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MOMENT DISTRIBUTION METHOD -
INTRODUCTION AND BASIC PRINCIPLES

Introduction

(Method developed by Prof. Hardy Cross in 1932)
The method solves for the joint moments in continuous beams and
rigid frames by successive approximation.

Statement of Basic Principles

Consider the continuous beam ABCD, subjected to the given loads,
as shown in Figure below. Assume that only rotation of joints occur
at B, C and D, and that no support displacements occur at B, C and

D. Due to the applied loads in spans AB, BC and CD, rotations
occur at B, C and D.
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In order to solve the problem in a successively approximating manner,
It can be visualized to be made up of a continued two-stage problems
viz., that of locking and releasing the joints in a continuous sequence.

Step |

The joints B, C and D are locked in position before any load is
applied on the beam ABCD; then given loads are applied on the
beam. Since the joints of beam ABCD are locked in position, beams
AB, BC and CD acts as individual and separate fixed beams,
subjected to the applied loads; these loads develop fixed end

moments.
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In beam AB
Fixed end moment at A = -wl?/12 = - (15)(8)(8)/12 = - 80 kN.m
Fixed end moment at B = +wl?/12 = +(15)(8)(8)/12 = + 80 kN.m

In beam BC
Fixed end moment at B = - (Pab?)/I>= - (150)(3)(3)%/62
=-112.5 kN.m
Fixed end moment at C = + (Pab?)/I2= + (150)(3)(3)%/62
=+ 1125 kN.m
In beam AB

Fixed end moment at C = -wl%/12 = - (10)(8)(8)/12 = - 53.33 kN.m
Fixed end moment at D = +wl%/12 = +(10)(8)(8)/12 = + 53.33kN.m



Step |

Since the joints B, C and D were fixed artificially (to compute the the fixed-
end moments), now the joints B, C and D are released and allowed to rotate.
Due to the joint release, the joints rotate maintaining the continuous nature of
the beam. Due to the joint release, the fixed end moments on either side of

joints B, C and D act in the opposite direction now, and cause a net
unbalanced moment to occur at the joint.
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Step 111

These unbalanced moments act at the joints and modify the joint moments at
B, C and D, according to their relative stiffnesses at the respective joints. The
|joint moments are distributed to either side of the joint B, C or D, according to
their relative stiffnesses. These distributed moments also modify the moments
at the opposite side of the beam span, viz., at joint A in span AB, at joints B
and C in span BC and at joints C and D in span CD. This modification is
dependent on the carry-over factor (which is equal to 0.5 in this case); when
this carry over is made, the joints on opposite side are assumed to be
fixed.

Step IV

The carry-over moment becomes the unbalanced moment at the joints
to which they are carried over. Steps 3 and 4 are repeated till the carry-
over or distributed moment becomes small.

Step V

Sum _up all the moments at each of the joint to obtain the joint
moments.




7.3 SOME BASIC DEFINITIONS

In order to understand the five steps mentioned in section 7.3, some words
need to be defined and relevant derivations made.

7.3.1 Stiffness and Carry-over Factors

Stiffness = Resistance offered by member to a unit displacement or rotation at a
point, for given support constraint conditions

M, /MB A clockwise moment M, is
A . applied at A to produce a +ve
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Using method of consistent deformations

A L A
M ALz 1 L3
AA =+ fAA =
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Applying the principle of
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Considering moment M&

Mg+ M, +R,L=0
~Mg = M,/2= (L12)M

Carry - over Factor = 1/2

Distribution Factor

Distribution factor is the ratio according to which an externally applied
unbalanced moment M at a joint is apportioned to the various members
mating at the joint
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Modified Stiffness Factor

The stiffness factor changes when the far end of the beam is simply-
supported.

As per earlier equations for deformation, given in Mechanics of Solids
text-books.




7.4 SOLUTION OF PROBLEMS -

7.4.1 Solve the previously given problem by the moment
distribution method

7.4.1.1: Fixed end moments
T s)E)

wi

MAB:—MBA:—12: > = —80 kN .m
wi 150 )(6

M, =-M_, =- _ )():—112.5kN.m
8 8
wl (10 )(8)°

M =-M_ =- =— = —53.333 kN .m
12 12

7.4.1.2 Stiffness Factors (Unmodified Stiffness)
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Distribution Factors
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AB

DF

BA

DF

BC

DF

CB

DF

CD

DF

DC

K

A 0.5El
e = 0.0
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Moment Distribution Table

Joint A C D
Member AB BA BC CB CD DC
Distribution Factors 0 0.4284 | 0.5716 | 0.5716 | 0.4284 1

Computed end moments -80 80 -1125 | 1125 | -563.33 | 53.33
Cycle 1

Distribution 13.923 | 18.577 | -33.82| -25.35 | -53.33

Carry-over moments 6.962 -16.91 | 9.289 | -26.67 | -12.35
Cycle 2

Distribution 7.244 | 9.662 9.935| 7.446 | 12.35

Carry-over moments 3.622 4.968 4831 6.175 | 3.723
Cycle 3

Distribution -2.128 | -2.84 | -6.129| -4.715 | -3.723

Carry-over moments -1.064 -3.146 -1.42| -1.862 | -2.358
Cycle 4

Distribution 1.348 | 1.798 1.876| 1.406 | 2.358

Carry-over moments 0.674 0.938 0.9| 1.179 | 0.703
Cycle 5

Distribution -0.402 | -0.536 | -1.187| -0.891 | -0.703

Summed up -69.81 | 99.985 | -99.99 | 96.613 | -96.61 0

moments




Computation of Shear Forces

10 KN/m
15 kN/ 150 kN K
> 5| c
A
I Lo I o I
8m L 3m L 3m 8m
/1 /1 /1
Simply-supported 60 60 75 75 40 40
reaction
End reaction
due to left hand FEM 8.726 -8.726 | 16.665 -16.67 | 12.079 -12.08
End reaction
due to right hand FEM | -12.5 12.498 -16.1 16.102 0 0
Summed-up 56.228 63.772 | 75.563 74.437 | 53.077 27.923
moments




Shear Force and Bending Moment Diagrams
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Simply-supported bending moments at center of span

M oper iN AB = (15)(8)2/8 = +120 kN.m
M onger iN BC = (150)(6)/4 = +225 kKN.m

M eorer in AB = (10)(8)%/8 = +80 kN.m



MOMENT DISTRIBUTION METHOD FOR
NONPRISMATIC MEMBER (CHAPTER 12)

The section will discuss moment distribution method to analyze beams and
frames composed of nonprismatic members. First the procedure to obtain
the necessary carry-over factors, stiffness factors and fixed-end moments
will be outlined. Then the use of values given in design tables will be
Illustrated. Finally the analysis of statically indeterminate structures using

the moment distribution method will be outlined



Stiffness and Carry-over Factors

Use moment-area method to find the stiffness and carry-
over factors of the non-prismatic beam.

Cag= Carry-over factor of moment M, from A to B



Ma(=Ka)
(a) (®)

Use of Betti-Maxwell’s reciprocal theorem requires that the work
done by loads in case (a) acting through displacements in case (b) is
equal to work done by loads in case (b) acting through displacements in

case (a)

(M, )0)+(M,)@)=(M')1.0)+(M)(0.0)
CuK,r=CpKy



Tabulated Design Tables

Graphs and tables have been made available to determine fixed-end
moments, stiffness factors and carry-over factors for common
structural shapes used in design. One such source is the Handbook of
Frame constants published by the Portland Cement Association,
Chicago, Illinois, U. S. A. A portion of these tables, is listed here as
Table 1 and 2

Nomenclature of the Tables

a a,, = ratio of length of haunch (at end A and B to the length
of span

b = ratio of the distance (from the concentrated load to end A)
to the length of span
h,, hg= depth of member at ends A and B, respectively

he = depth of member at minimum section



|. = moment of inertia of section at minimum section = (1/12)B(h.)3,
with B as width of beam
Kag, Kgc = stiffness factor for rotation at end A and B, respectively
L = Length of member
Mg, Mga = Fixed-end moments at end A and B, respectively; specified in
tables for uniform load w or concentrated force P




Téble 12-1 Straight Haunches—Constant Width

ol fal

R I}’BhC

B

Note: All carry-over factors are negative and
all stiffness factors are positive.

Concentrated Load FEM—Coef. X PL

Haunch Load at

Right
Huaunch

Carry-over
Factors

Stiffness
Factors

Unif. Load
FEM
Coef. X wl?

b

Left

Right

0.1

0.3

0.5

0.7

09

FEM
Coef. ¥ wyl?

FEM
Coef. X wpl?

ag '

CAB

CBA

kA B

kBA

MAB

Mg,

MAB MBA

MAB MBA

MAB

MBA

MAB MBA

MAB

MAB MBA

MAB MBA

aa = 03 a

» = variable

Fq = 1.0

rg = variable

(.4
0.6
1.0
1.5
20

0.4
0.6
L0
1.5
20

012

0.3

0.543
0.576
0.622
0.660
0.684

0.579
0.629
(.705
0.771
(.817

0.766
0.758
0.748
0.740
0.734

0.741
0.726
0.705
0.689
0.678

9.19
9.53
10.06
10.52
10.683

947
9.98
1083
1170
12.33

6.52
7.24
837
938
10.09

7.40
8.64
10.85
13.10
14.85

0.1194
0.1152
0.1089
0.1037
(.1002

0.1175
0.1120
0.1034
0.0956
0.0501

0.0791
0.0831
0.0942
0.1018
0.106%

0.0822
0.0002
(.1034
0.1157
0.1246

0.0935 | 0.0034
0.0934 | 0.0038
0.0931 | 0.0042
0.0927 | 0.0047
0.0924 § 0.0050

0.0934 1 0.0037
0.0931 | 0.0042
0.0924 | 0.0052
0.0917 | 0.0062
0.0913 1 0.0069

0.2185 | 0.0384
0.2158 | 0.0422
0.2118 10.0480
(.2085 | 0.0530
0.2062 | 0.0565

0.2164 | 0.0419
0.2126 | 0.0477
0.2063 | 0.0577
0.2002 | 0.0675
0.1957 {0.0750

0.1955
(11883
01771
0.1678
0.1614

0.1909
0.1808
0.1640
0.1483
0.1368

0.1147
0.1250
6.1411
0.1550
0.1645

0.1225
0.1379
0.1640
0.1892
0.2080

0.0889
0.0798
0.0663
0.0559
0.0487

0.0856
0.0747
0.0577
0.0428
0.0326

0.1601
0.1729
0.1919
0.2078
0.2185

0.1649
0.1807
0.2063
0.2294
0.2455

0.0096
0.0075
0.0047
0.0028
0.0019

0.0100
0.0080
0.0052
0.0033
0.0022

(L0870
0.0898
0.0935
0.0961
0.0974

0.0861
0.0888
0.0924
0.0953
0.0968

0.0133
0.0133
0.0132
0.0130
0.0129

0.0133
0.0132
0.0131
0.0129
0.0128

{.0008
0.0009
0.0011
0.0012
0.0013

0.0009
0.0010
0.0013
0.0015
0.0017

0.0058
0.0060
0.0062
0.0064
0.0063

0.0118
0.0124
0.0131
0.0137
0.0141

0.0006
0.0005
0.0004
0.0002
0.0001

0.0022
0.0018
0.0013
0.0008
(.0006

a,=02 @

5 = variuble

FAZI.S

rg = variable

04
0.6
1.0
15
2.0

0.4
0.6
1.0
L5
2.0

0.2

03

0.569
0.603
0.652
0.691
0.716

0.607
0.659
0.740
0.809
0.857

0.714
0.707
0.698
0.691
0.686

0.692
0.678
0.660
0.645
0.636

1.97
8.26
8.70
9.08
9.34

8.21
8.63
9.38
10.09
10.62

6.35
7.04
8.12
9.08
9.75

721
.40
10.52
12.66
14.32

0.1166
0.1127
0.1069
0.1021
0.09%0

0.1148
0.1098
0.1018
0.0947
0.0897

0.0799
0.0858
0.0947
0.1021
0.107

0.0829
0.0907
(.1037
0.1156
0.1242

0.0019
0.0021
(.0023
(0023
0.0028

0.0021
0.0024
0.0028
0.0033
0.0038

0.0966
0.0965
0.0963
0.0962
0.0960

0.0965
0.0964
0.0961
0.0958
0.0935

0.0371
0.0413
0.0468
0.0515
0.0547

0.0409
0.0464
0.0559
0.0631
0.0720

02186
0.2163
0.2127
0.2007
0.2077

0.2168
0.2135
02078
0.2024
0.1985

0.1847
0.1778
0.1675
0.1587
0.1528

0.1801
0.1706
0.1550
0.1403
0.1296

0.1183
(0.1288
0.1449
0.1587
0.1681

{.1263
0.1418
0.1678
0.1928
0.2119

0.1626
0.1752
0.1940
0.2097
0.2202

0.1674
0.1831
0.2085
(2311
0.2469

0.0821
0.0736
0.0616
0.0515
0.0449

0.0789
0.0688
0.0530
0.0393
0.0299

0.0088
0.0068
0.0043
0.0025
0.0017

(10091
0.0072
0.0047
0.0029
0.0020

0.0873
0.0801
0.0937
0.0962
0.0975

0.0866
0.0892
0.0927
0.0950
0.0968

0001
0.0001
0.0002
0.0002
0.0002

(.0002
0.0002
0.0002
0.0003
0.0003

0.0064
0.0064
0.0064
0.0064
0.0064

0.0064
0.0064
0.0064
(.0063
0.0063

0.0058
0.0060
0.0062
0.0064
0.0065

0.0118
0.0123
0.0130
0.0137
0.0141

0.0006
0.0003
0.0004
0.0002
0.0001

0.0020
0.0017
0.0012
0.0008
0.0003




Table 12-2 Parabolic Haunches—Constant Width

Note: All carry-over factors are negative and
all stiffness factors are positive.

Concentrated Load FEM—Coef. X PL

Haineh Load at

Right
Haunch

Carry-over
Factors

Stiffness
Factors

Unif. Load
FEM
Coef. X wl?

b

Left

Right

0.1

0.3

0.5

0.7

0.9

FEM
Coef. % wyl?

FEM
Coef. X wgl®

dg

s

CAB CBA

kAB kBA

MAB MBA

Mup Mgy

MAB MBA

MAB

M BA

MAB MBA

Mys

MAB MBA

My Mpy

ay = 02 a

5 = variable

Fa— 1.0

tg = variable

0.2

0.3

04
0.6
1.0
1.5
20

0.4
0.6
10
13

0.558
0.582
0.619
0.649
0.671

0.588
0.625
0.683
0.735
0.772

0.627
0.624
0.619
0.614
0.011

0.616
0.609
0.598
0.589
0.582

5.40
5.80
6.41
6.97
7.38

593
6.58
7.68
8.76
9.61

6.08
6.21
6.41
6.59
6,71

6.22
6.4}
6.73
742
725

0.1022
0.0995
0.0936
0.0021
0.0899

0.1002
0.0966
0.0911
0.0862
0.0827

0.0841
0.0887
0.0956
0.1013
0.1056

0.0877
0.0942
0.1042
0.1133
0.1198

0.0938
0.0936
0.0935
0.0933
0.0932

0.0937
(.0935
0.0932
0.0929
0.0927

0.0033
0.0036
0.0038
(0.0041
0.0044

0.0035
0.0039
0.0044
0.0050
0.0054

0.0502
0.0533
0.0584
0.0628
0.0660

0.0537
0.0587
0.0669
0.0746
{1.0803

(1891
0.1872
0.1844
0.1819
0.1801

0.1873
0.1845
0.1801
0.1760
0.1730

0.1572
0.1527
0.1459
0.1399
0.1358

0.1532
0.1467
0.1365
(.1272
0.1203

0.1261
0.1339
0.1459
0.1563
0.1638

0.1339
0.1455
0.1643
0.1819
0.1951

0.0715 [ 0.1618
0.0663 | 0.1708
0.0584 ; 0.1844
0.0518 | 0.1962
00472 10.2042

0.0678 | 0.1686
0.0609 1 0.1808
0.0502 | 0.2000
0.0410 1 0.2170
0.0345 | 0.2293

0.0073
0.0053
0.0038
0.0025
0.0017

(.0073
0.0057
0.0037
0.0023
0.0016

(.0902
0.0933
0.0058
0.0971

0.0877
0.0902
0.0936
0.0959
0.0972

0.0877 ,

0.0001
0.0001
0.0001
0.0001
0.0001

0.0001
0.0001
0.0001
0.0001
0.0001

0.0032
(.0032
0.0032
0.0032
0.0032

0.0032
0.0032
0.0031
0.0031
0.0031

0.0030
0.0031
0.0032
0.0032
0.0033

0.0063
0.0065
0.0068
0.0070
0.0072

0.0002
0.0002
0.0001
0.0001
0.0000

(.0007
0.0005
0.0004
0.0003
0.0002

da =05 a

» = variable

Fqg = 1.0

ry = variable

0.2

0.5

0.4
0.6
1.0
L5
2.0

0.4
0.6
1.0
15
2.0

0.807
0.803
0.796
0.786
0.784

0.753
0.730
0.654
0.664
0.642

0.438
0.513
0.547
0.571
0.590

0.554
0.606
0.694
0.781
0.850

397
6.45
722
7.90
8.40

7.66
9.12
12.03
1547
18.64

9.85
10.10
10.51
10.90
11.17

1042
10.96
12.03
13.12
14.09

0.0753
0.0795
0.0805
0.0922
0.0961

00811
0.0889
0.1025
0.1163
0.1273

0.1214
0.1183
{.1138
(.1093
0.1063

0.1170
0.1115
0.1025
0.0937
0.0870

0.0034
0.0036
0.0040
0.0043
0.0046

0.0040
0.0046
0.0057
0.0070
0.0082

0.092%
0.0928
0.0926
0.0923
0.0922

0.0926
0.0922
0.0915
0.0908
0.0901

0.0371
0.0404
0.0448
0.0485
0.0506

0.0442
0.0506
0.0626
0.0759
0.0877

0.2131
0.2110
0.2079
0.2055
0.2041

0.2087
0.2045
0.1970
(0.1891
0.1825

0.2021
0.1969
0.18%0
0.1318
0.1764

(.1924
0.1820
0.1639
0.1456
0.1307

0.1061
0.1136
0.1245
0.1344
0.1417

0.1205
0.1360
0.1639
0.1939
0.2193

0.1506
0.1600
0.1740
0.1862
0.1948

0.1595
0.1738
0.1970
0.2187
0.2348

0.0979
0.0917
0.0800
0.0719
0.0661

0.0398
0.0791
0.0626
0.0479
0.0376

0.0863
(.0892
0.0928
0.0951
0.0968

0.0853
0.0873
0.0915
(.0940
0.0957

{.0103
0.0083
0.0056
0.0033
(.0025

0.0107
0.0086
0.0057
0.0039
0.0027

0.0171
0.0170
0.0168
0.0167
0.0166

0.0169
0.0167
0.0164
0.0160
0157

0.0017
0.0018
0.0020
0.0021
0.0022

0.0020
0.0022
0.0028
(.0034
0.0039

0.0030
0.0030
0.0031
0.0032
0.0032

0.0145
0.0152
0.0164
0.0174
0.0181

0.0003
0.0002
0.0001
.0001
0.0001

0.0042
0.0036
0.0028
0.0021
0.0016




UNIT 1
PART 2
Kani’s Method



Analysis by Kani’s Method:

» Framed structures are rarely symmetric and subjected
to side sway, hence Kani’s method Is best and much
simpler than other methods.

 PROCEDURE:

¢ 1 Rotation stiffness at each end of all members of a

structure Is determined depending upon the end
conditions.

* a. Both ends fixed Kij= Kji= EI/L

* b. Near end fixed, far end simply supported Kij= %
EI/L; Kji=0



e 2. Rotational factors are computed for all the
members at each joint it is given by Uij=-0.5
(Ki1j/ ?Kji) {THE SUM OF ROTATIONAL
FACTORS AT A JOINT IS -0.5} (Fixed end
moments Including transitional moments,
moment releases and carry over moments are
computed for members and entered. The sum
of the FEM at a joint is entered in the central
square drawn at the joint).



» 3. Iterations can be commenced at any joint
however the iterations commence from the
left end of the structure generally given by
the equation M?1j = Uij [(MfI + M??1) + ?
M?ji)]



4. Initially the rotational components? Mji
(sum of the rotational moments at the far
ends of the joint) can be assumed to be zero.
Further iterations take into account the
rotational moments of the previous joints. 5.
Rotational moments are computed at each
joint successively till all the joints are

processed. This process completes one
cycle of iteration



» 6. Steps 4 and 5 are repeated till the
difference in the values of rotation moments
from successive cycles Is neglected.

/. Final moments in the members at each
joint are computed from the rotational
members of the final iterations step. Mij =
(Mfij + M??2ij) + 2 M?ij + M?jii



 The lateral translation of joints (side sway)
IS taken Into consideration by including
column shear In the iterative procedure.

» 8. Displacement factors are calculated for
each storey given by Uij = -1.5 (Kij/?Kij)



Application Of Analysis Methods For The Portal Frame

Application of Rotation contribution Method (Kani’s
Method) for the analysis of portal frame:

Fixed end moments
FEMAB =0
FEMBA =0
FEMBC =-120 kNm
FEMCB =120 kNm
FEMCD =0
FEMDC =0



» Stiffness and rotation factor (R.F.)
« Table 1.

e Stiffness and Rotation Factors — Kani’s
Method




s tiffness and rotation factor (R.F.)
Table 1. Shfiness and Rotation Factors — Kani's Method

Joint Member K XK REF

B BA 035331 0666 | 025
BC 03331 025

C CB 03331 0,583 ] -0 286
CD 0.25 1 0214




3. Displacement factors (0)

Table 2. Calculation of Displacement factors (0)
>UCD=(-1.2) + (-0.3) =-1.5

Checked.

Hence OK

Storey Moment (SM) Storey moment = 0 (since
lack of nodal loads and lack of loadings on columns,
SM=0) Iterations by Kani’s Method Figure 2.
Calculations of rotation contributions in tabular
form using Kani’s Method
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Final End Moments For columns:

=> F.E.M + 2 (near end contribution) + far end
contribution of that particular column + L.D.C. of that
column

For beams: => F.E.M + 2 (near end contribution) + far
end contribution of that particular beam or slab.

MAB = 10.89 kNm
MBA = 58.64 KNm
MBC = -58.63 kNm
MCB = 99.49 kNm
MCD =-69.51 KNm
MDC =0 kNm
MCE = -30 kNm



UNIT 2
SLOPE DEFLECTION
METHOD

* |ntroduction
« Assumptions
* Sign conventions

 Derivation of slope deflection method
« Example



Introduction

- The methods of three moment equation, and
consistent deformation method represent the
FORCE METHOD of structural analysis, The
slope deflection method use displacements as
unknowns, hence this method is the
displacement method.

In this method, if the slopes at the ends and
the relative displacement of the ends are
known, the end moment can be found iIn
terms of slopes, deflection, stiffness and
length of the members.



ASSUMPTIONS IN THE
SLOPE DEFLECTION
METHOD

 This method Is based on the following
simplified assumptions.

 1- All the joints of the frame are rigid, I.e,
the angle between the members at the joints
do not change, when the members of frame
are loaded.

 2- Distortion, due to axial and shear
stresses, being very small, are neglected.



Sign Conventions:-

e Joint rotation & Fixed end moments are
considered positive when occurring in a
cloc  yiay.

/ /\\NIB Ve




Derivation of slope deflection

equation:-
MFAB pl p \FBA
ol
" Loy




a3
Y Mb3
7 \_/EA
%



Required M &M In term of
9.6 at joint

rotation of member (R)
loads acting on member
First assume ,

Get Mf. & Mfi..due to acting loads. These
fixed end moment must be corrected to
allow for the end rotations 0.,0:and the
member rotation R.

The effect of these rotations will be found

conaratalyvs






by Superposition;

Mab - Mfah + Mal T Mai T Maf}

. 4k 2Bl -6kl
Mf, +—0,+—0,+——R
L = L L

M, =Mf, + % (20, +6, -3R)

| =



Example

« Calculate the support moments in the
continuous beam having constant

flexural rlgldlty EI throughout ,due to

_ aal _ _ r ah_ _

‘ort B by
e = 'i 5 = (" =4* 10/
elastic

El

Sm o Jech, am



 In the continuous beam, two rotations B
and CO need to be evaluated. Hence, beam is
Kinematically Indeterminate to second
dearee. As there 1S no external load on the
be Z ! E o in the

rec. =~

MI-L.=1:| Mlu.

|

e

e

= S

a0 -

= =

" ==

= -

M. =0 M. . =0



« For each span, two slope-deflection
equations need to be ertten In span AB, B
Is below A . ;> ates In

/o = = —1x10~ 1
clockwise # ) ken as
ne( Writing slope-deflection equation for span 4B |

Mas = fo (26, +6; — 3w ;)

For span 4B, 6, =0, Hence,
M, =2E (o, +3x107)
5 \
M , =0A4EI6, + .0012ET (2)

Similarly, for beam-end moment at end B, in span 4B

M, =0.4EI(26, +3x107)
M,, =0.8EI6, +0.0012E] (3)



In spanBC, the support C is above supportB, Hence the chord joining B'C
rotates in anticlockwise direction.

Yee =Vca =1x107 (4)
Writing slope-deflection equations for span BC,
M,.=08EIf, +04FI6,. —12x107EI

My =0.8EI6, +0.4EI6, —12x107 EI (5)

Now, consider the joint equilibrium of support B




My, +My, =0 (6)
Substituting the values of M, and M .. in equation (6),

0.8EI8, +1.2x107 EI +0.8EI8, + 0.4EI6, —1.2x10” EI =0
Simplifying,

1.66; +0.46, =1.2x107 (7)
Also, the support C is simply supported and hence, M, =0
Mg =0=0868,+046, —1.2x107EI
0.86, +0.46, =1.2x107° (8)

We have two unknowns &zand &.and there are two equations in &; andé..
Solving equations (7) and (8)

68, =—0.4286x 107 radians
8, =1.7143x107° radians (9)

Substituting the values of 8,6, and EI in slope-deflection equations,



Substituting the values of &,,8, and EI in slope-deflection equations,
M  =82.285kN.m
M,, =68.570kN.m
Mg =—68.573kN.m

M =0kN.m (10)

Reactions are obtained from equations of static equilibri



68.570
v « 68.570
A B | B c
n.‘ nﬂ ‘ .
th
In heam 4B,

S My =0, R, =30171kN(T)
Ry, =-30.171KN(¥)
Ry =-13.714kN({)

R, =13.714kN(T)



« The shear force and bending moment
diagram and elastic curve Is shown in fig.

30.171 30.971

Shear force diagram

Bending moment diagram

-82.285



Elasctic curve



UNIT 2

Two-Hinged Arch
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Analysis of two-hinged arch

A typical two-hinged arch Is shown in Fig.
33.

 la. In the case of two-hinged arch, we have
four unknown reactions, but there are only
three equations of equilibrium available.

Hence, the degree of statical indeterminacy
IS one for twohinged arch.

59



b L4
P, t P.
Y ) i
Q ! X \ H.
-

!T

R,,

i L/2 4. L/2 |

B he] fg o

Fig. 33.1a Two - hinged arch.
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ARCH

It transfers the load to end support by axial
compression & partly by bending &shear
action

Due to equal distribution of stress, the
section is fully utilized.

In arches, Its bending moment is low
compare to beam.

Bending Moment=W#*xH*y

61



CLASSIFICATION OF ARCHES Based on
shape

1. Steel arches

2. R.C.C arches

3. Masonry arches

Based on structural behavior
[1]. Two hinged arches

[2]. Fixed arches

[3]. Three hinged arches

62



« ANALYSIS OF TWO HINGED ARCHES

A two hinged arch is statically indeterminate
to single degree, since there are four reaction
components to be determined while the
number of equations available from static
equilibrium is only three. Considering H to
be the redundant reaction, it can be found out

by only by the use of Castigliano’s theorem
of least work.

63



Thus, assuming the horizontal span
remaining unchanged, we have,

oU 0H =0,
Where

U Is the total strain energy stored in the
arch. Here also, the strain energy stored due
to thrust and shear will be

64



considered neghgible in companison to that due to bending.

U=[2=
2E]
dH 2EIT AH .EI-H aH "
Now, M=p-Hy; 7= = = =y
ﬂ oo fﬂu HY) (=)
yids P:r'-ii'
El _-I. El
IEJ"E
H= El
IL
El

Taking dx =ds cost  so, ds = dx sech
From that we get,

_ Jnyds
H = e
[ ytdx

65



A parabolic Arch hinged at the ends has a
span 30 m and rise 5m. A concentrated load
of 12 kN acts at 10m from the left hinge. The
second moment of area varies as the secant
of the slope of the rib axis. Calculate the
horizontal thrust and the reactions at the
hinges. Also calculate the maximum bending
moment anywhere on the arch.

66



12K A

5m

-

‘e HB
HA 30m ,}

VA VB
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IM@A =0,

Vip*¥30=12*%10
Vi=4 KN
Now, V,+V,=12 kN
S50 V,=8kN
Equation of parabola,
YV = dhx{L=x)
_ 4151%&31] =x)
_xy
Y="0
MNow, honzontal thrust can be found out from the equation
H = J p.ydx
[ yidx

i = 8x, for AC portion
iw=8x— 12(x-10), for CB portion
w=(120 - 4x)

68



30 10 30
J- 1 yvdx Jr Bxyvdx + f (120 — 4x)vdx
0 i 1o

. J,.m El:x-‘{:-tl}-_x}+j-3l}41f_3l}-x}-‘

0 45 10 45
J.Dzn# ydx = HI;EIEI
30 30
e — (30 — x)dx
f FeE = 457
D D
1

17 (900x2 + x* — 60x2x)dx

457

£, vidx = 400

44000
So, H=
D400

H=1222 kN

MNow, Resultant reaction B, =8 4+ 12.22°= 14.61 kN
8

tan fa = TETE 0 655
B, =3321"°
Ry, =+4"4+ 12.22°=12.85 kN
_ -1 4
Oy = tan T

Maximum BM will occur in AC, just below the load
Fise of arch at that point

_ x(30=x) _ 10(30-1

oy _
s e = 40/9m

Y

69
My = 8*10 - 12 22%40/9 = 25 49 kINm



UNIT 3
APPROXIMATE METHODS
OF ANALYSIS
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Introduction

Using approximate methods to analyse statica
indeterminate trusses and frames

The methods are based on the way the structu
deforms under the load

Trusses

Portal frames with trusses
Vertical loads on building frames
Lateral loads on building frames
— Portal method

— Cantilever method



Slide

Approximate Analysis

Statically determinate structure - the force
equilibrium equation is sufficient to find the support
reactions

Approximate analysis - to develop a simple model of
the structure which is statically determinate to solve a

statically indeterminate problem

The method is based on the way the structure
deforms under loads

Their accuracy in most cases compares favourably
with more exact methods of analysis (the statically
indeterminate analysis)

72
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Slide

Trusses

real structure approximation

Method 1: Design long, slender
diagonals - compressive diagonals are
assumed to be a zero force member and
all panel shear is resisted by tensile
diagonal only

Method 2: Design diagonals to support
b=16, r=3, j=8 both tensile and compressive forces -
bér=19> 2=16 each diagonal is assumed to carry half

the panel shear.
The trussis statically
indeterminate to the third

degree > JE




Example 1 - trusses

Determine (approximately) the forces in the
members. The diagonals are to be designed to




<SLIUC

Portal frames — lateral loads

* Portal frames are
frequently used over
the entrance of a bridge

* Portals can be pin
supported, fixed
supported or supportec
by partial fixity




oridl frrames - idteral 10aas

real structure | approximation
-supported

ne assumption
ust be made

d -supported

Iree assumption
ust be made

tial fixity

l s Aantra Af thha
and tne centre or tin

girger




Pin-Supported Portal Frames

« A point of inflection — where the moment changes
from positive bending to negative bending.

 Bending moment is zero at this point.

The horizontal
reactions (shear) at
the base of each
column are equal




Slide

Fixed-Supported Portal Frames

* A point of inflection - where the moment changes
from positive bending to negative bending.

* Bending moment is zero at this point.

The horizontal
reactions (shear) at
the base of each
column are equal




Frames with trusses

« When a portal is used to span
large distance, a truss may be
used in place of the horizontal
girder

 The suspended truss is
assumed to be pin connected
at its points of attachment to
the columns

« Use the same assumptions as
those used for simple portal
frames




Frames with trusses

real structure

pin supported columns
pin connection truss-column

approximation

fixed supported columns
pin connection truss-column

horizontal reactions (shear) are equal
there is a zero moment (hinge) on each column




Slide
Jlide

Example 2 — Frame with trusses

Determine by approximate methods the forces
acting in the members of the Warren portal.




Slide

Example 2 (contd)

WKNHF’¢ *VD
| ’hn
h “

== Fyy
35kN |
E " "

20 kN 20 kN

70 kN'm 70 kN~m$
27.5kN 275kN

!

—
215kN H 27.5kN



Slide
Press to exit full screen

Building frames - vertical loads

» Building frames often consist
of girders that are rigidly
connected to columns

+ The girder is statically
indeterminate to the third
degree - require 3

assumptions /V

[fthecolumnsare.  »"
extremely st

If the columns are

extremely flexible



Slide
Building frames - vertical loads

real structure approximation

q
e

0.1L 0.1L} 0.1L 0.1L

q
O

I

1.There is zero moment (hinge) in the girder 0.1L
from the left support

2. There is zero moment (hinge) in the girder 0.1L
from the right support

3.The girder does not support an axial force.




Slide

Example 3 - Vertical loads

Determine (approximately) the moment at the joints
E and C caused by members EF and CD.

J2kN 32kN
8kN 32kN J2kN 8kN

| F)leN'm

SkN'm (|
-05m 0.5m ~$




Slide
: g Press to exit full screen
Building frames - 1ateral loads: Portal

method

* A building bent deflects
in the same way as a
portal frame

* The assumptions would
be the same as those
used for portal frames

* The interior columns
would represent the
effect of fwo portal
columns




Building frames - lateral loads
Portal method

real structure

approximation

The method is most suitable for
buildings having low elevation
and uniform framing

1.A hinge is placed at the centre of each girder,
since this is assumed to be a point of zero
moment.

2. A hinge is placed at the centre of each column,
this to be a point of zero moment.

3. At the given floor level the shear at the interior
column hinges is twice that at the exterior
column hinges




Slide

Example 4 — Portal method

Determine (approximately) the reactions at
the base of the columns of the frame.




Slide

Building frames - lateral loads:
Cantilever method

* The method is based on the
same action as a long
cantilevered beam subjected to a
transverse load

* Itis reasonable to assume the
axial stress has a linear variation
from the centroid of the column
areas

building frame



Building frames - lateral loads
Cantilever method

real structure approximation

The method is most suitableif | ! zero moment (hinge) at the centre of each girder

the frame is tall and slender, or | 2- zero moment (hinge) at the centre of each column
has columns with different 3. The axial stress in a column is proportional to its distance

: from the centroid of the cross-sectional areas of the columns at
cross sectional areas. e i




Slide

Example 5 — Cantilever method

Show how to determine (approximately) the
reactions at the base of the columns of the
frame.

6250 mm®> 5000 mm®> 3750 mm? 6250 mm?

| R | I
6m -J—4.5 m-17—7.5m—’i!
! g
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Example 5 — Cantilever method

F,

E,=163kN

S <

e -

256m {194 m
p—8.56 m —— 944 m —

F,=391kN|G,=222kN"~. fiy=18.0kN




UNIT 4

« MATRIX METHODS OF ANALYSIS
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METHO[E TO SOLVE INDETERMINATE PROBLEM

Small degree
of statical
Indeterminacy

Force method

Displacement methods

Displacement method

in matrix formulation
Large degree Numerical methods
of statical

o

zy -

| indeterminacy |t

, -~

T .-

L SlidePlayer 2/2 QIOICIOLC)



ADVANTAGES AND DISADVANTAGES OF MATRI

METHODS

Advantages:

« very formalized and computer-friendly;

« versatile, suitable for large problems;
 applicable for both statically determinate at
Indeterminate problems.

Disadvantages:

 bulky calculations (not for hand calculation:

» structural members should have some cert

number of unknown nodal forces and nodal

displacements; for complex members such ¢
' beams and arbitrary solids this requires som

discretization, so no analytical solution is po:




FLOWCHART OF MATRIXMETHQOD
SR . Press to exit full screen

Classification
of members

| . Stifiness matrices are

Stifiness mabtgoes for composed according to
MOMONS member models

Stifiness matrices are
transformed from local
o global coordinates

Transformed stiffness
matrices

Final equation
F=K-Z

Unknown
displacements and
reaction forces are
calculated

Stress-strain state of
Stiffness matrices of

‘ ﬁ— structure
==
separate members are

assembled into a single j
stiffness matrix K




R ——
STIFFNESS MATRIX OF STRUCTURAL MEMBER

Stiffness matrlx (K) gives the relation betwe
of nodal forces (F) and nodal displacements

/Fl\
F, F=K-7
F: b
F
\"n/ (kll ki . kln\
K =1 o




I e —
EXAMPLE OF MEMBEE MA

Stiffness relation fol a rod- )
F, = EA-(.\‘I.—.\‘,.) F |
L : ;
Fj =EA-(x.—x.)
L S

[ F

F=K-7Z F=| |47
L

Stiffness matrix:

( EA/IL -EA/L
ok —EAL LS E4ED




ASSEMBLY OF STIFFNESS MATRICES

To assemble stiffness matrices of separate r
Into a single matrix for the whole structure, v
simply add terms for corresponding displace
Physically, this procedure represent the usa
compatibility and equilibrium equations.



\/1 1 <

FiF
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SOLUTION USING MATIRIX-METHOD - EXAMPL

Press to exit full screen

Given Fr =10 }—

Boundary conditions: Zi=0 !

Equilibrium conditions:  F;j =0

Matrix equation: F = E—LA K-Z

Solution of system: Res := Find(F, Z)

Forces: Displacements
-10 ) 0 )

Resg=| 0 Resj=| 5 10 °

\ 10 ) 10 )




SOLUTION USING MEXAMPLI

Given }I_
Boundary conditions: Fi=10 Zj=0
Matrix equation: F = LLA-K-Z
Solution of system: Res := Find(F,Z
Forces: Displacements
(&) (0 )
Resg = | 10 Res; = | 2.5 |10~

ey .0 )




TRANSFORMATION @
s Press to exit full screen

Transformation matrlx Is used to transform n
displacements and forces from local to globs
coordinate system (CS) and vice versa:

F:T-F 7=T'Z

Transformation matrix is always orthogonal,
Inverse matrix is equal to transposed matrix:

T—l - TJ[

The transformation from local CS to global C

F:TT-F Z=TT';




\
(

\

~_| ¥
v X7
| S
cos(6) sin(0)
—sin(6) cos(0)
0 0
0 0

Z =T's7
0

0
cos(6)

—sin (9) 1



|
Press to exit full screen

TRANSFORMATION

To transform the stiffness matrix from local C
global CS, the following formula is used:

K=T"-K-T



EXAMPLE FORA TR

Press @ to exit full screen

The truss has the members, thus 6 degree
freedom. The stiffness matrix will be 6x6.




I
EXA

MPLE FOR ATR
ORIGIN =1

Number of DOFs d:=6 u:=1.4d
Number of members n:=3 ji=1.n

Geometrical and physical properties: EA

Stiffness matrix in local CS:

1 0 -1 0)
. _EA[0 0 0 0
LCS," L |1 0 1 0
L0 0 0 0)




EXAMPLE FOR A TR

Transormation matrix:

[ cos(0) sin(0) 0 0

(6) -~ —sin(0) cos(9) 0 0

0 0 cos(B) sin(0O)

. 0 0 —sin(0) cos(6

Angles and stiffness matrices for membe
[0 )
S-1t

0:=| 4 KGes, = (6) Kpc
-7
L3 )




I
EXA

MPLE FORATR
Results for stiffness matrices:
1 0 -1 0 (0 0
0 0 0 O 0 1

K = K -
GCS1" 110 1 0] 66537 (o o

.0 0 0 0 0 -1
[ 0.354 0354 -0.354 -0.35¢
, 0.354 0354 -0.354 -0.35:
RGCS, = | 0354 _0354 0354 0.354
_—0.354 -0.354 0.354 0.354




EXAMPLE FOR ATR
Press to exat full screen
Indexes of nodes for members:
(1 2)
Ind =2 3

1 3)




EXAMPLE FORA TR
= Press to exit full screen
Assembly of stiffness matrix:

K:=|[for jel.n

for kel..n

" (0 0]
S g
1.k 0 0

for iel..3

klnd“ Ind; 1 «— Klndi_l Ind; 1 - submatrlx(k(

klnd- «— K R T + submatrlx(l'\(

‘st
=
e
=
=
o

Ind; 2.Ind; Ind; 2.Ind;

K «— K + submatrix

Ind; 2.Ind; 2 Ind; 2.Ind; 2 Ko

K «— K - submatrix(l'\'(




MPLE FOR A TR

Result after previous step:

(1 0 -1 0 0
b e G
(-1 0 1354 0354) (-0.354
- (0 0) (0.354 0.354] (—0.354

0 0 -0.354 -0.354 0.354
0 -1 -0.354 -0.354 0.354

EXA




e ————————————————
EXAMPLE FOR A TRUSS

K:=|for jel..d

for kel..d
MK A "
ceil(l) .ceil[j
2 2
KNj k < M2-mod(j.2).2-mod(k,2)
KN
(1 0 - 0 0 0 )
0 0 0 0 -1

1

0 1354 0354 -0.354 -0.354
0 0 0354 0354 -0.354 -0.354

0 -0354 -0.354 0354 0.354
.0 -1 -0354 -0354 0354 1354 )




SIS
THREE BASIC EQUATIONS

How are they impleme_nted in matrix met

!

Equilibrium
equations

Taken into accou

Constitutive when global stiffne
equations matrix is assembl
from member matr

2 »
Compatibility Through member ' :
equations stiffness matrices

Taken into account
when global stiffness
matrix is assembled

from member matrices

|



UNIT 5

INFLUENCE LINES FOR STATICALLY
INDETERMINATE STRUCTURES
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3. INFLUENCE LINES FOR STATICALLY
DETERMINATE STRUCTURES - AN OVERVIEW

Introduction - What is an influence line?

Influence lines for beams

Qualitative influence lines - Muller-Breslau Principle
Influence lines for floor girders

Influence lines for trusses

Live loads for bridges

Maximum influence at a point due to a series of
concentrated loads

Absolute maximum shear and moment
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INTRODUCTION TO INFLUENCE LINES

Influence lines describe the variation of an analysis variable
(reaction, shear force, bending moment, twisting moment, deflection, etc.) at a point
(say at C in Figure 6.1)

A B

Why do we need the influence lines? For instance, when loads pass over a structure,
say a bridge, one needs to know when the maximum values of shear/reaction/bending-
moment will occur at a point so that the section may be designed

Notations:

— Normal Forces - +ve forces cause +ve displacements in +ve directions

— Shear Forces - +ve shear forces cause clockwise rotation & - ve shear force
causes anti-clockwise rotation

— Bending Moments: +ve bending moments cause “cup holding water” defdtthed

chane




INFLUENCE LINES FOR BEAMS

 Procedure:

(1) Allow a unit load (either 1b, 1N, 1kip, or 1 tonne) to move over beam
from left to right

(2) Eind the values of shear force or bending moment, at the point under
consideration, as the unit load moves over the beam from left to right

(3) Plot the values of the shear force or bending moment, over the length of
the beam, computed for the point under consideration
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3.3 MOVING CONCENTRATED LOAD

3.3.1 Variation of Reactions Rﬁand Rg.as functions of load position

|
— x
[}
A v B
| |
L 10 ft |
~ |
| 3 ft N
| “ XM =0
(Re)(10) = (1)(x) =0
RB = X/10
RA = 1'RB
= 1-x/10
X
‘ B
A c /‘\
RA:l-X/lO RB= x/10
A f
C ?
Ra=1-x/10

Rg= x/10 120



Rapoccursonly at A; Rgoccurs only atB

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.—\

Influence
line for R

1.0
Influence line x/10
for R
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3.3.2 Variation of Shear Force at C as a function of load position

0 <x < 3ft(unitload to the left of C)
1.0

<

A l

Ra= 1-x/10 Re = x/10

| 10 ft

|

C |

x/10

Shear force at C is —ve, V¢ =-x/10
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3<x<10 ft (unitload to the right of C)

C
A l
3 ft |
R, = 1-x/10 Rg = x/10
\l/
Ra = 1-x/10 TC
T
1 \‘\\\ Shear force at C is +ve = 1-x/10
: ~
|
| 0.7
! +ve
|
! - - \ |
|
\ & 0.3 i
Influence line for shear at C 11
|
|
|
|
|

~ <
<o
-
-~
-~—o
-~
~
~-—_
-~
~
-
-~
-~
-~
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3.3.3 Variation of Bending Moment at C as a function of load position

0<x<3.0ft(Unitload to the left of C)

A C] B
3 ft |
|
Ra=1-x/10 Ra = x/10
| 10 ft |
| |
x/10 x/10
/
(x/lO)(7)< ; (x/10)(7) |
C q\ q\
x/10 x/10

Bending momentis +ve at C
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3<x<10 ft(Unitload to the right of C)

| x ft |

Ra= 1-x/10 Ra = x/10

| 10 ft |

1-x/10

| 5 (1-x/10)(3) 1-x/10
j-\xllo ﬁ#
(1-x/10)(3) T (1-x/10)(3)

Moment at C is +ve

(1-7/10)(3)=2.1 kip-ft

7 o/ s

Influence line for bending
Moment at C
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3.4 QUALITATIVE INFLUENCED LINES - MULLER-
BRESLAU’S PRINCIPLE

The principle gives only a procedure to determine of the influence line of a
parameter for a determinate or an indeterminate structure

But using the basic understanding of the influence lines, the
magnitudes of the influence lines also can be computed

In order to draw the shape of the influence lines properly, the capacity of the
beam to resist the parameter _investigated (reaction, bending moment, shear

force, etc.), at that point, must be removed

The principle states that: The influence line for a parameter (say, reaction, shear
or bending moment), at a point, is to the same scale as the deflected shape of
the beam, when the beam is acted upon by that parameter.

— The capacity of the beam to resist that parameter, at that point, must be
removed.

— Then allow the beam to deflect under that parameter
— Positive directions of the forces are the same as before
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PROBLEMS - Influence Line for a Determinate Beam
by Muller-Breslau’s Method

influence line for A,

@ (b) )

Fig. 6-12

Influence line for Reaction at A
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Influence Lines for a Determinate Beam by Muller-
Breslau’s Method

influence line for Ve influence line for M.
(cy ()
Fig. 6-13 Fig. 6-14

Influence Line for
Bending Moment at C

Influence Line for Shear at C
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Influence Lines for an Indeterminate Beam by Muller-
Breslau’s Method

1
! _ Influence Line for
-ri%a%r E;l e & Shear at E
1 (b)
1
fm::__r_;l
e O ,}H%r
!’ ©) foE
Fig. 9-24
A% e
1 1
g N
:.n N /])‘é{t\;_.f..

()

Fig. 9-25

Influence Line for Bending Moment at E 129




INFLUENCE LINE FOR FLOOR GIRDERS

Floor systems are constructed as shown in figure below,

(2)

1
Elevation : i
¥

Stringers —\ Tru\ss Floor beams

I | .~ B

i

\
\
/

Truss

Plan (deck not shown)

Fig. 8.14



INFLUENCE LINES FOR FLOOR GIRDERS (Cont’d)

™~ Girder

Girder
z
I
I
|
I
|
! —
|
L.,
Plan (deck not shown)

‘{-— Stringers

=] — Stringer

Ginder—aF > Floor beam

Section b-b

k

Stringer —J D

Cl

De

Girder/

Section a-a
{(b)

131
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3.6 INFLUENCE LINES FOR FLOOR GIRDERS (Cont’d)

3.6.1 Force Equilibrium Method:

Draw the Influence Lines for: (a) Shear in panel CD of
the girder; and (b) the moment at E.

A__ B C D_E F
| |
F
B C D E
X /—%

/ 5 spaces @ 10 each =50 ft
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Place load over region A'B” (0 < x < 10 ft)

Find the shear over panel CD

Vep= - X/50

At x=0,V, =0

At x=10, V-, =-0.2 lleT 4 E
Shear is -ve R-=x/50

Find moment at E = +(x/50)(10)=+x/5 ( F

At x=0, M=0 E

At x=10, M=+2.0 +ve moment R-=x/50
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Continuation of the Problem

. L. forV@

2.0

=
_<]

I. L. for I\/IE
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Problem Continued -
Place load over region B'C” (10 ft < x < 20ft)

Vep = -Xx/50 Kip
At x =10 ft
At x = 20 ft Cl— 5 F
Vep =-0.4 Shear is -ve
Re= x/50
CT—) (I
Mg = +(x/50)(10) C c >( D F
= +x/5 kip.ft :
Moment is +ve Re=x/50

At x = 10 ft, Mg = +2.0 kip.ft
At x = 20 ft, Mg = +4.0 kip.ft
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I. L. forVQ

: +ve : 4.0
2.0 !

I. L. for ME
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Place load over region C'D" (20 ft < x < 30 ft)

When the load is at C’ (x = 20 ft)

1 | | |
5 [——1
Shear Is -ve
. R.=20/50
When the load isat D’ (x = 30 ft) Jﬁ
A i |l TI |l ]
B C D
R,= (50 - X)/50 Shear is +ve
Vep=+ 20/50

=+ 0.4 kip
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M. = + (x/50)(10) = + X/5!

Re=x/50

|
|
|
L |
oad P :<@><|
| : E
| | : +ve moment
| 1 1D’
A B’ C’ |
|
|
A B g /Vé I 1
’ D
I. L. for Vo

2.0 4.0 6.0
|. L. for M
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Place load over region D'E” (30 ft < x <40 ft)

Vo= + (1-x/50) kip !

A i Iﬂl |l DI |

= (1-x/50) Shear is +ve

|70
>

'/

M= +(x/50)(10)

= + x/5 kip.ft <| ‘E D(‘

Moment is +ve

Re=X/50

At x = 30 ft, Mg = +6.0
At X = 40 ft, M = +8.0
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Problem continued

0.2

+ve

|. L. for Vg

. L. for I\/IE
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Place load over region E'F’ (40 ft < x < 50 ft)

Vep = + 1-x/50 At =40 ft, Vo= + 0.2
At x = 50 ft, Vp = 0.0

X | 1.0

A B' |lCT| |lDT| E |
Ra=1-x/50 Shear is +ve

M= + (1-x/50)(40) = (50-x)*40/50 = +(4/5)(50-X)

X

|
e =

_ Moment is +ve
R,=1-x/50 At x =40 ft, M= + 8.0 kip.ft
At x =50 ft, Mc=0.0 141




1.0

l. L. for Vp

I. L. for ME
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INFLUENCE LINES FOR TRUSSES

Draw the influence lines for: (a) Force in Member GF; and
(b) Force in member FC of the truss shown below in Figure below
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Problem 3.7 continued -
3.7.1 Place unit load over AB

(1) To compute GF, cut section (1) - (1)

(1)
[/ F E

Av >600
B ( C D
Ra= 1- x/60 @) Ro=x/60
At x = 0 Taking moment about B to its right,
£ =0 (Rp)(40) - (Fr)(10V3) = 0
At x = 20 ft For = (x/60)(40)(1/ 10V3) = x/(15 \3) (-ve)

For=-0.77
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PROBLEM CONTINUED -
(11) To compute FE, cut section (2) - (2)

¥

—1-x/60 @)

Resolving vertically over the right hand section
FFC 008300 = RD - O
F-c = Rp/c0s30 = (x/60)(2/V3) = x/(30 V3) (-ve)
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At X = 01 FFC - OO
At x =20 f't, FFC = -0.385

20 ft

........... |. L. for Fse

-Vve

ve |. L. for Frc
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PROBLEM Continued -
Place unit load over BC (20 ft < x <40 ft)

[Section (1) - (1) is valid for 20 < x < 40 ft]

(1) To compute F@ use section (1) -(1)

1
G ( ) F e
\\ (40720
I X \\\ \ f (X—20)/20
\E\/reacllons at nodes
A N
20 ft B ‘' C D
(1) I |

BA:]--XIGO (X_ZO) ! (40-X) ! _Q:X/GO

Taking moment about B, to its left,
(Ra)(20) - (Fge)(10V3) = 0
Fer = (20R)/(10V3) = (1-x/60)(2 /N3)

At x =20 ft, F,; = 0.77 (-ve)

At x =40 ft, FFG =0.385 ('Ve) 147



PROBLEM Continued -
(11) To compute F&, use section (2) - (2)

Section (2) - (2) is valid for 20 < x < 40 ft

G F A8

(40-X)/20 (x-20)/20"
X l NA:F,.C”/i,";L

v N a0

/ vy 600

B Sl c D
()
R, =1-x/60 Rp=x/60

Resolving force vertically, over the right hand section,
Fec c0s30 - (x/60) +(x-20)/20 =0
Fec c0s30 = x/60 - x/20 +1= (1-2x)/60 (-ve)
Fee = ((60 - 2X)/60)(2/+/3) -ve
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At x = 20 ft, Frc = (20/60)(2/ V3) = 0.385 (-ve)
At x = 40 ft, Fr. = ((60-80)/60)(2/ V3) = 0.385 (+ve)

0.77 0.385

. L. for FE

I. L. for FE
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PROBLEM Continued -
3.7.3 Place unit load over CD (40 ft < X <60 ft)

(1) To compute FG_F, use section (1) - (1)

s WU - £
| /N NS XZA0) 1,7\ (60-X)
(60-x)720 (x-40)/20
A y
20 ft c ) / D
R,=1x 160 reactions at nodes BQ:X 160

Take moment about B, to its left,
(FFG)(]-O\/3) - (Ra)(20) =0
Fee = (1-x/60)(20/103) = (1-x/60)(2/+/3) -ve

At x =40 ft, F; = 0.385 kip (-ve)

At x = 60 ft, Feg = 0.0 o



PROBLEM Continued -
(il) To compute Frs, use section (2) - (2)

reactlons at node
E
(60- x)/20

(x-40)/20
A B q x-40 __ 60-X P
2 ! !
R, =1-x/60 @) Ro=x/60

Resolving forces vertically, to the left of C,

(Rp) - Fec c0s30=0
Fec = Ra/cos 30 = (1-x/10) (2/+/3) +ve
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At x =40 ft, F- = 0.385 (+ve)
At x =60 ft, Fr- = 0.0

0.385 . L. for FE

\% /
| 0.385

0.770

I. L. for FE
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MAXIMUM SHEAR FORCE AND BENDING MOMENT
UNDER A SERIES OF CONCENTRATED LOADS

s)
T ay a,

Pl P2 )T P3 P4
& dy a,
C.L.
N OB C>C 5 QD O | E
/11 AF X |
L/2 Pr= resultant load BE
R L —

Taking moment about A,
Re x L=Pg x[L/2 - (x - x)]
153
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=—(L/2-Xx+ Xx)
L

R

E



Taking moment about E,

R,xL=P,x[L/2+(x=x)]

P, _
R, = ] (L/2+ x —Xx)

M, =R, x(L/2+x)-P(a,+a,)—-P,xa,

D

P _
= ——(L/2+x-x)(L/2+x)-P/(a,+a,)—P,x(a,)

-

_ _R v PR
0= (L/2+ x—Xx)+ (L/72+ x)(-1)
L

= —B[(L/2)+X—-x—(L/2)=x]

The centerline must divide the distance between the resultant of
all the loads in the moving series of loads and the load considered
under which maximum bending moment occurs.
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