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Unit – I

Syllabus:

Fundamentals: Alphabet, strings, language, operations;

Introduction to finite automata: The central concepts of

automata theory, deterministic finite automata,

nondeterministic finite automata, an application of finite

automata, finite automata with epsilon transitions.



Fundamentals 



What is Automata Theory?

 Study of abstract computing devices, or 
“machines”

 Automaton = an abstract computing device
 Note: A ―device‖ need not even be a physical 

hardware!

 A fundamental question in computer science: 
 Find out what different models of machines can do 

and cannot do

 The theory of computation

 Computability vs. Complexity



Theory of Computation: A 

Historical Perspective

1930s • Alan Turing studies Turing machines

• Decidability

• Halting problem

1940-1950s • ―Finite automata‖ machines studied

• Noam Chomsky proposes the 

―Chomsky Hierarchy‖ for formal 

languages

1969 Cook introduces ―intractable‖ problems

or ―NP-Hard‖ problems

1970- Modern computer science: compilers, 

computational & complexity theory evolve



Languages & Grammars

Or ―words‖

Image source: Nowak et al. Nature, vol 417, 2002 

 Languages: ―A language is a 
collection of sentences of 
finite length all constructed 
from a finite alphabet of 
symbols‖

 Grammars: ―A grammar can 
be regarded as a device that 
enumerates the sentences of 
a language‖ - nothing more, 
nothing less

 N. Chomsky, Information 
and Control, Vol 2, 1959



The Chomsky Hierachy

Regular

(DFA)
Context-

free

(PDA)

Context-

sensitive 

(LBA)

Recursively-

enumerable 

(TM)

• A containment hierarchy of classes of formal languages



Alphabet

An alphabet is a finite, non-empty set of 
symbols

 We use the symbol ∑ (sigma) to denote an 
alphabet

 Examples:
 Binary: ∑ = {0,1} 

 All lower case letters: ∑ = {a,b,c,..z}

 Alphanumeric: ∑ = {a-z, A-Z, 0-9}

 DNA molecule letters: ∑ = {a,c,g,t}

 …



Strings

A string or word is a finite sequence of symbols 
chosen from ∑

 Empty string is  (or “epsilon”)

 Length of a string w, denoted by ―|w|‖, is 
equal to the number of (non- ) characters in the 
string
 E.g., x = 010100  |x| = 6

 x = 01  0  1  00  |x| = ?

 xy = concatentation of two strings x and y 



Powers of an alphabet 

Let ∑ be an alphabet.

 ∑k = the set of all strings of length k

 ∑* = ∑0 U ∑1 U ∑2 U …

 ∑+ = ∑1 U ∑2 U ∑3 U …



 A language is a set of strings

 String: A sequence of letters

 Examples: ―cat‖, ―dog‖, ―house‖,

…

 Defined over an alphabet:

Languages

 zcba ,,,, 



L is a said to be a language over alphabet ∑, only if L  ∑*

 this is because ∑* is the set of all strings (of all possible 
length including 0) over the given alphabet ∑

Examples:

1. Let L be the language of all strings consisting of n 0’s 
followed by n 1’s: 

L = {, 01, 0011, 000111,…}

2. Let L be the language of all strings of with equal number of 
0’s and 1’s: 

L = {, 01, 10, 0011, 1100, 0101, 1010, 1001,…}

Definition: Ø denotes the Empty language

 Let L = {}; Is L=Ø? NO

Canonical ordering of strings in the language



String Operations

m

n

bbbv

aaaw





21

21





bbbaaa

abba

mn bbbaaawv  2121

Concatenation

abbabbbaaa



12aaaw n
R 

naaaw 21 ababaaabbb

Reverse

bbbaaababa



String Length

 Length:

 Examples:

naaaw 21

nw 

1

2

4







a

aa

abba



Recursive Definition of Length

 For any letter:

 For any string      :

 Example:

1a

1 wwawa

4

1111

111

11

1











a

ab

abbabba



Length of Concatenation

 Example: 

vuuv 

853

8

5,

3,









vuuv

aababaabuv

vabaabv

uaabu



INTRODUCTION TO FINITE 

AUTOMATA



Deterministic Finite State Automata (DFA)

……..

 One-way, infinite tape, broken into cells

 One-way, read-only tape head.

 Finite control, i.e., 
 finite number of states, and 

 transition rules between them, i.e., 

 a program, containing the position of the read head, current symbol being 
scanned, and the current ―state.‖

 A string is placed on the tape, read head is positioned at the left 
end, and the DFA will read the string one symbol at a time until 
all symbols have been read. The DFA will then either accept or 
reject the string.

Finite

Control

0 1 1 0 0



 The finite control can be described by a transition diagram or 
table:

 Example #1:

1 0 0 1 1

q0 q0 q1 q0 q0 q0

 One state is final/accepting, all others are rejecting.

 The above DFA accepts those strings that contain an even 
number of 0’s, including the null string, over Sigma = {0,1}

L = {all strings with zero or more 0’s}

 Note, the DFA must reject all other strings

q0
q1

0

0

1

1



Note: 

• Machine is for accepting a language, language is the purpose!

• Many equivalent machines may accept the same language,

but a machine cannot accept multiple languages!

• Id’s of the characters or states are irrelevant, 

you can call them by any names!

Sigma = {0, 1} ≡ {a, b}

States = {q0, q1} ≡ {u, v}, as long as they have 

identical (isomorphic) transition table

M1 M2 …. M-inf

L



 An equivalent machine to the previous example (DFA for even 
number of 0’s):

1 0 0 1 1

q0 q3 q1 q2 q2 q2 accept string

 One state is final/accepting, all others are rejecting.

 The above DFA accepts those strings that contain an even 
number of 0’s, including null string, over Sigma = {0,1}

 Can you draw a machine for a language by excluding the null 
string from the language?  L = {all strings with 2 or more 0’s}

q0
q1

0

0 1

q2

1

1

0

q3

1

0



 Example #2:

a c c c b accepted

q0 q0 q1 q2 q2 q2

a a c rejected

q0 q0 q0 q1             

 Accepts those strings that contain at least two c’s

q1q0
q2

a

b

a

b

c c

a/b/c



q1q0
q2

a

b

a

b

c c

a/b/c

Inductive Proof (sketch): that the machine correctly accepts strings with at least two 

c’s

Proof goes over the length of the string.

Base: x a string with |x|=0. state will be q0 => rejected.

Inductive hypothesis: |x|= integer k, & string x is rejected - in state q0 (x must have 

zero c),

OR, rejected – in state q1 (x must have one c),

OR, accepted – in state q2 (x has already with two c’s)

Inductive steps: Each case for symbol p, for string xp (|xp| = k+1), the last symbol p = 

a, b or c

xa xb xc

x ends in q0 q0 =>reject

(still zero c => 

should reject)

q0 =>reject

(still zero c => 

should reject)

q1 =>reject

(still zero c => 

should reject)

x ends in q1 q1 =>reject

(still one c => 

should reject)

q1 =>reject

(still one c => 

should reject)

q2 =>accept

(two c  now=> 

should accept)

x ends in q2 q2 =>accept

(two c  already => 

should accept)

q2 =>accept

(two c  already => 

should accept)

q2 =>accept

(two c  already => 

should accept)



Formal Definition of a DFA

 A DFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to Q

δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ, and 

δ(q,s) = q’ is equal to some state q’ in Q, could be q’=q

Intuitively, δ(q,s) is the state entered by M after reading symbol s while 
in state q.



 Revisit example #1:

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ:

0 1

q0 q1 q0

q1 q0 q1

q0
q1

0

0

1

1



 Revisit example #2:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

 Since δ is a function, at each step M has exactly one option.

 It follows that for a given string, there is exactly one 

computation.

q1q0
q2

a

b

a

b

c c

a/b/c



Extension of δ to Strings

δ^ : (Q x Σ*) –> Q

δ^(q,w) – The state entered after reading string w having started in 

state q.

Formally:

1) δ^(q, ε) = q, and

2) For all w in Σ* and a in Σ

δ^(q,wa) = δ (δ^(q,w), a) 



 Recall Example #1:

 What is δ^(q0, 011)? Informally, it is the state entered by M after 
processing 011 having started in state q0.

 Formally:

δ^(q0, 011) = δ (δ^(q0,01), 1) by rule #2

= δ (δ ( δ^(q0,0), 1), 1) by rule #2

= δ (δ (δ (δ^(q0, λ), 0), 1), 1) by rule #2

= δ (δ (δ(q0,0), 1), 1) by rule #1

= δ (δ (q1, 1), 1) by definition of δ

= δ (q1, 1) by definition of δ

= q1 by definition of δ

 Is 011 accepted? No, since δ^(q0, 011) = q1 is not a final state.

q0
q1

0

0

1

1



 Note that:

δ^ (q,a) = δ(δ^(q, ε), a) by definition of δ^, rule #2

= δ(q, a) by definition of δ^, 

rule #1

 Therefore:

δ^ (q, a1a2…an) = δ(δ(…δ(δ(q, a1), a2)…), an)

 However, we will abuse notations, and use δ in place of δ^:

δ^(q, a1a2…an) = δ(q, a1a2…an)



 Example #3:

 What is δ(q0, 011)? Informally, it is the state entered by M after 

processing 011 having started in state q0.

 Formally:

δ(q0, 011) = δ (δ(q0,01), 1) by rule #2

= δ (δ (δ(q0,0), 1), 1) by rule #2

= δ (δ (q1, 1), 1) by definition of δ

= δ (q1, 1) by definition of δ

= q1 by definition of δ

 Is 011 accepted? No, since δ(q0, 011) = q1 is not a final state.

 Language?

 L ={ all strings over {0,1} that has 2 or more 0 symbols}

q1q0
q2

1 1

0
0

1

0



 Recall Example #3:

 What is δ(q1, 10)?

δ(q1, 10) = δ (δ(q1,1), 0) by rule #2

= δ (q1, 0) by definition of δ

= q2 by definition of δ

 Is 10 accepted? No, since δ(q0, 10) = q1 is not a final state. The 

fact that δ(q1, 10) = q2 is irrelevant, q1 is not the start state!

0

q1q0
q2

1 1

0

1

0



Definitions related to DFAs

 Let M = (Q, Σ, δ,q0,F) be a DFA and let w be in Σ*.  Then w is accepted
by  M  iff δ(q0,w) = p  for some state p in F. 

 Let  M = (Q, Σ, δ,q0,F)  be a DFA. Then the language accepted by M is 
the set:

L(M) = {w | w is in Σ* and δ(q0,w) is in F} 

 Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

 Let  L  be a language. Then  L  is a regular language iff there exists a 
DFA  M  such that L = L(M).

 Let  M1 = (Q1, Σ1, δ1, q0, F1)  and M2 = (Q2, Σ2, δ2, p0, F2)  be DFAs. 
Then M1 and M2 are equivalent iff  L(M1) = L(M2).



 Notes:

 A DFA  M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and

Σ* - L(M). 

 If L = L(M) then L is a subset of L(M) and L(M) is a subset of L  (def. of set 
equality).

 Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a 
subset of L(M1). 

 Some languages are regular, others are not. For example, if

Regular: L1 = {x | x is a string of 0's and 1's containing an even 
number of 1's} and 

Not-regular: L2 = {x | x = 0n1n for some n >= 0} 

 Can you write a program to “simulate” a given DFA,  or any arbitrary input DFA?

 Question we will address later:

 How do we determine whether or not a given language is regular?



 Give a DFA M such that:

L(M) = {x | x is a string of 0’s and 1’s and |x| >= 2}

Prove this by induction

q1q0
q2

0/

1

0/1

0/

1



 Give a DFA M such that:

L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s 

such 

that x does not contain the substring aa}

Logic:  

In Start state (q0): b‟s and c‟s: ignore – stay in same state

q0 is also “accept” state

First „a‟ appears: get ready (q1) to reject

But followed by a  „b‟ or „c‟: go back to start state q0

When second „a‟ appears after the “ready” state: go to reject state 

q2

Ignore everything after getting to the “reject” state q2

q2q0

a

a/b/c

a
q1

b/c

b/c



 Give a DFA M such that:

L(M) = {x | x is a string of a’s, b’s and c’s such that 

x 

contains the substring aba}

Logic:  acceptance is straight forward, progressing on each 

expected symbol

However, rejection needs special care, in each state (for DFA, we 

will see this becomes easier in NFA, non-deterministic machine)

q2q0

a

a/b/c

b
q1

c

b/c a

b/c

q3

a



 Give a DFA M such that:

L(M) = {x | x is a string of a’s and b’s such that x 

contains both aa and bb}

First do, for a language where „aa‟ comes before „bb‟

Then do its reverse; and then parallelize them.

Remember, you may have multiple “final” states, but only one 

“start” state

q0

b

q7

q5q4 q6

b

b

b

a

q2q1 q3

a

a

a

b

a/bb

a

a

a b



 Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+.

For {}: For {ε}:

For Σ*: For Σ+:

0/1

q0

0/1

q0

q1q0

0/1

0/1

0/

1q0 q1

0/1



 Problem: Third symbol from last is 1

0/1

q1q0
q3

1 0/1 q2

0/1

Is this a DFA?

No, but it is a  Non-deterministic Finite Automaton



Nondeterministic Finite State

Automata (NFA)

 An NFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to 2Q

δ: (Q x Σ) –> 2Q :2Q is the power set of Q, the set of all subsets 
of Q δ(q,s) :The set of all states p such that there is a 
transition

labeled s from q to p

δ(q,s) is a function from Q x S to 2Q (but not only to Q)



 Example #1: one or more 0’s followed by one or more 1’s

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q2}

δ: 0 1

q0

q1

q2

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1q0
q2

0 1

0 1

0/1



 Example #2: pair of 0’s or pair of 1’s as substring

Q = {q0, q1, q2 , q3 , q4}

Σ = {0, 1}

Start state is q0

F = {q2, q4}

δ: 0 1

q0

q1

q2

q3

q4

{q0, q3} {q0, q1}

{} {q2}

{q2} {q2}

{q4} {}

{q4} {q4}

q0

0/1

0 0
q3

q4

0/1

q1
q2

0/11

1



 Notes:

 δ(q,s) may not be defined for some q and s (what does that mean?)

 δ(q,s) may map to multiple q’s

 A string is said to be accepted if there exists a path from q0 to some 

state in F

 A string is rejected if there exist NO path to any state in F

 The language accepted by an NFA is the set of all accepted strings

 Question: How does an NFA find the correct/accepting path for 

a given string?

 NFAs are a non-intuitive computing model

 You may use backtracking to find if there exists a path to a final 

state (following slide)

 Why NFA?

 We are primarily interested in NFAs as language defining 

capability, i.e., do NFAs accept languages that DFAs do not?

 Other secondary questions include practical ones such as whether 

or not NFA is easier to develop, or how does one implement NFA



 Determining if a given NFA (example #2) accepts a given string 

(001) can be done algorithmically:

q0 q0 q0 q0

q3 q3 q1

q4 q4 accepted

 Each level will have at most n states: 

Complexity: O(|x|*n), for running over a string x

0 0 1

q0

0/1

0
q3

q4

q1
q2

1

1

0

0/1

0/1



 Another example (010):

q0 q0 q0 q0

q3 q1 q3

not accepted

 All paths have been explored, and none lead to an accepting 

state.

0 1 0

q0

0/1

0
q3

q4

q1
q2

1

1

0



 Question: Why non-determinism is useful?

 Non-determinism  =  Backtracking

 Compressed information

 Non-determinism hides backtracking

 Programming languages, e.g., Prolog, hides backtracking => Easy 

to program at a higher level: what we want to do, rather than how to 

do it

 Useful in algorithm complexity study

 Is NDA more ―powerful‖ than DFA, i.e., accepts type of languages 

that any DFA cannot?



 Let Σ = {a, b, c}. Give an NFA M that accepts:

L = {x | x is in Σ* and x contains ab}

Is L a subset of L(M)?  Or, does M accepts all string in L?

Is L(M) a subset of L? Or, does M rejects all strings not in 

L?

 Is an NFA necessary? Can you draw a DFA for this L? 

 Designing NFAs is not as trivial as it seems: easy to create bug 

accepting string outside language

q1q0
q2

a

a/b/c

b

a/b/c



 Let Σ = {a, b}. Give an NFA M that accepts:

L = {x | x is in Σ* and the third to the last symbol in x is b}

Is L a subset of L(M)? 

Is L(M) a subset of L?

 Give an equivalent DFA as an exercise.

q1q0

b q3
a/

b

a/b

q2

a/

b



Extension of δ to Strings and Sets of 

States

 What we currently have: δ : (Q x Σ) –> 2Q

 What we want (why?): δ : (2Q x Σ*) –> 2Q

 We will do this in two steps, which will be slightly different from 

the book, and we will make use of the following NFA.

q0

0 1
q1

q4q3

0 1

q2

0
0

1

0

0



Extension of δ to Strings and Sets of 

States

 Step #1:

Given δ: (Q x Σ) –> 2Q define δ#: (2Q x Σ) –> 2Q as follows:

1) δ#(R, a) =     δ(q, a) for all subsets R of Q, and symbols a in Σ

 Note that:

δ#({p},a) =     δ(q, a) by definition of δ#, rule #1 above

= δ(p, a)

 Hence, we can use δ for δ#

δ({q0, q2}, 0) These now make sense, but 
previously

δ({q0, q1, q2}, 0) they did not.


Rq


}{ pq



 Example:

δ({q0, q2}, 0) = δ(q0, 0) U δ(q2, 0)

= {q1, q3} U {q3, q4}

= {q1, q3, q4}

δ({q0, q1, q2}, 1) = δ(q0, 1) U δ(q1, 1) U δ(q2, 1)

= {} U {q2, q3} U {}

= {q2, q3}



 Step #2:

Given δ: (2Q x Σ) –> 2Q define δ^: (2Q x Σ*) –> 2Q as follows:

δ^(R,w) – The set of states M could be in after processing string w, 
having started from any state in R.

Formally:

2) δ^(R, ε) = R for any subset R of Q

3) δ^(R,wa) = δ (δ^(R,w), a) for any w in Σ*, a in Σ, and

subset R of Q

 Note that:

δ^(R, a) = δ(δ^(R, ε), a) by definition of δ^, rule #3 above

= δ(R, a) by definition of δ^, rule #2 above

 Hence, we can use δ for δ^

δ({q0, q2}, 0110) These now make sense, but 
previously

δ({q0, q1, q2}, 101101) they did not.



 Example:

What is δ({q0}, 10)?

Informally: The set of states the NFA could be in after processing 10,

having started in state q0, i.e., {q1, q2, q3}.

Formally: δ({q0}, 10) = δ(δ({q0}, 1), 0)

= δ({q0}, 0)

= {q1, q2, q3}

Is 10 accepted? Yes!

q0

0 1
q1

q3

0 1

q2

1

1 0



 Example:

What is δ({q0, q1}, 1)?

δ({q0 , q1}, 1) = δ({q0}, 1)  δ({q1}, 1) 

= {q0}  {q2, q3}

= {q0, q2, q3}

What is δ({q0, q2}, 10)?

δ({q0 , q2}, 10) = δ(δ({q0 , q2}, 1), 0)

= δ(δ({q0}, 1) U δ({q2}, 1), 0)

= δ({q0}  {q3}, 0)

= δ({q0,q3}, 0)

= δ({q0}, 0)  δ({q3}, 0)

= {q1, q2, q3}  {}

= {q1, q2, q3}



 Example:

δ({q0}, 101) = δ(δ({q0}, 10), 1)

= δ(δ(δ({q0}, 1), 0), 1)

= δ(δ({q0}, 0), 1)

= δ({q1 , q2, q3}, 1)

= δ({q1}, 1) U δ({q2}, 1) U δ({q3}, 1) 

= {q2, q3} U {q3} U {}

= {q2, q3}

Is 101 accepted? Yes! q3 is a final state.



Definitions for NFAs

 Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*.  Then w is 

accepted by M iff δ({q0}, w) contains at least one state in F. 

 Let  M = (Q, Σ, δ,q0,F)  be an NFA. Then the language accepted

by M is the set:

L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in 

F} 

 Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}



Equivalence of DFAs and NFAs

 Do DFAs and NFAs accept the same class of languages?

 Is there a language L that is accepted by a DFA, but not by any 

NFA?

 Is there a language L that is accepted by an NFA, but not by any 

DFA?

 Observation: Every DFA is an NFA, DFA is only restricted NFA.

 Therefore, if L is a regular language then there exists an NFA M 

such that L = L(M).

 It follows that NFAs accept all regular languages.

 But do NFAs accept more?



 Consider the following DFA: 2 or more c’s

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

q1q0
q2

a

b

a

b

c c

a/b/c



 An Equivalent NFA:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 {q0} {q0} {q1}

q1 {q1} {q1} {q2}

q2 {q2} {q2} {q2}

q1q0
q2

a

b

a

b

c c

a/b/c



 Lemma 1: Let M be an DFA.  Then there exists a NFA M’ such 

that L(M) = L(M’).

 Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it 

follows that L(M’) = L(M).

The above is just a formal statement of the observation from the 

previous slide.



 Lemma 2: Let M be an NFA.  Then there exists a DFA M’ such that 
L(M) = L(M’).

 Proof: (sketch)

Let M = (Q, Σ, δ,q0,F).

Define a DFA M’ = (Q’, Σ, δ’,q’
0,F’) as:

Q’ = 2Q Each state in M’ corresponds to a

= {Q0, Q1,…,} subset of states from M

where Qu = [qi0, qi1,…qij]

F’ = {Qu | Qu contains at least one state in F}

q’
0 = [q0]

δ’(Qu, a) = Qv iff δ(Qu, a) = Qv



 Example: empty string or start and end with 0

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ: 0 1

q0

q1

{q1} {}

{q0, q1} {q1}

q1q0

0

0/1

0



 Example of creating a DFA out of an NFA (as per the 

constructive proof):

-->q0

δ for DFA: 0 1 q1

->q0

[q1]

[ ]

q1q0

0

0/1

0

{q1}

write as 

[q1]

{}

write as 

[ ]



 Example of creating a DFA out of an NFA (as per the 

constructive proof):

δ: 0 1

->q0

[q1]

[ ]

[q01]

q1q0

0

0/1

0

{q1} 

write as 

[q1]

{}

{q0,q1}

write as 

[q01]

{q1}



 Example of creating a DFA out of an NFA (as per the 

constructive proof):

δ: 0 1

->q0

[q1]

[ ]

[q01]

q1q0

0

0/1

0

{q1} 

write as 

[q1]

{}

{q0,q1}

write as 

[q01]

{q1}

[ ] [ ]



 Example of creating a DFA out of an NFA (as per the 

constructive proof):

δ: 0 1

->q0

[q1]

[ ]

[q01]

q1q0

0

0/1

0

{q1} 

write as 

[q1]

{}

{q0,q1}

write as 

[q01]

{q1}

[ ] [ ]

[q01] [q1]



 Construct DFA M’ as follows:

δ({q0}, 0) = {q1} => δ’([q0], 0) = [q1]

δ({q0}, 1) = {} => δ’([q0], 1) = [ ]

δ({q1}, 0) = {q0, q1} => δ’([q1], 0) = [q0q1]

δ({q1}, 1) = {q1} => δ’([q1], 1) = [q1]

δ({q0, q1}, 0) = {q0, q1} => δ’([q0q1], 0) = [q0q1]

δ({q0, q1}, 1) = {q1} => δ’([q0q1], 1) = [q1]

δ({}, 0) = {} => δ’([ ], 0) = [ ]

δ({}, 1) = {} => δ’([ ], 1) = [ ]

[ ]
1 0

[q0q1]

1

[q1]

0

0/1

[q0]

1

0



 Theorem: Let L be a language.  Then there exists an DFA M  

such that L = L(M) iff there exists an NFA M’ such that L = L(M’).

 Proof:

(if) Suppose there exists an NFA M’ such that L = L(M’).  Then 

by Lemma 2 there exists an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M).  

Then by Lemma 1 there exists an NFA M’ such that L = L(M’).

 Corollary: The NFAs define the regular languages.



 Note: Suppose R = {}

δ(R, 0) = δ(δ(R, ε), 0)

= δ(R, 0)

=      δ(q, 0)

= {} Since R = {}

 Exercise - Convert the following NFA to a DFA:

Q = {q0, q1, q2} δ: 0 1

Σ = {0, 1} 

Start state is q0 q0

F = {q0}

q1

q2


Rq

{q0, q1} { }

{q1} {q2}

{q2} {q2}



 Problem: Third symbol from last is 1

0/1

q1q0
q3

1 0/1 q2

0/1

Now, can you convert this NFA to a DFA?



Finite Automata

 Some Applications
 Software for designing and checking the behavior 

of digital circuits

 Lexical analyzer of a typical compiler

 Software for scanning large bodies of text (e.g., 
web pages) for pattern finding

 Software for verifying systems of all types that 
have a finite number of states (e.g., stock market 
transaction, communication/network protocol)



NFAs with ε Moves
 An NFA-ε is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ U {ε} to 
2Q

δ: (Q x (Σ U {ε})) –> 2Q

δ(q,s) -The set of all states p such that there 
is a 

transition labeled a from q to p, 
where a 

is in Σ U {ε}

 Sometimes referred to as an NFA-ε other times, simply as an NFA.



 Example:

δ: 0 1 ε

q0 - A string w = w1w2…wn is 

processed

as w = ε*w1ε
*w2ε

* … ε*wnε
*

q1 - Example: all computations on 00:

0    ε   0

q2 q0 q0 q1 q2

:

q3

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

{q0} { } {q1}

{q1, q2} {q0, q3} {q2}

{q2} {q2} { }

{ } { } { }



Informal Definitions

 Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

 A String w in Σ* is accepted by M iff there exists a path in M from q0 to a 

state in F labeled by w and zero or more ε transitions.

 The language accepted by M is the set of all strings from Σ* that are 

accepted by M.



ε-closure

 Define ε-closure(q) to denote the set of all states reachable from q by 
zero or more ε transitions.

 Examples: (for the previous NFA)

ε-closure(q0) = {q0, q1, q2} ε-closure(q2) = {q2}

ε-closure(q1) = {q1, q2} ε-closure(q3) = {q3}

 ε-closure(q) can be extended to sets of states by defining:

ε-closure(P) =      ε-closure(q)

 Examples:

ε-closure({q1, q2}) = {q1, q2}

ε-closure({q0, q3}) = {q0, q1, q2, q3}


Pq

q0

ε
0/1

q2

1

0

q1

0

q3

ε

0

1



Extension of δ to Strings and Sets of 

States

 What we currently have: δ : (Q x (Σ U {ε})) –> 2Q

 What we want (why?): δ : (2Q x Σ*) –> 2Q

 As before, we will do this in two steps, which will be slightly 

different from the book, and we will make use of the following 

NFA.

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1



 Step #1:

Given δ: (Q x (Σ U {ε})) –> 2Q define δ#: (2Q x (Σ U {ε})) –> 2Q as 

follows:

1) δ#(R, a) =     δ(q, a) for all subsets R of Q, and symbols a in Σ 

U {ε}

 Note that:

δ#({p},a) =     δ(q, a) by definition of δ#, rule #1 above

= δ(p, a)

 Hence, we can use δ for δ#

δ({q0, q2}, 0) These now make sense, but 

previously

δ({q0, q1, q2}, 0) they did not.


Rq


}{ pq



 Examples:

What is δ({q0 , q1, q2}, 1)?

δ({q0 , q1, q2}, 1) = δ(q0, 1) U δ(q1, 1) U δ(q2, 1) 

= { } U {q0, q3} U {q2}

= {q0, q2, q3}

What is δ({q0, q1}, 0)?

δ({q0 , q1}, 0) = δ(q0, 0) U δ(q1, 0) 

= {q0} U {q1, q2}

= {q0, q1, q2}



 Step #2:

Given δ: (2Q x (Σ U {ε})) –> 2Q define δ^: (2Q x Σ*) –> 2Q as 

follows:

δ^(R,w) – The set of states M could be in after processing string 

w, having starting from any state in R.

Formally:

2) δ^(R, ε) = ε-closure(R) - for any subset R of Q

3) δ^(R,wa) = ε-closure(δ(δ^(R,w), a)) - for any w in Σ*, a in Σ, 

and

subset R of Q

 Can we use δ for δ^?



 Consider the following example:

δ({q0}, 0) = {q0}

δ^({q0}, 0) = ε-closure(δ(δ^({q0}, ε), 0)) By rule #3

= ε-closure(δ(ε-closure({q0}), 0)) By rule #2

= ε-closure(δ({q0, q1, q2}, 0)) By ε-closure

= ε-closure(δ(q0, 0) U δ(q1, 0) U δ(q2, 0)) By rule 
#1

= ε-closure({q0} U {q1, q2} U {q2})

= ε-closure({q0, q1, q2})

= ε-closure({q0}) U ε-closure({q1}) U ε-closure({q2})

= {q0, q1, q2} U {q1, q2} U {q2}

= {q0, q1, q2}

 So what is the difference?

δ(q0, 0) - Processes 0 as a single symbol, without ε transitions.

δ^(q0 , 0) - Processes 0 using as many ε transitions as are 
possible.



 Example:

δ^({q0}, 01) = ε-closure(δ(δ^({q0}, 0), 1)) By rule 

#3

= ε-closure(δ({q0, q1, q2}), 1) Previous slide

= ε-closure(δ(q0, 1) U δ(q1, 1) U δ(q2, 1)) By rule 

#1

= ε-closure({ } U {q0, q3} U {q2})

= ε-closure({q0, q2, q3})

= ε-closure({q0}) U ε-closure({q2}) U ε-closure({q3})

= {q0, q1, q2} U {q2} U {q3}

= {q0, q1, q2, q3}



Definitions for NFA-ε Machines

 Let M = (Q, Σ, δ,q0,F) be an NFA-ε and let w be in Σ*.  Then w is 

accepted by M iff δ^({q0}, w) contains at least one state in F. 

 Let  M = (Q, Σ, δ,q0,F)  be an NFA-ε. Then the language 

accepted by M is the set:

L(M) = {w | w is in Σ* and δ^({q0},w) contains at least one state in 

F} 

 Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}



Equivalence of NFAs and NFA-εs

 Do NFAs and NFA-ε machines accept the same class of 

languages?

 Is there a language L that is accepted by a NFA, but not by any 

NFA-ε?

 Is there a language L that is accepted by an NFA-ε, but not by any 

DFA?

 Observation: Every NFA is an NFA-ε.

 Therefore, if L is a regular language then there exists an NFA-ε 

M such that L = L(M).

 It follows that NFA-ε machines accept all regular languages.

 But do NFA-ε machines accept more?



 Lemma 1: Let M be an NFA.  Then there exists a NFA-ε M’ 

such that L(M) = L(M’).

 Proof: Every NFA is an NFA-ε. Hence, if we let M’ = M, then it 

follows that L(M’) = L(M).

The above is just a formal statement of the observation from the 

previous slide.



 Lemma 2: Let M be an NFA-ε.  Then there exists a NFA M’ 
such that L(M) = L(M’).

 Proof: (sketch)

Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

Define an NFA M’ = (Q, Σ, δ’,q0,F’) as:

F’ = F U {q} if ε-closure(q) contains at least one state from 
F

F’ = F otherwise

δ’(q, a) = δ^(q, a) - for all q in Q and a in Σ

 Notes:

 δ’: (Q x Σ) –> 2Q is a function

 M’ has the same state set, the same alphabet, and the same start 
state as M

 M’ has no ε transitions



 Example:

 Step #1:

 Same state set as M

 q0 is the starting state

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0



 Example:

 Step #2:

 q0 becomes a final state

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0



 Example:

 Step #3:

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0

0

0



 Example:

 Step #4:

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0/1

0/1

0/1

1



 Example:

 Step #5:

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0/1

0/1

0/1

1

0

0



 Example:

 Step #6:

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0/1

0/1

0/1

1

0/1

0/1

1

1



 Example:

 Step #7:

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2

q3

q0

0/1

0/1

0/1

1

0/1

0/1

1

1 0

q1



 Example:

 Step #8: [use table of e-closure]

 Done!

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0/1

0/1

0/1

1

0/1

0/1

1

1 0/1



 Theorem: Let L be a language.  Then there exists an NFA M  

such that L= L(M) iff there exists an NFA-ε M’ such that L = 

L(M’).

 Proof:

(if) Suppose there exists an NFA-ε M’ such that L = L(M’).  Then 

by Lemma 2 there exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M).  

Then by Lemma 1 there exists an NFA-ε M’ such that L = L(M’).

 Corollary: The NFA-ε machines define the regular languages.
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Unit – II

Syllabus:

Regular sets, regular expressions, identity rules, constructing finite

automata for a given regular expressions, conversion of finite automata

to regular expressions, pumping lemma of regular sets, closure

properties of regular sets (proofs not required), regular grammars-right

linear and left linear grammars, equivalence between regular linear

grammar and finite automata, inter conversion.

.



Regular Sets

Family of languages 

 Seed elements:
 Empty language

 Language containing the empty string

 Singleton language for each letter in the 

alphabet

 Closure Operations:
 Union: collects strings from languages

 Concatenation: generates longer strings

 Kleene Star: generates infinite languages



Regular Sets over 

 Basis:                                         are 

regular sets over     .

 Inductive Step: Let X and Y be regular 

sets over        . Then so are:

 Closure:…



}{: and  },{, aa 





*X

XY

Y X



Examples

 Bit strings containing at least a ―1‖

 Bit strings containing exactly one ―1‖

 Bit strings beginning or ending with a ―1‖

*})1{}0}({1{*})1{}0({ 

*}0}{1{*}0{

}1{*}1,0{    *}1,0}{1{ 



Regular Expressions

 Regular expressions  are an algebraic 

way to describe languages.

 They describe exactly the regular 

languages.

 If E is a regular expression, then L(E) is 

the language it defines.

 We’ll describe RE’s and  their 

languages recursively.



Definition

 Basis 1: If a is any symbol, then a is a 

RE, and L(a) = {a}.

 Note: {a} is the language containing one 

string, and that string is of length 1.

 Basis 2: ε is a RE, and L(ε) = {ε}.

 Basis 3: ∅ is a RE, and L(∅) = ∅.



 Induction 1: If E1 and E2 are regular 

expressions, then E1+E2 is a regular 

expression, and L(E1+E2) = 

L(E1)L(E2).

 Induction 2: If E1 and E2 are regular 

expressions, then E1E2 is a regular 

expression, and L(E1E2) = L(E1)L(E2).

Concatenation : the set of strings wx such that w

Is in L(E1) and x is in L(E2).



 Induction 3: If E is a RE, then E* is a 

RE, and L(E*) = (L(E))*.

Closure, or ―Kleene closure‖ = set of strings

w1w2…wn, for some n > 0, where each wi is

in L(E).
Note: when n=0, the string is ε.



Precedence of Operators

 Parentheses may be used wherever 

needed to influence the grouping of 

operators.

 Order of precedence is * (highest), then 

concatenation, then + (lowest).



Examples

 L(01) = {01}.

 L(01+0) = {01, 0}.

 L(0(1+0)) = {01, 00}.

 Note order of precedence of operators.

 L(0*) = {ε, 0, 00, 000,… }.

 L((0+10)*(ε+1)) = all strings of 0’s and 

1’s without two consecutive 1’s.



Equivalence of RE’s and 

Automata

 We need to show that for every RE, there 

is an automaton that accepts the same 

language.

 Pick the most powerful automaton type: the 
ε-NFA.

 And we need to show that for every 

automaton, there is a RE defining its 

language.

 Pick the most restrictive type: the DFA.



Converting a RE to an ε-NFA

 Proof is an induction on the number of 

operators (+, concatenation, *) in the 

RE.

 We always construct an automaton of a 

special form (next slide).



Form of ε-NFA’s Constructed

No arcs from outside,

no arcs leavingStart state:

Only state

with external

predecessors

―Final‖ state:

Only state

with external

successors



RE to ε-NFA: Basis

 Symbol a:

 ε:

 ∅:

a

ε



RE to ε-NFA: Induction 1 – Union

For E1

For E2

For E1  E2

ε

ε ε

ε



RE to ε-NFA: Induction 2 –

Concatenation

For E1 For E2

For E1E2

ε



RE to ε-NFA: Induction 3 – Closure

For E

For E*

ε

ε

εε



DFA-to-RE

 A strange sort of induction.

 States of the DFA are assumed to be 

1,2,…,n.

 We construct RE’s for the labels of 

restricted sets of paths.

 Basis: single arcs or no arc at all.

 Induction: paths that are allowed to 

traverse next state in order.



k-Paths

 A k-path is a path through the graph of 

the DFA that goes though no state 

numbered higher than k.

 Endpoints are not restricted; they can 

be any state.



Example: k-Paths

1

3

2
0

00

1

1 1

0-paths from 2 to 3:

RE for labels = 0.

1-paths from 2 to 3:

RE for labels = 0+11.

2-paths from 2 to 3:

RE for labels =

(10)*0+1(01)*1

3-paths from 2 to 3:

RE for labels = ??



k-Path Induction

 Let Rij
k be the regular expression for the 

set of labels of k-paths from state i to 

state j.

 Basis: k=0. Rij
0 = sum of labels of arc 

from i to j.

 ∅ if no such arc.

 But add ε if i=j.



Example: Basis

 R12
0 = 0.

 R11
0 = ∅ + ε = ε.

1

3

2
0

00

1

1 1



k-Path Inductive Case

 A k-path from i to j either:

1. Never goes through state k, or

2. Goes through k one or more times.

Rij
k = Rij

k-1 + Rik
k-1(Rkk

k-1)* Rkj
k-1.

Doesn’t go

through k

Goes from

i to k the

first time Zero or

more times

from k to k

Then, from

k to j



Illustration of Induction

States < k

k

i

j

Paths not going

through k

From k

to j

From k to k

Several times

Path to k



Final Step

 The RE with the same language as 

the DFA is the sum (union) of Rij
n, 

where:

1. n is the number of states; i.e., paths are 

unconstrained.

2. i is the start state.

3. j is one of the final states.



Example

 R23
3 = R23

2 + R23
2(R33

2)*R33
2 = 

R23
2(R33

2)*

 R23
2 = (10)*0+1(01)*1

 R33
2 = 0(01)*(1+00) + 1(10)*(0+11)

 R23
3 = [(10)*0+1(01)*1] [(0(01)*(1+00) + 

1(10)*(0+11))]*

1

3

2
0

00

1

1 1



Algebraic Laws for RE’s

 Union and concatenation behave sort of 

like addition and multiplication.

 + is commutative and associative; 

concatenation is associative.

 Concatenation distributes over +.

 Exception: Concatenation is not 

commutative.



Identities and Annihilators

 ∅ is the identity for +.

 R + ∅ = R.

 ε is the identity for concatenation.

 εR = Rε = R.

 ∅ is the annihilator for concatenation.

 ∅R = R∅ = ∅.



Closure Properties of Regular 

Languages

Union, Intersection, Difference, 

Concatenation, Kleene Closure, 

Reversal, Homomorphism, 

Inverse Homomorphism



Closure Properties

 Recall a closure property is a statement 

that a certain operation on languages, 

when applied to languages in a class 

(e.g., the regular languages), produces 

a result that is also in that class.

 For regular languages, we can use any 

of its representations to prove a closure 

property.



Closure Under Union

 If L and M are regular languages, so is 

L  M.

 Proof: Let L and M be the languages of 

regular expressions R and S, 

respectively.

 Then R+S is a regular expression 

whose language is L  M.



Closure Under Concatenation 

and Kleene Closure

 Same idea:

 RS is a regular expression whose 

language is LM.

 R* is a regular expression whose language 

is L*.



Closure Under Intersection

 If L and M are regular languages, then 

so is L  M.

 Proof: Let A and B be DFA’s whose 

languages are L and M, respectively.

 Construct C, the product automaton of A 

and B.

 Make the final states of C be the pairs 

consisting of final states of both A and B.



Example: Product DFA for 

Intersection

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1



Closure Under Difference

 If L and M are regular languages, then 

so is L – M = strings in L but not M.

 Proof: Let A and B be DFA’s whose 

languages are L and M, respectively.

 Construct C, the product automaton of A 

and B.

 Make the final states of C be the pairs 

where A-state is final but B-state is not.



Example: Product DFA for 

Difference

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1

Notice: difference

is the empty language



Closure Under Complementation

 The complement of a language L (with 
respect to an alphabet Σ such that Σ* 

contains L) is Σ* – L.

 Since Σ* is surely regular, the 

complement of a regular language is 

always regular.



Closure Under Reversal

 Recall example of a DFA that accepted 

the binary strings that, as integers were 

divisible by 23.

 We said that the language of binary 

strings whose reversal was divisible by 

23 was also regular, but the DFA 

construction was very tricky.

 Good application of reversal-closure.



Closure Under Reversal – (2)

 Given language L, LR is the set of strings 

whose reversal is in L.

 Example: L = {0, 01, 100};                     LR

= {0, 10, 001}.

 Proof: Let E be a regular expression for L.

 We show how to reverse E, to provide a 

regular expression ER for LR.



Reversal of a Regular Expression

 Basis: If E is a symbol a, ε, or ∅, then 

ER = E.

 Induction: If E is

 F+G, then ER = FR + GR.

 FG, then ER = GRFR

 F*, then ER = (FR)*.



Example: Reversal of a RE

 Let E = 01* + 10*.

 ER = (01* + 10*)R = (01*)R + (10*)R

 = (1*)R0R + (0*)R1R

 = (1R)*0 + (0R)*1

 = 1*0 + 0*1.



Homomorphisms

 A homomorphism  on an alphabet is a 

function that gives a string for each 

symbol in that alphabet.

 Example: h(0) = ab; h(1) = ε.

 Extend to strings by h(a1…an) = 

h(a1)…h(an).

 Example: h(01010) = ababab.



Closure Under 

Homomorphism

 If L is a regular language, and h is a 

homomorphism on its alphabet, then h(L)

= {h(w) | w is in L} is also a regular 

language.

 Proof: Let E be a regular expression for L.

 Apply h to each symbol in E.

 Language of resulting RE is h(L).



Example: Closure under 

Homomorphism

 Let h(0) = ab; h(1) = ε.

 Let L be the language of regular 

expression 01* + 10*.

 Then h(L) is the language of regular 
expression abε* + ε(ab)*.

Note: use parentheses

to enforce the proper

grouping.



Example – Continued

 abε* + ε(ab)* can be simplified.

 ε* = ε, so abε* = abε.

 ε is the identity under concatenation.

 That is, εE = Eε = E for any RE E.

 Thus, abε* + ε(ab)* = abε + ε(ab)* = ab
+ (ab)*.

 Finally, L(ab) is contained in L((ab)*), so 
a RE for h(L) is (ab)*.



Inverse Homomorphisms

 Let h be a homomorphism and L a 

language whose alphabet is the output 

language of h.

 h-1(L) = {w | h(w) is in L}.



Example: Inverse Homomorphism

 Let h(0) = ab; h(1) = ε.

 Let L = {abab, baba}.

 h-1(L) = the language with two 0’s and 

any number of 1’s = L(1*01*01*).

Notice: no string maps to

baba; any string with exactly

two 0’s maps to abab.



144

Linear Grammars

 Grammars with 

 at most one variable at the right side

 of a production

 Examples:









A

aAbA

AbS





S

aSbS
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A Non-Linear Grammar



bSaS

aSbS

S

SSS











Grammar      :G

)}()(:{)( wnwnwGL ba 
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Another Linear Grammar

 Grammar       : 
AbB

aBA

AS







|

}0:{)(  nbaGL nn

G
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Right-Linear Grammars

 All productions have form:

 Example:

xBA

xA
or

aS

abSS




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Left-Linear Grammars

 All productions have form:

 Example:

BxA

aB

BAabA

AabS







|

xA

or
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Regular Grammars
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Regular Grammars

 A regular grammar is any 

 right-linear or left-linear grammar

 Examples:

aS

abSS





aB

BAabA

AabS







|

1G 2G
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Observation

 Regular grammars generate regular 

languages

 Examples:

aS

abSS





aabGL *)()( 1 

aB

BAabA

AabS







|

*)()( 2 abaabGL 

1G

2G
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Regular Grammars 

Generate

Regular Languages
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Theorem
Languages
Generated by
Regular Grammars

Regular
Languages
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Theorem - Part 1

Languages
Generated by
Regular Grammars

Regular
Languages

Any regular grammar generates
a regular language
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Theorem - Part 2

Languages
Generated by
Regular Grammars

Regular
Languages

Any regular language is generated 
by a regular grammar
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Proof – Part 1
Languages
Generated by
Regular Grammars

Regular
Languages

The language              generated by 
any regular grammar        is regular

)(GLG
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The case of Right-Linear 

Grammars

 Let      be a right-linear grammar

 We will prove:             is regular

 Proof idea:    We will construct NFA

 with 

G

)(GL

M

)()( GLML 
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 Grammar       is right-linearG

Example:

aBbB

BaaA

BaAS

|

|






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 Construct NFA         such that

 every state is a grammar variable:

M

aBbB

BaaA

BaAS

|

|







S
FVA

B

special
final state
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 Add edges for each production:

S
FV

A

B

a

aAS 
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

S
FV

A

B

a

BaAS |


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

S
FV

A

B

a



BaaA

BaAS



 |

a

a
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

S
FV

A

B

a



bBB

BaaA

BaAS





 |

a

a

b
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

S
FV

A

B

a



abBB

BaaA

BaAS

|

|







a

a

b

a
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

aaabaaaabBaaaBaAS 

S
FV

A

B

a



a

a

b

a
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

S
FV

A

B

a



a

a

b

a
abBB

BaaA

BaAS

|

|







G

M GrammarNFA

abaaaab

GLML

**

)()(




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In General

 A right-linear grammar

 has variables:

 and productions: 

G

,,, 210 VVV

jmi VaaaV 21

mi aaaV 21

or
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 We construct the NFA         such that:

 each  variable         corresponds to a 

node: 

M

iV

0V

FV

1V

2V

3V

4V special
final state
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 For each production:

 we add transitions and intermediate 

nodes

jmi VaaaV 21

iV jV………1a 2a ma
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 For each production:

 we add transitions and intermediate 

nodes mi aaaV 21

iV FV………1a 2a ma
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 Resulting NFA       looks like this:M

0V

FV

1V

2V

3V

4V

1a

3a

3a

4a

8a

2a 4a

5a

9a
5a

9a

)()( MLGL It holds that:
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Proof - Part 2
Languages
Generated by
Regular Grammars

Regular
Languages

Any regular language         is generated 
by some regular grammar

L G
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Proof idea:

Let         be the NFA with                  . 

Construct from        a regular grammar 
such that

Any regular language         is generated 
by some regular grammar

L G

M )(MLL 

M G

)()( GLML 
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 Since        is regular

 there is an NFA         such that  

L M

)(MLL 

Example:

a

b

a

b

*)*(* abbababL 

)(MLL 

M

1q 2q

3q

0q



175

 Convert         to a right-linear  grammarM

a

b

a

b

M

0q 1q 2q

3q

10 aqq 
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 a

b

a

b

M

0q 1q 2q

3q

21

11

10

aqq

bqq

aqq









177

a

b

a

b

M

0q 1q 2q

3q

32

21

11

10

bqq

aqq

bqq

aqq








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a

b

a

b

M

0q 1q 2q

3q













3

13

32

21

11

10

q

qq

bqq

aqq

bqq

aqq

G

LMLGL  )()(
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In General

For any transition:
a

q p

Add production: apq 

variable terminal variable
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For any final state:
fq

Add production: fq
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 Since          is right-linear grammar

 is also a regular grammar

G

G

LMLGL  )()(
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Unit – III
Syllabus:

Context free grammars and languages: Context free

grammar, derivation trees, sentential forms, right most and

leftmost derivation of strings, applications.

Ambiguity in context free grammars, minimization of

context free grammars, Chomsky normal form, Greibach

normal form, pumping lemma for context free languages,

enumeration of properties of context free language (proofs

omitted)..



Introduction

 A context-free grammar is a notation 

for describing languages.

 It is more powerful than finite automata 

or RE’s, but still cannot define all 

possible languages.

 Useful for nested structures, e.g., 

parentheses in programming 

languages.



 Basic idea is to use ―variables‖ to stand 

for sets of strings (i.e., languages).

 These variables are defined recursively, 

in terms of one another.

 Recursive rules (―productions‖) involve 

only concatenation.

 Alternative rules for a variable allow 

union.



Example: CFG for { 0n1n | n > 1} 

 Productions:

S -> 01

S -> 0S1

 Basis: 01 is in the language.

 Induction: if w is in the language, then 

so is 0w1.



CFG Formalism

 Terminals = symbols of the alphabet of 

the language being defined.

 Variables = nonterminals = a finite set 

of other symbols, each of which 

represents a language.

 Start symbol = the variable whose 

language is the one being defined.



Productions

 A production has the form variable -> 

string of variables and terminals.

 Convention:

 A, B, C,… are variables.

 a, b, c,… are terminals.

 …, X, Y, Z are either terminals or variables.

 …, w, x, y, z are strings of terminals only.

 , , ,… are strings of terminals and/or 

variables.



Example: Formal CFG

 Here is a formal CFG for { 0n1n | n > 1}.

 Terminals = {0, 1}.

 Variables = {S}.

 Start symbol = S.

 Productions =

S -> 01

S -> 0S1



Derivations – Intuition

 We derive strings in the language of a 

CFG by starting with the start symbol, 

and repeatedly replacing some variable 

A by the right side of one of its 

productions.

 That is, the ―productions for A‖ are those 

that have A on the left side of the ->.



Derivations – Formalism
 We say A =>  if A ->  is a 

production.

 Example: S -> 01; S -> 0S1.

 S => 0S1 => 00S11 => 000111.



Iterated Derivation

 =>* means ―zero or more derivation 

steps.‖

 Basis:  =>*  for any string .

 Induction: if  =>*  and  => , then 

=>* .



Example: Iterated Derivation

 S -> 01; S -> 0S1.

 S => 0S1 => 00S11 => 000111.

 So S =>* S; S =>* 0S1; S =>* 00S11; S 

=>* 000111.



Sentential Forms

 Any string of variables and/or terminals 

derived from the start symbol is called a 

sentential form.

 Formally,  is a sentential form iff       S 

=>* .



Language of a Grammar

 If G is a CFG, then L(G), the language 

of G, is {w | S =>* w}.

 Note: w must be a terminal string, S is the 

start symbol.

 Example: G has productions S -> ε and 

S -> 0S1.

 L(G) = {0n1n | n > 0}. Note: ε is a legitimate

right side.



Context-Free Languages

 A language that is defined by some 

CFG is called a context-free language.

 There are CFL’s that are not regular 

languages, such as the example just 

given.

 But not all languages are CFL’s.

 Intuitively: CFL’s can count two things, 

not three.



BNF Notation

 Grammars for programming languages 

are often written in BNF (Backus-Naur 

Form ).

 Variables are words in <…>; Example: 

<statement>.

 Terminals are often multicharacter 

strings indicated by boldface or 

underline; Example: while or WHILE.



BNF Notation – (2)

 Symbol ::= is often used for ->.

 Symbol | is used for ―or.‖

 A shorthand for a list of productions with 

the same left side.

 Example: S -> 0S1 | 01 is shorthand for 

S -> 0S1 and S -> 01.



BNF Notation – Kleene 

Closure

 Symbol … is used for ―one or more.‖

 Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9

<unsigned integer> ::= <digit>… 

 Note: that’s not exactly the * of RE’s.

 Translation: Replace … with a new 

variable A and productions A -> A | .



Example: Kleene Closure

 Grammar for unsigned integers can be 

replaced by:

U -> UD | D

D -> 0|1|2|3|4|5|6|7|8|9



BNF Notation: Optional Elements

 Surround one or more symbols by […] 

to make them optional.

 Example: <statement> ::= if <condition> 

then <statement> [; else <statement>]

 Translation: replace [] by a new 
variable A with productions A ->  | ε.



Example: Optional Elements

 Grammar for if-then-else can be 

replaced by:

S -> iCtSA

A -> ;eS | ε



BNF Notation – Grouping

 Use {…} to surround a sequence of 

symbols that need to be treated as a 

unit.

 Typically, they are followed by a … for ―one 

or more.‖

 Example: <statement list> ::= 

<statement> [{;<statement>}…]



Translation: Grouping

 You may, if you wish, create a new 

variable A for {}.

 One production for A: A -> .

 Use A in place of {}.



Example: Grouping

L -> S [{;S}…]

 Replace by L -> S [A…]      A -> ;S

 A stands for {;S}.

 Then by L -> SB   B -> A… | ε A -> ;S

 B stands for [A…] (zero or more A’s).

 Finally by L -> SB      B -> C | ε

C -> AC | A      A -> ;S

 C stands for A… .



Leftmost and Rightmost 

Derivations

 Derivations allow us to replace any of 

the variables in a string.

 Leads to many different derivations of 

the same string.

 By forcing the leftmost variable (or 

alternatively, the rightmost variable) to 

be replaced, we avoid these 

―distinctions without a difference.‖



Leftmost Derivations

 Say wA =>lm w if w is a string of 

terminals only and A ->  is a 

production.

 Also,  =>*lm  if  becomes  by a 

sequence of 0 or more =>lm steps.



Example: Leftmost Derivations

 Balanced-parentheses grammmar:

S -> SS | (S) | ()

 S =>lm SS =>lm (S)S =>lm (())S =>lm (())()

 Thus, S =>*lm (())()

 S => SS => S() => (S)() => (())() is a 

derivation, but not a leftmost derivation.



Rightmost Derivations

 Say Aw =>rm w if w is a string of 

terminals only and A ->  is a 

production.

 Also,  =>*rm  if  becomes  by a 

sequence of 0 or more =>rm steps.



Example: Rightmost Derivations

 Balanced-parentheses grammmar:

S -> SS | (S) | ()

 S =>rm SS =>rm S() =>rm (S)() =>rm (())()

 Thus, S =>*rm (())()

 S => SS => SSS => S()S => ()()S => 

()()() is neither a rightmost nor a leftmost 

derivation.



Parse Trees

 Parse trees are trees labeled by 

symbols of a particular CFG.

 Leaves: labeled by a terminal or ε.

 Interior nodes: labeled by a variable.

 Children are labeled by the right side of a 

production for the parent.

 Root: must be labeled by the start 

symbol.



Example: Parse Tree
S -> SS | (S) | ()

S

SS

S )(

( )

( )



Yield of a Parse Tree

 The concatenation of the labels of the 

leaves in left-to-right order

 That is, in the order of a preorder traversal.

is called the yield of the parse tree.

 Example: yield of             is (())() 
S

SS

S )(

( )

( )



Parse Trees, Left- and 

Rightmost Derivations

 For every parse tree, there is a unique 

leftmost, and a unique rightmost 

derivation.

 We’ll prove:

1. If there is a parse tree with root labeled A 

and yield w, then A =>*lm w.

2. If A =>*lm w, then there is a parse tree 

with root A and yield w.



Proof – Part 1

 Induction on the height (length of the 

longest path from the root) of the tree.

 Basis: height 1.  Tree looks like

 A -> a1…an must be a              

production.

 Thus, A =>*lm a1…an.

A

a1 an. . .



Part 1 – Induction

 Assume (1) for trees of height < h, and 

let this tree have height h:

 By IH, Xi =>*lm wi.

 Note: if Xi is a terminal, then                   Xi

= wi.

 Thus, A =>lm X1…Xn =>*lm w1X2…Xn

=>*lm w1w2X3…Xn =>*lm … =>*lm

w1…wn.

A

X1 Xn. . .

w1 wn



Proof: Part 2

 Given a leftmost derivation of a terminal 

string, we need to prove the existence 

of a parse tree.

 The proof is an induction on the length 

of the derivation.



Part 2 – Basis

 If A =>*lm a1…an by a one-step 

derivation, then there must be a parse 

tree A

a1 an. . .



Part 2 – Induction

 Assume (2) for derivations of fewer than 

k > 1 steps, and let A =>*lm w be a k-

step derivation.

 First step is A =>lm X1…Xn.

 Key point: w can be divided so the first 

portion is derived from X1, the next is 

derived from X2, and so on.

 If Xi is a terminal, then wi = Xi.



Induction – (2)

 That is, Xi =>*lm wi for all i such that Xi is 

a variable.

 And the derivation takes fewer than k 

steps.

 By the IH, if Xi is a variable, then there 

is a parse tree with root Xi and yield wi.

 Thus, there is a parse tree
A

X1 Xn. . .

w1 wn



Parse Trees and Rightmost 

Derivations

 The ideas are essentially the mirror 

image of the proof for leftmost 

derivations.

 Left to the imagination.



Parse Trees and Any 

Derivation

 The proof that you can obtain a parse 

tree from a leftmost derivation doesn’t 

really depend on ―leftmost.‖

 First step still has to be A => X1…Xn.

 And w still can be divided so the first 

portion is derived from X1, the next is 

derived from X2, and so on.



Ambiguous Grammars

 A CFG is ambiguous if there is a string 

in the language that is the yield of two 

or more parse trees.

 Example: S -> SS | (S) | ()

 Two parse trees for ()()() on next slide.



Example – Continued

S

SS

S S

( )

S

SS

SS

( )( )

( ) ( )

( )



Ambiguity, Left- and 

Rightmost Derivations

 If there are two different parse trees, 

they must produce two different leftmost 

derivations by the construction given in 

the proof.

 Conversely, two different leftmost 

derivations produce different parse 

trees by the other part of the proof.

 Likewise for rightmost derivations.



Ambiguity, etc. – (2)

 Thus, equivalent definitions of 

―ambiguous grammar’’ are:

1. There is a string in the language that has 

two different leftmost derivations.

2. There is a string in the language that has 

two different rightmost derivations.



Ambiguity is a Property of 

Grammars, not Languages

 For the balanced-parentheses 

language, here is another CFG, which is 

unambiguous.

B -> (RB | ε

R -> ) | (RR

B, the start symbol,

derives balanced strings.

R generates strings that

have one more right paren

than left.



Example: Unambiguous Grammar

B -> (RB | ε      R -> ) | (RR

 Construct a unique leftmost derivation for 

a given balanced string of parentheses by 

scanning the string from left to right.

 If we need to expand B, then use B -> (RB if 
the next symbol is ―(‖ and ε if at the end.

 If we need to expand R, use R -> ) if the next 

symbol is ―)‖ and (RR if it is ―(‖.



The Parsing Process

Remaining Input:

(())()

Steps of leftmost 

derivation:

B

Next

symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:

())()

Steps of leftmost 

derivation:

B

(RB
Next

symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:

))()

Steps of leftmost 

derivation:

B

(RB

((RRB
Next

symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:

)()

Steps of leftmost 

derivation:

B

(RB

((RRB

(()RB

Next

symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:

()

Steps of leftmost 

derivation:

B

(RB

((RRB

(()RB

(())B

Next

symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:

)

Steps of leftmost 

derivation:

B (())(RB

(RB

((RRB

(()RB

(())B

Next

symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input: Steps of leftmost 

derivation:

B (())(RB

(RB (())()B

((RRB

(()RB

(())B

Next

symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input: Steps of leftmost 

derivation:

B (())(RB

(RB (())()B

((RRB (())()

(()RB

(())B

Next

symbol

B -> (RB | ε      R -> ) | (RR



LL(1) Grammars

 As an aside, a grammar such B -> (RB | ε      

R -> ) | (RR, where you can always figure 

out the production to use in a leftmost 

derivation by scanning the given string 

left-to-right and looking only at the next 

one symbol is called LL(1).

 ―Leftmost derivation, left-to-right scan, one 

symbol of lookahead.‖



LL(1) Grammars – (2)

 Most programming languages have 

LL(1) grammars.

 LL(1) grammars are never ambiguous.



Inherent Ambiguity

 It would be nice if for every ambiguous 

grammar, there were some way to ―fix‖ 

the ambiguity, as we did for the 

balanced-parentheses grammar.

 Unfortunately, certain CFL’s are 

inherently ambiguous, meaning that 

every grammar for the language is 

ambiguous.



Example: Inherent Ambiguity

 The language {0i1j2k | i = j or j = k} is 

inherently ambiguous.

 Intuitively, at least some of the strings of 

the form 0n1n2n must be generated by 

two different parse trees, one based on 

checking the 0’s and 1’s, the other 

based on checking the 1’s and 2’s.



One Possible Ambiguous 

Grammar

S -> AB | CD

A -> 0A1 | 01

B -> 2B | 2

C -> 0C | 0

D -> 1D2 | 12

A generates equal 0’s and 1’s

B generates any number of 2’s

C generates any number of 0’s

D generates equal 1’s and 2’s

And there are two derivations of every string

with equal numbers of 0’s, 1’s, and 2’s.  E.g.:

S => AB => 01B =>012

S => CD => 0D => 012



Normal Forms for CFG’s

Eliminating Useless Variables

Removing Epsilon

Removing Unit Productions

Chomsky Normal Form



Variables That Derive Nothing

 Consider: S -> AB, A -> aA | a, B -> AB

 Although A derives all strings of a’s, B 

derives no terminal strings (can you 

prove this fact?).

 Thus, S derives nothing, and the 

language is empty.



Testing Whether a Variable 

Derives Some Terminal String

 Basis: If there is a production A -> w, 

where w has no variables, then A 

derives a terminal string.

 Induction: If there is a production       A -

> , where  consists only of terminals 

and variables known to derive a 

terminal string, then A derives a 

terminal string. 



Testing – (2)

 Eventually, we can find no more 

variables.

 An easy induction on the order in which 

variables are discovered shows that 

each one truly derives a terminal string.

 Conversely, any variable that derives a 

terminal string will be discovered by this 

algorithm.



Proof of Converse

 The proof is an induction on the height 

of the least-height parse tree by which a 

variable A derives a terminal string.

 Basis: Height = 1.  Tree looks like:

 Then the basis of the algorithm

tells us that A will be discovered.
A

a1 an. . .



Induction for Converse

 Assume IH for parse trees of height < h, 

and suppose A derives a terminal string 

via a parse tree of height h:

 By IH, those Xi’s that are

variables are discovered.

 Thus, A will also be discovered, 

because it has a right side of terminals 

and/or discovered variables.

A

X1 Xn. . .

w1 wn



Algorithm to Eliminate 

Variables That Derive Nothing

1. Discover all variables that derive 

terminal strings.

2. For all other variables, remove all 

productions in which they appear 

either on the left or the right.



Example: Eliminate Variables

S -> AB | C, A -> aA | a, B -> bB, C -> c

 Basis: A and C are identified because 

of A -> a and C -> c.

 Induction: S is identified because of   

S -> C.

 Nothing else can be identified.

 Result: S -> C, A -> aA | a, C -> c



Unreachable Symbols

 Another way a terminal or variable 

deserves to be eliminated is if it cannot 

appear in any derivation from the start 

symbol.

 Basis: We can reach S (the start symbol).

 Induction: if we can reach A, and there is a 

production A -> , then we can reach all 

symbols of .



Unreachable Symbols – (2)

 Easy inductions in both directions show 

that when we can discover no more 

symbols, then we have all and only the 

symbols that appear in derivations from S.

 Algorithm: Remove from the grammar all 

symbols not discovered reachable from S 

and all productions that involve these 

symbols. 



Eliminating Useless Symbols

 A symbol is useful if it appears in 

some derivation of some terminal 

string from the start symbol.

 Otherwise, it is useless.

Eliminate all useless symbols by:

1. Eliminate symbols that derive no terminal 

string.

2. Eliminate unreachable symbols.



Example: Useless Symbols – (2)

S -> AB, A -> C, C -> c, B -> bB

 If we eliminated unreachable symbols 

first, we would find everything is 

reachable.

 A, C, and c would never get eliminated.



Why It Works

 After step (1), every symbol remaining 

derives some terminal string.

 After step (2) the only symbols 

remaining are all derivable from S.

 In addition, they still derive a terminal 

string, because such a derivation can 

only involve symbols reachable from S.



Epsilon Productions

 We can almost avoid using productions of 
the form A -> ε (called ε-productions ).

 The problem is that ε cannot be in the 

language of any grammar that has no ε–

productions.

 Theorem: If L is a CFL, then L-{ε} has a 

CFG with no ε-productions.



Nullable Symbols

 To eliminate ε-productions, we first 

need to discover the nullable variables
= variables A such that A =>* ε.

 Basis: If there is a production A -> ε, 

then A is nullable.

 Induction: If there is a production       A -

> , and all symbols of  are nullable, 

then A is nullable.



Example: Nullable Symbols

S -> AB, A -> aA | ε, B -> bB | A

 Basis: A is nullable because of A -> ε.

 Induction: B is nullable because of      B 

-> A.

 Then, S is nullable because of S -> AB.



Proof of Nullable-Symbols 

Algorithm

 The proof that this algorithm finds all 

and only the nullable variables is very 

much like the proof that the algorithm 

for symbols that derive terminal strings 

works.

 Do you see the two directions of the 

proof?

 On what is each induction?



Eliminating ε-Productions

 Key idea: turn each production            A 

-> X1…Xn into a family of productions.

 For each subset of nullable X’s, there is 

one production with those eliminated 

from the right side ―in advance.‖

 Except, if all X’s are nullable, do not make 
a production with ε as the right side.



Example: Eliminating ε-

Productions

S -> ABC, A -> aA | ε, B -> bB | ε, C -> ε

 A, B, C, and S are all nullable.

 New grammar:

S -> ABC | AB | AC | BC | A | B | C

A -> aA | a

B -> bB | b
Note: C is now useless.

Eliminate its productions.



Why it Works

 Prove that for all variables A:

1. If w  ε and A =>*old w, then A =>*new w.

2. If A =>*new w then w  ε and A =>*old w.

 Then, letting A be the start symbol 
proves that L(new) = L(old) – {ε}.

 (1) is an induction on the number of 

steps by which A derives w in the old 

grammar.



Proof of 1 – Basis

 If the old derivation is one step, then   A 

-> w must be a production.

 Since w  ε, this production also 

appears in the new grammar.

 Thus, A =>new w.



Proof of 1 – Induction

 Let A =>*old w be an n-step derivation, 

and assume the IH for derivations of 

less than n steps.

 Let the first step be A =>old X1…Xn.

 Then w can be broken into w = w1…wn,

 where Xi =>*old wi, for all i, in fewer than 

n steps. 



Induction – Continued

 By the IH, if wi  ε, then Xi =>*new wi.

 Also, the new grammar has a 

production with A on the left, and just 
those Xi’s on the right such that wi  ε.

 Note: they all can’t be ε, because w  ε.

 Follow a use of this production by the 

derivations Xi =>*new wi to show that A 

derives w in the new grammar.



Proof of Converse

 We also need to show part (2) – if w is 

derived from A in the new grammar, 

then it is also derived in the old.

 Induction on number of steps in the 

derivation.

 We’ll leave the proof for reading in the 

text.



Unit Productions

 A unit production is one whose right 

side consists of exactly one variable.

 These productions can be eliminated.

 Key idea: If A =>* B by a series of unit 

productions, and B ->  is a non-unit-

production, then add production A -> .

 Then, drop all unit productions.



Unit Productions – (2)

 Find all pairs (A, B) such that A =>* B 

by a sequence of unit productions only.

 Basis: Surely (A, A).

 Induction: If we have found (A, B), and 

B -> C is a unit production, then add (A, 

C).



Proof That We Find Exactly 

the Right Pairs

 By induction on the order in which pairs 

(A, B) are found, we can show A =>* B 

by unit productions.

 Conversely, by induction on the number 

of steps in the derivation by unit 

productions of A =>* B, we can show 

that the pair (A, B) is discovered.



Proof The the Unit-Production-

Elimination Algorithm Works

 Basic idea: there is a leftmost derivation 

A =>*lm w in the new grammar if and 

only if there is such a derivation in the 

old.

 A sequence of unit productions and a 

non-unit production is collapsed into a 

single production of the new grammar.



Cleaning Up a Grammar

 Theorem: if L is a CFL, then there is a 
CFG for L – {ε} that has:

1. No useless symbols.

2. No ε-productions.

3. No unit productions.

 I.e., every right side is either a single 

terminal or has length > 2.



Cleaning Up – (2)

 Proof: Start with a CFG for L.

 Perform the following steps in order:

1. Eliminate ε-productions.

2. Eliminate unit productions.

3. Eliminate variables that derive no 

terminal string.

4. Eliminate variables not reached from the 

start symbol. Must be first.  Can create

unit productions or useless

variables.



Chomsky Normal Form

 A CFG is said to be in Chomsky 

Normal Form if every production is of 

one of these two forms:

1. A -> BC (right side is two variables).

2. A -> a (right side is a single terminal).

 Theorem: If L is a CFL, then L – {ε} 

has a CFG in CNF.



Proof of CNF Theorem

 Step 1: ―Clean‖ the grammar, so every 

production right side is either a single 

terminal or of length at least 2.

 Step 2: For each right side  a single 

terminal, make the right side all variables.

 For each terminal a create new variable Aa

and production Aa -> a.

 Replace a by Aa in right sides of length > 2.



Example: Step 2

 Consider production A -> BcDe.

 We need variables Ac and Ae. with 

productions Ac -> c and Ae -> e.

 Note: you create at most one variable for 

each terminal, and use it everywhere it is 

needed.

 Replace A -> BcDe by A -> BAcDAe.



CNF Proof – Continued

 Step 3: Break right sides longer than 2 

into a chain of productions with right 

sides of two variables.

 Example: A -> BCDE is replaced by     

A -> BF, F -> CG, and G -> DE.

 F and G must be used nowhere else.



Example of Step 3 – Continued

 Recall A -> BCDE is replaced by          

A -> BF, F -> CG, and G -> DE.

 In the new grammar, A => BF => BCG 

=> BCDE.

 More importantly: Once we choose to 

replace A by BF, we must continue to 

BCG and BCDE.

 Because F and G have only one 

production.



CNF Proof – Concluded

 We must prove that Steps 2 and 3 

produce new grammars whose 

languages are the same as the previous 

grammar.

 Proofs are of a familiar type and involve 

inductions on the lengths of derivations.



The Pumping Lemma for 

CFL’s

Statement

Applications



Intuition

 Recall the pumping lemma for regular 

languages.

 It told us that if there was a string long 

enough to cause a cycle in the DFA for 

the language, then we could ―pump‖ the 

cycle and discover an infinite sequence 

of strings that had to be in the language.



Intuition – (2)

 For CFL’s the situation is a little more 

complicated.

 We can always find two pieces of any 

sufficiently long string to ―pump‖ in 

tandem.

 That is: if we repeat each of the two pieces 

the same number of times, we get another 

string in the language.



Statement of the CFL Pumping 

Lemma

For every context-free language L

There is an integer n, such that

For every string z in L of length > n

There exists z = uvwxy such that:

1. |vwx| < n.

2. |vx| > 0.

3. For all i > 0, uviwxiy is in L.



Proof of the Pumping Lemma

 Start with a CNF grammar for L – {ε}.

 Let the grammar have m variables.

 Pick n = 2m.

 Let |z| > n.

 We claim (―Lemma 1 ‖) that a parse tree 

with yield z must have a path of length 

m+2 or more.



Proof of Lemma 1

 If all paths in the parse tree of a CNF 

grammar are of length < m+1, then the 

longest yield has length 2m-1, as in:

m variables

one terminal

2m-1 terminals



Back to the Proof of the 

Pumping Lemma

 Now we know that the parse tree for z 

has a path with at least m+1 variables.

 Consider some longest path.

 There are only m different variables, so 

among the lowest m+1 we can find two 

nodes with the same label, say A.

 The parse tree thus looks like:



Parse Tree in the Pumping-

Lemma Proof

< 2m = n because a

longest path chosen

A

A

u v yxw

Can’t both
be ε.



Pump Zero Times

u y

A

v x

A

w
u y

A

w



Pump Twice

u y

A

v x

A

w
u y

A

w

A

v x

A

v x



Pump Thrice

u y

A

v x

A

w
u y

A

w

A

v x

A

v x

A

v x

Etc., Etc.



Using the Pumping Lemma

 Non-CFL’s typically involve trying to 

match two pairs of counts or match two 

strings.

 Example: The text uses the pumping 

lemma to show that {ww | w in (0+1)*} is 

not a CFL.



Using the Pumping Lemma – (2)

 {0i10i | i > 1} is a CFL.

 We can match one pair of counts.

 But L = {0i10i10i | i > 1} is not.

 We can’t match two pairs, or three counts 

as a group.

 Proof using the pumping lemma.

 Suppose L were a CFL.

 Let n be L’s pumping-lemma constant.



Using the Pumping Lemma – (3)

 Consider z = 0n10n10n.

 We can write z = uvwxy, where      |vwx| 

< n, and |vx| > 1.

 Case 1: vx has no 0’s.

 Then at least one of them is a 1, and uwy 

has at most one 1, which no string in L 

does.



Using the Pumping Lemma – (4)

 Still considering z = 0n10n10n.

 Case 2: vx has at least one 0.

 vwx is too short (length < n) to extend to all 

three blocks of 0’s in 0n10n10n.

 Thus, uwy has at least one block of n 0’s, 

and at least one block with fewer than n 

0’s.

 Thus, uwy is not in L.



Properties of Context-Free 

Languages

Decision Properties

Closure Properties



Summary of Decision Properties

 As usual, when we talk about ―a CFL‖ 

we really mean ―a representation for 

the CFL, e.g., a CFG or a PDA 

accepting by final state or empty stack.

 There are algorithms to decide if:

1. String w is in CFL L.

2. CFL L is empty.

3. CFL L is infinite.



Non-Decision Properties

 Many questions that can be decided for 

regular sets cannot be decided for CFL’s.

 Example: Are two CFL’s the same?

 Example: Are two CFL’s disjoint?

 How would you do that for regular languages?

 Need theory of Turing machines and 

decidability to prove no algorithm exists.



Testing Emptiness

 We already did this.

 We learned to eliminate variables that 

generate no terminal string.

 If the start symbol is one of these, then 

the CFL is empty; otherwise not.



Testing Membership

 Want to know if string w is in L(G).

 Assume G is in CNF.

 Or convert the given grammar to CNF.

 w = ε is a special case, solved by testing if 

the start symbol is nullable.

 Algorithm (CYK ) is a good example of 

dynamic programming and runs in time 

O(n3), where n = |w|.



CYK Algorithm

 Let w = a1…an.

 We construct an n-by-n triangular array 

of sets of variables.

 Xij = {variables A | A =>* ai…aj}.

 Induction on j–i+1.

 The length of the derived string.

 Finally, ask if S is in X1n.



CYK Algorithm – (2)

 Basis: Xii = {A | A -> ai is a production}.

 Induction: Xij = {A | there is a production 

A -> BC and an integer k, with i < k < j, 

such that B is in Xik and C is in Xk+1,j.



Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C}    X22={B,C}    X33={A,C}    X44={B,C}    X55={A,C}

X12={B,S} X23={A}      X34={B,S}     X45={A}



Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C}    X22={B,C}    X33={A,C}    X44={B,C}    X55={A,C}

X12={B,S} X23={A}      X34={B,S}     X45={A}

X13={}
Yields nothing



Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C}    X22={B,C}    X33={A,C}    X44={B,C}    X55={A,C}

X12={B,S} X23={A}      X34={B,S}     X45={A}

X13={A} X24={B,S}    X35={A}



Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C}    X22={B,C}    X33={A,C}    X44={B,C}    X55={A,C}

X12={B,S} X23={A}      X34={B,S}     X45={A}

X13={A} X24={B,S}    X35={A}

X14={B,S}



Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C}    X22={B,C}    X33={A,C}    X44={B,C}    X55={A,C}

X12={B,S} X23={A}      X34={B,S}     X45={A}

X13={A} X24={B,S}    X35={A}

X14={B,S} X25={A}

X15={A}



Testing Infiniteness

 The idea is essentially the same as for 

regular languages.

 Use the pumping lemma constant n.

 If there is a string in the language of 

length between n and 2n-1, then the 

language is infinite; otherwise not.

 Let’s work this out in class.



Closure Properties of CFL’s

 CFL’s are closed under union, 

concatenation, and Kleene closure.

 Also, under reversal, homomorphisms 

and inverse homomorphisms.

 But not under intersection or difference.



Closure of CFL’s Under Union

 Let L and M be CFL’s with grammars G 

and H, respectively.

 Assume G and H have no variables in 

common.

 Names of variables do not affect the 

language.

 Let S1 and S2 be the start symbols of G 

and H.



Closure Under Union – (2)

 Form a new grammar for L  M by 

combining all the symbols and 

productions of G and H.

 Then, add a new start symbol S.

 Add productions S -> S1 | S2.



Closure Under Union – (3)

 In the new grammar, all derivations start 

with S.

 The first step replaces S by either S1 or 

S2.

 In the first case, the result must be a 

string in L(G) = L, and in the second 

case a string in L(H) = M.



Closure of CFL’s Under 

Concatenation

 Let L and M be CFL’s with grammars G 

and H, respectively.

 Assume G and H have no variables in 

common.

 Let S1 and S2 be the start symbols of G 

and H.



Closure Under Concatenation – (2)

 Form a new grammar for LM by starting 

with all symbols and productions of G 

and H.

 Add a new start symbol S.

 Add production S -> S1S2.

 Every derivation from S results in a 

string in L followed by one in M.



Closure Under Star

 Let L have grammar G, with start symbol S1.

 Form a new grammar for L* by introducing to 

G a new start symbol S and the productions 
S -> S1S | ε.

 A rightmost derivation from S generates a 

sequence of zero or more S1’s, each of 

which generates some string in L.



Closure of CFL’s Under 

Reversal

 If L is a CFL with grammar G, form a 

grammar for LR by reversing the right 

side of every production.

 Example: Let G have S -> 0S1 | 01.

 The reversal of L(G) has grammar       S 

-> 1S0 | 10. 



Closure of CFL’s Under 

Homomorphism

 Let L be a CFL with grammar G.

 Let h be a homomorphism on the 

terminal symbols of G.

 Construct a grammar for h(L) by 

replacing each terminal symbol a by 

h(a).



Example: Closure Under 

Homomorphism

 G has productions S -> 0S1 | 01.

 h is defined by h(0) = ab, h(1) = ε.

 h(L(G)) has the grammar with 

productions S -> abS | ab.



Closure of CFL’s Under 

Inverse Homomorphism

 Here, grammars don’t help us.

 But a PDA construction serves nicely.

 Intuition: Let L = L(P) for some PDA P.

 Construct PDA P’ to accept h-1(L).

 P’ simulates P, but keeps, as one 

component of a two-component state a 

buffer that holds the result of applying h 

to one input symbol.



Architecture of P’

Buffer

State of P

Input:  0 0 1 1
h(0)

Stack

of P

Read first remaining

symbol in buffer as

if it were input to P.



Formal Construction of P’

 States are pairs [q, b], where:

1. q is a state of P.

2. b is a suffix of h(a) for some symbol a.

 Thus, only a finite number of possible values 

for b.

 Stack symbols of P’ are those of P.

 Start state of P’ is [q0 ,ε].



Construction of P’ – (2)

 Input symbols of P’ are the symbols to 

which h applies.

 Final states of P’ are the states [q, ε] 

such that q is a final state of P.



Transitions of P’

1. δ’([q, ε], a, X) = {([q, h(a)], X)} for any 

input symbol a of P’ and any stack 

symbol X.

 When the buffer is empty, P’ can reload it.

2. δ’([q, bw], ε, X) contains ([p, w], ) if 

δ(q, b, X) contains (p, ), where b is 

either an input symbol of P or ε.

 Simulate P from the buffer.



Proving Correctness of P’

 We need to show that L(P’) = h-1(L(P)).

 Key argument: P’ makes the transition 
([q0, ε], w, Z0)⊦*([q, x], ε, )              if 

and only if P makes transition                  
(q0, y, Z0) ⊦*(q, ε, ), h(w) = yx, and x is 

a suffix of the last symbol of w.

 Proof in both directions is an induction 

on the number of moves made.



Nonclosure Under Intersection

 Unlike the regular languages, the class of 

CFL’s is not closed under .

 We know that L1 = {0n1n2n | n > 1} is not 

a CFL (use the pumping lemma).

 However, L2 = {0n1n2i | n > 1, i > 1} is.

 CFG: S -> AB, A -> 0A1 | 01, B -> 2B | 2.

 So is L3 = {0i1n2n | n > 1, i > 1}.

 But L1 = L2  L3.



Nonclosure Under Difference

 We can prove something more general:

 Any class of languages that is closed 

under difference is closed under 

intersection.

 Proof: L  M = L – (L – M).

 Thus, if CFL’s were closed under 

difference, they would be closed under 

intersection, but they are not.



Intersection with a Regular 

Language

 Intersection of two CFL’s need not be 

context free.

 But the intersection of a CFL with a 

regular language is always a CFL.

 Proof involves running a DFA in parallel 

with a PDA, and noting that the 

combination is a PDA.

 PDA’s accept by final state.



DFA and PDA in Parallel

DFA

PDA

S

t

a

c

k

Input
Accept

if both

accept

Looks like the

state of one PDA



Formal Construction

 Let the DFA A have transition function δA.

 Let the PDA P have transition function δP.

 States of combined PDA are [q,p], where 

q is a state of A and p a state of P.

 δ([q,p], a, X) contains ([δA(q,a),r], ) if 

δP(p, a, X) contains (r, ).

 Note a could be , in which case δA(q,a) = q.



Formal Construction – (2)

 Accepting states of combined PDA are 

those [q,p] such that q is an accepting 

state of A and p is an accepting state of 

P.

 Easy induction: ([q0,p0], w, Z0)⊦*  ([q,p], 

, ) if and only if δA(q0,w) = q and in P: 

(p0, w, Z0)⊦*(p, , ).
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Hierarchy of languages

Regular Languages  Finite State Machines, Regular Expression

Context Free Languages  Context Free Grammar, Push-down Automata

Regular Languages

Context-Free Languages

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages
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Pushdown Automata (PDA)

 Informally:

 A PDA is an NFA-ε with a stack.

 Transitions are modified to accommodate stack operations.

 Questions:

 What is a stack?

 How does a stack help?

 A DFA can ―remember‖ only a finite amount of information, whereas a PDA can 

―remember‖ an infinite amount of (certain types of) information, in one memory-

stack
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 Example:

{0n1n | 0=<n} is not regular, but

{0n1n | 0nk, for some fixed k} is regular, for any fixed k.

 For k=3:

L = {ε, 01, 0011, 000111}

0/1

q0

q7

0
q1

11

q2

1
q5

0
q3

11

q4

0

1

0
0

0/1 q6

0
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 In a DFA, each state remembers a finite amount of information.

 To get {0n1n | 0n} with a DFA would require an infinite number of 

states using the preceding technique.

 An infinite stack solves the problem for {0n1n | 0n} as follows:

 Read all 0’s and place them on a stack

 Read all 1’s and match with the corresponding 0’s on the stack

 Only need two states to do this in a PDA

 Similarly for {0n1m0n+m | n,m0}
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Formal Definition of a PDA

 A pushdown automaton (PDA) is a seven-tuple:

M = (Q, Σ, Г, δ, q0, z0, F)

Q A finite set of states

Σ A finite input alphabet

Г A finite stack alphabet

q0 The initial/starting state, q0 is in Q

z0 A starting stack symbol, is in Г    // need not always remain at the bottom 

of stack

F A set of final/accepting states, which is a subset of Q

δ A transition function, where

δ: Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*
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 Consider the various parts of δ:

Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*

 Q on the LHS means that at each step in a computation, a PDA must 

consider its’ current state.

 Г on the LHS means that at each step in a computation, a PDA must 

consider the symbol on top of its’ stack.

 Σ U {ε} on the LHS means that at each step in a computation, a PDA may or 

may not consider the current input symbol, i.e., it may have epsilon 

transitions.

 ―Finite subsets‖ on the RHS means that at each step in a computation, a 

PDA may have several options.

 Q on the RHS means that each option specifies a new state.

 Г* on the RHS means that each option specifies zero or more stack 

symbols that will replace the top stack symbol, but in a specific sequence.
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 Two types of PDA transitions:

δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

 Current state is q

 Current input symbol is a

 Symbol currently on top of the stack z

 Move to state pi from q

 Replace z with γi on the stack (leftmost symbol on top)

 Move the input head to the next input symbol

:

q

p1

p2

pm

a/z/ γ1

a/z/ γ2

a/z/ γm
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 Two types of PDA transitions:

δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

 Current state is q

 Current input symbol is not considered

 Symbol currently on top of the stack z

 Move to state pi from q

 Replace z with γi on the stack (leftmost symbol on top)

 No input symbol is read

:

q

p1

p2

pm

ε/z/ γ1

ε/z/ γ2

ε/z/ γm
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 Example: 0n1n, n>=0

M = ({q1, q2}, {0, 1}, {L, #}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, L#)}   // stack order: L on top, then # below

(2) δ(q1, 1, #) = Ø // illegal, string rejected, When will it 

happen?

(3) δ(q1, 0, L) = {(q1, LL)}

(4) δ(q1, 1, L) = {(q2, ε)}

(5) δ(q2, 1, L) = {(q2, ε)}

(6) δ(q2, ε, #) = {(q2, ε)} //if ε  read & stack hits bottom, accept

(7) δ(q2, ε, L) = Ø // illegal, string rejected

(8) δ(q1, ε, #) = {(q2, ε)} // n=0, accept

 Goal: (acceptance)

 Read the entire input string

 Terminate with an empty stack

 Informally, a string is accepted if there exists a computation that uses 

up all the input and leaves the stack empty.

 How many rules should be there in delta?
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 Language: 0n1n, n>=0

δ:

(1) δ(q1, 0, #) = {(q1, L#)}   // stack order: L on top, then # below

(2) δ(q1, 1, #) = Ø // illegal, string rejected, When will it happen?

(3) δ(q1, 0, L) = {(q1, LL)}

(4) δ(q1, 1, L) = {(q2, ε)}

(5) δ(q2, 1, L) = {(q2, ε)}

(6) δ(q2, ε, #) = {(q2, ε)} //if ε  read & stack hits bottom, accept

(7) δ(q2, ε, L) = Ø // illegal, string rejected

(8) δ(q1, ε, #) = {(q2, ε)} // n=0, accept

 0011

 (q1, 0 011, #) |-

(q1, 0 11, L#) |-

(q1, 1 1, LL#) |-

(q2, 1, L#) |-

(q2, e, #) |-

(q2, e, e):    accept

 011

 (q1, 0 11, #) |-

(q1, 1 1, L#) |-

(q2, 1, #) |-

Ø :   reject

 Try    001
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 Example: balanced parentheses, 

 e.g. in-language: ((())()),  or  (())(), but not-in-language: ((())

M = ({q1}, {―(―, ―)‖}, {L, #}, δ, q1, #, Ø)

δ:

(1) δ(q1, (, #) = {(q1, L#)}   // stack order: L-on top-then- # lower

(2) δ(q1, ), #) = Ø // illegal, string rejected

(3) δ(q1, (, L) = {(q1, LL)}

(4) δ(q1, ), L) = {(q1, ε)}

(5) δ(q1, ε, #) = {(q1, ε)} //if ε  read & stack hits bottom, accept

(6) δ(q1, ε, L) = Ø // illegal, string rejected

// What does it mean? When will it 

happen?

 Goal: (acceptance)

 Read the entire input string

 Terminate with an empty stack

 Informally, a string is accepted if there exists a computation that uses 

up all the input and leaves the stack empty.

 How many rules should be in delta?
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 Transition Diagram:

 Example Computation:

Current Input Stack Transition

(()) # -- initial status

()) L# (1) - Could have applied rule 

(5), but

)) LL# (3) it would have done no 

good

) L# (4)

ε # (4)

ε - (5)

q0

(, # | L#

ε, # | ε (, L | LL

), L | ε
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 Example PDA #1: For the language {x | x = wcwr and w in {0,1}*, but 

sigma={0,1,c}}

 Is this a regular language?

 Note: length |x| is odd

M = ({q1, q2}, {0, 1, c}, {#, B, G}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

 Notes:

 Stack grows leftwards

 Only rule #8 is non-deterministic.

 Rule #8 is used to pop the final stack symbol off at the end of a computation.
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 Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied Rules Applicable

q1 01c10 # (1)

q1 1c10 B# (1) (10)

q1 c10 GB# (10) (6)

q2 10 GB# (6) (12)

q2 0 B# (12) (7)

q2 ε # (7) (8)

q2 ε ε (8) -
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 Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied

q1 1c1 #

q1 c1 G# (9)

q2 1 G# (6)

q2 ε # (12)

q2 ε ε (8)

 Questions:

 Why isn’t δ(q2, 0, G) defined?

 Why isn’t δ(q2, 1, B) defined?

 TRY:   11c1
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 Example PDA #2: For the language {x | x = wwr and w in {0,1}*}

 Note: length |x| is even

M = ({q1, q2}, {0, 1}, {#, B, G}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, B#)}

(2) δ(q1, 1, #) = {(q1, G#)} 

(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}

(4) δ(q1, 0, G) = {(q1, BG)} (7) δ(q2, 0, B) = {(q2, ε)} 

(5) δ(q1, 1, B) = {(q1, GB)} (8) δ(q2, 1, G) = {(q2, ε)} 

(9) δ(q1, ε, #) = {(q2, #)}

(10) δ(q2, ε, #) = {(q2, ε)}

 Notes:

 Rules #3 and #6 are non-deterministic: two options each

 Rules #9 and #10 are used to pop the final stack symbol off at the end of a 

computation.
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 Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}

(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)} 

(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}

(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}

(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied Rules Applicable

q1 000000 # (1), (9)

q1 00000 B# (1) (3), both options

q1 0000 BB# (3) option #1 (3), both options

q1 000 BBB# (3) option #1 (3), both options

q2 00 BB# (3) option #2 (7)

q2 0 B# (7) (7)

q2 ε # (7) (10)

q2 ε ε (10)

 Questions:

 What is rule #10 used for?

 What is rule #9 used for?

 Why do rules #3 and #6 have options?

 Why don’t rules #4 and #5 have similar options? [transition not possible if the previous 
input symbol was different]
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 Negative Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}

(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)} 

(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}

(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}

(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied

q1 000   #

q1 00   B# (1)

q1 0   BB# (3) option #1

(q2, 0, #) by option 2

q1 ε BBB# (3) option #1 -crashes, no-rule to apply-

(q2, ε, B#) by option 2

-rejects: end of string but not empty stack-
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 Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}

(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)} 

(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}

(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}

(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied

q1 010010 #

q1 10010 B# (1) From (1) and (9)

q1 0010 GB# (5)

q1 010 BGB# (4)

q2 10 GB# (3) option #2

q2 0 B# (8)

q2 ε # (7)

q2 ε ε (10)

 Exercises:

 0011001100   // how many total options the machine (or you!) may need to try before 
rejection?

 011110

 0111
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Formal Definitions for PDAs

 Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA.

 Definition: An instantaneous description (ID) is a triple (q, w, γ), where q is in 

Q, w is in Σ* and γ is in Г*.

 q is the current state

 w is the unused input

 γ is the current stack contents

 Example: (for PDA #2)

(q1, 111, GBR) (q1, 11, GGBR)

(q1, 111, GBR) (q2, 11, BR)

(q1, 000, GR) (q2, 00, R)
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 Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA.

 Definition: Let a be in Σ U {ε}, w be in Σ*, z be in Г, and α and β both be in Г*. 

Then:

(q, aw, zα) |—M (p, w, βα)

if δ(q, a, z) contains (p, β).

 Intuitively, if I and J are instantaneous descriptions, then I |— J means that J 

follows from I by one transition.
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 Examples: (PDA #2)

(q1, 111, GBR) |— (q1, 11, GGBR) (6) option #1, with a=1, z=G, β=GG, 

w=11, and α= BR

(q1, 111, GBR) |— (q2, 11, BR) (6) option #2, with a=1, z=G, β= ε, w=11, 

and α= BR

(q1, 000, GR) |— (q2, 00, R) Is not true, For any a, z, β, w and α

 Examples: (PDA #1)

(q1, (())), L#) |— (q1, ())),LL#) (3)
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 Definition: |—* is the reflexive and transitive closure of |—.

 I |—* I for each instantaneous description I

 If I |— J and J |—* K then I |—* K 

 Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J 

follows from I by zero or more transitions.
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 Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by 

empty stack, denoted LE(M), is the set

{w | (q0, w, z0) |—* (p, ε, ε) for some p in Q}

 Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by 

final state, denoted LF(M), is the set

{w | (q0, w, z0) |—* (p, ε, γ) for some p in F and γ in Г*}

 Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by 

empty stack and final state, denoted L(M), is the set

{w | (q0, w, z0) |—* (p, ε, ε) for some p in F}
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 Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such 

that L = LF(M2).

 Lemma 2: Let L = LF(M1) for some PDA M1. Then there exits a PDA M2 such 

that L = LE(M2).

 Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1) 

if and only if there exists a PDA M2 such that L = LE(M2).

 Corollary: The PDAs that accept by empty stack and the PDAs that accept by 

final state define the same class of languages.

 Note: Similar lemmas and theorems could be stated for PDAs that accept by 

both final state and empty stack.



Back to CFG again:

PDA equivalent to CFG

355
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 Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form

A –> aα

Where A is in V, a is in T, and α is in V*, then G is said to be in Greibach Normal 

Form (GNF).

Only one non-terminal in front.

 Example:

S –> aAB | bB

A –> aA | a

B –> bB | c Language: (aa++b)b+c

 Theorem: Let L be a CFL. Then L – {ε} is a CFL.

 Theorem: Let L be a CFL not containing {ε}. Then there exists a GNF grammar 

G such that L = L(G).
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 Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

 Proof: Assume without loss of generality that ε is not in L. The construction can 

be modified to include ε later.

Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G is in 

GNF. Construct M = (Q, Σ, Г, δ, q, z, Ø) where:

Q = {q}

Σ = T

Г = V

z = S

δ: for all a in Σ and A in Г, δ(q, a, A) contains (q, γ) 

if A –> aγ is in P or rather:

δ(q, a, A) = {(q, γ) | A –> aγ   is in P and γ is in Г*}, 

for all a in Σ and A in Г

 For a given string x in Σ* , M will attempt to simulate a leftmost derivation of x

with G.
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 Example #1: Consider the following CFG in GNF.

S –> aS G is in GNF

S –> a L(G) = a+

Construct M as:

Q = {q}

Σ = T = {a}

Г = V = {S}

z = S

δ(q, a, S) = {(q, S), (q, ε)}

δ(q, ε, S) = Ø

 Is δ complete? 
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 Example #2: Consider the following CFG in GNF.

(1) S –> aA

(2) S –> aB

(3) A –> aA G is in GNF

(4) A –> aB L(G) = a+ b+ // This looks ok to me, one, two or more a’s in the 
start

(5) B –> bB

(6) B –> b [Can you write a simpler equivalent CFG? Will it be 
GNF?]

Construct M as:

Q = {q}

Σ = T = {a, b}

Г = V = {S, A, B}

z = S

(1) δ(q, a, S) = {(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB

(2) δ(q, a, A) = {(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB

(3) δ(q, a, B) = Ø

(4) δ(q, b, S) = Ø

(5) δ(q, b, A) = Ø

(6) δ(q, b, B) = {(q, B), (q, ε)} From productions #5 and 6, B->bB, B->b

(7) δ(q, ε, S) = Ø

(8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) = Ø Is δ complete? 
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 For a string w in L(G) the PDA M will simulate a leftmost derivation of w.

 If w is in L(G) then (q, w, z0) |—* (q, ε, ε)

 If (q, w, z0) |—* (q, ε, ε) then w is in L(G)

 Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost
derivation has form:

=> t1t2…ti A1A2…Am

terminals non-terminals

 And each step in the derivation (i.e., each application of a production) adds a terminal and 
some non-terminals.

A1 –> ti+1α

=> t1t2…ti ti+1 αA1A2…Am

 Each transition of the PDA simulates one derivation step. Thus, the ith step of the PDAs’ 
computation corresponds to the ith step in a corresponding leftmost derivation with the 
grammar.

 After the ith step of the computation of the PDA, t1t2…ti+1 are the symbols that have already 
been read by the PDA and αA1A2…Amare the stack contents.
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 For each leftmost derivation of a string generated by the grammar, there is an 

equivalent accepting computation of that string by the PDA.

 Each sentential form in the leftmost derivation corresponds to an instantaneous 

description in the PDA’s corresponding computation.

 For example, the PDA instantaneous description corresponding to the sentential 

form:

=> t1t2…ti A1A2…Am

would be:

(q, ti+1ti+2…tn , A1A2…Am)
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 Example: Using the grammar from example #2:

S => aA (1)

=> aaA (3)

=> aaaA (3)

=> aaaaB (4)

=> aaaabB (5)

=> aaaabb (6)

 The corresponding computation of the PDA:

(rule#)/right-side#

 (q, aaaabb, S) |— (q, aaabb, A) (1)/1

|— (q, aabb, A) (2)/1

|— (q, abb, A) (2)/1

|— (q, bb, B) (2)/2

|— (q, b, B) (6)/1

|— (q, ε, ε) (6)/2

 String is read

 Stack is emptied

 Therefore the string is accepted by the PDA

Grammar:
(1) S –> aA
(2) S –> aB
(3) A –> aA G is in GNF
(4) A –> aB L(G) = a+b+

(5) B –> bB
(6) B –> b

(1) δ(q, a, S) = {(q, A), (q, B)}
(2) δ(q, a, A) = {(q, A), (q, B)}
(3) δ(q, a, B) = Ø
(4) δ(q, b, S) = Ø
(5) δ(q, b, A) = Ø
(6) δ(q, b, B) = {(q, B), (q, ε)}
(7) δ(q, ε, S) = Ø
(8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) = Ø
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 Another Example: Using the PDA from example #2:

(q, aabb, S) |— (q, abb, A) (1)/1

|— (q, bb, B) (2)/2

|— (q, b, B) (6)/1

|— (q, ε, ε) (6)/2

 The corresponding derivation using the grammar:

S => aA (1)

=> aaB (4)

=> aabB (5)

=> aabb (6)
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 Example #3: Consider the following CFG in GNF.

(1) S –> aABC

(2) A –> a G is in GNF

(3) B –> b

(4) C –> cAB

(5) C –> cC Language? 

Construct M as:

Q = {q}

Σ = T = {a, b, c}

Г = V = {S, A, B, C}

z = S

(1) δ(q, a, S) = {(q, ABC)} S->aABC (9) δ(q, c, S) = Ø

(2) δ(q, a, A) = {(q, ε)} A->a (10) δ(q, c, A) = Ø

(3) δ(q, a, B) = Ø (11) δ(q, c, B) = Ø

(4) δ(q, a, C) = Ø (12) δ(q, c, C) = {(q, AB), (q, C))} // C->cAB|cC

(5) δ(q, b, S) = Ø (13) δ(q, ε, S) = Ø

(6) δ(q, b, A) = Ø (14) δ(q, ε, A) = Ø

(7) δ(q, b, B) = {(q, ε)} B->b (15) δ(q, ε, B) = Ø

(8) δ(q, b, C) = Ø (16) δ(q, ε, C) = Ø

aab cc* ab
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 Notes:

 Recall that the grammar G was required to be in GNF before the construction could be 

applied.

 As a result, it was assumed at the start that ε was not in the context-free language L.

 What if ε is in L? You  need to add ε back.

 Suppose ε is in L:

1) First, let L’ = L – {ε}

Fact: If L is a CFL, then L’ = L – {ε} is a CFL.

By an earlier theorem, there is GNF grammar G such that L’ = L(G).

2) Construct a PDA M such that L’ = LE(M)

How do we modify M to accept ε?

Add δ(q, ε, S) = {(q, ε)}?      NO!!
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 Counter Example:

Consider L = {ε, b, ab, aab, aaab, …}= ε + a*b Then L’ = {b, ab, aab, aaab, 

…} = a*b

 The GNF CFG for L’:

P:

(1) S –> aS

(2) S –> b

 The PDA M Accepting L’:

Q = {q}

Σ = T = {a, b}

Г = V = {S}

z = S

δ(q, a, S) = {(q, S)}

δ(q, b, S) = {(q, ε)} 

δ(q, ε, S) = Ø

How to add ε to L‟ now?
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δ(q, a, S) = {(q, S)}

δ(q, b, S) = {(q, ε)} 

δ(q, ε, S) = Ø

 If δ(q, ε, S) = {(q, ε)} is added then:

L(M) = {ε, a, aa, aaa, …, b, ab, aab, aaab, …}, wrong!

It is like,   S -> aS | b | ε

which is wrong!

Correct grammar should be:  

(0)  S1 -> ε | S,  with new starting non-terminal S1

(1) S –> aS

(2) S –> b

For PDA, add a new Stack-bottom symbol S1, with new transitions:

δ(q, ε, S1) = {(q, ε), (q, S)},   where S was the previous stack-bottom of M

Alternatively, add a new start state q’ with transitions:

δ(q’, ε, S) = {(q’, ε), (q, S)}
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 Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

 Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M) 

= L(G).

 Can you prove it?

 First step would be to transform an arbitrary PDA to a single state PDA!

 Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff 

there exists a PDA M such that L = LE(M).

 Corollary: The PDAs define the CFLs.



Sample CFG to GNF transformation:
 0n1n, n>=1

 S -> 0S1 | 01

 GNF:

 S -> 0SS1 | 0S1

 S1 -> 1

 Note: in PDA the symbol S will float on top, rather 

than stay at the bottom!

 Acceptance of string by removing last S1 at stack 

bottom
369



INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

Computer Science and Engineering Department
IV Semester

Theory of Computation

Unit- V



Unit – V
Syllabus:

Turing machine: Turing machine, definition, model, design of Turing

machine, computable functions, recursively enumerable languages,

Church's hypothesis, counter machine, types of Turing machines

(proofs not required), linear bounded automata and context sensitive

language, Chomsky hierarchy of languages.



372

Turing Machines (TM)

 Generalize the class of CFLs:

Regular Languages

Context-Free Languages

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages
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 Another Part of the Hierarchy:

Regular Languages - ε

Context-Free Languages - ε

Context-Sensitive Languages

Recursive Languages

Non-Recursively Enumerable Languages

Recursively Enumerable Languages
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 Recursively enumerable languages are also known as type 0

languages.

 Context-sensitive languages are also known as type 1 languages.

 Context-free languages are also known as type 2 languages.

 Regular languages are also known as type 3 languages.
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 TMs model the computing capability of a general purpose computer, 
which informally can be described as:

 Effective procedure

 Finitely describable

 Well defined, discrete, ―mechanical‖ steps

 Always terminates

 Computable function

 A function computable by an effective procedure

 TMs formalize the above notion.

 Church-Turing Thesis: There is an effective procedure for solving a 
problem if and only if there is a TM that halts for all inputs and solves 
the problem.

 There are many other computing models, but all are equivalent to or 
subsumed by TMs. There is no more powerful machine (Technically cannot 
be proved).

 DFAs and PDAs do not model all effective procedures or computable 
functions, but only a subset.
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Deterministic Turing Machine (DTM)
…….. ……..

 Two-way, infinite tape, broken into cells, each containing one symbol.

 Two-way, read/write tape head.

 An input string is placed on the tape, padded to the left and right infinitely 

with blanks, read/write head is positioned at the left end of input string.

 Finite control, i.e., a program, containing the position of the read head, 

current symbol being scanned, and the current state.

 In one move, depending on the current state and the current symbol 

being scanned, the TM 1) changes state, 2) prints a symbol over the cell 

being scanned, and 3) moves its’ tape head one cell left or right.

 Many modifications possible, but Church-Turing declares equivalence of 

all.

Finite

Control

B B 0 1 1 0 0 B B
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Formal Definition of a DTM

 A DTM is a seven-tuple:

M = (Q, Σ, Γ, δ, q0, B, F)

Q A finite set of states

Σ A finite input alphabet, which is a subset of Γ– {B}

Γ A finite tape alphabet, which is a strict superset of Σ 

B A distinguished blank symbol, which is in Γ

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A next-move function, which is a mapping (i.e., may be undefined) from

Q x Γ –> Q x Γ x {L,R}

Intuitively, δ(q,s) specifies the next state, symbol to be written, and the direction 

of tape head movement by M after reading symbol s while in state q.
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 Example #1: {w | w is in {0,1}* and w ends with a 0}

0

00

10

10110

Not ε

Q = {q0, q1, q2}

Γ = {0, 1, B}

Σ = {0, 1}

F = {q2}

δ:

0 1 B

->q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, 0, R) - -

q2
* - - -

 q0 is the start state and the ―scan right‖ state, until hits B

 q1 is the verify 0 state

 q2 is the final state
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 Example #2: {0n1n | n ≥ 1}

0 1 X Y B

->q0 (q1, X, R) - - (q3, Y, R)0’s finished -

q1 (q1, 0, R)ignore1 (q2, Y, L) - (q1, Y, R) ignore2 - (more 0’s)

q2 (q2, 0, L) ignore2 - (q0, X, R) (q2, Y, L) ignore1 -

q3 - - (more 1’s) - (q3, Y, R) ignore (q4, B, R)

q4* - - - - -

 Sample Computation: (on 0011),   presume state q  looks rightward

q00011BB..  |— Xq1011

|— X0q111

|— Xq20Y1

|— q2X0Y1

|— Xq00Y1

|— XXq1Y1

|— XXYq11

|— XXq2YY

|— Xq2XYY

|— XXq0YY

|— XXYq3Y B…

|— XXYYq3 BB…

|— XXYYBq4
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Making a TM for {0n1n | n >= 1}

Try n=2 or 3 first.

• q0 is on 0, replaces with the character to X, changes state to q1, moves right

• q1 sees next 0, ignores (both 0’s and X’s) and keeps moving right

• q1 hits a 1, replaces it with Y,  state to q2, moves left

• q2 sees a Y or 0, ignores, continues left

• when q2 sees X, moves right, returns to q0 for looping step 1 through 5

• when finished, q0 sees Y (no more 0’s), changes to pre-final state q3

• q3 scans over all Y’s to ensure there is no extra 1 at the end (to crash on seeing 

any 0 or 1)

• when q3 sees B, all 0’s matched 1’s, done, changes to final state q4

• blank line for final state q4

Try n=1 next.

Make sure unbalanced 0’s and 1’s, or mixture of 0-1’s,

―crashes‖ in a state not q4, as it should be

q00011BB..  |— Xq1011

|— X0q111

|— Xq20Y1

|— q2X0Y1

|— Xq00Y1

|— XXq1Y1

|— XXYq11

|— XXq2YY

|— Xq2XYY

|— XXq0YY

|— XXYq3Y B…

|— XXYYq3 BB…

|— XXYYBq4
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 Same Example #2: {0n1n | n ≥ 1}

0 1 X Y B

q0 (q1, X, R) - - (q3, Y, R) -

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

q3 - - - (q3, Y, R) (q4, B, R)

q4 - - - - -

Logic: cross 0’s with X’s, scan right to look for corresponding 1, on finding it cross it with Y, 

and scan left to find next leftmost 0, keep iterating until no more 0’s, then scan right looking 

for B.

 The TM matches up 0’s and 1’s

 q1 is the ―scan right‖ state, looking for 1

 q2 is the ―scan left‖ state, looking for X

 q3 is ―scan right‖, looking for B

 q4 is the final state

Can you extend the machine to include n=0?

How does the input-tape look like for string epsilon?

 Other Examples:

000111 00

11 001

011
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 Roger Ballard’s TM for Example #2, without any extra Tape Symbol: {0n1n | 

n ≥ 0}

0 1 B

q0 (q1, B, R) (q4, B, R)

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 - (q3, B, L) -

q3 (q3, 0, L) (q3, 1, L) (q0, B, R)

q4
* - - -

Logic: Keep deleting 0 and corresponding 1 from extreme ends, until none left.

 q0 deletes a leftmost 0 and let q1 scan through end of string, q0 accepts on epsilon

 q1 scans over the string and makes q2 expecting 1 on the left

 q2 deletes 1 and let q3 ―scan left‖ looking for the start of current string

 q3 lets q0 start the next iteration

 q4 is the final state

Any bug?

Try on:

000111 00

11 001

011
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 And his example of a correct TM for the language that goes on infinite loop outside language: {0n1n

| n ≥ 0}

0 1 B

q0 (q1, B, R) (q3, 1, L) (q4, B, R)

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 - (q3, B, L) -

q3 (q3, 0, L) (q3, 1, L) (q0, B, R)

q4
* - - -

Logic: This machine still works correctly for all strings in the language, but

start a string with 1 (not in the language), 

and it loops on B1 for ever.
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 Exercises: Construct a DTM for each of the following.

 {w | w is in {0,1}* and w ends in 00}

 {w | w is in {0,1}* and w contains at least two 0’s}

 {w | w is in {0,1}* and w contains at least one 0 and one 1}

 Just about anything else (simple) you can think of
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Formal Definitions for DTMs

 Let M = (Q, Σ, Г, δ, q0, B, F) be a TM.

 Definition: An instantaneous description (ID) is a triple α1qα2, where:

 q, the current state, is in Q

 α1α2, is in Г*, and is the current tape contents up to the rightmost non-blank symbol, or 

the symbol to the left of the tape head, whichever is rightmost

 The tape head is currently scanning the first symbol of α2

 At the start of a computation α1= ε

 If α2= ε then a blank is being scanned

 Example: (for TM #1)

q00011 Xq1011 X0q111 Xq20Y1 q2X0Y1

Xq00Y1 XXq1Y1 XXYq11 XXq2YY Xq2XYY

XXq0YY XXYq3Y XXYYq3 XXYYBq4
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 Suppose the following is the current ID of a DTM

x1x2…xi-1qxixi+1…xn

Case 1) δ(q, xi) = (p, y, L)

(a) if i = 1 then qx1x2…xi-1xixi+1…xn |— pByx2…xi-1xixi+1…xn 

(b) else x1x2…xi-1qxixi+1…xn |— x1x2…xi-2pxi-1yxi+1…xn

 If any suffix of xi-1yxi+1…xn is blank then it is deleted.

Case 2) δ(q, xi) = (p, y, R)

x1x2…xi-1qxixi+1…xn |— x1x2…xi-1ypxi+1…xn

 If i>n then the ID increases in length by 1 symbol

x1x2…xnq |— x1x2…xnyp
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 Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. 
Then w is accepted by M iff

q0w |—* α1pα2

where p is in F and α1 and α2 are in Г*

 Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, 
denoted L(M), is the set

{w | w is in Σ* and w is accepted by M}

 Notes:

 In contrast to FA and PDAs, if a TM simply passes through a final state then 
the string is accepted.

 Given the above definition, no final state of a TM need to have any 
transitions. Henceforth, this is our assumption.

 If x is NOT in L(M) then M may enter an infinite loop, or halt in a non-
final state.

 Some TMs halt on ALL inputs, while others may not.  In either case the 
language defined by TM is still well defined.
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 Definition: Let L be a language. Then L is recursively enumerable if there 
exists a TM M such that L = L(M).

 If L is r.e. then L = L(M) for some TM M, and

 If x is in L then M halts in a final (accepting) state.

 If x is not in L then M may halt in a non-final (non-accepting) state or no transition is available, 
or loop forever.

 Definition: Let L be a language. Then L is recursive if there exists a TM M
such that L = L(M) and M halts on all inputs.

 If L is recursive then L = L(M) for some TM M, and

 If x is in L then M halts in a final (accepting) state.

 If x is not in L then M halts in a non-final (non-accepting) state or no transition is available 
(does not go to infinite loop).

Notes:

 The set of all recursive languages is a subset of the set of all recursively enumerable 
languages

 Terminology is easy to confuse: A TM is not recursive or recursively enumerable, 
rather a language is recursive or recursively enumerable.
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 Recall the Hierarchy:

Regular Languages - ε

Context-Free Languages - ε

Context-Sensitive Languages

Recursive Languages

Non-Recursively Enumerable Languages

Recursively Enumerable Languages
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 Observation: Let L be an r.e. language. Then there is an infinite list M0, M1, … 
of TMs such that L = L(Mi).

 Question: Let L be a recursive language, and M0, M1, … a list of all TMs such 
that L = L(Mi), and choose any i>=0. Does Mi always halt?

 Answer: Maybe, maybe not, but at least one in the list does.

 Question: Let L be a recursive enumerable language, and M0, M1, … a list of 
all TMs such that L = L(Mi), and choose any i>=0. Does Mi always halt?

 Answer: Maybe, maybe not. Depending on L, none might halt or some may 
halt.

 If L is also recursive then L is recursively enumerable, recursive is subset of r.e.

 Question: Let L be a r.e. language that is not recursive (L is in r.e. – r), and M0, 
M1, … a list of all TMs such that L = L(Mi), and choose any i>=0. Does Mi always 
halt?

 Answer: No! If it did, then L would not be in r.e. – r, it would be recursive.
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L is Recursively enumerable: 

TM exist: M0, M1, …

They accept string in L, and do not accept any string outside L

L is Recursive: 

at least one TM halts on L and on ∑*-L, others may or may not

L is Recursively enumerable but not Recursive: 

TM exist: M0, M1, … 

but none halts on all x in ∑*-L

M0 goes on infinite loop on a string p in ∑*-L,  while M1 on q in ∑*-L

However, each correct TM  accepts each string in L, and none in ∑*-L

L is not R.E: 

no TM exists 
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 Let M be a TM.

 Question: Is L(M) r.e.?

 Answer: Yes! By definition it is!

 Question: Is L(M) recursive?

 Answer: Don’t know, we don’t have enough information.

 Question: Is L(M) in r.e – r?

 Answer: Don’t know, we don’t have enough information.
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 Let M be a TM that halts on all inputs:

 Question: Is L(M) recursively enumerable?

 Answer: Yes! By definition it is!

 Question: Is L(M) recursive?

 Answer: Yes! By definition it is!

 Question: Is L(M) in r.e – r?

 Answer: No! It can’t be. Since M always halts, L(M) is recursive.
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 Let M be a TM.

 As noted previously, L(M) is recursively enumerable, but may or may not be 

recursive.

 Question: Suppose, we know L(M) is recursive. Does that mean M always 

halts?

 Answer: Not necessarily. However, some TM  M‟ must exist such that L(M’) 

= L(M) and M‟ always halts.

 Question: Suppose that L(M) is in r.e. – r. Does M always halt?

 Answer: No! If it did then L(M) would be recursive and therefore not in r.e. –

r.
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 Let M be a TM, and suppose that M loops forever on some string 

x.

 Question: Is L(M) recursively enumerable?

 Answer: Yes! By definition it is. But, obviously x is not in L(M).

 Question: Is L(M) recursive?

 Answer: Don’t know. Although M doesn’t always halt, some other TM M‟ 

may exist such that L(M’) = L(M) and M‟ always halts.

 Question: Is L(M) in r.e. – r?

 Answer: Don’t know. 

May be another M‟ will halt on x, and on all strings! May be no TM for this 

L(M) does halt on all strings! We just do not know!
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Modifications of the Basic TM Model

 Other (Extended) TM Models:

 One-way infinite tapes

 Multiple tapes and tape heads

 Non-Deterministic TMs

 Multi-Dimensional TMs (n-dimensional tape)

 Multi-Heads

 Multiple tracks

All of these extensions are equivalent to the basic DTM model
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Closure Properties for Recursive and 

Recursively Enumerable Languages

 TMs model General Purpose (GP) Computers:

 If a TM can do it, so can a GP computer

 If a GP computer can do it, then so can a TM

If you want to know if a TM can do X, then some equivalent question 

are:

 Can a general purpose computer do X?

 Can a C/C++/Java/etc. program be written to do X?

For example, is a language L recursive?

 Can a C/C++/Java/etc. program be written that always halts and accepts L?
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 TM Block Diagrams:

 If L is a recursive language, then a TM M that accepts L and always halts 
can be pictorially represented by a ―chip‖ or ―box‖ that has one input and 
two outputs.

 If L is a recursively enumerable language, then a TM M that accepts L can 
be pictorially represented by a ―box‖ that has one output.

 Conceivably, M could be provided with an output for ―no,‖ but this output 
cannot be counted on. Consequently, we simply ignore it.

w

yes

no

M

w

yes

M
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 Theorem 1: The recursive languages are closed with respect to 
complementation, i.e., if L is a recursive language, then so is

 Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M‟ 
as follows:

 Note That:

 M‟ accepts iff M does not

 M‟ always halts since M always halts

From this it follows that the complement of L is recursive. •

 Question: How is the construction achieved? Do we simply complement the 
final states in the TM? No! A string in L could end up in the complement of L.

 Suppose q5 is an accepting state in M, but q0 is not.

 If we simply complemented the final and non-final states, then q0 would be an 
accepting state in M‟ but q5 would not.

 Since q0 is an accepting state, by definition all strings are accepted by M‟

LL  *

w

yes

noM

yes

no

M’
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 Theorem 2: The recursive languages are closed with respect to union, 

i.e., if L1 and L2 are recursive languages, then so is

 Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and 

M1 and M2 always halts. Construct TM M‟ as follows:

 Note That:

 L(M’) = L(M1)     L(M2)

 L(M’) is a subset of L(M1) U L(M2)

 L(M1) U L(M2) is a subset of L(M’)

 M‟ always halts since M1 and M2 always halt

It follows from this that                               is recursive. •

213 LLL 

w

yes

no

M1

yes

noM2

start

M’

213 LLL 


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 Theorem 3: The recursive enumerable languages are closed with respect to 
union, i.e., if L1 and L2 are recursively enumerable languages, then so is

 Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct M‟ 
as follows:

 Note That:

 L(M’) = L(M1) U L(M2)

 L(M’) is a subset of L(M1) U L(M2)

 L(M1) U L(M2) is a subset of L(M’)

 M‟ halts and accepts iff M1 or M2 halts and accepts

It follows from this that                               is recursively enumerable. •

 Question: How do you run two TMs in parallel?

213 LLL 

213 LLL 

w

yes

M1

yes

yes

M2

M’
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 Suppose, M1 and M2 had outputs for ―no‖ in the previous construction, 

and these were transferred to the ―no‖ output for M‟

 Question: What would happen if w is in L(M1) but not in L(M2)?

 Answer: You could get two outputs – one ―yes‖ and one ―no.‖

 At least M1 will halt and answer accept, M2 may or may not halt.

 As before, for the sake of convenience the ―no‖ output will be ignored.

w

yes

M1

yes

yes
M2

M’

no

no

no
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 Theorem 4: If L and      are both recursively enumerable then L (and therefore     
) is recursive.

 Proof: Let M1 and M2 be TMs such that L = L(M1) and      = L(M2). Construct M‟ 
as follows:

 Note That:

 L(M’) = L
 L(M’) is a subset of L

 L is a subset of L(M’)

 M’ is TM for L

 M‟ always halts since either M1 or M2 halts for any given string

 M’ shows that L is recursive

It follows from this that L (and therefore its’ complement) is recursive.

So,       is also recursive (we proved it before).  •

LL

L

w

yes

M1

yes

yes

M2

M’

no

L
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 Corollary of Thm 4: Let L be a subset of Σ*. Then one of the following 

must be true:

 Both L and       are recursive.

 One of L and       is recursively enumerable but not recursive, and the other 

is not recursively enumerable, or

 Neither L nor      is recursively enumerable

 In other words, it is impossible to have both L and      r.e. but not recursive

L

L

L

L



405

 In terms of the hierarchy: (possibility #1)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L
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 In terms of the hierarchy: (possibility #2)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L
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 In terms of the hierarchy: (possibility #3)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L
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 In terms of the hierarchy: (Impossibility #1)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L
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 In terms of the hierarchy: (Impossibility #2)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L

L
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 In terms of the hierarchy: (Impossibility #3)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L

L



411

 Note: This gives/identifies three approaches to show that a language is 

not recursive.

 Show that the language’s complement is not recursive, in one of the two 

ways:
 Show that the language’s complement is recursively enumerable but not recursive

 Show that the language’s complement is not even recursively enumerable
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The Halting Problem - Background
 Definition: A decision problem is a problem having a yes/no answer (that one 

presumably wants to solve with a computer). Typically, there is a list of 

parameters on which the problem is based.

 Given a list of numbers, is that list sorted?

 Given a number x, is x even?

 Given a C program, does that C program contain any syntax errors?

 Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that 

interesting.  However, from a theoretical perspective they are for the following 

two reasons:

 Decision problems are more convenient/easier to work with when proving complexity 

results.

 Non-decision counter-parts can always be created & are typically at least as difficult to 

solve.

 Notes:

 The following terms and phrases are analogous:

Algorithm - A halting TM program

Decision Problem - A language (will show shortly)

(un)Decidable - (non)Recursive
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Statement of the Halting Problem

 Practical Form: (P1)

Input: Program P and input I.

Question: Does P terminate on input I?

 Theoretical Form: (P2)

Input: Turing machine M with input alphabet Σ and string w in Σ*.

Question: Does M halt on w?

 A Related Problem We Will Consider First: (P3)

Input: Turing machine M with input alphabet Σ and one final state, and string w 
in Σ*.

Question: Is w in L(M)?

 Analogy:

Input: DFA M with input alphabet Σ and string w in Σ*.

Question: Is w in L(M)?

Is this problem (regular language) decidable? Yes! DFA always accepts or 
rejects.
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 Over-All Approach:

 We will show that a language Ld is not recursively enumerable

 From this it will follow that       is not recursive

 Using this we will show that a language Lu is not recursive

 From this it will follow that the halting problem is undecidable.

 As We Will See:

 P3 will correspond to the language Lu

 Proving P3 (un)decidable is equivalent to proving Lu (non)recursive

dL
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Converting the Problem to a Language
 Let M = (Q, Σ, Γ, δ, q1, B, {qn}) be a TM, where

Q = {q1, q2, … , qn}, order the states from 1 through n

Σ = {x1, x2} = {0, 1}

Γ = {x1, x2, x3} = {0, 1, B}

 Encode each transition:

δ(qi, xj) = (qk , xl, dm) where qi and qk are in ordered Q

xj and xl are in Σ,

and dm is in {L, R} = {d1, d2}

as:

0i10j10k10l10m where the number of  0’s indicate the corresponding id, and single 

1 acts as a barrier

 The TM M can then be encoded as:

111code111code211code311 … 11coder111

where each codei is one transitions’ encoding, and 11’s are barriers between transitions 

from the table row-major.  Let this encoding of M be denoted by <M>.
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 Less Formally:

 Every state, tape symbol, and movement symbol is encoded as a sequence of 0’s:

q1, 0 

q2, 00

q3 000

:

0 0

1 00

B 000

L 0

R 00

 Note that 1’s are not used to represent the above, since 1 is used as a special separator symbol.

 Example:

δ(q2, 1) = (q3 , 0, R)

Is encoded as:

00100100010100
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0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

What is the L(M)?

Coding for the above table: 

1110101010100110100101001001101000100100010110010100010100111

Are the followings correct encoding of a TM?

01100001110001

111111
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 Definition:

Lt = {x | x is in {0, 1}* and x encodes a TM}

 Question: Is Lt recursive?

 Answer: Yes. [Check only for format, i.e. the order and number of 0’s and 

1’s, syntax checking]

 Question: Is Lt decidable:

 Answer: Yes (same question).
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The Universal Language

 Define the language Lu as follows:

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in 

L(M)}

 Let x be in {0, 1}*.  Then either:

1. x doesn’t have a TM prefix, in which case x is not in Lu

2. x has a TM prefix, i.e., x = <M,w> and either:

a) w is not in L(M), in which case x is not in Lu

b) w is in L(M), in which case x is in Lu
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 Recall:

0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

 Which of the following are in Lu?

1110101010100110100101001001101000100100010110010100010100111

1110101010100110100101001001101000100100010110010100010100111011

10

1110101010100110100101001001101000100100010110010100010100111001

10111

01100001110001

111111
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 Compare P3 and Lu:

(P3):

Input: Turing machine M with input alphabet Σ and one final state, and string w

in Σ*.

Question: Is w in L(M)?

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in 

L(M)}

 Universal TM (UTM) is the machine for Lu

 presuming it is r.e.!   Can you write a program to accept strings in Lu?

 Notes:

 Lu is P3 expressed as a language

 Asking if Lu is recursive is the same as asking if P3 is decidable.
 Can you write a Halting program for accept/reject of strings in Sigma* ?

 We will show that Lu is not recursive, and from this it will follow that P3 is 

un-decidable.

 From this we can further show that the Halting problem is un-decidable.

=> A general concept: a decision problem ≡ a formal language
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 Define another language Ld as follows:
 [Ld_bar = {self accepting TM encodings}, everything else is Ld ]

Ld = {x | x is in {0, 1}* and (a) either x is not a TM, 

(b) or x is a TM, call it M, and x is not in L(M)}   (1)
 Note, there is only one string x

 And, the question really is the complement of “does a TM accept its own encoding?” (Ld-bar‟s 

complement) 

 Let x be in {0, 1}*.  Then either:

1. x is not a TM, in which case x is in Ld

2. x is a TM, call it M, and either:

a) x is not in L(M), in which case x is in Ld

b) x is in L(M), in which case x is not in Ld
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 Recall:

0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

 Which of the following are in Ld?

11101010101001101001010010011010001000100010110010100010100111

01100001110001

Change above machine to accept strings ending with 1: the encoding will not be in 

Ld
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 Lemma: Ld is not recursively enumerable. [No TM for Ld!!!]

 Proof: (by contradiction)

Suppose that Ld is recursively enumerable. In other words, there exists a TM M such that:

Ld = L(M) (2)

Now suppose that w is a string encoding of M. (3)

Case 1) w is in Ld (4)

By definition of Ld given in (1), either w does not encode a TM, or w does encode a TM, call it M, and w is 

not in L(M). But we know that w encodes a TM (3: that’s where it came from). Therefore:

w is not in L(M) (5)

But then (2) and (5) imply that w is not in Ld contradicting (4). 

Case 2) w is not in Ld (6)

By definition of Ld given in (1), w encodes a TM, call it M, and:

w is in L(M) (7)

But then (2) and (7) imply that w is in Ld contradicting (6).

Since both case 1) and case 2) lead to a contradiction, no TM M can exist such that Ld = L(M). Therefore Ld

is not recursively enumerable. •
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 Note:

= {x | x is in {0, 1}*, x encodes a TM, call it M, and x is in L(M)}

 Corollary: is not recursive.

 Proof: If       were recursive, then Ld would be recursive, and therefore recursively 

enumerable, a contradiction. •
dL

dL

dL
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 Theorem: Lu is not recursive.

 Proof: (by contradiction)

Suppose that Lu is recursive. Recall that:

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

Suppose that Lu = L(M’) where M‟ is a TM that always halts. Construct an algorithm (i.e., a 

TM that always halts) for       as follows:

Suppose that M‟ always halts and Lu = L(M’).  It follows that:

 M’’ always halts

 L(M’’) = 

would therefore be recursive, a contradiction. •

dL

dL

dL

Yes

No

Yes

No

Let M be the TM

that w encodes.
M‟: 

UTM for Lu

Yes

No

<M,w>

(i.e., <w,w>)

Is w a TM?

Lt

w

M’’: for Ld-bar 
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L_u is recursively enumerable 

(you may ignore this slide, for now)

Input the string

Decode the TM prefix, if it doesn't have one then the string is not in Lu

Otherwise, run/simulate the encoded TM on the suffix

If it terminates and accepts then the original string is in Lu.

If a given string is in Lu, then the above algorithm will correctly determine that, halt and say yes.

If the given string is not in Lu, then there are three cases:

1) the string doesn't have a TM as a prefix. In this case the above algo correctly detects this fact, and 

reports the string is not in Lu.

2) the string has a TM prefix, and the TM halts and rejects on the suffix. In this case the above algo 

correctly reports the string is not in Lu.

3) the string has a TM prefix, but  it goes into an infinite loop on the suffix. In this case the above algo 

also goes into an infinite loop, but that’s ok since the string as a whole is not in Lu anyway, and we are 

just trying to show there exists a TM for only accepting strings in Lu.

From this proof note that if the prefix TM is a DFA or PDA, then our machine will also halt in the 3rd case 

above, no matter what the suffix is.

-- due to Dr. Bernhard (edited by me)
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 The over-all logic of the proof is as follows:

1. If Lu were recursive, then so will be

2. is not recursive, because Ld is not r.e.

3. It follows that Lu is not recursive.

The second point was established by the corollary.

The first point was established by the theorem on a preceding slide.

This type of proof is commonly referred to as a reduction. Specifically, the problem of 

recognizing was reduced to the problem of recognizing Lu 

dL

dL

dL
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 Define another language Lh:

Lh = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and M halts on 

w}

Note that Lh is P2 expressed as a language:

(P2):

Input: Turing machine M with input alphabet Σ and string w in Σ*.

Question: Does M halt on w?
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 Theorem: Lh is not recursive.

 Proof: (by contradiction)

Suppose that Lh is recursive. Recall that:

Lh = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and M halts on w}

and

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

Suppose that Lh = L(M’) where M’ is a TM that always halts. Construct an algorithm (i.e., a 

TM that always halts) for Lu as follows:

Suppose that M‟ always halts and Lh = L(M’).  It follows that:

 M’’ always halts

 L(M’’) = Lu

Lu would therefore be recursive, a contradiction. •

Yes

No

Yes

No
Simulate M

On w

Yes

No
M‟ for Lh: 

does M halt on w?

<M,w>

M’’ : UTM for Lu

start
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 The over-all logic of the proof is as follows:

1. If Lh is recursive, then so is Lu

2. Lu is not recursive

3. It follows that Lh is not recursive.

The second point was established previously.

The first point was established by the theorem on the preceding slide.

This proof is also a reduction. Specifically, the problem of recognizing Lu was reduced

to the problem of recognizing Lh.

[Lu and Lh both are recursively enumerable: for proof see Dr. Shoaff!]
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Examples of non-halting program:

http://cs.fit.edu/~ryan/tju/russell.c

http://cs.fit.edu/~ryan/tju/russell.scm

http://cs.fit.edu/~ryan/tju/russell.py

https://ex.fit.edu/owa/redir.aspx?REF=nf4ayQ_HIZ9wMJROFON1EyLzfOoI-O1XK1IlKfzU7yeEJSqPV2XTCAFodHRwOi8vY3MuZml0LmVkdS9-cnlhbi90anUvcnVzc2VsbC5j
https://ex.fit.edu/owa/redir.aspx?REF=nf4ayQ_HIZ9wMJROFON1EyLzfOoI-O1XK1IlKfzU7yeEJSqPV2XTCAFodHRwOi8vY3MuZml0LmVkdS9-cnlhbi90anUvcnVzc2VsbC5j
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 Define another language Lq:

Lq = {x | x is in {0, 1}*, x encodes a TM M, and M does not contain an infinite loop}

Or equivalently:

Lq = {x | x is in {0, 1}*, x encodes a TM M, and there exists no string w in {0, 1}*

such that M does not terminate on w}

Note that:

= {x | x is in {0, 1}*, and either x does not encode a TM, or it does encode a TM, call 

it M,

and there exists a string w in {0, 1}* such that M does not terminate on w}

Note that the above languages correspond to the following problem:

(P0):

Input: Program P.

Question: Does P contain an infinite loop?

Using the techniques discussed, what can we prove about Lq or its‟ complement?

qL
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• More examples of non-recursive languages:

Lne = {x | x is a TM M and L(M) is not empty} is r.e. but not recursive.

Le = {x | x is a TM M and L(M) is empty} is not r.e.

Lr = {x | x is a TM M and L(M) is recursive} is not r.e.

Note that Lr is not the same as Lh = {x | x is a TM M that always halts}

but Lh is in Lr.

Lnr = {x | x is a TM M and L(M) is not recursive} is not r.e.
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 Lemma: Ld is not recursively enumerable: [No TM for Ld!!!]

 Proof: (by contradiction)

Suppose that Ld were recursively enumerable. In other words, that there existed a TM M such that:

Ld = L(M) (2)

Now suppose that wj is a string encoding of M. (3)

Case 1) wj is in Ld (4)

By definition of Ld given in (1), either wj does not encode a TM, or wj does encode a TM, call it M, and wj is 

not in L(M). But we know that wj encodes a TM (3: that’s where it came from). Therefore:

wj is not in L(M) (5)

But then (2) and (5) imply that wj is not in Ld contradicting (4). 

Case 2) wj is not in Ld (6)

By definition of Ld given in (1), wj encodes a TM, call it M, and:

wj is in L(M) (7)

But then (2) and (7) imply that wj is in Ld contradicting (6).

Since both case 1) and case 2) lead to a contradiction, no TM M can exist such that Ld = L(M). Therefore Ld

is not recursively enumerable. •

Ignore this slide
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( ) B

findPair (findPair2, "(", R) - (final, B, R)

findPair2 (findPair2, "(", R) (removePair, ")", L) -

removePair (fetch, "(", R) (fetch, ")", R) (goBack, B, L)

fetch (retrieve, "(", R) (retreive, ")", R) (retreive, B, R)

retreive (returnOpen, "(", L) (returnClosed, ")", L) (returnBlank, B, L)

returnOpen (writeOpen, "(", L) (writeOpen, ")", L) (writeOpen, B, L)

returnClosed (writeClosed, "(", L) (writeClosed, ")", L) (writeClosed, B, L)

returnBlank (writeBlank "(", L) (writeBlank, ")", L) (writeBlank, B, L)

writeOpen (removePair, "(", R) (removePair, "(", R) -

writeClosed (removePair, ")", R) (removePair, ")", R) -

writeBlank (removePair, B, R) (removePair, B, R) -

goBack - - (backAgain, B, L)

backAgain - - (seekFront, B, L)

seekFront (seekFront, "(", L) (seekFront, ")", L) (findPair, B, R)

final* - - -

Roger‟s TM for balanced parenthesis:



On 111 111 as a TM encoding

<Quote> It was ambiguous, in my opinion, based on the definition in the Hopcroft  book, 

i.e., the definition in the Hopcroft book was not clear/precise enought to 

account this special case. I don't have the book in front of me right now, but I think this is 

the example I used in class: Consider the TM that has exactly one state, but no 

transitions. Perfectly valid TM, and it would give us this encoding (111111). In that case 

the encoded machine would accept sigma* because the highest numbered state would be 

q0, the only state, and that would be the final state under the Hopcroft encoding. Now 

consider the TM that has exactly two states, but no transitions. Also a perfectly valid TM, 

and it would give us the same encoding. In that case the encoded machine would not 

accept anything because the final state is q1 (highest numbered state), and there is no 

way to get to it. I used it only as a way to raise that issue in class, i.e., the the Hopcroft 

definition is a bit ambiguous in this case.

One way to resolve the ambiguity is to require the encoding to specifically specify the 

final state (at the end or something). In that case, 111111 isn't even a valid TM, since it 

doesn't specify the final state. Another related question is, does a TM even have to have 

any states at all to be a valid TM? The encoding would have to be able to isolate that as a 

unique string also. <End Quote>

Phil Bernhard
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