

Question Paper Code: AECB06

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER – I

B.Tech III Semester End Examinations, November - 2019

Regulations: IARE-R18

ELECTRONIC DEVICES AND CIRCUITS

(Common to ECE/EEE)

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE – I

- 1 a) Derive an expression for total diode current starting from Boltzmann relationship in terms of [7M] the applied voltage.
 - b) Find the value of D.C. resistance and A.C resistance of a Germanium junction diode at 25° C [7M] with reverse saturation current, Io = 25μ A and at an applied voltage of 0.2V across the diode?
- 2 a) With suitable diagrams, explain the working of centre-tapped full wave rectifier. Derive an [7M] expression for V_{DC}, I_{DC}, V_{rms} and I_{rms} for it?
 - b) Determine the ripple factor of an L-section filter comprising a 10H choke and 8μF capacitor, [7M] used with a Full Wave Rectifier. The DC voltage at the load is 50V. Assume the line frequency as 50Hz?

MODULE – II

- 3 a) Define Early-effect; explain why it is called as base-width modulation? Discuss its [7M] consequences in transistors in detail?
 - b) The reverse leakage current of the transistor when connected in CB configuration is [7M] $0.2 \ \mu$ A while it is 18 μ A when the same transistor is connected in CE configuration. Determine α and β of the transistor?
- 4 a) Define Thermal Runaway in transistors? Derive the condition to prevent Thermal Runaway [7M] in Bipolar Junction Transistors?
 - b) Design a collector to base bias circuit using silicon transistor to achieve a stability factor of [7M] 20, with the following specifications: $V_{CC} = 16V$, $V_{BE} = 0.7V$, $V_{CEQ} = 8V$, $Icq=4mA \& \beta=50$?

MODULE – III

- 5 a) Define biasing? Draw the fixed bias circuit and obtain the expression for the stability factor? [7M] List various disadvantages of fixed bias circuits?
 - b) Design a self bias circuit using silicon transistor to achieve a stability factor of 10, with the [7M] following specifications: $V_{CC} = 16V$, $V_{BE} = 0.7V$, $V_{CEQ} = 8V$, $I_{CQ} = 4$ mA & $\beta = 50$?
- 6 a) Draw the circuit diagram and small signal equivalent of CB amplifier using accurate h- [7M] parameter model. Derive an expression for A_V, A_I, R_I and R_O?

b) A common Emitter circuit has the following, components: $R_s=1k\Omega$, $R_1=110K\Omega$, $R_2=12K\Omega$, [7M] $R_c=6K\Omega$. h- Parameters are $h_{ie}=1.2K$, $h_{re}=2.5x10^{-4}$, $h_{fe}=75$, $h_{oe}=25uA/V$. Determine A_V , A_I , R_I and R_O .

MODULE - IV

- 7 a) Sketch the drain characteristics of MOSFET for different values of V_{GS} and mark different [7M] regions of operation.
 - b) The P-channel FET has a $|I_{DS}|$ =-12mA, $|V_p|$ =5V, V_{GS} is 1.6 V. Determine drain current I_D , G_m and G_{m0} . [7M]
- 8 a) Explain with the help of neat diagrams, the structure of N-channel FET, and its volt-ampere [7M] characteristic. In what way it is different from a bipolar junction transistor.
 - b) The following information is included on the data sheet for an N-channel JFET. [7M] $I_{DSS}=20mA, V_P=-8V$ and $g_{m0}=5mS$. Determine the values of drain current and transconductance at $V_{GS}=-4V$.

MODULE – V

- 9 a) Explain the V-I characteristics of Zener diode and analyze Avalanche and Zener Break [7M] downs?
 - b) A 5.0V stabilised power supply is required to be produced from a 12V DC power supply input [7M] source. The maximum power rating P_Z of the zener diode is 2W. Using the zener regulator circuit above calculate: a) The maximum current flowing through the zener diode. b) The minimum value of the series resistor, R_S c) The load current I_L if a load resistor of $1k\Omega$ is connected across the zener diode. d) The zener current I_Z at full load.
- 10 a) Explain the effect of external source resistance on the voltage gain of a common source [7M] amplifier? Explain with necessary derivations?
 - b) A Common Source FET amplifier circuit with un bypassed Rs has the following circuit [7M] parameters: Rd = 15K, RS = 0.5K, Rg = 1M, rd = 5K, gm= 5mS and VDD = 20 V. Determine AV& RO?

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

I. COURSE OBJECTIVES

The course should enable the students to:

The course should enable the students to:			
Ι	Introduce components such as diodes, BJTs and FETs.		
II	Know the applications of components		
III	Know the switching characteristics of components.		
IV	Give understanding of various types of amplifier circuits.		

II. COURSE OUTCOMES

Students who complete the course will have demonstrated the ability to do the following

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe diode	CLO 1	Understand and analyze diodes operation and static and
	operation, transition		dynamic resistance in order to design basic circuits.
	capacitance, diffusion	CLO 2	Understand diffusion and transition capacitance of diode
	capacitance and the use		in forward and reverse bias conditions.
	of diode in various	CLO 3	Understand and analyze diode applications and
	electronic circuits.		how the diode acts as a switch.
		CLO 4	Design rectifier without and with capacitive filters for
			the given specifications.
		CLO 5	Understand the use of diodes in typical circuits like,
			clipping, clamping circuits and comparator circuits.
CO 2	CO 2 Understand the principle CLO 6 Understand the princip		
	of operation of BJT in		characteristics of common emitter, common base and
	CE, CB, CC		common collector configurations.
	configuration and	CLO 7	Understand the concept of operating point, DC & AC
	analyze transistor hybrid		load lines.
	model.	CLO 8	Analyze transistor hybrid parameter model for CE, CB
			and CC configurations.
		CLO 9	Determine of h-parameters of BJT amplifier from
			transistor characteristics.
		CLO 10	1
			among CE, CB and CC configurations.
CO 3	Bias the transistors and	CLO 11	Identify the various transistor biasing circuits,
	analyze the low		compensation circuits and its usage in applications like
	frequency response of		amplifiers.
	BJT amplifiers.	CLO 12	Analyze various transistor configurations and asses
			merits and demerits for different applications.
		CLO 13	Analyze CE Amplifier with emitter resistance.
		CLO 14	
		CLO 15	Understand the effect of coupling and bypass capacitors on CE Amplifier.

COs	Course Outcome	CLOs	Course Learning Outcome
CO 4	Study and analyze the behaviour of FET and	CLO 16	Explain construction and principle of operation of JFET.
	MOSFET.	CLO 17	Understand the concept of pinch-off voltage and volt- ampere characteristic of JFET.
		CLO 18	Distinguish the constructional features and operation of BJT and FET and their applications.
		CLO 19	Understand biasing of FET and how it acts as voltage variable resistor.
		CLO 20	Discuss the construction of MOSFET and steady the VI characteristics, as it is the prime component in VLSI technology.
CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model	CLO 21	Apply small-signal models to field effect transistors and determine the voltage gain and input and output impedances.
	and study the behaviour of special purpose	CLO 22	Analyzes CS, CD, CG JFET amplifiers using small signal model.
	diodes.	CLO 23	Understand basic concepts of MOSFET amplifiers.
		CLO 24	Explain the operation of Zener diode and its usage in voltage regulating application.
		CLO 25	Understand the principle of operation and characteristics of silicon controlled rectifier, tunnel diode, UJT and varactor diode.

MAPPING OF SEMESTER END EXAMINATION TO COURSE OUTCOMES

SEE Question No.		СО	Course Outcomes	Blooms Taxonomy Level
	a	CO 1	Describe diode operation, transition capacitance, diffusion capacitance and the use of diode in various	Understand
1	b	CO 1	electronic circuits. Describe diode operation, transition capacitance, diffusion capacitance and the use of diode in various electronic circuits.	Understand
2	a	CO 1	Describe diode operation, transition capacitance, diffusion capacitance and the use of diode in various electronic circuits.	Remember
2	b	CO 1	Describe diode operation, transition capacitance, diffusion capacitance and the use of diode in various electronic circuits.	Understand
3	a	CO 2	Understand the principle of operation of BJT in CE, CB, CC configuration and analyze transistor hybrid model.	Understand
3	b	CO 2	Understand the principle of operation of BJT in CE, CB, CC configuration and analyze transistor hybrid model.	Understand

SEE Question No.		CO Course Outcomes		Blooms Taxonomy Level	
4	а	CO 2	Understand the principle of operation of BJT in CE, CB, CC configuration and analyze transistor hybrid model.	Remember	
4	b	CO 23	Understand the principle of operation of BJT in CE, CB, CC configuration and analyze transistor hybrid model.	Understand	
5	a	CO 3	Bias the transistors and analyze the low frequency response of BJT amplifiers.	Remember	
	b	CO 3	Bias the transistors and analyze the low frequency response of BJT amplifiers.	Remember	
6	a	CO 3	Bias the transistors and analyze the low frequency response of BJT amplifiers.	Understand	
6	b	CO 3	Bias the transistors and analyze the low frequency response of BJT amplifiers.	Remember	
7	a	CO 4	Study and analyze the behaviour of FET and MOSFET.	Remember	
7	b	CO 4	Study and analyze the behaviour of FET and MOSFET.	Understand	
	a	CO 4	Study and analyze the behaviour of FET and MOSFET.	Remember	
8	b	CO 4	Study and analyze the behaviour of FET and MOSFET.	Understand	
0	а	CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model and study the behaviour of special purpose diodes.	Understand	
9	b	CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model and study the behaviour of special purpose diodes.	Remember	
10	a	CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model and study the behaviour of special purpose diodes.	Understand	
	b	CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model and study the behaviour of special purpose diodes.	Understand	

Signature of Course Coordinator

HOD, ECE