2 0 0 0

m INSTITUTE OF AERONAUTICAL ENGINEERING
@ i S N

INFORMATION TECHNOLOGY

IV Semester

Theory of Computation
Unit- |

Unit — |
Syllabus:

Fundamentals: Alphabet, strings, language, operations;
Introduction to finite automata: The central concepts of
automata theory, deterministic finite automata,
nondeterministic finite automata, an application of finite
automata, finite automata with epsilon transitions.

Fundamentals

What is Automata Theory?

= Study of abstract computing devices, or
“machines”
= Automaton = an abstract computing device

= Note: A “device” need not even be a physical
hardware!

= A fundamental guestion in computer science:

= FInd out what different models of machines can do
and cannot do

= The theory of computation
= Computablility vs. Complexity

Theory of Computation: A
Historical Perspective

1930s

 Alan Turing studies Turing machines
* Decidability
« Halting problem

1940-1950s

* “Finite automata” machines studied

 Noam Chomsky proposes the
“Chomsky Hierarchy” for formal
languages

1969

Cook introduces “intractable” problems
or “NP-Hard” problems

1970-

Modern computer science: compilers,
computational & complexity theory evolve

Languages & Grammars

An alphabet is a set of symbols:

Or “Q/vords” -

are strings of symbols:
0,1,00,01,10,1,...

A language is a set of sentences:

A is a finite list of rules
defining a language.

S—>» 0A B—>» 1B
A—> 1A B —» OF
A—> 0B F—> ¢

Image source: Nowak et al. Nature, vol 417, 2002

Languages: “A language is a

collection of sentences of
finite length all constructed
from a finite alphabet of
symbols”

Grammars: “A grammar can

be regarded as a device that
enumerates the sentences of
a language” - nothing more,
nothing less

N. Chomsky, Information
and Control, Vol 2, 1959

The Chomsky Hierachy .i’%'
A containment hierarchy of classes of formal languages

Regular Context-
(DgFUA) Context- R

free .
sensitive
(LBA)

cursively-
enumerable
(TM)

(PDA)

Alphabet

An alphabet is a finite, non-empty set of
symbols

= We use the symbol) (sigma) to denote an
alphabet

= Examples:
= Binary:) ={0,1}
= All lower case letters: > ={a,b,c,..z}
= Alphanumeric:) = {a-z, A-Z, 0-9}
= DNA molecule letters:) ={a,c,qg,t}

Strings

A string or word Is a finite sequence of symbols
chosen from)

= Empty string is ¢ (or “epsilon”)

= Length of a string w, denoted by “|w|’, is

equal to the number of (non- €) characters in the
string

=« E.g., x=010100 IX| = 6

= X=01e0e1ec00¢ IX| = ?

= Xy = concatentation of two strings x and y

Powers of an alphabet

Let > be an alphabet.

= YK =the set of all strings of length k
= > =30U>tU?U ...

= >P=3TUD2U3U ...

Languages

= A language Is a set of strings

= String: A seqguence of letters

b (14 7 (14

o Examples: “cat”, “dog”, "house”,

> =1{a,b,c,...,2}

m Defined over an alphabet:

L is a said to be a language over alphabet), only if L <) *
=>» this is because) * is the set of all strings (of all possible
length including 0) over the given alphabet >
Examples:

1. Let L be the language of all strings consisting of n O’s
followed by n 1’s:
L ={e, 01, 0011, 000111,...}
2. Let L be the language of all strings of with equal number of
O’s and 1’s:
L ={e, 01, 10, 0011, 1100, 0101, 1010, 1001,...}

Canonical ordering of strings in the language

[Definition: @ denotes the Empty Ianquaqe]
s LetlL ={g}; Is L=0? NO

String Operations
W=@aa,--an abba

V=Db,---bp bbbaaa

Concatenation

WV = @@y -+ -anlybs - - by abbabbbaaa

W=aqa,---an, ababaaabbb

Reverse

wR = dn Aoy bbbaaababa

String Length
W=a;a,---a,
= Length: \W‘ =N

abba =4
= Examples: aa‘ —9

a=1

Recursive Definition of Length

= For any letter: a=1

wa \Wa\ =\W\+1
= Forany string : abba = abb +1
=ab+1+1
= Example:
=a+1+1+1
=1+1+1+1

=4

Length of Concatenation

uv =u-+y,
U = aab,
vV = abaab,

= Example:

uv

uv

u=23
V=5

aababaab =8
u+v=3+5=8

INTRODUCTION TO FINITE
AUTOMATA

Deterministic Finite State Automata (DFA)

0111010
Finite
Control

= One-way, infinite tape, broken into cells
= One-way, read-only tape head.

= Finite control, i.e.,
= finite number of states, and
= transition rules between them, i.e.,
= a program, containing the position of the read head, current symbol being
scanned, and the current “state.”
= A string is placed on the tape, read head is positioned at the left
end, and the DFA will read the string one symbol at a time until
all symbols have been read. The DFA will then either accept or
reject the string.

The finite control can be described by a transition diagram or
table:

Example #1.:
1
0
D
0
1 0 0 1 1

Jo Jo 41 Jo Jo Jdo

One state is final/accepting, all others are rejecting.

The above DFA accepts those strings that contain an even
number of 0’s, including the null string, over Sigma = {0,1}

L = {all strings with zero or more 0’s}
Note the DEA miist reiect all other <trina<

Note:
« Machine is for accepting a language, language is the purpose!

« Many equivalent machines may accept the same language,
but a machine cannot accept multiple languages!

M1 M2 M-inf

L
» [d’s of the characters or states are irrelevant,

you can call them by any names!
Sigma = {0, 1} = {a, b/
States = {g0, g1} = {u, v}, as long as they have
Identical (isomorphic) transition table

= An equivalent machine to the previous example (DFA for even
number of O’s):

1
D
0 0 1 1
Jo ds 4. op op q, accept string

= One state is final/accepting, all others are rejecting.

= The above DFA accepts those strings that contain an even
number of 0’s, including null string, over Sigma = {0,1}

= Can you draw a machine for a language by excluding the null
string from the language? L = {all strings with 2 or more 0’s}

= Example #2:

a 3 a/blc

C C

a C C C b accepted
Jo Yo 41 op) d. d.

a a C rejected
Yo Yo Yo 41

= Accepts those strings that contain at least two C’s

b/c
e A

ao—=—{g——(a

b b
Inductive Proof (sketch): that the machine correctly accepts strings with at least two
c's
Proof goes over the length of the string.

Base: x a string with |x|=0. state will be g0 => rejected.
Inductive hypothesis: [x|= integer k, & string X is rejected - in state g0 (x must have
Zero c),

OR, rejected — in state g1 (x must have one c),

OR, accepted — in state g2 (x has already with two C’s)

Inductive ! bol p =
a,borc x endsinqo0 g0 =>reject g0 =>reject gl =>reject
(still zero ¢ => (still zero ¢ => (still zero ¢ =>
should reject) should reject) should reject)
x endsin gl gl =>reject gl =>reject g2 =>accept
(still one c => (still one c => (two c now=>
should reject) should reject) should accept)
x ends in g2 g2 =>accept g2 =>accept g2 =>accept

(two c already => (two c already => (two c already =>
should accept) should accept) should accept)

Formal Definition of a DFA

= A DFA s a five-tuple:
M = (Q1 ZJ 61 q01 F)

Q Afinite set of states

2 A finite input alphabet

Jo The initial/starting state, q, is in Q

F A set of final/accepting states, which is a subset of Q

0 A transition function, which is a total function from Q x 2 to Q

0:(QAx2)—Q 0 is defined for any qin Q and s in 2, and
0(g,s)=q’ is equal to some state g’ in Q, could be q’=q

Intuitively, &(q,s) is the state entered by M after reading symbol s while
in state q.

= Revisit example #1.:

Q ={do, 91}

2 ={0, 1}

Start state is g

F={qo}

0!

0 1

Yo Q1 Yo
o Yo Q1

Revisit example #2:

a 3 a/b/c
Q =1{do, a1, 95}

A
> ={a, b, c} a0 C =® C :
4

Start state is g
F={q,} b b

O: a b C
Jo Yo Yo 41

d, 01 41 o p)

op op) op) op)

Since 0 is a function, at each step M has exactly one option.

It follows that for a given string, there is exactly one
computation.

Extension of d to Strings

0" (QAxZ)—Q

0"(g,w) — The state entered after reading string w having started in
state q.

Formally:

1) 8'(q, €) = q, and
2)Forallwin2"andain Z
6(q,wa) =0 (5%(q,w), a)

= Recall Example #1: 1

0

0

= Whatis 8(q,, 011)? Informally, it is the state entered by M after
processing 011 having started in state q,

= Formally:
0°(qe, 011) =08 (8°(qy,01), 1) by rule #2
=0 (0 (0%(qp,0), 1), 1) by rule #2
=0 (0 (06 (8°(gg, A), 0), 1), 1) by rule #2
=0 (0 (8(qy,0), 1), 1) by rule #1
=0 (0 (qy, 1), 1) by definition of &
=0 (qy, 1) by definition of o
=qQ; by definition of &

= Is 011 accepted? No, since 8"(q,, 011) = g, is not a final state.

Note that:

0" (g,a) = 6(0(q, €), a) by definition of &", rule #2
=0(q, a) by definition of &",
rule #1
Therefore:

0" (0, @;8,...a,) = 0(3(...6(5(q, a1), a2)...), ay)

However, we will abuse notations, and use 0 in place of 8"

0'(q, a,a,...a,) = 8(q, a,a,...a,)

Example #3:

1 1 1
e, o

Yo " O)< (P
0

What is 6(q,y, 011)? Informally, it is the state entered by M after
processing 011 having started in state q,

Formally:

0(qy, 011) =0 (0(qy,01), 1) by rule #2
=0 (0 (8(qy,0), 1), 1) by rule #2
=0 (0 (qy, 1), 1) by definition of o
=0 (qy, 1) by definition of &
=0q, by definition of d

Is 011 accepted? No, since d(q,, 011) = q, is not a final state.
Language?
L ={ all strings over {0,1} that has 2 or more 0 symbols}

Recall Example #3: 1

1 1
A o
Qo " d1)« \ 02
0
What is 6(q,, 10)?
0(q4, 10) =0 (0(qy,1), 0) by rule #2
=0 (g4, 0) by definition of 6
=0, by definition of &

Is 10 accepted? No, since d(q,, 10) = g, is not a final state. The
fact that 6(q,, 10) = q, s irrelevant, g1 is not the start state!

Definitions related to DFAS

= LetM=(Q, Z, 6,9,,F) be a DFA and let w be in ¥*. Then w is accepted
by M iff d(qy,w) = p for some state p in F.

= Let M=(Q, 2, 8,q5,F) be a DFA. Then the language accepted by M is
the set:

L(M) ={w | wis in £" and &(qy,w) is in F}
= Another equivalent definition:
L(M) ={w | wisin Z" and w is accepted by M}

= Let L be alanguage. Then L is aregular language iff there exists a
DFA M such that L = L(M).

Then M; and M, are equivalent iff L(M;) = L(M,).

= Notes:
= ADFA M= (Q, %, 8,q,,F) partitions the set " into two sets: L(M) and
2" - L(M).

= IfL=L(M)thenL is asubset of L(M) and L(M) is a subset of L (def. of set
equality).

= Similarly, if L(M,) = L(M,) then L(M,) is a subset of L(M,) and L(M,) is a
subset of L(M,).

= Some languages are regular, others are not. For example, if

Regular: L, = {X | x is a string of 0's and 1's containing an even
number of 1's} and

Not-regular: L, = {x | x = 0"1" for some n >= 0}
= Can you write a program to “simulate” a given DFA, or any arbitrary input DFA?

= Question we will address later:
= How do we determine whether or not a given language is regular?

s Give a DFA M such that:

L(M) = {x | x is a string of O’s and 1's and |x| >= 2}

0/1

0/ 0/

Prove this by induction

s Give a DFA M such that:

L(M) = {x | x is a string of (zero or more) a’s, b’'s and C’s
such
that x does not contain the substring aa}

b/c a/bl/c

a
60—
6‘ oo oY d2

Logic:

In Start state (q0): b’s and c’s: ignore — stay in same state

q0 is also “accept” state

First ‘a’ appears: get ready (q1) to reject

But followed by a ‘b’ or ‘¢c’: go back to start state q0

When second ‘a’ appears after the “ready” state: go to reject state
g2

- 40 * @ £ 0 44" £ 40 4 LC U g9y 4 4 N

s Give a DFA M such that:

L(M) = {x | x is a string of @’s, b’s and c’s such that
contains the substring aba}

a/blc

Logic: acceptance is straight forward, progressing on each
expected symbol

However, rejection needs special care, in each state (for DFA, we
will see this becomes easier in NFA, non-deterministic machine)

s Give a DFA M such that:

L(M) = {x | x is a string of a’s and b’s such that x
contains both aa and bb}
First do, for a language where ‘aa’ comes before 'bb’
Then do its reverse; and then paarlallelize them.

A
a I

" Os)
N

Remember, you may have multiple “final” states, but only one
‘start” state

Let £ = {0, 1}. Give DFAs for {}, {€}, £*, and Z*.

For {} For {€}:

0/1 0/1
—{(@)" s
For 2™ For 2*;
0/1 0/1

n N
—(@) —(w 7

= Problem: Third symbol from last is 1

0/1
1 0/1 0/1
Is this a DFA?

No, but it is a Non-deterministic Finite Automaton

Nondeterministic Finite State
Automata (NFA)

= An NFA s a five-tuple:
M = (Q1 za 61 q01 F)

Q Afinite set of states

2 A finite input alphabet

Jo The initial/starting state, q, is in Q

F A set of final/accepting states, which is a subset of Q

0 A transition function, which is a total function from Q x Z to 2°

0: (Qx Z)—2° :2%is the power set of Q, the set of all subsets
of Q 9(q,s) :The set of all states p such that there is a
transition

labeled s from g to p

d(q,s) is a function from Q x S to 29 (but not only to Q)

Example #1: one or more O’s followed by one or more 1's

0 1

Q ={0o, A1, Az}
> ={0, 1) 4@ 0 fq_\'\
Start state is g 7
F={q,}
O: 0 1

Q | {d 0} | {}

d. {} {9:, 0}

d, {0.} {a.}

(=)

= Example #2: pair of O’s or pair of 1's as substring

1 0/1
Q ={0o, 1, A2, U3+ Y4} /%
> = {0, 1} 0 0 :

Start state is g

F = {0, aa} Ui
Qo [{do: A3} | {90, G}
0 | O | {3}
a0 {02k | {92}
g, | {9 | O
q, | 19+ | 10

Notes:
= 0(qg,s) may not be defined for some g and s (what does that mean?)
= 0(qg,s) may map to multiple q’s

= A string is said to be accepted if there exists a path from g, to some
state in F

= A string is rejected if there exist NO path to any state in F
= The language accepted by an NFA is the set of all accepted strings

Question: How does an NFA find the correct/accepting path for
a given string?
= NFAs are a non-intuitive computing model

= You may use backtracking to find if there exists a path to a final
state (following slide)

Why NFA?
= We are primarily interested in NFAs as language defining
capability, i.e., do NFAs accept languages that DFAs do not?

= Other secondary questions include practical ones such as whether
or not NFA is easier to develop, or how does one implement NFA

= Determining if a given NFA (example #2) accepts a given string
(001) can be done algorithmically:

0 0 1

%\i% \= Qo \i%
Qs \ Qs Q1

U4 >y accepted

= Each level will have at most n states:
Complexity: O(|x|*n), for running over a string x

Another example (010):

not accepted

All paths have been explored, and none lead to an accepting
state.

= Question: Why non-determinism is useful?
= Non-determinism = Backtracking
= Compressed information
= Non-determinism hides backtracking

= Programming languages, e.g., Prolog, hides backtracking => Easy
to program at a higher level: what we want to do, rather than how to
do it

= Useful in algorithm complexity study

= Is NDA more “powerful” than DFA, i.e., accepts type of languages
that any DFA cannot?

= Let2 ={a, b, c}. Give an NFA M that accepts:

L ={x|xisin £ and x contains ab}

a/blc a/blc

LN

@a:@b @

Is L a subset of L(M)? Or, does M accepts all string in L?

Is L(M) a subset of L? Or, does M rejects all strings not in
L?

= |s an NFA necessary? Can you draw a DFA for this L?

= Designing NFAs is not as trivial as it seems: easy to create bug
accepting string outside language

= Let2 ={a, b}. Give an NFA M that accepts:

L ={x | xis in £ and the third to the last symbol in x is b}

a/b

Is L a subset of L(M)?
Is L(M) a subset of L?

= Give an equivalent DFA as an exercise.

Extension of 0 to Strings and Sets of
States

= What we currently have: 0:(QAx2)— 20
= What we want (why?): 0:(29x %) — 29

= We will do this in two steps, which will be slightly different from
the book, and we will make use of the following NFA.

Extension of 0 to Strings and Sets of
States
= Step #1:

Given &: (Q x £) — 29 define 3*: (22 x £) — 29 as follows:

1) (R, a) {q) 5(q, a) for all subsets R of Q, and symbols a in £
= Note that:

5*({p}.a) =UJ &(q, a) by definition of &%, rule #1 above
=0(p, a)

= Hence, we can use 0 for &

0({qo, 95}, 0) These now make sense, but
previously

0({do, q1: 95}, 0) they did not.

= Example:

0({do, 92}, 0) =0(qy, 0) U 8(q,, 0)
={0;, 93} U {ds, 94}
= {01, 03, da}

0({do, 1, A2}, 1) = 0(qq, 1) U 0(qy, 1) U d(q,, 1)
={} U{a,, a3} U {}
= {0, 9z}

Step #2:
Given &: (229 x) — 2Q define &": (2Q x £*) — 2% as follows:

0" (R,w) — The set of states M could be in after processing string w,
having started from any state in R.

Formally:
2)0'(R, €) =R for any subset R of Q
3) 8"(R,wa) = 8 (6"(R,w), a) foranywin Z’, ain Z, and
subset R of Q
Note that:

O'(R,a) =0(0"(R, €),a) by definition of 8", rule #3 above
= 9(R, a) by definition of 8", rule #2 above

Hence, we can use 0 for &"

0({qo, 95}, 0110) These now make sense, but
previously

0({do, d1; 95}, 101101) they did not.

= Example:

Y

o

=

Informally: The set of states the NFA could be in after processing 10,
having started in state qq, i.e., {d;, 05, d3}-

What is d8({q,}, 10)?

Formally: 0({qo}, 10) = 3(d({qe}, 1), 0)
= 0({do}, 0)

={0,, dy, 93}
Is 10 accepted? Yes!

Example:

Whatis 0({qq, 01}, 1)?

O0({dp, 41}, 1) =0({qe}, 1) U 0({q,}, 1)
= {qo} U {0, 93}
= {do, 02, O3}

What is d8({q,, 9.}, 10)?

0({do, 05}, 10) =0

~

0({do, 0o}, 1), 0)

0({ge}, 1) U d({a,}, 1), 0)
{do} U {d3}, 0)

{d0,03}, 0)

{d0}, 0) L 6({g3}, 0)

1> Oz, O3} L {}

1> U2, O3}

T T T T TR TR
TN = R XN = o1

= Example:

0({go}, 101) (6({ge}, 10), 1)

(6(0({qe}, 1), 0), 1)

(6({ae}, 0), 1)

({a:, a2, g3}, 1)

({a.}, 1) U d({a}, 1) U 6({as}, 1)
02, ds} U {gs} U {}

d, Js}

A AN AN I

A

Is 101 accepted? Yes! q, is a final state.

Definitions for NFAS

= LetM=(Q, Z, 8,q,,F) be an NFA and let w be in £*. Then w is
accepted by M iff 8({qy}, w) contains at least one state in F.

= Let M=(Q, 2, 3,q5,F) be an NFA. Then the language accepted
by M is the set:

L(M) ={w | wis in 2" and &({q,},w) contains at least one state in
F}

= Another equivalent definition:

L(M) ={w |wis in £" and w is accepted by M}

Equivalence of DFAs and NFAs

= Do DFAs and NFAs accept the same class of languages?

= Isthere alanguage L that is accepted by a DFA, but not by any
NFA?

= Isthere a language L that is accepted by an NFA, but not by any
DFA?

= Observation: Every DFA is an NFA, DFA is only restricted NFA.

= Therefore, if L is a regular language then there exists an NFA M
such that L = L(M).

= It follows that NFAs accept all regular languages.

= But do NFAs accept more?

Consider the following DFA: 2 or more c’'s

a
Q =1{do, a1, 95}
2 ={a, b, C_} o
Start state Is q
F={q,} b
O: a b C
Jo Jo Jo d;
d, 01 41 o p)
op op) op) op)

= An Equivalent NFA:

Q ={qp, d;, 9z} :
2 ={a, b, c} a C
Start state is g
F={q,} b
O: a b C
Jo {do} {do} {9,}
d; {9,} {9,} {0,}
d> {05} {0,} {0,}

= Lemmal: Let M be an DFA. Then there exists a NFA M’ such
that L(M) = L(M’).

= Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it
follows that L(M’) = L(M).

The above is just a formal statement of the observation from the
previous slide.

m Lemma?2: Let M be an NFA. Then there exists a DFA M’ such that
L(M) = L(M).

= Proof: (sketch)
LetM = (Q, Z, 5,q,,F).
Define a DFAM =(Q, Z, &,9,,F’) as:

Q =2@ Each state in M’ corresponds to a
={Qp: Q1,-...} subset of states from M

where Q, = [q;o, qil""qij]
F'={Q, | Q, contains at least one state in F}
do = [do]

0'(Q,, @) = Q, iff 5(Q,, @) = Q,

= Example: empty string or start and end with O
0/1

Q ={do, 91} 0
s = {0, 1} %: (
Start state is g 0

F ={0,}

O: 0 1
9 | {a.} {}

d; | 1% 9. | {9}

= Example of creating a DFA out of an NFA (as per the

constructive proof): 0/1
0)
_'< ql
0)
-->
N oty | ©
& for DFA: 0 1 dq 190> iy | {dif
->(, {a.} {

write as write as

[a.] []

[04]
[]

Example of creating a DFA out of an NFA (as per the

[Do4]

constructive proof): 0/1
O >
_’< ql
0
{q1) {}
- 5 1 10> 91} 1)
->qo {ql} {}
write as
[q.]
[ql] {CI(_)’Ch} {a.}
write as
[doa]
[]

= Example of creating a DFA out of an NFA (as per the

constructive proof): 0/1
O >
_’< ql
0
{q1) {}
- 5 1 10> 91} 1)
->qo {ql} {}
write as
[q.]
[ql] {CI(_)’Ch} {a.}
write as
[doa]
[1 [] []

[Do4]

Example of creating a DFA out of an NFA (as per the

constructive proof): 0/1
O >
_’< ql
0
{q1) {}
5 5 1 10> 91} 1)
->qo {ql} {}
write as
[q.]
[ql] {CI(_)’Ch} {a.}
write as
[doa]
[1 [] []

[doz] [Dodl [04]

m Construct DFA M’ as follows:

0({qo}, 0) = {a,}
0({do}: 1) = {}

o({q.}, 0) = {dp, a4}
o({q.}, 1) = {a,}

0({d, d1}, 0) = {do, 91}
O({do, a1}, 1) ={q,}
o({}, 0) = {}

o({}, 1) ={}

O'([qo): O) = [q,]
0'([q0], 1) =[]
0'([a,], 0) = [doq4]
o'([a4], 1) = [q4]
O'([doa4]: 0) = [doq4]
0'([90d4); 1) = [q4]
o'([], 0)=T]
o'([1, 1)=11]

Theorem: LetL be alanguage. Then there exists an DFA M
such that L = L(M) iff there exists an NFA M’ such that L = L(M’).

Proof:

(if) Suppose there exists an NFA M’ such that L = L(M’). Then
by Lemma 2 there exists an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M).
Then by Lemma 1 there exists an NFA M’ such that L = L(M’).

Corollary: The NFAs define the regular languages.

= Note: Suppose R = {}

=
A
£

Since R ={}

= Exercise - Convert the following NFA to a DFA:

Q =1{do, a1, A2}
2 ={0, 1}
Start state is q

F ={do}

O:

d,
op

0 1
{aon8.t | {1}
{a.r | {9}
{02} | {0}

= Problem: Third symbol from last is 1

0/1

1 0/1 0/1

Now, can you convert this NFA to a DFA?

Finite Automata

= Some Applications

= Software for designing and checking the behavior
of digital circuits

= Lexical analyzer of a typical compiler

= Software for scanning large bodies of text (e.g.,
web pages) for pattern finding

= Software for verifying systems of all types that
have a finite number of states (e.g., stock market
transaction, communication/network protocol)

NFAs with € Moves

= An NFA-¢ is a five-tuple:
M = (Q! Z: 67 q01 F)

Q Afinite set of states

2 A finite input alphabet

gJo The initial/starting state, q, is in Q

F A set of final/accepting states, which is a subset of Q

0 A transition function, which is a total function from Q x 2 U {¢} to
2Q

O: (QAx(ZU({e}) — 2°
0(q,S) -The set of all states p such that there
IS a

transition labeled a from g to p,
where a

isin 2 U {e}
= Sometimes referred to as an NFA-¢ other times, simply as an NFA.

= Example:

0 0
@ 8 ‘A ‘6
— " Jo) 01 ="I!’
1 = 0

O: 0) 1 €
Qo {ao} {} | {9}
prqcessed
{91, A28 | {90, A3} | {92}
d;
{9,} {9,} {}
dz
{} {} {}

ds

1
€

- A string w = W;W,...w,, IS

as W = €W, EW,E ... EW,E
- Example: all computations on 00:
0 € O

Go o U1 Q2

Informal Definitions
= LetM=(Q, 2, d,qy,F) be an NFA-¢.

= A String win X" is accepted by M iff there exists a path in M from q, to a
state in F labeled by w and zero or more € transitions.

= The language accepted by M is the set of all strings from " that are
accepted by M.

€-closure

Define e-closure(q) to denote the set of all states reachable from g by
zero or more ¢ transitions.

Examples: (for the previous NFA)

e-closure(qo) = {do, 1, Az} e-closure(q,) = {0y}
e-closure(q,) = {qa,, 9,} e-closure(qs) = {gs}

e-closure(q) can be extended to sets of states by defining:

e-closure(P) 4 J ¢-closure(q) @
Examples: é 0 0/1
£ £ o
Bl g
e-closure({q,, 9,}) = {q4, dy} Jo* 1 kqu 0 '@

e-closure({dy, ds}) = {do, A1, 9>, U3}

Extension of 0 to Strings and Sets of
States

= What we currently have: 0:(Qx(ZU({e}))—2°
= What we want (why?): 0:(29x %) — 29

= As before, we will do this in two steps, which will be slightly
different from the book, and we will make use of the following
NFA.

. Step #1.

Given 0: (Q x (Z U {€})) — 22 define 6*: (2° x (£ U {€})) — 29 as
follows:

1) (R, a) 2J 09(q, a) for all subsets R of Q, and symbols ain
U {&} =

= Note that:

U
o*({p},a) = d(q, a) by definition of &%, rule #1 above

= 0(p, a)
= Hence, we can use 0 for &*

0({qg, 95}, 0) These now make sense, but
previously

0({do, d1, 0z} 0) they did not.

= Examples:

Whatis 6({q,. 05, 92}, 1)?

O0({do, d1, A2}, 1) = 0(qp, 1) U 0(qy, 1) U d(qy, 1)
={}U {00, a3} U{q,}
= {do, U, da}

What is 0({qy, 94}, 0)?

0({9p, a1}, 0) = 0(qy, 0) U 8(q;, 0)
={do} U {q;, a5}
= {do, 41, 95}

Step #2:

Given 0: (29 x (Z U {€})) — 22 define 8" (2° x ") — 2 as
follows:

0"(R,w) — The set of states M could be in after processing string
w, having starting from any state in R.

Formally:

2) 8'(R, €) = e-closure(R) - for any subset R of Q
3) 8"(R,wa) = e-closure(d(d"(R,w), a)) -forany win £, ain Z,
and

subset R of Q

Can we use 0 for &8*?

Consider the following example:

6({9o}, 0) = {qo}

0"({ge}, 0) = e-closure(d(5"({qy}, €), 0)) By rule #3

= g-closure(d(e-closure({q,}), 0)) By rule #2

= g-closure(0({qqy 01, 05}, 0)) By e-closure

= g-closure(d(q,, 0) U 6(q4, 0) U (g5, 0)) By rule
#1

= e-closure({qo} U {qa;, 95} U {ay})

= e-closure({do, d;, 92})

= g-closure({qy}) U e-closure({q,}) U e-closure({q,})
= {00, A1, 92} U {ay, 92} U {0}

= {00, A1, O}

So what Is the difference?

0(qg, 0) - Processes 0 as a single symbol, without € transitions.

6"(qg, 0) - Processes 0 using as many ¢ transitions as are
possible.

= Example:

0"({go}, 01) = e-closure(d(5°({q,}, 0), 1)) By rule
#3
= g-closure(0({qy, d1, 95}), 1) Previous slide
= g-closure(d(qy, 1) U 0(q4, 1) U 0(q,, 1)) By rule
#1

= e-closure({ } U {qo, g} U {0,})

= g-closure({qy, d,, 93})

= g-closure({qy}) U e-closure({qg,}) U e-closure({qs})
= {do, 91, 92} U {0} U {q}

={do, A1, 0z, O3}

Definitions for NFA-£ Machines

= LetM=(Q, Z, 0,q,,F) be an NFA-€ and let w be in 2". Thenw is
accepted by M iff 8°({qy}, w) contains at least one state in F.

= Let M=(Q, 2, 3,q5,F) be an NFA-¢. Then the language
accepted by M is the set:

L(M) ={w | wis in 2" and 8"({q,},w) contains at least one state in
F}

= Another equivalent definition:

L(M) ={w |wis in £" and w is accepted by M}

Equivalence of NFAs and NFA-¢€s

= Do NFAs and NFA-¢ machines accept the same class of
languages?
= Isthere a language L that is accepted by a NFA, but not by any
NFA-?
= Isthere alanguage L that is accepted by an NFA-¢, but not by any
DFA?

= Observation: Every NFA is an NFA-¢.

= Therefore, if L is a regular language then there exists an NFA-¢
M such that L = L(M).

= It follows that NFA-& machines accept all regular languages.

= But do NFA-¢£ machines accept more?

= Lemmal: Let M be an NFA. Then there exists a NFA-¢ M’
such that L(M) = L(M’).

= Proof: Every NFA is an NFA-¢. Hence, if we let M’ = M, then it
follows that L(M’) = L(M).

The above is just a formal statement of the observation from the
previous slide.

Lemma 2: Let M be an NFA-g£. Then there exists a NFA M’
such that L(M) = L(M’).

Proof: (sketch)
Let M = (Q, 2, §,9,,F) be an NFA-¢.

Define an NFA M' = (Q, Z, 8',q,,F’) as:

F’ = F U {q} if e-closure(q) contains at least one state from

F

F’ = F otherwise

d'(q, a) = 8'(q, a) -forallginQandain <
Notes:

= 0:(QxZX)— 2%is afunction

= M’ has the same state set, the same alphabet, and the same start
state as M

R A) L. . L s e i Ut

Example:

1
3

0 0
@ a ‘A
— " Jo) 01
1 0

Step #1.
= Same state setas M
= (IS the starting state

= Example: e

1
0 0 0/1
@ a ‘A a ‘@
— "\ (o j« 01 >
1 0

. Step #2:

= (, becomes a final state
—(®) (@

Example:

Example:

= Example: e
0

1
0 0 /1
@ a ‘A 8 ‘6
— "\ (o) 01 =
1 0
m Step #5:

Example: e

0 0 0/1

Jo /< 01 >
1 0

= Example:

= Example: e

0 0 0/1

Jo /< 01 >
1 0

Theorem: LetL be alanguage. Then there exists an NFA M
such that L= L(M) iff there exists an NFA-¢ M’ such that L =
L(M’).

Proof:

(if) Suppose there exists an NFA-€ M’ such that L = L(M’). Then
by Lemma 2 there exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M).
Then by Lemma 1 there exists an NFA-¢€ M’ such that L = L(M’).

Corollary: The NFA-¢ machines define the regular languages.

2 0 0 0

m INSTITUTE OF AERONAUTICAL ENGINEERING
@ i S N

Computer Science and Engineering Department
IV Semester

Theory of Computation
Unit- I

Unit — I
Syllabus:

Regular sets, regular expressions, identity rules, constructing finite

automata for a given regular expressions, conversion of finite automata
to regular expressions, pumping lemma of regular sets, closure
properties of regular sets (proofs not required), regular grammars-right
linear and left linear grammars, equivalence between regular linear
grammar and finite automata, inter conversion.

Regular Sets

Family of languages

m Seed elements:
« Empty language
=« Language containing the empty string

= Singleton language for each letter in the
alphabet

= Closure Operations:
= Union: collects strings from languages
=« Concatenation: generates longer strings
=« Kleene Star: generates infinite languages

Regular Sets over 2

- Basis: ¢,{ﬂ}, and V&EZZ{&} are
regular sets ovEr

= Inductive Step: Let X and Y be regular
sets over . Then so arelX Y

XY

*

s Closure:... X

Examples

= Bit strings containing at least a “1”
{0} o 1)) {0y 1)) *
= Bit strings containing exactly one “1”
10} *{1H0}*

= Bit strings beginning or ending with a “1”

101" w {0,131}

Regular Expressions

= Regular expressions are an algebraic
way to describe languages.

= They describe exactly the regular
languages.

= If E Is a regular expression, then L(E) Is
the language it defines.

= We'll describe RE’s and their
languages recursively.

Definition

= Basis 1: If a Is any symbol, then ais a
RE, and L(a) = {a}.

= Note: {a} Is the language containing one
string, and that string is of length 1.

= Basis 2: eis a RE, and L(€) = {€}.
= Basis 3: o i1sa RE, and L(v) = @.

= Induction 1: If E; and E, are regular
expressions, then E,+E, Is a regular
expression, and L(E,+E,) =
L(E))UL(E,).

= [nduction 2: If E; and E, are regular

expressions, then E,E, Is a regular
expression, and L(E,E,) = L(E,)L(E,).

-

Concatenation : the set of strings wx such that w
Isin L(E,) and x is in L(E,).

x Induction 3: If EIs a RE, then E* Is a
RE, and L(E*) = (L(E))*.

/

Closure, or “Kleene closure™ = set of strings
W, W,...W,, for some n > 0, where each w;, is
in L(E).

Note: when n=0, the string Is €.

Precedence of Operators

= Parentheses may be used wherever
needed to influence the grouping of
operators.

= Order of precedence is * (highest), then
concatenation, then + (lowest).

L(01) = {01}.
L(01+0) = {01, O}.

L(0(1+0)) = {01, 00}.

= Note order of precedence of operators.
L(0%) = {e, 0, 00, 000, ... }.
L((0+10)*(e+1)) = all strings of O's and
1's without two consecutive 1's.

Equivalence of RE’s and
Automata

= We need to show that for every RE, there
IS an automaton that accepts the same
language.
= Pick the most powerful automaton type: the

e-NFA.

= And we need to show that for every
automaton, there is a RE defining Its
language.
= Pick the most restrictive type: the DFA.

Converting a RE to an e-NFA

= Proof is an induction on the number of
operators (+, concatenation, *) in the
RE.

= We always construct an automaton of a
special form (next slide).

Start state:
Only state

Form of e-NFA’s Constructed

No arcs from outside
no arcs leaving

“Final” state:
Only state

with external with external
predecessors SUCCesSSOors

RE to e-NFA: Basis

= Symbol a: O—

" E: - :
. o O

RE to e-NFA: Induction 1 — Union

ForE, UE,

RE to e-NFA: Induction 2 —
Concatenation

For E.E,

RE to e-NFA: Induction 3 — Closure

-

For E*

DFA-10-RE

= A strange sort of induction.

= States of the DFA are assumed to be
1,2,...,N.

s We construct RE’s for the labels of
restricted sets of paths.
= Basis: single arcs or no arc at all.

= Induction: paths that are allowed to
traverse next state in order.

k-Paths

= A k-path is a path through the graph of
the DFA that goes no state
numbered higher than k.

= Endpoints are not restricted; they can
be any state.

. k-Paths

0-paths from 2 to 3:
RE for labels = 0.

1-paths from 2 to 3:
RE for labels = O0+11.

2-paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1

3-paths from 2 to 3:
RE for labels = ??

k-Path Induction

= Let R;¥ be the regular expression for the
set of labels of k-paths from state i to
state |.
= Basis: k=0. R;? = sum of labels of arc
from1to |.
- @ If no such arc.
= But add € if i=j.

: Basis

0=0.
.Rlzo—@+e:e.
.Rll_

k-Path Inductive Case

= A k-path from i to j either:
1. Never goes through state k, or
2. Goes through k one or more times.

Rk = Rik1 + Ryl YRk L)* Ryl

Doesn’t/ 0 iGtgekStLrgm Then, from
y Zero or kto]

through k first time _
more times

from k to k

lllustration of Induction

Path to k
Paths not going
through k From k to k
.- Several times /Q>

vy
L]
LI
LN]
L
L

Q
R
>

States < k

" uy
.......
LI
L]

Final Step

= The RE with the same language as
the DFA is the sum (union) of R;",
where:

1. nis the number of states; I.e., paths are
unconstrained.

>, 11S the start state.
3.] Is one of the final states.

Ro3° = Rpg® + Ry3%(R33%)*Rg3” =
R23%(Ra3%)*

R,:2 = (10)*0+1(01)*1

R43° = 0(01)*(1+00) + 1(10)*(0+11)

R,5° = [(10)*0+1(01)*1] [(0(01)*(1+00) +
1(10)*(0+11))]*

Algebraic Laws for RE’s

s Union and concatenation behave sort of
like addition and multiplication.

= + IS commutative and associative:
concatenation Is associative.

= Concatenation distributes over +.

s Exception: Concatenation Is not
commutative.

ldentities and Annihilators

= @ Is the identity for +.
s R+ 2 =R.

= € IS the identity for concatenation.
= ER=Re=R.

= @ IS the annihilator for concatenation.
- IR =Rg = 2.

Closure Properties of Reqgular
Languages

Union, Intersection, Difference,
Concatenation, Kleene Closure,
Reversal, Homomorphism,
Inverse Homomorphism

Closure Properties

= Recall a closure property Is a statement
that a certain operation on languages,
when applied to languages in a class
(e.qg., the regular languages), produces
a result that is also in that class.

= For regular languages, we can use any
of Its representations to prove a closure

property.

Closure Under Union

= If L and M are reqular languages, so Is
L u M.

= Proof: Let L and M be the languages of
regular expressions R and S,
respectively.

= Then R+S Is a regular expression
whose language is L U M.

Closure Under Concatenation
and Kleene Closure

» Same idea:

= RS Is a regular expression whose
anguage Is LM.

= R* Is a regular expression whose language
IS L*.

Closure Under Intersection

= If L and M are regular languages, then
soisL n M.

= Proof: Let A and B be DFA’s whose
languages are L and M, respectively.

= Construct C, the product automaton of A
and B.

= Make the final states of C be the pairs
consisting of final states of both A and B.

: Product DFA for
Intersection

Closure Under Difference

= If L and M are regular languages, then
soisL — M =strings in L but not M.

= Proof: Let A and B be DFA’s whose
languages are L and M, respectively.

= Construct C, the product automaton of A
and B.

= Make the final states of C be the pairs
where A-state Is final but B-state i1s not.

: Product DFA for
Difference

0
A1=

0,1

1 Notice: difference
IS the empty language

Closure Under Complementation

= The complement of a language L (with
respect to an alphabet 2 such that 2*

contains L) Is 2* — L.
= Since 2* Is surely regular, the

complement of a regular language Is
always regular.

Closure Under Reversal

= Recall example of a DFA that accepted
the binary strings that, as integers were
divisible by 23.

= We said that the language of binary
strings whose reversal was divisible by
23 was also reqgular, but the DFA
construction was very tricky.

= Good application of reversal-closure.

Closure Under Reversal — (2)

= Given language L, LR is the set of strings
whose reversal Is In L.

. L ={0, 01, 100}; LR
= {0, 10, 001}.

= Proof: Let E be a regular expression for L.

= \We show how to reverse E, to provide a
regular expression ER for LR.

Reversal of a Regular Expression

= Basis: If E Is a symbol a, €, or @, then
ENS B

= Induction: If E IS
« F+G, then ER = FR + GR.
» FG, then ER = GRFR

= F*, then ER = (FR)*,

- Reversal of a RE

Let E = 01* + 10*.

ER = (01* + 10%)R = (01*)R + (10%)R
— (1*)ROR + (O*)R]_R

= (1R)*0 + (OR)*1

= 1*0 + O*1.

Homomorphisms

= A homomorphism on an alphabet is a
function that gives a string for each
symbol in that alphabet.

= Extend to strings by

: h(0) = ab;

h(a,)...h(a).

(1) = €.

n(a;...a,) =

: h(01010) = ababab.

Closure Under
Homomorphism

= If L Is aregular language, and his a
homomorphism on its alphabet, then h(L)
={h(w) | wis in L} Is also a regular
language.

= Proof: Let E be a regular expression for L.

= Apply h to each symbol in E.

= Language of resulting RE is h(L).

 Closure under
Homomorphism

= Let h(O) = ab; h(1) = €.

= Let L be the language of regular
expression 01* + 10*.

= Then h(L) is the language of regular
expression abe* + €(ab)*.

\/

Note: use parentheses
to enforce the proper

grouping.

— Continued

abe* + €(ab)* can be simplified.

€* = €, SO abe* = abe.

€ IS the identity under concatenation.

= Thatis, eEE = Ee = E for any RE E.

Thus, abe* + e(ab)* = abe + €(ab)* = ab
+ (ab)*.

Finally, L(ab) is contained in L((ab)*), so
a RE for h(L) is (ab)*.

Inverse Homomorphisms

= Let h be a homomorphism and L a
anguage whose alphabet is the output
anguage of h.

= hi(L) ={w | h(w)isin L}.

. Inverse Homomorphism

= Let h(0) = ab; h(1) = €.
= Let L = {abab, baba}.

= h'i{(L) = the language with two 0’s and
any number of 1's = L(1*01*01%).

Notice: no string maps to
baba; any string with exactly
two O's maps to abab.

Linear Grammars

= Grammars with
= at most one variable at the right side
= Of a production

S — asSb S— ADb
S—H>A A — aADb
= Examples:

A—>A

144

A Non-Linear Grammar

gorammar G : S N SS
S—> A
S > aSh

S — bSa
L(G) ={w: na(w)=ny(w)}

145

Another Linear Grammar

G S—> A
A—aB| 4
s Grammar :
B— Ab

L(G)={a"b" :n>0}

146

Right-Linear Grammars

= All productions have form:
A — xB
or

Ao X

eS — ab$S

= Example:
S—>a

147

L eft-Linear Grammars

= All productions have form:

A — BX

or

A —> X

= Exampled — Aab
A— Aab|B

B—oa 148

Regular Grammars

149

Regular Grammars

= A regular grammar is any
= right-linear or left-linear grammar

G G,
= Examples:
S — abS S — Aab
S > a A— Aab\ B

B—>a
150

Observation

= Regular grammars ger@rate regular

languages
Gy S — Aab
s 5 e Pes A— Aab|B
S—a B—a

L(G;) =(ab)*a L(G,) =aab(ab)*

151

Regular Grammars
Generate
Regular Languages

152

Theorem

Languages
Generated by
Regular Grammars

Regular
Languages

153

Theorem - Part 1

[Languages

Regular
Generated by g
Regular Grammars - C 4 Languages

Any regular grammar generates
a regular language

154

Theorem - Part 2

[Languages

Regular
Generated by g
Regular Grammars > :) < Languages

Any regular language is generated
by a regular grammar

155

Proof — Partiyl .

Languages Seaul

Generated by (Sl

Regular Grammars > ~— languages
~ .

The language generated by
any reqular grammar is regular

G L(G)

156

The case of Right-Linear
GGrammars

= Let Dbe aright-linear grammar

L(G)
= We will prove: N Is regular
L(M) =L(G)

s Proof idea: We will construct NFA

Example:

= Grammar (G Is right-linear

S—>aA|B
A—aaB
B—>DbB|a

158

= Construct NFA M such that
= every state Is a grammar variable:

special
4’@ @ @ final state

S—>aAl|B
A—>aab
B—>bBla ey

= Add edges for each production:

€

S > aA

160

161

162

163

S—>aAl|B
A—>aaB
B—>bB|a m

S = aA— aaaB = aaabB= a1a6aba
5

NFA M Grammar

@ G

S—>aA|B
A—>aabB

B—DbB|a
A 2

L(M)=L(G) =
aaab*a+b*a

166

In General

= A right-linear grammar VO ,Vl’VZ .

= has variables: G
Vi > aa,---a Vj

_ or
= and productions:

Vi —> aa,---an,
167

= We construct the NFA M such that:

= each variable V corresponds to a

@ @

:
@ special
final state

168

= For each production: Vi > &ay---a Vj

s we add transitions and intermediate
nodes

@alanO m

169

= For each production:

s We add transitions and intermediate
nodes Vi — aay---an

@aloazo am

170

= Resulting NFA M looks like this:

It holds that: L(G)=L(M)

171

Proof - Part 2

Languages
Generated by
Regular Grammars

)

Regular
Languages

Any reqgular language L isgenerated (G

by some regular grammar

172

Any reqular language L is generated G
by some regular grammar

Proof idea:

Let \] be the NFA with L=L(M)

Construct from M a regular grammar G
such that

L(M)=L(G)

173

= Since L isregular Mp
= thereis an NFA N\ such that

L= L(I\/I)

" ?/‘

L =ab*ab(b*ab)*
L=L(M)

Example:

174

= Convert M to aright-linear grammar

M

Jo = ay Q
d
—(G)— () (@

175

Jo — a4y
0 — bgy
O0p —adp

176

177

Go — aly
th — by
0p — alp
d2 — bas

s 2> 1
(]3—)1

L(G)=L(M)=L

b
m_ Gy
@a l > @
L ¢

178

In General

For any fransition: @ d »@

Add production: g—>ap

4

variable terminal variable

179

For any final state:

Add production: Jf — A

180

= Since (G Isright-linear grammar

s G IS also a regular grammar

L(G)=L(M)=L

181

2 0 0 0

m INSTITUTE OF AERONAUTICAL ENGINEERING
@ i S N

Computer Science and Engineering Department
IV Semester

Theory of Computation
Unit- 11

Unit — [l

Syllabus:

Context free grammars and languages: Context free
grammar, derivation trees, sentential forms, right most and
leftmost derivation of strings, applications.

Ambiguity In context free grammars, minimization of
context free grammars, Chomsky normal form, Greibach
normal form, pumping lemma for context free languages,
enumeration of properties of context free language (proofs
omitted)..

Introduction

= A context-free grammar Is a notation
for describing languages.

= It Is more powerful than finite automata
or RE’s, but still cannot define all
nossible languages.

= Useful for nested structures, e.g.,
parentheses in programming
anguages.

= Basic idea is to use “variables” to stand
for sets of strings (i.e., languages).

= These variables are defined recursively,
In terms of one another.

= Recursive rules (“productions”) involve
only concatenation.

s Alternative rules for a variable allow
union.

. CFG for {0"1" | n > 1}

s Productions:
S->01
S ->081

= Basis: 01 is In the language.

= Induction: If w is In the language, then
So Is Owl.

CFG Formalism

= [erminals = symbols of the alphabet of
the language being defined.

s Variables = nonterminals = a finite set
of other symbols, each of which
represents a language.

= Start symbol = the variable whose
language Is the one being defined.

Productions

= A production has the form variable ->
string of variables and terminals.

s Convention:
= A, B, C,... are variables.
= 4, b, C,... are terminals.
= ..., X, Y, Z are either terminals or variables.
= ..., W, X, Y, zZ are strings of terminals only.

= o, B, v,... are strings of terminals and/or
variables.

- Formal CFG

= Here Is a formal CFG for { O"1" | n > 1}.
= Terminals = {0, 1}.

= Variables = {S}.

= Start symbol = S.

s Productions =
S->01
S -> 081

Derivations — Intuition

= We derive strings in the language of a
CFG by starting with the start symbol,
and repeatedly replacing some variable
A by the right side of one of Its
productions.

= Thatis, the “productions for A" are those
that have A on the left side of the ->.

Derivations — Formalism
= We say aAB=>ayBIfA->visa
production.
m :S->01; S ->0S1.
s S=>0S1=>00511=>000111.

B

lterated Derivation

s =>* means “zero or more derivation
steps.”

= Basis: a =>* a for any string a.

= Induction: If o =>* B and B => vy, then «
—>%* y

- lterated Derivation

s S->01; S ->081.

= S=>0S1=>00511=>000111.

B SO0S=>*5; S=>*0S]1; S=>*00511; S
=>* 000111.

Sentential Forms

= Any string of variables and/or terminals
derived from the start symbol is called a
sentential form.

= Formally, a Is a sentential form Iff S
=>* Q.

Language of a Grammar

= If Gis a CFG, then L(G), the language
of G, Is{w | S =>* w}.
= Note: w must be a terminal string, S Is the
start symbol.

m . G has productions S -> € and
S -> 0S1. I

= L(G) ={0"1" | n > 0}. Note: € is a legitimate
right side.

Context-Free Languages

= A language that is defined by some
CFG is called a context-free language.

= There are CFL’s that are not regular
languages, such as the example just
given.

= But not all languages are CFL's.

= Intuitively: CFL’s can count two things,
not three.

BNF Notation

= Grammars for programming languages
are often written in BNF (Backus-Naur
Form).

= Variables are words in <...>:
<statement>.

s [erminals are often multicharacter
strings indicated by boldface or
underline; - while or WHILE.

BNF Notation — (2)

= Symbol ::=Is often used for ->.

= Symbol | is used for “or.”

= A shorthand for a list of productions with
the same left side.

m : S ->0S1 | 01 is shorthand for
S->0S1and S ->01.

BNF Notation — Kleene
Closure

= Symbol ... is used for “one or more.”
m . <digit> ;= 0]1/|2|3]4|5|6]7|8]9
<unsigned integer> ::= <digit>...

= Note: that’s not exactly the * of RE’s.

= [ranslation: Replace a... with a new
variable A and productions A -> Aa. | a.

 Kleene Closure

= Grammar for unsigned integers can be
replaced by:

U->UD|D
D -> 0]1]2|3]4/|5]6|7|8|9

BNF Notation: Optional Elements

= Surround one or more symbols by [...]
to make them optional.

= . <statement> ::= If <condition>
then <statement> [; else <statement>]

= [ranslation: replace [a] by a new
variable A with productions A -> a | €.

. Optional Elements

» Grammar for if-then-else can be
replaced by:

S -> ICtSA
A->.eS| €

BNF Notation — Grouping

= Use {...} to surround a sequence of
symbols that need to be treated as a
unit.

« [ypically, they are followed by a ... for “one
or more.”

= : <statement list> ::=
<statement> [{;<statement>}...]

Translation: Grouping

= You may, If you wish, create a new
variable A for {a}.

= One production for A: A -> q.
= Use A in place of {a}.

. Grouping

L ->S [{;S}...]
= Replaceby L->S[A...] A->;S
= A stands for {;S}.
= ThenbyL->SB B->A...|e A->;S
= B stands for [A...] (zero or more A’s).
= FinallybyL->SB B ->C|E€
C->AC|A A->;S
= C stands for A....

Leftmost and Rightmost
Derivations

= Derivations allow us to replace any of
the variables in a string.

= Leads to many different derivations of
the same string.

= By forcing the leftmost variable (or
alternatively, the rightmost variable) to
be replaced, we avoid these
“distinctions without a difference.”

Leftmost Derivations

= Say WAa =>, WBa If w IS a string of
terminals only and A -> 3 Is a
production.

= Also, a =>*_ B If a becomes 3 by a
sequence of 0 or more =>,_ steps.

: Leftmost Derivations

= Balanced-parentheses grammmar:
S->SS|(S)]|(0

= S =3, SS =3, (S)S =2, (0)S =2y, (0)0)

= Thus, S =>%, (0)()

= S=>8S=>5()=>(S)() => () is a
derivation, but not a leftmost derivation.

Rightmost Derivations

= Say aAw =>__ affw If w Is a string of
terminals only and A -> 3 Is a
production.

= Also, a =>* B If a becomes 3 by a
sequence of 0 or more =>,_ steps.

. Rightmost Derivations

= Balanced-parentheses grammmar:
S->3S|(S)[0)

= S=>.SS=>_5(=>,(S)0 =>m)

= Thus, S =>*, (0)()

s S=>8S=>S5SS=>S5()S=>(()S=>
)00 is neither a rightmost nor a leftmost
derivation.

Parse Trees

= Parse trees are trees labeled by
symbols of a particular CFG.

m . labeled by a terminal or €.

m . labeled by a variable.

= Children are labeled by the right side of a
production for the parent.

m . must be labeled by the start
symbol.

Example: Parse Tree

S->SS|[(S)]()
5 o

Yield of a Parse Tree

= | he concatenation of the labels of the
leaves In left-to-right order

= Thatis, in the order of a preorder traversal.
IS called the yield of the parse tree.

m . yield of 1S (())()

¢

Parse Trees, Left- and
Rightmost Derivations

= For every parse tree, there is a unigue
leftmost, and a unique rightmost
derivation.

= We'll prove:
1. If there Is a parse tree with root labeled A
and yield w, then A =>* _ w.
2. It A=>*_w, then there Is a parse tree
with root A and yield w.

Proof — Part 1

= Induction on the height (length of the
longest path from the root) of the tree.

= Basis: height 1. Tree looks Iike@

= A->a,...a, must be a @) ... @
production.

= Thus, A =>*_a,...a,.

Part 1 — Induction

= Assume (1) for trees of height < h, and
let this tree have helght h:

= By IH, X, =>* _
= Note: If X Is atermlnal then

= W..
—_— *
_>*|m W1W2X3 X >* =>
Wy...W, .

|m... I

Proof: Part 2

= Given a leftmost derivation of a terminal
string, we need to prove the existence
of a parse tree.

= The proof is an induction on the length
of the derivation.

Part 2 — Basis

= [fA=>*_a,...a, by a one-step
derivation, then there must be a parse

tree/@)\
& ... @

Part 2 — Induction

= Assume (2) for derivations of fewer than
k> 1 steps, and let A =>*_ w be a k-
step derivation.

s Firststepis A =>_, X;...X,,.

a . W can be divided so the first
portion is derived from X, the next is
derived from X,, and so on.

» If XiIs a terminal, then w;, = X..

Induction — (2)

= Thatis, X, =>*_ w for all 1 such that X, Is
a variable.

= And the derivation takes fewer than k
steps.

= By the IH, Iif X; Is a variable, then there
IS a parse tree with root X an/%iield W,

= Thus, there Is a parse treeﬁ ﬁ
Wl Wn

Parse Trees and Rightmost
Derivations

= The ideas are essentially the mirror
Image of the proof for leftmost
derivations.

= Left to the imagination.

Parse Trees and Any
Derivation

= The proof that you can obtain a parse
tree from a leftmost derivation doesn't
really depend on “leftmost.”

= First step still has to be A => X,...X,.

= And w still can be divided so the first
portion is derived from X,, the next is
derived from X,, and so on.

Ambiguous Grammars

= A CFG Is ambiguous If there Is a string
In the language that is the yield of two
Or more parse trees.

m :S->SS|(9)]| ()
= Two parse trees for ()()() on next slide.

Ambiguity, Left- and
Rightmost Derivations

= If there are two different parse trees,

t

t

ney must produce two different leftmost

derivations by the construction given in

ne proof.

= Conversely, two different leftmost
derivations produce different parse
trees by the other part of the proof.

= Likewise for rightmost derivations.

Ambiguity, etc. — (2)

= Thus, equivalent definitions of
“‘ambiguous grammar’ are:

1. There is a string In the language that has
two different leftmost derivations.

2. There Is a string in the language that has
two different rightmost derivations.

Ambiguity I1s a Property of
Grammars, not Languages

= For the balanced-parentheses
language, here Is another CFG, which Is

unambIQUOUS. B, the start symbol,

derives balanced strings.

\ R generates strings that

have one more right paren
than left.

. Unambiguous Grammar

= Construct a unique leftmost derivation for
a given balanced string of parentheses by
scanning the string from left to right.

= If we need to expand B, then use B -> (RB If
the next symbol is “(" and € If at the end.

= If we need to expand R, use R ->) if the next
symbol is “)" and (RR if it is “(".

The Parsing Process

Remaining Input: Steps of leftmost
()0 derivation:

‘ B
Next
symbol

The Parsing Process

Remaining Input: Steps of leftmost
0)0 derivation:

‘ B

Next (RB

symbol

The Parsing Process

Remaining Input: Steps of leftmost
() derivation:

‘ B

Next (RB

symbol ((RRB

The Parsing Process

Remaining Input: Steps of leftmost
)() derivation:

‘ B

Next (RB

symbol ((RRB

(ORB

The Parsing Process

Remaining Input: Steps of leftmost
0 derivation:
‘ B
Next (RB
symbol ((RRB
(ORB

(0)B

The Parsing Process

Remaining Input: Steps of leftmost
) derivation:
‘ B (0)(RB
Next (RB
symbol ((RRB
(ORB

(0)B

The Parsing Process

Remaining Input: Steps of leftmost
derivation:
‘ B (0)(RB
Next (RB (0)OB
symbol ((RRB
(ORB

(0)B

The Parsing Process

Remaining Input: Steps of leftmost
derivation:
‘ B (0)(RB
Next (RB (0)OB
symbol (RRB (0)()
(ORB

(0)B

LL(1) Grammars

= As an aside, a grammar such

, where you can always figure
out the production to use In a leftmost
derivation by scanning the given string
left-to-right and looking only at the next
one symbol is called LL(1).

= "Leftmost derivation, left-to-right scan, one
symbol of lookahead.”

LL(1) Grammars — (2)

= Most programming languages have
LL(1) grammars.

= LL(1) grammars are never ambiguous.

Inherent Ambiguity

= It would be nice If for every ambiguous
grammar, there were some way to “fix”
the ambiguity, as we did for the
balanced-parentheses grammar.

= Unfortunately, certain CFL’s are
Inherently ambiguous, meaning that
every grammar for the language Is
ambiguous.

. Inherent Ambiguity

= The language {0'12%|i=jorj=k}is
Inherently ambiguous.

= Intuitively, at least some of the strings of
the form 0"1"2" must be generated by
two different parse trees, one based on

checking the O’s and 1's, the other
based on checking the 1's and 2's.

One Possible Ambiguous
Grammar

A generates equal O's and 1's
B generates any number of 2's
C generates any number of O’s
D generates equal 1's and 2’s

And there are two derivations of every string
with equal numbers of O’s, 1’s, and 2’s. E.g.:
S =>AB =>01B =>012
S=>CD=>0D=>012

Normal Forms for CFG's

Eliminating Useless Variables
Removing Epsilon
Removing Unit Productions
Chomsky Normal Form

Variables That Derive Nothing

m Consider: S ->AB,A->aA|a, B->AB

= Although A derives all strings of a’'s, B
derives no terminal strings (can you
prove this fact?).

= Thus, S derives nothing, and the
language Is empty.

Testing Whether a Variable
Derives Some Terminal String

= Basis: If there Is a production A -> w,
where w has no variables, then A
derives a terminal string.

= Induction: If there Is a production A -
> o, Where a consists only of terminals
and variables known to derive a
terminal string, then A derives a

terminal string.

Testing — (2)

= Eventually, we can find no more
variables.

= An easy induction on the order in which
variables are discovered shows that
each one truly derives a terminal string.

= Conversely, any variable that derives a
terminal string will be discovered by this
algorithm.

Proof of Converse

= The proof Is an induction on the height
of the least-height parse tree by which a
variable A derives a terminal string.

= Basis: Height = 1. Tree looks like:
= Then the basis of the algorithm
tells us that A will be discoveredﬁk

& ... ®

Induction for Converse

= Assume IH for parse trees of height < h,
and suppose A derives a terminal str

via a parse tree of height h:
= By IH, those Xi's that are % %
variables are discovered.

s [hus, A will also be discovered,
because it has a right side of terminals
and/or discovered variables.

Algorithm to Eliminate
Variables That Derive Nothing

1. Discover all variables that derive
terminal strings.

2. For all other variables, remove all
productions in which they appear
either on the left or the right.

Example: Eliminate Variables

S->AB|C,A->aA|a B->bB,C->c

s Basis: A and C are identified because
of A->aand C ->c.

= Induction: S iIs identified because of
S ->C.

= Nothing else can be identified.
m Result: S->C,A->aA|a,C->c

Unreachable Symbols

= Another way a terminal or variable
deserves to be eliminated is if it cannot

appear in any derivation from the start
symbol.

= Basis: We can reach S (the start symbol).

= Induction: if we can reach A, and there is a
production A -> a, then we can reach all
symbols of a.

Unreachable Symbols — (2)

= Easy inductions in both directions show
that when we can discover no more
symbols, then we have all and only the
symbols that appear in derivations from S.

m . Remove from the grammar all
symbols not discovered reachable from S
and all productions that involve these
symbols.

Eliminating Useless Symbols

= A symbol is useful If it appears in
some derivation of some terminal
string from the start symbol.

= Otherwise, It is useless.
Eliminate all useless symbols by:

1. Eliminate symbols that derive no terminal
string.

2. Eliminate unreachable symbols.

. Useless Symbols — (2)

S>ABA>C,C->c,B->bB

= If we eliminated unreachable symbols
first, we would find everything Is
reachable.

= A, C, and c would never get eliminated.

Why It Works

= After step (1), every symbol remaining
derives some terminal string.

= After step (2) the only symbols
remaining are all derivable from S.

= In addition, they still derive a terminal
string, because such a derivation can
only involve symbols reachable from S.

Epsilon Productions

= WWe can almost avoid using productions of
the form A -> € (called eproductions).

= The problem is that € cannot be In the
language of any grammar that has no e—

productions.

m . If Lis a CFL, then L-{e} has a
CFG with no e-productions.

Nullable Symbols

= To eliminate e-productions, we first
need to discover the nullable variables
= variables A such that A =>* €.

= Basis: If there Is a production A -> €,
then A is nullable.

= Induction: If there Is a production A -
> o, and all symbols of a are nullable,
then A is nullable.

Example: Nullable Symbols

S->AB,A->aA|e,B->bB|A
s Basis: A Is nullable because of A -> €.

s Induction: B i1s nullable because of B
-> A,

s [hen, S is nullable because of S -> AB.

Proof of Nullable-Symbols
Algorithm

= The proof that this algorithm finds all
and only the nullable variables is very
much like the proof that the algorithm
for symbols that derive terminal strings
Works.

= Do you see the two directions of the
proof?

= On what I1s each induction?

Eliminating e-Productions

m . turn each production A
-> X,...X, Into a family of productions.

= For each subset of nullable X's, there is
one production with those eliminated
from the right side “in advance.”

= Except, if all X's are nullable, do not make
a production with € as the right side.

Example: Eliminating €-
Productions

S->ABC,A->aA|e,B->bB|€,C->¢
= A, B, C, and S are all nullable.
= New grammar:
S -> ABE | AB | AS | BE| A | B [B<
A->aA | a
B->bB|b

Note: C Is now useless.
Eliminate its productions.

Why it Works

s Prove that for all variables A:
. Ifw=e€and A=>*_,w, then A=>*__, W.

2. IfA=>*__,Wthenw =€ and A =>*_, w.
= Then, letting A be the start symbol
proves that L(new) = L(old) — {€}.

= (1) i1s an induction on the number of
steps by which A derives w in the old
grammar.

Proof of 1 — Basis

= If the old derivation is one step, then A
-> W must be a production.

= Since w # €, this production also
appears in the new grammar.

m [hus, A=>__ W

new -

Proof of 1 — Induction

= Let A =>*_, w be an n-step derivation,
and assume the IH for derivations of
less than n steps.

= Let the first step be A =>_; X;...X,.
= Then w can be broken into w = w;...w,,

= Where X, =>*_, w,, for all I, in fewer than
n steps.

Induction — Continued

= By the IH, if w;, # €, then X, =>*

= Also, the new grammar has a
production with A on the left, and just
those X;'s on the right such that w; # €.

. . they all can’t be €, because w # €.

= Follow a use of this production by the
derivations X, =>* ., W, to show that A
derives w in the new grammar.

new Wi'

Proof of Converse

= We also need to show part (2) —if wis
derived from A in the new grammar,
then it Is also derived in the old.

= Induction on number of steps in the
derivation.

= We’'ll leave the proof for reading in the
text.

Unit Productions

= A unit production is one whose right
side consists of exactly one variable.

= These productions can be eliminated.

m . If A =>* B by a series of unit
productions, and B -> a is a non-unit-
production, then add production A -> a.

= Then, drop all unit

oroductions.

Unit Productions — (2)

= Find all pairs (A, B) such that A =>* B
by a sequence of unit productions only.

= Basis: Surely (A, A).

= Induction: If we have found (A, B), and
B -> C Is a unit production, then add (A,
C).

Proof That We Find Exactly
the Right Pairs

= By Induction on the order in which pairs
(A, B) are found, we can show A =>* B
by unit productions.

= Conversely, by induction on the number
of steps in the derivation by unit
productions of A =>* B, we can show
that the pair (A, B) Is discovered.

Proof The the Unit-Production-
Elimination Algorithm Works

= Basic idea: there Is a leftmost derivation
A =>*_w In the new grammar If and

only if there Is such a derivation in the
old.

= A seguence of unit productions and a
non-unit production is collapsed into a
single production of the new grammatr.

Cleaning Up a Grammar

m Iheorem: if Lis a CFL, then there is a
CFG for L — {€} that has:

1. No useless symbols.
2. No e-productions.

3. No unit productions.

= |.e., every right side Is either a single
terminal or has length > 2.

Cleaning Up — (2)

s Proof: Start with a CFG for L.

= Perform the following steps in order:
1. Eliminate e-productio

2. Eliminate unit productions.

5. Eliminate variables that
terminal string.

2. Eliminate variables not reached from the
start symbol.

rive no

Chomsky Normal Form

= A CFG is said to be in Chomsky
Normal Form If every production is of
one of these two forms:

.. A ->BC (rnight side is two variables).
2. A ->a (right side Is a single terminal).
= [heorem:IfLisaCFL, then L — {€}
has a CFG in CNF.

Proof of CNF Theorem

m . “Clean” the grammar, so every
production right side Is either a single
terminal or of length at least 2.

m . For each right side = a single
terminal, make the right side all variables.

= For each terminal a create new variable A,
and production A, -> a.

= Replace a by A, In right sides of length > 2.

. Step 2

= Consider production A -> BcDe.

= We need variables A, and A.. with
productions A.->c and A, -> e.

m . you create at most one variable for
each terminal, and use it everywhere it Iis
needed.

= Replace A -> BcDe by A -> BA_DA..

CNF Proof — Continued

m . Break right sides longer than 2
Into a chain of productions with right
sides of two variables.

m . A -> BCDE Is replaced by
A ->BF, F->CG, and G -> DE.
= F and G must be used nowhere else.

of Step 3 — Continued

= Recall A -> BCDE is replaced by
A -> BF, F -> CG, and G -> DE.

= In the new grammar, A => BF => BCG
=> BCDE.

m . Once we choose to
replace A by BF, we must continue to
BCG and BCDE.

= Because F and G have only one
production.

CNF Proof — Concluded

= \We must prove that Steps 2 and 3
produce new grammars whose
languages are the same as the previous
grammar.

= Proofs are of a familiar type and involve
Inductions on the lengths of derivations.

The Pumping Lemma for
CFL'’s

Statement
Applications

Intuition

= Recall the pumping lemma for regular
languages.

= |t told us that if there was a string long
enough to cause a cycle in the DFA for
the language, then we could “pump” the
cycle and discover an infinite sequence
of strings that had to be in the language.

Intuition — (2)

s For CFL’s the situation is a little more
complicated.

= We can always find pieces of any
sufficiently long string to “pump” in
tandem.

= [hat is: If we repeat each of the two pieces
the same number of times, we get another
string in the language.

Statement of the CFL Pumping
Lemma

For every context-free language L
There Is an integer n, such that
For every string z in L of length > n
here exists z = uvwxy such that:
1. [vwx| < n.
2. |vx| > 0.
3. Foralli>0, uvwxly isin L.

Proof of the Pumping Lemma

= Start with a CNF grammar for L — {€}.

= Let the grammar have m variables.
= Pickn=2m,
= Let |z] > n.

= We claim ("Lemma 1 7) that a parse tree
with yield z must have a path of length
m+2 or more.

Proof of Lemma 1

= If all paths In the parse tree of a CNF
grammar are of length < m+1, then the
longest yield has length 2™, as in:

m variables
<

one terminal
Y,
. ~—
2M-1 terminals

Back to the Proof of the
Pumping Lemma

= Now we know that the parse tree for z
has a path with at least m+1 variables.

= Consider some longest path.

= There are only m different variables, so
among the m+1 we can find two
nodes with the same label, say A.

= The parse tree thus looks like:

Parse Tree In the Pumping-
Lemma Proof

Can’t both

be €. < 2™ =n because a

longest path chosen

Pump Zero Times

Pump Twice

Pump Thrice Etc., Etc.

Using the Pumping Lemma

= Non-CFL'’s typically involve trying to
match two pairs of counts or match two
strings.

m . The text uses the pumping
lemma to show that {ww | w in (0+1)*} Is
not a CFL.

Using the Pumping Lemma — (2)

= {010'|i>1}is a CFL.
= We can match one pair of counts.
= But L ={0'10'10' | i > 1} is not.

= We can’'t match two pairs, or three counts
as a group.

= Proof using the pumping lemma.
= Suppose L were a CFL.
= Let n be L's pumping-lemma constant.

Using the Pumping Lemma — (3)

= Consider z = 0"10"10".

= We can write z = uvwxy, where |vwx|
<n, and |vx| > 1.

= Case 1: vx has no O’s.

= Then at least one of them is a 1, and uwy
has at most one 1, which no string in L
does.

Using the Pumping Lemma — (4)

= Still considering z = 0"10"10".
s Case 2: vx has at least one 0.

= VWX IS too short (length < n) to extend to all
three blocks of O’s in O"10"10".

= Thus, uwy has at least one block of n 0’s,
and at least one block with fewer than n
O’s.

= Thus, uwy is notin L.

Properties of Context-Free
Languages

Decision Properties
Closure Properties

Summary of Decision Properties

= As usual, when we talk about “a CFL”
we really mean “a representation for
the CFL, e.g., a CFG or a PDA
accepting by final state or empty stack.

= [here are algorithms to decide If:
1. Stringw is in CFL L.
. CFL L Is empty.
3. CFL L is infinite.

Non-Decision Properties

Many guestions that can be decided for
regular sets cannot be decided for CFL's.

. Are two CFL’s the same?
. Are two CFL'’s disjoint?
= How would you do that for regular languages?

Need theory of Turing machines and
decidability to prove no algorithm exists.

Testing Emptiness

= We already did this.

s We learned to eliminate variables that
generate no terminal string.

= If the start symbol is one of these, then
the CFL is empty; otherwise not.

Testing Membership

= Want to know If string w Is in L(G).

s Assume G iIs In CNF.

= Or convert the given grammar to CNF.

= W= € IS a special case, solved by testing if
the start symbol is nullable.

= Algorithm (CYK) Is a good example of
and runs in time
O(n3), where n = |w|.

CYK Algorithm

s Letw=a,...a,.

= \We construct an n-by-n triangular array
of sets of variables.

s X; = {variables A | A =>* a,...aj}.
= Induction on J—-i+1.

= The length of the derived string.
= Finally, ask if S is in X4,.

CYK Algorithm — (2)

s Basis: X: ={A | A -> a is a production}.
= Induction: Xj = {A | there Is a production
A -> BC and an integer k, with 1 < k <},

such that B is in X and Cis in X, ;.

Example: CYK Algorithm

Grammar. S ->AB,A->BC|a,B->AC|b,C->a|b
String w = ababa

X127{B,S} Xz={A} X3={B,S} X,;s={A}

[

X1u={A,C} X={B,C} X3:5={AC} X4u={B,C} Xs={A,C}

. CYK Algorithm

Grammar. S ->AB,A->BC|a,B->AC|b,C->a|b
String w = ababa

X13={} Yields nothin
Sl g

X1p={B,S} Xp={A} X3={B,S} Xs={A}

Xu={AC}H Xpuo={B.,C} X355={AC} X,u={B.,C} Xs5={A,C}

. CYK Algorithm

Grammar. S ->AB,A->BC|a,B->AC|b,C->a|b
String w = ababa

X13={A} X24={B,S} X3s={A}

T
le‘&W X45={A}

Xu={AC}H Xpuo={B.,C} X355={AC} X,u={B.,C} Xs5={A,C}

Example: CYK Algorithm

Grammar. S ->AB,A->BC|a,B->AC|b,C->a|b
String w = ababa

X14={B,S}
S

S} Xs={A}

X1o={B[S} Xy3={A}

X34={B,

X1u={A,C} X={B,C} X3:5={AC} X4u={B,C} Xs={A,C}

. CYK Algorithm

Grammar. S ->AB,A->BC|a,B->AC|b,C->a|b
X15:{,/§} String w = ababa
X14={B,S}

X13={A} X54={B,S} Xgzs=
X1o={B,S} Xy={A} X3={B,S} Xs={A}

Xu={AC}H Xpuo={B.,C} X355={AC} X,u={B.,C} Xs5={A,C}

Testing Infiniteness

= The idea is essentially the same as for
regular languages.

= Use the pumping lemma constant n.

= If there Is a string In the language of
length between n and 2n-1, then the
language Is infinite; otherwise not.

Closure Properties of CFL’s

s CFL’s are closed under union,
concatenation, and Kleene closure.

= Also, under reversal, homomorphisms
and inverse homomorphisms.

s But not under intersection or difference.

Closure of CFL’'s Under Union

= Let L and M be CFL’s with grammars G
and H, respectively.

s Assume G and H have no variables in
common.

= Names of variables do not affect the
language.

= Let S; and S, be the start symbols of G
and H.

Closure Under Union — (2)

= Form a new grammar for L U M by
combining all the symbols and
productions of G and H.

= Then, add a new start symbol S.
= Add productions S -> S, | S..

Closure Under Union — (3)

= In the new grammar, all derivations start
with S.

= The first step replaces S by either S, or
S..
= In the first case, the result must be a

string in L(G) = L, and in the second
case a string in L(H) = M.

Closure of CFL’'s Under
Concatenation

= Let L and M be CFL’s with grammars G
and H, respectively.

s Assume G and H have no variables In
common.

= Let S; and S, be the start symbols of G
and H.

Closure Under Concatenation — (2)

= Form a new grammar for LM by starting

with all symbols and productions of G
and H.

= Add a new start symbol S.
= Add production S -> S, S..

= Every derivation from S results in a
string in L followed by one in M.

Closure Under Star

= Let L have grammar G, with start symbol S;.

= Form a new grammar for L* by introducing to
G a new start symbol S and the productions
S->S5,5|€.

= A rightmost derivation from S generates a
seguence of zero or more S;’'s, each of
which generates some string in L.

Closure of CFL’'s Under
Reversal

= If L Is a CFL with grammar G, form a
grammar for LR by reversing the right
side of every production.

= . Let G have S -> 0S1 | 01.

= The reversal of L(G) has grammar
-> 1S0 | 10.

S

Closure of CFL's Under
Homomorphism

= Let L be a CFL with grammar G.

= Let h be a homomorphism on the
terminal symbols of G.

= Construct a grammar for h(L) by
replacing each terminal symbol a by
h(a).

: Closure Under
Homomorphism

= G has productions S -> 0S1 | 01.

n IS defined by h(0) = ab, h(1) = €.
N(L(G)) has the grammar with

oroductions S -> abs | ab.

Closure of CFL’s Under
Inverse Homomorphism

= Here, grammars don't help us.

= But a PDA construction serves nicely.
m . Let L = L(P) for some PDA P.
= Construct PDA P’ to accept h-1(L).

= P’ simulates P, but keeps, as one
component of a two-component state a
buffer that holds the result of applying h
to one input symbol.

Architecture of P’

Input: 0011
\ h(0)

\

Bulffer Read first remaining
State of P symbol in buffer as
If it were input to P.

Stack
of P

Formal Construction of P’

= States are pairs [qg, b], where:
1. g Is a state of P.

2. b Is a suffix of h(a) for some symbol a.

+ Thus, only a finite number of possible values
for b.

= Stack symbols of P’ are those of P.
= Start state of P’ is [q, ,€].

Construction of P' — (2)

= Input symbols of P" are the symbols to
which h applies.

= Final states of P’ are the states [q, €]
such that g Is a final state of P.

Transitions of P’

1. 9'([q, €], a, X) ={([q, h(a)], X)} for any
iInput symbol a of P’ and any stack
symbol X.

+ When the buffer is empty, P’ can reload it.

2. 0'([q, bw], €, X) contains ([p, w], a) if
0(q, b, X) contains (p, o), where b is
either an input symbol of P or €.

+ Simulate P from the buffer.

Proving Correctness of P’

= We need to show that L(P’) = h'1(L(P)).

m . P makes the transition
([90: €], W, Zo)t*([a, X], €,) If
and only if P makes transition
(do, ¥, Zp) F*(d, €, a), h(w) =yx, and x IS
a suffix of the last symbol of w.

s Proof in both directions is an induction
on the number of moves made.

Nonclosure Under Intersection

= Unlike the regular languages, the class of
CFL’s is not closed under .

= We know that L, = {0"1"2" | n > 1} Is not
a CFL (use the pumping lemma).

= However, L, ={0"1"2"|n>1,i> 1} is.
« CFG:S->AB,A->0A1|01,B->2B| 2.

m SoisLy,={01"2"|n>1,i>1}.

= ButL, =L, N Ls.

Nonclosure Under Difference

= We can prove something more general.

= Any class of languages that is closed
under difference Is closed under
Intersection.

s Proof. LA M=L—-(L—-M).

= Thus, if CFL's were closed under
difference, they would be closed under
Intersection, but they are not.

Intersection with a Regular
Language

s Intersection of two CFL’s need not be
context free.

= But the intersection of a CFL with a
regular language Is always a CFL.

= Proof involves running a DFA in parallel
with a PDA, and noting that the
combination is a PDA.

= PDA’s accept by final state.

DFA and PDA Iin Parallel

DFAM

\

~_ Accept
If both
\lppA -~ accept

e
Input
AN

Looks like the
state of one PDA

X O 9 —~ WU T

Formal Construction

= Let the DFA A have transition function 0,.

= Let the PDA P have transition function op.
= States of combined PDA are [q,p], where
g Is a state of A and p a state of P.

= 0([q,p], a, X) contains ([0,(q,a),r], o) if
On(p, @, X) contains (r, a).
= Note a could be ¢, in which case d,(g,a) = g.

Formal Construction — (2)

= Accepting states of combined PDA are
those [q,p] such that g is an accepting

state of A and p Is an accepting state of
P

s Easy induction: ([dq,Po], W, Zp)H* ([9,p],
g, a) if and only if ©,(q,,w) = g and in P:
(Po» W, Zg)E*(P, €, a).

2 0 0 0

m INSTITUTE OF AERONAUTICAL ENGINEERING
@ i S N

Computer Science and Engineering Department
IV Semester

Theory of Computation
Unit- IV

Unit — IV
Syllabus:

Pushdown automata, definition, model, acceptance of context free
language, acceptance by final state and acceptance by empty stack and
Its equivalence, equivalence of context free language and pushdown
automata, inter conversion;(Proofs not required);Introduction to
deterministic context free languages and deterministic pushdown
automata

Hierarchy of languages

Regular Languages = Finite State Machines, Regular Expression
Context Free Languages =» Context Free Grammar, Push-down Automata

Non-Recursively Enumerable Languages

Recursively Enumerable Language

Recursive Languages

Context-Free Languages

Regular Languages

330

Pushdown Automata (PDA)

= Informally:
= A PDA is an NFA-¢€ with a stack.
= Transitions are modified to accommodate stack operations.

= Questions:
= Whatis a stack?
= How does a stack help?

= A DFA can “‘remember” only a finite amount of information, whereas a PDA can
“‘remember” an infinite amount of (certain types of) information, in one memory-
stack

331

= Example:
{0"1" | O=<n} IS not regular, but

{0n1"| 0<n<k, for some fixed k} is regular, for any fixed k.

s For k=3;
L ={g, 01, 0011, 000111}

1 I
0/1

1
O/l q;)* : : Js J* : 4

332

In a DFA, each state remembers a finite amount of information.

To get {O"1" | OSn} with a DFA would require an infinite number of
states using the preceding technique.

An infinite stack solves the problem for {O"1" | OSn} as follows:
= Read all 0’s and place them on a stack
= Read all 1’'s and match with the corresponding 0’s on the stack

Only need two states to do this in a PDA

Similarly for {0"1™mQ0™*™ | n,m>0}

333

Formal Definition of a PDA

= A pushdown automaton (PDA) is a seven-tuple:

M = (Q1 21 r7 67 q01 201 F)

A finite set of states

A finite input alphabet

A finite stack alphabet

do The initial/starting state, q, is in Q

Z, A starting stack symbol, isin [// need not always remain at the bottom
of stack

F A set of final/accepting states, which is a subset of Q
o) A transition function, where

1 MO

0: Q x (£ U {e}) x I' — finite subsets of Q x ™

334

Consider the various parts of &:

Q x (X U {€}) x I — finite subsets of Q x [*

Q on the LHS means that at each step in a computation, a PDA must
consider its’ current state.

[" on the LHS means that at each step in a computation, a PDA must
consider the symbol on top of its’ stack.

2 U {e} on the LHS means that at each step in a computation, a PDA may or
may not consider the current input symbol, i.e., it may have epsilon
transitions.

“Finite subsets” on the RHS means that at each step in a computation, a
PDA may have several options.

Q on the RHS means that each option specifies a new state.

[* on the RHS means that each option specifies zero or more stack
symbols that will replace the top stack symbol, but in a specific sequence.

335

= Two types of PDA transitions:

0(q, a,) = {(P1,Y1): (P2:Y2)s---» (Prms¥Ym)}

= Current state is g

= Current input symbol is a

= Symbol currently on top of the stack z

= Move to state p, from q

= Replace z with y; on the stack (leftmost symbol on top)
= Move the input head to the next input symbol

336

= Two types of PDA transitions:

0(q, €,) ={(P1,Y1): (P2:Y2)---» (PmsYm)}

= Current state is g

= Current input symbol is not considered

= Symbol currently on top of the stack z

= Move to state p, from q

= Replace z with y; on the stack (leftmost symbol on top)
= No input symbol is read

337

Example: 0"1", n>=0
M= ({qI’ qZ}’ {01 1}1 {L’ #}’ 6’ ql’ #’ g)

0:
(1) 0o(qq, O, #) = {(q,, L#)} [/ stack order: L on top, then # below
(2) 0(q,1,#)=0 /I illegal, string rejected, When will it
happen?

(3) 06(qy, 0, L) ={(a;, LL)}
(4) o(qy, 1, L) ={(ay &)}
5) o(q, 1, L) {(qz, €);
(6) O(q, & #) = {(q,, €)} /lif € read & stack hits bottom, accept
(7) ES(q2 L)=0 /l illegal, string rejected

(8) 0(qy &, #) {(q,, €)} // n=0, accept

Goal: (acceptance)
= Read the entire input string
= Terminate with an empty stack

Informally, a string is accepted if there exists a computation that uses
up all the input and leaves the stack empty.

How many rules should be there in delta?

338

Language: 0"1", n>=0

(2) 6(gq,,1,#)=0 Il'illegal, string rejected, When will it happen?

?i) 5(qq, 0, #) = {(q,, L#)} // stack order: L on top, then # below
(3) 5(q, 0, L) = {(ay, LL)}
(4) 5., 1, L) = {(02)}
(5) 59 1, L) = {(a2)}
(6) 5(q., € #) ={(q., €)} /lif € read & stack hits bottom, accept
7) 5(q,, &, L) =0 /lillegal, string rejected
8) 5(qy € #) = {(a €)} //n=0, accept
0011
(q1, 0011, #) |-
(q1,0 11, L#A) |-
(ql1,11,LL#A) |-
(92, 1, L#) |-
(a2, e, #) |-
(g2, e, e): accept
011
(ql1,0 11, #) |-
(ql,11, L#) |-
(92,1, #) |-
@ . reject
Try 001

339

Example: balanced parentheses,
e.g. in-language: ((())(), or (()(), but not-in-language: ((())

M=({au UC)5 L #1,0, qy, #, ©)

0:

(1) o(ay, (, #) ={(q,, L#)} /I stack order: L-on top-then- # lower

2) 0(qy,),# =9 /I illegal, string rejected

(3) o(as, (L) ={(a., LL)}

(4) o(qu). L) ={(ay, €);

(5) 0(qq, & #) = {(qq, €)} /lif € read & stack hits bottom, accept

(6) 0(qy, & L)=0 /I illegal, string rejected

// What does it mean? When will it

happen?

Goal: (acceptance)
= Read the entire input string
= Terminate with an empty stack

Informally, a string is accepted if there exists a computation that uses
up all the input and leaves the stack empty.

: 2
How many rules should be in delta” 340

Transition Diagram:

Example Computation:

(5), but

good

(. # | L#

[\
e#le ((go)) (L|LL
O

Current Input

(0)
0)

)

). L€

Stack

L#
LL#

L#

Transition
-- initial status

(1)
(3)

(4)
(4)
(5)

- Could have applied rule

it would have done no

341

= Example PDA #1: For the language {x | x = wecw" and w in {0,1}*, but
sigma={0,1,c}}
= Isthis a regular language?

= Note: length |x| is odd
M= ({ql’ q2}’ {0’ 1’ C}’ {#’ Ba G}’ 6’ qli #' Q)

O:
(1)
(2)
3)
(4)
(5)
(6)
(7)
(8)

B Notes:

6(qs, 0, #) = {(a,, B#)} 9) 6(qs, 1, #) = {(a1, G#)}
6(q;, 0, B) = {(a,, BB)} (10) d(a,, 1, B) ={(q,, GB)}
6(as, 0, G) ={(a,, BG)} (11) 3(qy, 1, G) = {(a., GG)}
6(qy, C, #) = {(Qy, #)}

6(qs, €, B) ={(d2, B)}

6(qs, ¢, G) ={(Q, G)}

6(d,, 0, B) ={(qy, €)} (12) 3(qz 1, G) = {(q: &)}
0(q,, € #) ={(qy €)}

= Stack grows leftwards
= Only rule #8 is non-deterministic.
= Rule #8 is used to pop the final stack symbol off at the end of a com;ﬁétan.

= Example Computation:

(1)
(2)
3)
(4)
()
(6)
(7)
(8)

6(qs, 0, #) = {(ay, B#)}
6(d;, 0, B) ={(a,, BB)}
6(as, 0, G) ={(a,, BG)}
6(q1, C, #) = {(Qy, #)}
6(qy, €, B) ={(dz: B)}
6(qs, ¢, G) ={(Qy G)}
6(d,, 0, B) ={(qy, €)}
0(q,, € #) ={(qy, €)}

State

.
.
Q.
sp
sp
sp
sp

Input

01ci0
1c10
cl0
10

&

9) 6(dy, 1, #) = {(a, G#)}
(10) o(q,, 1, B) ={(q;, GB)}
(11) 9(qy, 1, G) = {(a1, GG)}

(12)

6(dz 1, G) ={(qy, &)}

Stack Rule Applied Rules Applicable
(1)
B# (1) (10)
GB# (10) (6)
GB# (6) (12)
B# (12) (7)
(7) (8)
€ (8) -

343

= Example Computation:

(1) 3(qu 0, #) ={(ay, B#)} 9) 6(dy, 1, #) = {(ay, G#)}
(2) 9(qu 0, B) ={(a;, BB)} (10) o(q,, 1, B) ={(q;, GB)}
() 9(q.u, 0, G) ={(a;, BG)} (11) o(qs, 1, G) = {(a1, GG)}
(4) 3(qu ¢, #) ={(ax #)}

(5) 3(qu ¢, B)={(qx B)}

(6) 3(qu ¢ G)={(q G)}

(7) 3(92 0, B) = {(d &)} (12) 3(qz 1, G) = {(dz &)}
8) 3(q & #) ={(d2 &)}

State Input Stack Rule Applied
d; 1cl #

J; cl G# (9)

Az 1 G# (6)

o £ # (12)

sp € € (8)

= Questions:
= Whyisn't 8(q,, 0, G) defined?
= Whyisn't (q,, 1, B) defined?

= TRY: 1llcl 344

= Example PDA #2: For the language {x | x = ww" and w in {0,1}*}
n Note: length |x| is even
M= ({q1’ q2}’ {O’ 1}’ {#! B’ G}’ 6’ qll #' Q)

O:
(1) 0(qy, 0, #) ={(a,, B#)}
(2) 0(qy, 1, #) ={(a,, G#)}

3 6(d:, 0, B) ={(a;, BB), (32, €)} (6) 0(qy, 1, G) ={(qs, GG), (qz &)}
(4) 6(gs, 0, G) ={(a,, BG)} (7)) 3(qz 0, B) = {(q, &)}
(5) 6(qs, 1, B) = {(a,, GB)} (8) 9(qz 1, G) = {(q)}

(9) 3(qy, & #) = {(qz, #)}

(10) 3(qy, €, #) = {(q, €)}

= Notes:
= Rules #3 and #6 are non-deterministic: two options each

= Rules #9 and #10 are used to pop the final stack symbol off at the end of a
computation.

345

= Example Computation:

1)
(@)
3)
(4)
(5)

(9, 0, #) ={(a,, B#)} (6) 6(q1, 1, G) = {(d1, GG), (ay, €)}
0(q;, 1, #) = {(a,, G#)} (7) 6(qz, 0, B) ={(a, €)}
6(q;, 0, B) ={(a,, BB), (A, €)} (8) 6(qz, 1, G) ={(qy, €)}
0(q;, 0, G) ={(a;, BG)} (9) 6(qy, € #) ={(a, €)}
6(q;, 1, B) ={(a;, GB)} (10) 0(qy, €, #) ={(q, €)}
State Input Stack Rule Applied Rules Applicable
0, 000000 # (1), (9)
0, 00000 B# (1) (3), both options
o} 0000 BB# (3) option #1 (3), both options
d; 000 BBB# (3) option #1 (3), both options
d» 00 BB# (3) option #2 (7)
ds 0 B# (7) (7)
ds £ # (7) (10)
4z € 2 (10)

= Questions:

What is rule #10 used for?
What is rule #9 used for?
Why do rules #3 and #6 have options?

Why don’t rules #4 and #5 have similar options? [transition not possible if the previous

input symbol was different]

346

= Negative Example Computation:

(1) (95, 0, #) = {(a, B#)} (6) 6(q1, 1, G) = {(d1, GG), (ay, €)}
(2) 0(qy, 1, #) = {(a., G#)} (7) (92, 0, B) = {(ay, €)}
3 6(q;, 0, B) = {(as, BB), (as, €)} (8) 6(qz 1, G) = {(ay, €)}
4) (95, 0, G) = {(a,, BG)} (9) 0(qy, & #) = {(a, €)}
(5) 6(q;, 1, B) = {(a,, GB)} (10) 0(qy, &, #) = {(q, €)}

State Input Stack Rule Applied

J; 000 #

J; 00 B# (1)

d; 0 BB# (3) option #1

(g2, 0, #) by option 2
o} € BBB# (3) option #1 -crashes, no-rule to apply-

(g2, €, B#) by option 2
-rejects: end of string but not empty stack-

347

= Example Computation:

1) (9, 0, #) ={(a,, B#)} (6) 6(q;, 1, G) ={(q;, GG), (as, €)}
(2) 0(q;, 1, #) = {(a,, G#)} (7) 6(qz, 0, B) ={(a, €)}
3) 6(q;, 0, B) ={(a,, BB), (A, €)} (8) 6(qz, 1, G) ={(qy, €)}
(4) 0(q;, 0, G) ={(a;, BG)} 9) 6(qy, € #) ={(a, €)}
(5) 6(q;, 1, B) ={(a;, GB)} (10) 0(qy, €, #) ={(q, €)}
State Input Stack Rule Applied
o} 010010 #
d; 10010 B# (1) From (1) and (9)
J; 0010 GB# (5)
J; 010 BGB# (4)
d» 10 GB# (3) option #2
ds 0 B# (8)
4z € # (7)
4z € € (10)

s EXxercises:

= 0011001100 /I how many total options the machine (or you!) may need to try before
rejection?

= 011110
= 0111

348

Formal Definitions for PDAS

= LetM=(Q, 2, T, 9, q,, Z, F) be a PDA.

= Definition: An instantaneous description (ID) is a triple (q, w, y), where q is in
Q,wisinX*andyisin ™.
= (is the current state
= W is the unused input
= VY is the current stack contents

= Example: (for PDA #2)

(g, 111, GBR) (q,, 11, GGBR)
(g, 111, GBR) (q,, 11, BR)
(g, 000, GR) (g,, 00, R)

349

LetM =(Q, 2, T, d, q, z,, F) be a PDA.

Definition: Leta be in 2 U {e}, wbe in 2*, zbe in I, and a and 3 both be in ['*.
Then:

(q’ aw, ZG) |_M (p’ W, BG)
if (q, a, z) contains (p, B).

Intuitively, if | and J are instantaneous descriptions, then | [— J means that J
follows from | by one transition.

350

Examples: (PDA #2)

(., 111, GBR) |— (q;, 11, GGBR)
w=11, and

(q,, 111, GBR) |— (q,, 11, BR)
and

(91, 000, GR) |— (a@,, 00, R)

Examples: (PDA #1)

(@1, (0)), L#) |— (a1, 0)).LLH)

(6) option #1, with a=1, z=G, B=GG,
a= BR

(6) option #2, with a=1, z=G, B= ¢, w=11,
a= BR

Is not true, For any a, z, B, w and a

(3)

351

= Definition: [—* is the reflexive and transitive closure of |—.
= | |[—* I for each instantaneous description |
= Ifl|—JandJ|—* Kthenl| |— K

= Intuitively, if | and J are instantaneous descriptions, then | |—* J means that J
follows from | by zero or more transitions.

352

Definition: Let M = (Q, Z, I, 9, q,, Z,, F) be a PDA. The language accepted by
empty stack, denoted L (M), is the set

{w | (gg, W, o) |—" (p, €, €) for some p in Q}

Definition: Let M = (Q, 2, I, 9, q,, 2y, F) be a PDA. The language accepted by
final state, denoted L (M), is the set

{w | (dg, W, z) |—" (p, €, y) forsome pin Fand y in "}

Definition: Let M = (Q, 2, I', 9, q,, Z,, F) be a PDA. The language accepted by
empty stack and final state, denoted L(M), is the set

{w] (0, W, Zg) " (P, &, €) for some p in F}

353

Lemma 1: Let L = Lg(M,) for some PDA M,. Then there exits a PDA M, such
that L = L(M,).

Lemma 2: Let L = L(M,) for some PDA M,. Then there exits a PDA M, such
that L = Lg(M,).

Theorem: Let L be a language. Then there exits a PDA M, such that L = L (M,)
if and only if there exists a PDA M, such that L = Lg(M,).

Corollary: The PDAs that accept by empty stack and the PDAs that accept by
final state define the same class of languages.

Note: Similar lemmas and theorems could be stated for PDAs that accept by
both final state and empty stack.

354

Back to CFG again:
PDA equivalent to CFG

355

Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form
A — aa

Where AisinV, aisin T, and a is in V*, then G is said to be in Greibach Normal
Form (GNF).

Only one non-terminal in front.

Example:

S —aAB | bB
A — aA | a
B—-bB|c Language: (aa*+b)b*c

Theorem: Let L be a CFL. Then L —{¢} is a CFL.

Theorem: Let L be a CFL not containing {€}. Then there exists a GNF grammar
G suchthat L = L(G).

356

Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = Lg(M).

Proof: Assume without loss of generality that € is not in L. The construction can
be modified to include ¢ later.

LetG = (V, T, P, S) be a CFG, and assume without loss of generality that G is in
GNF. Construct M = (Q, 2, T, 6, q, z, @) where:

Q ={q}

2 =T

=V

zZ=3S

o:forallainZand Ain I, &(q, a, A) contains (q, V)

if A —:/ay is in P or rather:

0(q,a,A)={(q,y)|A—ay isinPandyisin ™},

forallainZand Ain [

For a given string x in 2* , M will attempt to simulate a leftmost derivation of x
with G.

357

= Example #1: Consider the following CFG in GNF.

S—aS G isin GNF
S—a L(G) =a*

Construct M as:

[l
~=
o)
—

{a}
{S}

N T MO
I

I
n < -
I

o(q, a, S) ={(a, S), (9, &)}
0(q,¢,S)=0

= Isd complete?

358

Example #2: Consider the following CFG in GNF.

(1) S—>aA
(2) S—>aB
(3) A—>aA
(4) A—aB
start

(5) B—>bB
(6) B—>b
GNF?]

Construct M as:

Gis in GNF
L(G)=a*b* /l This looks ok to me, one, two or more a’s in the

[Can you write a simpler equivalent CFG? Will it be

Q={q}

>2=T={a, b}

=V={S, A B}

z=S

(1) &(q, a, S)={(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB
(2) 6(q,a, A)={(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB
(3) 9(q,a,B)=9

(4) 9(q,b,S)=9

(5) d(q,b,A)=0

(6) o(q, b, B) ={(q, B), (q, €)} From productions #5 and 6, B->bB, B->b
(7) 5(q,¢,8)=9

(8) 0(q,e,A)=0

(9) 6(q,¢,B)=0 Is &6 complete?

359

For a string w in L(G) the PDA M will simulate a leftmost derivation of w.
= IfwisinL(G)then (g, w, zy) |—" (q, €, €)

= If(g,w, zp) [—"(q, &, €) thenwis in L(G)

Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost
derivation has form:

=> tltz- - -tl A1A2- - -Am

/(AN

terminals non-terminals

And each step in the derivation (i.e., each application of a production) adds a terminal and
some non-terminals.

A1 —> 1,40
=> t1t2' . 'ti ti+1 GA]_AZ' : -Am

Each transition of the PDA simulates one derivation step. Thus, the it" step of the PDAS’
computation corresponds to the it step in a corresponding leftmost derivation with the
grammar.

After the it step of the computation of the PDA, t,t,...t,; are the symbols that have already
been read by the PDA and aA,A,...Aare the stack contents. 3 60

For each leftmost derivation of a string generated by the grammar, there is an
equivalent accepting computation of that string by the PDA.

Each sentential form in the leftmost derivation corresponds to an instantaneous
description in the PDA'’s corresponding computation.

For example, the PDA instantaneous description corresponding to the sentential
form:

=>t,t,...t AJA,. A,
would be:

(@, toatin .ty AA,LAL)

361

Example: Using the grammar from example #2:

Gramma:

S =>aA (1) (1) S—>aA
—> agA 3) 5 Asea
) 5 BosbB
=> aaaaB 4) (6) B—>b
=> aaaabB (5)
=> aaaabb (6)

The corresponding computation of the PDA: 8 ggg:

(rule#)/right-side# 8) ggg:

(q, aaaabb, S) |— (q, aaabb, A) (1)/1 (5) 8(a,

— (g, aabb, A) (n 7 5(a
|— (g, abb, A) (2)/1 gg; SEE
|— (a, bb, B) (2)/2

|— (@, b, B) (6)/1

|— (@, & €) (6)/2

= String is read
= Stack is emptied
= Therefore the string is accepted by the PDA

Gisin GNF
L(G) = a'b*

, (a, B)}
, (4, B)}

- A
TN A~
No] e}
> >
— -

QX

q, B), (9, €)}

mEOMoooR R
CRACRRACL AL

QA=

362

Another Example: Using the PDA from example #2:

(g, aabb, S) |— (g, abb, A) (1)/1
|— (q, bb, B) (2)/2
|—(a, b, B) (6)/1
|—(a, & €) (6)/2

The corresponding derivation using the grammar:

S =>aA (1)
=> aaB (4)
=> aabB (5)
=> aabb (6)

363

= Example #3: Consider the following CFG in GNF.

(1) S— aABC

(2) A—>a Gis in GNF
(3) B—=>b

(4) C—>cAB

(5) C—>cC Language?

aab cc” ab

Construct M as:

Q={a}

2=T={a,b,c}

r=V={S,ADB,C}

z=S

(1) &(q, a, S) ={(q, ABC)} S->aABC (9) 0(q,c,S)=9
(2) 6(q’ a, A) by {(q’ 8)} A->a (10) 6(q1 C, A) n g
(3) d(q,a,B)=0 (11) o&(gq,c,B)=0
(4) 8(q,a,C)=d (12) o(q, c, C) ={(q, AB), (q, C))} // C->cAB|cC
(5) 6(q,b,S)=0 (13) o6(q,&,S)=9
(6) 0(q,b,A)=0 (14) 6(q,&,A)=0
(7) d(a, b, B) ={(q, &)} B->b (15) 0d(q,¢,B)=9
(8) 6(q,b,C)=0 (16) 6(q,&t,C)=0

364

Notes:
= Recall that the grammar G was required to be in GNF before the construction could be
applied.
= As aresult, it was assumed at the start that € was not in the context-free language L.
= WhatifeisinL? You need to add € back.

Suppose sisinL:
1) First, let L’ = L — {g}

Fact: If Lisa CFL, then L’ =L — {e} is a CFL.

By an earlier theorem, there is GNF grammar G such that L’ = L(G).
2) Construct a PDA M such that L’ = L¢(M)

How do we modify M to accept €?

Add &(q, €, S) ={(q, €)}? NO!

365

= Counter Example:

Consider L = {g, b, ab, aab, aaab, ...}= € + a*b Then L’ = {b, ab, aab, aaab,
...}=a'%b

= The GNF CFG for L’:
P:
(1) S—>aS
(2) S—>b

= The PDA M Accepting L’:
Q={a}
2=T={a, b}
=V ={S}
z=S

6(q, a, S) ={(q, S)}
6(q, b, S) ={(q, &)}
0(q,€,S)=0

How to add € to L’ now?

366

o(q, a, S) ={(q, S)}
o(q, b, S) ={(q, &)}
0(q,€,S)=9

m Ifd(q, €, S) ={(q, €)} is added then:
L(M) = {g, a, aa, aaa, ..., b, ab, aab, aaab, ...}, wrong!

Itislike, S->aS|b]|c¢
which is wrong!
Correct grammar should be:
(0) S, ->¢|S, with new starting non-terminal S,
(1) S—>aS
(2) S—b

For PDA, add a new Stack-bottom symbol S,, with new transitions:
0(0, €, S;) ={(q, €), (9, S)}, where S was the previous stack-bottom of M

Alternatively, add a new start state q’ with transitions:
o(q’, &, S)={(q’, €). (a, S)}

367

Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = Lg(M).
Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that L(M)
= L(G).

= Can you prove it?

= First step would be to transform an arbitrary PDA to a single state PDA!

Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff
there exists a PDA M such that L = Lg(M).

Corollary: The PDAs define the CFLs.

368

Sample CFG to GNF transformation:
on1n, n>=1

S->0S1|01
GNF:

S -> 0SS, | 0S,
Sl '> 1

Note: in PDA the symbol S will float on top, rather
than stay at the bottom!

Acceptance of string by removing last S, at stack

bottom
369

2 0 0 0

m INSTITUTE OF AERONAUTICAL ENGINEERING
@ i S N

Computer Science and Engineering Department
IV Semester

Theory of Computation
Unit- V

Unit —V
Syllabus:

Turing machine: Turing machine, definition, model, design of Turing
machine, computable functions, recursively enumerable languages,
Church's hypothesis, counter machine, types of Turing machines

(proofs not required), linear bounded automata and context sensitive
language, Chomsky hierarchy of languages.

Turing Machines (TM)

s Generalize the class of CFLs:

Non-Recursively Enumerable Languages

Recursively Enumerable Language

Recursive Languages

Context-Free Languages

Regular Languages

372

Another Part of the Hierarchy:

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Recursive Languages

Context-Sensitive Languages

Context-Free Languages - €

Regular Languages - €

373

Recursively enumerable languages are also known as type O
languages.

Context-sensitive languages are also known as type 1 languages.
Context-free languages are also known as type 2 languages.

Regular languages are also known as type 3 languages.

374

= TMs model the computing capability of a general purpose computer,
which informally can be described as:

= Effective procedure
« Finitely describable
= Well defined, discrete, “mechanical” steps
= Always terminates
= Computable function
= A function computable by an effective procedure

= TMs formalize the above notion.

= Church-Turing Thesis: There is an effective procedure for solving a

problem if and only if there is a TM that halts for all inputs and solves
the problem.

= There are many other computing models, but all are equivalent to or

subsumed by TMs. There is no more powerful machine (Technically cannot
be proved).

= DFAs and PDAs do not model all effective procedures or computable
functions, but only a subset. 375

Deterministic Turing Machine (DTM)

........ B B O 1 1 O O B B

\

Finite
Control

= Two-way, infinite tape, broken into cells, each containing one symbol.
= Two-way, read/write tape head.

= An input string is placed on the tape, padded to the left and right infinitely
with blanks, read/write head is positioned at the left end of input string.

= Finite control, i.e., a program, containing the position of the read head,
current symbol being scanned, and the current state.

= [n one move, depending on the current state and the current symbol
being scanned, the TM 1) changes state, 2) prints a symbol over the cell
being scanned, and 3) moves its’ tape head one cell left or right.

= Many modifications possible, but Church-Turing declares equivalence of

all. 376

Formal Definition of a DTM

A DTM is a seven-tuple:
M = (Q1 21 r1 67 q01 B! F)

A finite set of states

A finite input alphabet, which is a subset of - {B}

A finite tape alphabet, which is a strict superset of 2

A distinguished blank symbol, which is in I

o Theinitial/starting state, g, is in Q

A set of final/accepting states, which is a subset of Q

A next-move function, which is a mapping (i.e., may be undefined) from

o 1T MO

O T QO

QxI—=>QxTI x{L,R}

Intuitively, 6(q,s) specifies the next state, symbol to be written, and the direction
of tape head movement by M after reading symbol s while in state q.

377

Example #1: {w | wis in {0,1}* and w ends with a 0}

0

00

10
10110
Not €

Q ={dp, dy, 92}
r={0, 1, B}

2 ={0, 1}
F={q,}

(o)

0 1 B

>Qo| (90, 0, R) (do, 1, R) (a1, B, L)
d: | (@2 0, R) 3 -
Q| - g -

= (g is the start state and the “scan right” state, until hits B
= (, is the verify O state
= (, is the final state

378

= Example#2: {0"1"|n 21}

0 1 X Y B
>0o | (1, X, R) . - (03, Y, R)os finished -
d, (91, 0, R)ignorex (0, Y, L) - (dy, Y, R)ignore2 - (more 0’s)
d, (qz, 0, L) ignore2 - (qO’ X, R) (qz, Y, L)ignore1 -
ds - - (more 1’s) - (g3, Y, R) ignore (a4, B, R)
A" - . - . -

= Sample Computation: (on 0011), presume state g looks rightward

q,0011BB.. |— Xq,011
|— X0q,11
|— Xq,0Y1
|— g,X0Y1
|— Xq,0Y1
|— XXq,Y1
|— XXYq,1
|— XXa,YY
|— Xg,XYY
|— XXg,YY
|— XXYq,Y B...
|— XXYYq, BB...
|— XXYYBq,

379

Making a TM for {O"1" | n >= 1}

Try n=2 or 3 first.
» g0 is on O, replaces with the character to X, changes state to g1, moves right

* g1 sees next 0, ignores (both 0’s and X’s) and keeps moving right

* g1 hits a 1, replaces it with Y, state to g2, moves left

* g2 sees aY or 0, ignores, continues left

» when g2 sees X, moves right, returns to g0 for looping step 1 through 5

» when finished, g0 sees Y (no more 0’s), changes to pre-final state g3

» g3 scans over all Y’s to ensure there is no extra 1 at the end (to crash on seeing
any O or 1)

* when g3 sees B, all 0’s matched 1's, done, changes to final 8(’[)31’[1%34

» blank line for final state g4 do |— Xq,011

|— X0g,11
Try n=1 next. |— Xqg,0Y1

Make sure unbalanced 0’s and 1’s, or mixture of 0-1’s, [— Xqe0Y1

“crashes” in a state not g4, as it should be [— XXa, Y1
|— XXYq,1

|— XXa,YY
|— Xg,XYY
|— XXg,YY
|— XXYq5Y B...
|— XXYYq, BB...

I— @%63%

Same Example #2: {0"1" | n =1}

0 1 X Y B
do | (A1, X, R) 3 - (ds, Y, R) 5
d: | (@, 0,R) (a2, Y, L) - (41, Y, R) 5
d | (@ 0, L) 3 (do, X, R) (2 Y, L) 5
Qs | - N - (0, Y, R) (ds: B, R)
Qs | - B - - ;

Logic: cross 0’s with X’s, scan right to look for corresponding 1, on finding it cross it with Y,
and scan left to find next leftmost 0, keep iterating until no more Q’s, then scan right looking
for B.

= The TM matches up O's and 1’s

= (, is the “scan right” state, looking for 1
= (Q,Iis the “scan left” state, looking for X
= (3 is “scan right”, looking for B

= (,is the final state

Can you extend the machine to include n=0?
How does the input-tape look like for string epsilon?

Other Examples:

000111 00
11 001
011

381

= Roger Ballard’s TM for Example #2, without any extra Tape Symbol: {0"1" |

n = 0}
0 1 B
do| (g1, B, R) (ds, B, R)
d: | (@, 0,R) (0, 1, R) (a2, B, L)
qz | - (0s, B, L) -
ds | (@3 0, L) (0, 1, L) (do, B, R)
ds - B -

Logic: Keep deleting 0 and corresponding 1 from extreme ends, until none left.
= (deletes a leftmost O and let g, scan through end of string, g, accepts on epsilon
= (, scans over the string and makes ¢, expecting 1 on the left
= (,deletes 1 and let g; “scan left” looking for the start of current string
= (3 lets q, start the next iteration
= Q. Is the final state

Any bug?

Try on:
000111 00
11 001
011

382

= And his example of a correct TM for the language that goes on infinite loop outside language: {0"1"

| n =0}
U 1 b
do| (g1, B, R) (ds, 1, L) (ds, B, R)
d: | (@, 0, R) (0, 1, R) (a2, B, L)
qz | - (0s, B, L) -
ds | (@3 0, L) (05, 1, L) (do, B, R)
ds ' - 3 -

Logic: This machine still works correctly for all strings in the language, but
start a string with 1 (not in the language),
and it loops on B1 for ever.

383

= Exercises: Construct a DTM for each of the following.

= {w]|wisin{0,1} and w ends in 00}

= {w|wisin{0,1}* and w contains at least two 0’s}

= {w|wisin{0,1}* and w contains at least one 0 and one 1}
= Just about anything else (simple) you can think of

384

Formal Definitions for DTMs

= LetM=(Q, 2, T,9,q, B,F)beaTM.
= Definition: An instantaneous description (ID) is a triple a,qa,, where:

= (, the current state, is in Q
= 0,0, isin [, and is the current tape contents up to the rightmost non-blank symbol, or
the symbol to the left of the tape head, whichever is rightmost

= The tape head is currently scanning the first symbol of a,
= At the start of a computation a,= €
= If a,= € then a blank is being scanned

= Example: (for TM #1)

q,0011 Xg,011 XOg,11 Xg,0Y1 g,X0Y1
Xg0Y1l XXg,Y1 XXYg,l XXq,YY X0, XYY

XXqoYY XXYqY XXYYg, XXYYBq,

385

Suppose the following is the current ID of a DTM
X1 X5 . Xi1 QXiXisq - - - X
Case 1) 6(q, x) = (p, ¥, L)
(@) if i = 1 then gx;X,... X1 XXi41---Xp |— PBYX5.. . X1 XiXit1- - X,
(b) else X;X5... X 1OXXisq - - Xy |— X1 X5 XioPXi1 YXisq - - - X
If any suffix of x,_,yXi,;...X, iS blank then it is deleted.
Case 2) 3(q, x) = (p. ¥» R)
X1 X« Xi 1 OXiXipq - Xy |— X Xou o Xi 1 YPXisq--- Xy,
If i>n then the ID increases in length by 1 symbol

X1 X5 .. X0 [— X1 X5...X,YP

386

Definition: Let M = (Q, Z, T, 9, q,, B, F) be a TM, and let w be a string in Z*.
Then w is accepted by M iff

dowW |—" a,paj,
wherepisin Fand o, and a,are in[™*

Definition: Let M = (Q, 2, T, 9, q,, B, F) be a TM. The language accepted by M,
denoted L(M), is the set

{w]|wisin 2* and w is accepted by M}

Notes:

= Incontrast to FA and PDAs, if a TM simply passes through a final state then
the string is accepted.

= Given the above definition, no final state of a TM need to have any
transitions. Henceforth, this is our assumption.

= If xis NOT in L(M) then M may enter an infinite loop, or halt in a non-
final state.

= Some TMs halt on ALL inputs, while others may not. In either case the
language defined by TM is still well defined.

387

Definition: Let L be a language. Then L is recursively enumerable if there
exists a TM M such that L = L(M).

= IfLisr.e.then L =L(M) for some TM M, and
« IfxisinL then M halts in a final (accepting) state.

=« IfxisnotinL then M may halt in a non-final (non-accepting) state or no transition is available,
or loop forever.

Definition: Let L be a language. Then L is recursive if there existsa TM M
such that L = L(M) and M halts on all inputs.

= IfLis recursive then L = L(M) for some TM M, and
« IfxisinL then M halts in a final (accepting) state.

« IfxisnotinL then M halts in a non-final (non-accepting) state or no transition is available
(does not go to infinite loop).

Notes:

= The set of all recursive languages is a subset of the set of all recursively enumerable
languages

= Terminology is easy to confuse: A TM is not recursive or recursively enumerable,
rather a language is recursive or recursively enumerable.

Recall the Hierarchy:

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Recursive Languages

Context-Sensitive Languages

Context-Free Languages - €

Regular Languages - €

389

Observation: Let L be an r.e. language. Then there is an infinite list My, My, ...
of TMs such that L = L(M,).

Question: Let L be a recursive language, and M,, M,, ... a list of all TMs such
that L = L(M,), and choose any i>=0. Does M; always halt?

Answer: Maybe, maybe not, but at least one in the list does.

Question: Let L be a recursive enumerable language, and M,, My, ... a list of
all TMs such that L = L(M,), and choose any i>=0. Does M, always halt?

Answer: Maybe, maybe not. Depending on L, none might halt or some may
halt.

= |If Lis also recursive then L is recursively enumerable, recursive is subset of r.e.

Question: Let L be ar.e. language that is not recursive (L isinr.e. —r), and My,
M,, ... alist of all TMs such that L = L(M,), and choose any i>=0. Does M; always
halt?

Answer: No! If it did, then L would not be in r.e. —r, it would be rérgﬁive.

L is Recursively enumerable:
TM exist: My, My, ...
They accept string in L, and do not accept any string outside L

L is Recursive:
at least one TM halts on L and on) *-L, others may or may not

L is Recursively enumerable but not Recursive:
TM exist: My, My, ...
but none halts on all x in) *L
M, goes on infinite loop on a string p in) *-L, while M; on qin) *L
However, each correct TM accepts each string in L, and none in) *-L

L is not R.E;
no TM exists

391

m LetMbeaTM.

= Question: Is L(M) r.e.?
= Answer: Yes! By definition it is!

= Question: Is L(M) recursive?
= Answer: Don’t know, we don’t have enough information.

= Question:IsL(M)inr.e —r?
= Answer: Don’t know, we don’t have enough information.

392

= Let MbeaTM that halts on all inputs:

= Question: Is L(M) recursively enumerable?
= Answer: Yes! By definition it is!

= Question: Is L(M) recursive?
= Answer: Yes! By definition it is!

= Question:IsL(M)inr.e —r?
= Answer: No! It can’t be. Since M always halts, L(M) is recursive.

393

m LetMbeaTM.

As noted previously, L(M) is recursively enumerable, but may or may not be
recursive.

= Question: Suppose, we know L(M) is recursive. Does that mean M always
halts?

= Answer: Not necessarily. However, some TM M’ must exist such that L(M’)
= L(M) and M’ always halts.

= Question: Suppose that L(M) is in r.e. —r. Does M always halt?

= Answer: No! If it did then L(M) would be recursive and therefore notinr.e. —
r

394

= LetMbeaTM, and suppose that M loops forever on some string
X.

= Question: Is L(M) recursively enumerable?
= Answer: Yes! By definition it is. But, obviously x is not in L(M).

= Question: Is L(M) recursive?

= Answer: Don’t know. Although M doesn’t always halt, some other TM M’
may exist such that L(M’) = L(M) and M’ always halts.

= Question: IsL(M) inr.e. —r?
= Answer: Don’t know.

May be another M’ will halt on x, and on all strings! May be no TM for this
L(M) does halt on all strings! We just do not know!

395

Modifications of the Basic TM Model

= Other (Extended) TM Models:
= One-way infinite tapes
= Multiple tapes and tape heads
= Non-Deterministic TMs
= Multi-Dimensional TMs (n-dimensional tape)
= Multi-Heads
= Multiple tracks

All of these extensions are equivalent to the basic DTM model

396

Closure Properties for Recursive and
Recursively Enumerable Languages

= TMs model General Purpose (GP) Computers:
= IfaTM cando it, so can a GP computer
= Ifa GP computer can do it, then socana TM

If you want to know if a TM can do X, then some equivalent question
are:

= Can a general purpose computer do X?
= Can a C/C++/Javaletc. program be written to do X?

For example, is a language L recursive?
= Can a C/C++/Javal/etc. program be written that always halts and accepts L?

397

TM Block Diagrams:

If L is a recursive language, then a TM M that accepts L and always halts
can be pictorially represented by a “chip” or “box” that has one input and
two outputs.

——> yes

—— > NnoO

If L is a recursively enumerable language, then a TM M that accepts L can
be pictorially represented by a “box” that has one output.

———> yes

Conceivably, M could be provided with an output for “no,” but this output
cannot be counted on. Consequently, we simply ignore it. 308

Theorem 1: The recursive languages are closed with respect to
complementation, i.e., if L is a recursiyedlanguage, then so is

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’
as follows:

yes

> — > yes
w——>| M no ‘><1—’
no
Note That:

= M’ accepts iff M does not
= M’ always halts since M always halts

From this it follows that the complement of L is recursive. []

Question: How is the construction achieved? Do we simply complement the
final states in the TM? No! A string in L could end up in the complement of L.
= Suppose (s is an accepting state in M, but g, is not.

= If we simply complemented the final and non-final states, then q, would be an
accepting state in M’ but g5 would not.

= Since q, is an accepting state, by definition all strings are accepted by M’

399

Theorem 2: The recursive languages are closed with respect to union,
l.e.,if Ly and L, are recursive languages,lthea $9is/ L,

Proof: Let M; and M, be TMs such that L, = L(M,) and L, = L(M,) and
M,; and M, always halts. Construct TM M’ as follows:

M’ yes
e start >
M, | M, no
no -
Note That:

= L(M)=L(M) vL(M,)
= L(M)is a subset of L(M;) U L(M,)
= L(Mp) UL(M,) is a subset of L(M)
= M’ always halts since M, and M,, always halt

It follows from thisthat L, =L, U L, IS recursive. [

400

= Theorem 3: The recursive enumerable languages are closed with respect to
union, i.e., if L, and L, are recursively enumerable languages, thensois |, = L, L,

= Proof: Let M, and M, be TMs such that L, = L(M,) and L, = L(M,). Construct M’

as follows:
M’ yes yes
> |\/|1
w
yes
> |\/|2
= Note That:

= L(M)=L(M,)) UL(M,)
« L(M’)is asubsetof L(M,) UL(M,)
« L(M;) UL(M,) is a subset of L(M’)
= M’ halts and accepts iff M; or M, halts and accepts

It follows from this that L.=L, UL, Is recursively enumerable. [

= Question: How do you run two TMs in parallel?

401

= Suppose, M; and M, had outputs for “no” in the previous construction,
and these were transferred to the “no” output for M’

yes

v

A\ 4
<
[y

A 4
<
N

= Question: What would happen if w is in L(M,) but not in L(M,)?

= Answer: You could get two outputs — one “yes” and one “no.”

= Atleast M, will halt and answer accept, M, may or may not halt.
= As before, for the sake of convenience the “no” output will be ignored.

402

= Theorem 4: IfLand are both recursively enumerable then L (and thdrefore
) IS recursive.

= Proof: Let M, and M, be TMs such that L = L(M,) ahd = L(M,). Construct M’

as follows:
M’ yes | yes
> |\/|1
w
yes
> M, no
= Note That:
= L(M)=L

= L(M’)is asubsetof L
=« Lisasubsetof L(M)

= MisTMforL
= M’ always halts since either M, or M, halts for any given string
= M’ shows that L is recursive

It follows from this that L (and therefore its’ complement) is recursive.
So, L is also recursive (we proved it before). [

403

= Corollary of Thm 4: Let L be a subset of 2*. Then one of the following
must be true:

= Both L and E_ are recursive.

= OneofL andL is recursively enumerable but not recursive, and the other
IS not recursively enumerable, or

= Neither L norL is recursively enumerable

= In other words, it is impossible to have both L and | r.e. but not recursive

404

In terms of the hierarchy: (possibility #1)

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

14|

Recursive Languages

405

= In terms of the hierarchy: (possibility #2)

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Recursive Languages

406

= In terms of the hierarchy: (possibility #3)

Non-Recursively Enumerable Languages

—|

Recursively Enumerable Languages

Recursive Languages

407

= In terms of the hierarchy: (Impossibility #1)

Non-Recursively Enumerable Languages

L L

Recursively Enumerable Languages

Recursive Languages

408

In terms of the hierarchy: (Impossibility #2)

Non-Recursively Enumerable Languages

L
Recursively Enumerable Languages

L

Recursive Languages

409

In terms of the hierarchy: (Impossibility #3)

Non-Recursively Enumerable Languages

—|

Recursively Enumerable Languages

L

Recursive Languages

410

Note: This gives/identifies three approaches to show that a language is
not recursive.
= Show that the language’s complement is not recursive, in one of the two
ways:
= Show that the language’s complement is recursively enumerable but not recursive
= Show that the language’s complement is not even recursively enumerable

411

The Halting Problem - Background

= Definition: A decision problem is a problem having a yes/no answer (that one
presumably wants to solve with a computer). Typically, there is a list of
parameters on which the problem is based.
= Given a list of numbers, is that list sorted?
= Given a number x, is x even?
= Given a C program, does that C program contain any syntax errors?
= Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that
interesting. However, from a theoretical perspective they are for the following
two reasons:

= Decision problems are more convenient/easier to work with when proving complexity

results.
= Non-decision counter-parts can always be created & are typically at least as difficult to
solve.
= Notes:

= The following terms and phrases are analogous:

Algorithm - A halting TM program
Decision Problem - Alanguage (will show shortly)
(un)Decidable - (non)Recursive 412

Statement of the Halting Problem

= Practical Form: (P1)
Input: Program P and input I.
Question: Does P terminate on input I?

= Theoretical Form: (P2)
Input: Turing machine M with input alphabet 2 and string w in 2*.
Question: Does M halt on w?

= A Related Problem We Will Consider First: (P3)
Input: Turing machine M with input alphabet 2 and one final state, and string w
in 2*.
Question: Is w in L(M)?

= Analogy:
Input: DFA M with input alphabet 2 and string w in 2*.
Question: Is w in L(M)?
Is this problem (regular language) decidable? Yes! DFA always accepts or
rejects.

413

= Over-All Approach:

= We will show that a language L, is not recursively enumerable
= From this it will follow that IS not recursive

= Using this we will show that a language L is not recursive

= From this it will follow that the halting problem is undecidable.

L,
= As We Will See: d
= P3will correspond to the language L,

= Proving P3 (un)decidable is equivalent to proving L, (non)recursive

414

Converting the Problem to a Language

= LetM=(Q, %, T,9,q,, B, {g,}) be a TM, where

Q={d;, 95, --- , 9.}, order the states from 1 through n
2 ={x;, x;} ={0, 1}
[={x;, x5, X3} = {0, 1, B}

= Encode each transition:

0(a;, X)) = (Ax » X, dpy) where g;and g, are in ordered Q
X;and x are in 2,
anddisin{L, R} ={d,, d,}
as:

0'10/110%10'10™ where the number of 0’s indicate the corresponding id, and single
1 acts as a barrier

= The TM M can then be encoded as:
111code;11code,11code;11 ... 11code, 111

where each code; is one transitions’ encoding, and 11’s are barriers between transitions
from the table row-major. Let this encoding of M be denoted by <M>.

Less Formally:

= Every state, tape symbol, and movement symbol is encoded as a sequence of 0’s:

ql! 0
d,, 00
ds 000
0 0

1 00
B 000
L 0

R 00

= Note that 1’s are not used to represent the above, since 1 is used as a special separator symbol.

= Example:
6(qZ’ 1) = (q3 ' 0’ R)
Is encoded as:

00100100010100

416

0 1 B
d: | (01, 0, R) (A, 1, R) (d2 B, L)
d, | (g3 0, R) 3 -
s | - i -

What is the L(M)?

Coding for the above table:

1110101010100110100101001001101000100100010110010100010100111
Are the followings correct encoding of a TM?
01100001110001

111111

417

= Definition:
L, ={x| xisin {0, 1}* and x encodes a TM}

= Question: Is L, recursive?

= Answer: Yes. [Check only for format, i.e. the order and number of O's and
1’s, syntax checking]

= Question: Is L, decidable:
= Answer: Yes (same question).

418

The Universal Language

= Define the language L, as follows:
L, = {x|xisin {0, 1}* and x = <M,w> where M is a TM encoding and w is in
L(M)}
= Letxbein{0, 1}*. Then either:
1. xdoesn’t have a TM prefix, in which case x is not in L,

>. X has a TM prefix, i.e., x = <M,w> and either:
» Wis notin L(M), in which case x is not in L,

» W isin L(M), in which case xisinL,

419

- Recall:

0 1 B
d; | (91, 0, R) (a1, R) (02 B, L)
d, | (g3 0, R)) -

ds | - : :

= Which of the following are in L,?
1110101010100110100101001001101000100100010110010100010100111

11101010101001101001010010011010001001000101100101000101001110112
10

1110101010100110100101001001101000100100010110010100010100111001
10111

01100001110001

111111

420

= CompareP3andL,:

(P3):

Input: Turing machine M with input alphabet 2 and one final state, and string w
in 2*.

Question: Is w in L(M)?

L, = {x|xisin {0, 1}* and x = <M,w> where M is a TM encoding and w is in
L(M)}

= Universal TM (UTM) is the machine for L,

= presumingitisr.e.! Can you write a program to accept strings in Lu?
= Notes:
= L,is P3 expressed as a language

= Asking if L, is recursive is the same as asking if P3 is decidable.

= Can you write a Halting program for accept/reject of strings in Sigma* ?

= We will show that L, is not recursive, and from this it will follow that P3 is
un-decidable.

= From this we can further show that the Halting problem is un-decidable.
=> A general concept: a decision problem = a formal language

421

Define another language L, as follows:
[Ly_bar = {self accepting TM encodings}, everything elseis L]

Ly = {x | xisin {0, 1}* and (a) either x is not a TM,
(b) or xisa TM, call it M, and x is not in L(M)} (1)

= Note, there is only one string x

= And, the question really is the complement of “does a TM accept its own encoding?” (Ld-bar’s
complement)

Let x be in {0, 1}*. Then either:

1. Xisnota TM, in which case x is in L,

. xisaTM, callit M, and either:
» X is notin L(M), in which case xisin L4
» XIS in L(M), in which case x is not in L

422

= Recall:

0 1 B
d: | (01, 0, R) (A, 1, R) (d2 B, L)
d. | (93 0, R) 3 -
s | - i -

= Which of the following are in L ?

11101010101001101001010010011010001000100010110010100010100111

01100001110001

Change above machine to accept strings ending with 1: the encoding will not be in
I—d

423

Lemma: L, is not recursively enumerable. [No TM for L4!!]

Proof: (by contradiction)
Suppose that L is recursively enumerable. In other words, there exists a TM M such that:

Ly = L(M) (2)
Now suppose that w is a string encoding of M. (3)
Case l)wisin Ly (4)

By definition of L given in (1), either w does not encode a TM, or w does encode a TM, call it M, and w is
not in L(M). But we know that w encodes a TM (3: that’s where it came from). Therefore:

w is not in L(M) (5)
But then (2) and (5) imply that w is not in L, contradicting (4).
Case 2) wis notin L, (6)
By definition of L, givenin (1), w encodes a TM, call it M, and:

w is in L(M) (7)
But then (2) and (7) imply that w is in L4 contradicting (6).

Since both case 1) and case 2) lead to a contradiction, no TM M can exist such that L, = L(M). Therefore L,
is not recursively enumerable. [J 424

Note:

={x | xisin {0, 1}*, x encodes a TM, call it M, and x is in L(M)}

Corollary: IS not recursive.

Plgof: If were recursive, then L, would be recursive, and therefore recursively
enumerable, a contradiction. [

425

Theorem: L, is not recursive.

Proof: (by contradiction)
Suppose that L, is recursive. Recall that:

L,={x|xisin {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

Suppose that L, = L(M’) where M’ is a TM that always halts. Construct an algorithm (i.e., a
TM that always glts) for as follows:

M’’: for Ly-bar
<M,w>

Ve (ie., <ww>) Yes N Yes
IswaTM? ﬁtM b thedT e il
that w encodes. UTMforL,| No No

L, No /

Suppose that M’ always halts and L, = L(M’). It follows that:
= M” always halts
= L(M’)= L,

\ 4
v

A 4

v

L_d would therefore be recursive, a contradiction. [

426

L _u is recursively enumerable
(you may ignore this slide, for now)

Input the string
Decode the TM prefix, if it doesn't have one then the string is not in Lu
Otherwise, run/simulate the encoded TM on the suffix
If it terminates and accepts then the original string is in Lu.

If a given string is in Lu, then the above algorithm will correctly determine that, halt and say yes.

If the given string is not in Lu, then there are three cases:

1) the string doesn't have a TM as a prefix. In this case the above algo correctly detects this fact, and
reports the string is not in Lu.

2) the string has a TM prefix, and the TM halts and rejects on the suffix. In this case the above algo
correctly reports the string is not in Lu.

3) the string has a TM prefix, but it goes into an infinite loop on the suffix. In this case the above algo
also goes into an infinite loop, but that’s ok since the string as a whole is not in Lu anyway, and we are
just trying to show there exists a TM for only accepting strings in Lu.

From this proof note that if the prefix TM is a DFA or PDA, then our machine will also halt in the 3 case
above, no matter what the suffix is.

-- due to Dr. Bernhard (edited by me)

427

= The over-all logic of the proof is as follows:

. If L, were recursive, then so will be
2 IS not recursive, because L, is not r.e.

s Itfollows that L, is not recursive.
I—d
The second point was established by the corollary.
The fitst point was established by the theorem on a preceding slide.

This type of proof is commonly referred to as a reduction. Specifically, the problem of
recognizing was reduced to the problem of recognizing L,

I_
o

428

= Define another language L;:

L, = {x| xisin {0, 1}* and x = <M,w> where M is a TM encoding and M halts on
W}

Note that L, is P2 expressed as a language:
(P2):

Input: Turing machine M with input alphabet 2 and string w in 2*.
Question: Does M halt on w?

429

Theorem: L;, is not recursive.

Proof: (by contradiction)
Suppose that L, is recursive. Recall that:

L, = {x | xisin {0, 1}* and x = <M,w> where M is a TM encoding and M halts on w}
and

L,={x|xisin {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

Suppose that L, = L(M’) where M’ is a TM that always halts. Construct an algorithm (i.e., a
TM that always halts) for L, as follows:

M” : UTM for L,

Yes start Yes Yes

<M,w> N , . " |Simulate M g
»| M forlL,: onw No No

does M halt on w2 No > >

Suppose that M’ always halts and L,, = L(M’). It follows that:
= M’ always halts
= L(M?) =1L,

L, would therefore be recursive, a contradiction. []

430

= The over-all logic of the proof is as follows:

. IfL;, is recursive, then sois L,

2. L, Is not recursive

s. It follows that L, is not recursive.

The second point was established previously.

The first point was established by the theorem on the preceding slide.

This proof is also a reduction. Specifically, the problem of recognizing L, was reduced
to the problem of recognizing L;..

[L, and L, both are recursively enumerable: for proof see Dr. Shoaff!]

431

Examples of non-halting program:

http://cs.fit.edu/~ryan/tju/russell.c
http://cs.fit.edu/~ryan/tju/russell.scm
http://cs.fit.edu/~ryan/tju/russell.py

432

https://ex.fit.edu/owa/redir.aspx?REF=nf4ayQ_HIZ9wMJROFON1EyLzfOoI-O1XK1IlKfzU7yeEJSqPV2XTCAFodHRwOi8vY3MuZml0LmVkdS9-cnlhbi90anUvcnVzc2VsbC5j
https://ex.fit.edu/owa/redir.aspx?REF=nf4ayQ_HIZ9wMJROFON1EyLzfOoI-O1XK1IlKfzU7yeEJSqPV2XTCAFodHRwOi8vY3MuZml0LmVkdS9-cnlhbi90anUvcnVzc2VsbC5j

Define another language L :

L, ={X | xisin {0, 1}, x encodes a TM M, and M does not contain an infinite loop}
Or equivalently:

L, ={x|xisin {0, 1}*, x encodes a TM M, and there exists no string w in {0, 1}*
such that M does not terminate on w}

Note that:

Lq ={x | xisin {0, 1}*, and either x does not encode a TM, or it does encode a TM, call
it M,

and there exists a string w in {0, 1}* such that M does not terminate on w}
Note that the above languages correspond to the following problem:
(PO):
Input: Program P.

Question: Does P contain an infinite loop?

Using the techniques discussed, what can we prove about L, or its’ complement?

433

* More examples of non-recursive languages:
L. ={X|xisaTM M and L(M) is not empty} is r.e. but not recursive.
L. ={x|xisaTM M and L(M) is empty} is not r.e.
L. ={x|xisaTM M and L(M) is recursive} is not r.e.

Note that L, is not the same as L, = {x | xis a TM M that always halts}
but L, isin L,

L., ={x|xisaTM M and L(M) is not recursive} is not r.e.

434

Ignorethls slide

Lemma: L, is not recursively enumerable: [No TM for L4

. Proof: (by contradiction)
Suppose that L, were recursively enumerable. In other words, that there existed a TM M such that:

Ly = L(M) (2)
Now suppose that w; is a string encoding of M. (3)
Case 1) w;isin L4 (4)

By definition of L, given in (1), either w; does not encode a TM, or w; does encode a TM, call it M, and w; is
notin L(M). But we know that w; encodes a TM (3: that's where it came from). Therefore:

w; is not in L(M) (5)
But then (2) and (5) imply that w; is not in L4 contradicting (4).
Case 2) w;is notin L4 (6)
By definition of L, givenin (1), w; encodes a TM, call it M, and:

w, is in L(M) (7)
But then (2) and (7) imply that w; is in L4 contradicting (6).

Since both case 1) and case 2) lead to a contradiction, no TM M can exist such that L, = L(M). Therefore L,
is not recursively enumerable. [J 435

EEET T (findPair2, (", R)
(f|ndPa|r2, "(", R)
femovePair (CEINEIN
(retrieve, "(", R)
(returnOpen, "(", L)
(writeOpen, "(", L)
(WriteCIosed, "(", L)
SRS (writeBlank (", L)
(removePair, ", R)
(removePair, ", R)
(removePair, B, R)
popack |
(seekFront “(", L)

(removePair, ")", L)
(fetch,)", R)
(retreive,)", R)

(returnClosed, ")", L)

(writeOpen, ")", L)
(writeClosed, ")", L)
(writeBlank,)", L)
(removePair, "(", R)
(removePair, ")", R)
(removePair, B, R)

(seekFront,)", L)

(final, B, R)
(goBack, B, L)
(retreive, B, R)
(returnBlank, B, L)
(writeOpen, B, L)
(writeClosed, B, L)
(writeBlank, B, L)

(backAgain, B, L)
(seekFront, B, L)
(findPair, B, R)

436

On 111 111 as a TM encoding

<Quote> It was ambiguous, in my opinion, based on the definition in the Hopcroft book,
I.e., the definition in the Hopcroft book was not clear/precise enought to

account this special case. | don't have the book in front of me right now, but I think this is
the example | used in class: Consider the TM that has exactly one state, but no
transitions. Perfectly valid TM, and it would give us this encoding (111111). In that case
the encoded machine would accept sigma* because the highest numbered state would be
g0, the only state, and that would be the final state under the Hopcroft encoding. Now
consider the TM that has exactly two states, but no transitions. Also a perfectly valid TM,
and it would give us the same encoding. In that case the encoded machine would not
accept anything because the final state is q1 (highest numbered state), and there is no
way to get to it. | used it only as a way to raise that issue in class, i.e., the the Hopcroft
definition is a bit ambiguous in this case.

One way to resolve the ambiguity is to require the encoding to specifically specify the
final state (at the end or something). In that case, 111111 isn't even a valid TM, since it
doesn't specify the final state. Another related question is, does a TM even have to have
any states at all to be a valid TM? The encoding would have to be able to isolate that as a
unique string also. <End Quote>

Phil Bernhard

437

