
OPERATING SYSTEMS
B.Tech IV Semester

Dr. Chukka Santhaiah Professor

Mr. N V Krishna Rao Associate Professor

COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

1

Unit 1

Introduction

2

 What is an Operating System?

 Objectives and Funcations

 Computer System Architecture

 OS Structure

 OS Operations

 Evolution of Operating System

 Special – Purpose Systems

 Operating System Services

 System Calls

 System Programs

 Operating System Design and

Implementation

Unit 1: Introduction

3

Computer System Components

 Hardware – provides basic computing resources

(CPU, memory, I/O devices).

 Operating system – controls and coordinates the use

of the hardware among the various application

programs.

 Applications programs – define the ways in

which the system resources are used to solve the

computing problems of the users (compilers,

database systems, video games, business

programs).

 Users (people, machines, other computers).

4

Abstract View of System Components

5

Operating System Definitions

 Control program – controls the execution of

user programs and operations of I/O

devices .

 Kernel – the one program running at all times (all

else being application programs).

6

Computer-System Architecture

7

Memory Layout for a Simple Batch System

8

Multiprogrammed Batch Systems

 Several jobs are kept in main memory at the same

time, and the

 CPU is multiplexed among them.

9

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine

generally, through the interrupt vector, which contains

the addresses of all the service routines.

 Interrupt architecture must save the address of the

 interrupted instruction.

 Incoming interrupts are disabled while another interrupt

is

 being processed to prevent a lost interrupt.

 A trap is a software-generated interrupt caused either by

 an error or a user request.

 An operating system is interrupt driven.

10

Interrupt Time Line For a Single Process Doing Output

11

OS Features Needed for Multiprogramming

 I/O routine supplied by the system.

 Memory management – the system must allocate the

memory to several jobs.

 CPU scheduling – the system must choose among

several jobs ready to run.

 Allocation of devices.

12

Desktop Systems

 Personal computers – computer system dedicated to a

single user.

 I/O devices – keyboards, mice, display screens, small

printers.

 User convenience and responsiveness.

 Can adopt technology developed for larger operating system’

often individuals have sole use of computer and do not need

advanced CPU utilization of protection features.

 May run several different types of operating systems

(Windows, MacOS, UNIX, Linux)

13

Parallel Systems

 Multiprocessor systems with more than on CPU in close

communication.

 Tightly coupled system – processors share memory and a clock;

communication usually takes place through the shared memory.

 Advantages of parallel system:

 Increased throughput

 Economical

 Increased reliability

 graceful degradation

 fail-soft systems

14

Parallel Systems (Cont.)

 Symmetric multiprocessing (SMP)

 Each processor runs and identical copy of the operating

system.

 Many processes can run at once without performance

deterioration.

 Most modern operating systems support SMP

 Asymmetric multiprocessing

 Each processor is assigned a specific task; master

processor schedules and allocated work to slave

processors.

 More common in extremely large systems

15

Distributed Systems

 Distribute the computation among several physical

processors.

 Loosely coupled system – each processor has its own local

memory; processors communicate with one another through

various communications lines, such as high- speed buses or

telephone lines.

 Advantages of distributed systems.

 Resources Sharing

 Computation speed up – load sharing

 Reliability

 Communications

16

General Structure of Client-Server

17

Real-Time Systems

 Often used as a control device in a dedicated application such

as controlling scientific experiments, medical imaging

systems, industrial control systems, and some display

systems.

 Well-defined fixed-time constraints.

 Real-Time systems may be either hard or soft real-time.

18

Real-Time Systems (Cont.)

 Hard real-time:

 Secondary storage limited or absent, data stored

in short

term memory, or read-only memory (ROM)

 Conflicts with time-sharing systems, not

supported by general-purpose operating

systems.

 Soft real-time

 Limited utility in industrial control of robotics

 Useful in applications (multimedia, virtual

reality) requiring

advanced operating-system features. 19

Operating System Services

 I/O operations – since user programs cannot

execute I/O operations directly, the operating

system must provide some means to perform I/O.

 File-system manipulation – program capability to

read, write,

create, and delete files.

 Communications – exchange of information

between processes executing either on the same

computer or on different systems tied together by a

network. Implemented via shared memory or

message passing.

 Error detection – ensure correct computing by

detecting errors in the CPU and memory hardware,

in I/O devices, or in user programs.
20

Passing of Parameters As A Table

21

MS-DOS Execution

At System Start-up Running a Program

22

UNIX Running Multiple Programs

23

Communication Models

Msg Passing Shared Memory

 Communication may take place using either message

passing or shared memory.

24

System Programs

 System programs provide a convenient environment for

program development and execution. The can be divided

into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users’ view of the operation system is defined by

system programs, not the actual system calls.

25

MS-DOS Layer Structure

26

UNIX System Structure

27

An Operating System Layer

28

OS/2 Layer Structure

29

Microkernel System Structure

 Moves as much from the kernel into “user” space.

 Communication takes place between user modules using

message passing.

 Benefits:

- easier to extend a microkernel

- easier to port the operating system to new architectures

- more reliable (less code is running in kernel mode)

- more secure

30

Windows NT Client-Server Structure

31

Virtual Machines (Cont.)

 The resources of the physical computer are shared to

create the virtual machines.

 CPU scheduling can create the appearance that users have

their own processor.

 Spooling and a file system can provide virtual card readers

and virtual line printers.

 A normal user time-sharing terminal serves as the virtual

machine operator’s console.

32

System Models

Non-virtual Machine Virtual Machine

33

Advantages/Disadvantages of Virtual Machines

 The virtual-machine concept provides complete protection of

system resources since each virtual machine is isolated from all

other virtual machines. This

isolation, however, permits no direct sharing of resources.

 A virtual-machine system is a perfect vehicle for operating-

systems research and development. System

development is done on the virtual machine, instead of on a

physical machine and so does not disrupt normal system

operation.

 The virtual machine concept is difficult to implement due to

the effort required to provide an exact duplicate to the

underlying machine.

34

System Design Goals

 User goals – operating system should be convenient to

use, easy to learn, reliable, safe, and fast.

 System goals – operating system should be easy to

design, implement, and maintain, as well as flexible,

reliable, error-free, and efficient.

35

Unit 2

 Processes and CPU

Scheduling

36

Unit 2: Processes and CPU Scheduling

 Process Concept

 Process Scheduling

 Operations on Processes

 Cooperating Processes

 Interprocess Communication

 Scheduling Criteria

 Scheduling algorithms

 Multiple-Processor Scheduling

 Real-Time Scheduling,

 Thread Scheduling

37

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost

interchangeably.

 Process – a program in execution; process execution must

progress in sequential fashion.

 A process includes:

 program counter

 stack

 data section

38

Diagram of Process State

39

Process Control Block (PCB)

40

CPU Switch From Process to Process

41

Ready Queue And Various I/O Device Queues

42

Representation of Process Scheduling

43

Schedulers

 Long-term scheduler (or job scheduler) – selects which

processes should be brought into the ready queue.

 Short-term scheduler (or CPU scheduler) – selects which

process should be executed next and allocates CPU.

44

Addition of Medium Term Scheduling

45

Schedulers (Cont.)

 Short-term scheduler is invoked very frequently

(milliseconds) (must be fast).

 Long-term scheduler is invoked very infrequently

(seconds, minutes) (may be slow).

 The long-term scheduler controls the degree of

multiprogramming.

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

 CPU-bound process – spends more time doing

computations; few very long CPU bursts.

46

Process Creation

 Parent process create children processes, which, in turn

create other processes, forming a tree of processes.

 Resource sharing

 Parent and children share all resources.

 Children share subset of parent’s resources.

 Parent and child share no resources.

 Execution

 Parent and children execute concurrently.

 Parent waits until children terminate.

47

Process Creation (Cont.)

 Address space

 Child duplicate of parent.

 Child has a program loaded into it.

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’

memory space with a new program.

48

Processes Tree on a UNIX System

49

Process Termination

 Process executes last statement and asks the operating

system to decide it (exit).

 Output data from child to parent (via wait).

 Process’ resources are deallocated by operating system.

 Parent may terminate execution of children processes

(abort).

 Child has exceeded allocated resources.

 Task assigned to child is no longer required.

 Parent is exiting.

 Operating system does not allow child to continue if its

parent terminates.

 Cascading termination.

50

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer

process.

 unbounded-buffer places no practical limit on the size of the

buffer.

 bounded-buffer assumes that there is a fixed buffer size.

51

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

Typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1

elements

52

Bounded-Buffer – Producer Process

item nextProduced;

while (1) {

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

}

53

Bounded-Buffer – Consumer Process

item nextConsumed;

while (1) {

while (in == out)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

}

54

Interprocess Communication (IPC)

 Mechanism for processes to communicate and to

synchronize their actions.

 Message system – processes communicate with each

other without resorting to shared variables.

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

55

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically.

 A link is associated with exactly one pair of communicating

processes.

 Between each pair there exists exactly one link.

 The link may be unidirectional, but is usually bi-directional.

56

Indirect Communication

 Messages are directed and received from mailboxes (also

referred to as ports).

 Each mailbox has a unique id.

 Processes can communicate only if they share a mailbox.

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes.

 Each pair of processes may share several communication

links.

 Link may be unidirectional or bi-directional.

57

Indirect Communication

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

58

Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A.

 P1, sends; P2 and P3 receive.

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes.

 Allow only one process at a time to execute a receive

operation.

 Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.

59

Synchronization

 Message passing may be either blocking or non-blocking.

 Blocking is considered synchronous

 Non-blocking is considered asynchronous

 send and receive primitives may be either blocking or non-

blocking.

60

Alternating Sequence of CPU And I/O Bursts

61

Histogram of CPU-burst Times

62

Dispatcher

 Dispatcher module gives control of the CPU to the

process selected by the short-term scheduler; this

involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart

that program

 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running.

63

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

P1 P2 P3

30 0 24 27

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

64

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

 The

Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case.

 Convoy effect short process behind long process

P2 P3 P1

6 3 30 0

65

Shortest-Job-First (SJR) Scheduling

 Associate with each process the length of its next CPU burst.

 Use these lengths to schedule the process with the shortest time.

 Two schemes:

 nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.

 preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt. This

scheme is know as the

Shortest-Remaining-Time-First (SRTF).

 SJF is optimal – gives minimum average waiting time for a

given set of processes.

66

Determining Length of Next CPU Burst

 Can only estimate the length.

 Can be done by using the length of previous CPU bursts,

using exponential averaging.

1. tn  actual lenght of nthCPU burst

2. n1  predicted value for the next CPU burst 3.

, 0    1

4. Define :

n1   tn  1 n .

67

Prediction of the Length of the Next CPU Burst

68

Priority Scheduling

 A priority number (integer) is associated with each

process

 The CPU is allocated to the process with the highest

priority (smallest integer  highest priority).

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the predicted

next CPU burst time.

 Problem  Starvation – low priority processes may never

execute.

69

Example of RR with Time Quantum = 20

Burst Time

53

17

68

24

Process

P1

P2

P3

P4

 The Gantt chart is:

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

 Typically, higher average turnaround than SJF, but better

response.

70

Time Quantum and Context Switch Time

71

Turnaround Time Varies With The Time Quantum

72

Multilevel Queue

 Ready queue is partitioned into separate queues:

 foreground (interactive)

 background (batch)

 Each queue has its own scheduling algorithm,

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues.

 Fixed priority scheduling; (i.e., serve all from foreground

 then from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e., 80% to foreground in RR

 20% to background in FCFS

73

Multilevel Queue Scheduling

74

Multilevel Feedback Queue

 A process can move between the various queues; aging

can be implemented this way.

 Multilevel-feedback-queue scheduler defined by the

following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter

when that process needs service

75

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – time quantum 8 milliseconds

 Q1 – time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it gains

CPU, job receives 8 milliseconds. If it does not finish in 8

milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted and

moved to queue Q2.

76

Multilevel Feedback Queues

77

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are

available.

 Homogeneous processors within a multiprocessor.

 Load sharing

 Asymmetric multiprocessing – only one processor accesses the

system data structures, alleviating the need for data sharing.

78

Real-Time Scheduling

 Hard real-time systems – required to complete a critical

task within a guaranteed amount of time.

 Soft real-time computing – requires that critical processes

receive priority over less fortunate ones.

79

Single and Multithreaded Processes

80

Benefits

 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

81

User Threads

 Thread management done by user-level threads library

 Examples

- POSIX Pthreads

- Mach C-threads

- Solaris threads

82

Kernel Threads

 Supported by the Kernel

 Examples

- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS

- Linux

83

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

84

Many-to-One

 Many user-level threads mapped to single kernel thread.

 Used on systems that do not support kernel threads.

85

One-to-One

 Each user-level thread maps to kernel thread.

 Examples

- Windows 95/98/NT/2000

- OS/2

86

Many-to-Many Model

 Allows many user level threads to be mapped to many

kernel threads.

 Allows the operating system to create a sufficient number

of kernel threads.

 Solaris 2

 Windows NT/2000 with the ThreadFiber package

87

Many-to-Many Model

88

Threading Issues

 Semantics of fork() and exec() system calls.

 Thread cancellation.

 Signal handling

 Thread pools

 Thread specific data

89

Pthreads

 a POSIX standard (IEEE 1003.1c) API for thread creation

and synchronization.

 API specifies behavior of the thread library,

implementation is up to development of the library.

 Common in UNIX operating systems.

90

Solaris 2 Threads

91

Solaris Process

92

Windows 2000 Threads

 Implements the one-to-one mapping.

 Each thread contains

- a thread id

- register set

- separate user and kernel stacks

- private data storage area

93

Java Threads

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

 Java threads are managed by the JVM.

94

Java Thread States

95

Process Synchronization

 Background

 The Critical-Section Problem

 Synchronization Hardware

 Semaphores

 Classical Problems of Synchronization

 Critical Regions

 Monitors

 Synchronization in Solaris 2 & Windows 2000

96

Background

 Concurrent access to shared data may result in data

inconsistency.

 Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating processes.

 Shared-memory solution to bounded-buffer problem (Chapter

4) allows at most n – 1 items in buffer at the same time. A

solution, where all N buffers are used is not simple.

 Suppose that we modify the producer-consumer code by

adding a variable counter, initialized to 0 and incremented each

time a new item is added to the buffer

97

Bounded-Buffer

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;

98

Bounded-Buffer

 Producer process

item nextProduced;

while (1) {

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

99

Bounded-Buffer

 Consumer process

item nextConsumed;

while (1) {

while (counter == 0)

; /* do nothing */

nextConsumed = buffer[out]; out =

(out + 1) % BUFFER_SIZE;

counter--;

}

100

Bounded Buffer

 The statements

counter++;

counter--;

must be performed atomically.

 Atomic operation means an operation that completes in

its entirety without interruption.

101

Bounded Buffer

 If both the producer and consumer attempt to update the

buffer concurrently, the assembly language statements may

get interleaved.

 Interleaving depends upon how the producer and

consumer processes are scheduled.

102

Bounded Buffer

 Assume counter is initially 5. One interleaving of

statements is:

producer: register1 = counter (register1 = 5) producer:

register1 = register1 + 1 (register1 = 6) consumer:

register2 = counter (register2 = 5) consumer:

register2 = register2 – 1 (register2 = 4) producer:

counter = register1 (counter = 6) consumer: counter =

register2 (counter = 4)

 The value of count may be either 4 or 6, where the

correct result should be 5.

103

Race Condition

 Race condition: The situation where several processes access

– and manipulate shared data concurrently. The final value of

the shared data depends upon which process finishes last.

 To prevent race conditions, concurrent processes must

be synchronized.

104

The Critical-Section Problem

 n processes all competing to use some shared data

 Each process has a code segment, called critical section,

in which the shared data is accessed.

 Problem – ensure that when one process is executing in its

critical section, no other process is allowed to execute in its

critical section.

105

Solution to Critical-Section Problem

1. Mutual Exclusion. If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections.

2. Progress. If no process is executing in its critical section

and there exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of

times that other processes are allowed to enter their critical

sections after a process has made a request to enter its critical

section and before that request is granted.

 Assume that each process executes at a nonzero speed

106

Initial Attempts to Solve Problem

 Only 2 processes, P0 and P1

 General structure of process Pi (other process Pj)

do {

entry section

critical section

exit section

reminder section

} while (1);

 Processes may share some common variables to

synchronize their actions.

107

Algorithm 1

 Shared variables:

 int turn;

initially turn = 0

 turn - i  Pi can enter its critical section

 Process Pi

do {

while (turn != i) ;

critical section

turn = j;

reminder section

} while (1);

 Satisfies mutual exclusion, but not progress

108

Algorithm 2

 Shared variables

 boolean flag[2];

initially flag [0] = flag [1] = false.

 flag [i] = true  Pi ready to enter its critical section

 Process Pi

do {

flag[i] := true;
while (flag[j]) ;

critical section

flag [i] = false;

remainder section

} while (1);

 Satisfies mutual exclusion, but not progress requirement.

109

Algorithm 3

 Combined shared variables of algorithms 1 and 2.

 Process Pi

do {

flag [i]:= true;
turn = j;

while (flag [j] and turn = j) ;

critical section

flag [i] = false;

remainder section

} while (1);

 Meets all three requirements; solves the critical-section

problem for two processes.

110

Bakery Algorithm

 Notation < lexicographical order (ticket #, process id #)

 (a,b) < c,d) if a < c or if a = c and b < d

 max (a0,…, an-1) is a number, k, such that k  ai for i - 0,

…, n – 1

 Shared data

boolean choosing[n];

int number[n];

Data structures are initialized to false and 0 respectively

111

Bakery Algorithm

do {

choosing[i] = true;

number[i] = max(number[0], number[1], …, number [n – 1])+1;

choosing[i] = false;

for (j = 0; j < n; j++) {

while (choosing[j]) ;

while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

}

critical section

number[i] = 0;

remainder section

} while (1);

112

Synchronization Hardware

 Test and modify the content of a word atomically

.

boolean TestAndSet(boolean &target) {

boolean rv = target;

tqrget = true;

return rv;

}

113

Mutual Exclusion with Test-and-Set

 Shared data:

boolean lock = false;

 Process Pi

do {

while (TestAndSet(lock)) ;

critical section

lock = false;

remainder section

}

114

Synchronization Hardware

 Atomically swap two variables.

void Swap(boolean &a, boolean &b) {

boolean temp = a;

a = b;

b = temp;

}

115

Mutual Exclusion with Swap

 Shared data (initialized to false):

boolean lock;

boolean waiting[n];

 Process Pi

do {

key = true;

while (key == true)

Swap(lock,key);

critical section

lock = false;

remainder section

}

116

Semaphores

 Synchronization tool that does not require busy waiting.

 Semaphore S – integer variable

 can only be accessed via two indivisible (atomic)

operations

wait (S):

while S 0 do no-op;

S--;

signal (S):

S++;

117

Semaphore Implementation

 Define a semaphore as a record

typedef struct {

int value;

struct process *L;

} semaphore;

 Assume two simple operations:

 block suspends the process that invokes it.

 wakeup(P) resumes the execution of a blocked process P.

118

Implementation

 Semaphore operations now defined as

wait(S):

S.value--;

if (S.value < 0) {

add this process to S.L;
block;

}

signal(S):

S.value++;

if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

119

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an

event that can be caused by only one of the waiting processes.

 Let S and Q be two semaphores initialized to 1

P0

wait(S);

wait(Q);



signal(S);

signal(Q)

P1

wait(Q);

wait(S);



signal(Q);

signal(S);

 Starvation – indefinite blocking. A process may never be removed

from the semaphore queue in which it is suspended.

120

Two Types of Semaphores

 Counting semaphore – integer value can range over

an unrestricted domain.

 Binary semaphore – integer value can range only

between 0 and 1; can be simpler to implement.

 Can implement a counting semaphore S as a binary

semaphore.

121

Implementing S as a Binary Semaphore

 Data structures:

 Initialization:

binary-semaphore S1, S2;

int C:

S1 = 1

S2 = 0

C = initial value of semaphore S

122

Implementing S

 wait operation

wait(S1);

C--;

if (C < 0) {

signal(S1);

wait(S2);

}

signal(S1);

 signal operation

wait(S1);

C ++;

if (C <= 0)

signal(S2);

else

signal(S1);

123

Classical Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

124

Bounded-Buffer Problem

 Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

125

Bounded-Buffer Problem Producer Process

do {

…

produce an item in nextp

…

wait(empty);

wait(mutex);

…

add nextp to buffer

…

signal(mutex);

signal(full);

} while (1);

126

Bounded-Buffer Problem Consumer Process

do {

wait(full)

wait(mutex);

…

remove an item from buffer to nextc

…

signal(mutex);

signal(empty);

…

consume the item in nextc

…

} while (1);

127

Readers-Writers Problem

 Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0

128

Readers-Writers Problem Reader Process

wait(mutex);

readcount++;

if (readcount == 1)

wait(rt);

signal(mutex);

…

reading is performed

…

wait(mutex);

readcount--;

if (readcount == 0)

signal(wrt);

signal(mutex):

129

Dining-Philosophers Problem

 Shared data

semaphore chopstick[5];

Initially all values are 1

130

Dining-Philosophers Problem

 Philosopher i:

do {

wait(chopstick[i])

wait(chopstick[(i+1) % 5])

…

eat

…

signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

…

think

…

} while (1);

131

Critical Regions

 High-level synchronization construct

 A shared variable v of type T, is declared as:

v: shared T

 Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

 While statement S is being executed, no other process can

access variable v.

132

Critical Regions

 Regions referring to the same shared variable exclude

each other in time.

 When a process tries to execute the region statement, the

Boolean expression B is evaluated. If B is true, statement

S is executed. If it is false, the process is delayed until B

becomes true and no other process is in the region associated

with v.

133

Example – Bounded Buffer

 Shared data:

struct buffer {

int pool[n];

int count, in, out;

}

134

Bounded Buffer Consumer Process

 Consumer process removes an item from the shared

buffer and puts it in nextc

region buffer when (count > 0) {

nextc = pool[out];

out = (out+1) % n;

count--;

}

135

Implementation region x when B do S

 Associate with the shared variable x, the following

variables:

semaphore mutex, first-delay, second-delay;

int first-count, second-count;

 Mutually exclusive access to the critical section is

provided by mutex.

 If a process cannot enter the critical section because the

Boolean expression B is false, it initially waits on the first-

delay semaphore; moved to the second-delay semaphore

before it is allowed to reevaluate B.

136

Implementation

 Keep track of the number of processes waiting on first- delay

and second-delay, with first-count and second- count

respectively.

 The algorithm assumes a FIFO ordering in the queuing of

processes for a semaphore.

 For an arbitrary queuing discipline, a more complicated

implementation is required.

137

Monitors

 To allow a process to wait within the monitor, a

condition variable must be declared, as

condition x, y;

 Condition variable can only be used with the

operations wait and signal.

 The operation

x.wait();
means that the process invoking this operation is

suspended until another process invokes

x.signal();

 The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal operation
has no effect.

138

Schematic View of a Monitor

139

Monitor With Condition Variables

140

Dining Philosophers Example

monitor dp

{

enum {thinking, hungry, eating} state[5];

condition self[5]; // following slides

// following slides

// following slides
void pickup(int i)

void putdown(int i)

void test(int i)

void init() {

for (int i = 0; i < 5; i++)

state[i] = thinking;

}

}

141

Dining Philosophers

void pickup(int i) {

state[i] = hungry;

test(i);

if (state[i] != eating)

self[i].wait();

}

void putdown(int i) {

state[i] = thinking;

// test left and right neighbors

test((i+4) % 5);

test((i+1) % 5);

}

142

Dining Philosophers

void test(int i) {

if ((state[(I + 4) % 5] != eating) &&

(state[i] == hungry) &&

(state[(i + 1) % 5] != eating)) {

state[i] = eating;

self[i].signal();

}

}

143

Monitor Implementation Using Semaphores

 Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next-count = 0;  Each external procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next-count > 0)

signal(next)

else

signal(mutex);

 Mutual exclusion within a monitor is ensured.

144

Monitor Implementation

 The operation x.signal can be implemented as:

if (x-count > 0) {

next-count++;

signal(x-sem);

wait(next);

next-count--;

}

145

Monitor Implementation

 Conditional-wait construct: x.wait(c);

 c – integer expression evaluated when the wait operation is
executed.

 value of c (a priority number) stored with the name of the

process that is suspended.

 when x.signal is executed, process with smallest

associated priority number is resumed next.

 Check two conditions to establish correctness of system:

 User processes must always make their calls on the monitor in a
correct sequence.

 Must ensure that an uncooperative process does not ignore the
mutual-exclusion gateway provided by the monitor, and try to
access the shared resource directly, without using the access
protocols.

146

Solaris 2 Synchronization

 Implements a variety of locks to support multitasking,

multithreading (including real-time threads), and

multiprocessing.

 Uses adaptive mutexes for efficiency when protecting

data from short code segments.

 Uses condition variables and readers-writers locks when

longer sections of code need access to data.

 Uses turnstiles to order the list of threads waiting to

acquire either an adaptive mutex or reader-writer lock.

147

Windows 2000 Synchronization

 Uses interrupt masks to protect access to global

resources on uniprocessor systems.

 Uses spinlocks on multiprocessor systems.

 Also provides dispatcher objects which may act as wither

mutexes and semaphores.

 Dispatcher objects may also provide events. An event

acts much like a condition variable.

148

UNIT 3
 Memory Management

149

UNIT 3: Memory Management

 Background

 Swapping

 Contiguous Allocation

 Paging

 Segmentation

 Segmentation with Paging

 Demand Paging

 Process Creation

 Page Replacement

 Allocation of Frames

 Thrashing

 Operating System Examples

150

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can

happen at three different stages.

 Compile time: If memory location known a priori,

absolute code can be generated; must recompile code if

starting location changes.

 Load time: Must generate relocatable code if memory

location is not known at compile time.

 Execution time: Binding delayed until run time if the

process can be moved during its execution from one memory

segment to another. Need hardware support for address maps

(e.g., base and limit registers).

151

Multistep Processing of a User Program

152

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a

separate physical address space is central to proper memory

management.

 Logical address – generated by the CPU; also referred to as

virtual address.

 Physical address – address seen by the memory unit.

 Logical and physical addresses are the same in compile- time

and load-time address-binding schemes; logical (virtual) and

physical addresses differ in execution-time address-binding

scheme.

153

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical address.

 In MMU scheme, the value in the relocation register is

added to every address generated by a user process at the

time it is sent to memory.

 The user program deals with logical addresses; it never

sees the real physical addresses.

154

Dynamic relocation using a relocation register

155

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never

loaded.

 Useful when large amounts of code are needed to handle

infrequently occurring cases.

 No special support from the operating system is required

implemented through program design.

156

Overlays

 Keep in memory only those instructions and data that are

needed at any given time.

 Needed when process is larger than amount of memory

allocated to it.

 Implemented by user, no special support needed from

operating system, programming design of overlay structure

is complex

157

Overlays for a Two-Pass Assembler

158

Swapping

 A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

 Backing store – fast disk large enough to accommodate copies of all

memory images for all users; must provide direct access to these
memory images.

 Roll out, roll in – swapping variant used for priority-based

scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

 Major part of swap time is transfer time; total transfer time is

directly proportional to the amount of memory swapped.

159

Schematic View of Swapping

160

Contiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with

interrupt vector.

 User processes then held in high memory.

 Single-partition allocation

 Relocation-register scheme used to protect user processes from

each other, and from changing operating-system code and data.

 Relocation register contains value of smallest physical address;

limit register contains range of logical addresses – each logical

address must be less than the limit register.

161

Hardware Support for Relocation and Limit Registers

162

Contiguous Allocation (Cont.)

 Multiple-partition allocation

 Hole – block of available memory; holes of various size are

scattered throughout memory.

 When a process arrives, it is allocated memory from a hole large

enough to accommodate it.

 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

OS

process 5

process 9

process 10

process 2
163

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory.

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit.

164

Address Translation Architecture

165

Paging Example

166

Paging Example

167

Free Frames

Before allocation After allocation

168

Paging Hardware With TLB

169

Effective Access Time

 Associative Lookup =  time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is

found in the associative registers; ration related to number

of associative registers.

 Hit ratio = 

 Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

170

Memory Protection

 Memory protection implemented by associating protection

bit with each frame.

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page.

 “invalid” indicates that the page is not in the process’ logical

address space.

171

Valid (v) or Invalid (i) Bit In A Page Table

172

Page Table Structure

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

173

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is
divided into:

 a page number consisting of 20 bits.

 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further
divided into:

 a 10-bit page number.

 a 10-bit page offset.

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the

displacement within the page of the outer page table.

page number page offset

pi p2 d

10 10 12

174

Two-Level Page-Table Scheme

175

Address-Translation Scheme

 Address-translation scheme for a two-level 32-bit paging

architecture

176

Hashed Page Tables

 Common in address spaces > 32 bits.

 The virtual page number is hashed into a page table. This page

table contains a chain of elements hashing to the same location.

 Virtual page numbers are compared in this chain

searching for a match. If a match is found, the

corresponding physical frame is extracted.

177

Hashed Page Table

178

Inverted Page Table Architecture

179

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical

address space of all processes.

 Private code and data

 Each process keeps a separate copy of the code and data.

 The pages for the private code and data can appear

anywhere in the logical address space.

180

Shared Pages Example

181

Segmentation

 Memory-management scheme that supports user view of

memory.

 A program is a collection of segments. A segment is a logical unit
such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

182

User’s View of a Program

183

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

184

Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical

addresses; each table entry has:

 base – contains the starting physical address where the

segments reside in memory.

 limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the

segment table’s location in memory.

 Segment-table length register (STLR) indicates number of

STLR.

185

Segmentation Architecture (Cont.)

 Protection. With each entry in segment table associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing

occurs at segment level.

 Since segments vary in length, memory allocation is a

dynamic storage-allocation problem.

 A segmentation example is shown in the following

diagram

186

Segmentation Hardware

187

Example of Segmentation

188

Sharing of Segments

189

Segmentation with Paging – MULTICS

 The MULTICS system solved problems of external

fragmentation and lengthy search times by paging the

segments.

 Solution differs from pure segmentation in that the segment-

table entry contains not the base address of the segment, but

rather the base address of a page table for this segment.

190

MULTICS Address Translation Scheme

191

Intel 30386 Address Translation

192

Background

 Virtual memory – separation of user logical memory

from physical memory.

 Only part of the program needs to be in memory for

execution.

 Logical address space can therefore be much larger than

physical address space.

 Allows address spaces to be shared by several processes.

 Allows for more efficient process creation.

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

193

Virtual Memory That is Larger Than Physical Memory

194

Demand Paging

 Bring a page into memory only when it is needed.

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory

195

Transfer of a Paged Memory to Contiguous Disk Space

196

Page Table When Some Pages Are Not in Main Memory

197

Steps in Handling a Page Fault

198

What happens if there is no free

frame?

 Page replacement – find some page in memory, but not

really in use, swap it out.

 algorithm

 performance – want an algorithm which will result in

minimum number of page faults.

 Same page may be brought into memory several times.

199

Demand Paging Example

 Memory access time = 1 microsecond

 50% of the time the page that is being replaced has been

modified and therefore needs to be swapped out.

 Swap Page Time = 10 msec = 10,000 msec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

200

Process Creation

 Virtual memory allows other benefits during process

creation:

- Copy-on-Write

- Memory-Mapped Files

201

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in memory.

If either process modifies a shared page, only then is the

page copied.

 COW allows more efficient process creation as only

modified pages are copied.

 Free pages are allocated from a pool of zeroed-out

pages.

202

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory.

 A file is initially read using demand paging. A page-sized portion of

the file is read from the file system into a physical page. Subsequent

reads/writes to/from the file are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through memory rather

than read() write() system calls.

203

Memory Mapped Files

204

Page Replacement

 Prevent over-allocation of memory by modifying page-

fault service routine to include page replacement.

 Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disk.

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can be

provided on a smaller physical memory.

205

Need For Page Replacement

206

Page Replacement

207

Page Replacement Algorithms

 Want lowest page-fault rate.

 Evaluate algorithm by running it on a particular string of

memory references (reference string) and computing the

number of page faults on that string.

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

208

Graph of Page Faults Versus The Number of Frames

209

First-In-First-Out (FIFO) Algorithm

 4 frames

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per

process)
1

2

3

1

2

3

4

 FIFO Replacement – Belady’s Anomaly

 more frames  less page faults

1 4 5

2 1 3 9 page faults

3 2 4

1 5 4

2 1 5 10 page faults

3 2

4 3

210

FIFO Page Replacement

211

FIFO Illustrating Belady’s Anamoly

212

Optimal Algorithm

1

2

3

4

 Replace page that will not be used for longest period of

time.

 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

4

6 page faults

5

 How do you know this?

 Used for measuring how well your algorithm performs.

213

Optimal Page Replacement

214

Least Recently Used (LRU) Algorithm

 Reference string: , 2,

 Counter implementation

 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the

counter.

 When a page needs to be changed, look at the counters to

determine which are to change.

53, 4, 1, 2, 5, 1, 2, 3, 4, 5 1
1

2

3

4

5 4

3

215

LRU Page Replacement

216

LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in

a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement

217

Use Of A Stack to Record The Most Recent Page References

218

Second-Chance (clock) Page-Replacement Algorithm

219

Counting Algorithms

 Keep a counter of the number of references that have

been made to each page.

 LFU Algorithm: replaces page with smallest count.

 MFU Algorithm: based on the argument that the page with

the smallest count was probably just brought in and has yet to

be used.

220

Allocation of Frames

 Each process needs minimum number of pages.

 Example: IBM 370 – 6 pages to handle SS MOVE

instruction:

 instruction is 6 bytes, might span 2 pages.

 2 pages to handle from.

 2 pages to handle to.

 Two major allocation schemes.

 fixed allocation

 priority allocation

221

Fixed Allocation

i

S
i i a  allocation for p 

 Equal allocation – e.g., if 100 frames and 5 processes,

give each 20 pages.

 Proportional allocation – Allocate according to the size of

process.

si  size of process pi S

  si

m  total number of frames

s

137

137

2

1  64  5

a 
127

 64  59

a 
10

 m

m  64

si  10

s2  127

222

Priority Allocation

 Use a proportional allocation scheme using priorities

rather than size.

 If process Pi generates a page fault,

 select for replacement one of its frames.

 select for replacement a frame from a process with lower

priority number.

223

Global vs. Local Allocation

 Global replacement – process selects a replacement frame

from the set of all frames; one process can take a frame from

another.

 Local replacement – each process selects from only its

own set of allocated frames.

224

Thrashing

 Why does paging work?

Locality model

 Process migrates from one locality to another.

 Localities may overlap.

 Why does thrashing occur?

 size of locality > total memory size

225

Locality In A Memory-Reference Pattern

226

Working-Set Model

   working-set window  a fixed number of page

references

Example: 10,000 instruction

 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent 

(varies in time)

 if  too small will not encompass entire locality.

 if  too large will encompass several localities.

 if  =   will encompass entire program.

 D =  WSSi  total demand frames

 if D > m  Thrashing

 Policy if D > m, then suspend one of the processes.

227

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example:  = 10,000

 Timer interrupts after every 5000 time units.

 Keep in memory 2 bits for each page.

 Whenever a timer interrupts copy and sets the values of all

reference bits to 0.

 If one of the bits in memory = 1  page in working set.

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time

units.

228

Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate.

 If actual rate too low, process loses frame.

 If actual rate too high, process gains frame.

229

Other Considerations

 Prepaging

 Page size selection

 fragmentation

 table size

 I/O overhead

 locality

230

Other Considerations (Cont.)

 TLB Reach - The amount of memory accessible from the

TLB.

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB.

Otherwise there is a high degree of page faults.

231

Increasing the Size of the TLB

 Increase the Page Size. This may lead to an increase in

fragmentation as not all applications require a large page size.

 Provide Multiple Page Sizes. This allows applications that

require larger page sizes the opportunity to use them without

an increase in fragmentation.

232

Other Considerations (Cont.)

 Program structure

 int A[][] = new int[1024][1024];

 Each row is stored in one page

 Program 1 for (j = 0; j < A.length; j++)

for (i = 0; i < A.length; i++)

A[i,j] = 0;

1024 x 1024 page faults

 Program 2 for (i = 0; i < A.length; i++) for

(j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults

233

Other Considerations (Cont.)

 I/O Interlock – Pages must sometimes be locked into

memory.

 Consider I/O. Pages that are used for copying a file from a

device must be locked from being selected for eviction by a

page replacement algorithm.

234

Reason Why Frames Used For I/O Must Be In Memory

235

Operating System Examples

 Windows NT

 Solaris 2

236

Solaris 2

 Maintains a list of free pages to assign faulting processes.

 Lotsfree – threshold parameter to begin paging.

 Paging is peformed by pageout process.

 Pageout scans pages using modified clock algorithm.

 Scanrate is the rate at which pages are scanned. This

ranged from slowscan to fastscan.

 Pageout is called more frequently depending upon the

amount of free memory available.

237

Solar Page Scanner

238

UNIT IV

File-System Interface

239

Chapter 11: File-System Interface

 File Concept

 Access Methods

 Disk and Directory Structure

 File-System Mounting

 File Sharing

 Protection

240

Objectives

 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access

methods, file sharing, file locking, and directory structures

 To explore file-system protection

241

File Concept

 Contiguous logical address space

 Types:

 Data

 numeric

 character

 binary

 Program

 Contents defined by file’s creator

 Many types

 Consider text file, source file, executable file

242

FileAttributes

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file

system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection,

security, and usage monitoring

 Information about files are kept in the directory structure, which

is maintained on the disk

243

File info Window on Mac OS X

244

File Operations

 File is an abstract data type

 Create

 Write – at write pointer location

 Read – at read pointer location

 Reposition within file - seek

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to

directory structure on disk

245

Open Files

 Several pieces of data are needed to manage open

files:

 Open-file table: tracks open files

 File pointer: pointer to last read/write location, per

process that has the file open

 File-open count: counter of number of times a file is open – to

allow removal of data from open-file table when last processes

closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information

246

Open File Locking

 Provided by some operating systems and file systems

 Similar to reader-writer locks

 Shared lock similar to reader lock – several processes can

acquire concurrently

 Exclusive lock similar to writer lock

 Mediates access to a file

 Mandatory or advisory:

 Mandatory – access is denied depending on locks held and

requested

 Advisory – processes can find status of locks and decide

what to do

247

File Locking Example – Java API

import java.io.*;

import java.nio.channels.*;

public class LockingExample {

public static final boolean EXCLUSIVE = false;

public static final boolean SHARED = true;

public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;

FileLock exclusiveLock = null;

try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

// get the channel for the file

FileChannel ch = raf.getChannel();

// this locks the first half of the file - exclusive

exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

/** Now modify the data . . . */

// release the lock

exclusiveLock.release();

248

File Locking Example – Java API (Cont.)

// this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1, raf.length(),

SHARED);

/** Now read the data . . . */

// release the lock

sharedLock.release();

} catch (java.io.IOException ioe) {

System.err.println(ioe);

}finally {

if (exclusiveLock != null)

exclusiveLock.release();

if (sharedLock != null)

sharedLock.release();

}

}

}

249

File Types – Name, Extension

250

Sequential-access File

251

Access Methods

 Sequential Access
read next

write next

reset

no read after last write

(rewrite)

 Direct Access – file is fixed length logical records
read n

write n

position to n

read next

write next

rewrite n

n = relative block number

 Relative block numbers allow OS to decide where file should be placed

 See allocation problem in Ch 12

252

Simulation of Sequential Access on Direct-access File

253

Other Access Methods

 Can be built on top of base methods

 General involve creation of an index for the file

 Keep index in memory for fast determination of location of
data to be operated on (consider UPC code plus record of
data about that item)

 If too large, index (in memory) of the index (on disk)

 IBM indexed sequential-access method (ISAM)

 Small master index, points to disk blocks of secondary

index

 File kept sorted on a defined key

 All done by the OS

 VMS operating system provides index and relative files

254

Example of Index and Relative Files

255

Directory Structure

F 1 F 2
F 3

F 4

 A collection of nodes containing information about all files

Directory

Files

F n

Both the directory structure and the files reside on disk

256

Disk Structure

 Disk can be subdivided into partitions

 Disks or partitions can be RAID protected against failure

 Disk or partition can be used raw – without a file system,

or formatted with a file system

 Partitions also known as minidisks, slices

 Entity containing file system known as a volume

 Each volume containing file system also tracks that file

system’s info in device directory or volume table of

contents

 As well as general-purpose file systems there are many

special-purpose file systems, frequently all within the same

operating system or computer

257

A Typical File-system Organization

258

Types of File Systems

 We mostly talk of general-purpose file systems

 But systems frequently have may file systems, some

general- and some special- purpose

 Consider Solaris has

 tmpfs – memory-based volatile FS for fast, temporary I/O

 objfs – interface into kernel memory to get kernel symbols for

debugging

 ctfs – contract file system for managing daemons

 lofs – loopback file system allows one FS to be accessed in place

of another

 procfs – kernel interface to process structures

 ufs, zfs – general purpose file systems

259

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

260

Directory Organization

 Efficiency – locating a file quickly

 Naming – convenient to users

 Two users can have same name for different files

 The same file can have several different names

 Grouping – logical grouping of files by properties,

(e.g., all Java programs, all games, …)

261

Single-Level Directory

 A single directory for all users

 Naming problem

 Grouping problem

262

Two-Level Directory

 Separate directory for each user

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability

263

Tree-Structured Directories

264

Tree-Structured Directories (Cont.)

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list

265

Tree-Structured Directories (Cont)

 Absolute or relative path name

 Creating a new file is done in current directory

 Delete a file

rm <file-name>

 Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail

mkdir count

Deleting “mail”  deleting the entire subtree rooted by “mail”

266

Acyclic-Graph Directories

 Have shared subdirectories and files

267

Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)

 If dict deletes list  dangling pointer

Solutions:

 Backpointers, so we can delete all pointers

Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

 New directory entry type

 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file

268

General Graph Directory

269

File System Mounting

 A file system must be mounted before it can be

accessed

 A unmounted file system (i.e., Fig. 11-11(b)) is mounted

at a mount point

270

Mount Point

271

File Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a

network

 Network File System (NFS) is a common distributed file-

sharing method

 If multi-user system

 User IDs identify users, allowing permissions and

protections to be per-user

Group IDs allow users to be in groups, permitting group

access rights

 Owner of a file / directory

 Group of a file / directory

272

File Sharing – Remote File Systems

 Uses networking to allow file system access between systems

 Manually via programs like FTP

 Automatically, seamlessly using distributed file systems

 Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems

from servers

 Server can serve multiple clients

 Client and user-on-client identification is insecure or complicated

 NFS is standard UNIX client-server file sharing protocol

 CIFS is standard Windows protocol

 Standard operating system file calls are translated into remote calls

273

File Sharing – Failure Modes

 All file systems have failure modes

 For example corruption of directory structures or other non-

user data, called metadata

 Remote file systems add new failure modes, due to

network failure, server failure

 Recovery from failure can involve state information

about status of each remote request

 Stateless protocols such as NFS v3 include all information

in each request, allowing easy recovery but less security

274

File Sharing – Consistency Semantics

 Specify how multiple users are to access a shared file

simultaneously

 Similar to Ch 5 process synchronization algorithms

 Tend to be less complex due to disk I/O and network

latency (for remote file systems

 Andrew File System (AFS) implemented complex remote file

sharing semantics

 Unix file system (UFS) implements:

 Writes to an open file visible immediately to other users of the

same open file

 Sharing file pointer to allow multiple users to read and

write concurrently

 AFS has session semantics

275

Access Lists and Groups

 Mode of access: read, write, execute

 Three classes of users on Unix / Linux

a) owner access 7



RWX
1 1 1

b) group access 6



RWX

1 1 0

c) public access 1



RWX

0 0 1

 Ask manager to create a group (unique name), say G, and

add some users to the group.

 For a particular file (say game) or subdirectory, define an
appropriate access.

Attach a group to a file
chgrp G game

276

Windows 7 Access-Control List Management

277

A Sample UNIX Directory Listing

278

UNIT IV

File System Implementation

279

File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

280

Objectives

 To describe the details of implementing local file systems

and directory structures

 To describe the implementation of remote file systems

 To discuss block allocation and free-block algorithms and

trade-offs

281

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks)

 Provided user interface to storage, mapping logical to physical

 Provides efficient and convenient access to disk by allowing data

to be stored, located retrieved easily

 Disk provides in-place rewrite and random access

 I/O transfers performed in blocks of sectors (usually 512

bytes)

 File control block – storage structure consisting of

information about a file

 Device driver controls the physical device

282

Layered File System

283

File System Layers

 Device drivers manage I/O devices at the I/O control layer

 Given commands like “read drive1, cylinder 72, track 2, sector 10,

into memory location 1060” outputs low-level hardware specific

commands to hardware controller

 Basic file system given command like “retrieve block 123”

translates to device driver

 Also manages memory buffers and caches (allocation,

freeing, replacement)

 Buffers hold data in transit

 Caches hold frequently used data

 File organization module understands files, logical address, and

physical blocks

 Translates logical block # to physical block #

 Manages free space, disk allocation

284

File System Layers (Cont.)

 Logical file system manages metadata information

 Translates file name into file number, file handle, location by

maintaining file control blocks (inodes in UNIX)

 Directory management

 Protection

 Layering useful for reducing complexity and redundancy, but

adds overhead and can decrease performanceTranslates file

name into file number, file handle, location by maintaining file

control blocks (inodes in UNIX)

 Logical layers can be implemented by any coding method

according to OS designer

285

File System Layers (Cont.)

 Many file systems, sometimes many within an operating

system

 Each with its own format (CD-ROM is ISO 9660; Unix has

UFS, FFS; Windows has FAT, FAT32, NTFS as well as floppy,

CD, DVD Blu-ray, Linux has more than 40 types, with

extended file system ext2 and ext3 leading; plus distributed

file systems, etc.)

 New ones still arriving – ZFS, GoogleFS, Oracle ASM,

FUSE

286

File-System Implementation

 We have system calls at the API level, but how do we

implement their functions?

 On-disk and in-memory structures

 Boot control block contains info needed by system to

boot OS from that volume

 Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table)

contains volume details

 Total # of blocks, # of free blocks, block size, free block

pointers or array

 Directory structure organizes the files

 Names and inode numbers, master file table

287

File-System Implementation (Cont.)

 Per-file File Control Block (FCB) contains many details

about the file

 inode number, permissions, size, dates

 NFTS stores into in master file table using relational DB

structures

288

In-Memory File System Structures

 Mount table storing file system mounts, mount points,

file system types

 The following figure illustrates the necessary file system

structures provided by the operating systems

 Figure 12-3(a) refers to opening a file

 Figure 12-3(b) refers to reading a file

 Plus buffers hold data blocks from secondary storage

 Open returns a file handle for subsequent use

 Data from read eventually copied to specified user

process memory address

289

In-Memory File System Structures

290

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”)

or raw – just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of

blocks that contain enough code to know how to load the

kernel from the file system

 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold

other Oses, other file systems, or be raw

 Mounted at boot time

 Other partitions can mount automatically or manually

291

Virtual File Systems

 Virtual File Systems (VFS) on Unix provide an object-

oriented way of implementing file systems

 VFS allows the same system call interface (the API) to be

used for different types of file systems

 Separates file-system generic operations from

implementation details

 Implementation can be one of many file systems types, or

network file system

 Implements vnodes which hold inodes or network file

details

 Then dispatches operation to appropriate file system

implementation routines

292

Virtual File Systems (Cont.)

 The API is to the VFS interface, rather than any specific type

of file system

293

Virtual File System Implementation

 For example, Linux has four object types:

 inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be

implemented

 Every object has a pointer to a function table

 Function table has addresses of routines to implement that

function on that object

 For example:

 • int open(. . .)—Open a file

 • int close(. . .)—Close an already-open file

 • ssize t read(. . .)—Read from a file

 • ssize t write(. . .)—Write to a file

 • int mmap(. . .)—Memory-map a file

294

Directory Implementation

 Linear list of file names with pointer to the data blocks

 Simple to program

 Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use

B+ tree

 Hash Table – linear list with hash data structure

 Decreases directory search time

 Collisions – situations where two file names hash to the

same location

 Only good if entries are fixed size, or use chained-overflow

method

295

Allocation Methods - Contiguous

 An allocation method refers to how disk blocks are

allocated for files:

 Contiguous allocation – each file occupies set of

contiguous blocks

 Best performance in most cases

 Simple – only starting location (block #) and length (number

of blocks) are required

 Problems include finding space for file, knowing file size,

external fragmentation, need for compaction off-line

(downtime) or on-line

296

Contiguous Allocation

 Mapping from logical to

physical

Q

LA/512

R

Block to be accessed = Q +

starting address Displacement

into block = R

297

1. Allocation Methods - Linked

 Linked allocation – each file a linked list of blocks

 File ends at nil pointer

 No external fragmentation

 Each block contains pointer to next block

 No compaction, external fragmentation

 Free space management system called when new block

needed

 Improve efficiency by clustering blocks into groups but

increases internal fragmentation

 Reliability can be a problem

 Locating a block can take many I/Os and disk seeks

298

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered

anywhere on the disk

block = pointer

 Mapping

Q

LA/511

R

Block to be accessed is the Qth block in the linked chain of blocks

representing the file.

Displacement into block = R + 1

299

Linked Allocation

300

File-Allocation Table

301

Allocation Methods - Indexed

 Indexed allocation

 Each file has its own index block(s) of pointers to its data

blocks

 Logical view

index table

302

Indexed Allocation (Cont.)

 Need index table

 Random access

 Dynamic access without external fragmentation, but have

overhead of index block

 Mapping from logical to physical in a file of maximum size of
256K bytes and block size of 512 bytes. We need only 1
block for index table

Q

LA/512

R

Q = displacement into index table R

= displacement into block

303

Indexed Allocation – Mapping (Cont.)

 Mapping from logical to physical in a file of unbounded length

(block size of 512 words)

 Linked scheme – Link blocks of index table (no limit on size)

Q1

LA / (512 x 511)

R1

Q1 = block of index table

R1 is used as follows:
Q2

R1 / 512

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

304

Indexed Allocation – Mapping (Cont.)

 Two-level index (4K blocks could store 1,024 four-byte pointers in

outer index -> 1,048,567 data blocks and file size of up to 4GB)

Q1

LA / (512 x 512)

R1

Q1 = displacement into outer-index

R1 is used as follows:

Q2

R1 / 512

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

305

Indexed Allocation – Mapping (Cont.)

306

Combined Scheme: UNIX UFS

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

307

Performance (Cont.)

 Adding instructions to the execution path to save one disk I/O

is reasonable

 Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000

MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second

 Typical disk drive at 250 I/Os per second

 159,000 MIPS / 250 = 630 million instructions during one

disk I/O

 Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during

one disk I/O

308

http://en.wikipedia.org/wiki/Instructions_per_second

Free-Space Management

…

 File system maintains free-space list to track available

blocks/clusters

 (Using term “block” for simplicity)

 Bit vector or bit map (n blocks)
0 1 2 n-1

bit[i] =






1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

309

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 4KB = 212 bytes

disk size = 240 bytes (1 terabyte) n

= 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

 Easy to get contiguous files

310

Linked Free Space List on Disk

 Linked list (free list)

 Cannot get contiguous

space easily

 No waste of space

 No need to traverse the
entire list (if # free blocks

recorded)

311

Free-Space Management (Cont.)

 Space Maps

 Used in ZFS

 Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory ->
thousands of I/Os

 Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs

 Each metaslab has associated space map

 Uses counting algorithm

 But records to log file rather than file system

 Log of all block activity, in time order, in counting format

 Metaslab activity -> load space map into memory in balanced-tree
structure, indexed by offset

 Replay log into that structure

 Combine contiguous free blocks into single entry

312

Efficiency and Performance

 Efficiency dependent on:

 Disk allocation and directory algorithms

 Types of data kept in file’s directory entry

 Pre-allocation or as-needed allocation of metadata

structures

 Fixed-size or varying-size data structures

313

Efficiency and Performance (Cont.)

 Performance

 Keeping data and metadata close together

 Buffer cache – separate section of main memory for frequently

used blocks

 Synchronous writes sometimes requested by apps or needed

by OS

 No buffering / caching – writes must hit disk before

acknowledgement

 Asynchronous writes more common, buffer-able, faster

 Free-behind and read-ahead – techniques to optimize

sequential access

 Reads frequently slower than writes

314

Page Cache

 A page cache caches pages rather than disk blocks using

virtual memory techniques and addresses

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk) cache

 This leads to the following figure

315

I/O Without a Unified Buffer Cache

316

I/O Using a Unified Buffer Cache

317

UNIT IV

Mass-Storage Systems

318

Mass-Storage Systems

 Overview of Mass Storage Structure

 Disk Structure

 Disk Attachment

 Disk Scheduling

 Disk Management

 Swap-Space Management

319

Objectives

 To describe the physical structure of secondary storage

devices and its effects on the uses of the devices

 To explain the performance characteristics of mass-

storage devices

 To evaluate disk scheduling algorithms

 To discuss operating-system services provided for mass

storage, including RAID

320

Overview of Mass Storage Structure

 Magnetic disks provide bulk of secondary storage of modern

computers

 Drives rotate at 60 to 250 times per second

 Transfer rate is rate at which data flow between drive and computer

 Positioning time (random-access time) is time to move disk arm to

desired cylinder (seek time) and time for desired sector to rotate under the

disk head (rotational latency)

 Head crash results from disk head making contact with the disk

surface -- That’s bad

 Disks can be removable
into drive or storage array

321

Moving-head Disk Mechanism

322

The First Commercial Disk Drive

1956

IBM RAMDAC computer

included the IBM Model 350

disk storage system

5M (7 bit) characters

50 x 24” platters

Access time = < 1 second

323

Solid-State Disks

 Nonvolatile memory used like a hard drive

 Many technology variations

 Can be more reliable than HDDs

 More expensive per MB

 Maybe have shorter life span

 Less capacity

 But much faster

 Busses can be too slow -> connect directly to PCI for

example

 No moving parts, so no seek time or rotational latency

324

Magnetic Tape

 Was early secondary-storage medium

 Evolved from open spools to cartridges

 Relatively permanent and holds large quantities of data

 Access time slow

 Random access ~1000 times slower than disk

 Mainly used for backup, storage of infrequently-used

data, transfer medium between systems

 Kept in spool and wound or rewound past read-write

head

 Once data under head, transfer rates comparable to disk

 140MB/sec and greater

 200GB to 1.5TB typical storage

325

Disk Structure

 Disk drives are addressed as large 1-dimensional arrays of

logical blocks, where the logical block is the smallest unit of

transfer

 Low-level formatting creates logical blocks on physical media

 The 1-dimensional array of logical blocks is mapped into the

sectors of the disk sequentially

 Sector 0 is the first sector of the first track on the outermost

cylinder

 Mapping proceeds in order through that track, then the rest of the

tracks in that cylinder, and then through the rest of the cylinders

from outermost to innermost

 Logical to physical address should be easy

 Except for bad sectors

326

Disk Attachment

 Host-attached storage accessed through I/O ports talking to I/O

busses

 SCSI itself is a bus, up to 16 devices on one cable, SCSI

initiator requests operation and SCSI targets perform tasks

 Each target can have up to 8 logical units (disks attached to

device controller)

 FC is high-speed serial architecture

 Can be switched fabric with 24-bit address space – the basis of

storage area networks (SANs) in which many hosts attach to many

storage units

 I/O directed to bus ID, device ID, logical unit (LUN)

327

Storage Area Network

 Common in large storage environments

 Multiple hosts attached to multiple storage arrays - flexible

328

Network-Attached Storage

 Network-attached storage (NAS) is storage made

available over a network rather than over a local

connection (such as a bus)

 Remotely attaching to file systems

 NFS and CIFS are common protocols

 Implemented via remote procedure calls (RPCs) between host

and storage over typically TCP or UDP on IP network

 iSCSI protocol uses IP network to carry the SCSI protocol

 R

emotely attaching to devices (blocks)

329

Disk Scheduling

 The operating system is responsible for using hardware

efficiently — for the disk drives, this means having a fast

access time and disk bandwidth

 Minimize seek time

 Seek time  seek distance

 Disk bandwidth is the total number of bytes transferred,

divided by the total time between the first request for service

and the completion of the last transfer

330

Disk Scheduling (Cont.)

 There are many sources of disk I/O request

 OS

 System processes

 Users processes

 I/O request includes input or output mode, disk address,

memory address, number of sectors to transfer

 OS maintains queue of requests, per disk or device

 Idle disk can immediately work on I/O request, busy disk

means work must queue

 Optimization algorithms only make sense when a queue exists

331

FCFS

Illustration shows total head movement of 640 cylinders

332

SSTF

 Shortest Seek Time First selects the request with the

minimum seek time from the current head position

 SSTF scheduling is a form of SJF scheduling; may cause

starvation of some requests

 Illustration shows total head movement of 236 cylinders

333

SCAN

 The disk arm starts at one end of the disk, and moves toward

the other end, servicing requests until it gets to the other end of

the disk, where the head movement is reversed and servicing

continues.

 SCAN algorithm Sometimes called the elevator

algorithm

 Illustration shows total head movement of 208 cylinders

 But note that if requests are uniformly dense, largest

density at other end of disk and those wait the longest

334

SCAN (Cont.)

335

C-SCAN (Cont.)

336

C-LOOK

 LOOK a version of SCAN, C-LOOK a version of C-

SCAN

 Arm only goes as far as the last request in each direction,

then reverses direction immediately, without first going all

the way to the end of the disk

 Total number of cylinders?

337

C-LOOK (Cont.)

338

Selecting a Disk-Scheduling Algorithm

 SSTF is common and has a natural appeal

 SCAN and C-SCAN perform better for systems that place a heavy load

on the disk

 Less starvation

 Performance depends on the number and types of requests

 Requests for disk service can be influenced by the file-allocation method

 And metadata layout

 The disk-scheduling algorithm should be written as a separate module of the

operating system, allowing it to be replaced with a different algorithm if

necessary

 Either SSTF or LOOK is a reasonable choice for the default algorithm

 What about rotational latency?

 Difficult for OS to calculate

 How does disk-based queueing effect OS queue ordering efforts?

339

Disk Management

 Low-level formatting, or physical formatting — Dividing a disk into

sectors that the disk controller can read and write

 Each sector can hold header information, plus data, plus error

correction code (ECC)

 Usually 512 bytes of data but can be selectable

 To use a disk to hold files, the operating system still needs to record its own

data structures on the disk

 Partition the disk into one or more groups of cylinders, each treated as a

logical disk

 Logical formatting or “making a file system”

 To increase efficiency most file systems group blocks into clusters

 Disk I/O done in blocks

 File I/O done in clusters

340

Booting from a Disk in Windows

341

Swap-Space Management

 Swap-space — Virtual memory uses disk space as an extension of main memory

 Less common now due to memory capacity increases

 Swap-space can be carved out of the normal file system, or, more commonly, it can be

in a separate disk partition (raw)

 Swap-space management

 4.3BSD allocates swap space when process starts; holds text segment (the program)

and data segment

 Kernel uses swap maps to track swap-space use

 Solaris 2 allocates swap space only when a dirty page is forced out of

physical memory, not when the virtual memory page is first created

 File data written to swap space until write to file system requested

 Other dirty pages go to swap space due to no other home

 Text segment pages thrown out and reread from the file system as needed

 What if a system runs out of swap space?

 Some systems allow multiple swap spaces

342

Data Structures for Swapping on Linux Systems

343

RAID Structure

 RAID – redundant array of inexpensive disks

 multiple disk drives provides reliability via redundancy

 Increases the mean time to failure

 Mean time to repair – exposure time when another failure

could cause data loss

 Mean time to data loss based on above factors

 If mirrored disks fail independently, consider disk with

1300,000 mean time to failure and 10 hour mean time to

repair

 Mean time to data loss is 100, 0002 / (2 ∗ 10) = 500 ∗ 106 hours,

or 57,000 years!

 Frequently combined with NVRAM to improve write

performance

344

RAID Levels

345

RAID (0 + 1) and (1 + 0)

346

Extensions

 RAID alone does not prevent or detect data corruption or

other errors, just disk failures

 Solaris ZFS adds checksums of all data and metadata

 Checksums kept with pointer to object, to detect if object

is the right one and whether it changed

 Can detect and correct data and metadata corruption

 ZFS also removes volumes, partitions

 Disks allocated in pools

 Filesystems with a pool share that pool, use and release space

like malloc() and free() memory allocate / release

calls

347

 UNIT V
 Deadlocks

348

UNIT V:Deadlocks

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

 Combined Approach to Deadlock Handling

349

Bridge Crossing Example

 Traffic only in one direction.

 Each section of a bridge can be viewed as a resource.

 If a deadlock occurs, it can be resolved if one car backs

up (preempt resources and rollback).

 Several cars may have to be backed up if a deadlock

occurs.

 Starvation is possible.

350

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

 Mutual exclusion: only one process at a time can use a
resource.

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.

 No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held by
P1, P1 is waiting for a resource that is held by

P2, …, Pn–1 is waiting for a resource that is held by

351

Resource-Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

Pi

Rj

 Pi is holding an instance of Rj

Pi

Rj

352

Example of a Resource Allocation Graph

353

Resource Allocation Graph With A Deadlock

354

Resource Allocation Graph With A Cycle But No

Deadlock

355

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock state.

 Allow the system to enter a deadlock state and then

recover.

 Ignore the problem and pretend that deadlocks never occur

in the system; used by most operating systems, including

UNIX.

356

Deadlock Prevention

Restrain the ways request can be made.

 Mutual Exclusion – not required for sharable resources;

must hold for nonsharable resources.

 Hold and Wait – must guarantee that whenever a process

requests a resource, it does not hold any other resources.

 Require process to request and be allocated all its resources

before it begins execution, or allow process to request

resources only when the process has none.

 Low resource utilization; starvation possible.

357

Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all

resources currently being held are released.

 Preempted resources are added to the list of resources for

which the process is waiting.

 Process will be restarted only when it can regain its old

resources, as well as the new ones that it is requesting.

 Circular Wait – impose a total ordering of all resource types,

and require that each process requests resources in an

increasing order of enumeration.

358

Deadlock Avoidance

Requires that the system has some additional a priori information

available.

 Simplest and most useful model requires that each process

declare the maximum number of resources of each type that

it may need.

 The deadlock-avoidance algorithm dynamically examines the

resource-allocation state to ensure that there can never be a

circular-wait condition.

 Resource-allocation state is defined by the number of

available and allocated resources, and the maximum

demands of the processes.

359

Safe State

 When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state.

 System is in safe state if there exists a safe sequence of all

processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that

Pi can still request can be satisfied by currently available resources
+ resources held by all the Pj, with j<I.

 If Pi resource needs are not immediately available, then Pi can wait
until all Pj have finished.

 When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate.

 When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

360

Safe, Unsafe , Deadlock State

361

Resource-Allocation Graph Algorithm

 Claim edge Pi  Rj indicated that process Pj may request

resource Rj; represented by a dashed line.

 Claim edge converts to request edge when a process

requests a resource.

 When a resource is released by a process, assignment

edge reconverts to a claim edge.

 Resources must be claimed a priori in the system.

362

Resource-Allocation Graph For Deadlock Avoidance

363

Unsafe State In Resource-Allocation Graph

364

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

 Available: Vector of length m. If available [j] = k, there are

k instances of resource type Rj available.

 Max: n x m matrix. If Max [i,j] = k, then process Pi may

request at most k instances of resource type Rj.

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is

currently allocated k instances of Rj.

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k

more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

365

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,

respectively. Initialize:

Work = Available

Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe

state.

366

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k

then process Pi wants k instances of resource type Rj.

1. If Requesti  Needi go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum claim.

2. If Requesti  Available, go to step 3. Otherwise Pi must

wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available = Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;;

• If safe  the resources are allocated to Pi.

• If unsafe  Pi must wait, and the old resource-allocation
state is restored

367

Example of Banker’s Algorithm

 5 processes P0 through P4; 3 resource types A

(10 instances),

B (5instances, and C (7 instances).

 Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3
368

Example (Cont.)

 The content of the matrix. Need is defined to be Max –

Allocation.

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1  The system is in a safe state since the sequence < P1, P3, P4,

P2, P0> satisfies safety criteria.

369

Example P1 Request (1,0,2) (Cont.)

 Check that Request  Available (that is, (1,0,2)  (3,3,2) 

true.

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence <P1, P3, P4, P0,

P2> satisfies safety requirement.

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?

370

Single Instance of Each Resource Type

 Maintain wait-for graph

 Nodes are processes.

 Pi  Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for a cycle

in the graph.

 An algorithm to detect a cycle in a graph requires an order of

n2 operations, where n is the number of vertices in the graph.

371

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

372

Several Instances of a Resource Type

 Available: A vector of length m indicates the number of

available resources of each type.

 Allocation: An n x m matrix defines the number of

resources of each type currently allocated to each

process.

 Request: An n x m matrix indicates the current request of

each process. If Request [ij] = k, then process Pi is

requesting k more instances of resource type. Rj.

373

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,

respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4.

374

Detection Algorithm (Cont.)

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 1  i  n, then the system is in

deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n2) operations to detect

whether the system is in deadlocked state.

375

Example of Detection Algorithm

 Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2 376

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be

many cycles in the resource graph and so we would not be

able to tell which of the many deadlocked processes “caused”

the deadlock.

377

Recovery from Deadlock:Process Termination

 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is

eliminated.

 In which order should we choose to abort?

 Priority of the process.

 How long process has computed, and how much longer to
completion.

 Resources the process has used.

 Resources process needs to complete.

 How many processes will need to be terminated.

 Is process interactive or batch?

378

Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process for

that state.

 Starvation – same process may always be picked as

victim, include number of rollback in cost factor.

379

Combined Approach to Deadlock Handling

 Combine the three basic approaches

 prevention

 avoidance

 detection

allowing the use of the optimal approach for each of

resources in the system.

 Partition resources into hierarchically ordered classes.

 Use most appropriate technique for handling deadlocks

within each class.

380

UNIT V: Protection

 Goals of Protection

 Domain of Protection

 Access Matrix

 Implementation of Access Matrix

 Revocation of Access Rights

 Capability-Based Systems

 Language-Based Protection

381

Domain Structure

 Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that

can be performed on the object.

 Domain = set of access-rights

382

Domain Implementation (Multics)

 Let Di and Dj be any two domain rings.

 If j < I  Di  Dj

Multics Rings
383

Access Matrix

Figure A

384

Use of Access Matrix

 If a process in Domain Di tries to do “op” on object Oj,

then “op” must be in the access matrix.

 Can be expanded to dynamic protection.

 Operations to add, delete access rights.

 Special access rights:

 owner of Oi

 copy op from Oi to Oj

 control – Di can modify Dj access rights

 transfer – switch from domain Di to Dj

385

Use of Access Matrix (Cont.)

 Access matrix design separates mechanism from policy.

 Mechanism

 Operating system provides access-matrix + rules.

 If ensures that the matrix is only manipulated by

authorized agents and that rules are strictly enforced.

 Policy

 User dictates policy.

 Who can access what object and in what mode.

386

Access Matrix With Owner Rights

387

Access Matrix with Copy Rights

388

Access Matrix of Figure A With Domains as Objects

Figure B

389

Revocation of Access Rights

 Access List – Delete access rights from access list.

 Simple

 Immediate

 Capability List – Scheme required to locate capability in

the system before capability can be revoked.

 Reacquisition

 Back-pointers

 Indirection

 Keys

390

Modified Access Matrix of Figure B

391

Capability-Based Systems

 Hydra

 Fixed set of access rights known to and interpreted by the

system.

 Interpretation of user-defined rights performed solely by user's

program; system provides access protection for use of these

rights.

 Cambridge CAP System

 Data capability - provides standard read, write, execute of

individual storage segments associated with object.

 Software capability -interpretation left to the subsystem,

through its protected procedures.

392

Stack Inspection

393

Language-Based Protection

 Specification of protection in a programming language

allows the high-level description of policies for the

allocation and use of resources.

 Language implementation can provide software for

protection enforcement when automatic hardware-

supported checking is unavailable.

 Interpret protection specifications to generate calls on

whatever protection system is provided by the hardware and

the operating system.

394

