
MATHEMATICS-III



CONTENTS

Linear ODE with variable coefficients and series 
solutions

 Special functions

Complex function – Differentiation and 
integration

 Power series expansions of complex functions and 
contour integration

Conformal mapping



TEXT BOOKS:

•Advanced Engineering Mathematics by Kreyszig, John Wiley & Sons. 

•Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers. 



REFERENCES:

1.Complex Variables Principles And Problem Sessions By A.K.Kapoor, World 

Scientific Publishers 

2.Engineering Mathematics-3 By T.K.V.Iyengar andB.Krishna Gandhi Etc 

3.A Text Book Of Engineering Mathematics By N P Bali, Manesh Goyal

4.Mathematics for Engineers and Scientists, Alan Jeffrey, 6th Edit. 2013, Chapman & 

Hall/CRC 

5.Advanced Engineering Mathematics, Michael Greenberg, Second Edition. Person 

Education 

6.Mathematics For Engineers By K.B.Datta And M.A S.Srinivas,Cengage Publications 



Power Series Method



The power series method is the standard method for solving linear ODEs with 
variable coefficients. 
It gives solutions in the form of power series. 
These series can be used for computing values, graphing curves, proving 
formulas, and exploring properties of solutions. In this section we begin by 
explaining the idea of the power series method.



From calculus we remember that a power series (in powers of x − x0) is an 
infinite series of the form

(1)

Here, x is a variable. a0, a1, a2, … are constants, called the coefficients of the 
series. x0 is a constant, called the center of the series. In particular, if x0 = 0, we 
obtain a power series in powers of x

(2)

We shall assume that all variables and constants are real.
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Then we collect like powers of x and equate the sum of the coefficients of each 
occurring power of x to zero, starting with the constant terms, then taking the 
terms containing x, then the terms in x2, and so on. 
This gives equations from which we can determine the unknown coefficients of 
(3) successively.

Idea and Technique of the Power Series Method 
(continued)



The nth partial sum of (1) is

where n = 0, 1, … .
If we omit the terms of sn from (1), the remaining expression is

This expression is called the remainder of (1) after the term an(x − x0)
n.

Theory of the Power Series Method 
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In this way we have now associated with (1) the sequence of the partial sums 
s0(x), s1(x), s2(x), ….  If for some x = x1 this sequence converges, say,

then the series (1) is called convergent at x = x1, the number s(x1) is called the 
value or sum of (1) at x1, and we write

Then we have for every n,
(8)
If that sequence diverges at x = x1, the series (1) is called divergent at x = x1.

Theory of the Power Series Method (continued)
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Where does a power series converge? Now if we choose 
x = x0 in (1), the series reduces to the single term a0 because the other terms are 
zero. Hence the series converges at x0.
In some cases this may be the only value of x for which (1) converges. If there 
are other values of x for which the series converges, these values form an 
interval, the convergence interval. This interval may be finite, as in Fig. 105, 
with midpoint x0. Then the series (1) converges for all x in the interior of the 
interval, that is, for all x for which
(10) |x − x0| < R
and diverges for |x − x0| > R. The interval may also be infinite, that is, the series 
may converge for all x.

Theory of the Power Series Method (continued)



Legendre’s Equation.  

Legendre Polynomials Pn(x)



Legendre’s differential equation
(1) (1 − x2)y” − 2xy’ + n(n + 1)y = 0 (n constant)
is one of the most important ODEs in physics. It arises in numerous problems, 
particularly in boundary value problems for spheres.

The equation involves a parameter n, whose value depends on the physical or 
engineering problem. 
So (1) is actually a whole family of ODEs. For n = 1 
we solved it in Example 3 of Sec. 5.1 (look back at it). 
Any solution of (1) is called a Legendre function.
The study of these and other “higher” functions not occurring in calculus is 
called the theory of special functions. 



Dividing (1) by 1 − x2, we obtain the standard form needed in Theorem 1 of 
Sec. 5.1 and we see that the coefficients −2x/(1 − x2) and n(n + 1)/(1 − x2) of the 
new equation are analytic at x = 0, so that we may apply the power series 
method. Substituting

(2)

and its derivatives into (1), and denoting the constant 
n(n + 1) simply by k, we obtain

By writing the first expression as two separate series we have the equation
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The reduction of power series to polynomials is a great advantage because 
then we have solutions for all x, without convergence restrictions. For special 
functions arising as solutions of ODEs this happens quite frequently, leading 
to various important families of polynomials. 
For Legendre’s equation this happens when the parameter n is a nonnegative 
integer because then the right side 
of (4) is zero for s = n, so that an+2 = 0, an+4 = 0, an+6 = 0, …. 
Hence if n is even, y1(x) reduces to a polynomial of degree n. If n is odd, the 
same is true for y2(x). 
These polynomials, multiplied by some constants, are called Legendre 
polynomials and are denoted by Pn(x). 

Polynomial Solutions.  Legendre Polynomials Pn(x)



Series Solutions 

Near a Regular Singular Point, Part I

We now consider solving the general second order linear 

equation in the neighborhood of a regular singular point x0. 

For convenience, will will take x0 = 0.

Recall that the point x0 = 0 is a regular singular point of
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Series Solutions 

Near a Regular Singular Point, Part I

We now consider solving the general second order linear 

equation in the neighborhood of a regular singular point x0. 
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Transforming Differential Equation

Our differential equation has the form

Dividing by P(x) and multiplying by x2, we obtain

Substituting in the power series representations of p and q,

we obtain
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Comparison with Euler Equations

Our differential equation now has the form

Note that if

then our differential equation reduces to the Euler Equation 

In any case, our equation is similar to an Euler Equation but 

with power series coefficients. 

Thus our solution method: assume solutions have the form
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Example 1:  Regular Singular Point   (1 of 13)

Consider the differential equation

This equation can be rewritten as

Since the coefficients are polynomials, it follows that x = 0 is 

a regular singular point, since both limits below are finite:
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Example 1: Euler Equation   (2 of 13)

Now xp(x) = -1/2 and x2q(x) = (1 + x )/2, and thus for

it follows that

Thus the corresponding Euler Equation is

As in Section 5.5, we obtain

We will refer to this result later. 
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Example 1: Differential Equation   (3 of 13)

For our differential equation, we assume a solution of the form

By substitution, our differential equation becomes

or
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Example 1: Combining Series   (4 of 13)

Our equation

can next be written as

It follows that

and
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Example 1: Indicial Equation   (5 of 13)

From the previous slide, we have

The equation

is called the indicial equation, and was obtained earlier when 

we examined the corresponding Euler Equation.  

The roots r1 = 1, r2 = ½, of the indicial equation are called the 

exponents of the singularity, for regular singular point x = 0. 

The exponents of the singularity determine the qualitative 

behavior of solution in neighborhood of regular singular point.  
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Example 1: Recursion Relation   (6 of 13)

Recall that

We now work with the coefficient on xr+n :

It follows that
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Example 1: First Root   (7 of 13)

We have

Starting with r1 = 1, this recursion becomes

Thus
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Example 1: First Solution   (8 of 13)

Thus we have an expression for the n-th term:

Hence for x > 0, one solution to our differential equation is
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Example 1: Radius of Convergence for 

First Solution   (9 of 13)

Thus if we omit a0, one solution of our differential equation is  

To determine the radius of convergence, use the ratio test:

Thus the radius of convergence is infinite, and hence the series 

converges for all x.  
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Example 1: Second Root   (10 of 13)

Recall that

When r1 = 1/2, this recursion becomes

Thus
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Example 1: Second Solution   (11 of 13)

Thus we have an expression for the n-th term:

Hence for x > 0, a second solution to our equation is
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Example 1: Radius of Convergence for 

Second Solution    (12 of 13)

Thus if we omit a0, the second solution is

To determine the radius of convergence for this series, we can 

use the ratio test:

Thus the radius of convergence is infinite, and hence the series 

converges for all x.  
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Example 1: General Solution   (13 of 13)

The two solutions to our differential equation are 

Since the leading terms of y1 and y2 are x and x1/2, respectively,      

it follows that y1 and y2 are linearly independent, and hence 

form a fundamental set of solutions for differential equation.

Therefore the general solution of the differential equation is

where y1 and y2 are as given above.  
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Shifted Expansions & Discussion

For the analysis given in this section, we focused on x = 0 as 

the regular singular point.  In the more general case of a 

singular point at x = x0, our series solution will have the form

If the roots r1, r2 of the indicial equation are equal or differ by 

an integer, then the second solution y2 normally has a more 

complicated structure. These cases are discussed in Section 5.7.  

If the roots of the indicial equation are complex, then there are 

always two solutions with the above form.  These solutions are 

complex valued, but we can obtain real-valued solutions from 

the real and imaginary parts of the complex solutions.  
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Cauchy-Riemann relation 

A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, 

there must be particular connection between u(x,y) and v(x,y)  
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Power series in a complex variable 
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Some elementary functions 
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