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Operations Research 

 
• Operations Research is an Art and Science 

 
• It had its early roots in World War II and is flourishing in 

business and industry with the aid of computer 

 
• Primary applications areas of Operations Research include 

forecasting, production scheduling, inventory control, capital 

budgeting, and transportation. 
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What is Operations Research? 
 

Operations 

• The activities carried out in an organization. 

 
Research 

 
• The process of observation and testing characterized by the 

scientific method. Situation, problem statement, model 

construction, validation, experimentation, candidate solutions. 

• Operations Research is a quantitative approach to decision 
making based on the scientific method of problem solving. 
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• Operations Research is the scientific approach to execute 

decision making, which consists of: 

 
– The art of mathematical modeling of complex situations 

 
– The science of the development of solution techniques 

used to solve these models 

 
– The ability to effectively communicate the results to the 

decision maker 
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What do We do 
 

1. OR professionals aim to provide rational bases for decision 

making by seeking to understand and structure complex 

situations and to use this understanding to predict system 

behavior and improve system performance. 

2. Much of this work is done using analytical and numerical 

techniques to develop and manipulate mathematical and 

computer models of organizational systems composed of 

people, machines, and procedures. 
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Terminology 

• The British/Europeans refer to ―Operational Research", the 

Americans to ―Operations Research" - but both are often 

shortened to just "OR". 

 
• Another term used for this field is ―Management Science" 

("MS"). In U.S. OR and MS are combined together to form 

"OR/MS" or "ORMS". 

 
• Yet other terms sometimes used are ―Industrial Engineering" 

("IE") and ―Decision Science" ("DS"). 
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History of OR 

• OR is a relatively new discipline. 

 
• 70 years ago it would have been possible to study 

mathematics, physics or engineering at university it would not 

have been possible to study OR. 

 
• It was really only in the late 1930's that operationas research 

began in a systematic way. 
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Features/Characteristics of OR 

 
• Decision-Making 

• Scientific Approach 

• Inter-Disciplinary Team Approach 

• System Approach 

• Use of Computers 

• Objectives 

• Human Factors 
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Scope of OR 

 
The scope of OR is not only confined to any specific agency 
like defense services but today it is widely used in all 
industrial organizations. 

 
It can be used to find the best solution to any problem be it 
simple or complex. It is useful in every field of human 
activities. Thus, it attempts to resolve the conflicts of interest 
among the components of organization in a way that is best for 
the organization as a whole. 
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Limitations Of OR 

 
• Magnitude of Computation 

• Non-Quantifiable Factors 

• Distance between User and Analyst 

• Time and Money Costs 

• Implementation 
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Model 
6 verific ation and 

validation 

 

Yes 

Experimental design 
7 

Coding 

5 

Data analysis 

4 

Data collection 
3 

Model building 

2 

Pr oblem formulation 
1 

8 

Analysis of results 

Steps in OR Study 
 
 
 
 
 
 
 
 
 

  

No 
Fine-tune 

model 
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What you Should Know about OR 

 
• How decision-making problems are characterized 

• OR terminology 

• What a model is and how to assess its value 

• How to go from a conceptual problem to a quantitative 

solution 
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Simplex Method 
 

• Simplex: a linear-programming algorithm that can solve 
problems having more than two decision variables. 

•  The simplex technique involves generating a series of 
solutions in tabular form, called tableaus. By inspecting the 
bottom row of each tableau, one can immediately tell if it 
represents the optimal solution. Each tableau corresponds to a 
corner point of the feasible solution space. The first tableau 
corresponds to the origin. Subsequent tableaus are developed 
by shifting to an adjacent corner point in the direction that 
yields the highest (smallest) rate of profit (cost). This process 
continues as long as a positive (negative) rate of profit (cost) 
exists. 
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Simplex Algorithm 

The key solution concepts 

• Solution Concept 1: the simplex

method focuses on CPF 

solutions. 

• Solution concept 2: the simplex method is an iterative 

algorithm (a systematic solution procedure that keeps 

repeating a fixed series of steps, called, an iteration, until a 

desired result has been obtained) with the following structure: 
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Simplex algorithm 

 
• Solution concept 3: whenever possible, the initialization of the 

simplex method chooses the origin point (all decision variables 
equal zero) to be the initial CPF solution. 

 
• Solution concept 4: given a CPF solution, it is much quicker 

computationally to gather information about its adjacent CPF 
solutions than about other CPF solutions. Therefore, each time 
the simplex method performs an iteration to move from the 
current CPF solution to a better one, it always chooses a CPF 
solution that is adjacent to the current one. 
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• Solution concept 5: After the current CPF solution is 

identified, the simplex method examines each of the edges of 

the feasible region that emanate from this CPF solution. Each 

of these edges leads to an adjacent CPF solution at the other 

end, but the simplex method doesn‘t even take the time to 

solve for the adjacent CPF solution. Instead it simply identifies 

the rate of improvement in Z that would be obtained by 

moving along the edge. And then chooses to move along the 

one with largest positive rate of improvement. 
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• Solution concept 6: A positive rate of improvement in Z 

implies that the adjacent CPF solution is better than the current 

one, whereas a negative rate of improvement in Z implies that 

the adjacent CPF solution is worse. Therefore, the optimality 

test consists simply of checking whether any of the edges give 

a positive rate of improvement in Z. if none do, then the 

current CPF solution is optimal. 
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Simplex method in tabular form 
 

2. Test for optimality: 

Case 1: Maximization problem 

the current BF solution is optimal if every coefficient in the 

objective function row is nonnegative 

Case 2: Minimization problem 

the current BF solution is optimal if every coefficient in the 

objective function row is no positive. 
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3. Iteration 

Step 1: determine the entering basic variable by selecting the 

variable (automatically a non basic variable) with the most 

negative value (in case of maximization) or with the most 

positive (in case of minimization) in the last row (Z-row). Put 

a box around the column below this variable, and call it the 

―pivot column‖ 
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Introduction 
 

 

• A sequence is the order in which the jobs are processed. 

Sequence problems arise when we are concerned with 

situations where there is a choice in which a number of tasks 

can be performed. A sequencing problem could involve: 

 
• Jobs in a manufacturing plant. 

• Aircraft waiting for landing and clearance. 

• Maintenance scheduling in a factory. 

• Programmes to be run on a computer. 

• Customers in a bank & so-on 
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Terms used: 
 
 

 

• Job : The jobs or items or customers or orders are the primary 

stimulus for sequencing. There should be a certain number of 

jobs say ‗n‘ to be processed or sequenced. 

• Number of Machines : A machine is characterized by a 

certain processing capability or facilities through which a job 

must pass before it is completed in the shop. It may not be 

necessarily a mechanical device. Even human being assigned 

jobs may be taken as machines. There must be certain number 

of machines say ‗k‘ to be used for processing the jobs. 

• Processing Time : Every operation requires certain time at 

each of machine. If the time is certain then the determination 

of schedule is easy. When the processing times are uncertain 

then the schedule is complex. 
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Terms used: 
 

• Total Elapsed Time : It is the time between starting the first 

job and completing the last one. 

 
• Idle time : It is the time the machine remains idle during the 

total elapsed time. 

 
• Technological order : Different jobs may have different 

technological order. It refers to the order in which various 

machines are required for completing the jobs. 
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Types of sequencing problems: 
 
 

• There can be many types of sequencing problems which are as 

follows: 

• Problem with ‗n‘ jobs through one machine. 

• Problem with ‗n‘ jobs through two machines. 

• Problem with ‗n‘ jobs through three machines. 

• Here the objective is to find out the optimum sequence of the 

jobs to be processed and starting and finishing time of various 

jobs through all the machines. 

• No passing rule: it implies that passing is not allowed i.e. the 

same order of jobs is maintained over each machine 

• Static arrival pattern. If all the jobs arrive simultaneously. 

• Dynamic arrival pattern. Where the jobs arrive continuously. 
 
 

 

25 



Basic Assumptions: 
 

 

Following are the basic assumptions underlying a sequencing 

problem: 

• No machine can process more than one job at a time. 

• The processing times on different machines are independent of 

the order in which they are processed. 

• The time involved in moving a job from one machine to 

another is negligibly small. 

• Each job once started on a machine is to be performed up to 

completion on that machine. 

• All machines are of different types. 

• All jobs are completely known and are ready for processing. 

• A job is processed as soon as possible but only in the order 

specified. 
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n jobs through two machines 

 
• Let there be ‗n‘ jobs each of which is to be processed through 

two machines say A & B, in the order AB. That is each job will 

go to machine A first and then to B in other words passing off 

is not allowed. 

•  All ‗n‘ jobs are to be processed on A without any idle time. 

On the other hand the machine B is subject to its remaining 

idle at various stages. 

• Let A1 A2………….An & B1 B2……..Bn be the expected 

processing time of n jobs on these two machines. 
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Steps for n jobs through two machines: 

• Step 1: Select the smallest processing time occurring in list Ai 

or Bi, if there is a tie select either of the smallest processing 

time. 

• Step 2: If the smallest time is on machine A, then place it at 

first place if it is for the B machine place the corresponding 

job at last. Cross off that job. 

• Step 3: If there is a tie for minimum time on both the 

machines then select machine A first & machine B last and if 

there is tie for minimum on machine A (same machine) then 

select any one of these jobs first and if there is tie for 

minimum on machine B among and select any of these job in 

the last. 
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• Step 4: Repeat step 2 & 3 to the reduced set of processing times 

obtained by deleting the processing time for both the machines 

corresponding to the jobs already assigned 

• Step 5: Continue the process placing the job next to the last and so 

on till all jobs have been placed and it is called optimum sequence. 

• Step 6: after finding the optimum sequence we

can find the 

followings 

• Total elapsed time = Total time between starting the first job of the 

optimum sequence on machine A and completing the last job on 

machine B. 

•  Idle time in machine A = Time when the last job in the optimum 

sequence is completed on Machine B – Time when the last job in the 

optimum sequence is completed on Machine A. 

 

 



29 



Problem: 

 
• In a factory, there are six jobs to process, each of which should 

go to machines A & B in the order AB. The processing timings 

in minutes are given, determine the optimal sequencing & total 

elapsed time. 
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Solution: 

• Step 1: the least of all the times given in for job 6 in machine 

B. so perform job 6 in the end. It is last in the sequences. Now 

delete this job from the given data. 

• Step 2: Of the remaining timings now the minimum is for job 

3 on machine A. so do the job . Now delete this job 3 also. 

• Step 3: Now the smallest time is 3 minutes for job first on 

machine B. thus perform job 1 at the second last before job 6. 
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n jobs through two machines 

• Example 2:Suppose we have five jobs, each of which has to be 

processed on two machines A & B in the order AB. Processing 

times are given in the following table: 
 
 

Job Machine A Machine B 

1 6 3 

2 2 7 

3 10 8 

4 4 9 

5 11 5 

 

Determine an order in which these jobs should be processed so 

as to minimize the total processing time. 
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Solution: 

The minimum time in the above table is 2, which corresponds to 

job 2 on machine A. 
 

 
2 

    

Now we eliminate job 2 from further consideration. The reduced 

set of processing times are as follows: 
 

 

 

Job Machine A Machine B 

1 6 3 

3 10 8 

4 4 9 

5 11 5 

 
 

33 



 
 

 

The minimum time is 3 for job 1 on machine B. Therefore, this job 

would be done in last. The allocation of jobs till this stage would be 
 

 
2 

    
1 

 

 

 

After deletion of job 1, the reduced set of processing times are as 

follows: 
 

 

 

Job Machine A Machine B 

3 10 8 

4 4 9 

5 11 5 
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Similarly, by repeating the above steps, the optimal sequence is as 

follows: 
 

2 
 

4 
 

3 
 

5 
 

1 

Once the optimal sequence is obtained, the minimum elapsed time 

may be calculated as follows: 
 

 

Job Machine A Machine B 

Time in Time out Time in Time out 

2 0 2 2 9 

4 2 6 9 18 

3 6 16 18 26 

5 16 27 27 32 

1 27 33 33 36 

 

35 



 
 
 
 
 
 
 

 Idle time for machine A 

= total elapsed time - time when the last job is out of machine A 

= 36-33=3hours. 

 Idle time for machine B = 2 + (9 - 9) + (18 - 18) + (27 - 26) + (33 

- 32) = 4 hours. 
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Example3 :Strong Book Binder has one printing machine, one 

binding machine, and the manuscripts of a number of different 

books. Processing times are given in the following table: 
Book Time In Hours 

Printing Binding 

A 5 2 

B 1 6 

C 9 7 

D 3 8 

E 10 4 

 

We wish to determine the order in which books should be 

processed on the machines, in order to minimize the total time 

required. 
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Solution. 

The minimum time in the above table is 1, which corresponds to 

the book B on printing machine. 
 

B     

Now book B is eliminated. The reduced set of processing times is 

as follows: 

Book Time In Hours 

Printing Binding 

A 5 2 

C 9 7 

D 3 8 

E 10 4 

38 



 

The minimum time is 2 for book A on binding machine. 

Therefore, this job should be done in last. The allocation of jobs 

till this stage is: 

B    A 

The reduced set of processing times is as follows: 
 

 

 
 

Book Time In Hours 

Printing Binding 

C 9 7 

D 3 8 

E 10 4 
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• Similarly, by repeating the above steps, the optimal sequence 

is as follows 

 

 
Once the optimal sequence is obtained, the minimum elapsed 

time may be calculated as follows: 
 

 

Book Printing Binding 

Time in Time out Time in Time out 

B 0 1 1 7 

D 1 4 7 15 

C 4 13 15 22 

E 13 23 23 27 

A 23 28 28 30 
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B 
 

D 
 

C 
 

E 
 

A 

 



 
 
 

• Idle time for printing process = total elapsed time - time when 

the    last    job     is     out     of     machine     A  30-

28=2hours. 

 
• Idle time for binding process = 1 + (7 - 7) + (15 - 15) + (23 - 

22) + (28 - 27) = 3 hours 
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UNIT-III 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

42 



n jobs through three machines 

Processing n jobs on 3 Machines: 

• There is no solution available for the general sequencing 

problems of n jobs through 3 machines. However we do have 

a method under the circumstance that no passing of jobs is 

permissible and if either or both the following conditions are 

satisfied. 

• 1)The minimum time on machine A is greater than or equal to 

the maximum time on machine B. 

• 2)The minimum time on machine C is greater than or equal to 

the maximum time on machine B 

• Or both are satisfied that the following method can be applied 
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Method of Procedure: 

• Step1: First of all, the given problem is replaced with an 

equivalent problem involving n jobs and 2 fictitious machines 

G and H .define the corresponding processing times Gi and Hi 

by 

• Gi=AI+BI 

• Hi=Bi+Ci 

• Step2: to the problem obtained step1 above ,the method for 

processing n jobs through 2 machines is applied .The optimal 

sequence resulting this shall also be optimal for the given 

problem. 
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Example 1: There are five jobs which must go through these 
machines A,B and C the order ABC .Processing times of the 
jobs on different machines given below. 

 

Jobs A  B C 

1 7 5  6 

2 8 5  8 

3 6 4  7 

4 5 2  4 

5 6 1  3 

• 

• Determine a sequence for 5 jobs which will minimize elapsed 
time(T) . 
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Solution: according to given information 

 
Min.Ai=5 

Max.Bi=5 

Min.Ci=3 

Here since Min.Ai=Max.Ci, the first of the conditions is 
satisfied. 

We shall now determines Gi and Hi and from them find the 
optimal sequence. 

In accordance with the rules for determining optimal sequence in 
respect of n jobs processi ng on 2 machines , the sequence for 
above shall be: 

3 2 1 4 5 
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Total elapsed time (T) =40 hours. 
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n jobs through three machines 
Example 2: The MDH Masala company has to process five items 
on three machines:- A, B & C. Processing times are given in the 
following table: 

 
 
 
 
 
 

Find the sequence that minimizes the total elapsed time. 

Solution: 

Here, Min. (Ai) = 3, Max. (Bi) = 6 and Min. (Ci) = 6. Since the 

condition of Max. (Bi) ≤ Min. (Ci) is satisfied, the problem can 

be solved by the above procedure. The processing times for the 
new problem are given below. 

48 

Item Ai Bi Ci 

1 4 4 6 

2 9 5 9 

3 8 3 11 

4 6 2 8 

5 3 6 7 

 



 
 
 
 

Item Gi = Ai + Bi Hi = Bi + Ci 

1 8 10 

2 14 14 

3 11 14 

4 8 10 

5 9 13 

 

The optimal sequence is 
 

 
1 

 
4 

 
5 

 
3 

 
2 
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Item Machine A Machine B Machine C 

 Time in Time out Time in Time out Time in Time out 

1 0 4 4 8 8 14 

4 4 10 10 12 14 22 

5 10 13 13 19 22 29 

3 13 21 21 24 29 40 

2 21 30 30 35 40 49 

 
 

Total elapsed time = 49. 

Idle time for machine A = 49 – 30 = 19 hours. 

Idle time for machine B = 4 + (10 - 8) + (13 - 12) + (21 - 19)+ 

(30 - 24) + (49 - 35) = 29 hours. 

Idle time for machine C = 8 + (14 - 14) + (22 - 22) + (29 - 29)+ 

(40 - 40) = 8 hours. 
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n jobs through three machines 

Example 3: Shahi Export House has to process five items 

through three stages of production, via, cutting, sewing & 

pressing. Processing times are given in the following table: 
 

 
Item 

 

Cutting 

(Ai) 

 

Sewing 

(Bi) 

 

Pressing 

(Ci) 

1 3 3 5 

2 8 4 8 

3 7 2 10 

4 5 1 7 

5 2 5 6 
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Determing an order in which these items should be processed so 

as to minimize the total processing time. 

Solution: 

The processing times for the new problem are given below. 
 

 

 
 

 
Item 

 
Gi = Ai + Bi 

 
Hi = Bi + Ci 

1 6 8 

2 12 12 

3 9 12 

4 6 8 

5 7 11 
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• Thus, the optimal sequence may be formed in any of the two 

ways. 
 

 

1 
 

4 
 

5 
 

3 
 

2 

 

 

 
4 

 
1 

 
5 

 
3 

 
2 

 

 

Item Cutting Sewing Pressing 

  
Time in 

 
Time out 

 
Time in 

 
Time out 

 
Time in 

 
Time out 

1 0 3 3 6 6 11 

4 3 8 8 9 11 18 

5 8 10 10 15 18 24 

3 10 17 17 19 24 34 

2 17 25 25 29 34 42 
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• Total elapsed time = 42 

• Idle  time  for  cutting  process  =  42  –  25  =   17   hours.  

Idle time for sewing process = 3 + (8 - 6) + (10 - 9) + (17 - 

15)+    (25    -    19)    +    (42    -    29)     =     27     hours.  

Idle time for pressing process = 6 + (11 - 11) + (18 - 18) + (24 

- 24)+ (34 - 34) = 6 hours. 
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Processing n jobs through m machines 

• This section focuses on the sequencing problem of processing 

two jobs through m machines. Problems under this category 

can be solved with the help of graphical method. The graphical 

method below is explained with the help of the following 

example. 

• Two jobs are to be performed on five machines A, B, C, D, and 

E. Processing times are given in the following table. 
 

 

 

 

 
Job 1 

  Machine 

Seque 

nce 

 

: 

 

A 
 

B 
 

C 
 

D 
 

E 

Time : 3 4 2 6 2 

 

 
Job 2 

Seque 

nce 

 

: 

 

B 
 

C 
 

A 
 

D 
 

E 

Time : 5 4 3 2 6 
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Use graphical method to obtain the total minimum elapsed time. 

Solution: 

Steps 

Mark the processing times of job 1 & job 2 on X-axis & Y-axis 

respectively. 

Draw the rectangular blocks by pairing the same machines as 

shown in the following figure. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

56 



 
 
 
 

• Starting from origin O, move through the 450 line until a point 

marked finish is obtained. 

• The elapsed time can be calculated by adding the idle time for 

either job to the processing time for that job. 

• Idle time for job 1 is 5 hours. 

• Elapsed time = processing time for job 1+Idle tome of job 1 

= (3+4+2+6+2)+5=22 hours. 

• Likewise idle time of job 2 is 2 hours. 

• Elapsed time =processing time of job 2+Idle time of job 2 

= (5+4+3+2+6)+2=22 hours. 
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• Example 2:There are 4 job ABCD are required to be processed 
on four machine M1, M2,M3, M4 in that order. Determine 
optimal sequence and total elapsed time. 

 

 

Job M1 M2 M3 M4 
A 13 8 7 14 
B 12 6 8 19 
C 9 7 5 15 
D 8 5 6 15 

 

Given 
 
 

Job M1 M2 M3 M4 
A 13 8 7 14 
B 12 6 8 19 
C 9 7 5 15 
D 8 5 6 15 
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• Step 1- 1st we have to convert this problem into two machine 
problem. For that we have to check following condition: 

• Min M1 or Min M4 >= Max M2 or Max M3 

• here Min M1=8, Min M4=14, Max M2=7, Max M3=8. 

• therefore 8=8 

• Min M1=Max M3 

• Consolidation or Conversion Table: 
JOB  MACHINES 5  MACHINES 6 

P(M1+M2+M3) NEW TIME P(M2+M3+M4) NEW TIME 
 

A 13+8+7 28 8+7+14 29 

B 12+6+8 26 6+8+19 33 

C 9+7+5 21 7+5+15 27 
D 8+5+6 19 5+6+15 26 
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• New job timing According to Consolidation Table: 
 

Job A B C  D 

New M/c 5 28 26  21 19 

New M/c 6 29 33  27 26 

• Sequencing According to consolidation Table: 

• Consolidated table: 

 
 

• Job sequence: 

Job A B C D 

New M/c 5 
New M/c 6 

 
 

 
JOB 
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28 26 21 19 
29 33 27 26 

 
D 

 
B 

 
A 

 
C 
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• Total Elapsed time= 82 hrs. 

• Idle Time for M/c 1=Total Elapsed Time- Total time of M/c 1 

=82-42= 40hrs. 

• Idle Time for M/c 2=Total Elapsed Time- Total time of M/c 2 

=82-26= 56hrs. 

• Idle Time for M/c 3=Total Elapsed Time- Total time of M/c 3 

= 82-26= 56hrs. 

• Idle Time for M/c 4=Total Elapsed Time- Total time of M/c 4 

=82-63=19hrs. 
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Characteristics of Games 
Introduction to Game Theory: 

Game theory is a kind of decision theory in which one's 

alternative action is determined after taking into consideration 

all possible alternatives available to an opponent playing the 

similar game, rather than just by the possibilities of various 

outcome results. Game theory does not insist on how a game 

must be played but tells the process and principles by which a 

particular action should be chosen. Therefore it is a decision 

theory helpful in competitive conditions. 

• Properties of a Game 

• There are finite number of competitors known as 'players' 

• All the strategies and their impacts are specified to the players 

but player does not know which strategy is to be selected. 
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• A game is played when every player selects one of his 

strategies. The strategies are supposed to be prepared 

simultaneously with an outcome such that no player 

recognizes his opponent's strategy until he chooses his own 

strategy. 

• The figures present as the outcomes of strategies in a matrix 

form are known as 'pay-off matrix'. 

• The game is a blend of the strategies and in certain units which 

finds out the gain or loss. 

• The player playing the game always attempts to select the best 

course of action which results in optimal pay off known as 

'optimal strategy'. 

 
 

64 



Characteristics of Game Theory: 
1. Competitive game: 

• A competitive situation is known as competitive game if it has 

the four properties 

• There are limited number of competitors such that n ≥ 2. In the 

case of n = 2, it is known as two-person game and in case of n 

> 2, it is known as n-person game. 

• Each player has a record of finite number of possible actions. 

• A play is said to takes place when each player selects one of 

his activities. The choices are supposed to be made 

simultaneously i.e. no player knows the selection of the other 

until he has chosen on his own. 

• Every combination of activities finds out an outcome which 

results in a gain of payments to every player, provided each 

player is playing openly to get as much as possible. 
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• 2. Strategy 

• The strategy of a player is the determined rule by which player chooses his 

strategy from his own list during the game. The two types of strategy are 

• Pure strategy 

• Mixed strategy 

• Pure Strategy 

• If a player knows precisely what another player is going to do, a 

deterministic condition is achieved and objective function is to maximize 

the profit. Thus, the pure strategy is a decision rule always to choose a 

particular startegy. 

• Mixed Strategy 

• If a player is guessing as to which action is to be chosen by the other on 

any particular instance, a probabilistic condition is achieved and objective 

function is to maximize the expected profit. Hence the mixed strategy is a 

choice among pure strategies with fixed probabilities. 
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Repeated Game Strategies 

• In repeated games, the chronological nature of the relationship 

permits for the acceptance of strategies that are dependent on 

the actions chosen in previous plays of the game. 

• Most contingent strategies are of the kind called as "trigger" 

strategies. 

• For Example trigger strategies 

•  In prisoners' dilemma: At start, play doesn't confess. If your 

opponent plays Confess, then you need to play Confess in the 

next round. If your opponent plays don't confess, then go for 

doesn't confess in the subsequent round. This is called as the 

"tit for tat" strategy. 

• In the investment game, if you are sender: At start play Send. 

Play Send providing the receiver plays Return. 
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3. Number of persons 

When the number of persons playing is 'n' then the game is 

known as 'n' person game. The person here means an 

individual or a group aims at a particular objective. 

Two-person, zero-sum game 

• A game with just two players (player A and player B) is known 

as 'two-person, zero-sum game', if the losses of one player are 

equal to the gains of the other one so that the sum total of their 

net gains or profits is zero. 

• Two-person, zero-sum games are also known as rectangular 

games as these are generally presented through a payoff matrix 

in a rectangular form. 

4. Number of activities 

The activities can be finite or infinite. 
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5. Payoff 

Payoff is referred to as the quantitative measure of 

satisfaction a person obtains at the end of each play 

6. Payoff matrix 

• Assume the player A has 'm' activities and the player B has 'n' 

activities. Then a payoff matrix can be made by accepting the 

following rules 

• Row designations for every matrix are the activities or actions 

available to player A 

• Column designations for every matrix are the activities or 

actions available to player B 

• Cell entry Vij is the payment to player A in A's payoff matrix 

when A selects the activity i and B selects the activity j. 
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7. Value of the game 

Value of the game is the maximum guaranteed game to player 

A (maximizing player) when both the players utilizes their best 

strategies. It is usually signifies with 'V' and it is unique. 

 

 

 

 

 

 

 

 

 
 

70 



Game Models, Terminology 

Classification of Games: 

Simultaneous vs. Sequential Move Games 

• Games where players select activities simultaneously are 

simultaneous move games. 

- Examples: Sealed-Bid Auctions, Prisoners' Dilemma. 

- Must forecast what your opponent will do at this point, 

finding that your opponent is also doing the same. 

• Games where players select activities in a particular series or 

sequence are sequential move games. 

- Examples: Bargaining/Negotiations, Chess. 

- Must look forward so as to know what action to select now. 

- Many sequential move games have deadlines on moves. 
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One-Shot versus Repeated Games: 

One-shot: play of the game takes place once. 

- Players likely not know much about each another. 

- Example - tipping on vacation 

• Repeated: play of the game is recurring with the same players. 

- Finitely versus Indefinitely repeated games 

- Reputational concerns do matter; opportunities for cooperative 

behavior may emerge. 

Advise: If you plan to follow an aggressive strategy, ask yourself 

whether you are in a one-shot game or in repeated game. If a 

repeated game then think again. 
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• Usually games are divided into: 

• Pure strategy games 

• Mixed strategy games 

 
• The technique for solving these two types changes. By solving 

a game, we require to determine best strategies for both the 

players and also to get the value of the game. Saddle point 

method can be used to solve pure strategy games. 

• The diverse methods for solving a mixed strategy game are 

• Dominance rule 

• Analytical method 

• Graphical method 

• Simplex method 
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• Basic Game Theory Terms: 

 
• Game : Description of the situation includes the rules of 

the game. 

• Players : Decision makers in the game. 

• Payoffs : Expected rewards enjoyed at the end of the 

game. 

• Actions : Possible choices made by the player. 

• Strategies : Specified plan of action for every contingency 

played by other players. 
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Rule for Game theory( with saddle point and without saddle 
point) 

 
 

• Rules for Game theory (with saddle point and without saddle 

point): 

• Rule 1: Look for pure strategy (saddle point) 

• Rule 2:Reduce game by Dominance. 

• If no pure strategies exist,the next step is to eliminate certain 

strategies (row/column) by law of Dominance. 

• Rule 3:Solve for mixed strategy. 
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A mixed strategy can be solved by different solution method, 

such as 

1. Arithmetic method 

2. Algebraic method 

3. Graphical method 

4. Matrix method 

5. Short cut method 
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UNIT-IV 
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2X2 Games Problems 
Pure Strategies (with saddle points): 

• In a zero-sum game, the pure strategies of two players constitute a saddle 
point if the corresponding entry of the payoff matrix is simultaneously a 
maximum of row minima and a minimum of column maxima. This 
decision-making is referred to as the minimax-maximin principle to 
obtain the best possible selection of a strategy for the players. 

• In a pay-off matrix, the minimum value in each row represents the 
minimum gain for player A. Player A will select the strategy that gives him 
the maximum gain among the row minimum values. The selection of 
strategy by player A is based on maximin principle. Similarly, the same 
pay-off is a loss for player B. The maximum value in each column 
represents the maximum loss for Player B. Player B will select the strategy 
that gives him the minimum loss among the column maximum values. 

• The selection of strategy by player B is based on minimax principle. If the 
maximin value is equal to minimax value, the game has a saddle point (i.e., 
equilibrium point). Thus the strategy selected by player A and player B are 
optimal 

 

78 



 

 

Example 1: Consider the example to solve the game whose pay- 

off matrix is given in the following table as follows: 
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• The game is worked out using minimax procedure. Find the 

smallest value in each row and select the largest value of these 

values. Next, find the largest value in each column and select 

the smallest of these numbers. The procedure is shown in the 

following table. 

Minimax Procedure 
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• If Maximum value in row is equal to the minimum value in 

column, then saddle point exists. 

Max Min = Min Max 

1 = 1 

• Therefore, there is a saddle point. 

The strategies are, 

Player A plays Strategy A1, (A A1). 

Player B plays Strategy B1, (B B1). 

• Value of game = 1. 
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• Example 2: Check whether the following game is given in 

Table, determinable and fair. 
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Solution: The game is solved using maximin criteria as shown in 

Table. 

Maximin Procedure 
 

 
The game is strictly neither determinable nor fair. 
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• Example 3: Identify the optimal strategies for player A and 

player B for the game, given below in Table. Also find if the 

game is strictly determinable and fair. 
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• The game is strictly determinable and fair. The saddle point 

exists and the game has a pure strategy. The optimal strategies 

are given in the following table. 

• Optimal Strategies 
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2X2 Games Problems 

• Analytical Method:[No saddle point exists so using 

analytical method] 

• A 2 x2 payoff matrix where there is no saddle point can be 

solved by analytical method. 

• Given the matrix 
 

 

 

 

 

 
 

 

Value of the game is 
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• With the coordinates 
 

 

 

Alternative procedure to solve the strategy 

 Find the difference of two numbers in column 1 and enter the 

resultant under column 2. Neglect the negative sign if it occurs. 

• Find the difference of two numbers in column 2 and enter the 

resultant under column 1. Neglect the negative sign if it occurs. 

• Repeat the same procedure for the two rows 
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• Example 1: 
 

 
Solution: 

It is a 2 x 2 matrix and no saddle point exists. We can solve by 

analytical method 
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• Example 2: 
 
 

 

Solution: 
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Benefits of flow shop sequencing 
 

• Improved process efficiency. 

• Improved machine utilization. 

• Increased production rate. 

• Reduced total processing time. 

• Minimum or Zero Ideal Time. 

• Potential increase in profits and decrease in costs. 
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• Idle time for machine A = total elapsed time - time when the 

last job is out of machine A 

36-33=3hours. 

• Idle time for machine B = 2 + (9 - 9) + (18 - 18) + (27 - 26) + 

(33 - 32) = 4 hours. 

Example3 :Strong Book Binder has one printing machine, 

one binding machine, and the manuscripts of a number of 

different books. Processing times are given in the following 

table: 
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Book Time In Hours 

Printing Binding 

A 5 2 

B 1 6 

C 9 7 

D 3 8 

E 10 4 

 



3X3 Games Problems 
 

• Example 1: Solve the game with the pay-off matrix for player 

A as given in table. 
 

 

 

 

 

 

Solution: Find the smallest element in rows and largest 

elements in columns as shown in table. 

Minimax Procedure 
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Select the largest element in row and smallest element in column. 

Check for the minimax criterion, 

Max Min = Min Max 

1 = 1 

Therefore, there is a saddle point and it is a pure strategy. 

Optimum Strategy: 

Player A A2 Strategy 
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Player B B1 Strategy 
The value of the game is 1. 

Example 2: Solve the game with the payoff matrix given in table 

and determine the best strategies for the companies A and B and 

find the value of the game for them. 
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Solution: The matrix is solved using maximin criteria, as shown 
in table below. 

• Maximin Procedure 
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• Therefore, there is a saddle point. 

Optimum strategy for company A is A1 and 

Optimum strategy for company B is B1 or B3. 
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3X3 Games Problems 

Example 1: A and B play a game in which each has three coins, a 

5 paisa, 10 paisa and 20 paisa coins. Each player selects a coin 

without the knowledge of the other‘s choice. If the sum of the 

coins is an odd amount, A wins B‘s coins. If the sum is even, B 

wins A‘s coins. Find the optimal strategies for the players and the 

value of the game. 

Solution: 

The pay of matrix for the given game is: Assume 5 paisa as the I 

strategy, 10 paisa as the II strategy and the 20 paisa as the III 

strategy. 
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In the problem it is given when the sum is odd, A wins B‘s coins 

and when the sum is even, B will win A‘s coins. Hence the 

actual pay of matrix is: 

 

 

 

 

 

 

 

The problem has no saddle point. Column I and II are dominating 

the column III. Hence it is removed from the game. The reduced 

matrix is: 
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The problem has no saddle point. Considering A, row III is 

dominated by row II, hence row III is eliminated from the 

matrix. The reduced matrix is: 
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No saddle point. By application of formulae: 

x1 = (a22 – a21 ) / (a11 + a22) – (a12 + a21) or = 1 – x2 = (–10 – 5) / [–5 + (– 

10)] – (10 – 5) 

= –15 / (–15 – 5) = (–15 / –20) = (15 / 20) = 3 / 4, hence x2 = 1 – (3 / 4) = 1 / 4 

y1 = (a22 – a12) / (a11 + a22) – (a12 + a21) or = 1 – y2 = (–10 – 10) / –20 = 

20 / 20 = 1 and 

y2 = 0 

Value of the game = v = (a11 a22 – a12 a21) / (a11 + a22) – (a12 + a21) = (50 

– 50) / – 20 = 0 Answer is A ( 3/ 4, 1 / 4, 0), B ( 1, 0, 0) , v = 0. 
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• Idle time for machine A = total elapsed time - time when the last job is out 

of machine A 

36-33=3hours. 

• Idle time for machine B = 2 + (9 - 9) + (18 - 18) + (27 - 26) + (33 - 32) = 4 

hours. 

Example3 :Strong Book Binder has one printing machine, one binding 

machine, and the manuscripts of a number of different books. Processing 

times are given in the following table: 
 

 

Book Time In Hours 

Printing Binding 

A 5 2 

B 1 6 

C 9 7 

D 3 8 

E 10 4 
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2Xn Games or mX2 Games Problems 
 

2*n game problem: 

When we can reduce the given payoff matrix to 2 × 3 or 3 × 2 we 

can get the solution by method of sub games. If we can reduce 

the given matrix to 2 × n or m × 2 sizes, then we can get the 

solution by graphical method. A game in which one of the 

players has two strategies and other player has number of 

strategies is known as 2 × n or m × 2 games. If the game has 

saddle point it is solved. If no saddle point, if it can be reduced to 

2 × 2 by method of dominance, it can be solved. When no more 

reduction by dominance is possible, we can go for Method of Sub 

games or Graphical method. We have to identify 2 × 2 sub games 

within 2 × n or m × 2 games and solve the game. 
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Problem 1:Solve the game whose payoff matrix is: 
 

 
 

 
 

 

 

 

 

No saddle point. 

The sub games are: 

Sub game I: 
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No saddle point. First let us find the value of the sub games by applying the 

formula. Then compare the values of the sub games; which ever is favorable 

for the candidate, that sub game is to be selected. Now here as A has only two 

strategies and B has three strategies, the game, which is favorable to B, is to 

be selected. 

 
Value of the game = v1 = (a11 a22 – a12 a21) / (a11 + a22) – (a12 + a21) 

= (–4 × –4) – (3 × 6) / [(–4 + –4] – (3 + 6) = 2 / 17 
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2Xn Games or mX2 Games Problems 

m*2 game problem: 

When we can reduce the given payoff matrix to 2 × 3 or 3 × 2 

we can get the solution by method of sub games. If we can 

reduce the given matrix to 2 × n or m × 2 sizes, then we can get 

the solution by graphical method. A game in which one of the 

players has two strategies and other player has number of 

strategies is known as 2 × n or m × 2 games. If the game has 

saddle point it is solved. If no saddle point, if it can be reduced to 

2 × 2 by method of dominance, it can be solved. When no more 

reduction by dominance is possible, we can go for Method of Sub 

games or Graphical method. We have to identify 2 × 2 sub games 

within 2 × n or m × 2 games and solve the game. 
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Problem 1:Solve the following 2 × n sub game: 
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Solution: The given game is m × 2 game. 
 

 

No saddle point. Hence A‘s Sub games are: 

A‘s sub game No.1. 
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The game has saddle point and hence value of the game is v1 = 3 A's sub 
game No.2. 
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Graphical method for 2Xn Games or mX2 Games 
 

Graphical method: The graphical method is used to solve the games whose payoff 
matrix has 

 Two rows and n columns (2 x n)

 m rows and two columns (m x 2)

 
Algorithm for solving 2 x n matrix games: 

 Draw two vertical axes 1 unit apart. The two lines are x1= 0, x1= 1

 Take the points of the first row in the payoff matrix on the vertical line x1= 1 and

the points of the second row in the payoff matrix on the vertical line x1= 0. 

 The point a1jon axis x1= 1 is then joined to the point a2jon the axis x1= 0 to give 
a straight line. Draw ‘n’ straight lines for j=1, 2... n and determine the highest 
point of the lower envelope obtained. This will be the maximin point.

 The two or more lines passing through the maximin point determines the 
required 2 x 2 payoff matrix. This in turn gives the optimum solution by making 
use of analytical method.
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Example 1: Solve by graphical method 
 
 

Solution: 
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Solution: 
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V = 8/7 

SA= (3/7, 4 /7) 

SB= (2/7, 0, 5 /7) 
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Graphical method for 2Xn Games or mX2 Games 
 

Algorithm for solving m x 2 matrix games: 

 
 Draw two vertical axes 1 unit apart. The two lines are x1=0, x1= 14

 Take the points of the first row in the payoff matrix on the vertical line x1= 1 
and the points of the second row in the payoff matrix on the vertical line x1= 
0.

 The point a1jon axis x1= 1 is then joined to the point a2jon the axis x1= 0 to 
give a Straight line. Draw ‘n’ straight lines for j=1, 2... n and determine the 
lowest point of the upper envelope obtained. This will be the minimax point.

 The two or more lines passing through the minimax point determines the 
required 2 x 2 payoff matrix. This in turn gives the optimum solution by 
making use of analytical method.
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Example 1: Solve by graphical method 
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Solution: 
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V = 3/9 = 1/3 
SA= (0, 5 /9, 4/9, 0) 
SB= (3/9, 6 /9) 
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Example 2: Solve by graphical method 
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Solution: 
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UNIT-V 
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QUADRATIC APPROXIMATION 
 

 

• Quadratic approximation is an extension of linear 

approximation, where we are adding one more term, which is 

related to the second derivative. The formula fo r the quadratic 

approximation of a function f(x) for values of x near x"0" is : 

 
• Compare this to the old formula for the linear approximation 

of f: 

 
• We got from the linear approximation to the quadratic one by 

adding one more term that is related to the second derivatives: 
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QUADRATIC APPROXIMATION 
 

 

• These are more complicated and so are only used when higher 

accuracy is needed. 

• The quadratic approximation also uses the point x=a to 

approximate nearby values, but uses a parabola instead of just 

a tangent line to do so. 

• This gives a closer approximation because the parabola stays 

closer to the actual function. 
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QUADRATIC APPROXIMATION 
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Algorithm to Convert a CFG into GNF 
 

Algorithm to Convert a CFG into Greibach Normal Form 

 
Step 1 − If the start symbol S occurs on some right side, create a 

new start symbol S’ and a new production S’ → S. 

Step 2 − Remove Null productions. (Using the Null production 

removal algorithm discussed earlier) 

Step 3 − Remove unit productions. (Using the Unit production 

removal algorithm discussed earlier) 

Step 4 − Remove all direct and indirect left-recursion. 

Step 5 − Do proper substitutions of productions to convert it into 

the proper form of GNF. 
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EXAMPLE1 
• Example: Convert the following grammar G into Greibach Normal 

Form (GNF). 

S→ X A|BB 

B → b|SB 

X → b 

A → a 

• To write the above grammar G into GNF, we shall follow the 

following steps: 

• Rewrite G in Chomsky Normal Form (CNF) It is already in CNF. 

• Re-label the variables 

S with A1 

X with A2 

A with A3 

B with A4 
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EXAMPLE1 
 
 

• After re-labeling the grammar looks like: 

A1 → A2 A3|A4A4 

A4 → b|A1 A4 

A2 → b 

A3 → a 

• Identify all productions which do not conform to any of the 

types listed below: 

Ai → Aj xk such that j > I 

Zi → Aj xk such that j ≤ n 

Ai → axk such that xk ∈ V ∗ and a ∈ T 
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EXAMPLE1 
A4 → A1 A4 ........................... identified 

A4 → A1 A4 |b. 

• To eliminate A1 we will use the substitution rule A1 → A2 

A3|A4A4 . 

• Therefore, we have A4 → A2 A3A4 |A4A4 A4|b 

• The above two productions still do not conform to any of the 

types in step 3. 

Substituting for A2 → b 

A4 → bA3 A4  |A4A4A4 |b 

• Now we have to remove left recursive production 

A4 → A4A4 A4 

A4 → bA3 A4 |b|bA3 A4Z|bZ 

Z → A4 A4 |A4A4Z 
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EXAMPLE1 

At this stage our grammar now looks like 

A1 → A2 A3|A4A4 

A4 → bA3 A4 |b|bA3 A4Z|bZ 

Z → A4 A4 |A4A4Z 

A2 → b 

A3 → a 

All rules now conform to one of the types in step 3. 

 
But the grammar is still not in Greibach Normal Form! 
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EXAMPLE1 
All productions for A2 , A3 and A4 are in GNF 

for A1 → A2 A3|A4A4 

Substitute for A2 and A4 to convert it to GNF 

A1 → bA3 |bA3 A4A4 |bA4 |bA3A4 Z A4|bZ A4 

for Z → A4 A4 |A4A4Z 

Substitute for A4 to convert it to GNF 

Z → bA3 A4 A4 |bA4|bA3 A4 Z A4|bZ A4 |bA3A4 A4 Z|bA4Z|bA3 A4Z A4 

Z|bZ A4Z 8. Finally the grammar in GNF is 

A1 → bA3 |bA3 A4A4 |bA4 |bA3A4 Z A4|bZ A4 

A4 → bA3 A4 |b|bA3 A4Z|bZ 

Z → bA3 A4 A4 |bA4|bA3 A4 Z A4|bZ A4 |bA3A4 A4 Z|bA4Z|bA3 A4Z A4 

Z|bZ A4Z 

A2 → b 

A3 → a 
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EXAMPLE2 
• Convert the following CFG into CNF 

• S → XY | Xn | p 

• X → mX | m 

• Y → Xn | o 

• Solution 

• Here, S does not appear on the right side of any production 

and there are no unit or null productions in the production rule 

set. So, we can skip Step 1 to Step 3. 

• Step 4 

• Now after replacing 

• X in S → XY | Xo | p 

• with 

• mX | m 
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• we obtain 

EXAMPLE2 

• S → mXY | mY | mXo | mo | p. 

• And after replacing 

• X in Y → Xn | o with the right side of 

• X → mX | m 

• we obtain 

• Y → mXn | mn | o. 

• Two new productions O → o and P → p are added to the production 

set and then we came to the final GNF as the following − 

• S → mXY | mY | mXC | mC | p 

• X → mX | m 

• Y → mXD | mD | o 

• O → o 

• P → p 
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TYPES OF NON-LINEAR PROGRAMMING PROBLEMS 
 

Types of Non-Linear Programming Problems:- 

• In the preceding two chapters we considered a number of alternative 

strategies for exploiting linear approximations to nonlinear problem 

functions. 

• In general we found that, depending upon the strategy employed, 

linearizations would either lead to vertex points of the linearized 

constraint sets or generate descent directions for search. 

• In either case, some type of line search was required in order to 

approach the solution of non-corner-point constrained problems. 

• Based upon our experience with unconstrained problems, it is 

reasonable to consider the use of higher order approximating 

functions since these could lead directly to better approximations of 

non-corner-point solutions. 
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TYPES OF NON-LINEAR PROGRAMMING PROBLEMS 
 

• For instance, in the single-variable case we found that a quadratic 
approximating function could be used to predict the location of 
optima lying in the interior of the search interval. 

• In the multivariable case, the use of a quadratic approximation (e.g., 
in Newton‘s method) would yield good estimates of unconstrained 
minimum points. 

• Furthermore, the family of quasiNewton methods allowed us to reap 
some of the benefits of a quadratic approximation without explicitly 
developing a full second-order approximating function at each 
iteration. 

• In fact, in the previous chapter we did to some extent exploit the 
acceleration capabilities of quasi-Newton methods by introducing 
their use within the direction generation mechanics of the reduced 
gradient and gradient projection methods. 
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TYPES OF NON-LINEAR PROGRAMMING PROBLEMS 
 

• Thus, much of the discussion of the previous chapters does 

point to the considerable algorithmic potential of using higher 

order, specifically quadratic, approximating functions for 

solving constrained problems. 

• In this chapter we examine in some detail various strategies for 

using quadratic approximations. We begin by briefly 

considering the consequence of direct quadratic 

approximation, the analog of the successive LP strategy. 

• Then we investigate the use of the second derivatives and 

Lagrangian constructions to formulate quadratic programming 

(QP) subproblems, the analog to Newton‘s method. 
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TYPES OF NON-LINEAR PROGRAMMING PROBLEMS 
 

• Finally, we discuss the application of quasi-Newton formulas 

to generate updates of quadratic terms. 

• We will find that the general NLP problem can be solved very 

efficiently via a series of sub problems consisting of a 

quadratic objective function and linear constraints, provided a 

suitable line search is carried out from the solution of each 

such sub problem. 

• The resulting class of exterior point algorithms can be viewed 

as a natural extension of quasi-Newton methods to constrained 

problems. 
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DIRECT QUADRATIC APPROXIMATION 
• The solution of the general NLP problem is by simply 

replacing each nonlinear function by its local quadratic 

approximation at the solution estimate x0 and solving the 

resulting series of approximating sub problems. 

 
• If each function ƒ(x) is replaced by its quadratic approximation 

then the sub problem becomes one of minimizing a quadratic 

function subject to quadratic equality and inequality 

constraints. 

• While it seems that this sub problem structure ought to be 

amendable to efficient solution, in fact, it is not. 

• To be sure, the previously discussed strategies for constrained 

problems can solve this sub problem but at no real gain over 

direct solution of the original problem. 
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QUADRATIC APPROXIMATION 
 
 

• The For a sequential strategy using sub problem solutions to 
be effective, the sub problem solutions must be substantially 
easier to obtain than the solution of the original problem. 

• Recall the problems with a quadratic positive-definite 
objective function and linear constraints can be solved in a 
finite number of reduced gradient iterations provided that 
quasi-Newton or conjugate gradient enhancement of the 
reduced gradient direction vector is used. 

•  Of course, while the number of iterations is finite, each 
iteration requires a line search, which strictly speaking is itself 
not a finite procedure. 
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QUADRATIC APPROXIMATION 
 
 

• However, as there are specialized methods for these so-called 

QP problems that will obtain a solution in a finite number of 

iterations without line searching, using instead simplex like 

pivot operations. 

• Given that QP problems can be solved efficiently with truly 

finite procedures, it appears to be desirable to formulate our 

approximating sub problems as quadratic programs. 

• Thus, assuming that the objective function is twice 

continuously differentiable, a plausible solution strategy would 

consist of the following steps: 
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QUADRATIC APPROXIMATION 
 

 

DIRECT SUCCESSIVE QUADRATIC PROGRAMMING 

SOLUTION 

Given x0, an initial solution estimate, and a suitable method for 

solving QP subproblems. 

 
Step 1: Formulate the QP problem 

Step 2: Solve the QP problem and 

Step 3: Check for convergence. If not converged, repeat step 1. 
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QUADRATIC APPROXIMATION 
 
 

Example 

Solve the problem 
 

• from the initial feasible estimate x0  = (2, 1) using the direct 

successive QP strategy. 

• At x0, ƒ(x 0) = 12.25, h(x0) = 0, and g(x 0) = 2 > 0. The derivatives 

required to construct the QP sub problem are 
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QUADRATIC APPROXIMATION 

• Thus, the first QP subproblem will be 
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QUADRATIC APPROXIMATION 
 
 

• Since the first constraint can be used to eliminate one of the 

variables, that is, 

d1 = - 2d2 

• the resulting single-variable problem can be solved easily 

analytically to give 

 
• Thus, the new point becomes 

 

at which point 
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• Note that the objective function value has improved 
substantially but that the equality constraint is violated. 
Suppose we continue with the solution procedure. The next 
sub problem is 
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QUADRATIC APPROXIMATION 
• Note that both the objective function value and the equality 

constraint violation are reduced. The next two iterations 
produce the results. 

 
x(3) = (1.00108, 1.99313) ƒ(x(3)) = 5.00457 h(x(3)) = - 

4.7 * 10-3 

 
x(4) = (1.00014, 1.99971) ƒ(x(4)) = 5.00003 h(x(4)) = - 

6.2 * 10-6 

• The exact optimum is x* (1, 2) with ƒ(x*) 5.0;  a  very 
accurate solution has been obtained in four iterations. As is 
evident from Figure 10.1, the constraint linearizations help to 
define the search directions, while the quadratic objective 
function approximation effectively fixes the step length along 
that direction. 
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DIRECT QUADRATIC APPROXIMATION 
 

Example 2:- 

• Suppose the objective function and equality constraint of 

Example 10.1 are interchanged. Thus, consider the problem 
 

• The optimal solution to this problem is identical to that of 

Example 10.1. With the starting point x0 = (2, 1) the first sub 

problem becomes 
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QUADRATIC APPROXIMATION 
 
 

 

• The solution to this sub problem is d0 = (1.7571, 0.24286), at 
which both constraints are tight. Thus, a sub problem corner 
point is reached. 

• The resulting intermediate solution is 

x1 = x0 + d0 = (0.24286, 0.75714) 

with 

ƒ(x(1)) = 0.18388 h(x(1)) = 9.7619 g(x(1)) = 0 
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• Although the objective function value decreases, the equality 

constraint vio- lation is worse. The next subproblem becomes 

 

 

 

 

 
• The resulting new point is 

x(2) = (0.32986, 0.67015) 

ƒ(x(2)) = 0.2211 h(x(2)) = 4.1125 g(x(2)) = 0 
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QUADRATIC APPROXIMATION 
 
 

• Again, g(x) is tight. The next few points obtained in this 
fashion are 

x(3) = (0.45383, 0.54618) 

x(4) = (—0.28459, 1.28459) 

x(5) = (—0.19183, 1.19183) 

• These and all subsequent iterates all lie on the constraint g(x) = 
0. Since the objective function decreases toward the origin, all 
iterates will be given by the intersection of the local 
linearization with g(x) = 0. 

• Since the slope of the linearization becomes larger or smaller 
than -1 depending upon which side of the constraint ‗ elbow‘‘ 
the linearization point lies, the successive iterates simply 
follow an oscillatory path up and down the surface g(x)=0. 
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• Evidently the problem arises because the linearization cannot 

take into account the sharp curvature of the constraint h(x) = 0 

in the vicinity of the optimum. 

• Since both the constraint and the objective function shapes 

serve to define the location of the optimum, both really ought 

to be taking into ac-count. 
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QUADRATIC APPROXIMATION OF THE 
LAGRANGIAN FUNCTION 

QUADRATIC APPROXIMATION OF THE LAGRANGIAN 

FUNCTION 

• The examples of the previous section suggest that it is 

desirable to incorporate into the sub problem definition not 

only the curvature of the objective function but also that of the 

constraints. 

 
• However, based on computational considerations, we also 

noted that it is preferable to deal with linearly constrained 

rather than quadratically constrained sub problems. 

 
• Fortunately, this can be accomplished by making use of the 

Lagrangian function, as will be shown below. 
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LAGRANGIAN FUNCTION 
 
 

• For purposes of this discussion, we first consider only the 
equality- constrained problem. 

• The extension to inequality constraints will follow in a 
straightforward fashion. 

Consider the problem 

Minimize ƒ(x) 

Subject to h(x) = 0 

• Recall that the necessary conditions for a point x* to be a local 

minimum are that there exist a multiplier v* such that 

Qx L(x*, v*) = Qƒ* — v*T Qh* = 0 and h(x*) = 0 

(Ex-1) 
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LAGRANGIAN FUNCTION 
 

 

• Sufficient conditions for x* to be a local minimum are that 

conditions (Ex-1) hold and that the Hessian of the Lagrangian 

function, 

 
satisfies 

 
for all d such that (Qh)*Td = 0 (Ex-2) 

 
• Given some point  , we construct the following sub 

problem expressed in terms of the variables d: 
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LAGRANGIAN FUNCTION 
 

 

 

• We now observe that if d* = 0 is the solution to the problem 
consisting of (10.3) and (10.4), then x must satisfy the 
necessary conditions for a local minimum of the original 
problem. 

• First note that if d* = 0 solves the sub- problem, then form 
(10.4) it follows that h(x) = 0; in other words, x is a feasible 
point. 

• Next, there must exist some v* such that the sub problem func- 
tions satisfy the Lagrangian necessary conditions at d* = 0. 
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LAGRANGIAN FUNCTION 
 

 

• Thus, since the gradient of the objective function (10.3) with 

respect to d at d* = 0 is Qƒ(x) and that of (10.4) is Qh(x), it 

follows that 

 

• Note that the second derivative with respect to d of (10.4) is 
zero, since it is a linear function in d. 

• Consequently, the above inequality implies that d T Qx2L( , 
v*)d is positive also. 

• Therefore, the pair ( , v*) satisfies the sufficient conditions for 
a local minimum of the original problem. 
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LAGRANGIAN FUNCTION 
This demonstration indicates that the sub problem consisting of 

(10.3) and (10.4) has the following very interesting features: 

 
1. If no further corrections can be found, that is, d = 0, then the 

local minimum of the original problem will have been 
obtained. 

2. The Lagrange multipliers of the sub problem can be used 
conveniently as estimates of the multipliers used to formulate 
the next sub problem. 

3. For points sufficiently close to the solution of the original 
problem the quadratic objective function is likely to be 
positive definite, and thus the solution of the  QP  sub 
problem will be well behaved. 
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By making use of the sufficient conditions stated for both 

equality and in- equality constraints, it is easy to arrive at a QP 

subproblem formulation for the general case involving K equality 

and J inequality constraints. If we let 
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LAGRANGIAN FUNCTION 
 

 

• The algorithm retains the basic steps outlined for the direct QP 

case. 

• Namely, given an initial estimate x 0  as well as u0  and v0  

(the latter could be set equal to zero, we formulate the sub 

problem [Eqs. (10.7), (10.8a), and (10.8b)]; 

• solve it; set x(t+1) = x(t) + d; check for convergence; and 

repeat, using as next estimates of u and v the corresponding 

multipliers obtained at the solution of the sub problem. 
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FUNCTION 

 
Example 3 

Repeat the solution of the problem of Example 10.1 using the 

Lagrangain QP sub problem with initial estimates x0  = (2, 1)T, u0  = 

0, and v0 = 0. The first sub problem becomes 

This is exactly the same as the fist sub problem of Example 1, 

because with the initial zero estimates of the multipliers of the 

constraint terms of the Lagrangian will vanish. 
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LAGRANGIAN FUNCTION 
 
 
 
 

• The sub problem solution is thus, as before, 

 
d0 = (—0.92079, 0.4604)T 

 
• Since the inequality constraint is loose at this solution, u(1) 

must equal zero. 

• 

• The equality constraint multiplier can be found from the 
solution of the Lagrangian necessity conditions for the sub 
problem. 
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LAGRANGIAN FUNCTION 
 
 

• Namely, 

• Thus, v(1)  = 2.52723. Finally, the new estimate of the problem 

solution will be x(1) = x0 + d0, or 

x(1) = (1.07921, 1.4604)T ƒ(x(1)) = 5.68779 h(x(1)) = - 0.42393 
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as was the case before. 

• The second subproblem requires the gradients 
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LAGRANGIAN FUNCTION 
 

 

• The quadratic term is therefore equal to 
 

• The complete problem becomes 
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LAGRANGIAN FUNCTION 
 

 

• The solution is d(1) = (0.00614, 0.38450). Again, since g˜(d(1); 

x(1) )> 0, u(2) = 0, and the remaining equality constraint 

multiplier can be obtained from 

or 

 

 

 

Thus, 

with 

 
• Continuing the calculations for a few more iterations, the 

results obtained are 
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and 

 
 

 

 

• It is interesting to note that these results are essentially 

comparable to those obtained in Example 1 without the 

inclusion of the constraint second derivative terms. 

• This might well be expected, because at the optimal solution 

(1, 2) the constraint contribution to the second derivative of the 

Lagrangian is small: 
 

 

169 



LAGRANGIAN FUNCTION 
 
 

 

• The basic algorithm illustrated in the preceding example can 

be viewed as an extension of Newton‘s method to 

accommodate constraints. 

• Specifically, if no constraints are present, the subproblem 

reduces to 
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LAGRANGIAN FUNCTION 

 

Example 10.4 

• Consider the problem of Example 10.2 with the initial estimate 

x0 = (2, 2.789) and u = v = 0. The first sub problem will be 

given by 

 

 

 

• solution is d 0 = (-1.78316, -2.00583). The inequality  

constraint is tight, so both constraint multipliers must be 

computed. The result of solving the system is v(1) = -0.00343 

and u(1) = 0.28251. 
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At the corresponding intermediate point, 

x (1) = (0.21683, 0.78317)T 

We have 

ƒ(x(1)) = 0.1698 h(x(1)) = 13.318 g(x(1)) = 0 

• Note that the objective function decreases substantially, but the 

equality constraint violation becomes very large. The next sub 

problem constructed at x(1) with multiplier estimates u(1) and 
v(1) is 
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QUADRATIC APPROXIMATION OF THE 
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• The sub problem solution is d (1) = (+0.10434,-0.10434)T, and 

the multipliers are v(2) = -0.02497, u(2) = 0.38822. 

• At the new point x(2) = (0.40183,0.59817)T, the objective 

function value is 0.24036 and the constraint value is 2.7352. 

• The results of the next iteration, 

x(3)  = (0.74969, 0.25031)T ƒ(x(3)) = 0.18766 h(x(3)) = 13.416 
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• indicate that the constraint violation has increased 

considerably while the objective function value has decreased 

somewhat. 

• Comparing the status at x(1) and x(3), it is evident that the 

iterations show no real improvement. 

• In fact, both the objective function value and the equality 

constraint violation have increased in proceeding from x(1) to 
x(3). 

• The solution to the problem of unsatisfactory convergence is, 

as in the unconstrained case, to perform a line search from the 

previous solution estimate in the direction obtained from the 

current QP sub problem solution. 

 
174 



QUADRATIC APPROXIMATION OF THE 
LAGRANGIAN FUNCTION 

• However, since in the constrained case both objective function 

improvement and reduction of the constraint infeasibilities 

need to be taken into account, the line search must be carried 

using some type of penalty function. 

• For instance, as in the case of the SLP strategy advanced by 

Palacios-Gomez, an exterior penalty function of the form 
 

could be used along with some strategy for adjusting the 

penalty parameter R. This approach is illustrated in the next 

example. 
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EXAMPLE 

Consider the application of the penalty function line search to 

the problem of Example 10.4 beginning with the point x(2) and 

the direction vector d(2) = (0.34786, -0.34786)T which was 

previously used to compute the point x(3) directly. 

Suppose we use the penalty function 

P(x, R) = ƒ(x) + 10{h(x)2 + [min(0, g(x)]2 } 

and minimize it along the line 
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QUADRATIC APPROXIMATION OF THE 
LAGRANGIAN FUNCTION 

• Note that at P 75.05, while at 1, P 1800.0. Therefore, a 

minimum ought to be found in the range 0 1. 

• Using any convenient line search method, the approximate 

minimum value P 68.11 can be found with 0.1. The resulting 

point will be 

x(3) = (0.43662, 0.56338)T 

with ƒ(x(3)) = 0.24682 and h(x(3)) = 2.6053. 

• To continue the iterations, updated estimates of the multipliers 

are required. Since is no longer the optimum solution of the 

previous sub problem, this value of d cannot be used to 

estimate the multipliers. 

• The only available updated multiplier values

are those 

associated with d (2), namely v(3) = 0.005382 and u(3)= 0.37291. 
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LAGRANGIAN FUNCTION 

• The results of the next four iterations obtained using line searches of 
the penalty function after each sub problem solution are shown in 
Table 10.1. 

• As is evident from the table, the use of the line search is successful 
in forcing convergence to the optimum from poor initial estimates. 

• The use of the quadratic approximation to the
Lagrangian was 
proposed by Wilson. 

• Although the idea was pursued by Beale and by Bard and Greeted, it 
has not been widely adopted in its direct form. 

• As with Newton‘s method, the barriers to the adoption of this 
approach in engineering applications have been two fold: first the 
need to provide second derivative values for all model functions 
and, second, the sensitivity solution estimates. 
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Table 10.1 Results for Example 10.5 
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QUADRATIC APPROXIMATION OF THE 
LAGRANGIAN FUNCTION 

 
relevance to defining a good search direction. (For instance, 

Table 10.1, v(3) = -5.38 x 10-3, while v* = -2.) 

Thus, during the initial block of iterations, the considerable 

computational burden of evaluating all second derivatives may 

be entirely wasted. 

A further untidy feature of the above algorithm involves the 

strategies required to adjust the penalty parameter of the line 

search penalty function. 

First, a good initial estimate of the parameter must somehow 

be supplied; second, to guarantee convergence, the penalty 

parameter must in principle be increased to large values. 
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VARIABLE METRIC METHODS FOR 

CONSTRAINED OPTIMIZATION 
Variable metric methods for Constrained optimization:- 

• The desirable improved convergence rate of Newton‘s method 

could be approached by using suitable update formulas to 

approximate the matrix of second derivatives. 

• Thus, with the wisdom of hindsight, it is not surprising that, as 

first shown by Garcia Palomares and Mangasarian, similar 

constructions can be applied to approximate the quadratic 

portion of our Lagrangian sub problems. 

• The idea of approximating using quasi-Newton update 

formulas that only require differences of gradients of the 

Lagrangian function was further developed by Han and 

Powell. 

 

 
181 



CONSTRAINED VARIABLE METRIC METHOD 
 
 
 

• The basic variable metric strategy proceeds as follows. 

Constrained Variable Metric Method:- 

• Given initial estimates x 0, u0, v0 and a symmetric positive-definite 

matrix H0. 

Step 1: Solve the problem 
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• Step 2: Select the step size along d(t) and set x(t +1) = x(t) + d (t). 

• Step 3: Check for convergence. 

• Step 4: Update H(t) using the gradient difference in such a way 

that H(t +1) remains positive definite. 

 

 
• The key choices in the above procedure involve the update 

formula for H(t) and the manner of selecting. Han considered 

the use of several well known update formulas, particularly 

DFP. 
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• Here it is also showed that if the initial point is sufficiently 

close, then convergence will be achieved at a superlinear rate 

without a step-size procedure or line search by setting = 1. 

• However, to assure convergence from arbitrary points, a line 

search is required. 

• Specifically, Han recommends the use of the penalty function 
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• where R and are suitably selected positive numbers. 

• Powell, on the other hand, suggests the use of the BFGS 

formula together with a conservative check that ensures that 

H(t) remains positive definite. Thus, if 

and 

 
• Then define 

 

 

• and calculate 
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• Finally, this value of w is used in the BFGS updating formula, 
 
 

 

• Note that the numerical value 0.2 is selected empirically and 

that the normal BFGS update is usually stated in terms of y 

rather than w. 

• On the basis of empirical testing, Powell proposed that the 

step-size procedure be carried out using the penalty function 
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• where for the first iteration 

• and for all subsequent iterations t 
 

 

• The line search could be carried out by selecting the largest 

value of , 0 <= <=1, such that 

 
• However, Powell prefers the use of quadratic interpolation to 

generate a sequence of values of k until the more conservative 

condition is met. 
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• It is interesting to note, however, that examples have been 

found for which the use of Powell‘s heuristics can lead to 

failure to converge. 

• Further refinements of the step-size procedure have been 

reported, but these details are beyond the scope of the present 

treatment. 

• We illustrate the use of a variant of the constrained variable 

metric (CVM) method using update (10.11), penalty function 

(10.12), and a simple quadratic interpolation-based step-size 

procedure. 
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Variable metric methods for Constrained optimization:- 

Example 

Solve the problem 

 

 

 

 
 

using the CVM method with initial metric H0 = I. 

At the initial point (2, 1), the function gradients are 
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• Therefore, the first sub problem will take the form 

• It is easy to show that the problem solution lies at the 

intersection of the two constraints. Thus, d0 = (-4, 2)T, and the 

multipliers at this point are solutions of the system 
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or  

• For the first iteration, we use the penalty parameters 
 

• The penalty function (10.12) thus take the form 

 

 

• We now conduct a one-parameter search of P on the line 
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• Suppose we conduct a bracketing search with  

Then P(0 + 0.1) = 9.38875 and p(0.1 + 2(0.1)) = 13.78 

• Clearly, the minimum on the line has been bounded. 

• Using quadratic interpolation on the three trial points of  = 0, 

0.1, 0.3, we obtain    dash = 0.1348 with P( ) = 9.1702. Since 

this is a reasonable improvement over P(0), the search is 

terminated with this value of . The new point is 
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• The new point is 

X(1)  = (2, 1)T +(0.1348)(-4, 2) = (1.46051, 1.26974) 

• We now must proceed to update the matrix H. Following 

Powell, we calculate 

z = x(1) – x0 (-0.53949, 0.26974)T 

• Then 
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• Note that both gradients are calculated using the same 

multiplier values u(1) ,v(1). By definition,, 
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• Note that H(1) is positive definite. 

• This completes on iteration. We will carry out the second in 

abbreviated form only. 

The sub problem at x(1) is 
 

The solution of the quadratic program is 
 

d(1) = ( -0.28911, 0.35098) 
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• At this solution, the inequality is loose, and hence u(2) = 0. The 

other multiplier value is v(2) = 4.8857. 

• The penalty function multipliers are updated using (10.13) and 

(10.14): 

 

 

 

• The penalty function now becomes 
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• where 
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• The iterations continue with an update of H(1) .The details will 

not be elaborated since they are repetitious. The results of the 

next four iterations are summarized below. 
 

 
• Recall that in Example 10.3, in which analytical second 

derivatives were used to formulate the QP sub problem, 

comparable solution accuracy was attained in four iterations. 
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• Thus, the quasi-Newton result obtained using only first 

derivatives is quite satisfactory, especially in view of the fact 

that the line searches were all carried out only approximately. 

• It should be reemphasized that the available convergence 

results (super linear rate) [6, 11] assume that the penalty 

function parameters remain unchanged and that exact line 

searches are used. 

• Powell‘s modifications (10.13) and (10.14) and the use of 

approximate searches thus amount to useful heuristics justified 

solely by numerical experimentation. 

• Finally, it is noteworthy that an alternative formulation of the 

QP sub problem has been reported by Biggs as early as 1972. 
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CONSTRAINED VARIABLE METRIC METHOD 
• The primary differences of that approach lie in the use of an 

active constraint strategy to select the inequality constraints 

that are linearized and the fact that the quadratic 

approximation appearing in the sub problem is that of a 

penalty function. 

• In view of the overall similarity of that approach to the 

Lagrangian-based construction, we offer no elaboration here, 

but instead invite the interested reader to study the recent 

exposition of this approach offered in reference 13 and the 

references cited therein. 
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