
SCRIPTING LANGUAGES

 Prepared by:

 Ms. CH Srividya
 Ms. Y Harika

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

COMPUTER SCIENCE AND ENGINEERING

B.Tech VIII Semester

1

UNIT-I

Introduction to Perl and Scripting

2

Perl
 "Practical Extraction and Reporting Language"

written by Larry Wall and first released in 1987.

 Perl has become a very large system of modules.

Name came first, then the acronym designed to be a

"glue" language to fill the gap between compiled

programs (output of "gcc", etc.) and scripting languages.

 "Perl is a language for easily manipulating text, files

and processes": originally aimed at systems

administrators and developers.
3

What is Perl?

4

Perl is a High-level Scripting language.

Faster than sh or csh, slower than C.

No need for sed, awk, head, wc, tr, …

Compiles at run-time.

Available for Unix, PC, Mac.

Best Regular Expressions.

What‘s Perl Good For?

5

Quick scripts, complex scripts.

Parsing & restructuring data files.

CGI-BIN scripts.

High-level programming

 Networking libraries

 Graphics libraries

 Database interface libraries

What‘s Perl Bad For?

6

Compute-intensive applications. (use C)

Hardware interfacing .(device drivers…)

Executing Perl scripts

7

“Bang path" convention for scripts.
 can invoke Perl at the command line, or

 add #!/public/bin/perl at the beginning of the script.
 exact value of path depends upon your platform. (use "which

perl" to find the path)

One execution method
% perl
print "Hello, World!\n";
CTRL-D
Hello, World!

Preferred method

Set bang-path and ensure executable flag is set on
the script file

Perl Basics

8

Comment lines begin with: #

File Naming Scheme

 filename.pl (programs)

 filename.pm (modules)

Example prog: print ―Hello, World!\n‖;

Perl Basics

9

Statements must end with semicolon.

 $a = 0;

Should call exit() function when finished.

 Exit value of zero means success

 exit (0); # successful

 Exit value non-zero means failure

 exit (2); # failure

Data Types

10

Integer
 25

 8#100

750000 1_000_000_000

16#FFFF0000

6.02e23 -1.6E-8

Floating Point
 1.25 50.0

String

 ‗hi there‘ ―hi there, $name‖ qq(tin can)

 print ―Text Utility, version $ver\n‖;

Data Types

11

Boolean

 0 0.0 ―‖ "0"

 all other values

represent False

represent True

Variable Types

12

Scalar
 $num = 14;

 $fullname = ―John H. Smith‖;

 Variable Names are Case Sensitive

 Underlines Allowed: $Program_Version = 1.0;

Scalars

13

Usage of scalars
print ("pi is equal to: $pi\n");
print "pi is still equal to: ", $pi, "\n";

$c = $a + $b

A scalar variable can be "used" before it is first
assigned a value.
 Result depends on context.

 Either a blank string ("") or a zero (0).

 This is a source of very subtle bugs.

 If variable name is misspelled — what should be the result?

 Do not let yourself get caught by this – use the "-w" flag in

the bang path:
#!/public/bin/perl -w

Variable Types

14

List (one-dimensional array)

 @memory = (16, 32, 48, 64);

 @people = (―Alice‖, ―Alex‖, ―Albert‖);

 First element numbered 0

$names[0] = ―Fred‖;  Single elements are scalar:

 Slices are ranges of elements

@guys = @people[1..2];

 How big is my list?

 print ―Number of people: ―, scalar @people, ― \n‖;

Variable Types

15

Hash (associative array)

 %var = { ―name‖ => ―paul‖, ―age‖ => 33 };

 Single elements are scalar.

 print $var{―name‖}; $var{age}++;

 How many elements are in my hash?

@allkeys = keys(%var);

 $num = @allkeys;

Operators

16

Math

 The usual suspects: + - * / %

$total = $subtotal * (1 + $tax / 100.0);

 Exponentiation: **

$cube = $value ** 3;

$cuberoot = $value ** (1.0/3);

 Bit-level Operations

left-shift:

right-shift:

<< $val = $bits << 1;

>> $val = $bits >> 8;

Operators

17

Assignments

 As usual: = += -= *= /= **= <<= >>=

$value *= 5;

$longword <<= 16;

++$counter

 Increment: ++

$counter++

 Decrement: --

$num_tries-- --$num_tries

Arithmetic Operators

18

 Perl operators are the same as in C and Java these
are only good for numbers.
 But $b = "3" + "5";

print $b, "\n"; # prints the number 8

 If a string can be interpreted as a number given
arithmetic operators.

 What is the value of $b?:
$b = "3" + "five" + 6?

 Perl semantics can be tricky to completely understand.

Operators

19

Boolean (against bits in each byte)

 Usual operators: & |

 Exclusive-or: ^

 Bitwise Negation: ~

 $picture = $backgnd & ~$mask | $image;

Boolean Assignment

 &= |= ^=

 $picture &= $mask;

Logical Operators

20

Logical Operators

 &&

 | |

 !

And operator

Or operator

Not operator

Short Circuit Operators

21

expr1 && expr2

 expr1 is evaluated.

 expr2 is only evaluated if expr1 was true.

expr1 || expr2

 expr1 is evaluated.

 expr2 is only evaluated if expr1 was false.

Examples

 open (…) || die ―couldn‘t open file‖;

 $debug && print ―user‘s name is

$name\n‖;

Continued…

22

Modulo: %

 $a = 123 % 10; ($a is 3)

Multiplier: x

 print ―ride on the ‖, ―choo-‖x2, ―train‖;

(prints ―ride on the choo-choo-train‖)

 $stars = ―*‖ x 80;

Assignment: %= x=

Operators

23

String Concatenation: .=

 $name = ―Uncle‖ . $space . ―Sam‖;

 $cost = 34.99;

 $price = ―Hope Diamond, now only \$‖;

 $price .= ―$cost‖;

Conditional Operators

24

Equal:

Less/Greater Than:

Less/Greater or equal:

Numeric String

== eq

< > lt gt

<= >= le ge

Zero and empty-string means False

All other values equate to True

Conditional Operators

25

Numeric String

Comparison

 Results in a value of

<=>

-1, 0, or 1

cmp

! Logical Not

 if (! $done)

{

print ―keep going‖;

}

Numeric Vs. String Comparisons

#!/usr/bin/perl

$a = "123";

$b = "1234";

$c =

"124―; if

($b > $c)

{

print "$b > $c\n";

} else {

print "$b <= $c\n";

}

if ($b gt $c)

{

print "$b gt $c\n";

} else

{

print "$b le $c\n";

}

1234 > 124

1234 le 124

26

Control Structures
―IF‖ statement - first style

if ($porridge_temp < 40)

{

print ―too hot.\n‖;

}

elsif ($porridge_temp > 150)

{

print ―too cold.\n‖;

}

else

{

print ―just right\n‖;

} 27

Control Structures

―IF‖ statement - second style

 Statement if condition;

print ―\$index is $index‖ if $DEBUG;

 Single statements only

 Simple expressions only

―Unless‖ is a reverse ―if‖

 Statement unless condition;

print ―millennium is here!‖ unless $year < 2000;

28

Control Structures

29

―For‖ loop - first style

 for (initial; condition; increment) { code }
 for ($i=0; $i<10; $i++)

{

print ―hello\n‖;

}

―For‖ loop - second style

 for [variable] (range) { code }
 for $name (@employees)

 {
print ―$name is an employee.\n‖;

}

Control Structures

30

―For‖ loop with default loop variable
 for (@employees)

{

print ―$_ is an employee\n‖;

print; # this prints ―$_‖

}

Foreach and For are actually the same.

Control Structures

31

―While‖ loop
 while (condition) { code }

$cars = 7;

while ($cars > 0) {

print ―cars left: ‖, $cars--, ―\n‖;

}

while ($game_not_over) {…}

Control Structures

32

―Until‖ loop is opposite of ―while‖

 until (condition) { code }

$cars = 7;

until ($cars <= 0)

 {

print ―cars left: ‖, $cars--, ―\n‖;

}

while ($game_not_over) {…}

Control Structures

33

Bottom-check Loops

 do { code } while (condition);

 do { code } until (condition);

 $value = 0;

do {

print ―Enter Value: ‖;

$value = <STDIN>;

} until ($value > 0);

No Switch Statement?!?

34

Perl needs no Switch (Case) statement.

Use if/else combinations instead

 if (cond1) { … }

elsif (cond2) { … }

elsif…

else…

This will be optimized at compile time.

Subroutines (Functions)

35

Defining a Subroutine

 sub name { code }

 Arguments passed in via ―@_‖ list

sub multiply

{

my ($a, $b) = @_;

return $a * $b;

}

 Last value processed is the return value.

(could have left out word ―return‖, above)

Subroutines (Functions)

36

Calling a Subroutine

 &subname; # no args, no return value

 &subname (args);

 retval = &subname (args);

 The ―&‖ is optional so long as…

subname is not a reserved word.

subroutine was defined before being called.

Subroutines (Functions)

37

Passing Arguments

 Passes the value

 Lists are expanded

@a = (5,10,15);

@b = (20,25);

&mysub(@a,@b);

 This passes five arguments: 5,10,15,20,25

 mysub can receive them as 5 scalars, or one array

Subroutines (Functions)

38

Examples

 sub good1

{
my($a,$b,$c) = @_;

}

&good1 (@triplet);

 sub good2

{
my(@a) = @_;

}

&good2 ($one, $two, $three);

Subroutines (Functions)

39

Examples

 sub good3

{

my($a,$b,@c) = @_;

}

&good3 ($name, $phone, @address);

 sub bad1

{

my(@a,$b) = @_;

}

@a will absorb all args, $b will have nothing.

Dealing with Hashes

40

Keys() - get an array of all keys

 foreach (keys (%hash)) { … }

Values() - get an array of all values

 @array = values (%hash);

Each() - get key/value pairs

 while (@pair = each(%hash))

{

print ―element $pair[0] has $pair[1]\n‖;

}

Dealing with Hashes

41

Exists() - check if element exists

 if (exists $ARRAY{$key}) { … }

Delete() - delete one element

 delete $ARRAY{$key};

Launching External Programs

42

The ―system‖ library call

 example: system (―ls -la‖);

 Returns exit status of program it launched

 a shell actually runs, so you can use:

 pipes (―|‖)

 redirection (―<‖, ―>‖)

Launching External Programs

43

Run a command, insert output inline

 $numlines = `wc -l < /etc/passwd`;

Command Line Arguments

44

$0 = program name

@ARGV array of arguments to program

Zero-based index (default for all arrays)

Example

 yourprog -a somefile

 $0 is ―yourprog‖

 $ARGV[0] is ―-a‖

 $ARGV[1] is ―somefile‖

Basic File I/O

45

Reading a File

 open (FILEHANDLE, ―$filename‖) || die \

―open of $filename failed: $!‖;

while (<FILEHANDLE>)

{

chomp $_; # or just: chomp;

print ―$_\n‖;

}

close FILEHANDLE;

Basic File I/O

46

Writing a File

 open (FILEHANDLE, ―>$filename‖) || die \

―open of $filename failed: $!‖;

while (@data) {

print FILEHANDLE ―$_\n‖;

note, no comma!

}

close FILEHANDLE;

Basic File I/O

47

Predefined File Handles

 <STDIN>

 <STDOUT>

 <STDERR>

input

output

output

 print STDERR ―big bad error occurred\n‖;

 <> ARGV or STDIN

Basic File I/O

48

How does <> work?

 Opens each ARGV filename for reading

 If no ARGV‘s, reads from stdin

 Great for writing filters, here‘s ―cat‖:

while (<>) {

print; # same as print ―$_‖;

}

Basic File I/O

49

Reading from a Pipe

 open (FILEHANDLE, ―ps aux |‖) || die \

―launch of ‗ps‘ failed: $!‖;

while (<FILEHANDLE>)

{

chomp;

print ―$_\n‖;

}

close FILEHANDLE;

Basic File I/O

50

Writing to a Pipe

 open (FILEHANDLE, ―| mail frank‖) || die \

―launch of ‗mail‘ failed: $!‖;

while (@data)

{

print FILEHANDLE ―$_\n‖;

}

close FILEHANDLE;

Common mistakes

Writing comma after filehandle in print statement

Using == instead of eq, and != instead of ne

Leaving $ off the front of a variable on th left side

of an assignment

Forgetting the & on a subroutine call

Leaving $ off of the loop variable of foreach

Using else if or elif instead of elsif

Forgetting trailing semicolon

Forgetting the @ or @ on the front of variables

Saying @foo[1] when you mean $foo[1]
51

UNIT-II

Advanced Perl

52

Why PERL ???

53

Practical extraction and report language

Similar to shell script but lot easier and more

powerful

Easy availability

All details available on web

Why PERL ???

54

Perl stands for practical extraction and report
language.

Perl is similar to shell script. Only it is much
easier and more akin to the high end
programming.

Perl is free to download from the GNU website so
it is very easily accessible .

Perl is also available for MS-DOS,WIN-NT and
Macintosh.

Basic Concepts

55

Perl files extension .Pl

Can create self executing scripts

Advantage of Perl

Can use system commands

Comment entry

Print stuff on screen

Basics

56

Can make perl files self executable by making first

line as #! /bin/perl.

 The extension tells the kernel that the script is a perl

script and the first line tells it where to look for perl.

The -w switch tells perl to produce extra warning

messages about potentially dangerous constructs.

Basics

57

The advantage of Perl is that you don't have to

compile create object file and then execute.

All commands have to end in ";" can use unix

commands by using.

 System("unix command");

EG: system("ls *");

 Will give the directory listing on the terminal where it

is running.

Basics

58

The pound sign "#" is the symbol for comment

entry. There is no multiline comment entry , so

you have to use repeated # for each line.

The "print command" is used to write outputs on

the screen.

 Eg: print "this is ece 902";

Prints "this is ece 902" on the screen .It is very similar

to printf statement in C.

 If you want to use formats for printing you can use

printf.

How to Store Values

59

Scalar variables

List variables

Push, pop, shift, unshift, reverse

Hashes, keys,values,each

Read from terminal, command line arguments

Read and write to files

Scalar Variables

60

They should always be preceded with the $

symbol.

 There is no necessity to declare the variable

before hand .

 There are no data types such as character or

numeric.

The scalar variable means that it can store only

one value.

Scalar Variable

61

If you treat the variable as character then it
can store a character.

If you treat it as string it can store one word

.If you treat it as a number it can store one
number.

Eg $name = "betty" ;
 The value betty is stored in the scalar variable

$name.

Scalar Variable

62

EG: print "$name \n"; The output on the

screen will be betty.

Default values for all variables is undef.

Which is equivalent to null.

List Variables

63

They are like arrays. It can be considered as
a group of scalar variables.

They are always preceded by the @symbol.

 Eg @names = ("betty", "veronica",― tom");

Like in C the index starts from 0.

List Variables

64

 If you want the second name you should use

$names[1] ;

Watch the $ symbol here because each element is
a scalar variable.

$ Followed by the list variable gives the length of
the list variable.

 Eg $names here will give you the value 3.

Operators in Lists

65

These are operators operating on the list variables.

 Push and pop treat the list variable as a stack and

operate on it. They act on the higher subscript.

 Eg push(@names,"lily") , now the @names will

contain ("betty","veronica","tom","lily").

 Eg pop(@names) will return "lily" which is the last

value. And @names will contain

("betty","veronica","tom").

Operators in Lists

66

contains

Shift and unshift act on the lower subscript.

 Eg unshift(@names,"lily"), now @names

("lily","betty","veronica","tom").

 Eg shift(@names) returns "lily" and @names contains

("betty","veronica","tom").

Reverse reverses the list and returns it.

Hashes

67

Hashes are like arrays but instead of having

numbers as their index they can have any

scalars as index.

Hashes are preceded by a % symbol.

 Eg we can have %roll numbers = ("A",1,"B",2,"C",3);

Keys

68

 If we want to get the roll number of A we have to
say $roll numbers{"a"}. This will return the value
of roll number of A.

Here A is called the key and the 1 is called its
value.

Keys() returns a list of all the keys of the given
hash.

Values returns the list of all the values in a given
hash.

keys

69

Each function iterates over the entire hash

returning two scalar value the first is the key and

the second is the value

 Eg $firstname,$lastname = each(%lastname) ;

 Here the $firstname and the $lastname will get a new

key value pair during each iteration

Read / Write to Files

70

To read and write to files we should create

something called handles which refer to the files.

To create the handles we use the OPEN command.

 Eg open(filehandle1,"filename"); Will create the handle

called FILEHANDLE1 for the file "filename".

Read / Write to Files

71

This handle will be used for reading.

 Eg open(filehandle2,">filename"); Will create the

handle called FILEHANDLE2 for the file "filename".

This handle will be used for writing.

 Watch out for the ">" symbol before the filename.

This indicates that the file is opened for writing.

Read / Write to Files

72

Once the file handles have been obtained . the

reading and writing to files is pretty simple.

 Eg $linevalue = <FILEHANDLE1> ;

This will result in a line being read from the file

pointed by the filehandle and the that line is stored

in the scalar variable $linevalue.

Read / Write to Files

73

When the end of file is reached the <FILEHANDLE1>

returns a undef.

 Eg print FILEHANDLE2 "$linevalue\n";

This will result in a line with the value as in $linevalue

being written to the file pointed by the filehandle2 .

For closing a filehandle use lose(FILEHANDLE);

Control Structures

74

If / unless statements

While / until statements

For statements

Foreach statements

Last , next , redo statements

&& And || as control structures

If / Unless

75

If similar to the if in C.

Eg of unless.

 Unless(condition){}.

When you want to leave the then part and

have just an else part we use unless.

While / Until / For

76

till the

While is similar to the while in C.

Eg until.

 Until(some expression){}.

So the statements are executed
condition is met.

For is also similar to C implementation.

Foreach Statement

77

This statement takes a list of values and

assigns them one at a time to a scalar

variable, executing a block of code with

each successive assignment.

 Eg: Foreach $var (list) {}.

Last / Next / Redo

78

Last is similar to break statement of C.

 Whenever you want to quit from a loop you can use

this.

To skip the current loop use the next statement.

 It immediately jumps to the next iteration of the loop.

The redo statement helps in repeating the same

iteration again.

&& And || Controls

79

Unless(cond1){cond2}.

 This can be replaced by cond1&&cond2.

Suppose you want to open a file and put a message

if the file operation fails we can do.

 (Condition)|| print "the file cannot be opened―;

This way we can make the control structures

smaller and efficient.

Functions

80

Function declaration

Calling a function

Passing parameters

Local variables

Returning values

Function Declaration

81

The keyword sub describes the function.

 So the function should start with the keyword sub.

 Eg sub addnum { …. }.

 It should be preferably either in the end or in the

beginning of the main program to improve

readability and also ease in debugging.

Function Calls

82

$Name = &getname();

The symbol & should precede the function

name in any function call.

Parameters of Functions

83

We can pass parameter to the function as a list .

 The parameter is taken in as a list which is

denoted by @_ inside the function.

So if you pass only one parameter the size of @_

list will only be one variable. If you pass two

parameters then the @_ size will be two and the

two parameters can be accessed by $_[0],$_[1]

More About Functions

84

The variables declared in the main program

are by default global so they will continue

to have their values in the function also.

The result of the last operation is usually the

value that is returned unless there is an

explicit return statement returning a

particular value.

More About Functions

85

There are no pointers in Perl but we can

manipulate

structures.

and even create complicated data

 Local variables are declared by putting 'my' while

declaring the variable.

Regular Expressions

86

Split and join

Matching & replacing

Selecting a different target

$&,$', And $`

Parenthesis as memory

Using different delimiter

Split And Join

87

Split is used to form a list from a scalar data

depending on the delimiter.

 The default delimiter is the space.

fields  It is usually used to get the independent

from a record.

 Eg: $linevalue = "R101 tom 89%";

 $_ = $linevalue.

 @Data = split();

Split and Join

88

Here $data[0] will contain R101 ,$data[1] tom ,

$data[2] .

Split by default acts on $_ variable.

 If split has to perform on some other scalar
variable. Syntax is

 Split (/ /,$linevalue);

 If split has to work on some other delimiter then
syntax is.

 Split(/<delimiter>/,$linevalue);

Special Variables

89

$& Stores the value which matched with

pattern.

$' Stores the value which came after the

pattern in the linevalue.

$` Stores the value which came before the

pattern in the linevalue.

Split and Join

90

Join does the exact opposite job as that of

the split.

It takes a list and joins up all its values into

a single scalar variable using the delimiter

provided.

 Eg $newlinevalue = join(@data);

Matching and Replacing

Suppose you need to look for a pattern and replace

it with another one you can do the same thing as

what you do in unix the command in perl is

 S/<pattern>/<replace pattern>.

This by default acts on the $_ variable.If it has to

act on a different source variable (Eg $newval)

then you have to use.

 Eg @newval=~s/<pattern>/<replace pattern> . 91

Parenthesis VS Memory

Parenthesis as memory.

 Eg fred(.)Barney\1); .

Here the dot after the fred indicates the it is

memory element. That is the \1 indicates that the

character there will be replaced by the first

memory element. Which in this case is the any

character which is matched at that position after

fred.
92

UNIT-III

93

Advanced PHP Programming

 PHP == ‗PHP Hypertext Preprocessor‘

 Open-source, server-side scripting language

 Used to generate dynamic web-pages

 PHP scripts reside between reserved PHP tags

 This allows the programmer to embed PHP scripts

within HTML pages

What is PHP?

94

What is PHP (cont’d)

 Interpreted language, scripts are parsed at run-time

rather than compiled beforehand

Executed on the server-side

Source-code not visible by client

‗View Source‘ in browsers does not display the PHP

code

Various built-in functions allow for fast development

Compatible with many popular databases
95

What does PHP code look like?

96

Structurally similar to C/C++.

Supports procedural and object-oriented paradigm.

(to some degree)

All PHP statements end with a semi-colon.

Each PHP script must be enclosed in the reserved

PHP tag.
<?php

…

?>

Comments in PHP

Standard C, C++, and shell comment symbols

// C++ and Java-style comment

Shell-style comments

97

/* C-style comments

These can span multiple

lines */

Variables in PHP

98

PHP variables must begin with a ―$‖ sign.

Case-sensitive. ($Foo != $foo != $fOo)

Global and locally-scoped variables.

Global variables can be used anywhere.

Local variables restricted to a function or class.

Certain variable names reserved by PHP.

Form variables. ($_POST, $_GET)

Server variables. ($_SERVER)

Variable Usage

// Numerical

99

<?php

$foo = 25;

variable

$bar = “Hello”;// String variable

// Multiplies

// Invalid

$foo = ($foo * 7);

foo by 7

$bar = ($bar * 7);

expression

?>

Echo

100

 The PHP command ‗echo‘ is used to output the

parameters passed to it.

 The typical usage for this is to send data to the

client‘s web-browser.

Syntax

 void echo (string arg1 [, string argn...])

 In practice, arguments are not passed in

parentheses since echo is a language construct

rather than an actual function

Echo example

// Numerical variable

// String variable

// Outputs Hello

// Outputs 25Hello

// Outputs 5x5=25

// Outputs 5x5=25

// Outputs 5x5=$foo

101

<?php

$foo = 25;

$bar = “Hello”;

echo $bar;

echo $foo,$bar;

echo “5x5=”,$foo;

echo “5x5=$foo”;

echo „5x5=$foo‟;

?>

Echo example

102

Notice how echo ‗5x5=$foo‘ outputs $foo

rather than replacing it with 25

Strings in single quotes (‗ ‘) are not

interpreted or evaluated by PHP

This is true for both variables and character

escape-sequences (such as ―\n‖ or ―\\‖)

Arithmetic Operations

103

$a - $b

$a * $b

$a / $b

// subtraction

// multiplication

// division

$a += 5 // $a = $a+5 Also works for *= and /=

Example Program

<? php

$a=15;

$b=30;

$total=$a+$b;

Print $total;

Print ―<p><h1>$total</h1>‖;

// total is 45

?>

104

Concatenation

105

Use a period to join strings into one.
<?php

$string1=“Hello”;

$string2=“PHP”;

$string3=$string1 . “ ” .

$string2;

Print $string3;

?>

Hello PHP

Escaping the Character

106

If the string has a set of double quotation

marks that must remain visible, use the \

[backslash] before the quotation marks to

ignore and display them.
<?php

$heading=“\”Computer Science\””;

Print $heading;

?>

“Computer Science”

PHP Control Structures

}
107

 Control Structures: The structures within a language that allow us to

control the flow of execution through a program or script.

if/else) and Grouped into conditional (branching) structures (e.g.

repetition structures (e.g. while loops).

 Example if/else if/else statement:

if ($foo == 0)
{

echo ‘The variable foo is equal to 0’;
}
else if (($foo > 0) && ($foo <= 5)) {

echo ‘The variable foo is between 1 and 5’;
}
else {

echo ‘The variable foo is equal to ‘.$foo;

If ... Else...

108

If (condition)

{

Statements;

}

Else

{

Statement;

}

<?php

If($user==“John”)

{

Print “Hello John.”;

}

Else

{

Print “You are not

John.”;

}

?>

While Loops

109

While (condition)

{

Statements;

}

<?php

$count=0;

While($count<3)

{

Print “hello

PHP. ”;

$count += 1;

// $count =

$count + 1;

// or

// $count++;

?>

hello PHP.

hello PHP.

hello PHP.

Date Display

110

$datedisplay=date(―yyyy/m/d‖);

Print $datedisplay;

If the date is April 1st, 2009

It would display as 2009/4/1

2009/4/1

$datedisplay=date(―l, F m, Y‖);

Print $datedisplay;

If the date is April 1st, 2009

Wednesday, April 1, 2009

Wednesday, April 1, 2009

Month, Day & Date Format Symbols

M Jan

F January

m 01

n 1

Day of Month d 01

Day of Month J 1

Day of Week l Monday

Day of Week D Mon

111

Functions

112

Functions MUST be defined before then can be

called.

Function headers are of the format.

Note that no return type is specified.

Unlike variables, function names are not case

sensitive. (foo(…) == Foo(…) == FoO(…))

function functionName($arg_1, $arg_2, …, $arg_n)

Functions Example Program

113

<?php

// This is a function

function foo($arg_1, $arg_2)

{

$arg_2 = $arg_1 * $arg_2;

return $arg_2;

}

$result_1 = foo(12, 3);// Store the function

echo $result_1; // Outputs 36

echo foo(12, 3); // Outputs 36

?>

Include Files

114

 Include ―opendb.php‖;

 Include ―closedb.php‖;

 This inserts files; the code in files will be inserted into current

code.

 This will provide useful and protective means once you

connect to a database, as well as for other repeated functions.

Include (―footer.php‖);

The file footer.php might look like:

<hr SIZE=11 NOSHADE WIDTH=―100%‖>

<i>Copyright © 2008-2010 KSU </i>

<i>ALL RIGHTS RESERVED</i>

<i>URL: http://www.kent.edu</i>

http://www.kent.edu/

PHP - Forms

115

Access to the HTTP POST and GET data is simple in PHP

The global variables $_POST[] and $_GET[] contain the request

data.

<? php

if ($_POST["submit"])

echo "<h2>You clicked Submit!</h2>";

else if ($_POST["cancel"])

echo "<h2>You clicked Cancel!</h2>";

?>

<form action="form.php" method="post">

<input type="submit" name="submit" value="Submit">

<input type="submit" name="cancel" value="Cancel">

</form>

PHP Overview

116

Easy learning.

Syntax Perl- and C-like syntax. Relatively easy

to learn.

Large function library

Embedded directly into HTML

Interpreted, no need to compile

Open Source server-side scripting language

designed specifically for the web.

PHP Overview (cont.)

117

Conceived in 1994, now used on +10 million web

sites.

Outputs not only HTML but can output XML, images

(JPG & PNG), PDF files and even Flash movies all

generated on the fly. Can write these files to the file

system.

Supports a wide-range of databases (20+ODBC).

PHP also has support for talking to other services

using protocols such as LDAP, IMAP, SNMP, NNTP,

POP3, HTTP.

 Save as sample.php:

<!– sample.php -->

<html><body>

Hello World!

<?php

echo ―<h2>Hello, World</h2>‖; ?>

<?php

$myvar = "Hello World";

echo $myvar;

?>

</body></html>

First PHP script

118

Data in the tables

119

Function: list all tables in your database.

Users can select one of tables, and show all

contents in this table.

second.php

showtable.php

Second.Php
<html><head><title>MySQL Table Viewer</title></head><body>

<?php

// change the value of $dbuser and $dbpass to your username and password

$dbhost = 'hercules.cs.kent.edu:3306';

$dbuser = 'nruan';

$dbpass = ‗*****************‘;

$dbname = $dbuser;

$table = 'account';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if (!$conn) {

die('Could not connect: ' . mysql_error());

}

if (!mysql_select_db($dbname))

die("Can't select database");

120

Second.Php (Cont.)
$result = mysql_query("SHOW TABLES");

if (!$result) {

die("Query to show fields from table failed");

}

$num_row = mysql_num_rows($result);

echo "<h1>Choose one table:<h1>";

echo "<form action=\"showtable.php\" method=\"POST\">";

echo "<select name=\"table\" size=\"1\" Font size=\"+2\">";

for($i=0; $i<$num_row; $i++) {

$tablename=mysql_fetch_row($result);

echo "<option value=\"{$tablename[0]}\" >{$tablename[0]}</option>";

}

echo "</select>";

echo "<div><input type=\"submit\" value=\"submit\"></div>";

echo "</form>";

mysql_free_result($result);

mysql_close($conn);

?>

</body></html>
121

Showtable.Php

<html><head>

<title>MySQL Table Viewer</title>

</head>

<body>

<?php

$dbhost = 'hercules.cs.kent.edu:3306';

$dbuser = 'nruan';

$dbpass = ‗**********‘;

$dbname = 'nruan';

$table = $_POST[―table‖];

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if (!$conn)

die('Could not connect: ' . mysql_error());

if (!mysql_select_db($dbname))

die("Can't select database");

$result = mysql_query("SELECT * FROM {$table}");

if (!$result) die("Query to show fields from table failed!" . mysql_error());

122

Showtable.Php (Cont.)
$fields_num = mysql_num_fields($result);

echo "<h1>Table: {$table}</h1>";

echo "<table border='1'><tr>";

// printing table headers

for($i=0; $i<$fields_num; $i++) {

$field = mysql_fetch_field($result);

echo "<td>{$field->name}</td>";

}

echo "</tr>\n";

while($row = mysql_fetch_row($result)) {

echo "<tr>";

// $row is array... foreach(..) puts every element

// of $row to $cell variable

foreach($row as $cell)

echo "<td>$cell</td>";

echo "</tr>\n";

}

mysql_free_result($result);

mysql_close($conn);

?>

</body></html> 123

Functions Covered

124

mysql_connect()

mysql_select_db()

include()

mysql_query()

mysql_num_rows()

mysql_fetch_array()

mysql_close()

History of PHP

125

 PHP began in 1995 when Rasmus Lerdorf developed a
Perl/CGI script toolset he called the Personal Home Page or
PHP.

 PHP 2 released 1997 (PHP now stands for Hypertex
Processor). Lerdorf developed it further, using C instead PHP3
released in 1998 (50,000 users)

 PHP4 released in 2000 (3.6 million domains). Considered
debut of functional language and including Perl parsing, with
other major features

 PHP5.0.0 released July 13, 2004 (113 libraries>1,000
functions with extensive object-oriented programming)

 PHP5.0.5 released Sept. 6, 2005 for maintenance and bug fixes

Create your own homepage

126

Login loki.cs.kent.edu.

Create directory ―public_html‖ in your home

directory.

Create two php files (second.php and

showtable.php) we have discussed

Visit your homepage:

http://www.cs.kent.edu/~[username]/second.php

http://www.cs.kent.edu/~

UNIT-IV

Tcl/TK

127

Learning Tcl/TK

128

What is Tcl/TK?

 An interpreted programming language

Build on-the-fly commands, procedures

Platform-independent

Easy to use for building GUIs

Need little experience with programming

 Easy

 Programs are short, efficient

Be willing to learn something new

Why Tcl/TK

129

Easy, fast programming

Free

Download & install Tcl/TK 8.4 on your own

 CSE machines (state) are set up with Tcl/TK 8.0

 http://tcl.activestate.com/software/tcltk/downloadnow84.tml

Lots of online documentation, mostly free

Solutions for AI homework will be in Tcl

Base for the CSLU toolkit

http://tcl.activestate.com/software/tcltk/downloadnow84.tml

Hello World

How to run your Tcl program
 Command line (state.cse.ogi.edu or DOS)

 Type "tclsh" to launch the console

 Type your program directly on the console

 Use the command "source" (source filename)

 Double click your .tcl file (if associated)

Output on the console

 Command: puts "Hello, world!"

130

Hello World

Command line (state.cse.ogi.edu or DOS)

 Type "tclsh" to launch the console

 Type tcl code into console

131

Hello World
Sourced on the console

Type "tclsh", followed by name of program file

######## hello.tcl #######
puts "Hello, world!”

132

Double-clicking your .tcl file (if associated

with wish84.exe)

####### hello.tcl ########

Hello.tcl

wm withdraw .

console show

puts "Hello, world!"

Hello World

133

Basic operations

134

Print to screen (puts)
 puts –nonewline "Hello, world!"

 puts "!!"

Assignment (set)

(using '$' to get the value of a

 set income 32000

 puts "income is $income”

variable)

Mathematical Expressions (expr)
 set a 10.0

 expr $a + 5

 expr int($a/3)

Some Useful Commands

135

Unset: destroy a variable

unset num

 Info: check whether the named variable has been

defined

if {![info exists num]}

{

set num 0

}

incr num

Window commands
wm withdraw .

console show

Special characters

136

: single-line comments, similar to "//" in C

;# : in-line comments, just like "//" in C

\ : escape character, same function as in C also used to

break a long line of code to two lines

$: get the value of a variable

 var : name of variable

 $var : value of variable

[] : evaluate command inside brackets

137

Control structures
 If then else

set income 32000

if {$income > 30000} {

puts "$income -- high"

} elseif {$income > 20000} {

puts "$income -- middle"

} else {

puts "$income -- low"

}

while loops
set i 0

while {$i < 100} {

puts "I am at count $i"

incr i

}

138

Control structures
For loops

for {set i 0} {$i < 100} {incr i}

{

puts "I am at count $i and going up"

after 300

update

}

for {set i 100} {$i > 0} {set i [expr $i - 1]} {

puts "I am at count $i and going down"

}

 foreach loops
set lstColors {red orange yellow green blue purple}

foreach c $lstColors

{

puts $c

}

Control structures

Foreach loops (con't)
set lstColors {red orange yellow green blue purple}

foreach {a b c} $lstColors {

puts "$c--$b--$a"

}

set lstFoods {apple orange banana lime berry grape}

foreach f $lstFoods c $lstColors {

puts "a $f is usually $c"

}

foreach {a b} $lstFoods c $lstColors {

puts "$a & $b are foods. $c is a color."

}

139

140

Procedures

Procedure calls (embedded commands)
 set b [expr $a + 5]

 puts "The value of b is $b"

Create your own procedure (called by value only)
proc foo {a b c}

{

return [expr $a * $b - $c]

}

puts [expr [foo 2 3 4] + 5]

proc bar { }

{

puts "I'm in the bar procedure"

}

bar

Variable scope

141

Local and Global variables
set a 5

set b 6

set c 7

proc var_scope { }

{

global a

set a 3

set b 2

set ::c 1

}

var_scope

puts "The value for a b c is: $a $b $c"

Lists in Tcl/TK

142

 Everything is a list!

Many ways to create a list
o

o

o

o

o

Set myList [list a b c]

Set myList "a b c"

Sset myList {a b c}

Sset myList [list $a $b $c]

Set myList {$a $b $c}

o

o

Set myList [list a b c]

c‖

o

Set myList "a b

Set s Hello

o

o

o

o

Puts "The length of $s is [string length $s]."

=> The length of Hello is 5.

Puts {The length of $s is [string length $s].}

=> The length of $s is [string length $s].

List operations

143

Set lstStudents [list "Fan" "Kristy" "Susan"]

Puts [lindex $lstStudents 0]

Puts [lindex $lstStudents end]

Puts [llength lstStudents] (unexpected result!)

Puts [llength $lstStudents]

Lappend $lstStudents "Peter" (wrong!)

Lappend lstStudents "Peter“

List operations

Puts [linsert lstStudents 2 "Tom"] (wrong!)

Puts [linsert $lstStudents 2 "Tom"]

Set lstStudents [linsert $lstStudents 2 "Tom"]

Set lstStudents [lreplace $lstStudents 3 3

"Rachel"]

Set lstStudents [lreplace $lstStudents end end]

Set lstStudents [lsort –ascii $lstStudents]

Puts [lsearch $lstStudents "Peter"]
144

Lists of lists (of lists…)

145

Set a [list [list x y z]]

Puts [lindex $a 0]

Puts [lindex [lindex $a 0] 1]

Puts [lindex [lindex $a 1] 0] (unexpected result)

Set a [list x [list [list y] [list z]]]

=> How to get to the z?

Set arg1 [list g [list f [list h [list i X]]] [list r Y] k]

Set arg2 [list g [list f [list h [list i Y]]] [list r b] L]

Set both [list $arg1 $arg2]

Puts $both

Array operations

146

Associative arrays (string as index)

set color(rose) red

set color(sky) blue

set color(medal) gold

set color(leaves) green

set color(blackboard) black

puts [array exists color] (tests if an array with
the name "color" exists)

Array operations

147

Puts [array exists colour]

Puts [array names color](returns a list of the index
strings)

foreach item [array names color]

{

puts "$item is $color($item)"

} (iterating through array)

set lstColor [array get color] (convert array to list)

array set color $lstColor (convert list to array)

Regular expressions

148
formatString ?arg arg ...?

Regsub
set stmt "Fan is one of Shania‘s fans"

regsub –nocase "fan" $stmt "Kristy" newStmt

?switches? exp string subSpec ?varName?

puts "$newStmt"

regsub –nocase –all "fan" $stmt "Kristy" newStmt

puts "$newStmt“

 Regexp
(returns 1 if the regular expression matches the string, else
returns 0)

puts [regexp –nocase "fan" $stmt]

?switches? regexp string

Format

puts [format "%s is a %d-year-old" Fan 26]

String operations

149

Set statement " Fan is a student “

Set statement [string trim $statement]

Puts [string length $statement]

Puts [string length statement]

Puts [string index $statement 4]

Puts [string index $statement end]

Puts [string first "is" $statement]

(string last)

Puts [string first $statement "is"]

Puts [string range $statement 4 end]

Puts [string replace $statement 9 end "professor"]

Puts [string match "*student" $statement] (* ? [])

150

File operations
set fRead [open source.txt r]

set fWrite [open target.txt w]

while {![eof $fRead]}

{

set strLine [gets $fRead] ;#or gets $fRead strLine

regsub –nocase –all "fan" $strLine "kristy" strLine

puts $fWrite $strLine

}

close $fRead

close $fWrite

################ ################ source.txt

Fan is a CSE student.

Fan is also one of Shania‘s fans.

Kristy and Fan are classmates.

Miscellaneous commands

151

Eval: Execute a command dynamically built up in

your program.

set Script

{

set Number1 17

set Number2 25

set Result [expr $Number1 + $Number2]

}

eval $Script

Exec: execute external programs.

Debugging your program

152

Use puts statements (with update and after when using

wish84.exe to run program)

Tk_messageBox: pop up a message box

 Tk_messageBox –message "run to here" –type ok

Tclpro

 Trace variable variable Name operation procedure

Common pitfalls

153

Missing $ or extraneous $

Using {a} vs "a" vs [list a]

Creating list items that are empty lists

 a b {} d

Maze Tcl example
Pseudocode:
 create a path which just has the start state

 make this path the only member of the list of alternatives to be explored

 while list of alternatives is not empty and not done

set firstpath to be the first path from the list of alternatives

update alternatives so it doesn't include the first path

set last to be the last member of firstpath

for each cell connected to the last member

create newpath with cell at the end of firstpath

if cell is 16

display path

else

add newpath to end of list of alternatives

154

155

Maze Tcl example
set bDone 0

set path [list 1]

set alternatives [list $path]

while {[llength $alternatives] > 0 && !$bDone} {

set firstpath [lindex $alternatives 0]

set alternatives [lrange $alternatives 1 end]

set last [lindex $firstpath end]

foreach cell $connected($last) {

set newpath [linsert $firstpath end $cell]

if {$cell == 16} {

puts "Answer is $newpath"

set bDone 1

break

update

after 1000

} else {

lappend alternatives $newpath

}

}

}

UNIT-V

Python

156

Python

157

Open source general-purpose language.

Object Oriented, Procedural, Functional

Easy to interface with C/ObjC/Java/Fortran

Easy-ish to interface with C++ (via SWIG)

Great interactive environment

Python

158

Interpreted

evaluator for

language:

language expressions

work with an

(like

DrJava, but more flexible)

Dynamically typed: variables do not have a

predefined type

Rich, built-in collection types:

o

o

o

o

Lists

Tuples

Dictionaries (maps)

Sets

Language features

159

Indentation instead of braces

Several sequence types

Strings ‘…‘: made of characters, immutable

Lists […]: made of anything, mutable

Tuples(…): made of anything, immutable

Powerful collection and iteration

abstractions

Language features

160

Powerful subscripting (slicing)

Functions are independent entities (not all

functions are methods)

Exceptions as in Java

Simple object system

Iterators(like Java) and generators

Comments

161

Everything after "#" on a line is ignored. No

block comments, but doc strings are a

comment in quotes at the beginning of a

module, class, method or function.

Also, editors with support for Python often

provide the ability to comment out selected

blocks of code, usually with "##".

Python Basic Syntax

Unlike other languages, Python does not

use an end of line character.

o end a statement in Python, you do not

have to type in a semicolon or other special

character; you simply press Enter. For

example, this code will generate a syntax

error:

message = 'Hello World!' This will not:

message = 'Hello World!'
162

Names and tokens

163

Allowed characters: a-z A-Z 0-9

underscore, and must begin with a letter or

underscore.

 Names and identifiers are case sensitive.

 Identifiers can be of unlimited length.

Special names, customizing, etc. Usually

begin and end in double underscores.

Names and tokens

164

Special name classes Single and double

underscores.

 Single leading single underscore Suggests a

"private" method or variable name. Not

imported by "from module import *".

 Single trailing underscore Use it to avoid

conflicts with Python keywords.

Double leading underscores Used in a class

definition to cause name mangling (weak

hiding).

Keywords

and None yield def

as False not nonlocal

assert finally or with

async for pass lambda

break exec print del

await from raise while

continue global raise is

class if return elif

except import True try

else in

165

Data Types

The built-in variable types are the most

important basic types:

• Integer (short and long)

• Strings

• Booleans

• floating point (float)

• Lists and tuples

• Dictionaries

166

Basic Operators

Python language supports the following

types of operators

Arithmetic Operators

Comparison Operators

Assignment Operators

Logical Operators

Bitwise Operators

Membership Operators

 Identity Operators
167

Type Conversion

168

Data can sometimes be converted from one

type to another.
Ex: The string ―3.0‖ is equivalent to the floating point

number 3.0, which is equivalent to the integer number3

 Functions exist which will take data in one

type and return data in another type.

Int()-Converts compatible data into an

integer. This function will truncate floating

point numbers

Type Conversion

169

Float()-Converts compatible data into a

float.

Str()-Converts compatible data into a string.
 Examples: int(3.3) produces 3

 str(3.3) produces ―3.3‖

 float(3) produces 3.0

 float(―3.5‖) produces 3.5

 int(―7‖) produces 7

 int(―7.1‖) throws an ERROR!

 float(―Test‖) Throws an ERROR!

Statements (Decision Making)

170

Decision-making is the anticipation of conditions

occurring during the execution of a program and

specified actions taken according to the

conditions.

 Decision structures evaluate multiple expressions,

which produce TRUE or FALSE as the outcome.

We have to determine which action to take and

which statements to execute if the outcome is

TRUE or FALSE otherwise.

Python programming language assumes any non-

zero and non-null values as TRUE, and any zero

or null values as FALSE value.

If Statement

171

An if statement consists

followed by

of a Boolean

one or more expression

statements.

Syntax

if expression:

statement(s)

Flow Diagram

172

IF...ELIF...ELSE Statements

173

An else statement can be combined with an

if statement. An else statement contains a

block of code that executes if the

conditional expression in the if statement

resolves to 0 or a FALSE value.

The else statement is an optional statement

and there could be at the most only one else

statement following if.

Syntax of if...else

174

The syntax of the if...else statement isif

expression:

statement(s)

else:

statement(s)

Flow Diagram

175

The elif Statement
The elif statement allows you to check

multiple expressions for TRUE and execute

a block of code as soon as one of the

conditions evaluates to TRUE.

Similar to the else, the elif statement is

optional. However, unlike else, for which

there can be at the most one statement, there

can be an arbitrary number of elif

statements following an if.

176

Syntax

177

 if expression1:

statement(s)

elif expression2:

statement(s)

elif expression3:

statement(s)

else:

statement(s)

Nested IF Statement

178

There may be a situation when you want to

check for another condition after a

condition resolves to true.

In such a situation, you can use the nested

if construct.

In a nested if construct, you can have an

if...elif...else construct inside another

if...elif...else construct

Syntax

179

 If expression1:

statement(s)

if expression2:

statement(s)

elif expression3:

statement(s)

else

statement(s)

elif expression4:

statement(s)

else:

statement(s)

Nested IF Statements

180

There may be a situation when you want to

check for another condition after a

condition resolves to true.

In such a situation, you can use the nested

if construct.

In a nested if construct, you can have an

if...elif...else construct inside another

if...elif...else construct.

Loops

181

In general, statements are executed

sequentially- The first statement in a

function is executed first, followed by the

second, and so on.

There may be a situation when you need to

execute a block of code several number of

times.

Loops

182

A loop statement allows us to execute a

statement or group of statements multiple

times.

The following diagram illustrates a loop

statement.

Python programming language provides the

following types of loops to handle looping

requirements.

While Loop

183

Repeats a statement or group of statements while a

given condition is TRUE. It tests the condition

before executing the loop body.

A while loop statement in Python programming

language repeatedly executes a target statement as

long as a given condition is true.

The syntax of a while loop in Python

programming language is

while expression:

statement(s)

Here, statement(s) may be a single statement or a

block of statements with uniform indent.

While Loop

184

The condition may be any expression, and true is any

non-zero value. The loop iterates while the condition

is true.

When the condition becomes false, program control

passes to the line immediately following the loop.

 In Python, all the statements indented by the same

number of character spaces after a programming

construct are considered to be part of a single block

of code.

Python uses indentation as its method of grouping

statements.

Flow Diagram

185

Using else Statement with Loops

186

Python supports having an else statement

associated with a loop statement.

If the else statement is used with a for loop,

the else statement is executed when the loop

has exhausted iterating the list.

If the else statement is used with a while loop,

the else statement is executed when the

condition becomes false.

For Loop

187

The for statement in Python has the ability to

iterate over the items of any sequence

Syntax

for iterating_var in sequence:

statements(s),

 If a sequence contains an expression list, it is

evaluated first.

For Loop

188

Then, the first item in the sequence is assigned to

the iterating variable iterating_var.

Next, the statements block is executed.

 Each item in the list is assigned to iterating_var,

and the statement(s) block is executed until the

entire sequence is exhausted.

Flow Diagram

189

Functions in Python

190

A function is a block of organized, reusable

code that is used to perform a single, related

action.

Functions provide better modularity for

your application and a high degree of code

reusing.

As you already know, Python gives you

many built-in functions like print, etc. but

you

Defining a Function

191

Function blocks begin with the keyword def

followed by the function name and

parentheses ().

Any input parameters or arguments should

be placed within these parentheses. You can

also define parameters inside these

parentheses.

The first statement of a function can be an

optional statement the documentation string

of the function or docstring.

Defining a Function

192

The code block within every function starts with a

colon : and is indented.

The statement return [expression] exits a function,

optionally passing back an expression to the caller. A

return statement with no arguments is the same as

return None.

Syntax

def functionnam e(param eters):

"function_docstring"

function_suite

return [expression]

Calling A Function

193

Defining a function only gives it a name, specifies

the parameters that are to be included in the function

and structures the blocks of code.

Once the basic structure of a function is finalized,

you can execute it by calling it from another

function or directly from the Python prompt.

Types of functions

194

One way to categorize functions in Python

is:

1.Built-in functions: these functions pre-defined

and are always available.

2.Functions defined in modules: these functions

are pre-defined in particular modules and can

only be used when the corresponding module is

imported.

3.User defined functions: these are defined by

the programmer.

Built-in Functions
Method Description

 abs() returns absolute value of a number

 all() returns true when all elements in iterable is true

 any() Checks if any Element of an Iterable is True

ascii() Returns String Containing Printable Representation

bin() converts integer to binary string

 bool() Coverts a Value to Boolean

Python

bytearray()

returns array of given byte size

 bytes() returns immutable bytes object

callable() Checks if the Object is Callable

 chr() Returns a Character (a string) from an Integer 195

https://www.programiz.com/python-programming/methods/built-in/abs
https://www.programiz.com/python-programming/methods/built-in/abs
https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/ascii
https://www.programiz.com/python-programming/methods/built-in/bin
https://www.programiz.com/python-programming/methods/built-in/bool
https://www.programiz.com/python-programming/methods/built-in/bool
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytearray
https://www.programiz.com/python-programming/methods/built-in/bytes
https://www.programiz.com/python-programming/methods/built-in/bytes
https://www.programiz.com/python-programming/methods/built-in/callable
https://www.programiz.com/python-programming/methods/built-in/chr
https://www.programiz.com/python-programming/methods/built-in/chr

Built-in Functions
Method Description

 complex() Creates a Complex Number

delattr() Deletes Attribute From the Object

 dict() Creates a Dictionary

dir() Tries to Return Attributes of Object

divmod()
Returns a Tuple of Quotient and

Remainder

 enumerate() Returns an Enumerate Object

 eval() Runs Python Code Within Program

 exec() Executes Dynamically Created Program

 filter()
constructs iterator from elements which

are true

 float()
returns floating point number from 196
number, string

https://www.programiz.com/python-programming/methods/built-in/complex
https://www.programiz.com/python-programming/methods/built-in/complex
https://www.programiz.com/python-programming/methods/built-in/delattr
https://www.programiz.com/python-programming/methods/built-in/dict
https://www.programiz.com/python-programming/methods/built-in/dict
https://www.programiz.com/python-programming/methods/built-in/dir
https://www.programiz.com/python-programming/methods/built-in/divmod
https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/eval
https://www.programiz.com/python-programming/methods/built-in/eval
https://www.programiz.com/python-programming/methods/built-in/exec
https://www.programiz.com/python-programming/methods/built-in/exec
https://www.programiz.com/python-programming/methods/built-in/filter
https://www.programiz.com/python-programming/methods/built-in/filter
https://www.programiz.com/python-programming/methods/built-in/float
https://www.programiz.com/python-programming/methods/built-in/float

Methods in Python

197

Methods are just like functions, with two

differences:

Methods are defined inside a class definition in

order to make the relationship between the class

and the method explicit.

The syntax for invoking a method is different

from the syntax for calling a function.

Each method is associated with a class and is

intended to be invoked on instances of that

class.

Modules in python

198

A module allows you to logically organize your

Python code. Grouping related code into a module

makes the code easier to understand and use.

 A module is a Python object with arbitrarily named

attributes that you can bind and reference.

Simply, a module is a file consisting of Python code.

A module can define functions, classes and

variables. A module can also include runnable code.

Modules in python

199

Example

The Python code for a module named a

name normally resides in a file

namedaname.py.

Here is an example of a simple module,

support.pydef

print_func(par):

print "Hello : ", par

return

Import Statement

200

 You can use any Python source file as a module by

executing an import statement in some other Python source

file.

module1[,  The import has the following syntax import

module2 [,... moduleN]

When the interpreter encounters an import statement, it

imports the module if the module is present in the search

path.

 A search path is a list of directories that the interpreter

searches before importing a module. For example, to

import the module hello.py, you need to put the following

command at the top of the script

From...import Statement

201

Python's from statement lets you import

specific attributes from a module into the

current namespace. The from...import has

the following syntax

from modname import name1[, name2[, ... nameN]]

From...import * Statement

202

It is also possible to import all the names

from a module into the current namespace

by using the following import statement

from

From module name import *

This provides an easy way to import all the

items from a module into the current

namespace; however, this statement should

be used sparingly.

Executing Modules as Scripts

203

Within a module, the module‘s name (as a

string) is available as the value of the global

variable name .

The code in the module will be executed,

just as if you imported it, but with the

 name set to " main ".

Locating Modules

204

When you import a module, the Python

interpreter searches for the module in the

following sequences
 The current directory.

 If the module is not found, Python then

searches each directory in the shell variable

PYTHONPATH.

 If all else fails, Python checks the default

path. On UNIX, this default path is normally

/usr/local/lib/python3/.

Locating Modules

205

The module search path is stored in the

system module sys as the sys.path

variable.

The sys.path variable contains the current

directory, PYTHONPATH, and the

installationdependent default.

Exception Handling

206

An exception is an event, which occurs during the

execution of a program that disrupts the normal

flow of the program's instructions.

 In general, when a Python script encounters a

situation that it cannot cope with, it raises an

exception.

An exception is a Python object that represents an

error.

When a Python script raises an exception, it must

either handle the exception immediately otherwise

it terminates and quits.

Handling an Exception

207

If you have some suspicious code that may

raise an exception, you can defend your

program by placing the suspicious code in a

try: block.

After the try: block, include an except:

statement, followed by a block of code

which handles the problem as elegantly as

possible.

Syntax

208

 Here is simple syntax of try....except...else blocks

Try:

You do your operations here

.....................

except ExceptionI:

If there is ExceptionI, then execute this block.

except ExceptionII:

If there is ExceptionII, then execute this block.

....................

else:

If there is no exception then execute this block.

Syntax

209

 A single try statement can have multiple except statements.

 This is useful when the try block contains statements that

may throw different types of exceptions.

 You can also provide a generic except clause, which

handles any exception.

 After the except clause(s), you can include an else-clause.

The code in the else block executes if the code in the try:

block does not raise an exception.

 The else-block is a good place for code that does not need

the try: block's protection.

Web Applications in Python

210

The idea behind creating a Python-driven

web application is that you can use Python

code to determine what content to show a

user and what actions to take.

The code is actually run by the web server

that hosts your website, so your user doesn‘t

need to install anything to use your

application; if the user has a browser and an

Internet connection, then everything else

will be run online.

Web Applications in Python

211

Google App Engine

Static Web App

WSGI Application

Dynamic Web App

Web Application Framework

212

A web framework is nothing but a collection of

packages and modules that allows easier

development of websites.

 It handles all low-level communication within the

system and hides it from you to make no issues for

performing common tasks for the development.

 Popular Python frameworks like Pyramid and

Django are used by companies like Bitbucket,

Pinterest, Instagram and Dropbox in their web

application development..

Web Application Framework

213

So, it is safe to say these frameworks are

able to handle almost everything you throw

at them web frameworks are meant to hide

and handle all low-level details.

so that you as a developer, do not have to

dig deep into how everything works when

you are developing a web-enabled

application.

Web Application Framework

214

 One of the most important advantages of using a web

framework as opposed to building something on your own

is handling the security of your website.

 Since web frameworks have been used and backed by

thousands, it inherently handles security, preventing any

misuse of the web application.

 Good frameworks are built ensuring scalability from the

very beginning of the development process.

 So, whenever you are planning to scale your website by

adding a new component or using a new database, web

frameworks are more likely to scale better than what you

come up with when building from scratch.

Web Frameworks In Python

215

There are tons of Python web frameworks,

and every framework has their own

strengths and weaknesses.

Thus, it is necessary to evaluate your

project requirements and pick one the best

one from the collection.

Below are the three most popular web

frameworks in Python.

Django

216

 Django is probably the most popular Python web framework

and is aimed mostly at larger applications.

 It takes a ―batteries-included‖ approach and contains

everything needed for web development bundled with the

framework itself.

 So, you do not have to handle things like database

administration, templating, routing, authentication and so on.

With fairly less code, you can create great applications with

Django.

 If you are building a mid-high ranged web applicants and are

quite comfortable with Python, you should go for Django.

Pyramid

217

 The Pyramid is the most flexible Python web framework

and just like Django, it is aimed at mid-high scale

applications.

 If you think Django brings too much bloat to your web

application, use Pyramid.

 It does not force you to use a single solution for a task, but

rather gives you a pluggable system to plug-in according to

your project requirements.

 You do have the basic web development capabilities like

routing and authentication, but that is about it.

 So, if you want to connect to a database for storage, you

ought to do that yourself using external libraries.

Flask

218

Flask is the new kid in town. Unlike

Pyramid and Django, Flask is a micro-

framework and is best suited for small-scale

applications.

Even if it is new, Flask has integrated great

features of other frameworks.

It includes features like unit testing and

built-in development server that enable you

to create reliable and efficient web

applications.

