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Operations Research

« Operations Research is an Art and Science

* It had its early roots in World War Il and is flourishing in
business and industry with the aid of computer

* Primary applications areas of Operations Research include
forecasting, production scheduling, inventory control, capital
budgeting, and transportation.
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What is Operations Research?

Operations
« The activities carried out in an organization.

Research

« The process of observation and testing characterized by the
scientific method. Situation, problem statement, model
construction, validation, experimentation, candidate solutions.

« Operations Research Is a quantitative approach to decision
making based on the scientific method of problem solving.
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« QOperations Research is the scientific approach to execute
decision making, which consists of:

— The art of mathematical modeling of complex situations

— The science of the development of solution techniques
used to solve these models

— The ability to effectively communicate the results to the
decision maker
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1. OR professionals aim to provide rational bases for decision
making by seeking to understand and structure complex
situations and to use this understanding to predict system
behavior and improve system performance.

2. Much of this work Is done using analytical and numerical
techniques to develop and manipulate mathematical and
computer models of organizational systems composed of
people, machines, and procedures.
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Terminology

« The British/Europeans refer to -Operational Research", the
Americans to -Operations Research" - but both are often
shortened to just "OR".

« Another term used for this field is -Management Science"
("MS"). In U.S. OR and MS are combined together to form
"OR/MS" or "ORMS".

* Yet other terms sometimes used are -Industrial Engineering"
("IE") and -Decision Science" ("DS").
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History of OR

* OR is a relatively new discipline.

« 70 years ago it would have been possible to study
mathematics, physics or engineering at university it would not
have been possible to study OR.

It was really only In the late 1930's that operationas research
began in a systematic way.
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Features/Characteristics of OR

» Decision-Making

« Scientific Approach

* Inter-Disciplinary Team Approach
« System Approach

« Use of Computers

* Objectives

* Human Factors
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Scope of OR

The scope of OR is not only confined to any specific agency
like defense services but today it iIs widely used in all
Industrial organizations.

It can be used to find the best solution to any problem be it
simple or complex. It is useful In every field of human
activities. Thus, it attempts to resolve the conflicts of interest
among the components of organization in a way that is best for
the organization as a whole.
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Limitations Of OR

« Magnitude of Computation

« Non-Quantifiable Factors
 Distance between User and Analyst
« Time and Money Costs

* Implementation
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What vou Should Know about OR

« How decision-making problems are characterized
* OR terminology
« \What a model is and how to assess its value

« How to go from a conceptual problem to a quantitative
solution
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Simplex Method

« Simplex: a linear-programming algorithm that can solve
problems having more than two decision variables.

. The simplex technique involves generating a series of
solutions In tabular form, called tableaus. By inspecting the
bottom row of each tableau, one can immediately tell if it
represents the optimal solution. Each tableau corresponds to a
corner point of the feasible solution space. The first tableau
corresponds to the origin. Subsequent tableaus are developed
by shifting to an adjacent corner point in the direction that
yields the highest (smallest) rate of profit (cost). This process
continues as long as a positive (negative) rate of profit (cost)
exIsts.

INSTITUTE OF AERONAUTICAL ENGINEERING




Simplex Algorithm

The key solution concepts
 Solution Concept 1: the simplex
method focuses on CPF
solutions.

« Solution concept 2: the simplex method is an iterative
algorithm (a systematic solution procedure that keeps
repeating a fixed series of steps, called, an iteration, until a
desired result has been obtained) with the following structure:
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Simplex algorithm

 Solution concept 3: whenever possible, the initialization of the
simplex method chooses the origin point (all decision variables
equal zero) to be the initial CPF solution.

« Solution concept 4. given a CPF solution, it Is much quicker
computationally to gather information about its adjacent CPF
solutions than about other CPF solutions. Therefore, each time
the simplex method performs an iteration to move from the
current CPF solution to a better one, it always chooses a CPF
solution that is adjacent to the current one.

INSTITUTE OF AERONAUTICAL ENGINEERING




e Solution concept 5. After the current CPF solution is
Identified, the simplex method examines each of the edges of
the feasible region that emanate from this CPF solution. Each
of these edges leads to an adjacent CPF solution at the other
end, but the simplex method doesn‘t even take the time to
solve for the adjacent CPF solution. Instead it simply identifies
the rate of improvement in Z that would be obtained by
moving along the edge. And then chooses to move along the
one with largest positive rate of improvement.
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« Solution concept 6: A positive rate of improvement in Z
Implies that the adjacent CPF solution is better than the current
one, whereas a negative rate of improvement in Z implies that
the adjacent CPF solution is worse. Therefore, the optimality
test consists simply of checking whether any of the edges give
a positive rate of improvement in Z. if none do, then the
current CPF solution is optimal.
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2. Test for optimality:
Case 1: Maximization problem

the current BF solution is optimal if every coefficient in the
objective function row Is nonnegative

Case 2: Minimization problem

the current BF solution is optimal if every coefficient in the
objective function row is no positive.

INSTITUTE OF AERONAUTICAL ENGINEERING



3. Iteration

Step 1. determine the entering basic variable by selecting the
variable (automatically a non basic variable) with the most
negative value (in case of maximization) or with the most
positive (in case of minimization) in the last row (Z-row). Put
a box around the column below this variable, and call it the
—pivot columnl
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UNIT-II
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Introduction

« A sequence Is the order In which the jobs are processed.
Sequence problems arise when we are concerned with
situations where there is a choice in which a number of tasks
can be performed. A sequencing problem could involve:

« Jobs in a manufacturing plant.

 Aircraft waiting for landing and clearance.
« Maintenance scheduling in a factory.

« Programmes to be run on a computer.

« Customers in a bank & so-on
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« Job : The jobs or items or customers or orders are the primary
stimulus for sequencing. There should be a certain number of
jobs say _n‘ to be processed or sequenced.

« Number of Machines : A machine Is characterized by a
certain processing capability or facilities through which a job
must pass before it i1s completed In the shop. It may not be
necessarily a mechanical device. Even human being assigned
jobs may be taken as machines. There must be certain number
of machines say _k* to be used for processing the jobs.

* Processing Time : Every operation requires certain time at
each of machine. If the time is certain then the determination
of schedule is easy. When the processing times are uncertain
then the schedule is complex.
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« Total Elapsed Time : It is the time between starting the first
job and completing the last one.

 Idle time : It is the time the machine remains idle during the
total elapsed time.

« Technological order : Different jobs may have different
technological order. It refers to the order in which various
machines are required for completing the jobs.
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Types of sequencing problems:

There can be many types of sequencing problems which are as
follows:

Problem with _n‘ jobs through one machine.
Problem with _n‘ jobs through two machines.
Problem with _n°‘ jobs through three machines.

Here the objective is to find out the optimum sequence of the
jobs to be processed and starting and finishing time of various
jobs through all the machines.

No passing rule: it implies that passing is not allowed I.e. the
same order of jobs is maintained over each machine

Static arrival pattern. If all the jobs arrive simultaneously.
Dynamic arrival pattern. Where the jobs arrive continuously.
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Basic Assumptions:

Following are the basic assumptions underlying a sequencing
problem:

« No machine can process more than one job at a time.

« The processing times on different machines are independent of
the order in which they are processed.

« The time involved In moving a job from one machine to
another is negligibly small.

 Each job once started on a machine is to be performed up to
completion on that machine.

 All machines are of different types.
 All jobs are completely known and are ready for processing.

« A job is processed as soon as possible but only in the order
specified.
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n jobs through two machines

Let there be _n‘ jobs each of which is to be processed through
two machines say A & B, in the order AB. That is each job will
go to machine A first and then to B In other words passing off
Is not allowed.

All _n‘jobs are to be processed on A without any idle time.

On the other hand the machine B Is subject to its remaining
Idle at various stages.

Let A1 A2............. An & Bl B2........ Bn be the expected
processing time of n jobs on these two machines.
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Steps for n jobs through two machines:

« Step 1: Select the smallest processing time occurring in list Al
or BI, If there Is a tie select either of the smallest processing
time.

« Step 2: If the smallest time is on machine A, then place it at
first place if it is for the B machine place the corresponding
job at last. Cross off that job.

o Step 3: If there is a tie for minimum time on both the
machines then select machine A first & machine B last and if
there Is tie for minimum on machine A (same machine) then
select any one of these jobs first and if there is tie for
minimum on machine B among and select any of these job in
the last.
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« Step 4. Repeat step 2 & 3 to the reduced set of processing times
obtained by deleting the processing time for both the machines
corresponding to the jobs already assigned

« Step 5: Continue the process placing the job next to the last and so
on till all jobs have been placed and it is called optimum sequence.

« Step6: after finding the optimum sequence we
can find the
followings

« Total elapsed time = Total time between starting the first job of the
optimum sequence on machine A and completing the last job on
machine B.

. Idle time in machine A = Time when the last job in the optimum
sequence is completed on Machine B — Time when the last job in the
optimum sequence is completed on Machine A.
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 In a factory, there are six jobs to process, each of which should
go to machines A & B in the order AB. The processing timings
In minutes are given, determine the optimal sequencing & total

elapsed time.

Jobs 1 2 3

Machine A 7 4 2

Machine B 3 8 6
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Solution:

« Step 1: the least of all the times given in for job 6 in machine
B. so perform job 6 in the end. It is last in the sequences. Now
delete this job from the given data.

« Step 2: Of the remaining timings now the minimum is for job
3 on machine A. so do the job . Now delete this job 3 also.

« Step 3: Now the smallest time is 3 minutes for job first on
machine B. thus perform job 1 at the second last before job 6.
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n jobs through two machines

« Example 2:Suppose we have five jobs, each of which has to be
processed on two machines A & B in the order AB. Processing
times are given in the following table:

Job Machine A Machine B

1 6 3

2 2 7

3 10 8

4 4 9

5 11 5

Determine an order in which these jobs should be processed so
as to minimize the total processing time.
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Solution:

The minimum time in the above table is 2, which corresponds to

job 2 on machine A.

Now we eliminate job 2 from further consideration. The reduced
set of processing times are as follows:

2

Job

Machine A

Machine B

6

3

10

8

4

9

11

5
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The minimum time is 3 for job 1 on machine B. Therefore, this job
would be done in last. The allocation of jobs till this stage would be

After deletion of job 1, the reduced set of processing times are as
follows:

Job Machine A Machine B

3 10 8

4 4 9

5 11 5
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Similarly, by repeating the above steps, the optimal sequence is as

follows:

Once the optimal sequence Is obtained, the minimum elapsed time
may be calculated as follows:

Job

Machine A

Machine B

Timein

Time out

Timein

Time out

0

2

2

9

2

6

9

18

6

16

18

26

16

27

27

32

27

33

33

36
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Idle time for machine A

total elapsed time - time when the last job iIs out of machine A
36-33=3hours.

Idle time for machine B=2 +(9-9) + (18 - 18) + (27 - 26) + (33

- 32) =4 hours.
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Example3 :Strong Book Binder has one printing machine, one
binding machine, and the manuscripts of a number of different
books. Processing times are given in the following table:

Book

Time In Hours

Printing

Binding

5

2

1

6

9

7

3

8

10

4

We wish to determine the order in which books should be
processed on the machines, in order to minimize the total time

required.
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Solution.

The minimum time in the above table is 1, which corresponds to

the book B on printing machine.

Now book B is eliminated. The reduced set of processing times is

as follows:

B

Book

Time In Hours

Printing

Binding

5

2

9

7

3

8

10

4
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The minimum time iIs 2 for book A on binding machine.
Therefore, this job should be done in last. The allocation of jobs
till this stage Is:

B A

The reduced set of processing times is as follows:

Book Time In Hours

Printing Binding

C 9 7

D 3 8

E 10 4
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« Similarly, by repeating the above steps, the optimal sequence

Is as follows

Once the optimal sequence Is obtained, the minimum elapsed
time may be calculated as follows:

Book

Printing

Binding

Timein

Time out

Timein

Time out

0

1

1

7

1

4

7

15

4

13

15

22

13

23

23

27

23

28

28

30

INSTITUTE OF AERONAUTICAL ENGINEERING




Idle time for printing process = total elapsed time - time when

the last job IS out of machine A 30-
28=2hours.

« |dle time for binding process =1+ (7 - 7) + (15 - 15) + (23 -
22) + (28 - 27) = 3 hours
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UNIT-III
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n jobs through three machines

Processing n jobs on 3 Machines:

There I1s no solution available for the general sequencing
problems of n jobs through 3 machines. However we do have
a method under the circumstance that no passing of jobs is
permissible and if either or both the following conditions are
satisfied.

1)The minimum time on machine A iIs greater than or equal to
the maximum time on machine B.

2)The minimum time on machine C Is greater than or equal to
the maximum time on machine B

Or both are satisfied that the following method can be applied
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Method of Procedure:

« Stepl: First of all, the given problem is replaced with an
equivalent problem involving n jobs and 2 fictitious machines
G and H .define the corresponding processing times Gi and Hi
by

« GI=AIl+BI

« Hi=Bi+Ci

« Step2: to the problem obtained stepl above ,the method for
processing n jobs through 2 machines is applied .The optimal

sequence resulting this shall also be optimal for the given
problem.
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Example 1. There are five jobs which must go through these
machines A,B and C the order ABC .Processing times of the
jobs on different machines given below.

Jobs A B C

1 7 5 6
2 8 5 8
3 6 4 7
4 5 2 4
5 6 1 3

* Determine a sequence for 5 jobs which will minimize elapsed
time(T) .
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Solution: according to given information

Min.Ail=5

Max.Bi=5

Min.Ci=3

Here since Min.Ai=Max.Ci, the first of the conditions Is
satisfied.

We shall now determines Gi and Hi and from them find the
optimal sequence.

In accordance with the rules for determining optimal sequence in
respect of n jobs processi ng on 2 machines , the sequence for
above shall be:

3 2 1 4 5
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Table : Calculation of Total Elapsed Time(T) .

Machine A Machine B Machine C
Jobs | In out |In out |In out
3 0 6 6 10 |10 17
2 6 14 |14 19 |19 27
1 14 21 21 26 | 27 33
4 21 26 21 28 |33 37
5 26 32 |32 33 |37 40

Total elapsed time (T) =40 hours.
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n jobs through three machines

Example 2: The MDH Masala company has to process five items
on three machines:- A, B & C. Processing times are given in the
following table:

Iltem Ci

1 6

9

11

8

w o oo © IN >

o N w ul S~ fvs)

2
3
4
5

7

Find the sequence that minimizes the total elapsed time.
Solution:

Here, Min. (A,) = 3, Max. (B;) = 6 and Min. (C,) = 6. Since the
condition of Max. (B;) < Min. (C,) is satisfied, the problem can

be solved by the above procedure. The processing times for the
new problem are given below.
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Item Gi=Ai+B; Hi=B; + C;
1 8 10
2 14 14
3 11 14
4 8 10
5 9 13
The optimal sequence is
4 5 2
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Item Machine A Machine B Machine C
Timein | Timeout | Timein | Timeout [ Timein [ Time out
1 0 4 4 8 8 14
4 4 10 10 12 14 22
5 10 13 13 19 22 29
3 13 21 21 24 29 40
2 21 30 30 35 40 49

Total elapsed time = 49.

Idle time for machine A =49 — 30 = 19 hours.

Idle time for machineB=4 + (10-8) + (13 -12) + (21 - 19)+
(30 - 24) + (49 - 35) = 29 hours.

Idle time for machine C=8 + (14 - 14) + (22 - 22) + (29 - 29)+
(40 - 40) = 8 hours.
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n jobs through three machines

Example 3: Shahi Export House has to process five items
through three stages of production, via, cutting, sewing &
pressing. Processing times are given in the following table:

Item

Cutting
(A)

Sewing

(B)

Pressing

(C)

5

8

10
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Determing an order in which these items should be processed so
as to minimize the total processing time.

Solution:
The processing times for the new problem are given below.

ltem G, = A + B, Hi =B + C;

5 7 11
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ways.

» Thus, the optimal sequence may be formed in any of the two

1 4 5 3 2
4 1 5 3 2
Item Cutting Sewing Pressing
Timein Time out Time in Time out Timein Time out
1 0 3 3 6 6 11
4 3 8 8 9 11 18
5 8 10 10 15 18 24
3 10 17 17 19 24 34
2 17 25 25 29 34 42

INSTITUTE OF AERONAUTICAL ENGINEERING




Total elapsed time =42

Idle time for cutting process = 42 — 25 = 17 hours.
Idle time for sewing process =3 + (8 - 6) + (10 - 9) + (17 -
15+ (25 - 19 + (42 - 29 = 27 hours.

Idle time for pressing process =6 + (11 - 11) + (18 - 18) + (24
- 24)+ (34 - 34) = 6 hours.
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Processing n jobs through m machines

« This section focuses on the sequencing problem of processing
two jobs through m machines. Problems under this category
can be solved with the help of graphical method. The graphical
method below is explained with the help of the following
example.

e Two jobs are to be performed on five machines A, B, C, D, and
E. Processing times are given in the following table.

Machine

Seque|
nce

A B C D E
Job 1

Time : 3 4 2 6 2

Seque|

nce
Job 2

Time : 5 4 3 2 6
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Use graphical method to obtain the total minimum elapsed time.
Solution:

Steps

Mark the processing times of job 1 & job 2 on X-axis & Y-axis
respectively.

Draw the rectangular blocks by pairing the same machines as
shown in the following figure.

b 20— Finizh

13— 50
J
1

A 1':';#1. !
4

1 1 :
1 1 1 |
] [T N I I T O | Job 1

B

|

= 10 15 20
‘A. B .C. Cr .E. }
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« Starting from origin O, move through the 45° line until a point
marked finish is obtained.

« The elapsed time can be calculated by adding the idle time for
either job to the processing time for that job.

 Idle time for job 1 is 5 hours.

« Elapsed time = processing time for job 1+Idle tome of job 1
= (3+4+2+6+2)+5=22 hours.

 Likewise idle time of job 2 is 2 hours.

« Elapsed time =processing time of job 2+Idle time of job 2
= (5+4+3+2+6)+2=22 hours.
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« Example 2:There are 4 job ABCD are required to be processed
on four machine M1, M2,M3, M4 in that order. Determine
optimal sequence and total elapsed time.

Job M1 M2 M3 M4
A 13 8 7 14
B 12 6 8 19
c 9 7 5 15
D 8 5 6 15

Given
Job M1 M2 M3 M4

A 13 8 7 14
12 19
9 15
8 15

v N o
o U1 o0

B
C
D
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« Step 1- 1st we have to convert this problem into two machine
problem. For that we have to check following condition:

e Min M1 or Min M4 >= Max M2 or Max M3

* here Min M1=8, Min M4=14, Max M2=7, Max M3=8.
* therefore 8=8

« Min M1=Max M3

« Consolidation or Conversion Table:

JOB MACHINES 5 MACHINES 6
P(M1+M2+M3) NEW TIME = P(M2+M3+M4) NEW TIME
A 13+8+7 28 8+7+14 29
B 12+6+8 26 6+8+19 33
C 9+7+5 21 7+5+15 27
D 8+5+6 19 5+6+15 26
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New job timing According to Consolidation Table:

Job A B C
New M/c 5 28 26 21
New M/c 6 29 33 27

Sequencing According to consolidation Table:

Consolidated table:
Job A B C

New M/c5 28 26 21
New M/c6 29 33 27

Job sequence:

JOB D B A

19
26

19
26
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« Total Elapsed time= 82 hrs.

 Idle Time for M/c 1=Total Elapsed Time- Total time of M/c 1
=82-42= 40hrs.

 Idle Time for M/c 2=Total Elapsed Time- Total time of M/c 2
=82-26= 56hrs.

 Idle Time for M/c 3=Total Elapsed Time- Total time of M/c 3
= 82-26= 56hrs.

* lIdle Time for M/c 4=Total Elapsed Time- Total time of M/c 4
=82-63=19hrs.
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Characteristics of Games

Introduction to Game Theory:

Game theory Is a kind of decision theory in which one's
alternative action is determined after taking into consideration
all possible alternatives available to an opponent playing the
similar game, rather than just by the possibilities of various
outcome results. Game theory does not insist on how a game
must be played but tells the process and principles by which a
particular action should be chosen. Therefore it is a decision
theory helpful in competitive conditions.

» Properties of a Game
« There are finite number of competitors known as 'players'

 All the strategies and their impacts are specified to the players
but player does not know which strategy is to be selected.
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« A game iIs played when every player selects one of his
strategies. The strategies are supposed to be prepared
simultaneously with an outcome such that no player
recognizes his opponent's strategy until he chooses his own
strategy.

« The figures present as the outcomes of strategies in a matrix
form are known as 'pay-off matrix'.

« The game is a blend of the strategies and in certain units which
finds out the gain or loss.

« The player playing the game always attempts to select the best
course of action which results in optimal pay off known as
'optimal strategy'.
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Characteristics of Game Theory:
. Competitive game:

A competitive situation Is known as competitive game if it has
the four properties

There are limited number of competitors such that n > 2. In the
case of n = 2, it is known as two-person game and in case of n
> 2, 1t IS known as n-person game.

Each player has a record of finite number of possible actions.

A play is said to takes place when each player selects one of
his activities. The choices are supposed to be made
simultaneously 1.e. no player knows the selection of the other
until he has chosen on his own.

Every combination of activities finds out an outcome which
results in a gain of payments to every player, provided each
player is playing openly to get as much as possible.
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2. Strategy

The strategy of a player is the determined rule by which player chooses his
strategy from his own list during the game. The two types of strategy are

Pure strategy
Mixed strategy

Pure Strategy

If a player knows precisely what another player is going to do, a
deterministic condition is achieved and objective function is to maximize
the profit. Thus, the pure strategy is a decision rule always to choose a
particular startegy.

Mixed Strategy

If a player is guessing as to which action is to be chosen by the other on
any particular instance, a probabilistic condition is achieved and objective
function is to maximize the expected profit. Hence the mixed strategy is a
choice among pure strategies with fixed probabilities.
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Repeated Game Strategies

 In repeated games, the chronological nature of the relationship
permits for the acceptance of strategies that are dependent on
the actions chosen in previous plays of the game.

« Most contingent strategies are of the kind called as "trigger"
strategies.

« For Example trigger strategies

« In prisoners' dilemma: At start, play doesn't confess. If your
opponent plays Confess, then you need to play Confess in the
next round. If your opponent plays don't confess, then go for
doesn't confess in the subsequent round. This is called as the
"tit for tat" strategy.

 In the investment game, if you are sender: At start play Send.
Play Send providing the receiver plays Return.
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3. Number of persons

When the number of persons playing is 'n' then the game Is
known as 'n' person game. The person here means an
Individual or a group aims at a particular objective.

Two-person, zero-sum game

« A game with just two players (player A and player B) is known
as 'two-person, zero-sum game', if the losses of one player are
equal to the gains of the other one so that the sum total of their
net gains or profits is zero.

« Two-person, zero-sum games are also known as rectangular
games as these are generally presented through a payoff matrix
In a rectangular form.

4. Number of activities
The activities can be finite or infinite.
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5. Payoff

Payoff Is referred to as the quantitative measure of
satisfaction a person obtains at the end of each play

6. Payoff matrix

« Assume the player A has 'm' activities and the player B has 'n’
activities. Then a payoff matrix can be made by accepting the
following rules

* Row designations for every matrix are the activities or actions
available to player A

e Column designations for every matrix are the activities or
actions available to player B

* Cell entry Vj is the payment to player A in A's payoff matrix
when A selects the activity | and B selects the activityj.
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7. Value of the game

Value of the game is the maximum guaranteed game to player
A (maximizing player) when both the players utilizes their best
strategies. It is usually signifies with 'V' and it is unique.
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Game Models, Terminolog

Classification of Games:
Simultaneous vs. Sequential Move Games

Games where players select activities simultaneously are
simultaneous move games.

Examples: Sealed-Bid Auctions, Prisoners' Dilemma.

Must forecast what your opponent will do at this point,
finding that your opponent is also doing the same.

Games where players select activities in a particular series or
sequence are sequential move games.

Examples: Bargaining/Negotiations, Chess.
Must look forward so as to know what action to select now.
Many sequential move games have deadlines on moves.
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One-Shot versus Repeated Games:
One-shot: play of the game takes place once.

Players likely not know much about each another.

Example - tipping on vacation

Repeated: play of the game is recurring with the same players.
Finitely versus Indefinitely repeated games

Reputational concerns do matter; opportunities for cooperative
behavior may emerge.

Advise: If you plan to follow an aggressive strategy, ask yourself

whether you are in a one-shot game or in repeated game. If a

repeated game then think again.
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Usually games are divided into:
Pure strategy games
Mixed strategy games

The technique for solving these two types changes. By solving
a game, we require to determine best strategies for both the
players and also to get the value of the game. Saddle point
method can be used to solve pure strategy games.

The diverse methods for solving a mixed strategy game are
Dominance rule

Analytical method

Graphical method

Simplex method
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« Basic Game Theory Terms:

« Game . Description of the situation includes the rules of
the game.

« Players : Decision makers in the game.

« Payoffs . Expected rewards enjoyed at the end of the
game.

« Actions : Possible choices made by the player.

« Strategies : Specified plan of action for every contingency
played by other players.

INSTITUTE OF AERONAUTICAL ENGINEERING



out saddle

* Rules for Game theory (with saddle point and without saddle
point):

* Rule 1: Look for pure strategy (saddle point)

* Rule 2:Reduce game by Dominance.

 |f no pure strategies exist,the next step is to eliminate certain
strategies (row/column) by law of Dominance.

* Rule 3:Solve for mixed strategy.
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A mixed strategy can be solved by different solution method,
such as

1. Arithmetic method
2. Algebraic method

3. Graphical method
4. Matrix method

5. Short cut method
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UNIT-IV
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2X2 Games Problems

Pure Strategies (with saddle points):

In a zero-sum game, the pure strategies of two players constitute a saddle
point if the corresponding entry of the payoff matrix is simultaneously a
maximum of row minima and a minimum of column maxima. This
decision-making is referred to as the minimax-maximin principle to
obtain the best possible selection of a strategy for the players.

In a pay-off matrix, the minimum value in each row represents the
minimum gain for player A. Player A will select the strategy that gives him
the maximum gain among the row minimum values. The selection of
strategy by player A is based on maximin principle. Similarly, the same
pay-off is a loss for player B. The maximum value in each column
represents the maximum loss for Player B. Player B will select the strategy
that gives him the minimum loss among the column maximum values.

The selection of strategy by player B is based on minimax principle. If the
maximin value is equal to minimax value, the game has a saddle point (i.e.,
equilibrium point). Thus the strategy selected by player A and player B are
optimal
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Example 1: Consider the example to solve the game whose pay-
off matrix is given in the following table as follows:

Player B
] 2
4 M
11 3
Player A 2 {1 6 ).
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« The game Is worked out using minimax procedure. Find the
smallest value in each row and select the largest value of these
values. Next, find the largest value in each column and select
the smallest of these numbers. The procedure is shown in the
following table.

Minimax Procedure
Player B

| ) Row Min

1|l ] @
Player A— N

1 |-l 6 -1

/)
ColMax— [ || 6
\/
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 |f Maximum value in row is equal to the minimum value In
column, then saddle point exists.
Max Min = Min Max
1=1
« Therefore, there is a saddle point.
The strategies are,
Player A plays Strategy Al, (AAl).
Player B plays Strategy B1, (B B1).

« Value of game = 1.
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 Example 2: Check whether the following game Is given in
Table, determinable and fair.

Player B
1 2
(7 0
Player A
20 8
\ J
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Solution: The game is solved using maximin criteria as shown in
Table.

Maximin Procedure

Plaver B
1 2  Row Min
1 (7 0) 0
Playver A
2 Hkh[] 8 0
Column Max 7 3

The game Is strictly neither determinable nor fair.
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« Example 3: Identify the optimal strategies for player A and
player B for the game, given below in Table. Also find if the
game is strictly determinable and fair.

Plaver B
1 ) RowMn
L0 )
Plaver A
)l A
ol 4 ()
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« The game is strictly determinable and fair. The saddle point
exists and the game has a pure strategy. The optimal strategies
are given in the following table.

« Optimal Strategies

| | ]
/ \ f 3
pl p2 q] qa
@) S, md (0) S,
| 0, "l [,
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2X2 Games Problems

« Analytical Method:[No saddle point exists so using
analytical method]

« A 2 x2 payoff matrix where there is no saddle point can be
solved by analytical method.

* Given the matrix

ap a2
dg) g |
Value of the game is

_ddn - )
it )=yt )

V
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* With the coordinates

az —a d1] — &2
K= , B2
(yy+ a) = (g ) (ant a) - (a5 &)

dn =ap d1] — &1

}Fl = ) :1"2 =
(a1 &) - (a0t 1) ('t i) = (a5t 1)

Alternative procedure to solve the strategy

=Find the difference of two numbers in column 1 and enter the
resultant under column 2. Neglect the negative sign if it occurs.
Find the difference of two numbers in column 2 and enter the
resultant under column 1. Neglect the negative sign if it occurs.
*Repeat the same procedure for the two rows
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« Example 1:

Solution:
It is a 2 X 2 matrix and no saddle point exists. We can solve by
analytical method
" |:5 - 1] 1
Lo

A11 Azz — 2z 212 20— 3

Ayt @ony — Cagat as) Q4

W

W=17 5
Sa = (. M) =
Se = (¥1. ¥2) = (375,
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* Example 2:

B
2 -1
A
-1 (
Solution: -
2 - 1
Al )
1 3
_ d11 dz2z — &214d12 _ =1
Can+ azz) — (ayzt a2y 2+ 2
V=-1/4

Sa=(x1. %) =(1/4,3/4)
S = (- y2) = (14, 3 /4)

INSTITUTE OF AERONAUTICAL ENGINEERING



Benefits of flow shop sequencing

« Improved process efficiency.

* Improved machine utilization.

* Increased production rate.

* Reduced total processing time.

* Minimum or Zero Ideal Time.

 Potential increase in profits and decrease in costs.
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Idle time for machine A = total elapsed time - time whenthe
last job Is out of machine A
36-33=3hours.

Idle time for machine B=2+(9-9) + (18 - 18) + (27 - 26) +
(33 - 32) =4 hours.
Example3 :Strong Book Binder has one printing machine,

one binding machine, and the manuscripts of a number of
different books. Processing times are given in the following

table:
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Time In Hours

Printing

Binding

5

2

m o @) w >

6
7
8
4




3X3 Games Problems

« Example 1: Solve the game with the pay-off matrix for player
A as given in table.

Player B
B, B, B;
A 4 0 4
Plaver A A, |1 4 2
A; -1 5 -3

Solution: Find the smallest element in rows and largest
elements in columns as shown in table.
Minimax Procedure
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Player B

B, B, B; Row min
Player A Ay -4 0 4 -4
A 1 4 2 @
A; -1 5 -3 -3

—_—
Columm Max @ 5 4

—

Select the largest element in row and smallest element in column.
Check for the minimax criterion,
Max Min = Min Max
1=1
Therefore, there is a saddle point and it is a pure strategy.
Optimum Strategy:
Player A A, Strategy
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Player B B, Strategy

The value of the game is 1.

Example 2: Solve the game with the payoff matrix given in table
and determine the best strategies for the companies A and B and
find the value of the game for them.

Company B

24 2
CompanyA | 1 -5 A4

25
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Solution: The matrix Is solved using maximin criteria, as shown
In table below.

« Maximin Procedure

Company B
2 3 Row Min

1

2 4 2y @

1 =5 —4 -5

2 6 -2 -2
Column Max @ 0 @

Max Min = Min Max
2=2

Company A

L I O
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« Therefore, there is a saddle point.
Optimum strategy for company A is A, and

Optimum strategy for company B is B, or Bs.
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3X3 Games Problems

Example 1: A and B play a game in which each has three coins, a
5 paisa, 10 paisa and 20 paisa coins. Each player selects a coin
without the knowledge of the other‘s choice. If the sum of the
coins I1s an odd amount, A wins B‘s coins. If the sum is even, B
wins A‘s coins. Find the optimal strategies for the players and the
value of the game.

Solution:

The pay of matrix for the given game is: Assume 5 paisa as the |
strategy, 10 paisa as the Il strategy and the 20 paisa as the IlI

strategy. I :If' Hﬁ
5 I -10 13 25 |

A 10 I 15 =20 =30

200 M| 15 =30 =40
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In the problem it is given when the sum is odd, A wins B‘s coins
and when the sum is even, B will win A‘s coins. Hence the

actual pay of matrix is:

0 I ] =200 -0 -20

Column 5 10 0
Maximum.

The problem has no saddle point. Column I and Il are dominating

the column I11. Hence it is removed from the game. The reduced
matrix is:
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3 I -5 10 -3
i 10 I ] -10 -10
2 I ] =20 =20
Column 5 10
Maximum. .
The problem has no saddle point. Considering A, row Il is
dominated by row II, hence row Il Is eliminated from the

matrix. The reduced matrix Is:
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5 -10 -10

Column 3 10
MAXImum.

No saddle point. By application of formulae:
xl=(a22-a2l1)/(all+a22)-(al2+a2l)or=1-x2=(-10-5)/[-5+ (-
10)] - (10 -5)
=-15/(-15-5)=(-15/-20)=(15/20)=3/4,hencex2=1-(3/4)=1/4
yl=(a22-al2)/(all +a22)-(al2+a2l)or=1-y2=(-10-10)/-20=
20/20 =1 and

y2=0

Value of the game = v = (all a22 —al2 a21) / (all + a22) — (al2 + a21) = (50
—50)/-20=0AnswerisA(3/4,1/4,0),B(1,0,0),v=0.
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 Idle time for machine A = total elapsed time - time when the last job is out
of machine A
36-33=3hours.

 Idle time for machineB=2+(9-9) + (18- 18) + (27 - 26) + (33-32) =4
hours.
Example3 :Strong Book Binder has one printing machine, one binding
machine, and the manuscripts of a number of different books. Processing
times are given in the following table:

Book Time In Hours
Printing Binding
A 5 2
B 1 6
C 9 7
D 3 8
E 10 4
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2Xn Games or mX2 Games Problems

2*n game problem:

When we can reduce the given payoff matrix to 2 x 3 or 3 x 2 we
can get the solution by method of sub games. If we can reduce
the given matrix to 2 X n or m x 2 sizes, then we can get the
solution by graphical method. A game in which one of the
players has two strategies and other player has number of
strategies IS known as 2 x n or m x 2 games. If the game has
saddle point it is solved. If no saddle point, if it can be reduced to
2 X 2 by method of dominance, it can be solved. When no more
reduction by dominance is possible, we can go for Method of Sub
games or Graphical method. We have to identify 2 x 2 sub games
within 2 x n or m x 2 games and solve the game.
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Problem 1:Solve the game whose payoff matrix is:

No saddle point.
The sub games are:
Sub game I:

INSTITUTE OF AERONAUTICAL ENGINEERING




B

Il Row rinirmurm

Column Maximum. ] 3

No saddle point. First let us find the value of the sub games by applying the
formula. Then compare the values of the sub games; which ever is favorable
for the candidate, that sub game is to be selected. Now here as A has only two

strategies and B has three strategies, the game, which is favorable to B, is to
be selected.

Value of the game = vl = (all a22 —al2 a21) / (all + a22) — (al2 + a2l)
=(-4x-4)-3x6)/[(-4+4]-(3+6)=2/17
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Sub game I1:

B
| [ Row minimum
-4
A -4 -1
[
6 -2 )
Column maximum. 6 1

No saddle point, hence value of the game = v, =(a,, 05, - 0y, 05, ) / (0, + 05) - (0 0y

= [ CD1- [ %61/ [+ (-6~ D=- (14/1)
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2Xn Games or mX2 Games Problems

m*2 game problem:

When we can reduce the given payoff matrix to 2 x 3 or 3 x 2
we can get the solution by method of sub games. If we can
reduce the given matrix to 2 x n or m x 2 sizes, then we can get
the solution by graphical method. A game in which one of the
players has two strategies and other player has number of
strategies IS known as 2 x n or m x 2 games. If the game has
saddle point it is solved. If no saddle point, if it can be reduced to
2 X 2 by method of dominance, it can be solved. When no more
reduction by dominance is possible, we can go for Method of Sub
games or Graphical method. We have to identify 2 x 2 sub games
within 2 x n or m x 2 games and solve the game.
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Problem 1:Solve the following 2 x n sub game:

B

—
[—
|- T I Y 2 [ s |
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Solution: The given game iIs m X 2 game.

B

Column maximum. 11 B

No saddle point. Hence A‘s Sub games are:
A‘s sub game No.1.
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I Row minimum

1




I 11 Rowmmmum

il 3 y 3

Column Maximum.

The game has saddle point and hence value of the game is vl = 3 A's sub
game No.2.
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Graphical method for 2Xn Games or mX2 Games

Graphical method: The graphical method is used to solve the games whose payoff
matrix has

e Two rows and n columns (2 x n)
e m rows and two columns (m x 2)

Algorithm for solving 2 x n matrix games:
eDraw two vertical axes 1 unit apart. The two lines are x1=0, x1=1

eTake the points of the first row in the payoff matrix on the vertical line x1=1 and
the points of the second row in the payoff matrix on the vertical line x1= 0.

eThe point aljon axis x1= 1 is then joined to the point a2jon the axis x1= 0 to give
a straight line. Draw ‘n’ straight lines for j=1, 2... n and determine the highest
point of the lower envelope obtained. This will be the maximin point.

eThe two or more lines passing through the maximin point determines the

required 2 x 2 payoff matrix. This in turn gives the optimum solution by making
use of analytical method.
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Example 1: Solve by graphical method

B B B
M3 0
B8 6 1

Solution:
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P (mazimin)

Lower envelope

I
o

S|

B2 B3

A1|:3 1;]4
A2 16 2 9

10 3
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A ag - aan _6-T72
(anta) - (appt o) 5 _qg

V =66/13
S, = (4/13, 9/13)
S =(0, 10/13, 3 /13)
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Solution:

P (maximin)

Lower envelope

Bl B3
Al 4 0 3
A2 -1 2 4
2 5
aj) a2 — azan _ 8-=0

C (antam—(agta) g4
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V = 8/7
SA= (3/7, 417)
SB=(2/7,0,5/7)
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Graphical method for 2Xn Games or mX2 Games

Algorithm for solving m x 2 matrix games:

eDraw two vertical axes 1 unit apart. The two lines are x1=0, x1= 14

eTake the points of the first row in the payoff matrix on the vertical line x1=1

and the points of the second row in the payoff matrix on the vertical line x1=
0.

eThe point aljon axis x1= 1 is then joined to the point a2jon the axis x1=0 to
give a Straight line. Draw ‘n’ straight lines for j=1, 2... n and determine the
lowest point of the upper envelope obtained. This will be the minimax point.

eThe two or more lines passing through the minimax point determines the
required 2 x 2 payoff matrix. This in turn gives the optimum solution by
making use of analytical method.
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Example 1: Solve by graphical method

Bl B2
Al[-2 0]
A2 13 A
A3 |-3 2
Ad|5 4
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Solution:

P (mmnimax)

\{LTI' envelope 5
-1 L1
v

x1 =0 »w x=1
3 _‘l | _1
-2 - -2
L _3 3
-4 - -4
Bl B2
A2 [3 ﬂ 5
A3 -3 21 4
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aap - aap 6-3
(it -(agta) 544

V=3/9=1/3
SA=(0,5/9, 4/9, 0)
SB=(3/9, 6 /9)
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Example 2: Solve by graphical method

B1 B2
Al 1 2]
A2 | 5 4
A3 | -7 9
Ad | -4 -3
A5 |2 1|
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Solution:

P (minitna

=1

L Y I T B s s

W =
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211 822 — #21812 45+ 28

- (ay+ axy) — Cappt &g a 14 + 3

vV =73/17
Sa=(0.16/17, 1/17, 0. 0)
Se = (5/17,12/17)
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UNIT-V
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QUADRATIC APPROXIMATION

« Quadratic approximation Is an extension of linear

approximation, where we are adding one more term, which is
related to the second derivative. The formula fo r the quadratic

approximation of a function f(x) for values of x near x"0" Is :

f(x) = f(zo) + f'(zo)(x — 20) + Jr”{;n]

Compare this to the old formula for the linear approximation
of f.

(1-' — I{}]2 (I =~ I(}:]

f(z) = f(zo) + f(zo)(x — zg) (z = x0).
We got from the linear approximation to the quadratic one by

adding one more term that is related to the second derivatives:

f(z) = f(zo) + f'(xo)(z — o) + fngﬂﬂ (x —20)® (z = z0)

el

i

-

Linear Part Quadratic Part
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QUADRATIC APPROXIMATION

« These are more complicated and so are only used when higher
accuracy Is needed.

« The quadratic approximation also uses the point x=a to
approximate nearby values, but uses a parabola instead of just
a tangent line to do so.

« This gives a closer approximation because the parabola stays
closer to the actual function.
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QUADRATIC APPROXIMATION

L(x) for e* at
a=0.

06 08 1.0
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Algorithm to Convert a CFG into GNF

Algorithm to Convert a CFG into Greibach Normal Form

Step 1 — If the start symbol S occurs on some right side, create a
new start symbol S’ and a new production S’ — S.

Step 2 — Remove Null productions. (Using the Null production
removal algorithm discussed earlier)

Step 3 — Remove unit productions. (Using the Unit production
removal algorithm discussed earlier)

Step 4 — Remove all direct and indirect left-recursion.

Step 5 — Do proper substitutions of productions to convert it into
the proper form of GNF.
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« Example: Convert the following grammar G into Greibach Normal
Form (GNF).

S— X ABB
B — b|SB
X—b
A—a

« Towrite the above grammar G into GNF, we shall follow the
following steps:

« Rewrite G in Chomsky Normal Form (CNF) It is already in CNF.
* Re-label the variables

S with A,

X with A,

A with A,

B with A,
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 After re-labeling the grammar looks like:
Al — A2 A3|A4A4
Ad — b|Al A4
A2 —b
A3 — a

« ldentify all productions which do not conform to any of the
types listed below:

Zi — Aj Xk SU,Ch thatJ S N
A, — ax, suchthatx, eV* andaeT
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Ay > ALAL Identified
A, > A ALD

* Toeliminate A; we will use the substitution rule A; — A,
AslALA, .

» Therefore, we have A, — A, A;A, |AALAD

» The above two productions still do not conform to any of the
types in step 3.

Substituting for A, — b
A, - bA A, [AAALD
« Now we have to remove left recursive production
A, — AAA,
A, — bA;A,|blbA; AZIbZ
Z— A A AAZ
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At this stage our grammar now looks like
Ar — A AglAA,

A, — bA;A,|blbA; A,ZbZ

Z— A A AAZ

A, —Db

A; —a

All rules now conform to one of the types in step 3.

But the grammar is still not in Greibach Normal Form!
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All productions for A,, A;and A, are in GNF
for A, — A, Aj|AA,
Substitute for A, and A, to convert it to GNF
A, — bA; [bA; A,A, [bA, [DAA, Z AbZ A,
forZ — A AL |AAZ
Substitute for A, to convert it to GNF
Z — bA; AL AL DADAS A, Z AlbZ A, IbAA, AL ZIDAZIDA AL Z A,
Z|bZ A,Z 8. Finally the grammar in GNF is
A, — bA;|bA; AA, A, IDAA,Z AbZ A,
A, — bA; A, |blbA; A,Z|bZ
Z — bA; A AL DADA A, Z AllbZ A, IbAA, AL ZIDAZIBAAZ A,
ZIbZ A,Z
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» Convert the following CFG into CNF
¢« S XY |Xn|p

e X—>mX|m

* Y—Xn|o0

 Solution

« Here, S does not appear on the right side of any production
and there are no unit or null productions in the production rule
set. So, we can skip Step 1 to Step 3.

« Step 4

* Now after replacing
* XinS— XY |Xo|p
« with
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* We obtain

« S—mXY|mY | mXo|mo|p.

« And after replacing

 XinY — X, |0 with the right side of
« X—>mX|m

* We obtain

* Y—->mXn|mn|o.

* Two new productions O — o and P — p are added to the production
set and then we came to the final GNF as the following —

e S—>mXY |mY|mXC|mC|p
« X—>mX|m

c Y->mXD|mD]|o

c O—o0

° P —_— p
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TYPES OF NON-LINEAR PROGRAMMING PROBLEMS

Types of Non-Linear Programming Problems:-

* In the preceding two chapters we considered a number of alternative
strategies for exploiting linear approximations to nonlinear problem
functions.

* In general we found that, depending upon the strategy employed,
linearizations would either lead to vertex points of the linearized
constraint sets or generate descent directions for search.

* In either case, some type of line search was required in order to
approach the solution of non-corner-point constrained problems.

« Based upon our experience with unconstrained problems, it is
reasonable to consider the use of higher order approximating
functions since these could lead directly to better approximations of
non-corner-point solutions.
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TYPES OF NON-LINEAR PROGRAMMING PROBLEMS

« For instance, in the single-variable case we found that a quadratic
approximating function could be used to predict the location of
optima lying in the interior of the search interval.

 In the multivariable case, the use of a quadratic approximation (e.g.,
In Newton‘s method) would yield good estimates of unconstrained
minimum points.

* Furthermore, the family of quasiNewton methods allowed us to reap
some of the benefits of a quadratic approximation without explicitly
developing a full second-order approximating function at each
Iteration.

« In fact, in the previous chapter we did to some extent exploit the
acceleration capabilities of quasi-Newton methods by introducing
their use within the direction generation mechanics of the reduced
gradient and gradient projection methods.
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TYPES OF NON-LINEAR PROGRAMMING PROBLEMS

e Thus, much of the discussion of the previous chapters does
point to the considerable algorithmic potential of using higher
order, specifically quadratic, approximating functions for
solving constrained problems.

* In this chapter we examine in some detail various strategies for
using quadratic approximations. We begin by briefly
considering the consequence of direct quadratic
approximation, the analog of the successive LP strategy.

 Then we investigate the use of the second derivatives and
Lagrangian constructions to formulate quadratic programming
(QP) subproblems, the analog to Newton‘s method.

INSTITUTE OF AERONAUTICAL ENGINEERING




TYPES OF NON-LINEAR PROGRAMMING PROBLEMS

« Finally, we discuss the application of quasi-Newton formulas
to generate updates of quadratic terms.

« We will find that the general NLP problem can be solved very
efficiently via a series of sub problems consisting of a
quadratic objective function and linear constraints, provided a
suitable line search Is carried out from the solution of each
such sub problem.

» The resulting class of exterior point algorithms can be viewed
as a natural extension of quasi-Newton methods to constrained
problems.
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 The solution of the general NLP problem is by simply
replacing each nonlinear function by its local quadratic
approximation at the solution estimate x° and solving the
resulting series of approximating sub problems.

g(x; x% = f(x°) + VAT (x — x°) + Hx — 2% VF(x")(x — x)
 If each function f(x) is replaced by its quadratic approximation
then the sub problem becomes one of minimizing a quadratic
function subject to quadratic equality and iInequality
constraints.

« While it seems that this sub problem structure ought to be
amendable to efficient solution, in fact, it is not.

« To be sure, the previously discussed strategies for constrained
problems can solve this sub problem but at no real gain over
direct solution of the original problem.
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« The For a sequential strategy using sub problem solutions to
be effective, the sub problem solutions must be substantially
easier to obtain than the solution of the original problem.

 Recall the problems with a quadratic positive-definite
objective function and linear constraints can be solved in a
finite number of reduced gradient iterations provided that
quasi-Newton or conjugate gradient enhancement of the
reduced gradient direction vector Is used.

. Of course, while the number of iterations is finite, each
Iteration requires a line search, which strictly speaking is itself
not a finite procedure.
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« However, as there are specialized methods for these so-called
QP problems that will obtain a solution in a finite number of
Iterations without line searching, using instead simplex like
pivot operations.

« Given that QP problems can be solved efficiently with truly
finite procedures, it appears to be desirable to formulate our
approximating sub problems as quadratic programs.

« Thus, assuming that the objective function Is twice
continuously differentiable, a plausible solution strategy would
consist of the following steps:

INSTITUTE OF AERONAUTICAL ENGINEERING




QUADRATIC APPROXIMATION

DIRECT SUCCESSIVE QUADRATIC PROGRAMMING
SOLUTION

Given x9, an initial solution estimate, and a suitable method for
solving QP subproblems.

Step 1. Formulate the QP problem
Step 2: Solve the QP problem and

Step 3: Check for convergence. If not converged, repeat step 1.
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Example
Solve the problem

Minimize fix) = 605" + xaf”
Subject to hix) = x5, =2 =10

gx)=x, +x, =120

« from the initial feasible estimate x° = (2, 1) using the direct
successive QP strategy.

« AtX f(x9 =12.25, h(x% =0, and g(x °) = 2 > 0. The derivatives
required to construct the QP sub problemare
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QUADRATIC APPROXIMATION

Vi) = ((6x3" = 27, (=6xpa3® + 73"

vip = (669 (657 - 27
(=6x3* = 2x77) (12x,x37)

Vhix) = (x, x,)7
* Thus, the first QP subproblem will be

4 _23
Minimize (2L, = 4I)d + iﬂn(_ ¥ 2:‘);;

o}

Subject to (1. 2)d = 0
(L1 +2=20
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* Since the first constraint can be used to eliminate one of the
variables, that Is,

d,=-2d,
* the resulting single-variable problem can be solved easily
analytically to give
d® = (=0.92079, 0.4604)
« Thus, the new point becomes

A= + d° = (107921, 1.4604)

at which point
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flxd™ = 568779
hi") = <0.42393
g(x") =0

 Note that the objective function value has Improved
substantially but that the equality constraint is violated.
Suppose we continue with the solution procedure. The next

sub problem is
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6.4595 -4.404 y
-44044 41579

Subject to  (1.4604, 1.07921)d — 0.42393 = 0
(1, 1)d + 1.5396 = 0

Minimize (1.78475, =2.17750)d + {-d’(

The solution is d'"' = (=0.03043, 0.43400), resulting in the new point, with

X = (1.04878, 1.89440)
f(x**) = 5.04401
h(x*") = —-0.013208
e(x*) >0
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* Note that both the objective function value and the equality
constraint violation are reduced. The next two Iterations
produce the results.

x(3) =(1.00108, 1.99313) f£(x(3)) = 5.00457 h(x(3))
4.7 * 10-3

X(4) =(1.00014, 1.99971) f(x(4)) = 5.00003 h(x(4))

6.2 * 10-6

 The exact optimum 1s x* (1, 2) with f(x*) 5.0; a very
accurate solution has been obtained in four iterations. As is
evident from Figure 10.1, the constraint linearizations help to
define the search directions, while the quadratic objective
function approximation effectively fixes the step length along
that direction.
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DIRECT QUADRATIC APPROXIMATION

Example 2:-

« Suppose the objective function and equality constraint of
Example 10.1 are interchanged. Thus, consider the problem

Mimmmze f(x) = x,x,
Subject to  fi(x) = Gxa:' + xax; " =5 =0

gx)=x;, +x:—-1=0

* The optimal solution to this problem is identical to that of
Example 10.1. With the starting point x° = (2, 1) the first sub
problem becomes
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Minimize {1.2}:1’+{.dT(ﬂ l)n’

1 0
Subjectto (&, —4d + L =10
(I, d+2=0

« The solution to this sub problem is d® = (1.7571, 0.24286), at

which both constraints are tight. Thus, a sub problem corner
point Is reached.

« The resulting intermediate solution is
x1=x%+d%=(0.24286, 0.75714)
with
f(x®)=0.18388 h(x1)=9.7619 g(x(1))=0
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QUADRATIC APPROXIMATION

 Although the objective function value decreases, the equality
constraint vio- lation is worse. The next subproblem becomes

Minimize (0.75714. u-z4zsa)d+gdf(':; é)d

Subject to —97.795d, + 14.413d,+ 9.7619 =0
d+d " 0

* The resulting new point is
X(2) =(0.32986, 0.67015)
f(x2)=0.2211 h(x®) =4.1125 g(x®)=0
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* Again, g(x) Is tight. The next few points obtained in this
fashion are

x(3) = (0.45383, 0.54618)
x(4) = (—0.28459, 1.28459)
x(5) = (—0.19183, 1.19183)

« These and all subsequent iterates all lie on the constraint g(x) =
0. Since the objective function decreases toward the origin, all
iterates will be given by the intersection of the local
linearization with g(x) = 0.

 Since the slope of the linearization becomes larger or smaller
than -1 depending upon which side of the constraint _ elbow*
the linearization point lies, the successive iterates simply
follow an oscillatory path up and down the surface g(x)=0.
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QUADRATIC APPROXIMATION

« Evidently the problem arises because the linearization cannot
take into account the sharp curvature of the constraint h(x) =0
In the vicinity of the optimum.

« Since both the constraint and the objective function shapes
serve to define the location of the optimum, both really ought
to be taking into ac-count.
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QUADRATIC APPROXIMATION OF THE LAGRANGIAN
FUNCTION

« The examples of the previous section suggest that it is
desirable to incorporate into the sub problem definition not
only the curvature of the objective function but also that of the
constraints.

 However, based on computational considerations, we also
noted that it is preferable to deal with linearly constrained
rather than quadratically constrained sub problems.

 Fortunately, this can be accomplished by making use of the
Lagrangian function, as will be shown below.
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LAGRANGIAN FUNCTION

* For purposes of this discussion, we first consider only the
equality- constrained problem.

 The extension to inequality constraints will follow In a
straightforward fashion.

Consider the problem
Minimize f(x)
Subjectto  h(x)=0
 Recall that the necessary conditions for a point x* to be a local
minimum are that there exist a multiplier v* such that

QX L(x*, v¥)=Qf* —Vv*T Qh*=0 and h(x*)=0
(Ex-1)
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* Sufficient conditions for x* to be a local minimum are that
conditions (Ex-1) hold and that the Hessian of the Lagrangian

function,
QL(x*, v*) = Qf* — (L)*T Qh*
satisfies
dTQLd > 0
for all d such that (Qh)*Td =0 (Ex-2)

« Glven some point!‘r"f_' = , we construct the following sub
problem expressed in terms of the variables d:
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Minimize Qf(¥)'d + id" QAL(x. v)d (10.3)
Subjectto  A(x) + Qh(x)'d= 0 (10.4)

* We now observe that if d* = 0 Is the solution to the problem
consisting of (10.3) and (10.4), then x must satisfy the
necessary conditions for a local minimum of the original
problem.

 First note that if d* = 0 solves the sub- problem, then form
(10.4) 1t follows that h(x) = 0O; in other words, X is a feasible
point.

* Next, there must exist some v* such that the sub problem func-
tions satisfy the Lagrangian necessary conditions at d* = 0.
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« Thus, since the gradient of the objective function (10.3) with
respect to d at d* = 0 is Qf(x) and that of (10.4) is Qh(x), it
follows that

d{Q:L(x, v*) — v¥(0)}d > 0 for all « such that Qh(x)'d = 0

« Note that the second derivative with respect to d of (10.4) is
zero, since it is a linear function in d.

« Consequently, the above inequality implies that d T Qx2L( ,
v*)d is positive also.

« Therefore, the pair (, v*) satisfies the sufficient conditions for
a local minimum of the original problem.
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This demonstration indicates that the sub problem consisting of
(10.3) and (10.4) has the following very interesting features:

1. If no further corrections can be found, that is, d = O, then the
local minimum of the original problem will have been
obtained.

2. The Lagrange multipliers of the sub problem can be used
conveniently as estimates of the multipliers used to formulate
the next sub problem.

3. For points sufficiently close to the solution of the original
problem the quadratic objective function is likely to be
positive definite, and thus the solution of the QP sub
problem will be well behaved.
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By making use of the sufficient conditions stated for both
equality and In- equality constraints, it is easy to arrive at a QP
subproblem formulation for the general case involving K equality
and J inequality constraints. If we let

L(x, u,v) = f(x) — 3!!#*’3;:(1] - 3!-‘;5;{1‘} (10.6)

then at some point (x, u, v) the subproblem becomes
Minimize ¢(d: x) + Qf(¥)'d + 1d™ Q L(x. 1. v)d (10.7)
Subject to  Ji(d- %) + hy(¥) + Q. ('d =0  k=1.....K (10.8a)

gd:D +g®+ Q@0  j=1,..., J (10.8b)
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« The algorithm retains the basic steps outlined for the direct QP
case.

« Namely, given an initial estimate x 0 as well as u0 and vO
(the latter could be set equal to zero, we formulate the sub
problem [Egs. (10.7), (10.8a), and (10.8b)];

« solve it; set x(t+1) = x(t) + d; check for convergence; and
repeat, using as next estimates of u and v the corresponding
multipliers obtained at the solution of the sub problem.
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Example 3

Repeat the solution of the problem of Example 10.1 using the
Lagrangain QP sub problem with initial estimates x° = (2, )T, u® =
0, and vP= 0. The first sub problembecomes

3 —
Minimize (&, —4h)d + -}d"( - ;)d
-
Subject to (1, 2)d =10

(I, )d+2=0

This 1s exactly the same as the fist sub problem of Example 1,

because with the initial zero estimates of the multipliers of the
constraint terms of the Lagrangian will vanish.
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« The sub problem solution is thus, as before,

d° = (—0.92079, 0.4604)T

« Since the Inequality constraint is loose at this solution, u(1)
must equal zero.

« The equality constraint multiplier can be found from the
solution of the Lagrangian necessity conditions for the sub
problem.
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« Namely,

Va(d® x°) = v Vh(d" x°)

or

i

{(%?-. -4 + -:fT(_ _2'*;)} = u(1, 2)7

« Thus, vih) =2.52723. Finally, the new estimate of the problem
solution will be x@) = x%+ d°, or
x® =(1.07921, 1.4604)T f(x®) = 5.68779 h(x®) = - 0.42393

'I"|H
Lol
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as was the case before.
* The second subproblem requires the gradients

V(") = (1.78475, —2.17750)F Vh(x'") = (1.4604, 1.07921)"

6.45954 —4.40442
26(iD) =
VIe") (—4.40442 4.15790)

V(D) = (? : )
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« The quadratic term is therefore equal to
VL = Vf — v V?h

- v - 2_52.}.23({1 I) _ ( 6.45924 —ﬁ.93165)

1 0 —6.93165  4.15790

* The complete problem becomes

Minimize (1.78475, —2.17750)d+-_,LdT( 6:43924 “6'93‘65)d

-6.93165  4.15790
Subject to  1.4604d, + 1.07921d, = 0.42393

d, +d, + 1539604 = 0
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« The solution is d® = (0.00614, 0.38450). Again, since g (d;
xD )> 0, u® = 0, and the remaining equality constraint
multiplier can be obtained from

or Vg(d™; V) = vT Vh(d™; x)

-0.84081) _ (1.46040
~0.62135 1.07921
v = —0.57574 and ¥ = (1.08535, 1.84490)"

Thus, f(x®) = 509594 and  A(x®) = 2.36 x 10~?
with

« Continuing the calculations for a few more iterations, the
results obtained are
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¥ = (099266, 2.00463)T ¢ = —0.44046

¥ = 499056 A = —1.008 % 102
and

¥ = (0.99990, 2.00017)" v = —().49997

@ = 5.00002 B* = =323 x 103

* It Is Interesting to note that these results are essentially
comparable to those obtained in Example 1 without the
Inclusion of the constraint second derivative terms.

« This might well be expected, because at the optimal solution
(1, 2) the constraint contribution to the second derivative of the

Lagrangian is small:
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, v [ 12 =35\ [ 1\fo 1\_[ 12 -30
"”*_”*T""*‘(—s.s 1.5) (2)([ ﬂ)_(—lﬂ 1.5)

« The basic algorithm illustrated in the preceding example can

be viewed as an extension of Newton‘s method to
accommodate constraints.

« Specifically, If no constraints are present, the subproblem
educes 1Q finimize Vf(®)'d + LdT VX f(X)d
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« Consider the problem of Example 10.2 with the initial estimate
X0 = (2, 2.789) and u = v = 0. The first sub problem will be
given by

Minimize (2.789, 2)d + %n”(? é)d

Subject to  1.4540d, — 1.2927d, = 1.3 x 107

d, +d, +3.789 = (

* solution is d ¢ = (-1.78316, -2.00583). The inequality
constraint Is tight, so both constraint multipliers must be
computed. The result of solving the system is v{) = -0.00343
and u =0.28251.
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\ ) [\

Vg(d"; x°) = v Vh(d"; x") + u Vg(d"; x°)
078317\ _ (-14598) (1
0.21683) ~ Y\ 19.148/ T "\ 1

At the corresponding intermediate point,
x 1=1(0.21683, 0.78317)T

We have
f(x1)=0.1698 h(x®) =13.318 g(x®) =0
* Note that the objective function decreases substantially, but the

equality constraint violation becomes very large. The next sub
problem constructed at x® with multiplier estimates u® and

v is
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0 1 2125.68 —205.95
147 — il o
+ad {( ) v ](—2u5.95 5.4153) u ’iﬂ)}d

Subject to —145.98d, + 19.1484, = —13.318

fil + ﬂtz;-’-"u'

« The sub problem solution is d @ = (+0.10434,-0.10434)T, and
the multipliers are v(2 = -0.02497, u(@ = 0.38822.

« At the new point x® = (0.40183,0.59817)T, the objective
function value is 0.24036 and the constraint value is 2.7352.

* The results of the next iteration,
x®) =(0.74969, 0.25031)T  f(x®)=0.18766 h(x®) =13.416
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U [\

 Indicate that the constraint violation has Increased
considerably while the objective function value has decreased
somewhat.

« Comparing the status at x and x@®), it is evident that the
Iterations show no real improvement.

* In fact, both the objective function value and the equality

constraint violation have increased in proceeding from x@ to
X(3),

« The solution to the problem of unsatisfactory convergence is,
as in the unconstrained case, to perform a line search from the
previous solution estimate in the direction obtained from the
current QP sub problem solution.
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« However, since in the constrained case both objective function
Improvement and reduction of the constraint infeasibilities
need to be taken into account, the line search must be carried
using some type of penalty function.

For instance, as in the case of the SLP strategy advanced by
Palacios-Gomez, an exterior penalty function of the form

Pix, R) = f(x) + R{g [h,(x)])* + E::: [min{0, gﬂ(.r}}lz}
could be used along with some strategy for adjusting the
penalty parameter R. This approach is illustrated in the next
example.
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EXAMPLE

Consider the application of the penalty function line search to
the problem of Example 10.4 beginning with the point x( and
the direction vector d® = (0.34786, -0.34786)T which was
previously used to compute the point x(3) directly.

Suppose we use the penalty function
P(x, R) = f(x) + 10{h(x)? + [min(0, g(x)]* }
and minimize it along the line

n.4ﬂ|33) ( l::-,34735>
+ ¥

vEAT ad® = (ﬂ.sgm? ~0.34786
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* Note that at P 75.05, while at 1, P 1800.0. Therefore, a
minimum ought to be found in the range 0 1.

« Using any convenient line search method, the approximate
minimum value P 68.11 can be found with 0.1. The resulting
point will be

x® = (0.43662, 0.56338)T
with £(x®) = 0.24682 and h(x®) = 2.6053.

» To continue the iterations, updated estimates of the multipliers
are required. Since is no longer the optimum solution of the
previous sub problem, this value of d cannot be used to
estimate the multipliers.

« The only available updated  multiplier  values
are those

associated with d . namely v® = 0.005382 and u®®=0.37291.
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The results of the next four iterations obtained using line searches of
the penalty function after each sub problem solution are shown in
Table 10.1.

As is evident from the table, the use of the line search is successful
In forcing convergence to the optimum from poor initial estimates.

The useof the quadratic approximation to the
Lagrangian was
proposed by Wilson.

Although the idea was pursued by Beale and by Bard and Greeted, it
has not been widely adopted in its direct form.

As with Newton‘s method, the barriers to the adoption of this
approach in engineering applications have been two fold: first the
need to provide second derivative values for all model functions
and, second, the sensitivity solution estimates.
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Table 10.1 Results for Example 10.5

Iteration X, x, f h U
3 0.43662 0.56338 0.24682 2.6035 —0.005382
4 0.48569 0.56825 0.27599 2.5372 —0.3584
5 1.07687 1.8666 2.0101 0.07108 —0.8044
i] 0.96637 1.8652 1.8025 0.10589 —1.6435
7 0.99752 1.99503 1.9901 0.00498 —=1.9755
x 1.0 2.0 2.0 0.0 -2.0
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relevance to defining a good search direction. (For instance,
Table 10.1, v® = -5.38 x 103, while v* = -2.)

Thus, during the initial block of iterations, the considerable
computational burden of evaluating all second derivatives may
be entirely wasted.

A further untidy feature of the above algorithm involves the
strategies required to adjust the penalty parameter of the line
search penalty function.

First, a good initial estimate of the parameter must somehow
be supplied; second, to guarantee convergence, the penalty
parameter must in principle be increased to large values.
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Variable metric methods for Constrained optimization:-

« The desirable improved convergence rate of Newton‘s method
could be approached by using suitable update formulas to
approximate the matrix of second derivatives.

« Thus, with the wisdom of hindsight, it is not surprising that, as
first shown by Garcia Palomares and Mangasarian, similar
constructions can be applied to approximate the quadratic
portion of our Lagrangian sub problems.

« The idea of approximating using quasi-Newton update
formulas that only require differences of gradients of the

Lagrangian function was further developed by Han and
Powell.
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« The basic variable metric strategy proceeds as follows.
Constrained Variable Metric Method:-

« Given initial estimates x 2, u® vPand a symmetric positive-definite
matrix HC.

Step 1: Solve the problem

Minimize Vf(x'")'d + 1d"H"d
Subject to  h,(x®) + Vh,(xd =0 k=1,..., K
._E'J,{Im} + Fg;{.t"”]"‘d = () J =1..... g
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« Step 2: Select the step size along d® and set x(t*+1) = x® + d ©,
« Step 3: Check for convergence.

« Step 4: Update H® using the gradient difference in such a way

that H®*1 remains positive definite.

'E L{,]_“-I-“i I'.i'”+”+ U“+“] — T L{I"JI-. H”-I-“'., LI'“'"”}
« The key choices in the above procedure involve the update
formula for H(t) and the manner of selecting. Han considered

the use of several well known update formulas, particularly
DFP.
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* Here it is also showed that if the initial point is sufficiently
close, then convergence will be achieved at a superlinear rate
without a step-size procedure or line search by setting = 1.

« However, to assure convergence from arbitrary points, a line
search is required.

 Specifically, Han recommends the use of the penalty function

K r)
P(x, R) = f(x) + R{;.E. | (x)] = 2, min[0, gﬁﬂ]}
= j=1

to select a* so that

P(x(a*)) = min P(x" + a d", R)

(== a=E b
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« where R and are suitably selected positive numbers.

« Powell, on the other hand, suggests the use of the BFGS
formula together with a cons +\ﬁltlv(ir‘\t?ﬁheck that ensures that
H® remains positive definite."Thus, if

and
}, — FJL{..IJ::*-”, H“.‘-”, Hﬂ'-l‘-ll'] _ ‘:]L{.IJ:”, Hl.r+]'lnulf+l'|-]

* Then define

1 if zTy = 0.2;TH";
=1 08:"H"; . (10.9)
T, - ET}' otherwise
* and calculate
w= 6y + (1l — H"z (10.10)

INSTITUTE OF AERONAUTICAL ENGINEERING



ONSTRAINED VARIABLE METRIC METHOD

 Finally, this value of w is used in the BFGS updating formula,

H'”;E (£ l"l-"H-'T

ot e (10.11)

Hi+1 = Hiv —

« Note that the numerical value 0.2 is selected empirically and
that the normal BFGS update is usually stated in terms of y
rather than w.

« On the basis of empirical testing, Powell proposed that the
step-size procedure be caLried out using the penalty function

P(x, . ) = f(x) + 2wl ()] = > o, min(0, g(x))  (10.12)

k=1 j=1
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CONSTRAINED VARIABLE METRIC METHOD

- where for the first iteration # = vl o = luf
 and for all subsequent iterations t

i —

py’ = max{|v’], (™" + D) (10.13)
ol = max{[u{"|, Ha{"*" + |u"])} (10.14)

I

« The line search could be carried out by selecting the largest
value of , 0 oo ﬁ;’\l ﬁyﬁgthat (10.15)

« However, Powell prefers the use of quadratic interpolation to
generate a sequence of values of k until the more conservative
condition is met.
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CONSTRAINED VARIABLE METRIC METHOD

dP
Pix(e,)) = P(x(0)) + D.lakﬁm{ﬂ}] (10.16)

* It Is Interesting to note, however, that examples have been
found for which the use of Powell‘s heuristics can lead to
failure to converge.

* Further refinements of the step-size procedure have been
reported, but these details are beyond the scope of the present
treatment.

« We illustrate the use of a variant of the constrained variable
metric (CVM) method using update (10.11), penalty function
(10.12), and a simple quadratic interpolation-based step-size
procedure.
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Variable metric methods for Constrained optimization:-
Example

Solve the problem
Minimize f(x) = 6x,x3" + xx7*

Subject to  h{x) = xx, =2 =0

gx)=x,+x,—-1=0

using the CVM method with initial metric HO = 1.

At the initial point (2, 1), the function gradients are
Vi=C@FL-4" Vh=(,2" Vg=(,1)
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VARIABLE METRIC METHODS FOR CONSTRAINED

« Therefore, the first sub problem will take the form
Minimize (&, —4)d + 1d"'1d

Subject to (1, 2)d = ()
(1, 1dd+2=0

* It Is easy to show that the problem solution lies at the
Intersection of the two constraints. Thus, d = (-4, 2)T, and the
multipliers at this point are solutions of the system

(3)+ (3} =) + (1)
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VARIABLE METRIC METHODS FOR CONSTRAINED

or v = — 48 () = 53
 For the first iteration, we use the penalty parameters

p=|=% and o'V = |
« The penalty function (10.12) thus take the form
P=6xx;"+ xx072 + &y x, — 2| — 2 min(0, x, + x, — 1)
« \We now conduct a one-parameter search of P on the line

x=(2,1)7+ & (—4,2)" Ata=0,P0)= 12.25.
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ARIABLE METRIC METHODS FOR CONSTRAINED

« Suppose we conduct a bracketing search with 4 = 0.1
Then P(0 +0.1) = 9.38875 and p(0.1 + 2(0.1)) = 13.78
 Clearly, the minimum on the line has been bounded.

 Using quadratic interpolation on the three trial points of « =0,
0.1, 0.3, we obtain «dash =0.1348 with P( « ) =9.1702. Since
this Is a reasonable improvement over P(0), the search Is

terminated with this value of «The new point is
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CONSTRAINED VARIABLE METRIC METHOD

* The new point Is
X1 =(2,1)T+(0.1348)(-4, 2) = (1.46051, 1.26974)

« We now must proceed to update the matrix H. Following
Powell, we calculate

z = x(M - x0(-0.53949, 0.26974)T

- 3)- (9060

4

3.91022 1.26974
V L(x™, uh, p'y = ( ) - (_ﬁ)( ) _ E
| ~4.96650 4

(526218)
4.81563
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CONSTRAINED VARIABLE METRIC METHOD

 Note that both gradients are calculated using the same
multiplier values u(1) ,v(1). By definition,,

y = V. L(x'") — V_L(x") = (1.26228, 6.81563)"
Therefore, # = 1 and w = y. Using (10.11), the update H" is

'.'T ,"T
po =y - & . 0

Il ZTy

_ (1 0\ _ _i[—0.53949 _
= (0 1) (0.3638) ( +0_26974)( 0.53949, 0.26974)

1.26228
1.26228

1.57656 7.83267
7.83267 40.9324

+ (1.15749)"( )( 1.26228, 1.26228)
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CONSTRAINED VARIABLE METRIC METHOD

« Note that H® is positive definite.

« This completes on iteration. We will carry out the second in
abbreviated form only.

The sub problem at x(1) is

Minimize (3.91022, —4.96650)d + }d*(l'57656 7'83267)d

7.83267 40.9324
Subject to  (1.26974, 1.46051)d — 0.14552 = 0
d, +d, + 173026 = 0

The solution of the quadratic program is

d® = ( -0.28911, 0.35098)
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CONSTRAINED VARIABLE METRIC METHOD

« At this solution, the inequality is loose, and hence u®®? = 0. The
other multiplier value is v =4.8857.

« The penalty function multipliers are updated using (10.13) and

(10.14): §® = max(|4,835‘?|_ 1_'5 N 4.3557

) = 8.19254

2 +0

_+...
g? = max(ﬂ]l. =

> ) = 6.625

* The penalty function now becomes

P(x(a)) = f(x) + 8.19284x,x, — 2| — 6.625 min(0, x, + x, —1)
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CONSTRAINED VARIABLE METRIC METHOD

 where

xa) = XV + adV D=a=1

At a =0, P(0) = 8.68896, and the minimum occurs at « = 1, P(1) = 6.34906.
The new point 18

X = (1.17141, 1.62073)
with

f®) =55177  and  h(x®) = -0.10147
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CONSTRAINED VARIABLE METRIC METHOD

« The iterations continue with an update of H® . The details will
not be elaborated since they are repetitious. The results of the
next four iterations are summarized below.

Iteration X, x> f h v
3 1.14602 1.74619  5.2674 0.001271 -0.13036
4 1.04158 1.90479  5.03668 —0.01603 —0.17090
5 0.99886 1.99828  5.00200  —0.003994 —-0.45151
6 1.00007 1.99986 5.00000 -19x 10 -0.50128

* Recall that in Example 10.3, in which analytical second
derivatives were used to formulate the QP sub problem,
comparable solution accuracy was attained in four iterations.
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CONSTRAINED VARIABLE METRIC METHOD

« Thus, the quasi-Newton result obtained using only first
derivatives Is quite satisfactory, especially in view of the fact
that the line searches were all carried out only approximately.

« |t should be reemphasized that the available convergence
results (super linear rate) [6, 11] assume that the penalty
function parameters remain unchanged and that exact line
searches are used.

« Powell‘s modifications (10.13) and (10.14) and the use of
approximate searches thus amount to useful heuristics justified
solely by numerical experimentation.

 Finally, it is noteworthy that an alternative formulation of the
QP sub problem has been reported by Biggs as early as 1972.
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CONSTRAINED VARIABLE METRIC METHOD

« The primary differences of that approach lie in the use of an
active constraint strategy to select the inequality constraints
that are linearized and the fact that the quadratic
approximation appearing in the sub problem is that of a
penalty function.

* In view of the overall similarity of that approach to the
Lagrangian-based construction, we offer no elaboration here,
but instead invite the interested reader to study the recent
exposition of this approach offered Iin reference 13 and the
references cited therein.
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