

WEB TECHNOLOGIES

SUB CODE: ACS006

IARE-R16

Prepared by: Dr. K Srinivasa Reddy, Professor,
 Mr. B. Venkateswara Rao, Associate Professor

 Mr. A. Krishna Chaitanya, Associate Professor

UNIT-I
HyperText Markup Language
(HTML)

Agenda

IntroductiontoHTML

•Hyper Text Markup Language

•HTML Example

•The structure of an HTMLdocument

Introduction to HTML

•TheWorldwideweb
-The set of computers on internetthat supports HTTP

•WebServer

The special software that allows thewebsite management
Accepts client requestfor information
Responds

n
tothe

i
clientrequestbyprovidingthepagewiththe

•WebClient

A special software also known asbrowser that allows
Connecting to the appropriate server
Query the server for the informationto be read
Provide the interface to read theinformation returned by the server

•HTTP

-The Hypertext Transfer Protocol

Explore,
e
Firefox

u
etc.)

b
to

t
requestthe

e
documents

s
from

Internet

Hyper Text Markup Language

 TextMixed with markup tags
- Tags enclosed in angledbrackets
(<h1> Heading</h1>)

 The language interpreted by the browser
 Web Pages are also know as theHTML documents
 What does markup describe

-Appearance
-Layout
-Content

HTML Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>WebMail</title>

<LINK rel="stylesheet" type="text/css"

href="/twig/styles/classic/basic.css"></head>

<body>

<div class="twigheader">

<div align="center“><img src="/twig/images/top.jpg"

alt="[WebMail]"></div></div><hr><form action="/twig/index.php" method="POST"

name="login_form">

<div><center><table

border=1><tr><td><table border=0

cellspacing=0>

<tr><td colspan=2 class="tabletitle">Please enter your user

information</td></tr><tr><td align="right"> Username: </td><td><input

name="login_username"></td></tr>
<tr><tdalign="right">Password:</td><td><inputname="login_password"type="password"></td></tr>

<tr><tdcolspan=2align="center"><HR><inputtype="submit"name="set_twig_authenticated"
value="Log In"></td></tr></table></td></tr></table></center></div></form>

<hr><div

class="twigfooter"></div></body>

</html>

The structure of an HTML document

•DOCTYPE

•Document

Head•Document

Body•Titles and

Footers •Text

Formatting•Line
Breaks

•Text Styles

DOCTYPE

•Doctypedeclarationistheveryfirstthinginthe HTML
document before <html>tag.

•ThistagtellsthebrowserwhichHTMLorXHTML
specification the document uses

example-

<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML
4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

Document Head

•Informationplacedinthissectionisessentialfortheinner content of

the document

•
<title></title>

e
,allother

i
information

y
willnot

e
be

d
visiblein

•example<h

tml>
<head>

<title>First
app</title></head>
<body>
….

</body>
</html>

Document Body

•Thetagsused
of thetextual information

endof

<body>
……
<body>

pagedefaultlikebackgroundcolor,textcolor,

the attribute of the<body> tag

Titles and Footers

• Title

-Describes what page is all about withoutbeing too wordy
-Thetextincludedinthe<title></title>showsupinthetitlebarofthebrowser

<title>….TheMessage ….</title>

• Footer
-Informationcommonlyplacedinthefootofthewebpage.Generallyholdcopyright

<address>the text</address>

Example

<head><title>This is the
title</title></head><body>
<address> This is the

footer</address></body>

Text Formatting

•
tag that provide this functionality is<p>.

hsintextualinformation.The

Example

<html><head
>

<title>First
app</title></head>

<body>
firest paragraph 1........this is tha sampletext <p>this
is the second paragraph...this is thesample text

</body>
</html>

Line Breaks

•Use when
l
the

t
text need to be started from the newline and not from

•Example

<html><head
>

<title>First
app</title></head>

<body>

pa
firestparagraph

t
1........thisisthasampletext
thisisthesecond

</body>
</html>

Text Styles

• Bold
Displays the text in the BOLDFACE style. Thetag used are….

• Italics
Displays text in ITALICS. The tags used inthis case are<i>…..</i>

• Underline
Displays the text as underlined. The tags usedin this case are<u>…</u>

• Example

<html><head
>

<title>First
app</title></head>
<body>
firest paragraph 1........this is tha sample
text
<i>this is the second paragraph...this is the
sampletext</i>
<u>third linr...underlined</u>

</body>
</html>

Lists

•Types of list

-Unordered List

Type -Specifies the type of bullet
Type=fillroundgives solid round black bullet
Type=squaregives solid square blackbullet

-Ordered List

Type=“1” will give counting numbers (1,2…)

Type=“A” will give uppercase letters (A,B…)

Type=“a” will give lowercase letters (a,b….)

Type=“I” will give uppercase Roman Numbers(I,II,III….)
Type=“I” will give lowercase Roman Numbers(I,II,III….)
Start used to alter the numberingsequence.

Each list item startswith

OL Ordered (Numbered)List &
Unordered List

• Element

Example

-<ol
type=“I”>First
Element Second
Element Third
Element

Attributes –type, Start, value

• ListEntries:LI

… End Tag Optional

• Element
Example

-<ul
type=“square”>F
irst Element
Second Element
Third Element

DefinitionList

 Isnot list of items

 List of terms and explanation of terms

 Example
<dl>
<dt>Coffee</dt>
<dd>Black hot
drink</dd><dt>Milk</dt>
<dd>White cold
drink</dd></dl>
OUTPUT

 Definition list starts with <dd> tagDefinition

list term starts with<dt>tag Definition list

definition starts with<dd>tag

Displaying Images

•Images are defined with tag

• tag is empty

<img

src="url">src

stands for source

url points to the locationwhere image is stored

alt attributes are used todefine alternate text for theimage

Table

 Defined with <table> tag

table is divided into rows(with the <tr>tag>)

and each row is dividedinto data cells(with <td>tags. Td

stands for table data.

Example

Table Attributes

border

cellspacing

cellpadding

etc

<table border=1>

<tr><td>First row first cell</td><td>First row second
cell</td></tr><tr><td>Second row first cell</td><td>Second row second

cell</td></tr></table>

HTML Links

 Uses
e
<a>(anchor)tagandhrefattributetolinktotheanother  Can point

to any resource onthe web

Gat
Example

>
<ahref=“http://indg.in”>IndiaDevelopment

Target Attribute

defines where the link will beopened

India Development

GatewayHeretarget=“_blank”specifies that document willopen in

new window.

http://indg.in/

Anchor Tag and nameAttribute

•Nameattributeisusedtocreatenamedanchor

usedtojumptospecificlocationinthe webpage

Example

go to anchor1

HTML frames

•UsetodisplaymorethanoneHTML in the

same browserwindow

•Uses<frameset>tagdefineshow

window into frames

document

todivide

Java script

Introduction

 JavaScript is the most popular scripting language on the internet, and
works in all major browsers, such as Internet Explorer, Firefox,
Chrome, Opera, and Safari.

 What is JavaScript?

– JavaScript is a scripting language
– JavaScript is usually embedded directly into HTML pages
– JavaScript was designed to add interactivity to HTML pages

– JavaScript is an interpreted language (means that scripts execute

without preliminary compilation)
– Everyone can use JavaScript without purchasing a license

Introduction

What can a JavaScript do?

– JavaScript gives HTML designers a programming tool - HTML

authors are normally not programmers, but JavaScript is a
scripting language with a very simple syntax! Almost anyone can
put small "snippets" of code into their HTML pages

– JavaScript can put dynamic text into an HTML page - A JavaScript
statement like this: document.write("<h1>" + name + "</h1>")
can write a variable text into an HTML page

– JavaScript can react to events - A JavaScript can be set to execute

when something happens, like when a page has finished loading
or when a user clicks on an HTML element

Introduction

 JavaScript can be used to validate data - A JavaScript can be
used to validate form data before it is submitted to a
server. This saves the server from extra processing

 JavaScript can be used to create cookies - A JavaScript can be

used to store and retrieve information on the visitor's
computer

 JavaScript can read and write HTML elements - A JavaScript

can read and change the content of an HTML element

Introduction

Put a JavaScript into an HTML page

 The example below shows how to use JavaSript to
write text on a web page:

 The HTML <script> tag is used to insert a JavaScript
into an HTML page.

 Example
<html>
<body>
<script type="text/javascript">
document.write("Hello World!");
</script>
</body>
</html>

Introduction

Introduction

The example below shows how to add HTML tags to the JavaScript:

Example

<html>
<body>
<script type="text/javascript">
document.write("<h1>Hello World!</h1>");
</script>
</body>
</html>

– The document.write command is a standard JavaScript command for
writing output to a page.

– JavaScripts in the body section will be executed WHILE the page loads.

– JavaScripts in the head section will be executed when CALLED.

Introduction

Introduction

 Where to Put the JavaScript

 JavaScripts in a page will be executed

immediately while the page loads into the
browser. This is not always what we want.
Sometimes we want to execute a script when
a page loads, other times when a user triggers
an event.

Introduction

Scripts in <head>

– Scripts to be executed when they are called, or when an event is triggered, go
in the head section.

– If you place a script in the head section, you will ensure that the script is
loaded before anyone uses it.

Example
<html>
<head>
<script type="text/javascript">
function message()
{
alert("This alert box was called with the onload event");
}
</script>
</head>

<body onload="message()">
</body>
</html>

Introduction

Introduction

Scripts in <body>
 Scripts to be executed when the page loads go in the body section.
 If you place a script in the body section, it generates the content of a page.
Example

<html>
<head>
</head>

<body>
Introduction<script type="text/javascript">
document.write("This message is written by
JavaScript"); </script>
</body>

</html>

Introduction

Introduction

Scripts in <head> and <body>

 You can place an unlimited number of scripts in your document, so you
can have scripts in both the body and the head section.
<html>
<head>
<script type="text/javascript">
....
</script>
</head>
<body>
<script type="text/javascript">
....
</script>
</body>

Introduction

JavaScript Statements

 JavaScript is a sequence of statements to be executed by the browser.
JavaScript is Case Sensitive

 Unlike HTML, JavaScript is case sensitive - therefore watch your

capitalization closely when you write JavaScript statements, create or
call variables, objects and functions

 The semicolon is optional (according to the JavaScript standard), and the

browser is supposed to interpret the end of the line as the end of the
statement. Because of this you will often see examples without the
semicolon at the end.

 Note: Using semicolons makes it possible to write multiple statements on

one line.

Introduction

JavaScript Code

 JavaScript code (or just JavaScript) is a sequence of JavaScript statements.

 Each statement is executed by the browser in the sequence they are

written.
 This example will write a heading and two paragraphs to a web page:
Example

<script type="text/javascript">
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another
paragraph.</p>"); </script>

Introduction

JavaScript Blocks

 JavaScript statements can be grouped together in blocks.
 Blocks start with a left curly bracket {, and ends with a right curly bracket }.

 The purpose of a block is to make the sequence of statements execute

together.
 This example will write a heading and two paragraphs to a web page:
Example

<script type="text/javascript">
{

document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another
paragraph.</p>"); }
</script>

Introduction

Introduction

JavaScript Comments

 Comments can be added to explain the JavaScript, or to make the code
more readable.

 Single line comments start with //.
 The following example uses single line comments to explain the code:
Example

<script type="text/javascript">
// Write a heading
document.write("<h1>This is a heading</h1>");

 Write two paragraphs: document.write("<p>This is
a paragraph.</p>"); document.write("<p>This is
another paragraph.</p>"); </script>

Introduction

JavaScript Multi-Line Comments

 Multi line comments start with /* and end with */.
 The following example uses a multi line comment to explain the code:
Example

<script type="text/javascript">
/*
The code below will write
one heading and two paragraphs
*/

document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another
paragraph.</p>"); </script>

Introduction

Using Comments at the End of a Line

 In the following example the comment is
placed at the end of a code line:

Example

<script type="text/javascript">
document.write("Hello"); // Write "Hello"
document.write(" Dolly!"); // Write "
Dolly!" </script>

Introduction

Additional problems

<html>
<head><title>

Printing Multiple Lines</title>

<script type = "text/javascript">
<!--

document.writeln("<h1>Welcome to
JavaScript"
+ />Programming!</h1>");

"<br

</script>

</head><body></body>
</html>

Introduction

Introduction

JavaScript Variables

– As with algebra, JavaScript variables are used to
hold values or expressions.

– A variable can have a short name, like x, or a
more descriptive name, like carname.

Rules for JavaScript variable names:

– Variable names are case sensitive (y and Y are
two different variables)

– Variable names must begin with a letter or
the underscore character

Introduction

Declaring (Creating) JavaScript Variables

 Creating variables in JavaScript is most often referred
to as "declaring" variables.

 You can declare JavaScript variables with the var
statement:
var x;
var carname;

 After the declaration shown above, the variables are
empty (they have no values yet).

 However, you can also assign values to the variables
when you declare them:
var x=5;
var carname="Volvo";

Introduction

Assigning Values to Undeclared JavaScript Variables

 If you assign values to variables that have not yet been declared, the
variables will automatically be declared.

These statements:

x=5;
carname="Volvo";

Redeclaring JavaScript Variables

 If you redeclare a JavaScript variable, it will not lose its original value.

var x=5;
var x;

 After the execution of the statements above, the variable x will still have

the value of 5. The value of x is not reset (or cleared) when you
redeclare it.

Operators

JavaScript Arithmetic Operators

 Arithmetic operators are used to perform
arithmetic between variables and/or values.

JavaScript Assignment Operators

 Assignment operators are used to assign values
to JavaScript variables.

The + Operator Used on Strings

 The + operator can also be used to add string
variables or text values together.

Operators

Comparison Operators

 Comparison operators are used in logical
statements to determine equality or
difference between variables or values.

Logical Operators

 Logical operators are used to determine the
logic between variables or values.

Arithmatic operators

<html>
<head>

<title>An Addition Program</title>

<script type = "text/javascript">

var firstNumber, // first string entered by user
secondNumber, // second string entered by user
number1,

number2,
sum; // sum of number1 and number2

 read in first number from user as a
string firstNumber =

window.prompt("Enter first integer", "0");

 read in second number from user as a string
secondNumber =

window.prompt("Enter second integer", "0");

Operators

 convert numbers from strings to integers
number1 = parseInt(firstNumber);
number2 = parseInt(secondNumber);

// add the numbers
sum = number1 + number2;

// display the results

document.writeln("<h1>The sum is " + sum + "</h1>");
</script>

</head>
<body>

<p>Click Refresh (or Reload) to run the script
again</p> </body>

</html>

Operators

Operators

Operators

Introduction-JavaScript Popup Boxes
Alert Box

 An alert box is often used if you want to make sure information comes through
to the user.

 When an alert box pops up, the user will have to click "OK" to proceed.
<html>
<head><title>Printing Multiple Lines in a Dialog Box</title>

<script type = "text/javascript">
<!--
window.alert("Welcome to\nJavaScript\nProgramming!");
 -->

</script>
</head>

<body>

<p>Click Refresh (or Reload) to run this script
again.</p> </body>

</html>

Introduction-JavaScript Popup Boxes

Introduction-JavaScript Popup Boxes

 Confirm Box

 A confirm box is often used if you want the

user to verify or accept something.

 When a confirm box pops up, the user will

have to click either "OK" or "Cancel" to
proceed.

 If the user clicks "OK", the box returns true. If

the user clicks "Cancel", the box returns false.

Introduction-JavaScript Popup Boxes
Example

<html>
<head>
<script type="text/javascript">
function show_confirm()
{
var r=confirm("Press a button");
if (r==true)

{
document.write("You pressed OK!");
}

else
{
document.write("You pressed Cancel!");
}

}
</script>
</head>
<body>
<input type="button" onclick="show_confirm()" value="Show confirm box" />
</body>
</html>

Introduction-JavaScript Popup Boxes

Introduction-JavaScript Popup Boxes

Introduction-JavaScript Popup Boxes

Prompt Box

 A prompt box is often used if you want the
user to input a value before entering a page.

 When a prompt box pops up, the user will

have to click either "OK" or "Cancel" to
proceed after entering an input value.

 If the user clicks "OK" the box returns the

input value. If the user clicks "Cancel" the
box returns null.

<html >

<head>

<title>Using Prompt and Alert Boxes</title>

<script type = "text/javascript">

var name; // string entered by the user

// read the name from the prompt box as a string

name = window.prompt("Please enter your name", "GalAnt"
); document.writeln("<h1>Hello " + name +

", welcome to JavaScript programming!</h1>"
); </script>

</head>

<body>

<p>Click Refresh (or Reload) to run this script
again.</p> </body>

</html>

Introduction-JavaScript Popup Boxes

Introduction-JavaScript
Popup Boxes

Control structures-if

<html>

<head>

<title>Using Relational Operators</title>

<script type = "text/javascript">

var name;

now = new Date(); // current date and time

hour = now.getHours(); // current hour (0-23)

// read the name from the prompt box as a string

name = window.prompt("Please enter your name", "GalAnt");

if (hour < 12) Control structures-if

document.write("<h1>Good Morning, ");

 determine whether the time is
PM if (hour >= 12)
{

hour = hour - 12;

if (hour < 6)
document.write("<h1>Good Afternoon, ");

if (hour >= 6)
document.write("<h1>Good Evening, ");

}

document.writeln(name +

", welcome to JavaScript programming!</h1>"
); </script> </head>

<body> <p>Click Refresh (or Reload) to run this script again.</p> </body>
</html>

Control structures-if

Control structures-if

Control structures-Switch

<script type="text/javascript">Statement //You will
receive a different greeting based

//on what day it is. Note that Sunday=0,
//Monday=1, Tuesday=2, etc.

var d=new Date();
theDay=d.getDay();
switch (theDay)
{
case 5:

document.write("Finally Friday");
break;

case 6:
document.write("Super Saturday");
break;

case 0:
document.write("Sleepy Sunday");
break;

default:
document.write("I'm looking forward to this weekend!");

}
</script>

JavaScript Loops

for Loop

 The for loop is used when you know in advance how many times the script
should run.
<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=5;i++)
{
document.write("The number is " +
i); document.write("
");
}
</script>
</body>
</html>

JavaScript Loops

JavaScript Loops

JavaScript While Loop

 oops execute a block of code a specified number of times, or while a
specified condition is true.

Example

<html>
<body>
<script type="text/javascript">
var i=0;
while (i<=5)
{

document.write("The number is " +
i); document.write("
"); i++;

}
</script>
</body>
</html>

JavaScript Loops

The do...while Loop

 This loop will execute the block of code ONCE, and then it will repeat the
loop as long as the specified condition is true.

Example
<html>
<body>
<script type="text/javascript">
var i=0;
do

{
document.write("The number is " + i);
document.write("
");
i++;
}

while (i<=5);
</script>
</body>
</html>

JavaScript Break

The break Statement

 The break statement will break the loop and continue executing the code that follows after the loop (if

any).

<html>
<head>

<script type = "text/javascript">
<!--
for (var count = 1; count <= 10; ++count) {

if (count == 5)
break; // break loop only if count == 5

document.writeln("Count is: " + count + "
");
}

document.writeln(
"Broke out of loop at count = " + count);

 -->
</script>

</head><body></body>
</html>

JavaScript Break

Continue Statements

The continue Statement

 The continue statement will break the current loop and continue with the next
value

<html>
<head>

<script type = "text/javascript">

for (var count = 1; count <= 10; ++count)
{ if (count == 5)

continue; // skip remaining code in loop
// only if count == 5

document.writeln("Count is: " + count + "
");
}

document.writeln("Used continue to skip printing 5"
); </script>

</head><body></body>
</html>

Continue Statements

The labeled continue Statement

<html >
<head>

<title>Using the continue Statement with a
Label</title> <script type = "text/javascript">

nextRow: // target label of continue statement
for (var row = 1; row <= 5; ++row) {

document.writeln("
");
for (var column = 1; column <= 10; ++column) {

if (column > row)

continue nextRow; // next iteration of labeled
loop document.write("* ");

}
}

</script>
</head><body></body>

</html>

The labeled continue Statement

The labeled break Statement

<html>
<head>

<script type = "text/javascript">
stop: { // labeled block

for (var row = 1; row <= 10; ++row) {
for (var column = 1; column <= 5 ; ++column) {

if (row == 5)
break stop; // jump to end of stop block

document.write("* ");
}

document.writeln("
");
}

 the following line is skipped document.writeln(
"This line should not print");

}

document.writeln("End of script");
</script>

</head><body></body>
</html>

The labeled break Statement

JavaScript Try...Catch Statement

 The try...catch statement allows you to test a block of code for errors.
JavaScript - Catching Errors

 When browsing Web pages on the internet, we all have seen a JavaScript

alert box telling us there is a runtime error and asking "Do you wish to
debug?". Error message like this may be useful for developers but not for
users. When users see errors, they often leave the Web page.

 This chapter will teach you how to catch and handle JavaScript error

messages, so you don't lose your audience.

JavaScript Try...Catch Statement

Example

 <html>
<head>
<script type="text/javascript">
var txt="";
function message()
{
try
{
adddlert("Welcome guest!");
}

catch(err)
{
txt="There was an error on this page.\n\n";
txt+="Error description: " + err.description +
"\n\n"; txt+="Click OK to continue.\n\n";
alert(txt);
}

}
</script></head>

<body>
<input type="button" value="View message" onclick="message()"
/> </body></html>

The Throw Statement

 The throw statement allows you to create an
exception. If you use this statement
together with the try...catch statement, you
can control program flow and generate
accurate error messages.

Example The Throw Statement
<html>
<body>
<script type="text/javascript">
var x=prompt("Enter a number between 0 and 10:","");
try
{
if(x>10)

{
throw "Err1";
}

else if(x<0)
{
throw "Err2";
}
}

catch(er)
{
if(er=="Err1")

{
alert("Error! The value is too high");
}

if(er=="Err2")
{
alert("Error! The value is too low");
}

}
</script>
</body>
</html>

JavaScript Functions

 A function will be executed by an event or by
a call to the function.

 Functions can be defined both in the <head>

and in the <body> section of a document.
However, to assure that a function is
read/loaded by the browser before it is called,
it could be wise to put functions in the <head>
section.

JavaScript Functions

JavaScript Function Example
Example

<html>
<head>
<script type="text/javascript">
function displaymessage()
{
alert("Hello World!");
}
</script>
</head>

<body>
<form>
<input type="button" value="Click me!" onclick="displaymessage()" />
</form>
</body>
</html>

JavaScript Functions

JavaScript Functions

The return Statement

 The return statement is used to specify the value that is returned from the
function.

Example
<html>
<head>
<script type="text/javascript">
function product(a,b)
{
return a*b;
}
</script>
</head>

<body>
<script type="text/javascript">
document.write(product(4,3));
</script>
</body>
</html>

JavaScript Functions

JavaScript Functions-
another example

<head>
<script type = "text/javascript">

var input1 = window.prompt("Enter first number", "0");
var input2 = window.prompt("Enter second number", "0");
var input3 = window.prompt("Enter third number", "0");

var value1 = parseFloat(input1);
var value2 = parseFloat(input2);
var value3 = parseFloat(input3);

var maxValue = maximum(value1, value2, value3);

document.writeln("First number: " + value1 +
"
Second number: " + value2 +
"
Third number: " + value3 +
"
Maximum is: " + maxValue);

JavaScript Functions

 maximum method definition (called from line 25)
function maximum(x, y, z)
{

return Math.max(x, Math.max(y, z));
}

</script>

</head>
<body>

<p>Click Refresh (or Reload) to run the script
again</p> </body>

</html>

JavaScript Functions

JavaScript Functions

JavaScript Functions - factorial

<html >
<head>

<script type = "text/javascript">
document.writeln("<table border = '1' width = '100%'>"
); for (var i = 0; i <= 10; i++)

document.writeln("<tr><td>“+i+"!</td><td>"+
factorial(i)+"</td></tr>");

document.writeln("</table>");

function factorial(number)
{

if (number <= 1) // base case
return 1;

else
return number * factorial(number - 1);

}
</script> </head><body></body>

</html>

JavaScript Functions - factorial

JavaScript Functions-scope

<html >
<head>

<title>A Scoping Example</title>

<script type = "text/javascript">
var x = 1; // global variable

function start()
{

var x = 5; // variable local to function start

document.writeln("local x in start is " + x);
functionA(); // functionA has local x
functionB(); // functionB uses global variable x
functionA(); // functionA reinitializes local x
functionB(); // global variable x retains its value

document.writeln(
"<p>local x in start is " + x + "</p>");

}

JavaScript Functions-scope

function functionA()

{ var x = 25; // initialized each time
document.writeln("<p>local x in functionA is " +

x + " after entering functionA");
++x;
document.writeln("
local x in functionA is "

+ x + " before exiting functionA” + "</p>"); }
function functionB()

{document.writeln("<p>global variable x is " + x +
" on entering functionB");

x *= 10;
document.writeln("
global variable x is "

 x + " on exiting functionB"
 "</p>"); }

</script>
</head> <body onload = "start()"></body></html>

JavaScript Functions-scope

UNIT-II

Objects in JAVASCRIPT and XML

Array Object

An array is a special variable, which can hold more than one value, at a time.

<html>
<head>

<script type = "text/javascript">
function initializeArrays()
{

var n1 = new Array(5);

// allocate 5-element Array

var n2 = new Array();

// allocate empty Array

for (var i = 0; i < n1.length; ++i)
n1[i] = i;

for (i = 0; i < 5; ++i)
n2[i] = i;

outputArray("Array n1 contains", n1);

outputArray("Array n2 contains", n2);
}

Array Object

function outputArray(header, theArray)

{

document.writeln("<h2>" + header + "</h2>");

document.writeln("<table border = \"1\" width =" +

document.writeln("<thead><th width = \"100\"" +

"align = \"left\">Subscript</th>" +

"<th align = \"left\">Value</th></thead><tbody>");

"\"100%\">");

for (var i = 0; i < theArray.length; i++)
document.writeln("<tr><td>" + i + "</td><td>" +

theArray[i] + "</td></tr>");

document.writeln("</tbody></table>");

}

</script>

</head><body onload =
"initializeArrays()"></body> </html>

Array Object

Array Object

<html>

<head>

<title>Initializing an Array with a
Declaration</title> <script type = "text/javascript">

function start()

{

 Initializer list specifies number of elements and
 value for each element.

var colors = new Array("cyan", "magenta",

"yellow", "black");

var integers1 = [2, 4, 6, 8];

var integers2 = [2, , , 8];

outputArray("Array colors contains", colors);

outputArray("Array integers1 contains", integers1);

outputArray("Array integers2 contains", integers2);

}

Array Object

function outputArray(header, theArray)

{

document.writeln("<h2>" + header + "</h2>");

document.writeln("<table border = \"1\"" +

"width = \"100%\">");

document.writeln("<thead><th width = \"100\" "
+ "align = \"left\">Subscript</th>" +

"<th align = \"left\">Value</th></thead><tbody>");

for (var i = 0; i < theArray.length; i++)

document.writeln("<tr><td>" + i + "</td><td>" +

theArray[i] + "</td></tr>");

document.writeln("</tbody></table>");

}

</script>

</head><body onload = "start()"></body>

</html>

Array Object

Array Object

<html >

<head>

<title>Initializing Multidimensional Arrays</title>

<script type = "text/javascript">

function start()

{

var array1 = [[1, 2, 3], // first row

[4, 5, 6]]; // second row

var array2 = [[1, 2], // first row

[3], // second row

[4, 5, 6]]; // third row

outputArray("Values in array1 by row", array1);

outputArray("Values in array2 by row", array2);

}

Array Object

function outputArray(header, theArray)

{

document.writeln("<h2>" + header + "</h2><tt>");

for (var i in theArray) {

for (var j in theArray[i])

document.write(theArray[i][j] + " ");

document.writeln("
");

}

}

</script>

</head><body onload = "start()"></body>

</html>

Array Object

Array Object

<html>

<head>

<title>Sum the Elements of an Array</title>

<script type = "text/javascript">

function start()

{

var theArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

var total1 = 0, total2 = 0;

for (var i = 0; i < theArray.length; i++)

total1 += theArray[i];

document.writeln("Total using subscripts: " + total1
); for (var element in theArray)

total2 += theArray[element]; document.writeln(

"
Total using for...in: " +

total2);

}

</script> </head><body onload = "start()"></body></html>

Array Object

Array Object

<html>

<head>

<title>Passing Arrays and Individual Array

Elements to Functions</title>

<script type = "text/javascript">

function start()

{ var a = [1, 2, 3, 4, 5];

document.writeln("<h2>Effects of passing entire "
+ "array by reference</h2>");

outputArray("The values of the original array are: ", a);

modifyArray(a); // array a passed by reference

outputArray("The values of the modified array are: ", a);

document.writeln("<h2>Effects of passing array " +

"element by value</h2>" +"a[3] before modifyElement: " + a[3]
); modifyElement(a[3]);

document.writeln("
a[3] after modifyElement: " + a[3]);

}

Array Object

function outputArray(header, theArray)

{

document.writeln(header + theArray.join(" ") + "
");

}

function modifyArray(theArray)

{

for (var j in theArray)

theArray[j] *= 2;

}

function modifyElement(e)

{

e *= 2;

document.writeln("
value in modifyElement: " + e);

}

</script>

</head><body onload = "start()"></body>

</html>

Array Object

Array Object

<html >

<head>

<title>Sorting an Array with Array Method sort</title>

<script type = "text/javascript">

function start()

{

var a = [10, 1, 9, 2, 8, 3, 7, 4, 6, 5];

document.writeln("<h1>Sorting an Array</h1>");

outputArray("Data items in original order: ", a);

a.sort(compareIntegers); // sort the array

outputArray("Data items in ascending order: ", a);

}

Array Object

// outputs "header" followed by the contents of "theArray"

function outputArray(header, theArray)

{

document.writeln("<p>" + header +

theArray.join(" ") + "</p>");

}

 comparison function for use with sort

function compareIntegers(value1, value2)
{

return parseInt(value1) - parseInt(value2);
}

</script>

</head><body onload = "start()"></body>

</html>

Array Object

String object

<html >

<head>

<title>Character Processing Methods</title>

<script type = "text/javascript">

var s = "ZEBRA";

var s2 = "AbCdEfG";

document.writeln("<p>Character at index 0 in '"
+ s + "' is " + s.charAt(0));

document.writeln("
Character code at index 0 in '"

+ s + "' is " + s.charCodeAt(0) + "</p>");

document.writeln("<p>'" + String.fromCharCode(87, 79, 82, 68)
+ "' contains character codes 87, 79, 82 and 68</p>")

document.writeln("<p>'" + s2 + "' in lowercase is '"
+ s2.toLowerCase() + "'");

document.writeln("
'" + s2 + "' in uppercase is '"

 s2.toUpperCase() + "'</p>");
</script> </head><body></body></html>

String object

String object

<html >

<head><title>XHTML Markup Methods of the String
Object</title> <script type = "text/javascript">

var anchorText = "This is an anchor",

blinkText = "This is blinking text",

fixedText = "This is monospaced text",

linkText = "Click here to go to anchorText",

strikeText = "This is strike out text",

subText = "subscript“, supText = "superscript";

document.writeln(anchorText.anchor("top"));

document.writeln("
" + blinkText.blink());

document.writeln("
" + fixedText.fixed());

document.writeln("
" + strikeText.strike());

document.writeln("
This is text with a " + subText.sub());

document.writeln("
This is text with a " + supText.sup());

document.writeln("
" + linkText.link("#top")); </script>

</head><body></body></html>

String object

Date object
<html >

<head><title>Date and Time Methods</title>

<script type = "text/javascript">

var current = new Date();

document.writeln(

"<h1>String representations and valueOf</h1>");

document.writeln("toString: " + current.toString() +

"
toLocaleString: " + current.toLocaleString() +

"
toUTCString: " + current.toUTCString() +

"
valueOf: " + current.valueOf());

document.writeln("<h1>Get methods for local time zone</h1>");

document.writeln("getDate: " + current.getDate() +

"
getDay: " + current.getDay() +

"
getMonth: " + current.getMonth() +

"
getFullYear: " + current.getFullYear() +

"
getTime: " + current.getTime() +

"
getHours: " + current.getHours() +

Date object

"
getMinutes: " + current.getMinutes() +

"
getSeconds: " + current.getSeconds() + "
getMilliseconds: " + current.getMilliseconds() +

"
getTimezoneOffset: " +

current.getTimezoneOffset()); document.writeln(

"<h1>Specifying arguments for a new Date</h1>");

var anotherDate = new Date(2001, 2, 18, 1, 5, 0, 0);

document.writeln("Date: " + anotherDate);

document.writeln("<h1>Set methods for local time zone</h1>"

); anotherDate.setDate(31);

anotherDate.setMonth(11);

anotherDate.setHours(23);

anotherDate.setSeconds(59);

anotherDate.setFullYear(2001);

anotherDate.setMinutes(59);

document.writeln("Modified date: " + anotherDate
); </script> </head><body></body></html>

Date object

Compare Two Dates

 The Date object is also used to compare two dates.

 The following example compares today's date with the 14th January 2010:

 var myDate=new Date();

myDate.setFullYear(2010,0,14);
var today = new Date();

if (myDate>today)
{
alert("Today is before 14th January 2010");
}

else
{
alert("Today is after 14th January 2010");
}

Document object

<html >

<head>

<title>Using Cookies</title>

<script type = "text/javascript">

var now = new Date(); // current date and time

var hour = now.getHours(); // current hour (0-

23) var name;

if (hour < 12) // determine whether it is morning

document.write("<h1>Good Morning, ");

else

{ hour = hour - 12; // convert from 24 hour clock to PM time

 determine whether it is afternoon or
evening if (hour < 6)

document.write("<h1>Good Afternoon, "

); else
document.write("<h1>Good Evening, ");

}

Document object

 determine whether there is a
cookie if (document.cookie)
{// convert escape characters in the cookie string to their

 english notation

var myCookie = unescape(document.cookie);

 split the cookie into tokens using = as delimiter

var cookieTokens = myCookie.split("=");

 set name to the part of the cookie that follows the =
sign name = cookieTokens[1];

}

else

{ // if there was no cookie then ask the user to input a name name

= window.prompt("Please enter your name", "GalAnt");

 escape non-alphanumeric characters in the name string

 and add name to the cookie

document.cookie = "name=" + escape(name);

}

Document object
document.writeln(

name + ", welcome to JavaScript programming! </h1>");

document.writeln(" " +

"Click here if you are not " + name + "");

 reset the document's cookie if wrong
person function wrongPerson()
{

 reset the cookie

document.cookie= "name=null;" +

 expires=Thu, 01-Jan-95 00:00:01 GMT";

 after removing the cookie reload the page to get a new
name location.reload();

}

</script>

</head>

<body><p>Click Refresh (or Reload) to run the script
again</p> </body></html>

Document object

Document object

Event model-onclick

<html >

<head>

<title>DHTML Event Model - onclick</title>

<script type = "text/javascript" for = "para"

event = "onclick">

alert("Hi there");

</script>

</head>

<body>

<p id = "para">Click on this text!</p>

<input type = "button" value = "Click Me!"

onclick = "alert('Hi again')" />

</body></html>

XML

Extensible Markup Language

XML

 XML is based on SGML: Standard
Generalized Markup Language

 HTML and XML are both based on SGML

SGML

HTML XML

93

Diff b/w HTML & XML

 HTML was designed to display data and to
focus on how data looks.

 HTML is about displaying information, while
XML is about describing information

 XML was designed to describe data and to
focus on what data is.

 It is important to understand that XML was
designed to store, carry, and exchange data.
XML was not designed to display data.

94

What is XML?

 XML stands for EXtensible Markup Language
 XML is a markup language much like HTML
 XML was designed to describe data
 XML tags are not predefined. You must define

your own tags
 Extensible: can be extended to lots of different

applications.
 Markup language: language used to mark up

data.
 Meta Language: Language used to create other

languages.
 XML uses a Document Type Definition (DTD) or

an XML Schema to describe the data

95

HTML File

<HTML>

<BODY>

<H1>Harry Potter</H1>

<H2>J. K. Rowling</H2>

<H3>1999</H3>

<H3>Scholastic</H3>

</BODY>

</HTML>

96

XML File

<BOOK>

<TITLE>Harry Potter</TITLE>

<AUTHOR>J. K. Rowling</AUTHOR>

<DATE>1999</DATE>

<PUBLISHER>Scholastic</PUBLISHER>

</BOOK>

97

XML ROLE

98

XML Advantages

 1. XML is used to Exchange Data
– With XML, data can be exchanged

between incompatible systems
 2. XML and B2B

– With XML, financial information can
be exchanged over the Internet.

 3. XML can be used to Share Data
– With XML, plain text files can be used to

share data.

99

XML Advantages

 4. XML is free and extensible
– XML tags are not predefined. we must

"invent" your own tags.
 5. XML can be used to Store Data

– With XML, plain text files can be used to
store data.

 6. XML can be used to Create new Languages
– XML is the mother of WAP and WML.

 7. HTML focuses on "look and feel”

– XML focuses on the structure of the data.

100

XML Example

 <!-- This is a comment -->
 <?xml version="1.0" encoding="ISO-8859-1"?>
 <book>

– <title>My First XML</title>
– <prod id="33-657" Media="paper"></prod>
– <chapter>Introduction to XML

 <para>What is HTML</para>
 <para>What is XML</para>

– </chapter>
– <chapter>XML Syntax

 <para>Elements must have a closing tag</para>
 <para>Elements must be properly nested</para>

– </chapter>

 </book>

101

Elements can have different content types.

 Element content


 book

 Mixed content


 Chapter

 Simple content


 para

 Empty content


 prod

102

Element Naming rules

 Names can contain letters, numbers, and other characters
 Names must not start with a number or punctuation character
 Names must not start with the letters xml (or XML, or Xml, etc)
 Names cannot contain spaces
 Avoid "-" and "." in names. For example, if you name something "first-

name," it could be a mess if your software tries to subtract name
from first. Or if you name something "first.name," your software may
think that "name" is a property of the object "first."

103

Element Naming rules

 Names should be short and simple

 XML documents often have a corresponding

database, in which fields exist corresponding
to elements in the XML document.

 Attribute values must always be enclosed in quotes,

but either single or double quotes can be used.
Ex: <person sex="female">

104

XML Attributes

 XML elements can have attributes.
Attributes are used to provide
additional information about elements.

 In HTML


 .
– The SRC attribute provides additional

information about the IMG element.

 In XML


– <prod id="33-657" media="paper"></prod>

105

Use of Elements vs. Attributes

 Data can be stored in child elements or in attributes.
 Attributes:
 <person sex="female">
 <firstname>Anna</firstname>

<lastname>Smith</lastname>
 </person>
 Elements:
 <person>

<sex>female</sex>
<firstname>Anna</firstname>

<lastname>Smith</lastname>
</person>

106

Well-formedness

 A well-formed XML document conforms to
XML syntax rules and constraints, such as:
– The document must contain exactly one root

element and all other elements are children
of this root element.

– All markup tags must be balanced; that is, each
element must have a start and an end tag.

– Elements may be nested but they must
not overlap.

– All attribute values must be in quotes.

107

Validity

 According to the XML specification, an XML
document is considered valid if it has an
associated DTD declaration and it complies with
the constraints expressed in the DTD.

 To be valid, an XML document must meet the

following criteria:
– Be well-formed

– Refer to an accessible DTD-based schema

using a Document Type Declaration:

<!DOCTYPE>

108

Document Type Definitions

 The Document Type Definition (DTD) forms the
basis of valid documents because it establishes the
grammar of an XML vocabulary, which in turn
determines the structure of XML documents.

 A DTD is necessary for performing document

validation, which is an important part of
XML content development and deployment.

109

Syntax of DTD

 ELEMENT is used to declare element names

 <!ELEMENT element_name

(subelement1,subelement2......subelement(n-1))>
– Ex: <!ELEMENT product (name, type)>

 ATTLIST To declare attributes

 <!ATTLIST element_name attr1_name att_type constraints [att2_name

att_type constraints...........]>
– <!ATTLIST product name CDATA #REQUIRED>

110

Attribute Types

• Types Description

• CDATA Unparsed character data

• Enumerated a series of string values
• ID A unique identifier
• IDREF A reference to an ID declared
 somewhere

• NMTOKEN A name consisting of XML token
 characters

• NMTOKENS Multiple names consisting of
 XML token characters.

111

Internal DTD

<!DOCTYPE root_ele_name
[DTD code

]>

112

 InternalDTDs
Placing the DTD code in the DOCTYPE tag in this way

products.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE products [
 <!ELEMENT PRODUCTS (PRODUCT*)>
 <!ELEMENT PRODUCT (PID,PNAME,PRICE,DESCR,ISTOCK)>
 <!ELEMENT PID (#PCDATA)>
 <!ELEMENT PNAME (#PCDATA)>
 <!ELEMENT PRICE (#PCDATA)>
 <!ELEMENT DESCR (#PCDATA)>
 <!ELEMENT ISTOCK (#PCDATA)>
]>

 <PRODUCTS>
 <PRODUCT>
 <PID>1</PID>
 <PNAME>XYZ</PNAME>
 <PRICE>300.00</PRICE>
 <DESCR>XYZ descr</DESCR>
 <ISTOCK>1000</ISTOCK>
 </PRODUCT>
 </PRODUCTS>

113

External DTD

 <!DOCTYPE root_ele_name SYSTEM 'dtd file name'>

– SYSTEM


the definitions are developed and
used by the same comp

or

 <!DOCTYPE root_ele_name PUBLIC ' fpi string ' ' dtd
url '>

– PUBLIC


if the definition can be used by public

114

 products.dtd

<!ELEMENT products (product)>
 <!ELEMENT product (name, type)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT type (#PCDATA)>
 products.xml

<?xml version ="1.0"?>

 <!DOCTYPE products
SYSTEM "products.dtd">

115

Qualifier Name Meaning

Ex : <!ELEMENT emp_details (emp+)>

116

Attribute Values

<!ATTLIST product name CDATA
#REQUIRED>

117

Prefix URI
for namespaces

 Xml

http://www.w3.org/XML/1998/namespace

 Xsl

http://www.w3.org/1999/XSL/Transform

 Xsd

http://www.w3.org/2001/XMLSchema

118

http://www.w3.org/XML/1998/namespace
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema

<root>

<h:table xmlns:h="http://www.w3.org/TR/html4/"
>

<h:tr>
<h:td>Apples</h:td>
<h:td>Bananas</h:td>
</h:tr>

</h:table>

<f:table xmlns:f="http://www.w3.org/TR/html4/"
>

<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>
</root>

119

XML Schema

 XML Schema is an XML-based alternative to
DTD.

 An XML schema describes the structure of

an XML document.

 The XML Schema language is also referred

to as XML Schema Definition (XSD).

120

XML Schema

 An XML Schema:
 defines elements that can appear in a document
 defines attributes that can appear in a document
 defines which elements are child elements
 defines the order of child elements
 defines the number of child elements

 defines whether an element is empty or can include

text
 defines data types for elements and attributes

121

XML Schema elements

1.Simple elements

2.Complex elements

122

Simple Elements

 A simple element is an XML element that can
contain only text. It cannot contain any
other elements or attributes.

 Xml:

<lastname> abc </lastname>

 Xml schema:

<xs:element name="lastname" type="xs:string“
/>

123

Restrictions

<?xml version=“1.0” encoding=“utf-8” ?>
<xsd:schema

xmlns:xsd=http://www.w3.org/2001/XMLSche
ma>

<xsd:element name="age">
<xsd:simpleType>

<xsd:restriction base="xs:integer">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="120"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element >

124

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

<?xml version=“1.0” encoding=“utf-8” ?>
<xsd:schema
xmlns:xsd=http://www.w3.org/2001/XMLSchema>
<xsd:element name="car">

<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="Audi"/>
<xsd:enumeration value="Golf"/>
<xsd:enumeration value="BMW"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

125

http://www.w3.org/2001/XMLSchema

<?xml version=“1.0” encoding=“utf-8” ?>
<xsd:schema

xmlns:xsd=“http://www.w3.org/2001/XMLSche
ma”>

<xsd:element name="initials">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z][A-Z][A-Z]"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

126

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

Restriction on length

<xsd:element name="password">
<xsd:simpleType>

<xsd:restriction base="xs:string">

<xsd:length value="8"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

127

Complex Elements

 A complex element is an XML element that
contains other elements and/or attributes.

<xsd:element name="employee">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="firstname"
type="xsd:string"/> <xsd:element
name="lastname" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

</xsd:element> 128

<xsd:element name="employee“ type="personinfo"/>

<xsd:complexType name="personinfo">

<xsd:sequence>

<xsd:element name="firstname" type="xs:string"/>

<xsd:element name="lastname"
type="xs:string"/> </xsd:sequence>

</xsd:complexType>

129

Xml file

<college name=“snist”>
<strength>1000</strength>
<branch>6</branch>
<bname>

<cse block=“1”>200</cse>
<it block=“2”>200</it>

<mech block=“3”>200</mech>
<ece block=“4”>200</ece>
<eee block=“5”>100</eee>
<ecm block=“6”>100</ecm>

</bname>
</college>

<college>
..
</college>

130

Diff b/w DTD & XSD

 DTD supports types ID,IDREF,CDATA etc.,
 Schema supports all primitive and user defined data

types
 DTD supports No specifier, ?, *, + sign
 Schema hava minOccurs and maxOccurs attributes
 XML Schemas are extensible to future additions
 XML Schemas are richer and more powerful than

DTDs
 XML Schemas are written in XML

131

Parsers

 An XML parser is a piece of code that reads a
document and analyzes its structure.

 The parser is the engine for interpreting our XML

documents

 The parser reads the XML and prepares the

information for your application.

How to use a parser

 1. Create a parser object
 2. Pass your XML document to the parser
 3. Process the results

132

Parser Example

import com.ibm.xml.parser.*;

import java.io.*;

public class SimpleParser

{ public static void main (String a[]) throws Exception
{ Parser p=new Parser("err");

FileInputStream fis=new FileInputStream(a[0]);

TXDocument doc=p.readStream(fis);

doc.printWithFormat(new OutputStreamWriter(System.out)

}

}

133

Types of Parsers

 There are two common APIs that parsers use.

– DOM is the Document Object Model API

– SAX is the Simple API for XML

134

Document Object Model (DOM)

 DOM uses a tree based structure.

 DOM reads an entire XML document and builds a

Document Object.
– The Document object contains the

tree structure.
– The top of the tree is the root node.
– The tree grows down from this root, defining

the child elements.
– DOM is a W3C standard.

 Using DOM, we can also perform insert nodes,

update nodes, and deleting nodes.

135

DOM interfaces

 Node: The base data type of the DOM.

Methods:

 Element:

– Attr: Represents an attribute of an element.
– Text: The actual content of an Element or Attribute

 Document: Represents the entire XML

document. A Document object is

often referred to as a DOM tree.

136

Node

getChildNodes()

, NodeList

getNodeName(),

getLength()

getNodeValue(), item()

hasChildNodes()

.

Element Document

createElement(),

createAttribute(

),

createTextNode(137
),

Simple API for XML Parsing (SAX)

 SAX parsers are event-driven

– The parser fires an event as it parses each

XML item.

– The developer writes a class that implements

a handler interface for the events that the

parser may fire.

138

SAX Interface

 DocumentHandler

– Functions in this interface
 startDocument()
 startElement()
 endElement()
 endDocument()
 void setDocumentLocator(Locator)
 void characters(char[],int start,int length)

– This event fires when text data is found in the XML
Document

class HandlerBase is a sub class of DocumentHandler also called
Adapter Class.

139

Diff b/w DOM & SAX

DOM SAX

Uses more memory and has Uses less memory and

more functionality provides less functionality

The entire file is stored in an The developer must handle

internal Document object. each SAX event before the

This may consume many next event is fired.

resources

For manipulation of the For simple parsing and

document, DOM is best display SAX will work

choice great

140

UNIT-III
Servlets

The Servlet Life Cycle

 Overview of the Life Cycle




 Birth of a Servlet




 Life of a Servlet




 Death of a Servlet


Overview of Servlet Life Cycle

Life of a Servlet

 Birth: Create and initialize the servlet




 Important method: init()




 Life: Handle 0 or more client requests




 Important method: service()




 Death: Destroy the servlet




 Important method: destroy()


Birth of a Servlet

The init() method

 The init() method is called when the servlet is first
requested by a browser.



 It is not called again for each request.




 Used for one-time initialization.




 There are two versions of the init() method:




 Version 1: takes no arguments




 Version 2: takes a servletConfig object as an argument.




 We will focus only on the first option.


Simple Example

 The init() method is a good place to put any
initialization variables.




 For example, the following servlet
records its Birth Date/time…



import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Birth extends HttpServlet {
Date birthDate;

// Init() is called first

public void init() throws ServletException
{ birthDate = new Date();

}

// Handle an HTTP GET Request

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/plain");

PrintWriter out = response.getWriter();

out.println ("I was born on:

"+birthDate); out.close();

}

}

Life of a Servlet

Life of a Servlet

 The first time a servlet is called, the Servlet is
instantiated, and its init() method is called.




 Only one instance of the servlet is
instantiated.




 This one instance handles all browser
requests.



Service() Method

 Each time the server receives a request for a servlet, the
server spawns a new thread and calls the servlet’s service ()
method.



Browser

service()

Single Instance

Web Server service()

Browser

 of Servlet service()

Browser

Let’s Prove it…

 To prove that only one instance of a servlet is created, let’s create a
simple example.




 The Counter Servlet keeps track of the number of times it has been
accessed.




 This example maintains a single instance variable, called count.




 Each time the servlet is called, the count variable is
incremented.




 If the Server created a new instance of the Servlet for each request,
count would always be 0!



import java.io.*; import
javax.servlet.*; import
javax.servlet.http.*;

Only one instance of the
counter Servlet is created.

public class Counter extends HttpServlet {
Each browser request is

// Create an instance variable therefore incrementing the
int count = 0; same count variable.

// Handle an HTTP GET Request

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException,

ServletException {
response.setContentType("text/plain");
PrintWriter out = response.getWriter();
count++;
out.println ("Since loading, this servlet has "

 "been accessed "+ count + "
times."); out.close();

}
}

The Service Method

 By default the service() method checks the HTTP Header.




 Based on the header, service calls either doPost() or doGet().




 doPost and doGet is where you put the majority of your
code.




 If your servlets needs to handle both get and post
identically, have your doPost() method call doGet() or vice
versa.



Death of a Servlet

Death of a Servlet

 Before a server shuts down, it will call the
servlet’s destroy() method.




 You can handle any servlet clean up here. For
example:



 Updating log files.




 Closing database connections.




 Closing any socket connections.


Example: Death.java

 This next example illustrates the use of the
destroy() method.



 While alive, the servlet will say “I am alive!”.




 When the server is stopped, the destroy()
method is called, and the servlet records its
time of death in a “rip.txt” text file.



import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Death extends HttpServlet
{

// Handle an HTTP GET Request

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException,
ServletException

{

response.setContentType("text/plain");

PrintWriter out = response.getWriter();

out.println ("I am alive!");
Continued….

out.close();

}

 This method is called when one stops
 the Java Web Server
public void destroy()

{
try
{

FileWriter fileWriter = new FileWriter
("rip.txt"); Date now = new Date();
String rip = "I was destroyed at: "+now.toString();
fileWriter.write (rip);
fileWriter.close();

} catch (IOException e)

{
e.printStackTrace();

}
}

}

Putting it all together

A Persistent Counter

 Now that we know all about the birth, life and death
of a servlet, let’s put this knowledge together to
create a persistent counter.




 The Counter.java example we covered earlier has a big
problem:




 When you restart the web server, counting starts all over at 0.




 It does not retain any persistent memory.


Persistent Counter

 To create a persistent record, we can store the
count value within a “counter.txt” file.




 init(): Upon start-up, read in the current counter value
from counter.txt.




 destroy(): Upon destruction, write out the new
counter value to counter.txt



import java.io.*; import
java.util.*; import
javax.servlet.*; import
javax.servlet.http.*;

At Start-up, load
the counter from

public class CounterPersist extends HttpServlet {file.
In the event of any
exception, initialize
count to 0.

try {
FileReader fileReader = new FileReader (fileName);
BufferedReader bufferedReader = new BufferedReader (fileRea
String initial = bufferedReader.readLine();
count = Integer.parseInt (initial);

} catch (FileNotFoundException e) { count = 0;
} catch (IOException e) { count = 0; }

}catch (NumberFormatException e) { count = 0; }Continued….

 public void
init () {

 String fileName =
"counter.txt"; int count;

// Handle an HTTP GET Request

public void doGet(HttpServletRequest request, HttpServletResponse
resp throws IOException, ServletException {

response.setContentType("text/plain");
PrintWriter out = response.getWriter();
count++;

out.println ("Since loading, this servlet has "
+"been accessed "+ count + " times.");

out.close();

} Each time the

 doGet() method is

 called, increment

 the count variable.

Continued….

 At Shutdown, store counter back to
file public void destroy() {

try {
FileWriter fileWriter = new FileWriter
(fileName); String countStr = Integer.toString
(count); fileWriter.write (countStr);
fileWriter.close();

} catch (IOException e) {
e.printStackTrace();

 } When destroy() is

}
} called, store new

 Can anybody counter variable

 foresee back to counter.txt.

 any problems with

 this code?

Steps for implementing servlet
programs

 Import the required packages
 Javax.servlet.http.*;
 Javax.servlet.*;
 Java.io.*;
 Any other packages if required

 Define a class extends with either generic servlet
or httpservlet class

 Define the class with public access modifier
hence save the file exactly same as class name

 Override required lifecycle methods

Various phases of servlet
during execution

 Object instantiation phase
 Object initialization

 Executing the init() method of servlet
 Request processing phase

 Executing the service() method of servlet
 Destruction phase

 Executing destroy() method of servlet

5) unavailability

Web.xml

 It is also known as web configuration file of
deployment descriptor

 Web.xml is the fixed name to be given in the

web application development

 It is always used to populate/ hide the

technologies which are used in the
web application development

 The web.xml file will be scanned by the server

initially

Web.xml file contd..,

<web-app>

<servlet>

<servlet-name>logical name</servlet-name>
<servlet-class>servlet class</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>logical name</servlet-name> <url-
pattern>/public url of web app</url-pattern>

<servlet-mapping>

</web-app>

Deployment Structure

It is prescribed structure provided by sun microsystem in
oracle to develop the web applications


PROJECT NAME


src


.java file

 .html file




 .js file




WEB-INF 

classes

 Before compiling the servlet program we need
to set the class path for servlet-api.jar

 Set classpath=c:\prgram files\apache software

foundatin\tomcat7.0\lib\servlet-api.jar;
 After compiling the java program copy the

.class file from src folder to classes folder.
 Define web.xml file

Deployment

 It is the process of copying the project from the
current working directory to the context of server

 Copy the project from current directory and paste
it into webapp
– C:\program files\apache software

foundation\tomcat 7.0\webapps
 Start the server

– Start


programs


apache tomact 7.0


configured tomcat


start
(ensure server status must be started)

 Open the browser type the following url

– http://localhost:8080/project name/servlet-name

http://localhost:8080/project

Thread Synchronization

 After the Servlet is generated, one instance of
it serves requests in different threads, just
like any other Servlet

 In particular, the service method
(_jspService) may be executed by
several concurrent threads

 Thus, like Servlets, JSP programming requires

concurrency management

Basic JSP Elements

177 A Quick Reference to JSP Elements

http://java.sun.com/products/jsp/syntax/2.0/syntaxref20.html

Basic Elements in a JSP file

 HTML code: <html-tag>content</html-tag>
 JSP Comments: <%-- comment --%>
 Expressions: <%= expression %>
 Scriptlets: <% code %>
 Declarations: <%! code %>
 Directives: <%@ directive attribute="value" %>
 Actions: <jsp:forward.../>, <jsp:include.../>
 EL Expressions: ${expression}

Covered Later...

178

JSP Expressions

 A JSP expression is used to insert Java values directly
into the output

 It has the form: <%= expression %> , where

expression can be a Java object, a numerical
expression, a method call that returns a value, etc...

 For example:

The heading
space and the

following space
are not created in

the result.

Use “ “ if you want a
real space

179

<%= new java.util.Date() %>

<%= "Hello"+" World" %>

<%= (int)(100*Math.random()) %>

JSP Expressions

 Within the generated Java code
– A JSP Expression is evaluated
– The result is converted to a string
– The string is inserted into the page

 This evaluation is performed at runtime (when

the page is requested), and thus has full
access to information about the request, the
session, etc...

180

Expression Translation

<h1>A Random Number</h1>

<%= Math.random() %>

public void _jspService(HttpServletRequest
request, HttpServletResponse response)
throws java.io.IOException, ServletException {
... Default response.setContentType("text/html");

 content- type
...

 out.write("<h1>A Random Number</h1>\r\n"Thegenerated);
 out.print(Math.random()); servlet calls

 out.write("\r\n"); out.write() for

 ... Strings, and

}
 181 out.print() for

objects

Predefined Variables (Implicit Objects)

 The following predefined variables can be used:
– request: the HttpServletRequest
– response: the HttpServletResponse
– session: the HttpSession associated with

the request
– out: the PrintWriter (a buffered version of type

JspWriter) used to fill the response content
– application: The ServletContext
– config: The ServletConfig

 These variables and more will be discussed in details

182

<html>
<head>

<title>JSP Expressions</title>
</head>
<body>

<h2>JSP
Expressions</h2>
Current time: <%= new java.util.Date() %>

Your hostname:<%= request.getRemoteHost() %>
Your session ID: <%= session.getId() %>

The <code>testParam</code> form parameter:
<%= request.getParameter("testParam") %>

</body>

</html> Computer-
code style

183

JSP Scriplets

 JSP scriptlets let you insert arbitrary code into
the Servlet service method (_jspService)

 Scriptlets have the form: <% Java Code %>

 The code is inserted verbatim into the service

method, according to the location of the
scriptlet

 Scriptlets have access to the same

automatically defined variables as expressions

184

Scriptlet Translation

<%= foo() %>

<% bar(); %>

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
...
response.setContentType("text/html");
...
out.print(foo());
bar();
...

}

185

An Interesting Example

Scriptlets don't have to be complete code blocks:

<% if (Math.random() < 0.5) {
%> You won the game!
<% } else { %>
You lost the game!
<% } %>

if (Math.random() < 0.5) {
out.write("You won the game!");

} else {
out.write("You lost the game!");

}

186

JSP Declarations

 A JSP declaration lets you define methods or members
that get inserted into the Servlet class (outside of all
methods)

 It has the following form:

<%! Java Code %>

 For example:

<%! private int someField = 5; %>

<%! private void someMethod(...) {...} %>

 JSPs are intended to contain a minimal amount of code
so it is usually of better design to define methods in a
separate Java class...

187

Declaration Example

 Print the number of times the current page has been
requested since the Servlet initialization:

<%! private int accessCount = 0; %>

<%! private synchronized int incAccess()
{ return ++accessCount;

} %>

<h1>Accesses to page since Servlet init:

<%= incAccess() %> </h1>

188

Java permitsGenerate

 public class serviceCount_jsp extends... implements...
membdServlet

throws... {
initialization

on

 private int accessCount = 0;

declaration,

private synchronized int incAccess() {

 even if the

 return ++accessCount; location is
 } outside any

 method’s
 public void _jspService(HttpServletRequest requ st,

 HttpServletResponse response) scope
throws ServletException, IOException {

...
...

out.write("<h1>Accesses to page since Servlet init:
"); out.print(incAccess());
... } ... }

189

JSP Directives

 A JSP directive affects the structure of the Servlet
class that is generated from the JSP page

 It usually has the following form:

<%@ directive attribute1="value1" ...

attributeN="valueN" %>

 Three important directives: page, include and taglib
 include and taglib will be discussed later

190

page-Directive Attributes

 import attribute: A comma separated list of
classes/packages to import

<%@ page import="java.util.*, java.io.*" %>

Imports from the class/Jar
locations as mentioned in

Tomcat class

• contentType attribute: Sets the MIME-Type of
the resulting document (default is text/html as
already mentioned)

<%@ page contentType="text/plain" %>

191

page-Directive Attributes (cont)

 What is the difference between setting the page
contentType attribute, and writing
<%response.setContentType("...");%> ?

– In the latter case, the new servlet will

call response.setContentType() twice

– The first, impicit (from the JSP point of view),
call will be with the default content type.

– The second, explicit, call might even come after

the buffer was flushed or after the writer was

obtained…

192
Check: double-contenttype.jsp code using the

explicit call, generated java code (servlet)

http://localhost/dbi/double-contenttype.jsp
http://localhost/dbi/code/double_002dcontenttype_jsp.java.html

page-Directive Attributes (cont)

 session="true|false" - use a session?

.

The underlined value If the JSP is defined

as using a session, a

is the default
• buffer="sizekb|none|8kb" session cookie will be

– Specifies the content-buffer (out) sentsize toin thekiloclient-bytes

 autoFlush="true|false"
– Specifies whether the buffer should be flushed

when it fills, or throw an exception otherwise

 isELIgnored ="true|false"

– Specifies whether JSP expression language is used
– EL is discussed later

193

Web Application:
Java Server Pages (JSP)

Outline

 Introducing JavaServer PagesTM (JSPTM)
 JSP scripting elements

– Expressions, Scriptlets and declarations

 The JSP page Directive:
– Structuring Generated ServletsTM

 Including Files in JSP Documents
 Using JavaBeans™ components with JSP
 Creating custom JSP tag libraries
 Integrating servlets and JSP with the MVC

architecture

The JSP Framework

 Idea:
– Use regular HTML for most of page
– Mark servlet code with special tags
– Entire JSP page gets translated into a servlet (once), and servlet is

what actually gets invoked (for each request)
 Example:

– JSP

 Thanks for ordering
<I><%= request.getParameter("title") %></I>

– URL

 http://host/OrderConfirmation.jsp?title=Core+Web+Programming
– Result

 Thanks for ordering Core Web Programming

Setting Up Your Environment

 Set your CLASSPATH.

 Compile your code.

 Use packages to avoid name conflicts.

 Put JSP page in special directory.

 tomcat_install_dir/webapps/ROOT

 Use special URL to invoke JSP page.

 Caveats

– Previous rules about CLASSPATH, install dirs, etc.,
still apply to regular classes used by JSP

<HTML><HEAD>

<TITLE>JSP Expressions</TITLE>

<META NAME="author" CONTENT="Marty Hall">
<META NAME="keywords"

CONTENT="JSP,expressions,JavaServer,Pages,servlets
">

<META NAME="description"
CONTENT="A quick example of JSP expressions.">

<LINK REL=STYLESHEET HREF="JSP-Styles.css"
TYPE="text/css">

</HEAD>
<BODY>

<H2>JSP Expressions</H2> Example
Current time: <%= new java.util.Date() %>
Your hostname: <%= request.getRemoteHost() %>

Your session ID: <%= session.getId() %> The
<CODE>testParam</CODE> form parameter:

<%= request.getParameter("testParam")
%> </BODY></HTML>

Example Result

 With default setup, if location was

– C:\<tomcatHome>\webapps\ROOT\Expressions.js
p

 URL would be
– http://localhost/Expressions.jsp

How JSP works?

 Web browser send JSP request

 HTML send back to the browser

 JSP request send via
Inter to the web server

 The web server send the

J file (template pages) to

JS servlet engine

 Parse JSP file
 Generate servlet source co

 Compile servlet to class

JSP page translation and processing
phases

Translation phas

Hello.jsp

Read
Request

helloServlet.java

Generate

Client
Response

Server
Execute

 helloServlet.class

Processing phase

JSP Life-cycle

Request for

.jsp file newer than

No

JSP page
Previously compiled

 Servlet?

 Yes

Translate and

Response

Execute the
(re-compile)

an HTML

Compiled Servlet
Servlet code

Template Pages

Server Page Template Resulting HTML

<html> <html>

<title> <title>

A simple example A simple example

</title> translation
</title>

<body color=“#FFFFFF”> <body color=“#FFFFFF”>

The time now is The time now is

<%= new java.util.Date() %> Tue Nov 5 16:15:11 PST 2002

</body> </body>

</html> </html>

Dividing Pure Servlets

Public class MySelect {

public void doGet(…){

if (isValid(..){

saveRecord();

out.println(“<html>”);

….

}

}

private void isValid(…){…}

private void saveRecord(…) {…}

}

controller
Process request

Servlet

view
Presentation

JSP

model

Business logic JavaBeans

Model-View-Controller (MVC)

Most Common Misunderstanding:
Forgetting JSP is Server-Side Technology

 Very common question
– I can’t do such and such with

HTML. Will JSP let me do it?
 Similar questions

– How do I put an applet in a JSP page? Answer:
send an <APPLET…> tag to the client

– How do I put an image in a JSP page?
Answer: send an tag to the client

– How do I use JavaScript/Acrobat/Shockwave/Etc?
Answer: send the appropriate HTML tags

2nd Most Common
Misunderstanding:

Translation/Request Time Confusion

 What happens at page translation time?
– JSP constructs get translated into servlet code

 What happens at request time?
– Servlet code gets executed. No interpretation of JSP

occurs at request time. The original JSP page is
ignored at request time; only the servlet that resulted
from it is used

 When does page translation occur?
– Typically, the first time JSP page is accessed after it

is modified. This should never happen to real user
(developers should test all JSP pages they install).

– Page translation does not occur for each request

JSP/Servlets in the Real World

 Delta Airlines: entire Web site, including real-time schedule info




 First USA Bank: largest credit card issuer in the world; most on-line
banking customers



JSP/Servlets in the Real World

 Excite: one of the top five Internet portals;
one of the ten busiest sites on the Web

Hidden / HTML Comment

 An HTML comment is sent to the client’s
browser, but is not displayed. The information
can be reviewed from the source code.
– <!-- comment [<%= expression%>] -->

 A hidden comment is discarded before any

processing of the JSP page and is not sent
to the web browser.
– <%-- comment -->

JSP Components

 There are three main types of JSP constructs
that you embed in a page.
– Scripting elements

 You can specify Java code
 Expressions, Scriptlets, Declarations

– Directives
 Let you control the overall structure of the servlet
 Page, include, Tag library

– Actions

 Enable the use of server side Javabeans
 Transfer control between pages

Uses of JSP Constructs:
Use of Scripting elements

Simple

Application

Complex

Application

 Scripting elements calling
servlet code directly

 Scripting elements calling

servlet code indirectly (by
means of utility classes)

 Beans
 Custom tags

 Servlet/JSP combo

(MVC architecture)

Types of Scripting Elements

 You can insert code into the servlet that will
be generated from the JSP page.

 Expressions: <%= expression %>
– Evaluated and inserted into the servlet’s output.

i.e., results in something like out.println(expression)
 Scriptlets: <% code %>

– Inserted verbatim into the servlet’s _jspService
method (called by service)

 Declarations: <%! code %>

– Inserted verbatim into the body of the servlet
class, outside of any existing methods

JSP Expressions

 Format
– <%= Java Expression %>

 Result
– Expression evaluated, converted to String, and placed into HTML page

at the place it occurred in JSP page
– That is, expression placed in _jspService inside out.print

 Examples
– Current time: <%= new java.util.Date() %>
– Your hostname: <%= request.getRemoteHost() %>

 XML-compatible syntax
– <jsp:expression>Java Expression</jsp:expression>
– XML version not supported by Tomcat 3. Until JSP 1.2, servers are not

required to support it.

JSP/Servlet Correspondence

 Original JSP

<H1>A Random Number</H1>

<%= Math.random() %>

 Possible resulting servlet code

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
request.setContentType("text/html");
HttpSession session = request.getSession(true);
JspWriter out = response.getWriter();
out.println("<H1>A Random Number</H1>");
out.println(Math.random());
...

}

Example Using JSP Expressions

<BODY>
<H2>JSP Expressions</H2>

Current time: <%= new java.util.Date() %>

Your hostname: <%= request.getRemoteHost() %>
Your session ID: <%= session.getId() %> The
<CODE>testParam</CODE> form parameter:

<%= request.getParameter("testParam") %>

</BODY>

Predefined Variables
(Implicit Objects)

 They are created automatically when a web
server processes a JSP page.

 request: The HttpServletRequest (1st arg to doGet)
 response: The HttpServletResponse (2nd arg to doGet)
 session

– The HttpSession associated with the request (unless disabled with the session
attribute of the page directive)

 out
– The stream (of type JspWriter) used to send output to the client

 application
– The ServletContext (for sharing data) as obtained via

getServletConfig().getContext().

 page, pageContext, config, exception

Implicit objects – Class files

 application: javax.servlet.ServletContext
 config: javax.servlet.ServletConfig

 exception: java.lang.Throwable
 out: javax.servlet.jsp.JspWriter
 page: java.lang.Object
 pageContext: javax.servlet.jsp.PageContext
 request: javax.servlet.ServletRequest
 response: javax.servlet.ServletResponse

 session: javax.servlet.http.HttpSession

Access Client Information

 The getRemoteHost method of the request
object allows a JSP to retrieve the name of
a client computer.

<html><head>

<title>Your Information</title>

</head><body>

Your computer's IP address is

<%= request.getRemoteAddr() %>

Your computer's name is

<%= request.getRemoteHost() %>

Your computer is accessing port

number <%= request.getServerPort()

%> </body></html>

Work with the Buffer

 When the page is being processed, the data is
stored in the buffer instead of being directly sent to
the client browser.



<html>

This is a test of the buffer

<%

out.flush();

for (int x=0; x < 100000000; x++);

out.print("This test is generated about 5

seconds later.");

out.flush();

%>

</html>

Working with Session object

 The session object has many useful methods
that can alter or obtain information about the
current session.
– setMaxInactiveInterval(second)

<html><head>

<title>Session Values</title>

</head><body>

<%

session.setMaxInactiveInterval(10);

String name = (String)

session.getAttribute("username");

out.print("Welcome to my site " + name +

"
"); %>

</body></html>

JSP Scriptlets

 Format: <% Java Code %>

 Result
– Code is inserted verbatim into servlet's _jspService

 Example
– <%

String queryData = request.getQueryString();
out.println("Attached GET data: " +
queryData); %>

– <% response.setContentType("text/plain"); %>

 XML-compatible syntax
– <jsp:scriptlet>Java Code</jsp:scriptlet>

JSP/Servlet Correspondence

 Original JSP

<%= foo() %>

<% bar(); %>

 Possible resulting servlet code

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

request.setContentType("text/html");

HttpSession session =

request.getSession(true); JspWriter out =

response.getWriter(); out.println(foo());

bar();

...

}

<%

for (int i=100; i>=0; i--)

{

%>

<%= i %> bottles of beer on

the wall.

<%

}

%>

JSP Scriptlets
Example

Example Using JSP Scriptlets

<HTML>
<HEAD>

<TITLE>Color Testing</TITLE>
</HEAD>
<%
String bgColor =

request.getParameter("bgColor");
boolean hasExplicitColor;
if (bgColor != null) {

hasExplicitColor =
true; } else {

hasExplicitColor = false;
bgColor = "WHITE";

}
%>

<BODY BGCOLOR="<%= bgColor %>">

JSP Declarations

 Format
– <%! Java Code %>

 Result
– Code is inserted verbatim into servlet's class

definition, outside of any existing methods
 Examples

– <%! private int someField = 5; %>
– <%! private void someMethod(...) {...} %>

 XML-compatible syntax

– <jsp:declaration>Java Code</jsp:declaration>

Scriptlets vs. Declarations

<%! int count=100;
%> <%= ++count %>

public final class

_scopeExpermnt1_xjsp

{

int count=100;

public void _jspService

(HttpServletRequest request,

HttpServletResponse response)

throws java.io.IOException

{

JspWriter out =

pageContext.getOut();

out.print("\r\n");

out.print(String.valueOf(++

count));

out.print("\r\n");

}

}

<% int count=100;
%> <%= ++count %>

public final class

_scopeExpermnt2_xjsp

{

public void _jspService

(HttpServletRequest request,

HttpServletResponse response)

throws java.io.IOException

{

JspWriter out =

pageContext.getOut();

int count=100;

out.print("\r\n");

out.print(String.valueOf(

++count)); out.print(

"\r\n");

}

}

 Original JSP

<H1>Some Heading</H1>
<%!

private String randomHeading() {
return("<H2>" + Math.random() + "</H2>");

}
%>

<%= randomHeading() %>

 Possible resulting servlet code

public class xxxx implements HttpJspPage
{ private String randomHeading() {

} return("<H2>" + Math.random() + "</H2>");
public void _jspService(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {

request.setContentType("text/html");
HttpSession session =
request.getSession(true); JspWriter out =
response.getWriter(); out.println("<H1>Some
Heading</H1>"); out.println(randomHeading());

} ... JSP/Servlet Correspondence

Example Using JSP Declarations

…

<body>
<h1>JSP Declarations</h1>

<%! private int accessCount = 0; %>
<h2>Accesses to page since server reboot:
<%= ++accessCount %></h2>
</body></html>

After 15 total

visitsby an

arbitrary number

of different clients

JSP Tags + HTML Tags

<h2>Table of Square Roots</h2>
<table border=2>
<tr>
<td>Number</td>
<td>Square Root</td>

</tr>
<%
for (int n=0; n<=100; n++)
{
%>
<tr>
<td><%=n%></td>

<td><%=Math.sqrt(n)%></td>
</tr>

<%
}
%>

</table>

JSP Directives

 Affect the overall structure of the servlet
 Two possible forms for directives

– <%@ directive attribute=“value” %>
– <%@ directive attribute1=“value1”

attribute2=“value2”

….

attributeN=“valueN” %>

 There are three types of directives

– Page, include, and taglib

Purpose of the page Directive

 Give high-level information about the servlet
that will result from the JSP page

 Can control
– Which classes are imported
– What class the servlet extends
– What MIME type is generated
– How multithreading is handled
– If the servlet participates in sessions
– The size and behavior of the output buffer
– What page handles unexpected errors

The import Attribute

 Format
– <%@ page import="package.class" %>
– <%@ page import="package.class1,...,package.classN"

%>

 Purpose
– Generate import statements at top of servlet

 Notes
– Although JSP pages can be almost anywhere on server, classes used

by JSP pages must be in normal servlet dirs

– For Tomcat, this is install_dir/webapps/ROOT/WEB-
INF/classes or …/ROOT/WEB-
INF/classes/directoryMatchingPackage

... Example of import <BODY><H2>The import Attribute</H2>
<%-- JSP page directive --%>

Attribute <%@ page import="java.util.*,cwp.*" %>

<%-- JSP Declaration --%>
<%!
private String randomID() {

int num = (int)(Math.random()*10000000.0); }
return("id" + num);
private final String NO_VALUE = "<I>No Value</I>";
%>
<%
Cookie[] cookies = request.getCookies();

String oldID = ServletUtilities.getCookieValue(cookies, "userID",
NO_VALUE);

String newID;
if (oldID.equals(NO_VALUE)) { newID = randomID(); }
else { newID = oldID; }

LongLivedCookie cookie = new LongLivedCookie("userID", newID);
response.addCookie(cookie);
%>
<%-- JSP Expressions --%>

This page was accessed at <%= new Date() %> with a userID
cookie of <%= oldID %>.

</BODY></HTML>

Example of import Attribute

 First access

 Subsequent
accesses

The contentType Attribute

 Format
– <%@ page contentType="MIME-Type" %>
– <%@ page contentType="MIME-Type;

charset=Character-Set"%>
 Purpose

– Specify the MIME type of the page generated
by the servlet that results from the JSP page

First Last Email Address

Marty Hall hall@corewebprogramming.com

Larry Brown brown@corewebprogramming.com

Bill Gates gates@sun.com

Larry Ellison ellison@microsoft.com

<%@ page contentType="application/vnd.ms-excel" %>

<%-- There are tabs, not spaces, between columns. --%>

Generating Excel
Spreadsheets

Another Example

<%-- processOrder.jsp --%>
<%@ page errorPage="orderError.jsp"

import="java.text.NumberFormat" %>

<h3 >Your
order:</h3> <%

String numTees = request.getParameter("t-shirts");
String numHats = request.getParameter("hats");
NumberFormat currency =

NumberFormat.getCurrencyInstance();
%>
Number of tees:

<%= numTees %>

Your price:

<%= currency.format(Integer.parseInt(numTees)*15.00)
%><p>

Number of hats:
<%= numHats %>

Your price:

<%= currency.format(Integer.parseInt(numHats)*10.00)
%><p>

<!-- orderForm.htm -->
<h1>Order Form</h1>
What would you like to purchase?<p>

<form name=orders
action=processOrder.jsp> <table border=0>

<tr><th>Item</th>
<th>Quantity</th>
<th>Unit Price</th>

<tr><tr>
…

Form
Processing

Other Attributes of the page Directive

 session
– Lets you choose not to participate in sessions

 buffer
– Changes min size of buffer used by JspWriter

 autoflush
– Requires developer to explicitly flush buffer

 extends
– Changes parent class of generated servlet

 errorPage
– Designates a page to handle unplanned errors

 isErrorPage, isThreadSafe, language, …

Break Time – 15 minutes

JSP Actions

 There are seven standard JSP actions.
– Include, param, forward, plugin, …
– Include action is similar to include directive.
– You can add additional parameters to the

existing request by using the param action.
– The plugin action inserts object and embed tags

(such as an applet) into the response to the client.
– In the coming slides, we will talk about

“include” and “plugin” actions.

Including Pages at Request Time

 Format
– <jsp:include page="Relative URL" flush="true" />

 Purpose
– To reuse JSP, HTML, or plain text content
– JSP content cannot affect main page:

only output of included JSP page is used
– To permit updates to the included content

without changing the main JSP page(s)

Including Pages: Example Code

...

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
<TR><TH CLASS="TITLE">

What's New at JspNews.com</TABLE>
<P>
Here is a summary of our three most recent news stories:

<jsp:include page="news/Item1.html" flush="true" />
<jsp:include page="news/Item2.html" flush="true" />
<jsp:include page="news/Item3.html" flush="true" />

</BODY></HTML>

Including Pages: Result

Including Files at Page
Translation Time

 Format
– <%@ include file="Relative URL" %>

 Purpose
– To reuse JSP content in multiple pages,

where JSP content affects main page
 Notes

– Servers are not required to detect changes to the included file, and in
practice many don't

– Thus, you need to change the JSP files whenever the included file
changes

– You can use OS-specific mechanisms such as the Unix "touch"
command, or

 <%-- Navbar.jsp modified 3/1/02 --%>
<%@ include file="Navbar.jsp" %>

Reusable JSP Content:
ContactSection.jsp

<%@ page import="java.util.Date" %>

<%-- The following become fields in each servlet that

results from a JSP page that includes this file. --%>

<%!
private int accessCount = 0;
private Date accessDate = new Date();

private String accessHost = "<I>No previous access</I>";
%>
<P><HR>
This page © 2000

my-company.com.
This page has been accessed <%= ++accessCount %>

times since server reboot. It was last accessed from
<%= accessHost %> at <%= accessDate %>.

<% accessHost = request.getRemoteHost(); %>

<% accessDate = new Date(); %>

… Using the JSP <BODY>
<TABLE BORDER=5 ALIGN="CENTER">

<TR><TH CLASS="TITLE"> Content Some Random

Page</TABLE>

<P> Information about our products and services.
<P> Blah, blah, blah.
<P> Yadda, yadda, yadda.
<%@ include file="ContactSection.jsp" %>
</BODY>

</HTML>

Include directive vs.
Include action

A request-time include action

”

 <jsp:include page=“test.jsp <test.jsp>
 … © …

 translation translation

pageContext.include(test.jsp)
<test.jsp>

© …

A translation-time include directive

”

 <%@ include file=“test.jsp <test.jsp>
 … © …

translation
©

…

The plugin action’s attribute

 <jsp:plugin type=“applet” code=“myBox”
codebase=“path/myClass” width=“200”
height=200”>… params </jsp:plugin>

 We usually use
– type: to specify we place an applet or others

onto a web page.
– Code: to give the name of the Java class to be run.
– Width/Height: to define the size of the rectangle

set aside for displaying the applet in the
browser’s window.

jsp:forward action

 Used to instruct a web server to stop
processing the current page and start
another one.

<jsp:forward page=“another.jsp”>

<jsp:param name=“callingPage”

value=“current.jsp”> </jsp:forward>

– Another page:

 <%= request.getParameter(“callingPage”) %>
 Returns “current.jsp”

Uses of JSP Constructs:
Using JavaBeans

Simple

Application

Complex

Application

 Scripting elements calling
servlet code directly

 Scripting elements calling

servlet code indirectly (by
means of utility classes)

 Beans
 Custom tags

 Servlet/JSP combo

(MVC architecture)

Background: What Are Beans?

 Classes that follow certain conventions
– Must have a zero-argument (empty) constructor
– Should have no public instance variables (fields)
– Persistent values should be accessed

through methods called getXxx and setXxx
 If class has method getTitle that returns a String, class is said to

have a String property named title
 Boolean properties use isXxx instead of getXxx

 For more on beans, see
http://java.sun.com/beans/docs/

Basic Bean Use in JSP

 Format: <jsp:useBean id="name"
class="package.Class" />

 Purpose: Allow instantiation of classes

without explicit Java syntax
 Notes

– Simple interpretation: JSP action
<jsp:useBean id="book1" class="cwp.Book" />

can be thought of as equivalent to the scriptlet
<% cwp.Book book1 = new cwp.Book(); %>

– But useBean has two additional features

 Simplifies setting fields based on incoming request params
 Makes it easier to share beans

Accessing Bean Properties

 Format: <jsp:getProperty name="name"
property="property" />

 Purpose: Allow access to bean properties (i.e.,

calls to getXxx methods) without explicit Java
code

 Notes
– <jsp:getProperty name="book1" property="title"
/>

is equivalent to the following JSP expression

<%= book1.getTitle() %>

Setting Bean Properties:
Simple Case

 Format: <jsp:setProperty name="name"
property="property" value="value" />

 Purpose
– Allow setting of bean properties (i.e., calls

to setXxx) without explicit Java code
 Notes

– <jsp:setProperty name="book1"
property="title"

value="Core Servlets and JSP" />

is equivalent to the following scriptlet
<% book1.setTitle("Core Servlets and JSP"); %>

Example: StringBean

public class StringBean {

private String message = "No message specified";
public String getMessage() {

return(message);
}

public void setMessage(String message)
{ this.message = message;

}

}

 Installed in normal servlet directory

<jsp:useBean id="stringBean" class="cwp.StringBean" />

Initial value (getProperty):

<I><jsp:getProperty name="stringBean"
property="message" /></I>

Initial value (JSP expression): <I><%=
stringBean.getMessage() %></I>

<jsp:setProperty name="stringBean"
property="message"
value="Best string bean: Fortex" />

Value after setting property with setProperty:
<I><jsp:getProperty name="stringBean"

property="message" /></I>

<% stringBean.setMessage("My favorite: Kentucky Wonder"); %>

Value after setting property with scriptlet:
<I><%= stringBean.getMessage() %></I>

 Uses

 StringBean

 JSP Page That

JSP Page That Uses StringBean

Associating Bean Properties with Request
(Form) Parameters

 If property is a String, you can do
– <jsp:setProperty ... value='<%= request.getParameter("...") %>' />

 Scripting expressions let you convert types, but you have

to use Java syntax
 The param attribute indicates that:

– Value should come from specified request param
– Simple automatic type conversion performed

 Using "*" for the property attribute indicates that:
– Value should come from request parameter whose name matches

property name

– Simple type conversion should be performed

Setting Bean Properties Case 1:
Explicit Conversion & Assignment

<!DOCTYPE ...>

...

<jsp:useBean id="entry"
class="cwp.SaleEntry" />

<%-- getItemID expects a String --%>
<jsp:setProperty

name="entry"
property="itemID"
value='<%=

request.getParameter("itemID") %>' />

Setting Bean Properties Case 1:
Explicit Conversion & Assignment

<%
int numItemsOrdered = 1;
try {

numItemsOrdered =
Integer.parseInt(request.getParameter("numItems"));

} catch(NumberFormatException nfe) {}
%>

<%-- getNumItems expects an int --%>
<jsp:setProperty

name="entry"

property="numItems"

value="<%= numItemsOrdered %>" />

Setting Bean Properties Case 1:
Explicit Conversion & Assignment

<%

double discountCode = 1.0;
try {

String discountString =
request.getParameter("discountCode");

discountCode =
Double.valueOf(discountString).doubleValue();

} catch(NumberFormatException nfe) {} %>

<%-- getDiscountCode expects a double --%>
<jsp:setProperty

name="entry"

property="discountCode"
value="<%= discountCode %>" />

Case 2: Associating Individual Properties
with Input Parameters

<jsp:useBean id="entry"
class="cwp.SaleEntry" />

<jsp:setProperty
name="entry"

property="itemID"
param="itemID" />

<jsp:setProperty
name="entry"

property="numItems"
param="numItems" />

<jsp:setProperty
name="entry"

property="discountCode"

param="discountCode" />

Case 3: Associating All Properties with
Input Parameters

<jsp:useBean id="entry"
class="cwp.SaleEntry" />

<jsp:setProperty name="entry"

property="*" />

Sharing Beans

 You can use scope attribute to specify where
bean is stored
– <jsp:useBean id="…" class="…" scope="…" />
– Bean still also bound to local variable

in _jspService
 Lets multiple servlets or JSP pages share data
 Also permits conditional bean creation

– Create new object only if you can't find
existing one

Values of the scope Attribute

 page
– Default value. Bean object should be placed in the

PageContext object for the duration of the current
request. Lets methods in same servlet access bean

 application
– Bean will be stored in ServletContext (available

through the application variable or by call to
getServletContext()). ServletContext is shared
by all servlets in the same Web application (or
all servlets on server if no explicit Web
applications are defined).

Values of the scope Attribute

 session
– Bean will be stored in the HttpSession object

associated with the current request, where it
can be accessed from regular servlet code with
getAttribute and setAttribute, as with normal
session objects.

 request
– Bean object should be placed in the

ServletRequest object for the duration of the
current request, where it is available by means
of getAttribute

Conditional Bean Operations

 Bean conditionally created
– jsp:useBean results in new bean object only if

no bean with same id and scope can be found
– If a bean with same id and scope is found,

the preexisting bean is simply bound to
variable referenced by id

 Bean properties conditionally set
– <jsp:useBean ... /> replaced by

<jsp:useBean ...>statements</jsp:useBean>
– The statements (jsp:setProperty elements) are

executed only if a new bean is created, not if an
existing bean is found

Conditional Bean Creation:
AccessCountBean

public class AccessCountBean {
private String firstPage;
private int accessCount = 1;

public String getFirstPage() {

} return(firstPage);

public void setFirstPage(String firstPage) { }
this.firstPage = firstPage;
public int getAccessCount() {

} return(accessCount);

public void setAccessCountIncrement(int increment) {

} } accessCount = accessCount + increment;

Conditional Bean Creation:
SharedCounts1.jsp

<jsp:useBean id="counter" class="coreservlets.AccessCountBean"
scope="application">

<jsp:setProperty name="counter"

</jsp:useBean>property="firstPage" value="SharedCounts1.jsp" />

Of SharedCounts1.jsp (this page),

SharedCounts2.jsp, and
SharedCounts3.jsp,
<jsp:getProperty name="counter" property="firstPage" />
was the first page accessed.
<p>

Collectively, the three pages have been accessed
<jsp:getProperty name="counter" property="accessCount"
/> times.

<jsp:setProperty name="counter"
property="accessCountIncrement" value="1" />

Accessing SharedCounts1,
SharedCounts2, SharedCounts3

 SharedCounts2.jsp was accessed first.

 Pages have been accessed twelve previous

times by an arbitrary number of clients

Actions essentials

 <jsp:forward> action
 <jsp:setProperty> action
 <jsp:getProperty> action
 <jsp:plugin> action
 <jsp:include> action
 <jsp:useBean> action
 Can you identify the use of each action?

Uses of JSP Constructs:
Custom JSP Tag Libraries

Simple

Application

Complex

Application

 Scripting elements calling
servlet code directly

 Scripting elements calling

servlet code indirectly (by
means of utility classes)

 Beans
 Custom tags

 Servlet/JSP combo

(MVC architecture)

Components That Make Up a Tag
Library

 The Tag Handler Class




 Must implement javax.servlet.jsp.tagext.Tag




 Usually extends TagSupport or BodyTagSupport




 Goes in same directories as servlet class files and beans




 The Tag Library Descriptor File




 XML file describing tag name, attributes, and
implementing tag handler class



 Goes with JSP file or at arbitrary URL




 The JSP File


 Imports a tag library (referencing descriptor file)




 Defines tag prefix, uses tags

Defining a Simple Tag Handler Class

 Extend the TagSupport class
 Import needed packages

– import javax.servlet.jsp.*; import
javax.servlet.jsp.tagext.*; import
java.io.*;

 Override doStartTag
– Obtain the JspWriter by means of pageContext.getOut()
– Use the JspWriter to generate JSP content
– Return SKIP_BODY
– Translated into servlet code at page-translation time
– Code gets called at request time

package cwp.tags;
import javax.servlet.jsp.*; import
javax.servlet.jsp.tagext.*; import
java.io.*;
import java.math.*; import cwp.*;

public class SimplePrimeTag extends TagSupport
{ protected int len = 50;

}

public int doStartTag() {
try {

JspWriter out = pageContext.getOut();
BigInteger prime =
Primes.nextPrime(Primes.random(len));

out.print(prime);
} catch(IOException ioe) {

} System.out.println("Error generating prime: " +

ioe); } return(SKIP_BODY);

Defining a Simple Tag

Handler Class

Defining a Simple Tag Library
Descriptor

 Start with XML header and DOCTYPE
 Top-level element is taglib
 Each tag defined by tag element containing:

– name, whose body defines the base tag name.
In this case, I use <name>simplePrime</name>

– tagclass, which gives the fully qualified class name of the tag handler.
In this case, I use <tagclass>cwp.tags.SimplePrimeTag</tagclass>

– bodycontent, which gives hints to development environments.
Optional.

– info, which gives a short description. Here, I use

<info>Outputs a random 50-digit prime.</info>

<?xml version="1.0" encoding="ISO-8859-1"
?> <!DOCTYPE taglib ...>

<taglib> TLD File for

<tlibversion>1.0</tlibversion> <jspversion>1.1</jspversion>

SimplePrimeTag

<shortname>cwp</shortname>
<info>

A tag library from Core Web Programming 2nd
Edition, http://www.corewebprogramming.com/.

</info>
<tag>

<name>simplePrime</name>

<tagclass>cwp.tags.SimplePrimeTag</tagclass>
<info>Outputs a random 50-digit prime.</info>

</tag>

</taglib>

Accessing Custom Tags From JSP Files

 Import the tag library
– Specify location of TLD file

<%@ taglib uri= "cwp-taglib.tld" prefix= "cwp" %>
– Define a tag prefix (namespace)

<%@ taglib uri="cwp-taglib.tld" prefix= "cwp" %>
 Use the tags

– <prefix:tagName />
 Tag name comes from TLD file
 Prefix comes from taglib directive

– E.g., <cwp:simplePrime />

…

<H1>Some 50-Digit Primes</H1>

<%@ taglib uri="cwp-taglib.tld" prefix="cwp"

%>

<cwp:simplePrime /> <cwp:simplePrime />

<cwp:simplePrime /> <cwp:simplePrime />

Using

simplePrime
Tag

Intermediate and Advanced
Custom Tags

 Tags with attributes
 Tags that include their body content
 Tags that optionally include their body
 Tags that manipulate their body

 Tags that manipulating their body multiple times (looping

tags)
 Nested tags

 See book for details (related chapter online in PDF at Java

Developer’s Connection)

– http://developer.java.sun.com/developer/Books/cservletsjsp/

…

<H1>Some N-Digit Primes</H1>

<%@ taglib uri="cwp-taglib.tld" prefix="cwp"

%>

20-digit: <cwp:prime length="20" />

40-digit: <cwp:prime length="40" />

80-digit: <cwp:prime length="80" />

Default (50-digit): <cwp:prime />

Tags with
Attributes:
Prime Tag

Including Body Content:
heading Tag

…

<%@ taglib uri="cwp-taglib.tld" prefix="cwp"

%> <cwp:heading bgColor="#C0C0C0">

Default Heading

</cwp:heading>

<P>

<cwp:heading bgColor="BLACK"

color="WHITE"> White on Black Heading

</cwp:heading>

<P>

<cwp:heading bgColor="#EF8429" fontSize="60"

border="5"> Large Bordered Heading

</cwp:heading>

…

Optionally Including Tag Body:
debug Tag

<%@ taglib uri="cwp-taglib.tld" prefix="cwp" %>
Top of regular page. Blah, blah, blah. Yadda,
yadda, yadda.

<P>
<cwp:debug>
Debug:

Current time: <%= new java.util.Date() %>

Requesting hostname: <%= request.getRemoteHost()%>

Session ID: <%= session.getId() %>

</cwp:debug>
<P>
Bottom of regular page. Blah, blah, blah.

Yadda, yadda, yadda.

Using debug Tag: Results

Manipulating Tag Body:
the filter Tag

<%@ taglib uri="cwp-taglib.tld" prefix="cwp"
%> <TABLE BORDER=1 ALIGN="CENTER">

<TR CLASS="COLORED"><TH>Example<TH>Result
<TR>
<TD><PRE><cwp:filter>
Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

…
</cwp:filter></PRE>
<TD>
Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

…

</TABLE>

Using the filter Tag: Results

<%@ taglib uri="cwp-taglib.tld" prefix="cwp" %>

<!-- Repeats N times. A null reps value

means repeat once. -->

<cwp:repeat

reps='<%= request.getParameter("repeats") %>'>

<cwp:prime length="40" />

</cwp:repeat>

Manipulating the
Body Multiple Times:

the repeat Tag

Nested Tags: the if Tag

<%@ taglib uri="cwp-taglib.tld" prefix="cwp" %>
<cwp:if>

<cwp:condition>true</cwp:condition>
<cwp:then>Condition is true</cwp:then>
<cwp:else>Condition is false</cwp:else>

</cwp:if>
…

Some coin tosses:

<cwp:repeat reps="10">

<cwp:if>
<cwp:condition>
<%= Math.random() < 0.5 %>

</cwp:condition>
<cwp:then>Heads
</cwp:then>
<cwp:else>Tails
</cwp:else>

</cwp:if>

</cwp:repeat>

Open Source Tag Libraries
http://jakarta.apache.org/taglibs/

 Internationalization (I18N)
 Database access
 Sending email
 JNDITM
 Date/time
 Populating/validating form fields
 Perl regular expressions
 Extracting data from other Web pages
 XSL transformations
 Etc

Break Time – 15 minutes

Uses of JSP Constructs:
Integrating Servlets and JSP

Simple

Application

Complex

Application

 Scripting elements calling
servlet code directly

 Scripting elements calling

servlet code indirectly (by
means of utility classes)

 Beans
 Custom tags

 Servlet/JSP combo

(MVC architecture)

Why Combine Servlets & JSP?

 Typical picture: use JSP to make it easier to develop and
maintain the HTML content
– For simple dynamic code, call servlet code from scripting expressions
– For moderately complex cases, use custom classes called from

scripting expressions
– For more complicated cases, use beans and custom tags

 But, that's not enough
– For complex processing, JSP is awkward
– Despite the convenience of separate classes, beans, and custom tags,

the assumption behind JSP is that a single page gives a single
basic look

Integrating Servlets and JSP :
Architecture

 Approach
– Original request is answered by a servlet
– Servlet processes request data, does database lookup, accesses

business logic, etc.
– Results are placed in beans
– Request is forwarded to a JSP page to format result
– Different JSP pages can be used to handle different types of

presentation
 Terminology

– Often called the “Model View Controller” architecture or “Model 2”
approach to JSP

– Formalized further with Apache “Struts” framework

 See http://jakarta.apache.org/struts/

Dispatching Requests

 First, call the getRequestDispatcher method of
ServletContext
– Supply a URL relative to the Web application root
– Example

 String url = "/presentations/presentation1.jsp";
RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(url);

 Second
– Call forward to completely transfer control

to destination page. See following example
– Call include to insert output of destination

page and then continue on.

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

String operation = request.getParameter("operation"); if
(operation == null) {

}
operation = "unknown";

 Forwarding if (operation.equals("operation1")) {

gotoPage("/operations/presentation1.jsp", Requests request,
response);

} else if (operation.equals("operation2")) {
gotoPage("/operations/presentation2.jsp",

} else { request, response);

gotoPage("/operations/unknownRequestHandler.jsp",
request, response);

} }
private void gotoPage(String address,

HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(address);

} dispatcher.forward(request, response);

Reminder: JSP useBean
Scope Alternatives

 request
– <jsp:useBean id="..." class="..." scope="request" />

 session
– <jsp:useBean id="..." class="..." scope="session" />

 application
– <jsp:useBean id="..." class="..." scope="application" />

 page
– <jsp:useBean id="..." class="..." scope="page" />

or just
<jsp:useBean id="..." class="..." />

– This scope is not used in MVC architecture

Storing Data for Later Use:
The Servlet Request

 Purpose
– Storing data that servlet looked up and that

JSP page will use only in this request.
 Servlet syntax to store data

SomeClass value = new SomeClass(…);

request.setAttribute("key", value);

 Use RequestDispatcher to forward to JSP page
 JSP syntax to retrieve data

<jsp:useBean id="key"
class="SomeClass" scope="request" />

Storing Data for Later Use:
The Session Object

 Purpose
– Storing data that servlet looked up and that JSP page will use in this

request and in later requests from same client.
 Servlet syntax to store data

SomeClass value = new SomeClass(…);

HttpSession session = request.getSession(true);

session.setAttribute("key", value);

 Use RequestDispatcher to forward to JSP page
 JSP syntax to retrieve data

<jsp:useBean id="key"

class="SomeClass“ scope="session" />

Storing Data for Later Use:
The Servlet Context

 Purpose
– Storing data that servlet looked up and that JSP page will use in this

request and in later requests from any client.
 Servlet syntax to store data

SomeClass value = new SomeClass(…);

getServletContext().setAttribute("key", value);

 Use RequestDispatcher to forward to JSP page
 JSP syntax to retrieve data

<jsp:useBean
id="key"
class="SomeClass"
scope="application" />

An On-Line Travel Agent

Review: JSP Introduction

 JSP makes it easier to create/maintain HTML,
while still providing full access to servlet code

 JSP pages get translated into servlets
– It is the servlets that run at request time
– Client does not see anything JSP-related

 You still need to understand servlets
– Understanding how JSP really works
– Servlet code called from JSP
– Knowing when servlets are better than JSP
– Mixing servlets and JSP

Uses of JSP Constructs

Simple

Application

Complex

Application

 Scripting elements calling
servlet code directly

 Scripting elements calling

servlet code indirectly (by
means of utility classes)

 Beans
 Custom tags

 Servlet/JSP combo

(MVC architecture)

Review: Calling Java Code
Directly: JSP Scripting Elements

 JSP Expressions




 Format: <%= expression %>




 Evaluated and inserted into the servlet’s output.




 JSP Scriptlets




 Format: <% code %>




 Inserted verbatim into the _jspService method




 JSP Declarations




 Format: <%! code %>




 Inserted verbatim into the body of the servlet class




 Predefined variables




 request, response, out, session, application




 Limit the Java code in page


 Use helper classes, beans, custom tags, servlet/JSP combo


Review: The JSP page Directive:
Structuring Generated Servlets

 The import attribute

– Changes the packages imported by the
servlet that results from the JSP page

 The contentType attribute
– Specifies MIME type of result
– Cannot be used conditionally

Review: Including Files in JSP
Documents

 <jsp:include page="Relative URL" flush="true" />




 Output inserted into JSP page at request time




 Cannot contain JSP content that affects entire page




 Changes to included file do not necessitate changes to pages
that use it



 <%@ include file="Relative URL" %>




 File gets inserted into JSP page prior to page translation




 Thus, file can contain JSP content that affects entire page
(e.g., import statements, declarations)




 Changes to included file might require you to manually update
pages that use it



Review: Using JavaBeans
Components with JSP

 Benefits of jsp:useBean
– Hides the Java programming language syntax
– Makes it easier to associate request parameters with objects (bean

properties)
– Simplifies sharing objects among multiple requests or servlets/JSPs

 jsp:useBean
– Creates or accesses a bean

 jsp:getProperty
– Puts bean property (i.e. getXxx call) into output

 jsp:setProperty
– Sets bean property (i.e. passes value to setXxx)

Review: Creating Custom
JSP Tag Libraries

 For each custom tag, you need
– A tag handler class (usually extending

TagSupport or BodyTagSupport)
– An entry in a Tag Library Descriptor file
– A JSP file that imports library, specifies prefix, and uses tags

 Simple tags
– Generate output in doStartTag, return SKIP_BODY

 Attributes
– Define setAttributeName method. Update TLD file

 Body content
– doStartTag returns EVAL_BODY_INCLUDE
– Add doEndTag method

Review: Integrating Servlets and JSP

 Use MVC (Model 2) approach when:
– One submission will result in multiple basic looks
– Several pages have substantial common processing

 Architecture
– A servlet answers the original request
– Servlet does the real processing & stores results in beans

 Beans stored in HttpServletRequest, HttpSession, or ServletContext

– Servlet forwards to JSP page via forward method of RequestDispatcher

– JSP page reads data from beans by means of jsp:useBean with

appropriate scope (request, session, or application)

UNIT-IV
Introduction to PHP

 A short history of php
 Parsing
 Variables
 Arrays
 Operators
 Functions
 Control Structures
 External Data Files

Background

 PHP is server side scripting system
– PHP stands for "PHP: Hypertext Preprocessor"
– Syntax based on Perl, Java, and C
– Very good for creating dynamic content
– Powerful, but somewhat risky!
– If you want to focus on one system for

dynamic content, this is a good one to choose

History

 Started as a Perl hack in 1994 by Rasmus Lerdorf
(to handle his resume), developed to PHP/FI 2.0

 By 1997 up to PHP 3.0 with a new parser engine

by Zeev Suraski and Andi Gutmans

 Version 5.2.4 is current version, rewritten by

Zend (www.zend.com) to include a number of
features, such as an object model

 Current is version 5

 php is one of the premier examples of what an

open source project can be

About Zend

 A Commercial Enterprise
 Zend provides Zend engine for PHP for free
 They provide other products and services for a fee

– Server side caching and other optimizations
– Encoding in Zend's intermediate format to protect

source code
– IDE-a developer's package with tools to make life easier
– Support and training services

 Zend's web site is a great resource

PHP 5 Architecture

 Zend engine as parser (Andi Gutmans and Zeev Suraski)
 SAPI is a web server abstraction layer

 PHP components now self contained (ODBC, Java,

LDAP, etc.)

 This structure is a good general design for software
(compare to OSI model, and middleware applications)

PHP Scripts

 Typically file ends in .php--this is set by the
web server configuration

• Separated in files with the <?php ?> tag

 php commands can make up an entire file, or
can be contained in html--this is a choice….

 Program lines end in ";" or you get an error
 Server recognizes embedded script and executes
 Result is passed to browser, source isn't visible

<P>

<?php $myvar = "Hello

World!"; echo $myvar;

?>

</P>

Parsing

 We've talk about how the browser can read a text
file and process it, that's a basic parsing method

 Parsing involves acting on relevant portions of a

file and ignoring others
 Browsers parse web pages as they load

 Web servers with server side technologies like php

parse web pages as they are being passed out to the
browser

 Parsing does represent work, so there is a cost

Two Ways

 You can embed sections of php inside html:

<BODY>

<P>

<?php $myvar = "Hello World!";

echo $myvar;
</BODY>

 Or you can call html from php:

<?php

echo "<html><head><title>Howdy</title>

…

?>

What do we know already?

 Much of what we learned about
javascript holds true in php (but not all!),
and other languages as well

$name = "bil";

echo "Howdy, my name is $name";

echo "What will $name be in this

line?"; echo 'What will $name be in

this line?'; echo 'What's wrong with

this line?'; if ($name == "bil")

{

 Hey, what's this?

echo "got a match!";

}

Variables

 Typed by context (but one can force type), so
it's loose

 Begin with "$" (unlike javascript!)
 Assigned by value

– $foo = "Bob"; $bar = $foo;

 Assigned by reference, this links vars

– $bar = &$foo;

 Some are preassigned, server and env vars

– For example, there are PHP vars, eg. PHP_SELF,

HTTP_GET_VARS

phpinfo()

 The phpinfo() function shows the
php environment

 Use this to read system and server

variables, setting stored in php.ini, versions,
and modules

 Notice that many of these data are in arrays
 This is the first script you should write…

Variable Variables

 Using the value of a variable as the name of a

second variable)
$a = "hello";

$$a = "world";

 Thus:
echo "$a ${$a}";

 Is the same as:

echo "$a $hello";

 But $$a echoes as "$hello"….

Operators

 Arithmetic (+, -, *, /, %) and String (.)
 Assignment (=) and combined assignment

$a = 3;

$a += 5; // sets $a to 8;

$b = "Hello ";

$b .= "There!"; // sets $b to "Hello There!";

 Bitwise (&, |, ^, ~, <<, >>)
– $a ^ $b(Xor: Bits that are set in $a or $b but not
both are set.)

– ~ $a (Not: Bits that are set in $a are not set,
and vice versa.)

 Comparison (==, ===, !=, !==, <, >, <=, >=)

Coercion

 Just like javascript, php is loosely typed
 Coercion occurs the same way

 If you concatenate a number and string,

the number becomesa string

Operators: The Movie

 Error Control (@)
– When this precedes a command, errors generated are ignored

(allows custom messages)
 Execution (` is similar to the

shell_exec() function)
– You can pass a string to the shell for execution:

$output = `ls -al`;

$output = shell_exec("ls -al");

– This is one reason to be careful about user set variables!

 Incrementing/Decrementing
++$a (Increments by one, then returns $a.)

$a++ (Returns $a, then increments $a by one.)

--$a (Decrements $a by one, then returns $a.)

$a-- (Returns $a, then decrements $a by one.)

Son of the Valley of Operators

 Logical
$a and $b And True if both $a and $b are true.

$a or $b Or True if either $a or $b is true.

$a xor $b Xor True if either $a or $b is true,

 but not both.

! $a Not True if $a is not true.

$a && $b And True if both $a and $b are true.

$a || $b Or True if either $a or $b is true.

 The two ands and ors have different
precedence rules, "and" and "or" are
lower precedence than "&&" and "||"

 Use parentheses to resolve precedence

problems or just to be clearer

Control Structures

 Wide Variety available
– if, else, elseif
– while, do-while
– for, foreach
– break, continue, switch
– require, include, require_once, include_once

Control Structures

 Mostly parallel to what we've covered
already in javascript

 if, elseif, else, while, for, foreach, break

and continue

Switch

 Switch, which we've seen, is very useful

 These two do the same
things….

if ($i == 0) {

echo "i equals 0";

} elseif ($i == 1) {

echo "i equals 1";

} elseif ($i == 2) {

echo "i equals 2";

}

switch ($i) {

case 0:

echo "i equals
0"; break;

case 1:

echo "i equals
1"; break;

case 2:

echo "i equals
2"; break;

}

Nesting Files

 require(), include(), include_once(), require_once()
are used to bring in an external file

 This lets you use the same chunk of code in a number

of pages, or read other kinds of files into your program

 Be VERY careful of using these anywhere close to user

input--if a hacker can specify the file to be included,
that file will execute within your script, with whatever
rights your script has (readfile is a good alternative if
you just want the file, but don't need to execute it)

 Yes, Virginia, remote files can be specified

Example: A Dynamic Table

 I hate writing html tables
 You can build one in php

 This example uses pictures and builds a

table with pictures in one column, and
captions in another

 The captions are drawn from text files

 I'm using tables, but you could use css

for placement easily…

Arrays

You can create an array with the array function, or use the explode function (this is
very useful when reading files into web programs…)

$my_array = array(1, 2, 3, 4, 5);

$pizza = "piece1 piece2 piece3 piece4 piece5 piece6";
$pieces = explode(" ", $pizza);

An array is simply a variable representing a keyed list
– A list of values or variables

– If a variable, that var can also be an array
– Each variable in the list has a key
– The key can be a number or a text label

Arrays

 Arrays are lists, or lists of lists, or list of lists of lists,
you get the idea--Arrays can be multi-dimensional

 Array elements can be addressed by either

by number or by name (strings)

 If you want to see the structure of an array, use

the print_r function to recursively print an array
inside of pre tags

Text versus Keys

 Text keys work like number keys (well,
really, it's the other way around--number
keys are just labels)

 You assign and call them the same way,

except you have to assign the label to
the value or variables, eg:
echo "$my_text_array[third]";

$my_text_array = array(first=>1, second=>2, third=>3);
echo "<pre>";

print_r($my_text_array);

echo "</pre>";

Walking Arrays

 Use a loop, eg a foreach loop to
walk through an array

 while loops also work for arrays with
numeric keys--just set a variable for
the loop, and make sure to increment
that variable within the loop

$colors = array('red', 'blue', 'green', 'yellow');

foreach ($colors as $color) {

echo "Do you like $color?\n";

}

05_arrays.php

 You can't echo an
array directly…
– You can walk

through an echo or
print() line by line

– You can use print_r(),
this will show you the
structure of complex
arrays--that output is
to the right, and it's
handy for learning the
structure of an array

Array

(

 => Array
(

[sku] => A13412

[quantity] => 10
[item] => Whirly
Widgets [price] => .50

)

 => Array

(

[sku] => A43214

[quantity] => 142

[item] => Widget

Nuts [price] => .05

)

Multidimensional Arrays

 A one dimensional array is a list, a spreadsheet or other
columnar data is two dimensional…

 Basically, you can make an array of arrays

$multiD = array

(

"fruits" => array("myfavorite" => "orange", "yuck" => "banana", "yum" => "apple"),
"numbers" => array(1, 2, 3, 4, 5, 6),

"holes" => array("first", 5 => "second", "third")

);

 The structure can be built array by array, or declared with a
single statement

 You can reference individual elements by nesting:

echo "<p>Yes, we have no " . $multiD["fruits"]["yuck"] . " (ok by me).</p>";

 print_r() will show the entire structure, but don’t forget the pre tags

Getting Data into arrays

 You can directly read data into individual
array slots via a direct assignment:
$pieces[5] = "poulet resistance";

 From a file:
– Use the file command to read a delimited file

(the delimiter can be any unique char):
$pizza = file(./our_pizzas.txt)

– Use explode to create an array from a line within
a loop:
$pieces = explode(" ", $pizza);

The Surface

 The power of php lies partially in the wealth of
functions---for example, the 40+ array functions
– array_flip() swaps keys for values
– array_count_values() returns an associative array of

all values in an array, and their frequency
– array_rand() pulls a random element
– array_unique() removes duppies

– array_walk() applies a user defined function to each
element of an array (so you can dice all of a dataset)

– count() returns the number of elements in an array
– array_search() returns the key for the first match in

an array

Using External Data

 You can build dynamic pages with just
the information in a php script

 But where php shines is in building pages out

of external data sources, so that the web
pages change when the data does

 Most of the time, people think of a

database like MySQL as the backend, but
you can also use text or other files, LDAP,
pretty much anything….

Standard data files

 Normally you'd use a tab delimited file, but
you can use pretty much anything as a delimiter

 Files get read as arrays, one line per slot

 Remember each line ends in \n, you should clean
this up, and be careful about white space

 Once the file is read, you can use explode to break

the lines into fields, one at a time, in a loop….

Standard data files

 You can use trim() to clean white space
and returns instead of str_replace()

 Notice that this is building an array of arrays

$items=file("./mydata.txt");

foreach ($items as $line)

{

$line = str_replace("\n", "", $line);
$line = explode("\t", $line);

 do something with $line array
}

Useful string functions

 str_replace()
 trim(), ltrim(), rtrim()
 implode(), explode()
 addslashes(), stripslashes()

 htmlentities(), html_entity_decode(),

htmlspecialchars()
 striptags()

06_more_arrays.php

 This is a simple script to read and process a text file

 The data file is tab delimited and has the

column titles as the first line of the file

How it works

 The script uses the first line to build text labels for
the subsequent lines, so that the array elements can
be called by the text label
– If you add a new column, this script compensates
– Text based arrays are not position dependent…
– This script could be the basis of a nice function

 There are two version of this, calling two

different datafiles, but that's the only difference

06a_more_arrays.php

 This version shows how to dynamically build a table in
the html output

Alternative syntax

 Applies to if, while, for, foreach, and switch
 Change the opening brace to a colon
 Change the closing brace to an endxxx

statement <?php

 if ($a == 5):

 echo "a equals 5";

<?php if ($a == 5): ?> echo "...";

A is equal to 5 else:

<?php endif; ?> echo "a is not 5";

 endif;
 ?
>

Forms
(Getting data from users)

Forms: how they work

 We need to know..

1. How forms work.

2. How to write forms in XHTML.

3. How to access the data in PHP.

How forms work

User requests a particular URL

XHTML Page supplied with Form

User fills in form and submits. Another

URL is requested and the Form data

is sent to this page either in URL or

as a separate piece of data.

User

Web Server

XHTML Response

XHTML Form

 The form is enclosed in form tags..

<form

action=“path/to/submit/page”

method=“get”>

<!–- form contents -->

</form>

Form tags

 action=“…” is the page that the
form should submit its data to.

 method=“…” is the method by which the

form data is submitted. The option are either
get or post. If the method is get the data
is passed in the url string, if the method is
post it is passed as a separate file.

Form fields: text input

 Use a text input within form tags for a
single line freeform text input.

<label for=“fn">First

Name</label> <input type="text"

name="firstname"

id=“fn"

size="20"/>

Form tags

 name=“…” is the name of the field. You
will use this name in PHP to access the data.

 id=“…” is label reference string – this should
be the same as that referenced in the
<label> tag.

 size=“…” is the length of the displayed

text box (number of characters).

Form fields: password input

 Use a starred text input for passwords.

<label for=“pw">Password</label>

<input type=“password"

name=“passwd"

id=“pw"

size="20"/>

Form fields: text input

 If you need more than 1 line to enter data,
use a textarea.

<label for="desc">Description</label>

<textarea name=“description”

id=“desc“

rows=“10” cols=“30”>

Default text goes

here… </textarea>

Form fields: text area

 name=“…” is the name of the field. You
will use this name in PHP to access the data.

 id=“…” is label reference string – this should
be the same as that referenced in the
<label> tag.

 rows=“…” cols=“..” is the size of

the displayed text box.

Form fields: drop down

<label for="tn">Where do you live?</label>

<select name="town" id="tn">

<option value="swindon">Swindon</option>

<option value="london”

selected="selected">London</option>

<option value=“bristol">Bristol</option>

</select>

Form fields: drop down

 name=“…” is the name of the field.
 id=“…” is label reference string.

 <option value=“…” is the actual data

sent back to PHP if the option is selected.

 <option>…</option> is the value

displayed to the user.

 selected=“selected” this option is

selected by default.

Form fields: radio buttons

<input type="radio"

name="age"

id="u30“

checked=“checked”

value="Under30" />

<label for="u30">Under

30</label>

<input type="radio"

name="age"

id="thirty40"

value="30to40" />

<label for="thirty40">30 to 40</label>

Form fields: radio buttons

 name=“…” is the name of the field. All
radio boxes with the same name are
grouped with only one selectable at a time.

 id=“…” is label reference string.

 value=“…” is the actual data sent back to

PHP if the option is selected.

 checked=“checked” this option is

selected by default.

Form fields: check boxes

What colours do you like?
 <input type="checkbox"

name="colour[]"

id="r"

checked="checked"

value="red" />

<label for="r">Red</label>

<input type="checkbox"

name="colour[]"

id="b"

value="blue" />

<label for="b">Blue</label>

Form fields: check boxes

 name=“…” is the name of the field. Multiple
checkboxes can be selected, so if the button are
given the same name, they will overwrite previous
values. The exception is if the name is given with
square brackets – an array is returned to PHP.

 id=“…” is label reference string.
 value=“…” is the actual data sent back to PHP

if the option is selected.
 checked=“checked” this option is selected

by default.

Hidden Fields

<input type="hidden"

name="hidden_value"

value="My Hidden Value" />

 name=“…” is the name of the field.

 value=“…” is the actual data sent back to

PHP.

Submit button..

 A submit button for the form can be
created with the code:

<input type="submit"

name="submit"

value="Submit" />

Fieldset

 In XHTML 1.0, all inputs must be grouped within the form into fieldsets.
These represent logical divisions through larger forms. For short forms,
all inputs are contained in a single fieldset.

<form>

<fieldset>

<input … />

<input … />

</fieldset>

<fieldset>

<input … />

<input … />

</fieldset>

</form>

In PHP…

 The form variables are available to PHP in
the page to which they have been submitted.

 The variables are available in two

superglobal arrays created by PHP called
$_POST and $_GET.

Access data

 Access submitted data in the relevant array for the
submission type, using the input name as a key.

<form action=“path/to/submit/page”

method=“get”>

<input type=“text”

name=“email”> </form>

$email = $_GET[‘email’];

A warning..

NEVER TRUST USER INPUT

 Always check what has been input.

 Validation can be undertaken using Regular

expressions or in-built PHP functions.

A useful tip..

 I find that storing the validated data in
a different array to the original useful.

 I often name this array ‘clean’ or

something similarly intuitive.

 I then *only* work with the data in $clean,

and never refer to $_POST/$_GET again.

Example

$clean = array();

if (ctype_alnum($_POST['username']))

{

$clean['username'] = $_POST['username'];

}

Filter example

$clean
=
 array

();

= ();

if (ctype_alnum($_POST['username']))

{

$clean['username'] = $_POST['username'];

}

Initialise an array to store

filtered data.

Filter example

$clean = array();

if
if

(
(ctype

_
_alnum

(
(
$
$
_
_POST['username']))

{

$clean['username'] = $_POST['username'];

}

Inspect username to make sure

that it is alphanumeric.

Filter example

$clean = array();

if (ctype_alnum($_POST['username']))

{

$clean['username'] = $_POST['username'];

}

If it is, store it in the array.

Is it submitted?

 We also need to check before accessing
data to see if the data is submitted, use
isset() function.

if (isset($_POST[‘username’])) {

// perform validation

}

Form Validation

What is form validation?

 validation: ensuring that form's values
are correct

 some types of validation:
– preventing blank values (email address)
– ensuring the type of values

 integer, real number, currency, phone number,
Social Security number, postal

– address, email address, date, credit card number, ...
– ensuring the format and range of values (ZIP

code must be a 5-digit integer)
– ensuring that values fit together (user types

email twice, and the two must match)

A real Form that uses validation

Client vs. server-side validation

 Validation can be performed:
– client-side (before the form is submitted)

 can lead to a better user experience, but not
secure (why not?)

– server-side (in PHP code, after the form
is submitted)
 needed for truly secure validation, but slower

– both

– best mix of convenience and security, but
requires most effort to program

An example form to be validated

<form action="http://foo.com/foo.php"

method="get">

<div>

City: <input name="city" />

State: <input name="state"

size="2" maxlength="2" />

ZIP: <input name="zip"
size="5" maxlength="5" />

• Let's validate this form's data on the server...

<input type="submit" />

</div>

</form>

HTML

Basic server-side validation code

$city = $_REQUEST["city"];

$state = $_REQUEST["state"];

$zip = $_REQUEST["zip"];

if (!$city || strlen($state) != 2 || strlen($zip) !=

 {
?>

<h2>Error, invalid city/state submitted.</h2>

<?php

}

?> PHP

 basic idea: examine parameter values, and if they are
bad, show an error message and abort

Basic server-side validation code

 validation code can take a lot of time / lines
to write
– How do you test for integers vs. real numbers

vs. strings?
– How do you test for a valid credit card number?
– How do you test that a person's name has

a middle initial?
– How do you test whether a given string matches

a particular complex format?

Regular expressions

[a-z]at #cat, rat, bat…

[aeiou]

[a-zA-Z]

[^a-z] #not a-z

[[:alnum:]]+ #at least one alphanumeric char

(very) *large #large, very very very large…

(very){1, 3} #counting “very” up to 3

^bob #bob at the beginning

com$ #com at the end

PHPRegExp•Regulareression: a pattern in a piece of text
 PHP has:

– POSIX
– Perl regular expressions

Delimiters

/[a-z]/at

#[aeiou]#

/[a-zA-Z]/

~[^a-z]~

/[[:alnum:]]+/

#(very) *#large

~(very){1, 3}~

/^bob/

/com$/

/http:\/\ //

#http://#

#cat, rat, bat…

#not a-z

#at least one alphanumeric char

#large, very very very large…

#counting “very” up to

3 #bob at the beginning

#com at the end

#better readability

 Used for Perl regular expressions (preg)
PHPRegExp

Basic Regular Expression

/abc/

 in PHP, regexes are strings that begin and
end with /

 the simplest regexes simply match

a particular substring

 the above regular expression matches

any string containing "abc":
– YES: "abc", "abcdef", "defabc", ".=.abc.=.", ...
– NO: "fedcba", "ab c", "PHP", ...

Wildcards

 A dot . matches any character except a \n
line break
– "/.oo.y/" matches "Doocy", "goofy", "LooNy", ...

 A trailing i at the end of a regex (after the

closing /) signifies a case-insensitive match
– "/xen/i" matches “Xenia", “xenophobic", “Xena

the warrior princess", “XEN technologies” ...

Special characters: |, (), ^, \

 | means OR
– "/abc|def|g/" matches "abc", "def", or "g"
– There's no AND symbol. Why not?

 () are for grouping
– "/(Homer|Marge) Simpson/" matches

"Homer Simpson" or "Marge Simpson"
 ^ matches the beginning of a line; $ the end

– "/^<!--$/" matches a line that consists entirely
of "<!--"

Special characters: |, (), ^, \

 \ starts an escape sequence

– many characters must be escaped to match
them literally: / \ $. [] () ^ * + ?

– "/<br \/>/" matches lines containing
 tags

Quantifiers: *, +, ?

 * means 0 or more occurrences
– "/abc*/" matches "ab", "abc", "abcc", "abccc", ...
– "/a(bc)*/" matches "a", "abc", "abcbc", "abcbcbc", ...
– "/a.*a/" matches "aa", "aba", "a8qa", "a!?_a", ...

 + means 1 or more occurrences
– "/a(bc)+/" matches "abc", "abcbc", "abcbcbc", ...
– "/Goo+gle/" matches "Google", "Gooogle",

"Goooogle", ...
 ? means 0 or 1 occurrences

– "/a(bc)?/" matches "a" or "abc"

More quantifiers: {min,max}

 {min,max} means between min and max
occurrences (inclusive)
– "/a(bc){2,4}/" matches "abcbc", "abcbcbc",

or "abcbcbcbc"

 min or max may be omitted to specify any

number
– {2,} means 2 or more
– {,6} means up to 6
– {3} means exactly 3

Character sets: []

 [] group characters into a character set; will
match any single character from the set
– "/[bcd]art/" matches strings containing "bart",

"cart", and "dart"
– equivalent to "/(b|c|d)art/" but shorter

 inside [], many of the modifier keys act as normal
characters
– "/what[!*?]*/" matches "what", "what!",

"what?**!", "what??!",

 What regular expression matches DNA (strings of
A, C, G, or T)?

Character ranges: [start-end]

 inside a character set, specify a range of
characters with -
– "/[a-z]/" matches any lowercase letter
– "/[a-zA-Z0-9]/" matches any lower- or

uppercase letter or digit
 an initial ^ inside a character set negates it

– "/[^abcd]/" matches any character other than
a, b, c, or d

Character ranges: [start-end]

 inside a character set, - must be escaped to be
matched
– "/[+\-]?[0-9]+/" matches an optional + or -

, followed by at least one digit

 What regular expression matches letter grades

such as A, B+, or D- ?

Escape sequences

 special escape sequence character sets:
– \d matches any digit (same as [0-9]); \D any non-

digit ([^0-9])
– \w matches any “word character” (same as [a-zA-

Z_0-9]); \W any non-word
 char

– \s matches any whitespace character (, \t, \n, etc.);
\S any non-whitespace

 What regular expression matches dollar amounts
of at least $100.00 ?

Regular expressions in PHP (PDF)

 regex syntax: strings that begin and end with

/, such as "/[AEIOU]+/"

function description

 preg_match(regex, string) returns TRUE if string matches

regex

 preg_replace(regex, returns a new string with all

substrings that match regex

 replacement, string) replaced by replacement

 returns an array of strings from

 given string broken apart using
 preg_split(regex, string) the given regex as the delimiter

 (similar to explode but more

http://www.php.net/preg-match
http://www.php.net/preg-replace
http://www.php.net/preg-split

 powerful)

Regular expressions example

echo preg_match ('/test/', "a test of preg_match");

echo preg_match ('/tutorial/', "a test of

preg_match ");

$matchesarray[0] = "http://www.tipsntutorials.com/"

$matchesarray[1] = "http://"

$matchesarray[2] = "www.tipsntutorials.com/"

preg_match ('/(http://)(.*)/',

"http://www.tipsntuto rials.com/", $matchesarray)

PHP

Regular expressions example

 replace vowels with stars
$str = "the quick brown fox";
$str = preg_replace("/[aeiou]/", "*", $str);
 "th* q**ck br*wn f*x"
 break apart into words

$words = preg_split("/[]+/", $str);

 ("th*", "q**ck", "br*wn", "f*x")

 capitalize words that had 2+ consecutive vowels

for ($i = 0; $i < count($words); $i++) {

if (preg_match("/*{2,}/", $words[$i]))

{ $words[$i] = strtoupper($words[$i]);
}

} # ("th*", "Q**CK", "br*wn", "f*x")

PHP

PHP form validation w/ regexes

$state = $_REQUEST["state"];

if (!preg_match("/[A-Z]{2}/", $state))

{ ?>

<h2>Error, invalid state

submitted.</h2> <?php

}

PHP

 using preg_match and well-chosen regexes
allows you to quickly validate query
parameters against complex patterns

Another PHP experiment

 Write a PHP script that tests whether an e-mail
address is input correctly. Test using valid and
invalid addresses

 Use array
 Use function.

 UNIT-5

 PHP and Database Access

 Connecting to a Database Using PHP
 Most Web applications:

 – Retrieve information from a database to alter
their on-screen display

 – Store user data such as orders, tracking,
address, credit card, etc. in a database
 Permits them to adapt to individual users, and
provide fresh, changing content

 PHP: Built-in Database Access

 PHP provides built-in database connectivity for
a wide range of databases

 – MySQL, PostgreSQL, Oracle, Berkeley DB,
Informix, mSQL, Lotus Notes, and more

 – Starting support for a specific database may
involve PHP configuration steps

 Another advantage of using a programming
language that has been designed for the creation
of web apps.

 Support for each database is described in the
PHP manual at:

 – http://www.php.net/manual/en/

 MySQL and PHP

 • Architecture diagram

 Logical
Database Logical

Web Server

 (MySQL)

 OS
proc. 1 OS proc. n

 Threa
d 1

 Threa
d 1

 Threa
d 2 …

 Threa
d 2

 … …

 Threa
d n

 Threa
d n

 Connecting to MySQL
 To connect to a database, need to create a
connection

 – At lowest level, this is a network connection

 – Involves a login sequence
(username/password)

 Since this is a relatively expensive step, web
application environments:

 – Share connections

 – Have multiple connections

 Whether, and how many, are typical
configuration items. In MySQL:

 – Allow_persistent: whether to allow persistent
connections

 – Max_persistent: the maximum number of
persistent connections

 – Max_links: max number of connections,
persistent and not

 – Connection_timeout: how long the persistent
connection is left open

 • Can also use SSL to encrypt connection

 High-Level Process of Using

 MySQL from PHP

 Create a database connection
 Select database you wish to use
 Perform a SQL query
 Do some processing on query results
 Close database connection

 Creating Database Connection

 Use either mysql_connect or mysql_pconnect to
create database connection
 – mysql_connect: connection is closed at end of
script (end of page)
 – mysql_pconnect: creates persistent
connection

 connection remains even after end of the page

 Parameters

 – Server – hostname of server

 – Username – username on the database

 – Password – password on the database

 – New Link (mysql_connect only) – reuse
database connection created by previous call to
mysql_connect

 – Client Flags

 MYSQL_CLIENT_SSL :: Use SSL

 MYSQL_CLIENT_COMPRESS :: Compress data
sent to MySQL

 Security Note
 Username and password fields imply that
database password is sitting there in the source
code

 – If someone gains access to source code, can
compromise the database

 – Servers are sometimes configured to view PHP
source code when a resource is requested with
“.phps” instead of “.php”

 – One approach to avoid this: put this
information in Web server config. File

 Then ensure the Web server config. file is not
externally accessible

 Selecting a Database

 mysql_select_db()

 – Pass it the database name

 Related:

 – mysql_list_dbs()

 List databases available

 – Mysql_list_tables()

 List database tables available

 Perform SQL Query
 Create query string

 – $query = ‘SQL formatted string’

 – $query = ‘SELECT * FROM table’

 Submit query to database for processing

 – $result = mysql_query($query);

 – For UPDATE, DELETE, DROP, etc, returns TRUE
or FALSE

 – For SELECT, SHOW, DESCRIBE or EXPLAIN,
$result is an identifier for the results, and does
not contain the results themselves
 $result is called a “resource” in this case

 A result of FALSE indicates an error

 If there is an error

 – mysql_error() returns error string from last
MySQL call
 Process Results
 Many functions exist to work with database
results
 mysql_num_rows()

 – Number of rows in the result set

 – Useful for iterating over result set

 mysql_fetch_array()

 – Returns a result row as an array

 – Can be associative or numeric or both
(default)

 – $row = mysql_fetch_array($result);

 – $row[‘column name’] :: value comes from
database row with specified column name
 – $row[0] :: value comes from first field in result
set

 Process Results Loop

 • Easy loop for processing results:

 $result = mysql_query($qstring);

 $num_rows = mysql_num_rows($result); for
($i=0; $i<$num_rows; $i++) {

 $row = mysql_fetch_array($result);

 // take action on database results here

 }

 Closing Database Connection
 mysql_close()

 – Closes database connection

 – Only works for connections opened with
mysql_connect()

 – Connections opened with
mysql_pconnect() ignore this call

 – Often not necessary to call this, as
connections created by mysql_connect are
closed at the end of the script anyway

Model View

Controller
Bayu Priyambadha,

S.Kom

PHP & MVC

 The model view controller pattern

is the most used pattern for

today’s world web applications

 It has been used for the first time

in Smalltalk and then adopted and

popularized by Java

 At present there are more than a

dozen PHP web frameworks based on

MVC pattern

PHP & MVC

 The model is responsible to manage

the data

 The view (presentation) is

responsible to display the data

provided by the model in a specific

format

 The controller handles the model

and view layers to work together

PHP & MVC

PHP & MVC

model/Book.php
<?php

class Book {

public $title;

public $author;

public $description;

public function __construct($title, $author,

$description)

{

$this->title = $title;

$this->author = $author;

$this->description = $description;

}

}

?>

model/Model.php
<?php

include_once("model/Book.php");

class Model {

public function getBookList()

{

// here goes some hardcoded values to simulate the database

return array(

"Jungle Book" => new Book("Jungle Book", "R. Kipling", "A classic book."),

"Moonwalker" => new Book("Moonwalker", "J. Walker", ""),

"PHP for Dummies" => new Book("PHP for Dummies", "Some Smart Guy", "")

);

}

public function getBook($title)

{

// we use the previous function to get all the books

// and then we return the requested one.

// in a real life scenario this will be done through

// a database select command

$allBooks = $this->getBookList();

return $allBooks[$title];

}

}

?>

view/viewbook.php
<html>

<head></head>

<body>

<?php

echo 'Title:' . $book->title . '
';

echo 'Author:' . $book->author . '
';

echo 'Description:' . $book->description . '
';

?>

</body>

</html>

view/booklist.php
<html>

<head></head>

<body>

<table>

<tbody>

<tr><td>Title</td><td>Author</td><td>Description</td></tr>

</tbody>

<?php

foreach ($books as $book) {

echo '<tr><td><a href="index.php?book=' .

$book->title . '">' . $book->title .

'</td><td>' .

$book->author . '</td><td>' . $book-

>description . '</td></tr>';

}

?>

</table>

</body>

</html>

controller/Controller.php
<?php

include_once("model/Model.php");

class Controller {

public $model;

public function __construct()

{

$this->model = new Model();

}

controller/Controller.php
public function invoke()

{

if (!isset($_GET['book']))

{

// no special book is requested, we'll show a

list of all available books

$books = $this->model->getBookList();

include 'view/booklist.php';

}

else

{

// show the requested book

$book = $this->model->getBook($_GET['book']);

include 'view/viewbook.php';

}

}

}

?>

index.php
<?php

// All interaction goes through the index and is

forwarded

// directly to the controller

include_once("controller/Controller.php");

$controller = new Controller();

$controller->invoke();

?>

PHP & MVC

What is AJAX ?
 AJAX is not a new programming language, but a new

technique for creating better, faster, and more
interactive web applications.

 With AJAX, a JavaScript can communicate directly with
the server, with the XMLHttpRequest object. With this
object, a JavaScript can trade data with a web server,
without reloading the page.

 AJAX uses asynchronous data transfer (HTTP requests)
between the browser and the web server, allowing web
pages to request small bits of information from the
server instead of whole pages.

 The AJAX technique makes Internet applications
smaller, faster and more user-friendly.

AJAX example
var xmlhttp

function showHint(str) {

if (str.length==0) {
document.getElementById("txtHint").innerHTML="";
return;

}

xmlhttp=GetXmlHttpObject();

if (xmlhttp==null) {
alert ("Your browser does not support XMLHTTP!");
return;

}

var url=“submit.php";

url=url+"?q="+str;

url=url+"&sid="+Math.random();

xmlhttp.onreadystatechange=stateChanged;

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

}

function stateChanged() {
if (xmlhttp.readyState==4) {

document.getElementById("txtHint").innerHTML=xmlhttp.responseText;
}

}

function GetXmlHttpObject() {
if (window.XMLHttpRequest) { // code for IE7+, Firefox, Chrome, Opera, Safari

return new XMLHttpRequest();

}
if (window.ActiveXObject) { // code for IE6, IE5

return new ActiveXObject("Microsoft.XMLHTTP");
}
return null;

}

PHP AND XML:

XML is a markup language that looks a lot like HTML. An XML document is plain text and contains tags delimited by < and >.There are two

big differences between XML and HTML −

• XML doesn't define a specific set of tags you must use.

• XML is extremely picky about document structure.

XML gives you a lot more freedom than HTML. HTML has a certain set of tags: the <a> tags surround a link, the <p> starts paragraph

and so on. An XML document, however, can use any tags you want. Put <rating></rating> tags around a movie rating, <height></height>

tags around someone's height. Thus XML gives you option to device your own tags.

XML is very strict when it comes to document structure. HTML lets you play fast and loose with some opening and closing tags. But this is

not the case with XML.

HTML list that's not valid XML

 Braised Sea Cucumber

 Baked Giblets with Salt

 Abalone with Marrow and Duck Feet

This is not a valid XML document because there are no closing tags to match up with the three opening tags. Every opened tag in

an XML document must be closed.

HTML list that is valid XML

 Braised Sea Cucumber

 Baked Giblets with Salt

 Abalone with Marrow and Duck Feet

Parsing an XML Document

PHP 5's new SimpleXML module makes parsing an XML document, well, simple. It turns an XML document into an object that provides

structured access to the XML.

X
by Counterflix

To create a SimpleXML object from an XML document stored in a string, pass the string to simplexml_load_string(). It returns a SimpleXML

object.

Example

Try out following example −

<html>

 <body>

 <?php

 $note=<<<XML

 <note>

 <to>Gopal K Verma</to>

 <from>Sairamkrishna</from>

 <heading>Project submission</heading>

 <body>Please see clearly </body>

 </note>

 XML;

 $xml=simplexml_load_string($note);

 print_r($xml);

 ?>

 </body>

</html>

It will produce the following result −

NOTE − You can use function simplexml_load_file(filename) if you have XML content in a file.

For a complete detail of XML parsing function check PHP Function Reference.

https://www.tutorialspoint.com/php/php_function_reference.htm

Generating an XML Document

SimpleXML is good for parsing existing XML documents, but you can't use it to create a new one from scratch.

X
by Counterflix

The easiest way to generate an XML document is to build a PHP array whose structure mirrors that of the XML document and then to iterate

through the array, printing each element with appropriate formatting.

Example

Try out following example −

<?php

 $channel = array('title' => "What's For Dinner",

 'link' => 'http://menu.example.com/',

 'description' => 'Choose what to eat tonight.');

 print "<channel>\n";

 foreach ($channel as $element => $content) {

 print " <$element>";

 print htmlentities($content);

 print "</$element>\n";

 }

 print "</channel>";

?>

It will produce the following result −

<channel>
 <title>What's For Dinner</title>
 <link>http://menu.example.com/</link>
 <description>Choose what to eat tonight.</description>
</channel>

