropriately
stereotyped messages

Modeling flow control by Time
ordering contd..

• Starting with the message that initiates this interaction, lay out each
subsequent message from top to bottom between the lifelines, showing
each message's properties (such as its parameters), as necessary to explain
the semantics of the interaction.

• If you need to visualize the nesting of messages or the points in time when
actual computation is taking place, adorn each object's lifeline with its
focus of control.

• If you need to specify time or space constraints, adorn each message with a
timing mark and attach suitable time or space constraints.

• If you need to specify this flow of control more formally, attach pre- and
postconditions to each message.

Eg. Modeling Flows of Control by Time Ordering

Modeling Flows of control by organization

• Set the context for the interaction, whether it is a system, subsystem,

operation, or class, or one scenario of a use case or collaboration.

• Set the stage for the interaction by identifying which objects play a
role in the interaction. Lay them out on the collaboration diagram as
vertices in a graph, placing the more important objects in the center
of the diagram and their neighboring objects to the outside.

• Set the initial properties of each of these objects. If the attribute
values, tagged values, state, or role of any object changes in
significant ways over the duration of the interaction, place a
duplicate object on the diagram, update it with these new values, and
connect them by a message stereotyped as become or copy (with a
suitable sequence number).

Modeling Flows of control by organization
contd..

 • Specify the links among these objects, along which messages may
pass.

– Lay out the association links first; these are the most important ones,

because they represent structural connections.

– Lay out other links next, and adorn them with suitable path stereotypes

(such as global and local) to explicitly specify how these objects are
related to one another.

• Starting with the message that initiates this interaction, attach each

subsequent message to the appropriate link, setting its sequence
number, as appropriate. Show nesting by using Dewey decimal
numbering.

Modeling Flows of control by
organization contd..

• If you need to specify time or space constraints, adorn

each message with a timing mark and attach suitable

time or space constraints.

• If you need to specify this flow of control more

formally, attach pre- and post conditions to each

message.

Modeling Flows of control by
organization

BASIC BEHAVIORAL MODELING -II

Use Cases

 • A use case is a description of a set of sequences of actions,

including variants, that a system performs to yield an

observable result of value to an actor.

• Graphically, a use case is rendered as an ellipse.

Names
• Every use case must have a name that distinguishes it

from other use cases. A name is a textual string.

• That name alone is known as a simple name; a path name

is the use case name prefixed by the name of the package

in which that use case lives.

• A use case is typically drawn showing only its name

Use Cases contd…..

Use Cases contd…..
• Note

• A use case name may be text consisting of any number of

letters, numbers, and most punctuation marks (except for

marks such as the colon, which is used to separate a class

name and the name of its enclosing package) and may

continue over several lines

• Use Cases and Actors

• An actor represents a coherent set of roles that users of use

cases play when interacting with these use cases.

Actors contd…

Use Cases and Flow of Events

 • A use case describes what a system (or a subsystem, class, or

interface) does but it does not specify how it does it. When you

model, it's important that you keep clear the separation of

concerns between this outside and inside view.

• Main flow of events:

• The use case starts when the system prompts the Customer for a

PIN number. The Customer can now enter a PIN number via the

keypad. The Customer commits the entry by pressing the Enter

button. The system then checks this PIN number to see if it is

valid. If the PIN number is valid, the system acknowledges the

entry, thus ending the use case.

• Exceptional flow of events:

• The Customer can cancel a transaction at any time by pressing

the Cancel button, thus restarting the use case. No changes are

made to the Customer's account.

•

• Exceptional flow of events:

• The Customer can clear a PIN number anytime before

committing it and reenter a new PIN number.

• Exceptional flow of events:

• If the Customer enters an invalid PIN number, the use

case restarts. If this happens three times in a row, the

system cancels the entire transaction, preventing the

Customer from interacting with the ATM for 60

seconds.

Use Cases and Scenarios

• Scenarios are to use cases as instances are to classes,

meaning that a scenario is basically one instance of a use

case.

• Use Cases and Collaborations

• A use case captures the intended behavior of the system

(or subsystem, class, or interface) you are developing,

without having to specify how that behavior is

implemented. That's an important separation because the

analysis of a system (which specifies behavior) should,

as much as possible, not be influenced by

implementation issues (which specify how that behavior

is to be carried out)

Use Cases and Collaborations

Organizing Use Cases
 • You can also organize use cases by specifying generalization,

include, and extend relationships among them. You apply

these relationships in order to factor common behavior (by

pulling such behavior from other use cases that it includes)

and in order to factor variants (by pushing such behavior into

other use cases that extend it).

• An include relationship between use cases means that the

base use case explicitly incorporates the behavior of another

use case at a location specified in the base.

• An extend relationship between use cases means that the base

use case implicitly incorporates the behavior of another use

case at a location specified indirectly by the extending use

case

Common Modeling Techniques

• Modeling the Behavior of an Element

To model the behavior of an element,

• Identify the actors that interact with the element. Candidate actors

include groups that require certain behavior to perform their tasks

or that are needed directly or indirectly to perform the element's

functions.

• Organize actors by identifying general and more specialized roles.

• For each actor, consider the primary ways in which that actor

interacts with the element. Consider also interactions that change

the state of the element or its environment or that involve a

response to some event.

• Consider also the exceptional ways in which each actor interacts

with the element.

• Organize these behaviors as use cases, applying include and extend

relationships to factor common behavior and distinguish

exceptional behavior

Modeling the Behavior of an Element

Use Case Diagrams

 • A use case diagram is a diagram that shows a set of use

cases and actors and their relationships.

• Common Properties

 A use case diagram is just a special kind of diagram and

shares the same common properties as do all other

diagrams• a name and graphical contents that are a

projection into a model. What distinguishes a use case

diagram from all other kinds of diagrams is its particular

content.

• Contents

• Use case diagrams commonly contain

• Use cases

• Actors

• Dependency, generalization, and association relationships

Common Modeling Techniques

• Modeling the Context of a System

• To model the context of a system,

• Identify the actors that surround the system by considering

which groups require help from the system to perform their

tasks; which groups are needed to execute the system's

functions; which groups interact with external hardware or

other software systems; and which groups perform secondary

functions for administration and maintenance.

• Organize actors that are similar to one another in a

generalization/specialization hierarchy.

Modeling the Context of a System

contd..
• Where it aids understandability, provide a stereotype for

each such actor.

• Populate a use case diagram with these actors and specify

the paths of communication from each actor to the

system's use cases.

Modeling the Context of a System

contd..

Modeling the Requirements of a
System

 To model the requirements of a system,

• Establish the context of the system by identifying the actors

that surround it.

• For each actor, consider the behavior that each expects or

requires the system to provide.

• Name these common behaviors as use cases.

• Factor common behavior into new use cases that are used by

others; factor variant behavior into new use cases that extend

more main line flows.

• Model these use cases, actors, and their relationships in a use

case diagram.

• Adorn these use cases with notes that assert nonfunctional

requirements; you may have to attach some of these to the

whole system.

Modeling the Requirements of a
System

Forward and Reverse Engineering
 • Forward engineering is the process of transforming a model into

code through a mapping to an implementation language

• To forward engineer a use case diagram,

• For each use case in the diagram, identify its flow of events and its
exceptional flow of events.

• Depending on how deeply you choose to test, generate a test script
for each flow, using the flow's preconditions as the test's initial state
and its postconditions as its success criteria.

• As necessary, generate test scaffolding to represent each actor that
interacts with the use case. Actors that push information to the
element or are acted on by the element may either be simulated or
substituted by its real-world equivalent.

• Use tools to run these tests each time you release the element to
which the use case diagram applies.

• To reverse engineer a use case diagram,

• Identify each actor that interacts with the system.

• For each actor, consider the manner in which that actor
interacts with the system, changes the state of the system or its
environment, or responds to some event.

• Trace the flow of events in the executable system relative to
each actor. Start with primary flows and only later consider
alternative paths.

• Cluster related flows by declaring a corresponding use case.
Consider modeling variants using extend relationships, and
consider modeling common flows by applying include
relationships.

• Render these actors and use cases in a use case diagram, and
establish their relationships.

Activity Diagrams

• An activity diagram shows the flow from
activity to activity. An is an ongoing nonatomic
execution within a state machine.

• Contents

• Activity states and action states

• Transitions

• Objects

Action States and Activity States

• In the flow of control modeled by an activity
diagram, things happen. You might evaluate some
expression that sets the value of an attribute or
that returns some value. Alternately, you might
call an operation on an object, send a signal to an
object, or even create or destroy an object.

• These executable, atomic computations are called

action states because they are states of the
system, each representing the execution of an
action.

Action States and Activity States
contd….

Transitions

• Triggerless transitions may have guard conditions, meaning

that such a transition will fire only if that condition is met;

guard conditions.

• Branching

• Branches are a notational convenience, semantically

equivalent to multiple transitions with guards.

Forking and Joining
• As the figure also shows, a join represents the synchronization

of two or more concurrent flows of control. A join may have

two or more incoming transitions and one outgoing transition.

Above the join, the activities associated with each of these

paths continues in parallel. At the join, the concurrent flows

synchronize, meaning that each waits until all incoming flows

have reached the join, at which point one flow of control

continues on below the join.

• when you are modeling workflows of business processes• you

might encounter flows that are concurrent. In the UML, you

use a synchronization bar to specify the forking and joining of

these parallel flows of control. A synchronization bar is

rendered as a thick horizontal or vertical line.

Swimlanes
• In the UML, each group is called a swimlane because,

visually, each group is divided from its neighbor by a
vertical solid line.A swimlane specifies a locus of
activities.

• Each swimlane has a name unique within its diagram. A
swimlane really has no deep semantics, except that it may
represent some real-world entity.

• Each swimlane represents a high-level responsibility for
part of the overall activity of an activity diagram, and
each swimlane may eventually be implemented by one or
more classes. In an activity diagram partitioned into
swimlanes, every activity belongs to exactly one
swimlane, but transitions may cross lanes.

Object Flow
 • In addition to showing the flow of an object through an activity diagram,

you can also show how its role, state and attribute values change. As shown

in the figure, you represent the state of an object by naming its state in

brackets below the object's name. Similarly, you can represent the value of

an object's attributes by rendering them in a compartment below the

object's name.

Common Modeling Techniques
 • Modeling a Workflow

• To model a workflow,

• Establish a focus for the workflow. For nontrivial systems, it's

impossible to show all interesting workflows in one diagram.

• Select the business objects that have the high-level

responsibilities for parts of the overall workflow. These may

be real things from the vocabulary of the system, or they may

be more abstract. In either case, create a swimlane for each

important business object.

• Identify the preconditions of the workflow's initial state and

the postconditions of the workflow's final state. This is

important in helping you model the boundaries of the

workflow.

• Beginning at the workflow's initial state, specify the activities

and actions that take place over time and render them in the

activity diagram as either activity states or action states.

Modeling a Workflow contd..

• For complicated actions, or for sets of actions that appear multiple
times, collapse these into activity states, and provide a separate activity
diagram that expands on each.

• Render the transitions that connect these activity and action states. Start
with the sequential flows in the workflow first, next consider
branching, and only then consider forking and joining.

• If there are important objects that are involved in the workflow, render
them in the activity diagram, as well. Show their changing values and
state as necessary to communicate the intent of the object flow.

Modeling a Workflow contd..

Modeling an Operation

• To model an operation,

• Collect the abstractions that are involved in this
operation. This includes the operation's parameters
(including its return type, if any), the attributes of the
enclosing class, and certain neighboring classes.

• Identify the preconditions at the operation's initial state
and the postconditions at the operation's final state. Also
identify any invariants of the enclosing class that must
hold during the execution of the operation.

• Beginning at the operation's initial state, specify the
activities and actions that take place over time and render
them in the activity diagram as either activity states or
action states.

Modeling an Operation contd…

• Use branching as necessary to specify conditional paths and

iteration.

• Only if this operation is owned by an active class, use forking

and joining as necessary to specify parallel flows of control.

Forward and Reverse Engineering
 • Forward engineering (the creation of code from a model) is possible

for activity diagrams, especially if the context of the diagram is an
operation. For example, using the previous activity diagram, a
forward engineering tool could generate the following C++ code for
the operation intersection.

•

Point Line::intersection (l : Line)
 {
 if (slope == l.slope) return Point(0,0);
int x = (l.delta - delta) / (slope - l.slope);
int y = (slope * x) + delta;
return Point(x, y);
 }

Forward and Reverse Engineering
contd…..

• Reverse engineering (the creation of a model from code) is

also possible for activity diagrams, especially if the context of

the code is the body of an operation. In particular, the previous

diagram could have been generated from the implementation

of the class Line.

UNIT-IV
Advanced Behavioral Modeling

Architectural modeling

211

• Events and Signals

• An event is the specification of a significant
occurrence that has a location in time and
space. In the context of state machines, an
event is an occurrence of a stimulus that can
trigger a state transition.

• A signal is a kind of event that represents the
specification of an asynchronous stimulus
communicated between instances.

Event

212

Signal
 213

Terms and Concepts

• Events may be external or internal. External
events are those that pass between the
system and its actors.

• Internal events are those that pass among the
objects that live inside the system. An
overflow exception is an example of an
internal event.

214

Call Events

• Just as a signal event represents the

occurrence of a signal, a call event represents
the dispatch of an operation.

• Whereas a signal is an asynchronous event, a
call event is, in general, synchronous.

• This means that when an object invokes an
operation on another object that has a state
machine, control passes from the sender to
the receiver, the transition is triggered by the
event.

215

Call event

216

Time and Change Events

• A time event is an event that represents the
passage of time. In the UML you model a time
event by using the keyword after followed by
some expression that evaluates to a period of
time.

• A change event is an event that represents a
change in state or the satisfaction of some
condition. In the UML you model a change event
by using the keyword when followed by some
Boolean expression

217

Time and Change Events

218

Sending and Receiving Events

• Signal events and call events involve at least
two objects: the object that sends the signal
or invokes the operation, and the object to
which the event is directed.

• Because signals are asynchronous, and
because asynchronous calls are themselves
signals, the semantics of events interact with
the semantics of active objects and passive
objects.

219

Signals and Active Classes.

220

Common Modeling Techniques
 • Modeling a Family of Signals
 To model a family of signals,
• Consider all the different kinds of signals to

which a given set of active objects may
respond.

• Look for the common kinds of signals and
place them in a generalization/specialization
hierarchy using inheritance. Look for the
opportunity for polymorphism in the state
machines of these active objects.

221

Modeling Families of Signals

222

Modeling Exceptions

• In the UML, exceptions are kinds of signals,
which you model as stereotyped classes.
Exceptions may be attached to specification
operations.

• Modeling exceptions is somewhat the inverse
of modeling a general family of signals.

223

• To model exceptions,

• For each class and interface, and for each operation of
such elements, consider the exceptional conditions
that may be raised.

• Arrange these exceptions in a hierarchy. Elevate

general ones, lower specialized ones, and introduce
intermediate exceptions, as necessary.

• For each operation, specify the exceptions that it may

raise. You can do so explicitly (by showing send
dependencies from an operation to its exceptions) or
you can put this in the operation's specification.

224

Modeling Exceptions

225

State Machines

• A state machine is a behavior that specifies
the sequences of states an object goes
through during its lifetime in response to
events, together with its responses to those
events.

• A state is a condition or situation during the
life of an object during which it satisfies some
condition, performs some activity, or waits for
some event.

226

Terms and Concepts

• A transition is a relationship between two states

indicating that an object in the first state will perform
certain actions and enter the second state when a
specified event occurs and specified conditions are
satisfied.

• An activity is ongoing nonatomic execution within a
state machine. An action is an executable atomic
computation that results in a change in state of the
model or the return of a value. Graphically, a state is
rendered as a rectangle with rounded corners. A
transition is rendered as a solid directed line

227

States

• A state is a condition or situation during the
life of an object during which it satisfies some
condition, performs some activity, or waits for
some event. An object remains in a state for a
finite amount of time.

228

States

229

Transitions

• A transition is a relationship between two
states indicating that an object in the first
state will perform certain actions and enter
the second state when a specified event
occurs and specified conditions are satisfied.

230

Transitions

231

Common Modeling Techniques

• Modeling the Lifetime of an Object

• To model the lifetime of an object,

• Set the context for the state machine,
whether it is a class, a use case, or the system
as a whole.

• Establish the initial and final states for the
object. To guide the rest of your model,
possibly state the pre- and postconditions of
the initial and final states, respectively.

232

• Decide on the events to which this object may
respond.

• Starting from the initial state to the final state, lay
out the top-level states the object may be in.
Connect these states with transitions triggered by
the appropriate events. Continue by adding
actions to these transitions.

• Identify any entry or exit actions (especially if you
find that the idiom they cover is used in the state
machine).

233

• Expand these states as necessary by using
substates.

• Check that all actions mentioned in the state
machine are sustained by the relationships,
methods, and operations of the enclosing
object.

234

Modeling the Lifetime of An
Object

235

Processes and Threads

• Terms and Concepts

• A process is a heavyweight flow that can
execute concurrently with other processes.

• A thread is a lightweight flow that can execute
concurrently with other threads within the
same process.

• Processes and threads are rendered as
stereotyped active classes (and also appear as
sequences in interaction diagrams).

236

Flow of Control
• In a purely sequential system, there is one

flow of control.

• When a sequential program starts, control is
rooted at the beginning of the program and
operations are dispatched one after another.

• Even if there are concurrent things happening
among the actors outside the system, a
sequential program will process only one
event at a time, queuing or discarding any
concurrent external events.

237

Synchronization
 • Visualize for a moment the multiple flows of

control that weave through a concurrent
system.

• When a flow passes through an operation, we
say that at a given moment, the locus of
control is in the operation.

• If that operation is defined for some class, we
can also say that at a given moment, the locus
of control is in a specific instance of that class.

238

Synchronization

239

Common Modeling Techniques

• Modeling Multiple Flows of Control

• To model multiple flows of control,

• Identify the opportunities for concurrent
action and reify each flow as an active class.
Generalize common sets of active objects into
an active class.

• Capture these static decisions in class
diagrams, explicitly highlighting each active
class.

240

Modeling Flows of Control

241

Modeling Interprocess Communication

 • To model interprocess communication,

• Model the multiple flows of control.

• Consider which of these active objects
represent processes and which represent
threads.

• Model messaging using asynchronous
communication.

• Informally specify the underlying mechanism
for communication by using notes, or more
formally by using collaborations.

242

Modeling Interprocess

Communication

243

Time and Space

• Terms and Concepts

• A time expression is an expression that evaluates
to an absolute or relative value of time.

• A timing constraint is a semantic statement about
the relative or absolute value of time. Graphically,
a timing constraint is rendered as for any
constraint

• Location is the placement of a component on a
node. Graphically, location is rendered as a
tagged value

244

Time
245

Common Modeling Techniques

• Modeling Timing Constraints
• To model timing constraints,
• For each event in an interaction, consider whether it must

start at some absolute time. Model that real time property
as a timing constraint on the message.

•
• For each interesting sequence of messages in an

interaction, consider whether there is an associated
maximum relative time for that sequence. Model that real
time property as a timing constraint on the sequence.

•
• For each time critical operation in each class, consider its

time complexity. Model those semantics as timing
constraints on the operation

246

Modeling Timing Constraint

247

Modeling the Distribution of Objects
 •

• To model the distribution of objects,
• For each interesting class of objects in your system, consider its locality of

reference. In other words, consider all its neighbors and their locations. A
tightly coupled locality will have neighboring objects close by

•
• Next consider patterns of interaction among related sets of objects. Co-

locate sets of objects that have high degrees of interaction, to reduce the
cost of communication. Partition sets of objects that have low degrees of
interaction.

•
• Next consider the distribution of responsibilities across the system.

Redistribute your objects to balance the load of each node.
•
• Consider also issues of security, volatility, and quality of service, and

redistribute your objects as appropriate.

248

Modeling the Distribution of
Objects

249

Modeling Objects that Migrate

 To model the migration of objects,

• Select an underlying mechanism for physically
transporting objects across nodes.

• Render the allocation of an object to a node by

explicitly indicating its location as a tagged value.

• Using the become and copy stereotyped messages,

render the allocation of an object to a new node.

• Consider the issues of synchronization (keeping the

state of cloned objects consistent) and identity
(preserving the name of the object as it moves).

250

Modeling Objects that Migrate

251

Statechart Diagrams
• Terms and Concepts
• A statechart diagram shows a state machine,

emphasizing the flow of control from state to
state.

• A state machine is a behavior that specifies the
sequences of states an object goes through
during its lifetime in response to events, together
with its responses to those events. A

• state is a condition or situation in the life of an
object during which it satisfies some condition,
performs some activity, or waits for some event.

252

Contents

• Statechart diagrams commonly contain

• Simple states and composite states

• Transitions, including events and actions

 A statechart diagram is basically a projection
of the elements found in a state machine. This
means that statechart diagrams may contain
branches, forks, joins, action states, activity
states, objects, initial states, final states,
history states,

253

Common Modeling Technique

• Modeling Reactive Objects

• To model a reactive object,
• Choose the context for the state machine, whether it is a

class, a use case, or the system as a whole.
•
• Choose the initial and final states for the object. To guide

the rest of your model, possibly state the pre- and
postconditions of the initial and final states, respectively.

•
• Decide on the stable states of the object by considering the

conditions in which the object may exist for some
identifiable period of time. Start with the high-level states
of the object and only then consider its possible substates.

254

• Decide on the meaningful partial ordering of stable states
over the lifetime of the object.

•
• Decide on the events that may trigger a transition from

state to state. Model these events as triggers to transitions
that move from one legal ordering of states to another.

•
• Attach actions to these transitions (as in a Mealy machine)

and/or to these states (as in a Moore machine).
•
• Consider ways to simplify your machine by using substates,

branches, forks, joins, and history states.

255

Modeling Reactive Objects

256

Forward and Reverse Engineering
 • Forward engineering(the creation of code

from a model) is possible for statechart
diagrams, especially if the context of the
diagram is a class.

257

• The forward engineering tool must generate the necessary private
attributes and final static constants.

•
• Reverse engineering (the creation of a model from code) is theoretically

possible, but practically not very useful. The choice of what constitutes a
meaningful state is in the eye of the designer.

•
Reverse engineering tools have no capacity for abstraction and therefore
cannot automatically produce meaningful statechart diagrams.

• More interesting than the reverse engineering of a model from code is the
animation of a model against the execution of a deployed system. For
example, given the previous diagram, a tool could animate the states in
the diagram as they were reached in the running system. Similarly, the
firing of transitions could be animated, showing the receipt of events and
the resulting dispatch of actions

258

ARCHITECTURAL MODELING

component

• A component

• A component is a physical and replaceable part of a system

that conforms to and provides the realization of a set of

interfaces. Graphically, a component is rendered as a rectangle

with tabs.

• Names

• A component name must be unique within its enclosing

package

component

Components and Classes

• there are some significant differences between components
and classes.

• Classes represent logical abstractions; components represent
physical things that live in the world of bits. In short,
components may live on nodes, classes may not.

• Components represent the physical packaging of otherwise
logical components and are at a different level of abstraction.

• Classes may have attributes and operations directly. In general,
components only have operations that are reachable only
through their interfaces.

Components and Interfaces
 • An interface is a collection of operations that are used to specify a

service of a class or a component. The relationship between
component and interface is important. All the most common
component-based operating system facilities (such as COM+,
CORBA, and Enterprise Java Beans) use interfaces as the glue that
binds components together.

• An interface that a component realizes is called an export interface,
meaning an interface that the component provides as a service to
other components. A component may provide many export
interfaces. The interface that a component uses is called an import
interface, meaning an interface that the component conforms to and
so builds on. A component may conform to many import interfaces.
Also, a component may both import and export interfaces.

Components and Interfaces

Binary Replaceability
 • The basic intent of every component-based operating system

facility is to permit the assembly of systems from binary
replaceable parts.

• This means that you can create a system out of components
and then evolve that system by adding new components and
replacing old ones, without rebuilding the system.

• Interfaces are the key to making this happen. When you
specify an interface, you can drop into the executable system
any component that conforms to or provides that interface.

• You can extend the system by making the components provide
new services through other interfaces, which, in turn, other
components can discover and use. These semantics explain the
intent behind the definition of components in the UML.

Kinds of Components
 • Three kinds of components may be distinguished

• First, there are deployment components.

• Second, there are work product components.

• Third are execution components.

• Organizing Components

• You can organize components by grouping them in packages

in the same manner in which you organize classes.

• The UML defines five standard stereotypes that apply to
components

The UML defines five standard stereotypes that apply to

components

1.Executable

2. library

3. table

4. file

5. Document

Common Modeling Techniques
 • Modeling Executables and Libraries

• To model executables and libraries,

• Identify the partitioning of your physical system.

Consider the impact of technical, configuration

management, and reuse issues.

• Model any executables and libraries as components, using

the appropriate standard elements. If your implementation

introduces new kinds of components, introduce a new

appropriate stereotype.

Modeling Executables and Libraries
contd…

• If it's important for you to manage the seams in your system,

model the significant interfaces that some components use and

others realize.

• As necessary to communicate your intent, model the

relationships among these executables, libraries, and

interfaces. Most often, you'll want to model the dependencies

among these parts in order to visualize the impact of change.

Modeling Executables and Libraries
contd…

Modeling Tables, Files, and
Documents

 • To model tables, files, and documents,

• Identify the ancillary components that are part of the
physical implementation of your system.

• Model these things as components. If your
implementation introduces new kinds of artifacts,
introduce a new appropriate stereotype.

• As necessary to communicate your intent, model the
relationships among these ancillary components and the
other executables, libraries, and interfaces in your system.
Most often, you'll want to model the dependencies among
these parts in order to visualize the impact of change.

Modeling an API
 • To model an API,

• Identify the programmatic seams in your system and

model each seam as an interface, collecting the attributes

and operations that form this edge.

• Expose only those properties of the interface that are

important to visualize in the given context; otherwise,

hide these properties, keeping them in the interface's

specification for reference, as necessary.

• Model the realization of each API only insofar as it is

important to show the configuration of a specific

implementation.

Modeling an API

Modeling Source Code
 • To model source code,

• Depending on the constraints imposed by your
development tools, model the files used to store the
details of all your logical elements, along with their
compilation dependencies.

• If it's important for you to bolt these models to your
configuration management and version control tools,
you'll want to include tagged values, such as version,
author, and check in/check out information, for each file
that's under configuration management.

• As far as possible, let your development tools manage the
relationships among these files, and use the UML only to
visualize and document these relationships.

Modeling Source Code

 Deployment

• A node is a physical element that exists at run time and

represents a computational resource, generally having at least

some memory and, often, processing capability. Graphically, a

node is rendered as a cube.

• Every node must have a name that distinguishes it from other

nodes. A name is a textual string. That name alone is known as

a simple name; a path name is the node name prefixed by the

name of the package in which that node lives. A node is

typically drawn showing only its name, as in . Just as with

classes, you may draw nodes adorned with tagged values or

with additional compartments to expose their details.

Deployment contd…

Nodes and Components

• there are some significant differences between nodes and

components.

• Components are things that participate in the execution of a

system; nodes are things that execute components.

• Components represent the physical packaging of otherwise

logical elements; nodes represent the physical deployment of

components.

Nodes and Components

Connections

• The most common kind of relationship you'll use among nodes

is an association. In this context, an association represents a

physical connection among nodes, such as an Ethernet

connection, a serial line, or a shared bus, as Figure .

Common Modeling Techniques

 • Modeling Processors and Devices

• To model processors and devices,

• Identify the computational elements of your system's

deployment view and model each as a node.

• If these elements represent generic processors and

devices, then stereotype them as such. If they are kinds of

processors and devices that are part of the vocabulary of

your domain, then specify an appropriate stereotype with

an icon for each.

• As with class modeling, consider the attributes and

operations that might apply to each node.

Modeling Processors and Devices
contd….

Modeling the Distribution of
Components

 • To model the distribution of components,

• For each significant component in your system, allocate it to a

given node.

• Consider duplicate locations for components. It's not

uncommon for the same kind of component (such as specific

executables and libraries) to reside on multiple nodes

simultaneously.

• Render this allocation in one of three ways.

• Don't make the allocation visible, but leave it as part of the

backplane of your model• that is, in each node's specification.

• Using dependency relationships, connect each node with the

components it deploys.

• List the components deployed on a node in an additional

compartment.

Modeling the Distribution of
Components contd…..

Component Diagrams

• A component diagram shows a set of components and

their relationships. Graphically, a component diagram is a

collection of vertices and arcs.

• Contents

• Component diagrams commonly contain

• Components

• Interfaces

• Dependency, generalization, association, and realization

relationships Like all other diagrams, component

diagrams may contain notes and constraints.

Common uses

• When you model the static implementation view of a system,

you'll typically use component diagrams in one of four ways.

• To model source code

• 2 model executable releases

• To model physical databases

• To model adaptable systems

Common Modeling Techniques
 Modeling Source Code

• To model a system's source code,

• Either by forward or reverse engineering, identify the set of
source code files of interest and model them as components
stereotyped as files.

• For larger systems, use packages to show groups of source
code files.

• Consider exposing a tagged value indicating such information
as the version number of the source code file, its author, and
the date it was last changed. Use tools to manage the value of
this tag.

• Model the compilation dependencies among these files using
dependencies. Again, use tools to help generate and manage
these dependencies.

Modeling Source Code
contd….

Modeling an Executable Release

• To model an executable release
• Identify the set of components you'd like to model.

Typically, this will involve some or all the components
that live on one node, or the distribution of these sets of
components across all the nodes in the system.

• Consider the stereotype of each component in this set. For
most systems, you'll find a small number of different
kinds of components (such as executables, libraries,
tables, files, and documents). You can use the UML's
extensibility mechanisms to provide visual cues for these
stereotypes.

Modeling an Executable Release
contd….

• For each component in this set, consider its relationship to

its neighbors. Most often, this will involve interfaces that

are exported (realized) by certain components and then

imported (used) by others. If you want to expose the

seams in your system, model these interfaces explicitly. If

you want your model at a higher level of abstraction,

elide these relationships by showing only dependencies

among the components.

Modeling a Physical Database

• to model a physical database,

• Identify the classes in your model that represent your logical
database schema.

• Select a strategy for mapping these classes to tables. You will
also want to consider the physical distribution of your
databases. Your mapping strategy will be affected by the
location in which you want your data to live on your deployed
system.

• To visualize, specify, construct, and document your mapping,
create a component diagram that contains components
stereotyped as tables.

• Where possible, use tools to help you transform your logical
design into a physical design.

Modeling a Physical Database contd…

Modeling Adaptable Systems

• Consider the physical distribution of the components that
may migrate from node to node. You can specify the
location of a component instance by marking it with a
location tagged value, which you can then render in a
component diagram (although, technically speaking, a
diagram that contains only instances is an object
diagram).

• If you want to model the actions that cause a component
to migrate, create a corresponding interaction diagram
that contains component instances. You can illustrate a
change of location by drawing the same instance more
than once, but with different values for its location tagged
value.

Modeling Adaptable Systems contd…

Forward and Reverse Engineering

 • To forward engineer a component diagram,

• For each component, identify the classes or collaborations that

the component implements.

• Choose the target for each component. Your choice is basically

between source code (a form that can be manipulated by

development tools) or a binary library or executable (a form

that can be dropped into a running system).

• Use tools to forward engineer your models.

•

Forward and Reverse Engineering

 • To reverse engineer a component diagram,

• Choose the target you want to reverse engineer. Source code
can be reverse engineered to components and then classes.
Binary libraries can be reverse engineered to uncover their
interfaces. Executables can be reverse engineered the least.

• Using a tool, point to the code you'd like to reverse engineer.
Use your tool to generate a new model or to modify an
existing one that was previously forward engineered.

• Using your tool, create a component diagram by querying the
model. For example, you might start with one or more
components, then expand the diagram by following
relationships or neighboring components. Expose or hide the
details of the contents of this component diagram as necessary
to communicate your intent.

Forward and Reverse Engineering

Deployment Diagrams

• A deployment is a diagram that shows the configuration of

run time processing nodes and the components that live on

them. Graphically, a deployment diagram is a collection of

vertices and arcs.

• Contents
• Deployment diagrams commonly contain

• Nodes

• Dependency and association relationships

• Like all other diagrams, deployment diagrams may contain

notes and constraints

Common Uses

• When you model the static deployment view of a system,

you'll typically use deployment diagrams in one of three ways.

• 1. To model embedded systems

• 2. To model client/server systems

• 3. To model fully distributed systems

Common Modeling Techniques

• Modeling an Embedded System

• To model an embedded system,

• Identify the devices and nodes that are unique to your
system.

• Provide visual cues, especially for unusual devices, by
using the UML's extensibility mechanisms to define
system-specific stereotypes with appropriate icons. At the
very least, you'll want to distinguish processors (which
contain software components) and devices (which, at that
level of abstraction, don't directly contain software).

Modeling an Embedded System
contd….

• Model the relationships among these processors and devices in

a deployment diagram. Similarly, specify the relationship

between the components in your system's implementation

view and the nodes in your system's deployment view.

• As necessary, expand on any intelligent devices by modeling

their structure with a more detailed deployment diagram.

Modeling an Embedded System
contd….

Modeling a Client/Server System

• To model a client/server system,

• Identify the nodes that represent your system's client and
server processors.

• Highlight those devices that are germane to the behavior of
your system. For example, you'll want to model special
devices, such as credit card readers, badge readers, and display
devices other than monitors, because their placement in the
system's hardware topology are likely to be architecturally
significant.

• Provide visual cues for these processors and devices via
stereotyping.

• Model the topology of these nodes in a deployment diagram.
Similarly, specify the relationship between the components in
your system's implementation view and the nodes in your
system's deployment view.

Modeling a Client/Server System

Modeling a Fully Distributed System

• To model a fully distributed system,

• Identify the system's devices and processors as for

simpler client/server systems.

• If you need to reason about the performance of the

system's network or the impact of changes to the network,

be sure to model these communication devices to the

level of detail sufficient to make these assessments.

• Pay close attention to logical groupings of nodes, which

you can specify by using packages.

Modeling a Fully Distributed System

• Model these devices and processors using deployment

diagrams. Where possible, use tools that discover the

topology of your system by walking your system's

network.

•

• If you need to focus on the dynamics of your system,

introduce use case diagrams to specify the kinds of

behavior you are interested in, and expand on these use

cases with interaction diagrams.

Modeling a Fully Distributed System

Forward and Reverse Engineering

• To reverse engineer a deployment diagram,

• Choose the target that you want to reverse engineer. In some
cases, you'll want to sweep across your entire network; in
others, you can limit your search.

• Choose also the fidelity of your reverse engineering. In some
cases, it's sufficient to reverse engineer just to the level of all
the system's processors; in others, you'll want to reverse
engineer the system's networking peripherals, as well.

• Use a tool that walks across your system, discovering its
hardware topology. Record that topology in a deployment
model.

Forward and Reverse Engineering
contd….

• Along the way, you can use similar tools to discover the
components that live on each node, which you can also record
in a deployment model. You'll want to use an intelligent
search, for even a basic personal computer can contain
gigabytes of components, many of which may not be relevant
to your system.

• Using your modeling tools, create a deployment diagram by
querying the model. For example, you might start with
visualizing the basic client/server topology, then expand on the
diagram by populating certain nodes with components of
interest that live on them. Expose or hide the details of the
contents of this deployment diagram as necessary to
communicate your intent.

UNIT-V

Case Study Library Application

• Identification of actors and use cases:

diagram for library system: Fig:

Sequence diagram for use case Return
Item:

Fig: collaboration diagram for use case
Return Item

Sequence diagram for use cases:
Checkout Item

Sequence diagram for use case login:

 :EmployeeActor : LoginWorkflow : User

: UserLocator

 : EmployeeLoginUI

findbyName()

 NULL()

displayLoginForm()

 submitName AndPassword()

validateLogin()

 INVALID

 displayErrorMessage()

 Fig: collaboration diagram for login

Activity diagram for library application:

STATE MACHINE DIAGRAM FOR THE
TITLE CLASS:

STATE DIAGRAM FOR LIBRARY
SYSTEM

Component diagram for library
application:

Deployment diagram for library
applications

