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Introduction 

What is Testing? 

 

Related terms : SQA, QC, Verification, Validation 

 

 
Verification of functionality for conformation against given  

specifications By execution of the software application 

A Test 

Passes: 

Fails: 

Functionality OK. 

Application functionality NOK. 

Bug/Defect/Fault: Deviation from expected functionality. 

It’s not always obvious. 



Purpose of Testing 

1. To Catch Bugs 
 

• Bugs are due to imperfect Communication among programmers 
• Specs, design, low level functionality 

• Statistics say: about 3 bugs / 100 statements 

 

 
2. Productivity Related Reasons 

• Insufficient effort in QA => High Rejection Ratio =>  

Higher Rework => Higher Net Costs 

 

• Statistics: 
• QA costs: 2% for consumer products 

80% for critical software 

  

• Quality Productivity 



Purpose of Testing 

Purpose of testing contd… 

 

3. Goals for testing 
 

Primary goal of Testing: Bug Prevention 

  

  

  

Bug prevented  rework effort is saved [bug reporting, debugging, correction, retesting] 

If it is not possible, Testing must reach its secondary goal of bud discovery. 

Good test design & tests  clear diagnosis  easy bug correction 

Test Design Thinking 

 From the specs, write test specs. First and then code. 

 Eliminates bugs at every stage of SDLC. 

 If this fails, testing is to detect the remaining bugs. 

 

4. 5 Phases in tester’s thinking 
 

Phase 0: says no difference between debugging & testing 

 Today, it’s a barrier to good testing & quality software. 



Purpose of Testing 

Purpose of testing contd… 

 
Phase 1:  says Testing is to show that the software works 

 A failed test shows software does not work, even if many tests pass. 

 Objective not achievable. 

 

 
Phase 2: says Software does not work 

 

 

 

One failed test proves that. 

Tests are to be redesigned to test corrected software. 

But we do not know when to stop testing. 

Phase 3:  says Test for Risk Reduction 

 

 

 

 

We apply principles of statistical quality control. 

Our perception of the software quality changes – when a test passes/fails.  

Consequently, perception of product Risk reduces. 

Release the product when the Risk is under a predetermined limit. 



Purpose of Testing 

5 Phases in tester’s thinking continued… 

Phase 4: A state of mind regarding “What testing can do & cannot do. What makes  

software testable”. 

 Applying this knowledge reduces amount of testing. 

 Testable software reduces effort 

 Testable software has less bugs than the code hard to test 

Cumulative goal of all these phases: 

 Cumulative and complementary. One leads to the other. 

 Phase2 tests alone will not show software works 

 Use of statistical methods to test design to achieve good testing at acceptable  

risks. 

 Most testable software must be debugged, must work, must be hard to break. 



Purpose of Testing 

purpose of testing contd.. 

 

5. Testing & Inspection 

  

  

  

Inspection is also called static testing. 

Methods and Purposes of testing and inspection are different, but the objective is to  

catch & prevent different kinds of bugs. 

To prevent and catch most of the bugs, we must 

  

  

  

  

Review  

Inspect &  

Read the code 

Do walkthroughs on the code 

& then do Testing 



Purpose of Testing 

Further… 

Some important points: 

Test Design After testing & corrections, Redesign tests & test the redesigned tests 

 

Bug Prevention 

Mix of various approaches, depending on factors 

culture, development environment, application, project size, history, language 

Inspection Methods  

Design Style 

Static Analysis 

Languages – having strong syntax, path verification & other controls  

Design methodologies & development environment 

 

Its better to know: 

Pesticide paradox  

Complexity Barrier 



Dichotomies 

 division into two especially mutually exclusive or contradictory groups or entities 

 the dichotomy between theory and practice 

in BIG 

Let us look at six of them: 

 

1. Testing & Debugging 

 

2. Functional Vs Structural Testing 

 
3. Designer  vs Tester 

 
4. Modularity (Design)  vs Efficiency 

 
5. Programming in SMALL Vs programming 

 

6. Buyer vs Builder 



Dichotomies 

1. Testing Vs Debugging 

  

  

  

Testing is to find bugs. 

Debugging is to find the cause or misconception leading to the bug. 

Their roles are confused to be the same. But, there are differences in goals, methods and  

psychology applied to these 

# Testing Debugging 

1 Starts with known conditions. Uses predefined  

procedure. Has predictable outcomes. 

Starts with possibly unknown initial conditions.  

End cannot be predicted. 

2 Planned, Designed and Scheduled. Procedures & Duration are not constrained. 

3 A demo of an error or apparent correctness. A Deductive process. 

4 Proves programmer’s success or failure. It is programmer’s Vindication. 

5 Should be predictable, dull, constrained, rigid  

& inhuman. 

There are intuitive leaps, conjectures,  

experimentation & freedom. 



Dichotomies 

Dichotomies contd… 

# Testing Debugging 

6 Much of testing can be without design  

knowledge. 

Impossible without a detailed design  

knowledge. 

7 Can be done by outsider to the development  

team. 

Must be done by an insider (development  

team). 

8 A theory establishes what testing can do or  

cannot do. 

There are only Rudimentary Results (on how  

much can be done. Time, effort, how etc.  

depends on human ability). 

9 Test execution and design can be automated. Debugging - Automation is a dream. 



Dichotomies 

User 

Dichotomies contd.. 
 

2. Functional Vs Structural Testing 

 
 Functional Testing: Treats a program as a black box. Outputs are verified for conformance  

to specifications from user’s point of view. 

 
 Structural Testing: Looks at the implementation details: programming style, control method,  

source language, database & coding details. 

 

 Interleaving of functional & Structural testing: 
 A good program is built in layers from outside. 

 Outside layer is pure system function from user’s point of view. 

 Each layer is a structure with its outer layer being its function. 

 Examples: 
Application2 

Malloc()  

Link block() 

Devices  

O.S. 

Application1 



Dichotomies 

 Interleaving of functional & Structural testing: (contd..) 

 
 For a given model of programs, Structural tests may be done first and later the Functional,  

Or vice-versa. Choice depends on which seems to be the natural choice. 

 

 Both are useful, have limitations and target different kind of bugs. Functional tests can  

detect all bugs in principle, but would take infinite amount of time. Structural tests are  

inherently finite, but cannot detect all bugs. 

 

 The Art of Testing is how much allocation % for structural vs how much % for functional. 



Dichotomies 
Dichotomies contd.. 

3. Designer  vs Tester 

 

 

 

 

Completely separated in black box testing. Unit testing may be done by either. 

Artistry of testing is to balance knowledge of design and its biases against ignorance &  
inefficiencies. 

Tests are more efficient if the designer, programmer & tester are independent in all of unit, unit  
integration, component, component integration, system, formal system feature testing. 

The extent to which test designer & programmer are separated or linked depends on testing level  
and the context. 

# Programmer / Designer Tester 

1 Tests designed by designers are more  

oriented towards structural testing and are  

limited to its limitations. 

With knowledge about internal test design, the  

tester can eliminate useless tests, optimize & do  

an efficient test design. 

2 Likely to be biased. Tests designed by independent testers are bias-  

free. 

3 Tries to do the job in simplest & cleanest  

way, trying to reduce the complexity. 

Tester needs to suspicious, uncompromising,  

hostile and obsessed with destroying program. 



Dichotomies 

Dichotomies contd.. 

4. Modularity (Design)  vs Efficiency 

1. system and test design can both be modular. 

 

2. A module implies a size, an internal structure and an interface, Or, in other words. 

 
3. A module (well defined discrete component of a system) consists of internal complexity  

& interface complexity and has a size. 



Dichotomies 

# Modularity Efficiency 

1 Smaller the component easier to understand. Implies more number of components & hence more #  

of interfaces increase complexity & reduce efficiency  

(=> more bugs likely) 

2 Small components/modules are repeatable  

independently with less rework (to check if a  

bug is fixed). 

Higher efficiency at module level, when a bug occurs  

with small components. 

3 Microscopic test cases need individual setups  

with data, systems & the software. Hence can  

have bugs. 

More # of test cases implies higher possibility of bugs  

in test cases. Implies more rework and hence less  

efficiency with microscopic test cases 

4 Easier to design large modules & smaller  

interfaces at a higher level. 
Less complex & efficient. (Design may not be enough  

to understand and implement. It may have to be  

broken down to implementation level.) 

So: 
 

Optimize the size & balance internal & interface complexity to increase efficiency 

 
Optimize the test design by setting the scopes of tests & group of tests (modules) to minimize cost of  
test design, debugging, execution & organizing – without compromising effectiveness. 



Dichotomies 
Dichotomies contd.. 

5. Programming in SMALL Vs programming in BIG 

 
Impact on the development environment due to the volume of customer requirements. 

# Small Big 

1 More efficiently done by informal, intuitive  

means and lack of formality – 

if it’s done by 1 or 2 persons for small 

& intelligent user population. 

A large # of programmers & large # of  

components. 

2 Done for e.g., for oneself, for one’s office 

or for the institute. 

Program size implies non-linear effects (on  

complexity, bugs, effort, rework quality). 

3 Complete test coverage is easily done. Acceptance level could be: Test coverage of 100% 

for unit tests and for overall tests ≥ 80%. 



Dichotomies 

6. Buyer Vs Builder (customer vs developer organization) 

  

  

  

Buyer & Builder being the same (organization) clouds accountability. 

Separate them to make the accountability clear, even if they are in the same organization. 

The accountability increases motivation for quality. 

 The roles of all parties involved are: 

 

 Builder: 

 Designs for & is accountable to the Buyer. 

 Buyer: 

  

  

  

  

User: 
  

  

Tester: 
  

  

Pays for the system. 

Hopes to get profits from the services to the User. 

Ultimate beneficiary of the system.  

Interests are guarded by the Tester. 

Dedicated to the destruction of the s/w (builder) 

Tests s/w in the interests of User/Operator. 

 Operator: 

 Lives with: Mistakes of the Builder  

Oversights of Tester 

Murky specs of Buyer 

Complaints of User 



 A model for testing - with a project environment - with tests at various levels. 

 (1) understand what a project is. (2) look at the roles of the Testing models. 

 

1. PROJECT: 

 

 An Archetypical System (product) allows tests without complications (even for a large project). 

 Testing a one shot routine & very regularly used routine is different. 

 

 A model for project in a real world consists of the following 8 components: 

 
1) Application: An online real-time system (with remote terminals) providing timely responses  

to user requests (for services). 

 

2) Staff: Manageable size of programming staff with specialists in systems design. 

 
3) Schedule: project may take about 24 months from start to acceptance. 6 month maintenance  

period. 

 

4) Specifications: is good. documented. Undocumented ones are understood well in the team. 



A Model for Testing 

4) Acceptance test: Application is accepted after a formal acceptance test. At first it’s the  

customer’s & then the software design team’s responsibility. 

 
5) Personnel: The technical staff comprises of : A combination of experienced professionals &  

junior programmers (1 – 3 yrs) with varying degrees of knowledge of the application. 

 

6) Standards: 
  

  

Programming, test and interface standard (documented and followed). 

A centralized standards data base is developed & administrated 



A Model for Testing 

1. PROJECT: contd … 

 

6) Objectives: (of a project) 

 A system is expected to operate profitably for > 10 yrs (after installation). 

 Similar systems with up to 75% code in common may be implemented in future. 

7) Source:  (for a new project) is a combination of 

 

 

New Code 

From a previous reliable system 

-up to 1/3
rd 

-up to 1/3
rd 

- up to 1/3
rd 

 Re-hosted from another language & O.S. 

8) History: Typically: 

 Developers quit before his/her components are tested. 

 Excellent but poorly documented work. 

 Unexpected changes (major & minor) from customer may come in 

 Important milestones may slip, but the delivery date is met. 
 Problems in integration, with some hardware, redoing of some component etc….. 

  
A model project is 

  

  
A Well Run & Successful Project.  

Combination of Glory and Catastrophe. 



The World 

Environment 

Program 

Nature &  

Psychology 

A Model for Testing 

The Model World 

Unexpected Environment 

Model 

Expected 

Tests Outcome 
Program  

Model 

Bug Model 



A Model for Testing contd.. 

2. Roles of Models for Testing 

1) Overview: 

Testing process starts with a program embedded in an environment. 

Human nature of susceptibility to error leads to 3 models. 

 

 

 
Create tests out of these models & execute 

 Results is expected  It’s okay 

unexpected  Revise tests and program. Revise bug model and program. 

2) Environment: includes 
 

 

 

All hardware & software (firmware, OS, linkage editor, loader, compiler, utilities,  
libraries) required to make the program run. 

Usually bugs do not result from the environment. (with established h/w & s/w) 

But arise from our understanding of the environment. 

3) Program: 
 

 

Complicated to understand in detail. 

Deal with a simplified overall view. 

 

Focus on control structure ignoring processing & focus on processing ignoring 

control structure. 

 
If bug’s not solved, modify the program model to include more facts, & if that fails, 
modify the program. 



A Model for Testing contd.. 

2. Roles of Models for Testing contd … 

4) Bugs: (bug model) 
 

 

 

Categorize the bugs as initialization, call sequence, wrong variable etc.. 

An incorrect spec. may lead us to mistake for a program bug.  

There are 9 Hypotheses regarding Bugs. 

a. Benign Bug Hypothesis: 
 

 

 

The belief that the bugs are tame & logical. 

Weak bugs are logical & are exposed by logical means.  

Subtle bugs have no definable pattern. 

b. Bug locality hypothesis: 
 

 

Belief that bugs are localized. 

Subtle bugs affect that component & external to it. 

c. Control Dominance hypothesis: 
 

 

Belief that most errors are in control structures, but data flow & data structure  
errors are common too. 

Subtle bugs are not detectable only thru control structure. 

(subtle bugs => from violation of data structure boundaries & data-code separation) 



A Model for Testing contd.. 

contd … 2. Roles of Models for Testing 
4) Bugs: (bug model) contd .. 

d. Code/data Separation hypothesis: 

 

 

Belief that the bugs respect code & data separation in HOL programming. 

In real systems the distinction is blurred and hence such bugs exist. 

e. Lingua Salvator Est hypothesis: 

 

 

Belief that the language syntax & semantics eliminate most bugs. 

But, such features may not eliminate Subtle Bugs. 

f. Corrections Abide hypothesis: 

 

 

Belief that a corrected bug remains corrected.  

Subtle bugs may not. For e.g. 

A correction in a data structure ‘DS’ due to a bug in the interface 

between modules A & B, could impact module C using ‘DS’. 



A Model for Testing contd.. 

contd … 2. Roles of Models for Testing 
4) Bugs: (bug model) contd .. 

g. Silver Bullets hypothesis: 

 

 

 

Belief that - language, design method, representation, environment etc. grant  
immunity from bugs. 

Not for subtle bugs. 

Remember the pesticide paradox. 

h. Sadism Suffices hypothesis: 
 

Belief that a sadistic streak, low cunning & intuition (by independent testers) are 

sufficient to extirpate most bugs. 

 
Subtle & tough bugs are may not be … - these need methodology & techniques. 

i. Angelic Testers hypothesis: 

 
Belief that testers are better at test design than programmers at code design. 



A Model for Testing contd.. 

2. Roles of Models for Testing contd.. 

5) Tests: 
 

 

 

Formal procedures. 
 
Input preparation, outcome prediction and observation, documentation of test,  
execution & observation of outcome are subject to errors. 

An unexpected test result may lead us to revise the test and test model. 

6) Testing & Levels: 
3 kinds of tests (with different objectives) 

1) Unit & Component Testing 
a. A unit is the smallest piece of software that can be compiled/assembled,  

linked, loaded & put under the control of test harness / driver. 

b. Unit testing - verifying the unit against the functional specs & also the  

implementation against the design structure. 

c. Problems revealed are unit bugs. 

(even entire system) d. Component is an integrated aggregate of one or more units  

e. Component testing - verifying the component against functional specs and the  

implemented structure against the design. 

f. Problems revealed are component bugs. 



A Model for Testing contd.. 

2. Roles of Models for Testing contd … 

2) Integration Testing: 

 

 

 

 

Integration is a process of aggregation of components into larger components. 

Verification of consistency of interactions in the combination of components. 
 
Examples of integration testing are improper call or return sequences, inconsistent data  
validation criteria & inconsistent handling of data objects. 

Integration testing & Testing Integrated Objects are different 

D A B A B 

C 
 

Sequence of Testing: 

 
Unit/Component tests for A, B. Integration tests for A & B. Component testing for  
(A,B) component 



A Model for Testing contd.. 

2. Roles of Models for Testing contd … 

3) System Testing 

 
a. System is a big component. 

b. Concerns issues & behaviors that can be tested at the level of entire or major  

part of the integrated system. 

c. Includes testing for performance, security, accountability, configuration  

sensitivity, start up & recovery 

 

After understanding a Project, Testing Model, now let’s see finally, 

 

Role of the Model of testing : 

 
Used for the testing process until system behavior is correct or until the model is  
insufficient (for testing). 

 
Unexpected results may force a revision of the model. 

 
Art of testing consists of creating, selecting, exploring and revising models. 

 
The model should be able to express the program. 



Consequences of Bugs 

Consequences: (how bugs may affect users) 

These range from mild to catastrophic on a 10 point scale. 

 

• Mild 

• Aesthetic bug such as misspelled output or mal-aligned print-out. 

 

• Moderate 

• Outputs are misleading or redundant impacting performance. 

 

• Annoying 

• Systems behavior is dehumanizing for e.g. names are truncated/modified  

arbitrarily, bills for $0.0 are sent. 

• Till the bugs are fixed operators must use unnatural command sequences to  

get proper response. 

 

• Disturbing 

• Legitimate transactions refused. 

• For e.g. ATM machine may malfunction with ATM card / credit card. 

 

• Serious 

• Losing track of transactions & transaction events. Hence accountability is lost. 



Consequences of Bugs 

Consequences contd … 

 

• Very serious 

System does another transaction instead of requested e.g. Credit another account,  

convert withdrawals to deposits. 

 

• Extreme 

• Frequent & Arbitrary - not sporadic & unusual. 

 

• Intolerable 

• Long term unrecoverable corruption of the Data base. 
(not easily discovered and may lead to system down.) 

 

• Catastrophic 

• System fails and shuts down. 

 

• Infectious 

• Corrupts other systems, even when it may not fail. 



Consequences of Bugs 

Consequences contd … 

Assignment of severity 

 

• Assign flexible & relative rather than absolute values to the bug (types). 

• Number of bugs and their severity are factors in determining the quality quantitatively. 
• Organizations design & use quantitative, quality metrics based on the above. 

 

• Parts are weighted depending on environment, application, culture, correction  

cost, current SDLC phase & other factors. 

 

• Nightmares 

 
• Define the nightmares – that could arise from bugs – for the context of  

the organization/application. 

 

• Quantified nightmares help calculate importance of bugs. 

• That helps in making a decision on when to stop testing & release the product. 



Consequences of Bugs 
Consequences contd … 

When to stop Testing 

1. List all nightmares in terms of the symptoms & reactions of the user to their consequences. 

2. Convert the consequences of into a cost. There could be rework cost. (but if the scope extends to 

the public, there could be the cost of lawsuits, lost business, nuclear reactor meltdowns.) 

3. Order these from the costliest to the cheapest. Discard those with which you can live with. 

4. Based on experience, measured data, intuition, and published statistics postulate the kind of  

bugs causing each symptom. This is called ‘bug design process’. A bug type can cause  

multiple symptoms. 

5. Order the causative bugs by decreasing probability (judged by intuition, experience, statistics etc.).  

Calculate the importance of a bug type as: 

Importance of bug type  j = ∑  C j k P j k where, 

C j k 

P j k 

all k 

= cost due to bug type j causing nightmare k 
= probability of bug type j causing nightmare k 

( Cost due to all bug types = ∑ ∑ C jk P jk ) 

all k all j 



Consequences of Bugs 
Consequences contd … When to stop Testing contd .. 

 

6. Rank the bug types in order of decreasing importance. 

 

7. Design tests & QA inspection process with most effective against the most important bugs. 

 
8. If a test is passed or when correction is done for a failed test, some nightmares disappear. As  

testing progresses, revise the probabilities & nightmares list as well as the test strategy. 

9.Stop testing when probability (importance & cost) proves to be inconsequential.  

This procedure could be implemented formally in SDLC. 

 
 

Important points to Note: 

 

• Designing a reasonable, finite # of tests with high probability of removing the nightmares. 

• Test suites wear out. 

• As programmers improve programming style, QA improves. 

• Hence, know and update test suites as required. 



Taxonomy of Bugs .. 

we had seen the: 

 

1. Importance of Bugs - statistical quantification of impact 

2. Consequences of Bugs - causes, nightmares, to stop testing 

We will now see the: 

3. Taxonomy of Bugs - along with some remedies 

In order to be able to create an organization’s own Bug Importance 
Model for the sake of controlling associated costs… 



Taxonomy of Bugs .. and remedies 

Reference of IEEE Taxonomy: IEEE 87B 

 
Why Taxonomy ? 

To study the consequences, nightmares, probability, importance, impact and the methods of  
prevention and correction. 

 
Adopt known taxonomy to use it as a statistical framework on which your testing strategy is based. 

 
6 main categories with sub-categories.. 

1)Requirements, Features, Functionality Bugs 24.3% bugs 

2)Structural Bugs 25.2% 

3)Data Bugs 22.3% 

4)Coding Bugs 9.0% 

5)Interface, Integration and System Bugs 10.7% 

6)Testing & Test Design Bugs 2.8 % 



Taxonomy of Bugs .. and remedies 

Reference of IEEE Taxonomy: IEEE 87B 

 
 

1) Requirements, Features, Functionality Bugs 

 
3 types of bugs : Requirement & Specs, Feature,  & feature interaction bugs 

 

I. Requirements & Specs. 

 

 

Incompleteness, ambiguous or self-contradictory 

Analyst’s assumptions not known to the designer 

 

 

Some thing may miss when specs change 

These are expensive: introduced early in SDLC and removed at the last 

II. Feature Bugs 

 

 

Specification problems create feature bugs 

Wrong feature bug has design implications 

 

 

Missing feature is easy to detect & correct 

Gratuitous enhancements can accumulate bugs, if they increase complexity 

 
Removing features may foster bugs 



Taxonomy of Bugs .. and remedies 

1) Requirements, Features, Functionality Bugs contd.. 

 

III. Feature Interaction Bugs 

 
Arise due to unpredictable interactions between feature groups or individual features. The earlier 

removed the better as these are costly if detected at the end. 
 

Examples: call forwarding & call waiting. Federal, state & local tax laws. 
 

No magic remedy. Explicitly state & test important combinations 

Remedies 

 

 

Use high level formal specification languages to eliminate human-to-human communication 

It’s only a short term support & not a long term solution 

 
Short-term Support: 
 

Specification languages formalize requirements & so automatic test generation is possible. It’s 
cost-effective. 

 
Long-term support: 
 

Even with a great specification language, problem is not eliminated, but is shifted to a higher level.  
Simple ambiguities & contradictions may only be removed, leaving tougher bugs. 

Testing Techniques 

 
 Functional test techniques - transaction flow testing, syntax testing, domain testing, logic 

testing, and state testing  - can eliminate requirements & specifications bugs. 



Taxonomy of Bugs .. and remedies 

2. Structural Bugs 
 

we look at the 5 types, their causes and remedies. 

 
I. Control & Sequence bugs 

II. Logic Bugs 

III. Processing bugs 
IV. Initialization bugs 

V. Data flow bugs & anomalies 

 
 

1. Control & Sequence Bugs: 

 

 

Paths left out, unreachable code, spaghetti code, and pachinko code. 

Improper nesting of loops, Incorrect loop-termination or look-back, ill-conceived switches. 

 
Missing process steps, duplicated or unnecessary processing, rampaging GOTOs. 

 

 

Novice programmers. 

Old code (assembly language & Cobol) 

Prevention and Control: 

 

 

Theoretical treatment and, 

Unit, structural, path, & functional testing. 



Taxonomy of Bugs .. and remedies 

2. Structural Bugs contd.. 

 

II. Logic Bugs 

 

 

Misunderstanding of the semantics of the control structures & logic operators 

Improper layout of cases, including impossible & ignoring necessary cases, 

 

 

Using a look-alike operator, improper simplification, confusing Ex-OR with inclusive OR. 

Deeply nested conditional statements & using many logical operations in 1 stmt. 

Prevention and Control: 

 

Logic testing, careful checks, functional testing 

III. Processing Bugs 

 
Arithmetic, algebraic, mathematical function evaluation, algorithm selection & general.  
processing, data type conversion, ignoring overflow, improper use of relational operators. 

Prevention 

 

 

Caught in Unit Testing & have only localized effect 

Domain testing methods 



Taxonomy of Bugs .. and remedies 

Structural bugs contd.. 

IV. Initialization Bugs 

 

 

Forgetting to initialize work space, registers, or data areas. 

Wrong initial value of a loop control parameter. 

 

 

 

Accepting a parameter without a validation check. 

Initialize to wrong data type or format.  

Very common. 

Remedies (prevention & correction) 

 

 

Programming tools, Explicit declaration & type checking in source language, preprocessors. 

Data flow test methods help design of tests and debugging. 

V. Dataflow Bugs & Anomalies 

 

 

Run into an un-initialized variable. 

Not storing modified data. 

 

 

Re-initialization without an intermediate use. 

Detected mainly by execution (testing). 

Remedies (prevention & correction) 

 
Data flow testing methods & matrix based testing methods. 



Taxonomy of Bugs .. and remedies 

3. Data Bugs 

Depend on the types of data or the representation of data. There are 4 sub categories. 

I. Generic Data Bugs 

II. Dynamic Data Vs Static Data 

III. Information, Parameter, and Control Bugs 

IV. Contents, Structure & Attributes related Bugs 



Taxonomy of Bugs .. and remedies 

Data Bugs contd… 

I. Generic Data Bugs 

 
Due to data object specs., formats, # of objects & their initial values. 

 
Common as much as in code, especially as the code migrates to data. 

 
Data bug introduces an operative statement bug & is harder to find. 

 
Generalized components with reusability – when customized from a large parametric data to specific  
installation. 

Remedies (prevention & correction): 

 
Using control tables in lieu of code facilitates software to handle many transaction types with fewer data  
bugs. Control tables have a hidden programming language in the database. 

 
Caution - there’s no compiler for the hidden control language in data tables 



Taxonomy of Bugs .. and remedies 

II. Dynamic Data Vs Static Data 

Dynamic Data Bugs Static Data Bugs 

Transitory. Difficult to catch. Fixed in form & content. 

Due to an error in a shared storage object initialization. Appear in source code or data base, directly or indirectly 

Due to unclean / leftover garbage in a shared resource. Software to produce object code creates a static data  

table – bugs possible 

Examples Examples 

Generic & shared variable Telecom system software: generic parameters, a  

generic large program & site adapter program to set  

parameter values, build data declarations etc. 

Shared data structure Postprocessor : to install software packages. Data is  

initialized at run time – with configuration handled by  

tables. 

Prevention 

 
Data validation, unit testing 

Prevention 

 
Compile time processing  

Source language features 
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Data Bugs contd.. 

III. Information, Parameter, and Control Bugs 

Static or dynamic data can serve in any of the three forms. It is a matter of perspective. 

What is information can be a data parameter or control data else where in a program.  

Examples: name, hash code, function using these. A variable in different contexts. 

 

 

 

Information: dynamic, local to a single transaction or task. 

Parameter: parameters passed to a call. 

Control: data used in a control structure for a decision. 

Bugs 

 

 

Usually simple bugs and easy to catch. 

When a subroutine (with good data validation code) is modified, forgetting to update the data  
validation code, results in these bugs. 

Preventive Measures (prevention & correction) 

 
Proper Data validation code. 
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Data Bugs contd.. 

IV. Contents, Structure & Attributes related Bugs 

 

 

Contents: are pure bit pattern & bugs are due to misinterpretation or corruption of it. 

Structure: Size, shape & alignment of data object in memory. A structure may have  
substructures. 

 Attributes: Semantics associated with the contents (e.g. integer, string, subroutine). 

Bugs 

 

 

Severity & subtlety increases from contents to attributes as they get less formal. 

Structural bugs may be due to wrong declaration or when same contents are interpreted by  
multiple structures differently (different mapping). 

 
Attribute bugs are due to misinterpretation of data type, probably at an interface 

Preventive Measures (prevention & correction) 

 

 

Good source lang. documentation & coding style (incl. data dictionary). 

Data structures be globally administered. Local data migrates to global. 

 

 

Strongly typed languages prevent mixed manipulation of data. 

In an assembly lang. program, use field-access macros & not directly accessing any field. 
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4. Coding Bugs 

 
Coding errors create other kinds of bugs. 

 
Syntax errors are removed when compiler checks syntax. 

 
Coding errors 

typographical, misunderstanding of operators or statements or could be just arbitrary. 

 
Documentation Bugs 

 
Erroneous comments could lead to incorrect maintenance. 

 
Testing techniques cannot eliminate documentation bugs. 

 
Solution: 

Inspections, QA, automated data dictionaries & specification systems. 



Taxonomy of Bugs .. and remedies 

5. Interface, Integration and Systems Bugs 

There are 9 types of bugs of this type. 

 

1) External Interfaces 

 

2) Internal Interfaces 

 

3) Hardware Architecture Bugs 

 

4) Operating System Bugs 

 

5) Software architecture bugs 

 

6) Control & Sequence bugs 

 

7) Resource management bugs 

 

8) Integration bugs 

 

9) System bugs 

User 

System 

component 

component 

hardware 

O. S. 
Drivers 

Application  

software 
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5. Interface, Integration and Systems Bugs contd.. 

1) External Interfaces 

 

 

Means to communicate with the world: drivers, sensors, input terminals, communication lines. 

Primary design criterion should be - robustness. 

 

 

Bugs: invalid timing, sequence assumptions related to external signals, misunderstanding external  
formats and no robust coding. 

Domain testing, syntax testing & state testing are suited to testing external interfaces. 

2) Internal Interfaces 

 

 

Must adapt to the external interface. 

Have bugs similar to external interface 

 
Bugs from improper 
 

Protocol design, input-output formats, protection against corrupted data, subroutine call  
sequence, call-parameters. 

 
Remedies (prevention & correction): 

 

 

 

Test methods of domain testing & syntax testing. 
 
Good design & standards: good trade off between # of internal interfaces & complexity of the  
interface. 

Good integration testing is to test all internal interfaces with external world. 
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Interface, Integration and Systems Bugs contd … 

 

3) Hardware Architecture Bugs: 

 
A s/w programmer may not see the h/w layer / architecture. 

 
S/w bugs originating from hardware architecture are due to misunderstanding of how h/w works. 

 
Bugs are due to errors in: 

 

 

Paging mechanism, address generation 

I/O device instructions, device status code, device protocol 

 
Expecting a device to respond too quickly, or to wait for too long for response, assuming a 

 

device is initialized, interrupt handling, I/O device address 

 

H/W simultaneity assumption, H/W race condition ignored, device data format error etc.. 

 
Remedies (prevention & correction): 

 
Good software programming & Testing. 

 
Centralization of H/W interface software. 

 
Nowadays hardware has special test modes & test instructions to test the H/W function. 

 
An elaborate H/W simulator may also be used. 
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Interface, Integration and Systems Bugs contd … 

 

4) Operating System Bugs: 

 
Due to: 

 
Misunderstanding of H/W architecture & interface by the O. S. 

 
Not handling of all H/W issues by the O. S. 

 
Bugs in O. S. itself and some corrections may leave quirks. 

 
Bugs & limitations in O. S. may be buried some where in the documentation. 

 
Remedies (prevention & correction): 

 
Same as those for H/W bugs. 

 
Use O. S. system interface specialists 

 
Use explicit interface modules or macros for all O.S. calls. 

 
The above may localize bugs and make testing simpler. 
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Interface, Integration and Systems Bugs contd … 

 

5) Software Architecture Bugs: (called Interactive) 
 

The subroutines pass thru unit and integration tests without detection of these bugs. Depend on 
the Load, when the system is stressed. These are the most difficult to find and correct. 

 
Due to: 
 

Assumption that there are no interrupts, Or, Failure to block or unblock an interrupt. 

Assumption that code is re-entrant or not re-entrant.  

Bypassing data interlocks, Or, Failure to open an interlock.  

Assumption that a called routine is memory resident or not. 

 

 

 

 

 

Assumption that the registers and the memory are initialized, Or, that their content did not change. 

Local setting of global parameters & Global setting of local parameters. 

 
Remedies: 

 
Good design for software architecture. 

 
Test Techniques 

 
All test techniques are useful in detecting these bugs, Stress tests in particular. 
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Interface, Integration and Systems Bugs contd … 

 

6) Control & Sequence Bugs: 

 
Due to: 

 

 

 

 

 

 

 

Ignored timing 

Assumption that events occur in a specified sequence.  

Starting a process before its prerequisites are met. 

Waiting for an impossible combination of prerequisites.  

Not recognizing when prerequisites are met. 

Specifying wrong priority, Program state or processing level.  

Missing, wrong, redundant, or superfluous process steps. 

 
Remedies: 

 

 

 

 

Good design. 

highly structured sequence control - useful 

Specialized internal sequence-control mechanisms such as an internal job control language 

– useful. 

Storage of Sequence steps & prerequisites in a table and interpretive processing by control 

processor or dispatcher  - easier to test & to correct bugs. 

 
Test Techniques 

 
Path testing as applied to Transaction Flow graphs is effective. 
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Interface, Integration and Systems Bugs contd … 

7) Resource Management Problems: 

External: discs etc. 
 

 

Resources: Internal: Memory buffers, queue blocks etc. 

Due to: 

 

 

Wrong resource used (when several resources have similar structure or different kinds of 
resources in the same pool). 

Resource already in use, or deadlock 

 
Resource not returned to the right pool, Failure to return a resource. Resource use forbidden to the  
caller. 

 
Remedies: 

 

 

 

Design: keeping resource structure simple with fewest kinds of resources, fewest pools, and no  
private resource mgmt. 

Designing a complicated resource structure to handle all kinds of transactions to save 
memory is not right. 

Centralize management of all resource pools thru managers, subroutines, macros etc. 

 
Test Techniques 

 
Path testing, transaction flow testing, data-flow testing & stress testing. 
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Interface, Integration and Systems Bugs contd … 

 

8) Integration Bugs: 
 

Are detected late in the SDLC and cause several components and hence are very costly. 

 
Due to: 

 

 

Inconsistencies or incompatibilities between components. 

 
Error in a method used to directly or indirectly transfer data between components.  
Some communication methods are: data structures, call sequences, registers,  
semaphores, communication links, protocols etc.. 

 
Remedies: 

 
Employ good integration strategies. *** 

 
Test Techniques 

 
Those aimed at interfaces, domain testing, syntax testing, and data flow testing when applied 
across components. 
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Interface, Integration and Systems Bugs contd … 

 

9) System Bugs: 

 
Infrequent, but are costly 

 
Due to: 

 
Bugs not ascribed to a particular component, but result from the totality of interactions among many  
components such as: 

programs, data, hardware, & the O.S. 

 
Remedies: 
 

Thorough testing at all levels and the test techniques mentioned below 

 
Test Techniques 

 
Transaction-flow testing. 

 
All kinds of tests at all levels as well as integration tests - are useful. 



Taxonomy of Bugs .. and remedies 

6. Testing & Test Design Bugs 

Bugs in Testing (scripts or process) are not software bugs. 

 

It’s difficult & takes time to identify if a bug is from the software or from the test script/procedure. 

 

1) Bugs could be due to: 
 

Tests require code that uses complicated scenarios & databases, to be executed. 

 
Though an independent functional testing provides an un-biased point of view, this lack of bias may  
lead to an incorrect interpretation of the specs. 

 
Test Criteria 

 
Testing process is correct, but the criterion for judging software’s response to tests is incorrect or  
impossible. 

 
If a criterion is quantitative (throughput or processing time), the measurement test can perturb the  
actual value. 
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Testing & Test Design Bugs contd… 

 
Remedies: 

1. Test Debugging: 
 

Testing & Debugging tests, test scripts etc. Simpler when tests have localized affect. 

 

2. Test Quality Assurance: 
 

To monitor quality in independent testing and test design. 

 

3. Test Execution Automation: 

 
Test execution bugs are eliminated by test execution automation tools  
& not using manual testing. 

 

4. Test Design Automation: 

 
Test design is automated like automation of software development.  

For a given productivity rate, It reduces bug count. 



Taxonomy of Bugs .. and remedies 

A word on productivity 

 
At the end of a long study on taxonomy, we could say 

 

 
Good design inhibits bugs and is easy to test. The two factors are multiplicative and results in 

high productivity. 

 

Good test works best on good code and good design.  

Good test cannot do a magic on badly designed software. 
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Control Flow Graphs and Path Testing 

Introduction 

 

Path Testing Definition 

A family of structural test techniques based on judiciously selecting a set of test  

paths through the programs. 

 

Goal: Pick enough paths to assure that every source statement is executed at least once. 

 

It is a measure of thoroughness of code coverage. 

 
 It is used most for unit testing on new software. 

 

Its effectiveness reduces as the software size increases. 

 

We use Path testing techniques indirectly. 

 

Path testing concepts are used in and along with other testing techniques 

Code Coverage: During unit testing: # stmts executed at least once / total # stmts 
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Path Testing contd.. 

 
 

Assumptions: 

 

• Software takes a different path than intended due to some error. 

 

• Specifications are correct and achievable. 

 

• Processing bugs are only in control flow statements 

 

• Data definition & access are correct 

 
 

Observations 

 

• Structured programming languages need less of path testing. 

 
• Assembly language, Cobol, Fortran, Basic & similar languages make path testing necessary. 
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Control Flow Graph 

 
A simplified, abstract, and graphical representation of a program’s control 

structure using process blocks, decisions and junctions. 

Process Block Do Process A 

Junctions 1 2 

Control Flow Graph Elements 

NO: ELSE DO 
Decisions IF 

A = B ? 

YES: THEN DO 

CASE-OF 

CASE 1 

1 

CASE 2 
Case Statement 2 

CASE N 

N 



Control Flow Graphs and Path Testing 

Control Flow Graph Elements: 
 

Process Block: 

 
• A sequence of program statements uninterrupted by decisions or junctions with a  

single entry and single exit. 

 

Junction: 

 

• A point in the program where control flow can merge (into a node of the graph) 

• Examples: target of GOTO, Jump, Continue 

 

Decisions: 

 
• A program point at which the control flow can diverge (based on evaluation of a condition). 

• Examples: IF  stmt. Conditional branch and Jump instruction. 

 

Case Statements: 

 

• A Multi-way branch or decision. 

• Examples: In assembly language: jump addresses table, Multiple GOTOs, Case/Switch 

 

• For test design, Case statement and decision are similar. 
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Control Flow Graph Vs Flow Charts 

Control Flow Graph Flow Chart 

Compact representation of the program Usually a multi-page description 

Focuses on Inputs, Outputs, and the control  

flow into and out of the block. 

Focuses on the process steps inside 

Inside details of a process block are not  

shown 

Every part of the process block are drawn 



Control Flow Graphs and Path Testing 

Creation of Control Flow Graph from a program 
 

• One statement to one element translation to get a Classical Flow chart 

• Add additional labels as needed 

• Merge process steps 

• A process box is implied on every junction and decision 

• Remove External Labels 

• Represent the contents of elements by numbers. 

• We have now Nodes and Links 

INPUT X, Y  

Z := X + Y  

V := X - Y 

IF Z >= 0 GOTO SAM  

JOE: Z := Z + V SAM: Z := Z 
- V 

FOR N = 0 TO V  

Z := Z - 1 

NEXT N  

END 

NO 

Z >= 0 ? INPUT X, Y Z := X + Y V := X - Y JOE 

LOOP SAM 
 

Z := Z + V Z := Z - 1 N := 0 Z := Z - V 

NO 
N := N+1 N = V ? 

YES 
END One to One Flow Chart 



Control Flow Graphs and Path Testing 

Creation of Control Flow Graph from a program 
 

• One statement to one element translation to get a Classical Flow chart 

• Add additional labels as needed 

• Merge process steps 

• A process box is implied on every junction and decision 

• Remove External Labels 

• Represent the contents of elements by numbers. 

• We have now Nodes and Links 

 
NO 

INPUT X, Y  

Z := X + Y  

V := X - Y 

IF Z >= 0 GOTO SAM  

JOE: Z := Z + V SAM: Z := Z 
- V 

FOR N = 0 TO V 

N = V ? Z := Z - 1  

NEXT N  

END 

P1 Z >= 0 ? JOE 

P4 LOOP P3 SAM P2 

NO 
P5 

YES END 

Simplified Flow Graph 
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Creation of Control Flow Graph from a program 
 

• One statement to one element translation to get a Classical Flow chart 

• Add additional labels as needed 

• Merge process steps 

• A process box is implied on every junction and decision 

• Remove External Labels 

• Represent the contents of elements by numbers. 

• We have now Nodes and Links 

1 2 3 4 5 

6 7 

INPUT X, Y  

Z := X + Y  

V := X - Y 

IF Z >= 0 GOTO SAM  

JOE: Z := Z + V 

SAM: Z := Z - V 

FOR N = 0 TO V  

Z := Z - 1 

NEXT N  

END 

Simplified Flow Graph 
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Linked List Notation of a Control Flow Graph 

1 2 3 4 5 

6 7 

Node Processing, label, Decision Next-Node 

1 (BEGIN; INPUT X, Y; Z := X+Y ; V := X-Y)  

2  ( Z >= 0 ? ) 

3 (JOE: Z := Z + V) 

4 (SAM: Z := Z – V; N := 0) 

5 (LOOP; Z := Z -1) 

6 (N = V ?) 

7 (N := N + 1) 

: 2 

: 4 (TRUE) 

: 3 (FALSE) 

: 4 

: 5 

: 6 

: 7 (FALSE) 

: END (TRUE) 

: 5 
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Path Testing Concepts 

 
1. Path is a sequence of statements starting at an entry, junction or decision and ending at  

another, or possibly the same junction or decision or an exit point. 

 

Link is a single process (block) in between two nodes. 

 

Node is a junction or decision. 

 

Segment is a sequence of links. A path consists of many segments. 

 

Path segment is a succession of consecutive links that belongs to the same path. (3,4,5) 

 

Length of a path is measured by # of links in the path or # of nodes traversed. 

 

Name of a path is the set of the names of the nodes along the path. (1,2,3 4,5, 6) 

(1,2,3,4, 5,6,7,  5,6,7, 5,6) 

 

Path-Testing Path is an “entry to exit” path through a processing block. 
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Path Testing Concepts.. 

 

2. Entry / Exit for a routines, process blocks and nodes. 

 
 

Single entry and single exit routines are preferable. 

Called well-formed routines.  

Formal basis for testing exists.  

Tools could generate test cases. 
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Path Testing Concepts.. 

 

Multi-entry / Multi-exit routines: (ill-formed) 

 

• A Weak approach: Hence, convert it to single-entry / single-exit routine. 

 

• Integration issues: 

 

Large # of inter-process interfaces. Creates problem in Integration.  

More # test cases and also a formal treatment is more difficult. 

Valid for caller A, B Valid only for x 

Valid for caller A 
Called by x, y 

Valid for x or y 

 

 

Multi-  

entry  

routine 

 

 

Multi-  

Exit  

Routine 

Valid for caller B, C Valid only for Y 

• Theoretical and tools based issues 

 

• A good formal basis does not exist. 

• Tools may fail to generate important test cases. 
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Path Testing Concepts contd.. 

Convert a multi-entry / exit routine to a single entry / exit routine: 

• Use an entry parameter and a case statement at the entry => single-entry 

Begin 1 
Case 

1 

Begin 2 Begin 
2 

Begin N 
N 

• Merge all exits to Single-exit point after setting one exit parameter to a value. 

1 SET E = 1 

2 SET E = 1 

Exit 1 

Exit 2  

Exit N 

N SET E = 1 
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Path Testing Concepts contd.. 

 

Test Strategy for Multi-entry / exit routines 

 

1. Get rid of them. 

2. Control those you cannot get rid of. 

 

3. Convert to single entry / exit routines. 

4. Do unit testing by treating each entry/exit combination as if it were a completely  

different routine. 

 

5. Recognize that integration testing is heavier 

6. Understand the strategies & assumptions in the automatic test generators and confirm  

that they do (or do not) work for multi-entry/multi exit routines. 
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Path Testing Concepts 

 

3. Fundamental Path Selection Criteria 

 
A minimal set of paths to be able to do complete testing. 

 

• Each pass through a routine from entry to exit, as one traces through it, is a potential path. 

 

• The above includes the tracing of 1..n times tracing of an interactive block each separately. 

 
• Note: A bug could make a mandatory path not executable or could create new paths  

not related to processing. 

 
Complete Path Testing prescriptions: 

 
1. Exercise every path from entry to exit. 

2. Exercise every statement or instruction at least once. 

3. Exercise every branch and case statement in each direction, at least once. 

 

 Point 1 => point 2 and 3.  Point 2 & 3 are not the same 

 Point 1 is impractical. For a structured language, Point 3 => Point 2 
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Path Testing Concepts 

 

Path Testing Criteria : 
 

1. Path Testing (P ): 

Execute all possible control flow paths thru the program; but typically restricted  

to entry-exit paths. 

Implies 100% path coverage. Impossible to achieve. 

2. Statement Testing ( P1) : 

Execute all statements in the program at least once under the some test.  

100% statement coverage => 100% node coverage. 

Denoted by C1 

C1 is a minimum testing requirement in the IEEE unit test standard: ANSI 87B. 

 

3. Branch Testing (P2) : 

Execute enough tests to assure that every branch alternative has been  

exercised at least once under some test. 

Denoted by C2 

Objective: 100% branch coverage and 100% Link coverage. 

For well structured software, branch testing & coverage include statement coverage 
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Picking enough (the fewest) paths for achieving C1+C2 

1 
2 

NO 

f P1 a 
Z >= 0 ? 

b 
NO c 

END 
YES 

g N = V ? e d LOOP 

4 

SAM 

3 6 5 

1. Does every decision have Y & N (C2)? 

2. Are call cases of case statement marked (C2)? 

3. Is every three way branch covered (C2)? 

4. Is every link covered at least once (C1)? 

Make small changes in the path changing only 1  

link or node at a time. 
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Revised path selection Rules 

 
1. Pick the simplest and functionally sensible entry/exit path 

 
2. Pick additional paths as small variations from previous paths. (pick those with no loops,  

shorter paths, simple and meaningful) 

 
3. Pick additional paths but without an obvious functional meaning (only to achieve C1+C2  

coverage). 

 

4. Be comfortable with the chosen paths. play hunches, use intuition to achieve C1+C2 

 

5. Don’t follow rules slavishly – except for coverage 



Control Flow Graphs and Path Testing 

4. Testing of Paths involving loops 
 

Bugs in iterative statements apparently are not discovered by C1+C2.  

But by testing at the boundaries of loop variable. 

 

Types of Iterative statements 

 

1. Single loop statement. 

 

2. Nested loops. 

 

3. Concatenated Loops. 

 

4. Horrible Loops 

 

Let us denote the Minimum # of iterations by nmin 

the Maximum # of iterations by nmax  

the value of loop control variable by V  

the #of test cases by T 

the # of iterations carried out by n 

 

• Later, we analyze the Loop-Testing times 
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Testing of path involving loops… 

1. Testing a Single Loop Statement (three cases)  

Case 1. nmin = 0, nmax = N, no excluded values 

1 2 

1. Bypass the loop. 

If you can’t, there is a bug, nmin ≠ 0 or a wrong case. 

2. Could the value of loop (control) variable V be negative?  
could it appear to specify a –ve n ? 

3. Try one pass through the loop statement: n = 1 

4. Try two passes through the loop statement: n =  

2 To detect initialization data flow anomalies: 
Variable defined & not used in the loop, or  

Initialized in the loop & used outside the loop. 

5. Try n = typical number of iterations : nmin < n < nmax 

6. Try n = nmax -1 

7. Try n = nmax 

8. Try n = nmax + 1. 

What prevents V (& n) from having this value?  

What happens if it is forced? 
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Testing of path involving loops… 

 

Case 2. nmin = +ve, nmax = N, no excluded values 

1 2 
1. Try nmin - 1 

Could the value of loop (control) variable V be < nmin?  
What prevents that ? 

2. Try nmin 

3. Try nmin + 1 

4. Once, unless covered by a previous test. 

5. Twice, unless covered by a previous test. 

 

4. Try n = typical number of iterations : nmin < n < nmax 

5. Try n = nmax -1 

 

6. Try n = nmax 

7. Try n = nmax + 1. 

What prevents V (& n) from having this value?  

What happens if it is forced? 

 

Note: only a case of no iterations, n = 0 is not there. 
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Path Testing Concepts… 

 

Case 3. Single loop with excluded values 

 

1. Treat this as single loops with excluded values as two sets. 

2. Example: 1 2 

V = 1 to 20 excluding 7,8,9 and10 

 

Test cases to attempt are for: 

V = 0,1,2,4,6,7 and V = 10,11,15,19,20,21 

(underlined cased are not supposed to work) 
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Testing of path involving loops… 

 

2. Testing a Nested Loop Statement 

1 2 3 4 

• Multiplying # of tests for each nested loop => very large # of tests 

 

• A test selection technique: 

 

1. Start at the inner-most loop. Set all outer-loops to Min iteration parameter values: Vmin. 

2. Test the Vmin, Vmin + 1, typical V, Vmax - 1, Vmax for the inner-most loop. Hold the  

outer-loops to Vmin. Expand tests are required for out-of-range & excluded values. 

 
3. If you have done with outer most loop, Go To step 5. Else, move out one loop and do  

step 2 with all other loops set to typical values. 

4. Do the five cases for all loops in the nest simultaneously. 

• Assignment: check # test cases = 12 for nesting = 2, 16 for 3, 19 for 4. 
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Testing of path involving loops… 

1 2 3 4 

• Compromise on # test cases for processing time. 

 
• Expand tests for solving potential problems associated with initialization of variables  

and with excluded combinations and ranges. 

 

• Apply Huang’s twice thorough theorem to catch data initialization problems. 
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Testing of path involving loops… 

 

3. Testing Concatenated Loop Statements 

1 2 3 4 

• Two loops are concatenated if it’s possible to reach one after exiting the other while still 

on the path from entrance to exit. 

 

• If these are independent of each other, treat them as independent loops. 

 
• If their iteration values are inter-dependent & these are same path, treat these like a nested  

loop. 

 

• Processing times are additive. 
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Testing of path involving loops… 

 

4.Testing Horrible Loops 

1 2 3 4 5 6 

• Avoid these. 

 

• Even after applying some techniques of paths, resulting test cases not definitive. 

 

• Too many test cases. 

 

• Thinking required to check end points etc. is unique for each program. 

 
• Jumps in & out of loops and intersecting loops etc, makes test case selection an ugly task. 

 

• etc. etc. 
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Testing of path involving loops… 

 

Loop Testing Times 
 

• Longer testing time for all loops if all the extreme cases are to be tested. 

 

• Unreasonably long test execution times indicate bugs in the s/w or specs. 

 

Case: Testing nested loops with combination of extreme values leads to long test times. 

 

• Show that it’s due to incorrect specs and fix the specs. 

• Prove that combined extreme cases cannot occur in the real world. Cut-off those tests. 

 

• Put in limits and checks to prevent the combined extreme cases. 

• Test with the extreme-value combinations, but use different numbers. 

 

• The test time problem is solved by rescaling the test limit values. 

 
• Can be achieved through a separate compile, by patching, by setting parameter  

values etc.. 
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Effectiveness of Path Testing 

 

• Path testing (with mainly P1 & P2) catches ~65% of Unit Test Bugs ie., ~35% of all bugs. 

 

• More effective for unstructured than structured software. 

 
 

• Limitations 

 

• Path testing may not do expected coverage if bugs occur. 

 

• Path testing may not reveal totally wrong or missing functions. 

 

• Unit-level path testing may not catch interface errors among routines. 

 

• Data base and data flow errors may not be caught. 

 

• Unit-level path testing cannot reveal bugs in a routine due to another. 

 

• Not all initialization errors are caught by path testing. 

 

• Specification errors cannot be caught. 
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Effectiveness of Path Testing 

 

• A lot of work 

 
• Creating flow graph, selecting paths for coverage, finding input data values to force  

these paths, setting up loop cases & combinations. 

 

• Careful, systematic, test design will catch as many bugs as the act of testing. 

Test design process at all levels at least as effective at catching bugs as is running the test  

designed by that process. 

• More complicated path testing techniques than P1 & P2 

 

• Between P2 & Pα 

• Complicated & impractical 

 

• Weaker than P1 or P2. 

• For regression (incremental) testing, it’s cost-effective 
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Predicates, Predicate Expressions 

Path 
 

• A sequence of process links (& nodes) 

 

Predicate 

• The logical function evaluated at a decision : True or False. (Binary , boolean) 

Compound Predicate 
• Two or more predicates combined with AND, OR etc. 

 

Path Predicate 

 
• Every path corresponds to a succession of True/False values for the predicates traversed  

on that path. 

 

• A predicate associated with a path. 

“ X > 0 is True “ AND “W is either negative or equal to 122” is True 

 

• Multi-valued Logic / Multi-way branching 
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Predicates, Predicate Expressions… 

Predicate Interpretation 

 
• The symbolic substitution of operations along the path in order to express the predicate  

solely in terms of the input vector is called predicate interpretation. 

 

An input vector is a set of inputs to a routine arranged as a one dimensional array. 

• Example: 

INPUT X, Y 

ON X GOTO A, B, C 

A: Z := 7 @ GOTO H 

INPUT X 

IF X < 0 THEN Y:= 2 

ELSE Y := 1 

IF X + Y*Y > 0 THEN … B: Z := -7 @ GOTO H  

C: Z := 0 @ GOTO H 

H: DO SOMETHING 

K: IF X + Z > 0 GOTO GOOD ELSE GOTO BETTER 

• Predicate interpretation may or may not depend on the path. IF -7 > 3 .. 

• Path predicates are the specific form of the predicates of the decisions along the selected  

path after interpretation. 
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Predicates, Predicate Expressions… 
 

Process Dependency 

 
• An input variable is independent of the processing if its value does not change as a result of  

processing. 

 

• An input variable is process dependent if its value changes as a result of processing. 

 

• A predicate is process dependent if its truth value can change as a result of processing. 

 
• A predicate is process independent if its truth value does not change as a result  

of processing. 

 

• Process dependence of a predicate doesn’t follow from process dependence of variables 

• Examples: X + Y = 10 

X is odd 

Increment X & Decrement Y.  

Add an even # to X 

• If all the input variables (on which a predicate is based) are process independent,  

then predicate is process independent. 
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Predicates, Predicate Expressions… 
 

Correlation 

 
• Two input variables are correlated if every combination of their values cannot be  

specified independently. 

 

• Variables whose values can be specified independently without restriction are uncorrelated. 

 
• A pair of predicates whose outcomes depend on one or more variables in common  

are correlated predicates. 

 
 

• Every path through a routine is achievable only if all predicates in that routine  

are uncorrelated. 

 

• If a routine has a loop, then at least one decision’s predicate must be process dependent. 

Otherwise, there is an input value which the routine loops indefinitely. 
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Predicates, Predicate Expressions… 
 

Path Predicate Expression 

• Every selected path leads to an associated boolean expression, called the path predicate  

expression, which characterizes the input values (if any) that will cause that path to be  

traversed. 

• Select an entry/exit path. Write down un-interpreted predicates for the decisions along the  

path. If there are iterations, note also the value of loop-control variable for that pass.  

Converting these into predicates that contain only input variables, we get a set of boolean  

expressions called path predicate expression. 

• Example (inputs being numerical values): 

 

If X 5 > 0 .OR. X 6 < 0 then 

 

X1 + 3X2 + 17 >= 0  

X3 = 17 

X4 – X1 >= 14 X2 
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Predicates, Predicate Expressions… 

A: X 5 > 0 E: X 6 < 0 

B: X1 + 3X2 + 17 >= 0 F: X1 + 3X2 + 17 >= 0 

C: X3 = 17 G: X3 = 17 

D: X4 – X1 >= 14 X2 H: X4 – X1 >= 14 X2 

Converting into the predicate expression form: 
 

A B C D + E B C D  ( A + E ) B C D 

 

If we take the alternative path for the expression: D then  

(A + E ) B C D 
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Predicates, Predicate Expressions… 
 

Predicate Coverage: 

 
• Look at examples & possibility of bugs: A B C D A + B + C + D 

 
• Due to semantics of the evaluation of logic expressions in the languages, the entire  

expression may not be always evaluated. 

 

• A bug may not be detected. 

• A wrong path may be taken if there is a bug. 

 

• Realize that on our achieving C2, the program could still hide some control flow bugs. 

 

• Predicate coverage: 

 
• If all possible combinations of truth values corresponding to selected path have been  

explored under some test, we say predicate coverage has been achieved. 

 

• Stronger than branch coverage. 

 
• If all possible combinations of all predicates under all interpretations are covered, we  

have the equivalent of total path testing. 
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Testing blindness 
 

• coming to the right path – even thru a wrong decision (at a predicate). Due to the  

interaction of some statements makes a buggy predicate work, and 

 

the bug is not detected by the selected input values. 

 

• calculating wrong number of tests at a predicate  

by ignoring the # of paths to arrive at it. 

• Cannot be detected by path testing and need other strategies 
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Testing blindness 
 

• Assignment blinding: A buggy Predicate seems to work correctly as the specific value  

chosen in an assignment statement works with both the correct & buggy predicate. 

Correct Buggy 

X := 7 X := 7 

IF Y > 0 THEN … IF X + Y > 0 THEN … (check for Y=1) 

• Equality blinding: 

 
• When the path selected by a prior predicate results in a value that works both for  

the correct & buggy predicate. 
Correct 

IF Y = 2 THEN … 

IF X + Y > 3 THEN … 

Buggy 

IF Y = 2 THEN .. 

IF X > 1 THEN … (check for any X>1) 

• Self-blinding 

• When a buggy predicate is a multiple of the correct one and the result  

is indistinguishable along that path. 
Correct 

X := A 

IF X - 1 > 0 THEN … 

Buggy 

X := A 

IF X + A -2 > 0 THEN … (check for any X,A) 
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Achievable Paths 
 

1. Objective is to select & test just enough paths to achieve a satisfactory notion  
of test completeness such as C1 + C2. 

 

2. Extract the program’s control flow graph & select a set of tentative covering paths. 

 

3. For a path in that set, interpret the predicates. 

 
4. Trace the path through, multiplying the individual compound predicates to achieve a 

boolean expression. Example: (A + BC) ( D + E) 

 
5. Multiply & obtain sum-of-products form of the path predicate expression: 

AD + AE + BCD + BCE 

 
6. Each product term denotes a set of inequalities that, if solved, will yield an input  

vector that will drive the routine along the selected path. 

7. A set of input values for that path is found when any of the inequality sets is solved. A  

solution found => path is achievable. Otherwise the path is unachievable. 
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Path Sensitization 

It’s the act of finding a set of solutions to the path predicate expression. 

In practice, for a selected path finding the required input vector is not difficult. If there is difficulty, it  

may be due to some bugs. 

 

 

Heuristic procedures: 

Choose an easily sensitizable path set, & pick hard-to-sensitize paths to achieve more coverage. 

Identify all the variables that affect the decisions. For process dependent variables,  

express the nature of the process dependency as an equation, function, or whatever is  

convenient and clear. For correlated variables, express the logical, arithmetic, or  

functional relation defining the correlation. 

 
1. Identify correlated predicates and document the nature of the correlation as for variables.  

If the same predicate appears at more than one decision, the decisions are obviously  
correlated. 

2. Start path selection with uncorrelated & independent predicates. If coverage is achieved,  

but the path had dependent predicates, something is wrong. 



Control Flow Graphs and Path Testing 

Path Sensitization… Heuristic procedures: contd.. 

4. If the coverage is not achieved yet with independent uncorrelated predicates, extend the  

path set by using correlated predicates; preferably process independent (not needing  

interpretation) 

 
5. If the coverage is not achieved, extend the path set by using dependent predicates  

(typically required to cover loops), preferably uncorrelated. 

6. Last, use correlated and dependent predicates. 

 

7. For each of the path selected above, list the corresponding input variables. If the variable  

is independent, list its value. For dependent variables, interpret the predicate ie., list the  

relation. For correlated variables, state the nature of the correlation to other variables.  

Determine the mechanism (relation) to express the forbidden combinations of variable  

values, if any. 

8. Each selected path yields a set of inequalities, which must be simultaneously satisfied to  
force the path. 
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Examples for Path Sensitization 

 

1. Simple Independent Uncorrelated Predicates 

 
 

2. Independent Correlated Predicates 

 

3. Dependent Predicates 

 
4. Generic 
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Examples for Path Sensitization.. 

1. Simple Independent Uncorrelated Predicates 

3 A 5 
_  

C 1 A 4 6 7 2 

a b c d e f _  

A 
h 

C 

C 
j k 

4 predicates => 16 combinations  

Set of possible paths = 8 
8 

B 
i B _  

D _  
B l 

9 
10 

D 
m D 

Path Predicate Values Path Predicate Values 

abcdef  

aghcimkf  

aglmjef 

A C 
A B  C D 

A  B D 

A C 

A C D 
A C D 

A B C 

abcdef  

abcimjef  

abcimkf  

aghcdef  

aglmkf A  B D 

A Simple case of solving inequalities. (obtained by the procedure for finding a covering set of paths) 
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2. Correlated Independent Predicates 

Examples for Path Sensitization … 

b 

_ 

3 Y 
1 

a Y 

Y 
c 
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1 

a Y 

Y 
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Y 

4 
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6 
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_  
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d f 
4 5 

6 
g 

2 

4’ 5’ 
d’ e 

Correlated paths => some paths are unachievable  

ie., redundant paths. 

ie., n decisions but # paths are < 2
n 

Due to practice of saving code which makes  
the code very difficult to maintain. 

Eliminate the correlated decisions.  

Reproduce common code. 

If a chosen sensible path is not achievable, 

- there’s a bug. 

- design can be simplified. 

- get better understanding of correlated decisions 

Correlated decision removed & CFG simplified 
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Examples for Path Sensitization … 

3. Dependent Predicates 
 

Usually most of the processing does not affect the control flow.  

Use computer simulation for sensitization in a simplified way. 

Dependent predicates contain iterative loop statements usually. 

For Loop statements: 

 
Determine the value of loop control variable for a certain # of iterations, and then  

work backward to determine the value of input variables (input vector). 
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Examples for Path Sensitization … 

4. The General Case 
 

No simple procedure to solve for values of input vector for a selected path. 

 

1. Select cases to provide coverage on the basis of functionally sensible paths. 

Well structured routines allow easy sensitization.  

Intractable paths may have a bug. 

 

2. Tackle the path with the fewest decisions first. Select paths with least # of loops. 

 

3. Start at the end of the path and list the predicates while tracing the path in reverse.  

Each predicate imposes restrictions on the subsequent (in reverse order) predicate. 

4. Continue tracing along the path. Pick the broadest range of values for variables affected  

and consistent with values that were so far determined. 

5. Continue until the entrance & therefore have established a set of input conditions for the path. 

 
 

If the solution is not found, path is not achievable, it could be a bug. 
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Examples for Path Sensitization … 

4. The General Case contd.. 

 

Alternately: 

 
1. In the forward direction, list the decisions to be traversed.  

For each decision list the broadest range of input values. 

 
2. Pick a path & adjust all input values. These restricted values are used for next decision. 

 
3. Continue. Some decisions may be dependent on and/or correlated with earlier ones. 

 
4. The path is unachievable if the input values become contradictory, or, 

impossible.  If the path is achieved, try a new path for additional coverage. 

 

 
Advantages & Disadvantages of the two approaches: 

The forward method is usually less work. 

you do not know where you are going as you are tracing the graph. 



Control Flow Graphs and Path Testing 

PATH INSTRUMENTATION 

 

Output of a test: 

 

Results observed. But, there may not be any expected output for a test. 

 
Outcome: 

Any change or the lack of change at the output. 

 

Expected Outcome: 

Any expected change or the lack of change at the output (predicted as part of 

design). 

 

 
Actual Outcome: 

Observed outcome 
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PATH INSTRUMENTATION 
 

Coincidental Correctness: 
 

When expected & actual outcomes match, 

• Necessary conditions for test to pass are met. 

• Conditions met are probably not sufficient. 

(the expected outcome may be achieved due to a wrong reason) 

X = 16 CASE SELECT Y := X - 14 

Y := 2 

 

 

 
Here  

Y is 2 

Y := X mod 14 

Path Instrumentation is what we have to do confirm that the outcome  
was achieved by the intended path. 



Control Flow Graphs and Path Testing – Questions from previous exams 

PATH INSTRUMENTATION METHODS 

 
1. General strategy: 

 
1. Based on Interpretive tracing & use interpreting trace program. 

 

2. A trace confirms the expected outcome is or isn’t obtained along the intended path. 

 

3. Computer trace may be too massive. Hand tracing may be simpler. 

2. Traversal or Link Makers: 
 

Simple and effective 

 

1. Name every link. 

 

2. Instrument the links so that the link is recorded when it is executed (during the test) 

 

3. The succession of letters from a routine’s entry to exit corresponds to the pathname. 
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Single Link Marker Instrumentation: An example 

No 

i A = 7? j k 
Input  

A,B,C 

B$ = 

“a” ? 

No 

n 

No 

o p 
B$ = 

“d” ? 

s 

l 
C = 

0 ? 

No 
m 

No 

q C ≤ 
0 ? 

r 

Sample path: i j n 
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Single Link Marker Instrumentation: Not good enough 

i A = 7? j  
Process A 

 
Process B 

No 

? 

m 

 
No 

k Process C nProcess D 

Problem: 



Processing in the links may be chewed open by bugs. Possibly due to GOTO  

statements, control takes a different path, yet resulting in the intended path again. 
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Double Link Marker Instrumentation: 

i A = 7? j  
Process A 

 
Process B l 

m n 

o Process Cp ? q Process D r 

The problem is solved. 

 
Two link markers specify the path name and both the beginning & end of the link. 
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PATH INTRUMENTATION techniques… 

3. Link Counters Technique: 

 
• Less disruptive and less informative. 

 
• Increment a link counter each time a link is traversed. Path length could confirm  

the intended path. 

 
• For avoiding the same problem as with markers, use double link counters.  

Expect an even count = double the length. 

 
• Now, put a link counter on every link. (earlier it was only between decisions) 

If there are no loops, the link counts are = 1. 

 
• Sum the link counts over a series of tests, say, a covering set. Confirm the total link  

counts with the expected. 

 
• Using double link counters avoids the same & earlier mentioned problem. 
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PATH INTRUMENTATION techniques… 

3. Link Counters Technique: contd.. 

 
Check list for the procedure: 

 

• Do begin-link counter values equal the end-link counter values? 

 

• Does the input-link count of every decision equal to the sum of the link counts of  
the output links from that decision? 

 
• Do the sum of the input-link counts for a junction equal the output-link count for  

that junction? 

 
• Do the total counts match the values you predicted when you designed the  

covering test set? 

 
This procedure and the checklist could solve the problem of Instrumentation. 
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PATH INTRUMENTATION techniques… 

 

Limitations 

• Instrumentation probe (marker, counter) may disturb the timing relations & hide  
racing condition bugs. 

• Instrumentation probe (marker, counter) may not detect location dependent  
bugs. 

 
If the presence or absence of probes modifies things (for example in the data  
base) in a faulty way, then the probes hide the bug in the program. 
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PATH INTRUMENTATION- IMPLEMENTATION 

For Unit testing : Implementation may be provided by a comprehensive test tool. 

For higher level testing or for testing an unsupported language: 

• Introduction of probes could introduce bugs. 

• Instrumentation is more important for higher level of program structure like transaction flow 

• At higher levels, the discrepancies in the structure are more possible & overhead  

of instrumentation may be less. 

For Languages supporting conditional assembly or compilation: 
 

• Probes are written in the source code & tagged into categories. 

• Counters & traversal markers can be implemented. 

• Can selectively activate the desired probes. 

For language not supporting conditional assembly / compilation: 
 

• Use macros or function calls for each category of probes. This may have less bugs. 

• A general purpose routine may be written. 

 

In general: 
• Plan instrumentation with probes in levels of increasing detail. 
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Implementation & Application of Path Testing 
 

1. Integration, Coverage, and Paths in Called Components 

 
• Mainly used in Unit testing, especially new software. 

 
• In an Idealistic bottom-up integration test process – integrating one component at a time.  

Use stubs for lower level component (sub-routines), test interfaces and then replace stubs by  

real subroutines. 

• In reality, integration proceeds in associated blocks of components. Stubs may be avoided.  

Need to think about paths inside the subroutine. 

 

To achieve C1 or C2 coverage: 

• Predicate interpretation may require us to treat a subroutine as an in-line-code. 

• Sensitization becomes more difficult. 

• Selected path may be unachievable as the called components’ processing may block it. 

 
Weaknesses of Path testing: 

 

• It assumes that effective testing can be done one level at a time without bothering  

what happens at lower levels. 

• predicate coverage problems & blinding. 
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Implementation & Application of Path Testing 

 

2. Application of path testing to New Code 

 
• Do Path Tests for C1 + C2 coverage 

 
• Use the procedure similar to the idealistic bottom-up integration testing, using  

a mechanized test suite. 

 

• A path blocked or not achievable could mean a bug. 

 

• When a bug occurs the path may be blocked. 
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Implementation & Application of Path Testing 

 

3. Application of path testing to Maintenance 

 
• Path testing is applied first to the modified component. 

 
• Use the procedure similar to the idealistic bottom-up integration testing, but without using  

stubs. 

 

• Select paths to achieve C2 over the changed code. 

 
• Newer and more effective strategies could emerge to provide coverage in maintenance  

phase. 
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Implementation & Application of Path Testing 

4. Application of path testing to Rehosting 

• Path testing with C1 + C2 coverage is a powerful tool for rehosting old software. 

 
• Software is rehosted as it’s no more cost effective to support the  

application environment. 

 
• Use path testing in conjunction with automatic or semiautomatic structural  

test generators. 
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Implementation & Application of Path Testing 

Application of path testing to Rehosting.. 

 
Process of path testing during rehosting 

 
• A translator from the old to the new environment is created & tested. Rehosting  

process is to catch bugs in the translator software. 

 

• A complete C1 + C2 coverage path test suite is created for the old software. Tests  

are run in the old environment. The outcomes become the specifications for the  

rehosted software. 

 
• Another translator may be needed to adapt the tests & outcomes to the  

new environment. 

 
• The cost of the process is high, but it avoids risks associated with rewriting the code. 

 
• Once it runs on new environment, it can be optimized or enhanced for  

new functionalities (which were not possible in the old environment.) 



UNIT-II 

Transaction Flow Testing: Transaction flows, transaction  
flow testing techniques. 

 

Dataflow testing -Basics of dataflow testing, strategies  
in dataflow testing, application of dataflow testing. 



Definitions of Transaction,Transaction-flow, TFG 

Transaction-flow 
 

Transaction-flow represents a system’s processing. Functional testing methods are  

applied for testing T-F. 

 

Transaction-flow Graph 
 

TFG represents a behavioral (functional) model of the program (system) used for  

functional testing by an independent system tester. 

 

Transaction 

• is a unit of work seen from system’s user point of view. 

 
• consists of a sequence of operations performed by a system, persons or  

external devices. 

 
• is created (birth) due to an external act & up on its completion (closure), it  

remains in the form of historical records. 



A Simple Transaction 

Example: the sequence of steps in a transaction in an online information retrieval system 

1. accept inputs 7. Accept Inputs 

2. Validate inputs (Birth of tr.) 8. Validate inputs 

3. Transmit ack. to the user 9. Process the request 

4. Process input 10. Update file 

5. Search file 11. Transmit output 

6. Request direction from user 12. Record transaction in log & cleanup (Closure) 

Users View of a transaction : Single step 

Systems view : Sequence of many operations 



Example of a Transaction flow (diagram) 
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to Terminal 



Definitions 

a scenario between users & computer Transaction-flow Graph : 

 

Transaction-flow : an internal sequence of events in processing a transaction 

Uses of Transaction-flow 

Specifying requirements of big, online and complicated systems.  

Airline reservation systems, air-traffic control systems. 

 

Loops are less as compared to CFG. Loops are used for user input error processing 



Implementation of Transaction-Flow (in a system) 

• Implicit in the design of system’s control structure & associated database. 

 
• No direct one-to-one correspondence between the “processes” and “decisions” of 

transaction-flow, and the corresponding program component. 

 
• A transaction-flow is a path taken by the transaction through a succession of processing  

modules. 

 

• A transaction is represented by a token. 

 

• A transaction-flow graph is a pictorial representation of what happens to the tokens. 

D 

Input S A S B S C S S Output 

E 

S : Scheduler A, B, C, D, E : Processes 



Implementation of Transaction-Flow 

System Control Structure (architecture of the implementation) : 

Output  

Queue 
Input  

Queue Front  

End 

Output  

Module 

EXECUTIVE 

SCHEDULER -  AND / OR OPERATING SYSTEM 

DISPATCHER 

A Processor B Processor C Processor D Processor E Processor 
Process  
Queues 

Application Processes 

Executive / Dispatcher Flowchart (a sample sequence) 

1 Do All B’s Do All C’s Do All B’s 2 
Disc  

Reads 

Tape  

Writes 

Disc  

Writes 

2 Do All D’s Do All A’s Do All E’s 1 
Disc  

Reads 

Tape  

Reads 

Disc  

Writes 



Implementation of Transaction-Flow 

System control structure 

System is controlled by a scheduler … 

 
A Transaction is created by filling in a Transaction Control Block (TCB) by user inputs and  

by placing that token on input Q of Scheduler. 

 
Scheduler examines and places it on appropriate process Q such as A. When A finishes with  

the Token, it places the TCB back on the scheduler Q. 

 

Scheduler routes it to the next process after examining the token : 

 

1. It contains tables or code to route a token to the next process. 

 

2. It may contain routing information only in tables. 

 

3. Scheduler contains no code / data. Processing modules contain code for routing. 



Implementation of Transaction-Flow 

Transaction Processing System (simplified): 

• There are many Tr. & Tr-flows in the system. 

 

• Scheduler invokes processes A to E as well as disk & tape read & writes. 

 

• The order of execution depends on priority & other reasons. 

Cyclic structure like in this example is common in process control & communication systems. 

 The criteria for implementation mechanism depends on performance and resource  
optimization. 



A perspective of Transaction-Flow 

Transaction-flow testing is a block box technique. (as we assumed nothing regarding  

computer, communications, environment, O.S., transaction identity or structure or state.) 

 

 

1. TFG is a kind of DFG. 
 

• TFG has tokens, & DFG has data objects with history of operations applied on them. 

 

• Many techniques of CFG apply to TFG & DFG 

 
 

2. Decision nodes of TFG have exception exits to the central recovery process. 

 

3. So, we ignore the effect of interrupts in a Transaction-flow. 



Transaction Flows – splitting & merging decisions 

Splits of transactions (Births) 

1. A decision point in TFG 

2. Biosis 

Alternative 2 

Alternative 1 

Parent Parent 

3.Mitosis 

Daughter Tr. 

 
Daughter Tr. 

Parent 

Daughter Tr. 



Transaction Flows – splitting & merging decisions 

Mergers of transactions 

Path 1 

1. Junction 

2. Absorption 

Continue 

Path 2 

Daughter . 

Predator 

 

Predator 

3. Conjugation 

Parent Daughter 

Parent 



TFG – splitting, merging Transactions 

NOTES: 

 

• Multiple meanings now for decision and junction symbols in a TFG. 

 

 
• Simple TFG model is not enough to represent multi-  

processor systems & associated coordination systems. 

 
 

• Petrinet model uses operations for all the above. But Petrinets are 
applied to H/W, N/W protocol testing – but not Software. 



Simplified TFG model 

Simplify TFG model 

• Add New Tr-Flows for Biosis, Mitosis, Absorption, Conjugation 

• Problems for programmer, designer & test designer. 

 
 

• Need to design specific tests – possibility of bugs. 



Transaction-flow Structure 

Reasons for Unstructuredness 

1. Processes involve Human Users 

 
 

1. Part of Flow from External Systems 

1. Errors, Failures, Malfunctions & Recovery Actions 

1. Transaction Count, Complexity. Customer & Environment 



Transaction-flow Structure 

Reasons for Unstructuredness … 

5. New Transactions, & Modifications 

 
 

6. Approximation to Reality 

 

• Attempt to Structure 



Transaction - Flow Testing - Steps 

First, Build / Obtain Transaction Flows 

 
• Represent Explicitly 

 

• Design details the Main Tr-Flows 

 

• Create From PDL 

 

• HIPO charts & Petrinet Representations 

 
 

Objective – Trace the transaction 



Transaction - Flow Testing - Steps 

1. Inspections, Reviews & Walkthroughs 

 
Start From Preliminary Design 

 
 

1. Conducting Walkthroughs 

 

• Discuss enough Transaction Types (98% Transactions) 

(Design independent) • User needs & Functional terms 

 

• Traceability to Requirements 



Transaction - Flow Testing - Steps 

1. Inspections, Reviews & Walkthroughs … 

 
 

2. Design Tests for C1 + C2 coverage 

 

3. Additional Coverage (> C1+C2) 

 
• Paths with loops, extreme values, domain boundaries 

• Weird cases, long & potentially troublesome Tr. 

 
 

4. Design Test cases for Tr. Splits & mergers 

 
 

5. Publish Selected Test Paths early 

 

6. Buyer’s Acceptance – functional & acceptance tests 



Transaction - Flow Testing Techniques 

2. Path Selection 

 
 

1. Covering Set (C1+C2) of Functionally Sensible Tr. 

 

2. Add Difficult Paths 

 

• Review with designers & implementers 

 
• Exposure of interface problems & duplicated processing 

 

• Very few Implementation bugs may remain 

Transaction-flow Path Covering Set belongs in  

System Feature Tests 



Transaction - Flow Testing Techniques 

3. Sensitization 

 
 

1. Functionally Sensible Paths – Simple 

 

2. Error, Exception, External Protocol Interface Paths - Difficult 

 
 

Testing Tr.–Flows with External Interfaces 

 

• Use patches & break points, mistune, and break the rules, 



Transaction - Flow Testing Techniques 

4. Instrumentation 

 
 

1. Link Counters are not Useful. 

 

2. Need 

 

• Trace 

 

• Queues on which Tokens resided 

 

• Entries to & Exits from Dispatcher 

 

• A Running Log 

 
 

Make Instrumentation as part of System Design 



Transaction - Flow Testing Techniques 

5. Test Data bases 

 
 

1. Design & Maintenance of a Test Data base - Effort 

 

2. Mistakes 

 

• Unawareness about design of a centrally administered test DB 

 

• Test DB design by Testers 

 

• Using one DB for all tests (need 4 to 5) 

 
 

Need experienced System & Test Designers 



Transaction - Flow Testing Techniques 

6. Test Execution 

 
 

1. Use Test Execution Automation 

 

2. Have to do a large # of Tests for C1+C2 coverage 



Transaction - Flow Testing - Implementation 

1. Transaction based systems 

• TCB 

 
 

1. Centralized, Common Processing Queues 

• Just O(n) Queues for Links of O(n2) 

 
 

2. Transaction Dispatcher 

• Uses tables & Finite State Machines 

 
 

3. Recovery & Other Logs 

• Key events in Tr – Flow 

 
 

4. Self-Test Support 

• Privileged modes in Transaction control tables 



Data - Flow Testing - Basics 

Anomaly 

 
Unreasonable processing on data 

 
• Use of data object before it is defined 

• Defined data object is not used 

 

 

• Data Flow Testing (DFT) uses Control Flow Graph  
(CFG) to explore dataflow anomalies. 

• DFT Leads to testing strategies between P and P1 / P2 



Data - Flow Testing - Basics 

Definition: 

 

DFT is a family of test strategies based on selecting paths  

through the program’s control flow in order to explore the  

sequence of events related to the status of data objects. 

Example: 

 

Pick enough paths to assure that every data item has been  

initialized prior to its use, or that all objects have been used for  

something. 



Data - Flow Testing - Basics 

Motivation 

 
• Confidence in the program 

• Data dominated design. Code migrates to data.. 

• Source Code for Data Declarations 

 

• Data flow Machines vs Von Neumann’s 

 
• Abstract M I M D 

• Language & compiler take care of parallel  

computations 



Data - Flow Testing - Basics - Motivation 

a := m + n  

b := p + q  

c := a + b  

d := a - b 

e := c * d 

Program Control flow with Von Neumann’s paradigm 

 
Given m, n, p, q, find e. 

 

e = (m+n+p+q) * (m+n-p-q) 
 

a = n+m 

b=p+q 

c=a+b 

d=a-b 

 
e=c*d 

 

 

Multiple representations of control flow graphs possible. 



Data - Flow Testing - Basics - Motivation 

Program Flow using Data Flow Machines paradigm 

BEGIN  

PAR DO 

READ m, n, n, p, q 

END PAR  

PAR DO 

a := m+n  

b := p+q 

END PAR  

PAR DO 

c := a+b  

d := a-b 

END PAR  

PAR DO 

e := c * d 

END PAR  

END 

n m p q 

a := m+n b := p+q 

c := a+b d := a-b 

e := c * d 

The interrelations among the data items  
remain same. 



Data - Flow Testing - Basics - Motivation 

• Control flow graph 

• Multiple representations 

• Data Flow Graph 

 

A spec. for relations among the data objects. 

 

Covering DFG => Explore all relations under some test. 



Data - Flow Testing - Basics 

Assumptions 

• Problems in a control flow 

 
 

• Problems with data objects 



Data - Flow Testing - Basics 

 
Data Flow Graphs (DFG) 

• It is a graph with nodes & directed links 

 

• Test the Von Neumann way -  

Convert to a CFG 

 

Annotate : program actions (weights) 



Data - Flow Testing - Basics 

Data Object State & Usage 

Program Actions (d, k, u): 

Defined (created) - explicitly or implicitly (d) 

Killed (released) - directly or indirectly (k) 

Used - (u) 

• In a calculation - (c) 

• In a predicate - directly or indirectly (p) 



Data - Flow Testing - Basics 

Data Flow Anomalies 

A Two letter sequence of Actions (d, k, u) 

dd : 

dk : 

du : 

kd : 

harmless, suspicious  

probably a bug.  

normal 

normal 

kk : harmless, but probably a bug 

ku : a bug 

ud : normal. Redefinition. 

uk : normal 

uu : normal 

A 

Action 



Data - Flow Testing - Basics - Motivation 

Program Flow using Data Flow Machines paradigm 

BEGIN  

PAR DO 

READ m, n, n, p, q 

END PAR  

PAR DO 

a := m+n  

b := p+q 

END PAR  

PAR DO 

c := a+b  

d := a-b 

END PAR  

PAR DO 

e := c * d 
END PAR  

END 

n m p q 

a := m+n b := p+q 

c := a+b d := a-b 

e := c * d 

The interrelations among the data items remain same. 



Data - Flow Testing - Basics – Data Flow Anomalies 

Actions on data objects 

- no action from START to this point  

From this point till the EXIT 

- d normal 

- u anomaly 

- k anomaly 

k- normal 

u - normal - possibly an anomaly 

d - possibly anomalous 



Data - Flow Testing - Basics 

 
Data Flow Anomaly State graph 

 

• Data Object State 

 

• K, D, U, A 

 

• Processing Step 

 

• k, d, u 



Data - Flow Testing - Basics 

Data Flow Anomaly State graph 

 

• Object state 

• Unforgiving Data flow state graph 

Undefined K 

k, u 

d 

u 
d, k 

U D Anomalous A 

u 
d 

d, k, u 
Used 

Defined 



Data - Flow Testing - Basics 

k 

K 
u 

k 

k 

d 

k 

u 
d 

u 
U 

D d 

d 

Data Flow Anomaly State graph 

 
Forgiving Data flow state graph 

u 
A  DD, DK, KU 

KU 

u 

DK 

k 

DD 

u 
d 



Data - Flow Testing - Basics 

Data Flow State Graphs 

 
• Differ in processing of anomalies 

 
 

• Choice depends on Application, language, context 



Data - Flow Testing - Basics 

Static vs Dynamic Anomaly Detection 

• Static analysis of data flows 

 
• Dynamic analysis Intermediate  

data values 



Data - Flow Testing - Basics 

Insufficiency of Static Analysis (for Data flow) 

1. Validation of Dead Variables 

 

2. Validation of pointers in Arrays 

 

3. Validation of pointers for Records & pointers 

 

1. Dynamic addresses for dynamic subroutine calls 

 

2. Identifying False anomaly on an unachievable path 

 

1. Recoverable anomalies & Alternate state graph 

 

2. Concurrency, Interrupts, System Issues 



Data - Flow Testing - Basics 

Data Flow Model 

• Based on CFG 

 

• CFG annotated with program actions 

 

• link weights : dk, dp, du etc.. 

 

• Not same as DFG 

 

• For each variable and data object 



Data - Flow Testing - Basics : Data Flow Model 

Procedure to Build: 

1. Entry & Exit nodes 

 

1. Unique node identification 

 

1. Weights on out link 

 

2. Predicated nodes 

 

3. Sequence of links 

 

1. Join 

 

2. Concatenate weights 

 

3. The converse 



Data - Flow Testing - Basics : Data Flow Model 

Example: 
Z = b + 

an – 1 

--------- 

a - 1 START  

INPUT a, b, n  

Z := 0 

IF a = 1 THEN  

GOTO DONE1 

Z := 1 

r := 1 c := 1  

POWER: 

c := c * a  

r := r + 1 
GO TO POWER IF r <= n THEN  

Z := (c – 1) / (a – 1) 

DONE1:  

Z := b + Z 

END 



Data - Flow Testing - Basics – Data Flow model 

CFG for the Example 

Read a,b,n  

Z := 0 Z := 1 Z := b + Z 

1 2 5 6 

P1 
a = 1? 

Y 
Z := (c-1)/(a-1) 

 

 
P2 

3 4 r < n ? 
r := 1 c:=1 r := r+1, c:= c*a 

Y 



Data - Flow Testing - Basics – Data Flow model 

CFG annotated – Data Flow Model for Z 

d or kd cd or ckd 
d 

1 2 5 6 

P1 
a = 1? 

Y 

d or kd 

P2 
3 4 

r < n ? 

Y 



Data - Flow Testing - Basics – Data Flow model 

CFG annotated – Data Flow Model for c 

1 2 5 6 
a = 1? 

P1 

Y 

-d c- 

ckd or kd P2 

3 4 r < n ? 

Y 



Data - Flow Testing - Basics – Data Flow model 

CFG annotated – Data Flow Model for r 

1 2 5 6 
a = 1? 

P1 

Y 

-d p- 

ckd or kd P2 

3 4 r < n ? 

Y 



Data - Flow Testing - Basics – Data Flow model 

CFG annotated – Data Flow Model for b 

d c 
1 2 5 6 

a = 1? 
P1 

Y 

P2 
3 4 

r < n ? 

Y 



Data - Flow Testing - Basics – Data Flow model 

CFG annotated – Data Flow Model for n 

d 
1 2 5 6 

P1 
a = 1? 

Y 

p- 

P2 
3 4 

r < n ? 

Y 



Data - Flow Testing - Basics – Data Flow model 

CFG annotated – Data Flow Model for a 

d 
1 2 5 6 

a = 1? 
P1 

p 

c- 

c P2 

3 4 r < n ? 

Y 



Data - Flow Testing - Basics – Data Flow model 

A DFM for each variable 

 
 

Single DFM for multiple variables 

 

Use weights subscripted with variables 



Data - Flow Testing – Data Flow Testing Strategies 

• A structural testing strategy (path testing) 

 
 

• Add, data flow strategies with link weights 

 
 

• Test path segments to have a ‘d’ (or u, k, du, dk) 



Data - Flow Testing – Data Flow Testing Strategies 

DEFINITIONS 

 

• w.r.t. a variable or data object ‘v’ 

• Assume all DF paths are achievable 

 

 

1. Definition-clear path 

segment no k, kd 

2. Loop-free path segment 

2. Simple path segment 

3. du path from node i to k 

• definition-clear & simple 

• definition-clear & loop-free 

c  

p 



Data - Flow Testing – Data Flow Testing Strategies 

DFT Strategies 

 

1. All-du paths (ADUP) 

 

2. All uses (AU) strategy 

3. All p-uses/some c-uses and All c-uses/some p-uses 

1. All Definitions Strategy 

1. All p-uses, All c-uses Strategy 

Purpose: 
 

Test Design, Develop Test Cases 



Data - Flow Testing – Data Flow Testing Strategies 

1. All-du paths (ADUP) 

• Strongest DFT 

 
• Every du path for every variable for every definition to  

every use 

2. All uses (AU) strategy 
 

• At least one definition clear path segment from every  
definition of every variable to every use of that definition be  

exercised under some test. 

 
• At least one path segment from every definition to every  

use that can be reached from that definition. 



Data - Flow Testing – Data Flow Testing Strategies 

3. All p-uses/some c-uses and All c-uses/some  

p-uses 

• APU + c 

 

• Stronger than P2 

 
 

• ACU + p 

 

• Weaker than P2 



Data - Flow Testing – Data Flow Testing Strategies 

4. All Definitions Strategy (AD) 

• Cover every definition by at least one p or c 

• Weaker than ACU + p and APU + c 



Data - Flow Testing – Data Flow Testing Strategies 

5. All-Predicate Uses, All-Computational Uses  
Strategy 

 

• APU : 

 
• Include definition-free path for every definition of  

every variable from the definition to predicate use. 

 

• ACU : 

 

• Include for every definition of every variable include at  

least one definition-free path from the definition to every  

computational use. 



Data - Flow Testing – Data Flow Testing Strategies 

Ordering the strategies 

All Paths 

 
 

All du Paths 

 
 

All-uses Paths (AU) 

All-c / some-p (ACU+p) All-p / some-c APU+c 

All Defs AD 
All c uses (ACU) All P-uses APU 

All Branches P2 

All Stmts P1 



Data - Flow Testing – Data Flow Testing Strategies 

Testing, Maintenance & Debugging in the Data Flow context 

 

Slicing: 

 
• A static program slice is a part of a program defined  

wrt a variable ‘v’ and a statement ‘s’; It is the set of all  

statements that could affect the value of ‘v’ at stmt ‘s’. 

var v Stmt1  

stmt2  

Stmt3  

Stmt4 

var v  

var v 

Stmt s var v 



Data - Flow Testing – Data Flow Testing Strategies 

Testing, Maintenance & Debugging in the Data Flow context 

 
 

Dicing: 
 

• A program dice is a part of slice in which all stmts.  

which are known to be correct have been removed. 

 
• Obtained from ‘slice’ by incorporating 

correctness information from testing / debugging. 



Data - Flow Testing – Data Flow Testing Strategies 

Testing, Maintenance & Debugging in the Data Flow context 

 
 

Debugging: 

 
• Select a slice. 

 

• Narrow it to a dice. 

 

• Refine the dice till it’s one faulty stmt. 



Data - Flow Testing – Data Flow Testing Strategies 

Testing, Maintenance & Debugging in the Data Flow context 

 
 

Dynamic Slicing: 
 

• Refinement of static slicing 

 
• Only achievable paths to the stmt ‘s’ in question 

are included. 

Slicing methods bring together testing, maintenance &  
debugging. 



Data - Flow Testing - – Data Flow Testing Strategies 

Application of DFT 

 

• Comparison Random Testing, P2, AU - by Ntafos 

 
• AU detects more bugs than 

 

• P2 with more test cases 

• RT with less # of test cases 

 
 

• Comparison of P2, AU - by Sneed 

 
• AU detects more bugs with 90% Data Coverage Requirement. 



Data - Flow Testing - – Data Flow Testing Strategies 

Application of DFT 

 

• Comparison of # test cases for ACU, APU, AU & ADUP 

 

• by Weyuker using ASSET testing system 
 

• Test Cases Normalized. t = a + b * d d = # binary 

 

• At most d+1 Test Cases for P2 decisions loop-free 

 

• # Test Cases / Decision 

 

ADUP > AU > APU > ACU > revised-APU 



Data - Flow Testing - – Data Flow Testing Strategies 

Application of DFT 

 

Comparison of # test cases for ACU, APU, AU & ADUP by  
Shimeall & Levenson 

Test Cases Normalized. t = a + b * d 

 

At most d+1 Test Cases for P2 

(d = # binary decisions) 

loop-free 

# Test Cases / Decision 

ADUP ~ ½ APU*  

AP ~ AC 



Data - Flow Testing - – Data Flow Testing Strategies 

Application of DFT 

DFT vs P1, P2 

 
 

• DFT is Effective 

 

• Effort for Covering Path Set ~ Same 

 

• DFT Tracks the Coverage of Variables 

 

• Test Design is similar 



Data - Flow Testing - – Data Flow Testing Strategies 

DFT - TOOLS 

 

• Cost-effective development 

 
 

• Commercial tools : 

 
 

• Can possibly do Better than Commercial Tools 

 

• Easier Integration into a Compiler 

 

• Efficient Testing 



UNIT-III 

Domain Testing: domains and paths, Nice and ugly  
domains, domain testing, domains and interfaces testing,  
domain and interface testing, domains and testability. 



Domain Testing - Domains & Paths 

Domain Testing Model 

D1 

D2 

INPUT CLASSIFY 
D3 

(x,y,z,…) Dn 

(1, 2, 3, 4, 5,…) 

  DO CASE 1 OUTPUT 

{ Outcome } 

DO CASE 2 

  DO CASE 3 

  DO CASE n 



Domain Testing 

Domain Testing 

Views Programs as input data classifiers 

Verifies if the classification is correct 



Domain Testing - Domains & Paths 

Domain Testing Model 

 

Two Views 

 

• Based on Specs 

 
• Functional Testing 

 
 

• Based on Implementation information 

 
• Structural Technique 



Domain Testing - Domains & Paths 

Domain Testing Model 

• Variables 

• Simple combinations of two variables 

• Numbers from - to + 

 

• Input variables as numbers 

 
 

• Loop-free Programs 



Domain Testing - Domains & Paths 

Domain Testing Model 

 

• Structural Knowledge is not needed. Only Specs. 

 
 

• For each Input Case, 

 

• A Hypothetical path for Functional testing 

 

• An Actual path for Structural testing 



Domain Testing - Domains & Paths 

Domain (simplified) 

D1 
• A Single Connected Set of numbers 

 

• No arbitrary discrete sets 

 

• Defined by the boundaries 

• One or more boundaries 

 

• Specified by predicates 

 
• Bugs likely at the boundaries 

 
• One or more variables 



Domain Testing - Domains & Paths 

Predicates 

• Interpretation 

 

• Structural Testing - CFG 

 

• Functional Testing - DFG 

 

• Specifies the Domain Boundary 

 
• n Predicates in Sequence  

n 
domains 

2 

• Or, just two domains A .AND. B .AND. C 



Domain Testing - Domains & Paths 

Paths 

 

• At least One PATH through the Program 

 

• More paths for disconnected domains 



Domain Testing - Domains & Paths 

Summary: 
 

• Domain for a loop-free program corresponds to a set  
of numbers defined over the input vector 

 
 

• For every domain, there is at least one path thru the  

routine, along which that domain’s processing is done 

 

 

• The set of interpreted predicates traversed on that path  

(ie., the path’s predicate expression) defines the  

domain’s boundaries. 



Domain Testing - Domains & Paths - Domain Closure 

Boundary: Closed / Open 

X >= MIN 

MIN 
D2 

X <= MAX 

MAX 

D3 D1 

Closed 

X >= MIN 
D2 

X < MAX D3 D1 

MIN Closed Open MAX 



Domain Testing - Domains & Paths - Domain Closure 

Boundary: Closed / Open 

MIN 
MAX 

D2 D3 D1 

X > MIN 
Open 

X < MAX 



Domain Testing - Domains & Paths - Domain Dimensionality 

• One dimension per variable 

 
 

• At least one predicate 
• Slices thru previously defined Domain 

 

 

• Slicing Boundary 

 
 

• N-spaces are cut by Hyperplanes 



Domain Testing - Domains & Paths – Bug Assumptions 

• Processing is OK. Domain definition may be wrong. 

 

 Boundaries are wrong. 

 

 Predicates are wrong. 

• Once input vector is set on the right path, it’s correctly 

processed. 

• More bugs causing domain errors … 



Domain Testing - Domains & Paths – Bug Assumptions.. 

• Double-zero representation 

 
 

• Floating point zero check 

• Contradictory domains 

• Ambiguous domains defined 

undefined 



Domain Testing - Domains & Paths – Bug Assumptions.. 

• Over-specified domains 

X > 3 .AND. X < 2 .AND. Y > 3 

• Boundary errors 

 
 

Boundary closure 

Shifted 



Domain Testing - Domains & Paths - Bug Assumptions 

 

• Boundary errors…. 

 

 

Tilted 

Missing 

Extra boundary 



Domain Testing - Domains & Paths - Bug Assumptions 

• Closure Reversal 
X >= 3 

• Faulty Logic 

 

Simplification of compound predicates 



Domain Testing - Domains & Paths - Bug Assumptions 

Strategy for domain testing in 2-dim 



Domain Testing - Domains & Paths - Restrictions 

In General… 

 
 

1. Coincidental Correctness 

 

DT cannot detect  

Example 

F1(x) : +1 

• Representative outcome D1 

Partition testing 

Input Equivalence D2  

F2(x) : -1 



Domain Testing - Domains & Paths 

Domain Testing Model 

D1 
Function f1 

INPUT CLASSIFY DO CASE 1 OUTPUT 

D2 
{ Outcome }  

DO CASE 2 

(x, y, z, …) 

(1, 2, 3, 4, 5,…) f2 

D3 

DO CASE 3 f3 

 
Dn 

f4 

DO CASE n 



Domain Testing - Domains & Paths - - Restrictions 

3. Simple boundaries & Compound predicates 

D1 

X X >=0 .AND. X <= 16 

0 16 

Y 
D1 

Y = 1 .AND. X >=0 .AND. X <= 16 

0 16 

X 



Domain Testing - Domains & Paths - - Restrictions 

Compound predicates…. 

 

• Impact of .OR. 

 

• Concave, Disconnected 

 

• Adjacent domains with same function 

 

• Example 

 

A B C + D E F 

 
 

• Eliminate compound predicates 



Domain Testing - Domains & Paths - Restrictions 

4. Functional Homogeneity of Bugs 

• Functional form still  

Retained a x + b y >= c 

 
 

• Bugs are only in a, b, c 



Domain Testing - Domains & Paths - - Restrictions 

5. Linear Vector Space 

 
• Linear boundary predicate, Interpreted 

• Simple relational operators 

 

• Conversion to linear vector space 
 

• 2-d Polar co-ordinates 

 

• Polynomials 

• Problems with Non-linear Boundaries 



Domain Testing - Domains & Paths - Restrictions 

6. Loop-free Software 

Predicate for each iteration 

Loop over the entire transaction  

Definite loop 



Domain Testing - Domains & Paths – Nice & Ugly domains 

Nice Domains 

Requirements 

 

• Bugs  ill-defined domains 

Before DT 

 
• Analyze specs 

 

• Make the Boundary Specs Consistent & Complete 



Domain Testing - Domains & Paths – Nice domains 

Implemented Domains 

 

• Complete, Consistent & Process all inputs 

 

 

Specified Domains 
 

• Incomplete, Inconsistent 

Programmer’s / Designer’s Effort 



Domain Testing - Domains & Paths – Nice domains 

Nice Domains 

 
• Linear, Complete, Systematic, Orthogonal,  

Consistently Closed, & Convex 

U1 U2 

V1 D11 D12 

V2 D21 D22 



Domain Testing - Domains & Paths – Nice domains 

Nice Domains 

Advantages 

 
• Ease of DT 

 
 

• Fewer Bug Occurrences 



Domain Testing - Domains & Paths – Nice domains 

Nice Domains 

Boundaries are 

1. Linear 5. Closure consistency 

2. Complete 

3. Systematic 
6. Convex 

4. Orthogonal 7. Simply connected 



Domain Testing - Domains & Paths – Nice domains 

1. Linear Boundaries 

Interpreted linear inequalities 

n-dim Hyperplane:  

n+1 Points 

n+1 + 1 Test Cases 

Non-Linear 

 

• Transform 



Domain Testing - Domains & Paths – Nice domains 

2. Complete Boundaries 

• Span the total number space (-, +) 

• One set of Tests 

Incomplete… 

 

• Reasons 

 
• Tests 



Domain Testing - Domains & Paths - Nice domains 

3. Systematic Boundaries 

• Linear Inequalities differing by a constant 

fj (X) ≥ kj or, fj (X) ≥ g (j, c) g (j, c) = j + k * c 

• Parallel lines 

• Identical Sectors in a Circle 

• DT 

• Test a domain  Tests for other Domains 



Domain Testing - Domains & Paths - Nice domains 

4. Orthogonal Boundaries 

• Two boundaries or, boundary sets 
Uj 

• Parallel to axes 

Vj 

• DT 

 

• Each Set Independently 

• # Tests  O (n) 



Domain Testing - Domains & Paths - Nice domains 

Orthogonal Boundaries 

• Tilted sets 

• transformation 

• Test cases: O(n) 

• Concentric circles with radial lines 

 

• Rectangular coordinates 

• Polar 

r ≥ aj .AND. r < aj+1 .AND. 

 ≥ j .AND.  < j+1 



Domain Testing - Domains & Paths - Nice domains 

Non-Orthogonal Boundaries 

• Test Intersections  O ( n2 ) + O (n) 



Domain Testing - Domains & Paths - Nice domains 

5. Closure Consistency 

 
• A Simple pattern in all boundary closures 

 

• Example 

 

• Same relational operator for systematic boundaries 

D3 D1 D2 D4 



Domain Testing - Domains & Paths - Nice domains 

6. Convex Domain 

• Line joining any two points lies with in the domain 

 

• DT 

• n on-points & 1 off-pt 

Concave 

 

• “ But, However, Except, Or … “ in Specs 

• Handle with special care 



Domain Testing - Domains & Paths - Nice domains 

7. Simply Connected Domain 

• In a single piece D2 D1 D3 

D1 
D2 

• 2 complementary domains 

 

• D1: Convex  D2: Concave, not-Connected 

 

 
• Programmer / Designer 

• Convex part First 



Domain Testing - Domains & Paths – Ugly Domains 

Generally, 

 

 
From Bad Specs 

 
 

Programmer / Designer Simplifies=> Ugly to Good 

 

possibility of Introduction of more bugs ?!? 



Domain Testing - Domains & Paths – Ugly Domains 

Causes 

 
 

1. Non-linear Boundaries 

 
 

1. Ambiguities & Contradictions 

 
 

1. Simplifying the topology 

 
 

1. Rectifying boundary closures 



Domain Testing - Domains & Paths – Ugly Domains 

1. Non-linear Boundaries 

 

• Transform 



Domain Testing - Domains & Paths – Ugly Domains 

2. Ambiguities 

• Holes in input vector space. 

 

• Missing boundary 

 

• Detected by Specification languages & tools. 



Domain Testing - Domains & Paths – Ugly Domains 

2. Contradictions.. 

• Overlapping of 

 

• Domain Specs 

 

• Closure Specs 

D3 

D1 D2 



Domain Testing - Domains & Paths – Ugly Domains 

3. Simplifying the Topology…. 

 
 

• Complexity ! 

 
• Concavity, Holes, Disconnectedness 



Domain Testing - Domains & Paths – Ugly Domains 

3. Simplifying the Topology…. 

 

• Smoothing out concavity 

• Filling in Holes 



Domain Testing - Domains & Paths – Ugly Domains 

3. Simplifying the Topology…. 

 
• Joining the pieces 

Correct: 
 

• Connect disconnected boundary segments 

 

• Extend boundaries to infinity 



Domain Testing - Domains & Paths – Ugly Domains 

4. Rectifying Boundary Closures. 
 

• make closures in one direction for parallel boundaries with  
closures in both directions 

 

• Force a Bounding Hyperplane to belong to the Domain. 

Consistent Direction Inclusion / Exclusion Consistency 



Domain Testing - Domains & Paths – Domain Testing 

General DT Strategy 

 

1. Select test points near the boundaries. 

 
2. Define test strategy for each possible bug related  

to boundary 

 

3. Test points for a domain useful to test its adjacent domain. 

 
4. Run the tests. By post test analysis determine if any  

boundaries are faulty & if so how? 

 

5. Run enough tests to verify every boundary of every domain 



Domain Testing - Domains & Paths – Domain Testing 

DT for Specific Domain Bugs 

Generally, 

 

• Interior point 

 

• Exterior point 

 

• Epsilon neighborhood 

 

• Extreme point 

 

• On point 



Domain Testing - Domains & Paths – Domain Testing 

DT for Specific Domain Bugs 

Off Points 

 

 

Extreme  

point 

Boundary point 

Epsilon neighborhood 
On Points 

Domain D1 



Domain Testing - Domains & Paths – Domain Testing 

 
1. 1-d Domains 

 
 

2. 2-d Domains 

 
 

3. Equality & inequality Predicates 

 
 

4. Random Testing 

 
 

5. Testing n-dimensional Domains 



Domain Testing - Domains & Paths – Domain Testing 

Testing 1-d Domains : Bugs with open boundaries 

B A B A 

x 

Closure Bug 
x 

B A 

Shift left Bug 
x1 x 

Shift Right Bug 
B A 

x x1 



Domain Testing - Domains & Paths – Domain Testing 

Testing 1-d Domains : Bugs with open boundaries 

B A 

x 
Missing Boundary 

B A 

x 

x 

Extra Boundary B C 

x 

A 

x 

x x1 

Bugs with Closed Boundaries : Similar to the above 



Domain Testing - Domains & Paths – Domain Testing 

2. Testing 2-d Domains 

 

• Closure bug 

 

• Boundary Shift : up / down 

 

• Tilted Boundary 

 

• Extra Boundary 

 

• Missing Boundary 



Domain Testing - Domains & Paths – Domain Testing 

2 n : Domains share tests 

3 n : no sharing of tests by domains 

 

Strategy for domain testing in 2-dim 



Domain Testing - Domains & Paths – Domain Testing 

3. Equality & Inequality Predicates 

• An Equality predicate defines a line in 2-d 

a 

A 

c 
c’ 

c 
d 

B 

b 

To avoid bugs 



Domain Testing - Domains & Paths – Domain Testing 

4. Random Testing 

 

• A Point in the center : verifies computation 



Domain Testing - Domains & Paths – Domain Testing 

5. Testing n-Dimensional Domains (strategy) 

d. imensions, p boundary segments 

 

• (n+1)*p test cases : n on points & 1 off point 

 

• Extreme pt shared : 2 * p points 

 
• Equalities over m-dimensions create a subspace of n-m  

dimensions 

 
• Orthogonal domains with consistent boundary closures,  

orthogonal to the axes & complete boundaries 

 

• Independent testing 



Domain Testing - Domains & Paths – Domain Testing 

Procedure for solving for values 

Simple procedure. Need tools. 

 

1. Identify input variables 

 
2. Identify variables which appear in domain-defining  

predicates, such as control-flow predicates 



Domain Testing - Domains & Paths – Domain Testing 

Procedure 

 

3. Interpret all domain predicates in terms of input variables: 

• Transform non-linear to linear 

• Find data flow path 

4. Predicate expression with p # predicates.  

Find # domains : < 2 
p 

 
3. Solve inequalities for extreme points 

 

4. Use extreme points to solve for nearby on points … 



Domain Testing 

Effectiveness 

• Cost effective 

 

• Bugs on boundaries, extreme points 

 

• Hardware logic testing – tool intensive 



Domain Testing 

Domains & Interface Testing 

• Domain 

 

• Range 

Variable Domain Range 
 

Classify 
Function /  

Routine 



Domain Testing 

Domains & Interface Testing 

Variable  
Routine 1 

Range for Domain for 
 
Routine 2 

Range for 

Routine1 Routine2 Routine2 Domain 

• Span compatibility 



Domain Testing 

Interface Range/Domain Compatibility Testing 

 

• Test each var independently 

• Find an inverse function 

 
 

• Build a super domain 



Domain Testing 

Domains and Testability 

 

• Linearizing transformations 

• Polynomial 

• Rectangular to polar 

• Generic & rational => Taylor series 



Domain Testing 

Domains and Testability 

 

Perform transformations for better testing. 

 

• Co-ordinate transformations 



Domain Testing 

Domains and Testability 

 

• Canonical Program Form 



UNIT-IV 

Paths, Path products and Regular expressions: Path products  
& path expression, reduction procedure, applications, regular  
expressions & flow anomaly detection. 

Logic Based Testing: Overview, decision tables, path  
expressions, kv charts, specifications. 



Path Products & expressions - Purpose 

PURPOSE: APPLICATIONS 

1. How many paths in a flow-graph? 

 

Maximum, minimum etc. 

 
 

2. The probability of getting to a point in a program 

 

? (to a node in a flow graph) 

 

3. The mean processing time of a routine (a flow graph) 

 

 

4. Effect of Routines involving complementary operations 

 

: (Push / Pop & Get / Return) 



Path Products & expressions - Purpose 

PURPOSE & APPLICATIONS 

 
1. Check for data flow anomalies. 

 
2. Regular expressions are applied to problems in  

test design & debugging 

 
3. electronics engineers use flow graphs to design  

& analyze circuits & logic designers. 

1. Software development, testing & debugging tools  

use flow graph analysis tools & techniques. 

1. These are helpful for test tool builders. 



Path Products & expressions - Motivation 

Motivation 

 
1. Flow graph is an abstract representation of a program. 

 
2. A question on a program can be mapped on to an  

equivalent question on an appropriate flow graph. 

 
3. It will be a foundation for syntax testing & state testing 



Path Products & expressions - Definitions 

Path Expression: 

 
An algebraic representation of sets of paths in a  
flow graph. 

 

 

Regular Expression: 

 
Path expressions converted by using arithmetic  
laws & weights into an algebraic function. 



Path Products & expressions – Path Product 

• Annotate each link with a name. 

 
• The pathname as you traverse a path (segment)  

expressed as concatenation of the link names is the  

path product. 

 
c 

1 2 3 4 

a b d 

• Examples of path products between 1 & 4 are: 

 

a b d a b c b d a b c b c b d …. 



Path Products & expressions – Path Expression 

Path Expression 

Simply: Derive using path products. 

 
c 

1 2 3 4 

a b d 

Example: 

 

{ a b d , a b c b d, a b c b c b d , ….. } 

abd + abcbd + abcbcbd + …. 



Path Products & expressions – Path Expression 

Example: 

 
g 

h i 
e f j 

a b c d 

{ abcd , abfhebcd , abfigebcd , abfijd } 

 
abcd + abfhebcd + abfigebcd + abfijd 



Path Products & expressions – Path Expression 

Path name for two successive path segments is the  
concatenation of their path products. 

X = abc Y = def XY = abcdef 

 

a X = aabc 

 

X a = abca 

 

XaX = abcaabc 

 

X = ab + cd 
 

Y = ef + gh 
 

XY = abef + abgh + cdef + cdgh 



Path Products & expressions – Path Segments & Products 

• Loops: 

1 
a = a 

3 
a = aaa 

n 
a = aaaaa … n times 

X = abc 

2 
a = aa 

 
1 

X = abc 
2 2 

X = (abc) = abcabc 

• Identity element 

0 
a = 1 

0 
X = 1 (path of length 0) 



Path Products & expressions – Path Product 

Path Product 
 

• Not Commutative: 

 
XY ≠ YX in general 

 
 

• Associative 

A ( BC ) = ( AB ) C = ABC : Rule 1 



Path Products & expressions – Path Product 

Denotes a set of paths in parallel between two nodes. 

• Commutative 

: Rule 2 X + Y = Y + X 

 
• Associative 

( X + Y ) + Z = X + ( Y + Z ) = X + Y + Z : Rule 3 

• Distributive 

: Rule 4 A ( B + C) = A B + A C  

( A + B ) C  = A C + B C 



Path Products & expressions – Path Products 

• Absorption 

X + X = X 

X + any subset of X 

 

= X 

: Rule 5 

X = a + bc + abcd X + a = X + bc + abcd = X 



Path Products & expressions – Path Products 

• Loop: 
b 

An infinite set of parallel paths. 
a c 

+ …… 

+ …… 

* 
b = b0 + b1 + b2 + b3 

* 
X = X0 + X1 + X2 + X3 

X+ = X1 + X2 + X3 + …… 

• X X* = X* X = X
+ 

X 
n 

= X0 + X1 + X2 + X3 

 

a a* = a* a = a
+ 

+ …… + Xn 



Path Products & expressions – Path products 

More Rules… 

m n 
X + X 

m n 
X X 

n 

X X* 

n 

X X+ 

* + 
X X 

: Rule 6 = 

= 

Xn 

Xm 

if n ≥ m 

if n < m 

: Rule 7 = Xm+n 

* = X* Xn = : Rule 8 X 

+ = X + X n = : Rule 9 X 

= : Rule 10 X + X* + 
= X 



Path Products & expressions – Path products 

Identity Elements .. 

1 : Path of Zero Length 

1 + 1 = 1 : Rule 11 

1 X = X 1 = X : Rule 12 

* + 
1 = 1 1n 

= = 1 : Rule 13 

1
+ 

+ 1 

= 1
n 

* 
= 1 = 1 : Rule 14 



Path Products & expressions – Path products 

Identity Elements .. 

 
0 : empty set of paths 

X + 0 = 0 + X = X : Rule 15 

X 0 = 0 X = 0 : Rule 16 

* 
0 = 1 + 0 + 0

2 
+ 0

3 
+ . . . = 1 : Rule 17 



Path Products & expressions – Reduction Procedure 

 
To convert a flow graph into a path expression that  
denotes the set of all entry/exit paths. 

 

Node by Node Reduction Procedure 



Path Products & expressions – Reduction Procedure 

Initialization Steps: 

1. Combine all serial links by multiplying their path  
expressions. 

 
 

1. Combine all parallel links by adding their path 
expressions. 

 

 
1. Remove all self-loops - replace with links of the 

* 
form X 



Path Products & expressions – Reduction Procedure 

Steps in the Algorithm’s loop 

 

4. Select a non-initial & non-final node. 
 

Replace it with a set of equivalent links, whose path  
expressions correspond to all the ways you can form a product  
of the set of in-links with the set of out-links of that node. 

4 5 

d e 
f 

g 

1 a 2 
b 

3 

c 



Path Products & expressions – Reduction Procedure 

Steps in the Algorithm’s loop: 
 

5. Combine any serial links by multiplying their path expressions.  

( as in step 1) 

 
 

6. Combine any parallel links by adding their path expressions.  

( as in step 2) 

 
 

7. Remove all the self-loops. 

( as in step 3) 

 
8. IF there’s just one node between entry & exit nodes, path  

expression for the flow graph is the link’s path expression.  

ELSE, return to step 4. 



Path Products & expressions – Reduction Procedure 

Path Expression for a Flow Graph 

 

• is not unique 

 

• depends on the order of node removal. 



Path Products & expressions – Reduction Procedure Example 

Cross-Term Step (Step 4 of the algorithm) 

 

• Fundamental step. 

 

 

• Removes nodes one by one till there’s one entry & one exit node. 

 

 
• Replace the node by path products of all in-links with all out-  
links and interconnecting its immediate neighbors. 



Path Products & expressions – Reduction Procedure Example 

Processing of Loop Terms: 

 
b 

1 a 
c 

1 a 
b*c 

2 2 

d b*d 



Path Products & expressions – Reduction Procedure Example 

Processing of Loop Terms: 

a 

1 5 

b c f 

2 d 3 4 

e 

bd 

1 a 2 4 

f 
5 bc  

e 

1 a 2 (bd)* bc 4 f 5 

e 



Path Products & expressions – Reduction Procedure Example 

Processing of Loop Terms: 

a 
1 2 

f 
5 (bd)* bc 4 

e 

1 a (bd)* bc 4 

f 
5 

e (bd)* bc 

1 
a (bd)* bc ( e (bd)* bc ) * f 

4 5 

a (bd)* bc ( e (bd)* bc )* f 



Path Products & expressions – Reduction Procedure Example 

Example: 

a b c d e 
1 3 2 

f 

4 

g 

5 

h 

6 

i 

7 
j k l 

8 9 10 

m 

a b c d e 
1 5 6 2 3 

f 

4 

g hil 
j 

8 
k 

7 9 

im 



Path Products & expressions – Reduction Procedure Example 

1 

a b c d e 
3 4 5 6 2 

f g ilh 
j kh 

7 8 

im 
a b c d e 

1 3 4 5 6 2 

jf 
g ilh 

kh 
8 

 

imf 

a b d e 
1 3 

c+gkh 
5 6 2 4 

gif ilh 

imf 



Path Products & expressions – Reduction Procedure Example 

bgif 

a b(c+gkh) d e 
1 3 6 2 5 

ilh 

imf 

a (bgif)*b(c+gkh) d e 
1 3 6 2 5 

ilh 

imf 

ilhd 

a (bgif)*b(c+gkh)d e 
1 3 6 2 

imf 



Path Products & expressions – Reduction Procedure Example 

a (bgif)*b(c+gkh)d (ilhd)*e 
1 3 6 2 

(ilhd)*imf 

a(bgif)*b(c+gkh)d (ilhd)*e 
1 6 2 

(ilhd)*imf(bgif)*b(c+gkh)d 



Path Products & expressions – Reduction Procedure Example 

1 
a(bgif)*b(c+gkh)d {(ilhd)*imf(bgif)*b(c+gkh)d}* (ilhd)*e 

6 2 

Flow Graph Path Expression : 

a(bgif)*b(c+gkh)d {(ilhd)*imf(bgif)*b(c+gkh)d}* (ilhd)*e 



Path Products & expressions – Before going into Applications 

Before that, we learn: 

 
 

Identities 

Structured Flow Graphs (code/routines)  

Unstructured Flow graphs (routines) 



Path Products & expressions – Identities /  Rules 

( A + B ) * = ( A* + B* ) * : I1 

= ( A* B* )* : I2 

= ( A* B )* A* : I3 

= ( B* A )* B* : I4 

= ( A* B + A )* : I5 

= ( B* A + B )* : I6 

( A + B + C + . . . ) * = ( A* + B* + C* + . . . )* : I7 

= ( A* B* C* . . . )* : I8 

Derived by removing nodes in different orders & applying the  
series-parallel-loop rules. 



Path Products & expressions – Structured Flow Graphs 

Reducible to a single link by successive application of the 
transformations shown below. 

A B 
A, B 

Process 

A B B A 

IF THEN .. ELSE .. 

A B 
WHILE .. DO .. 



Path Products & expressions – Structured Flow Graphs 

Structured flow graph transformations 

A B A, B 

REPEAT .. UNTIL .. 

Properties: 

• No cross-term transformation. 

• No GOTOs. 

• No entry into or exit from the middle of a loop. 



Path Products & expressions – Structured Flow Graphs 

Some examples: 

d 
f 

b 

a b c d e 

a c 
e 

g i 
h  
j 



Path Products & expressions – UNstructured Flow Graphs 

Some examples – unstructured flow graphs/code: 

X 
Jumping into loops 

X 

Jumping out of loops 

X 

X 

Branching into Decisions Branching out of Decisions 



Logic based testing: Overview 

• Logic is used in a program by programmers. 
Boolean algebra is the way to work with logic – 
simplification & calculation. 

• Hardware logic testing – hardware logic test design  
tools and methods use logic & Boolean algebra.  
Hardware design language compilers/translators  
use logic & Boolean algebra. 

• Impact of errors in specifications of a software is  
high as these are first in and last out. So, higher level  
language for specs is desired to reduce the number  
of errors. Higher order logic systems are used for  
formal specifications. The tools to simplify,  
transform and check specs use Boolean algebra. 



Logic based testing: Overview 

Knowledge based systems: 

• Knowledge based systems and artificial intelligence systems  
use high level logic languages which are based on rule bases  
consisting of rules. Rules are predicate expressions containing  
domain knowledge related elements combined with logical  
connectives. The answers to queries (problems) are derived  
based on Boolean algebraic operations performed on the rule  
bases. Such programs are called inference engines. 



Modeling Logic with  

Decision Tables 

• A matrix representation of the logic of a decision 

• Specifies the possible conditions and the resulting actions 

• Best used for complicated decision logic 



Modeling Logic with  

Decision Tables 

• Consists of three parts 

– Condition stubs 

• Lists condition relevant to decision 

– Action stubs 

• Actions that result from a given set of conditions 

– Rules 

• Specify which actions are to be followed for a given set of conditions 



Modeling Logic with  

Decision Tables 

• Indifferent Condition 

– Condition whose value does not affect which action is taken for  

two or more rules 

• Standard procedure for creating decision tables 

– Name the condition and values each condition can assume 

– Name all possible actions that can occur 

– List all rules 

– Define the actions for each rule 

– Simplify the table 



Complete decision table for payroll system example 

9.30 

7 



Constructing a Decision Table 

• PART 1. FRAME THE PROBLEM. 

– Identify the conditions (decision criteria). 
These  are the factors that will influence the 
decision. 
• E.g., We want to know the total cost of a 

student’s tuition. What factors are important? 

– Identify the range of values for each condition  
or criteria. 
• E.g. What are they for each factor identified above? 

– Identify all possible actions that can occur. 
• E.g. What types of calculations would be necessary? 



Constructing a Decision Table 

• PART 2. CREATE THE TABLE. 

– Create a table with 4 quadrants. 
• Put the conditions in the upper left quadrant. One row  

per condition. 
• Put the actions in the lower left quadrant. One row per  

action. 

– List all possible rules. 
• Alternate values for first condition. Repeat for all  

values of second condition. Keep repeating this process  
for all conditions. 

• Put the rules in the upper right quadrant. 

– Enter actions for each rule 
• In the lower right quadrant, determine what, if any,  

appropriate actions should be taken for each rule. 

– Reduce table as necessary. 



Example 

• Calculate the total cost of your tuition this quarter. 

– What do you need to know? 

• Level. (Undergrad or graduate) 

• School. (CTI, Law, etc.) 

• Status. (Full or part time) 

• Number of hours 

– Actions? 



• Actions? 

– Consider CTI only (to make the problem smaller): 

• U/G 

– Part Time (1 to 11 hrs.): $335.00/per hour 

– Full Time (12 to 18 hrs.): $17,820.00 

– * Credit hours over 18 are charged at the part-time rate 

• Graduate: 

– Part time (1 to 7 hrs.): $520.00/per hour 

– Full time (>= 8 hrs.): $520.00/per hour 

• Create a decision table for this problem. In my solution I was  
able to reduce the number of rules from 16 to 4. 



Boolean Algebra 

A Boolean algebra consists of: 
• a set B={0, 1}, 

• 2 binary operations on B (denoted by + & ×), 

• a unary operation on B (denoted by '),  
such that : 

0 × 0 = 0 

0 × 1 = 0 

1 × 0 = 0 

1 × 1 = 1 

0 + 0 = 0 

1 + 0 = 1 

0 + 1 = 1 

1 + 1 = 1 

0’=1 and 1’=0. 



Rules of a Boolean Algebra 

The following axioms (‘rules’) are satisfied for all 

elements x, y& z of B: 

(commutative axioms) 

(associative axioms) 

(1) x + y = y + x  

x× y = y × x 
(2) x + (y + z) = (x + y) + z  

x × (y × z) = (x × y) × z 

(3) x × (y + z) = (x × y) + (x × z) 
x + (y × z) = (x + y) × (x + z) (distributive axioms) 

(4) x + 0 = x 

(5) x + x' = 1 

x × 1 = x  

x × x' = 0 

(identity axioms)  

(inverse axioms) 



Laws of Boolean Algebra 

• In addition to the laws given by the axioms of 
Boolean Algebra, we can show the following laws 

x× x = x 

(double complement)  

(idempotent ) 

x'' = x 

x + x = x 

(x + y)' = x' × y'  

x + 1 = 1 

x + (x × y) = x 

0' = 1 

(x × y)' = x' + y' (de Morgan’s laws) 

x × 0 = 0 (annihilation) 

x× (x + y) = x (absorption)  

1' = 0 (complement) 



Exercise 

Simplify the Boolean  

expression (x' × y) + (x × y) 

Solution: (x' × y) + (x × y) 

= (y × x') + (y × x) (commutative) 

= y × (x' + x) 

= y × (x + x') 

= y × 1 

= y 

(distributive)  

(commutative)  

(inverse)  

(identity) 

Thus (x' × y) + (x × y) = y 



Boolean Notation 

• This means that in effect we’ll be employing 

Boolean Algebra notation. 

• The truth tables can be rewritten as 



Notational Short-cuts 

We will employ short-cuts in notation: 

 
(1) In ‘multiplication’ we’ll omit the symbol ×, & 

write xy for x × y (just as in ordinary algebra) 

 

(2) The associative law says that 

x + (y + z) = (x + y) + z 

“o we’ll write this as simply x + y + z, 
because the brackets aren’t necessary. 



Notational Short-cuts 

Similarly, write the product of 3 terms as xyz 

 

(3) In ordinary algebra, the expression 

x + y × z means x + (y × z), because of the  
convention that multiplication takes  
precedence over addition. 

 
e.g. x + yz means x + (y × z), and not (x + y) × z 
Similarly, ab + cd means (a × b) + (c × d) 



Reducing Boolean Expressions 

• Is this the smallest possible  

implementation of this expression? No! 

G = xyz + xyz’ + x’yz 

 
• Use Boolean Algebra rules to reduce 

complexity while preserving functionality. 

 

• Step 1: Use idempotent law (a + a = a). So 

xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz 



Reducing Boolean Expressions 

• Step 2: Use distributive law a(b + c) = ab + ac. So 
xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’) 

 
• “tep 3: Use Inverse law (a + a’ = 1). “o  

xy(z + z’) + yz(x + x’) = xy.1 + yz.1 

 
• Step 4: Use Identity law (a . 1 = a). So 

xy + yz = xy.1 + yz.1 = xyz + xyz’ + x’yz 



Karnaugh maps 

• Alternate way of representing  
Boolean function 

– All rows of truth table represented with  

a square 

– Each square represents a minterm 

0 1 x 
y 

0 1 

x y F 

x y 

0 

1 

0 

1 

0 0 1 

0 1 1 

1 0 0 

1 1 0 

x’y’ x’y 

xy’ xy 

1 1 

0 0 



Karnaugh maps 

• Easy to convert between truth table, K-map, and 
SOP. 

 
– Unoptimized form: number of 1’s in K-map  

equals number of minterms (products) in SOP. 

 

– Optimized form: reduced number of minterms 

F(x,y) = x’y + x’y’ = x’ 



Karnaugh Maps 

• A Karnaugh map is a graphical tool for assisting in the 
general simplification procedure. 

• Two variable maps. 
B 0 1 

A 0 0 

1 1 

1 F=AB +A’B 

0 

• Three variable maps. 
BC 

00 01 11 10 

0 A 0 1 0 1 

B 
0 1 

A 0 0 1 F=AB +AB +AB  

1 1 1 
A B C F 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

1 1 1 1 1 

F=AB’C’ +AB C +ABC +ABC  + A’B’C + A’BC’ 



Rules for K-Maps 

 
We can reduce functions by circling 1’s in 
the K-map. 

 
Each circle represents minterm reduction. 

 
Following circling, we can deduce minimized 
and-or form. x 

y 
0 1 

0 

1 

1 1 

0 0 

F(x,y) = x’y + x’y’ = x’ 



Rules for K-Maps 

Rules to consider 

 
1. Every cell containing a 1 must be included  

at least once. 

 
2. The largest possible “power of 2  

rectangle” must be enclosed. 



Karnaugh Maps 

• A Karnaugh map is a graphical tool for assisting in  
the general simplification procedure. 

• Two variable maps. 
B B 

0 1 0 1 

A 0 F=AB +A’B 0 1 
1 

A 0 F=AB +AB +AB  

1 1 1 F=A+B 

0 1 
1
 
0 • Three variable maps. 
BC 

00 01 11 10 

A 0 0 1 0 1 

1 1 1 1 1 F=A+B C +BC  

F=AB’C’ +AB C +ABC +ABC  + A’B’C + A’BC’ 



More Karnaugh Map Examples 

Examples 
b b 

a 
0 1 

0 1 1 

1 0 0 

a 
0 1 

0 0 1 

1 0 1 

f = a g = b' 

ab ab 
c 00 01 11 10 c 00 01 11 10 

0 0 0 1 0 

1 0 1 1 1 
0 0 0 1 1 

1 0 0 1 1 
cout = ab + bc + ac 

f = a 

1.Circle the largest groups possible. 

2. Group dimensions must be a power of 2. 

3. Remember what circling means 



Specifications 
Specification validation procedure /  steps 

1.Rewrite the specifications using consistent terminology. 

 
2.Identify the predicates on which the cases are  
based. Name them with 

suitable letters, such as A, B, C. 

 
3.Rewrite the specification in English that uses only  
the logical connectives 
AND, OR, and NOT, however stilted it may seem. 

 
4.Convert the rewritten specifications into an equivalent  
set of Boolean expressions. 

 

5. Identify the default action and cases, if any are specified. 



Specifications Continue 

6.Enter the Boolean expressions in a KV chart and check  
for consistency. If 

the specifications are consistent, there will be no  
overlaps, except for the 

cases that result in multiple actions. 

7. Enter the default cases, and check for consistency. 
8. If all boxes are covered, the specification is complete. 

9. If the specification is incomplete or inconsistent, translate the 

corresponding boxes of the KV chart back into English and get  
a clarification, explanation, or revision. 

10.If the default cases were not specified explicitly, translate  
the default cases 

back into English and get a confirmation. 



UNIT-V 

State, State Graphs and Transition testing: State graphs, good  
& bad state graphs, state testing, Testability tips. 

Graph Matrices and Application: Motivational overview, matrix  
of graph, relations, power of a matrix, node reduction  
algorithm, building tools. 



OVER VIEW 

• A state graph and its associated state 
table are 

describing 
useful models for  

software  (program) 
behavior. The finite state machine  

can be used as a functional  

(behavioral) testing tool as well as a  

tool for designing a testable  

program. 



state graph 

• A state graph is a graphical representation of  

the program (its FSM) in terms of states,  

transitions, inputs and outputs (erroneous or  

normal). It has one start state and usually, an  

end/destination/exit state. 

• Note => In the exam you may draw only 3  
state graph for simplicity. 

• State graph in the above example is used to  
model the behavior of the program that  
recognizes a string occurrence at the input. It can  
be used to design, implement and the testing of 



A Property of a state graph 

• State graphs are not dependent on time or  
temporal behavior or the program. (Temporal  
behavior is represented by some time sequence  
diagrams etc..) The system changes state only when  
an event (with an input sequence occurs or an  
epsilon symbol representing no event appears at  
the input of a transition). 

• State graphs (FSM) are implemented as state  
tables which are represented in software with  
definite data structures and associated operations. 



State table 

Very big state graphs are difficult to follow as the diagrams get complicated  

and links get entwined. It is more convenient to represent the state graph as  

a table called state table or state transition table. 

Each row represents the transitions from the originating state. There is one  

column for each input symbol (erroneous input or normal input). The entry in  

the table represents the new state to which the system transits to on this  

transition and the output it prints on the target printer device or on the output  

side. 



A Property of a state graph 

• State graphs are not dependent on time or  
temporal behavior or the program. (Temporal  
behavior is represented by some time sequence  
diagrams etc..) The system changes state only when  
an event (with an input sequence occurs or an  
epsilon symbol representing no event appears at  
the input of a transition). 

• State graphs (FSM) are implemented as state  
tables which are represented in software with  
definite data structures and associated operations. 



Software implementation of state table 

• There are four tables that are needed. 

1. A table or a process that encodes the input values  
into a compact list (INPUT_CODE_TABLE) 

2. A table that specifies the next state for  
every combination of state and input code.  
(TRANISITION_TABLE) 

3. A table or case statement that specifies the output  
(or output code) associated with every state-input  
combination (OUTPUT_TABLE) 

4. A table that stores the present state of each device  
or process or component or system that uses the  
same state table. (DEVICE_TABLE) 



Software implementation of state table 

The process of usage of state table is as follows: 

1. the present state is fetched from the memory  
(from DEVICE_TABLE). 

2. the present input value (symbol) is fetched from the  
environment. It is encoded if it is non-numerical by using the  
INPUT_CODE_TABLE. 

3. The present state and the input code are concatenated to give  
a pointer (row,column) into a cell of the TRANSITION_TABLE. 

4. The OUTPUT_TABLE contains a pointer to the routine to  
be executed when that state-input combination occurs. 

5. The same pointer value is used to fetch the new state value,  
which is then stored in DEVICE_TABLE 



Principles of state testing 

As it is not possible to test every path thru a state  
graph, use the notion of coverage. We assume that  
the graph is strongly connected. 

1.It is not useful or practical to plan an entire grand  
tour of the states for testing initially as it does  
not work out due to possibility of bugs. 

2.During the maintenance phase only few transitions  
and states need to be tested which are affected. 

3 For very long test input symbol sequences it  
is difficult to test the system. 



Uses/Advantages of state testing 

• State testing can find bugs which are not possible to be  
found with other types of testing. Normally most of  
systems can be modeled as state graphs. 

• It can find if the specifications are  complete and  
ambiguous. This is seen clearly if the state table is filled  
with multiple entries in some cells or some cells are  
empty. IT can also tell if some default transitions or  
transitions on erroneous inputs are missing. 

• “tate testing can identify the system’s seemingly  
impossible states and checks if there are transitions from  
these states  to other states  are  defined in the  
specifications or not. That is, the error recovery  
processes are defined for such impossible states. 

• 



Uses/Advantages of state testing 

• State testing can simplify the design of the  
program /  system by identifying some equivalent  
states and then merging these states. Also, state  
testing using FSM can allow design/test design in a  
hierarchical manner if the state tables are so  
designed. 

• The state testing can identify if the system reaches  
a dead state /  unreachable states and allow one to  
correct the program specifications and make the  
system complete, robust and consistent. 

• The bugs in the functional behavior can be  
caught earlier and will be less expensive if state  
testing is done earlier than the structural (white  
box) testing. 



DisAdvantages of state testing 
• Temporal behavior is not tested. 

• There could be encoding errors in inputs, outputs, states,  
input-state combinations, identifying the number of  
states and merger of equivalent states. All these errors  
are not always easy to detect and correct. 

• State transition testing does not guarantee the complete  
testing of the program. How much of testing with how  
many combinations of input symbol sequences constitutes  
sufficient number of tests is not clear/known. It is not  
practical to test thru every path in the state graph. 

• Functional behavior is tested and structural bugs are not  
tested for. There could be difficulty if those bugs are found  
and mixed up with behavioral bugs. 

• We assume that the state graph is strongly connected that  
is every node is connected to every other node thru a path. 
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DisAdvantages of state testing 
• Temporal behavior is not tested. 

• There could be encoding errors in inputs, outputs, states, input-state  
combinations, identifying the number of states and merger of  
equivalent states. All these errors are not always easy to detect and  
correct. 

• State transition testing does not guarantee the complete testing of  
the program. How much of testing with how many combinations of  
input symbol sequences constitutes sufficient number of tests is  
not clear/known. It is not practical to test thru every path in the  
state graph. 

• Functional behavior is tested and structural bugs are not tested  
for. There could be difficulty if those bugs are found and mixed up  
with behavioral bugs. 

• We assume that the state graph is strongly connected that is  
every node is connected to every other node thru a path. 



Application areas for state testing using 

FSM model 

Any program that processes input as a sequence of  
events/symbols and produces output such as  
detection of specified input symbol combinations,  
sequential format verification, parsing, etc.  
(compilers & translators). 

–Communication Protocols: processing depends on  
current state of the 

• protocol stack, OS, network environment and  
the message received 

–concurrent systems, 

–system failures and the corresponding  
recovery systems, 

–distributed data bases, 
–device drivers – processing depends on the state 



Application areas for state testing using 
FSM model 

• operation requested by the user or system 
–multi-tasking systems, 

–human computer interactive systems, 
–resource management systems – 

processing depends on availability 

• levels and states of resources 
–Processing of hierarchical pop-up menus on  

windows based software systems – letting the  
user navigate thru menus 

–the web based application software, embedded  
systems and other systems also use this model  
for design and testing. 



Good-state graphs and Bad state graph 

The principles of judging whether a state graph is good or bad are: 

• the total number of states is equal to the product of possibilities  
of factors that make up the state. (ie., number of permutations of  
all values of all attributes/properties of the system/component) 

• For every state and every input there is exactly one  
transition specified to exactly one, possibly the same, state. 

• For every transition there is one output action specified. That  
output could be trivial (epsilon), but at least one output does some  
thing sensible. 

• For every state there is a sequence of inputs that drives the system  
to the starting (same) state. 

• A good state graph has at least two input symbols. With one  
symbol only a limited number of useful graphs are possible. 

• Bad state graphs contain states not reachable. It is not possible to  
reach every state from every other state. It is not possible to reach  
start state from itself. 



Good-state graphs and Bad state graph 

• A good state graph has at least two input  
symbols. With one symbol only a limited number  
of useful graphs are possible. 

• Bad state graphs contain states not reachable. It  
is not possible to reach every state from every  
other state. It is not possible to reach start state  
from itself. 



OVER VIEW 
• The graphs (flow/directed) are basically behavioral representation of  

software program. Many problems/applications we want to have solution  
for : 

 

• – to find set of covering paths, set of values that will sensitize the paths,  
logic function that controls the flow, the processing time of the routine,  
the equations that define a domain, whether the routine pushes or  
pops, or whether the state is reachable or not etc.. - 

 

• usually necessitate path tracing thru the graph. Most of the testing and  
design strategies use graphs to represent the program and need some  
coverage to be obtained. 

 

• Path tracing thru pictorial graphs and by hand is error prone, difficult  
to handle and often confusing when the program is large. 



• Graph representation by a matrix enables matrix operations equivalent to path tracing to be  
used. These matrix operations are methodical and mechanical and hence are more reliable.  
Also, these can be implemented by software tools & automated enabling a good solution  
for the questions/issues that interest a designer and a tester. 
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a f 

e 
g 
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1 

h 

Figure A 



MATRIX REPRESENTATION:OVER VIEW 

• A graph matrix is a square array with one row and one column for  
every node in the graph. Each row-column combination represents a  
relation between the node corresponding to the row i and the node  
corresponding to the column j. 

 

• The relation could be just the link name if there is a direct link  
between the two nodes. The matrix is a square matrix of size n  
(where n is the # of nodes). Self loops are shown as diagonal entries. 

 

• Actually, an element A [i , j] is a path expr between node i to j (sum  
of parallel path products between the nodes.) 



RELATION MATRIX 

A matrix representation defined as just above. 

 
 

Corresponding relation Matrix is 

node 1 2 3 4 5 

1 [ 0 0 a 0 0 ] 

2 [ 0 0 0 0 0 ] 

3 [ 0 d 0 b 0 ] 

4 [ 0 c 0 0 f ] 

5 [ 0 g e 0 h ] 



CONNECTION MATRIX 
The relation in a connection matrix is defined as follows:  

A [ i, j ] = 1 if there is a direct link from i to j. 
0 otherwise 

It is the relation matrix with a non zero entry replaced by 1. 

Corresponding connection Matrix is 

node 1 2 3 4 5 

1 [ 0 0 1 0 0 ] 

2 [ 0 0 0 0 0 ] 

3 [ 0 1 0 1 0 ] 

4 [ 0 1 0 0 1 ] 

5 [ 0 1 1 0 1 ] 

Maths /  Algebra over the relation connection: 

1 x 1 = 1 0 x 0 = 0 1 x 0 = 0 0 x 1 = 0 

A [ i,j] x A [j,k] represents existence of a (directed) path from i to k 

 
Each entry in the row r represents an outgoing link from the node r. Each entry in the column c 

represents an incoming link into the node c. A branch node r has >1 non zero entries in its row 
r. A junction node c has > 1 non-zero entries in its column. 



CYCLOMATIC COMPLEXITY 

Is 1 plus the number of binary decisions that are present in a given program /  graph. The use of the cyclomatic complexity is in  
estimation of efforts needed for design & testing of a given software program. 

 
calculated as follows 

 

Prepare the relation matrix and from that prepare the connection matrix. For each  

row (represents branches ie., decisions) obtain the sum of the entries (each entry is  

1 or 0). Number of binary decisions at this node / row r is equal to the sum - 1 as  

number of binary decisions at a node = number of outgoing branches - 1. 

 

Sum the number of binary decisions of each row and add 1 to get the cycl.  

Complexity. 



EXAMPLE: 

First row : total = 1 then minus 1 => 0 

th 

2
nd 

row  

3
rd 

row  

4
th 

row 

5    row 

0 

2 

2 

3 

nil 0 

1 1 

1 1 

1 2 example: 
----- 

Total 4 

cyclomatic complexity = 4+1 = 5 

A [ i, j ] =  a ik a kk a kj 

K=1 to n 



RELATIONSHIPS 

A relation is a property that exists between two elements /  objects of interest. For  
example, a R b could denote the relation R as existence of a directed link from a to  
b. 

 

Redefinitions of graphs: 

 

A graph consists of a set of abstract objects called nodes and a (binary) relation R  
between (among pairs of) the nodes. If a R b, it means that node a has the relation  

to node b – which denoted by a link from a to b. 



PROPERTIES OF RELATIONSHIPS 

1. A relation R is transitive if a R b and b R c imply a R c. Examples of transitive relations are is connected to , >=  
etc. 

2. Examples for an Intransitive relation are is acquainted with, is a neighbor of, not equal to etc.. 

3. A relation R is reflexive if for every a, a R a. It is equivalent to a self loop at every node a in the graph. 

4. Examples of irreflexive relation are not equals, is under etc. 
 

5. A relation is a Symmetric relation if for every a and b , a R b implies b R a. It means that if there is a link from a  
to b then there is a link between b to a. Then it is as good as an undirected graph (unless the link weights are  
different for the different directions). 

6. Examples of symmetric relation are : is a relative of, is a friend of, equals , not equals etc.. 
 

7. A relation R is Anti-symmetric relation if for every a and b, if a R b and b R a imply that a = b. That is there is no  
symmetry between any two different elements. 

 

8. An equivalence relation is a relation that satisfies the reflexive, transitive and symmetric properties. Example 
: is equal to. 



POWERS OF GRAPH MATRIX 

A (connection or relation) graph matrix product represents existence of a path or its  
path expression respectively between two nodes with a common intermediate node. 
C = A x B C  [ i, j ] or c i i =  a i k b k j  

K=1 to n 

 a i k b k j implies set (sum) of all paths between I and j thru all intermediate nodes k in the  
graph. 

 

A2 represents the set of all path segments of length two (links) ie., each non-zero element A [i , 
j] is the path expression for the set of 2 link long path segments from node i to j. 

 
An-1 represents the set of all path segments of length n-1 (links) ie., each non-zero element A [i 

, j] is the path expression for the set of n-1 link long path segments from node i to j. 

 
Graph matrix product is not necessarily commutative, but is associative and distributive. The  

non-zero elements along principal diagonal represent self-loops on those nodes 



PARTITIONING ALGORITHM – GROUPING LOOPS  
AND OBTAINING LOOP-FREE GRAPH 

We will consider a graph (over a transitive relation). The graph may have loops. We  
would like to partition the graph by grouping the nodes in such a way that every node  
is contained with in one group of another. Such a graph is partially ordered. 

 

The main use is to embed the loops into subroutines to have a resulting loop-free flow in 
the program/graph. This enables a better design and analysis and testing design. 

 
Here we use the connection matrix. To do grouping of loops we just need to calculate  

intersection of the transitive closure of graph matrix with itself. 
Ie.,  find  ( A + I) n # ( A + I) nT Remember this 

 
If n = 5 then calculate A and its square, then its square and multiply with A. Then obtain its  

transpose and then do intersection. Here, the intersection means binary AND directly  
element a [ i, j I by element a [i,j]. 

 
Once we calculate the intersection as above, the rows or columns which are identical will  

form a group. Replace them by one row/column. Now redraw the graph with reduced  
number of nodes. Each group is a merger of the loop-forming node set. The result will  
be a loop-free directed graph which is partially ordered. 



Example: PARTITIONING ALGORITHM 

Take an example with just 3 nodes only. 

1 2 3 

[ 0 1 0 ] 

A = [  0 0 1 ] A+I = 

[ 0 1 0 ] 

[ 1 1 0 ] 

[ 0 1 1 ] (A+I)2 = 

[ 0 1 1 ] 

1 1  1 1 1 1 

0 1  1 (A+I)3 = 0 1 1 

0 1  1 0 1 1 

1 0 0 

Now find (A+I)3 Transpose  = 1 1 1 

1 1 1 

1 0 0 

Intersection result =  0 1 1 

01 1 

As you see columns 2,3 and rows 2,3 are identical. Merge the two nodes.  

You have now the following with node 2,3 engulfing & enclosing the loop. 

1 2,3 



NODE REDUCTION ALGORITHM 

• The advantage of this node reduction algorithm using graph matrices is that we do not need to redraw the  
graph after reduction of a node. Calculations are done methodically and can be automated. It is actually  
matrix equivalent of the node reduction algorithm in the chapter ‘paths, path expressions & regular expr..’. 

• Steps are : 
1. select a node for removal Other than start or end node. Replace the node by equivalent links that bypass that node  

and add those links to the links they parallel. 

2. Combine the parallel terms and simplify as much as you can. 

3. Observe loop terms and adjust the outlinks of every node that had a self-loop to account for the effect of the loop. 

4. the result is a matrix whose size has been reduced by 1. Continue until the two nodes entry and exit exist. 



THE ALGORITHM: 

Step 1 : Before step1, Always first eliminate the self nodes ie., removal of a non -  
zero diagonal entry d. Multiply each path expr. in the row r with d *  where d is a  
non-zero diagonal element in row/column r. That is, multiply each outgoing link  
from node r with d* . Now replace d with 0. 

 
Step 2: Select the last column c. Take one non-zero element A [ r, c] in column c. 

Pre-Multiply each entry A [ c, j] in the (last) row c with A[r, c]. Add the result to  
the element in the intersection of c and j , ie., to A [ r, j]. Repeat this for every  
non-zero element in the last column. Now, remove the last row & column. 

 
Step3: actually amounts to multiplying each incoming link into a node with each  

outgoing link from that node and then replacing those two links by a direct path  
bypassing this last node. In the above A [ r, c ] is an incoming link into node c and  
A [c, j] is an outgoing link from node c. Multiply and add the result to path expr.  
from node r to node j ie., A [r, j]. 



Application Of Node Reduction Algorithm 

a. maximum number of paths – to find 

use the relation matrix with the entry being the number of paths between a & b. When you multiply and add,  
use the arithmetic rules defined for this property. 

 

b. Probability of getting there 
Use the probability rules for the product and sum. Use the relation matrix with the entries being the weights  
(probability of getting to the neighboring node from a node). 

 

 
c.Get/ Return or Push/Pop problem 

Use the same arithmetic rules for G & R as defined earlier in path expressions, regular expressions chapter. 



Building software tools using graph matrices for implementation of node reduction algorithm /   
partitioning algorithm 

1. 

2. 

representation of graph matrix – array /  linked list  

issues, merits & demerits of the above representations. 

The degree of a node is the sum of out-degree and in-degree. Usually the  
degree of a node in a good program is around 3 to 4. We use arrays or  
linked lists. There are advantages of representation by linked lists over  
arrays. These are : 

1. space grows as O(n2). For a linked list it is only k *  n where k is avg  
degree of a node which is 3 to 4. 

2. Weights are complicated for the links and have several components.  
So would require an additional array for link weights. 

3. Variable length weights – as the weights can be expressions or numbers  
or others, we need a 2-d string array representation for link weight  
array. Most of the entries are null as graph matrix is sparse usually. 

4. Processing time – As each array element is processed whether null  
or not, the processing time for the null elements could be significant  
as there are many of them usually in a graph matrix. 



EXAMPLE 
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EXAMPLE-CONTINUE… 

Linked list representation 

linked List entry its content  

(one node in the listed list) 

------------------------------------------------------------------------------ 
node 1,3; a 

2 

3 

4 

5 

node 2, exit 

node 3, 2 ; d 

3, 4 ; b 

node 4, 2 ; c 

4, 5 ; f 

node 5, 2 ; g 

5 ,3 ; e 

5 ,5 ; h 



Corresponding relation Matrix is 

node 1 2 3 4 5 

1 [ 0 0 a 0 0 ] 

2 [ 0 0 0 0 0 ] 

3 [ 0 d 0 b 0 ] 

4 [ 0 c 0 0 f ] 

5 [ 0 g e 0 h ] 
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(one node in the listed list) 

------------------------------------------------------------------------------ 
node 1,3; a 

2 

3 

4 

5 

node 2, exit 

node 3, 2 ; d 

3, 4 ; b 

node 4, 2 ; c 
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Corresponding relation Matrix is 
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2 [ 0 0 0 0 0 ] 

3 [ 0 d 0 b 0 ] 
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