

MATHEMATICS-III

CONTENTS

$>$ Linear ODE with variable coefficients and series solutions
$>$ Special functions
$>$ Complex function - Differentiation and integration
$>$ Power series expansions of complex functions and contour integration
$>$ Conformal mapping

BOOKS:

-Advanced Engineering Mathematics by Kreyszig, John Wiley \& Sons.
er Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers.

Power Series Method

The power series method is the standard method for solving linear ODEs with variable coefficients.
It gives solutions in the form of power series.
These series can be used for computing values, graphing curves, proving formulas, and exploring properties of solutions. In this section we begin by explaining the idea of the power series method.

From calculus we remember that a power series (in powers of $x-x_{0}$) is an infinite series of the form
(1)
 series. ${ }_{2}^{m=0}{ }_{0}$ is a constant, called the center of the series. In particular, if $x_{0}=0$, we obtain a power series in powers of x
(2)

We shall assume that all variables and constants are real.

$$
\sum_{m=0}^{\infty} a_{m} x^{m}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

blea and Technique of the Power Series Method

 ontinued)Then we collect like powers of x and equate the sum of the coefficients of each occurring power of x to zero, starting with the constant terms, then taking the terms containing x, then the terms in x^{2}, and so on.
This gives equations from which we can determine the unknown coefficients of (3) successively.

Theory of the Power Series Method

The \boldsymbol{n} th partial sum of (1) is
(6) $S_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}$
where $n=0,1, \ldots$.

If we omit the terms of s_{n} from (1), the remaining expression is

This expression is called the remainder of (1) after the term $a_{n}\left(x-x_{0}\right)^{n}$.

$$
\text { (7) } \quad \mathrm{R}_{n}(x)=\mathrm{a}_{n+1}\left(x-x_{0}\right)^{n+1}+a_{n+2}\left(x-x_{0}\right)^{n+2}+\cdots
$$

heory of the Power Series Method (continued)

In this way we have now associated with (1) the sequence of the partial sums $s_{0}(x), s_{1}(x), s_{2}(x), \ldots$. If for some $x=x_{1}$ this sequence converges, say,
then the series (1) is called convergent at $x=x_{1}$, the number $s\left(x_{1}\right)$ is called the value or sum of (1) at $\lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} x_{\text {write }} S\left(x_{1}\right)$,

Then we have for every n,

$$
s\left(x_{1}\right)=s_{n}\left(x_{1}\right)+R_{n}\left(x_{1}\right)
$$

Theory of the Power Series Method (continued)

Where does a power series converge? Now if we choose
$x=x_{0}$ in (1), the series reduces to the single term a_{0} because the other terms are zero. Hence the series converges at x_{0}.
In some cases this may be the only value of x for which (1) converges. If there are other values of x for which the series converges, these values form an interval, the convergence interval. This interval may be finite, as in Fig. 105, with midpoint x_{0}. Then the series (1) converges for all x in the interior of the interval, that is, for all x for which
(10) $\quad\left|x-x_{0}\right|<R$
and diverges for $\left|x-x_{0}\right|>R$. The interval may also be infinite, that is, the series may converge for all x.

Legendre's Equation. Legendre Polynomials $P_{n}(x)$

Legendre's differential equation
(1) $\quad\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0 \quad$ (n constant)
is one of the most important ODEs in physics. It arises in numerous problems, particularly in boundary value problems for spheres.
The equation involves a parameter n, whose value depends on the physical or engineering problem.
So (1) is actually a whole family of ODEs. For $n=1$ we solved it in Example 3 of Sec. 5.1 (look back at it). Any solution of (1) is called a Legendre function.
The study of these and other "higher" functions not occurring in calculus is called the theory of special functions.

Dividing (1) by $1-x^{2}$, we obtain the standard form needed in Theorem 1 of Sec. 5.1 and we see that the coefficients $-2 x /\left(1-x^{2}\right)$ and $n(n+1) /\left(1-x^{2}\right)$ of the new equation are analytic at $x=0$, so that we may apply the power series method. Substituting
(2)
and its derivatives into (1), and denoting the constant
$n(n+1)$ simply by k, $y(X e q)=\sum_{m=0} a_{m} x^{m}$
By writing the first expression as two separate series we have the equation

$$
\left(1-x^{2}\right) \sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}-2 x \sum_{m=1}^{\infty} m a_{m} x^{m-1}+k \sum_{m=0}^{\infty} a_{m} x^{m}=0
$$

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}-\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m}-\sum_{m=1}^{\infty} 2 m a_{m} x^{m}+\sum_{m=0}^{\infty} k a_{m} x^{m}=0
$$

Dolynomial Solutions. Legendre Polynomials $P_{n}(x)$

The reduction of power series to polynomials is a great advantage because then we have solutions for all x, without convergence restrictions. For special functions arising as solutions of ODEs this happens quite frequently, leading to various important families of polynomials.
For Legendre's equation this happens when the parameter n is a nonnegative integer because then the right side
of (4) is zero for $s=n$, so that $a_{n+2}=0, a_{n+4}=0, a_{n+6}=0, \ldots$.
Hence if n is even, $y_{1}(x)$ reduces to a polynomial of degree n. If n is odd, the same is true for $y_{2}(x)$.
These polynomials, multiplied by some constants, are called Legendre polynomials and are denoted by $P_{n}(x)$.

Series Solutions
 Near a Regular Singular Point, Part I

* We now consider solving the general second order linear equation in the neighborhood of a regular singular point x_{0}. For convenience, will will take $x_{0}=0$.
* Recall that the point $x_{0}=0$ is a regular singular point of

$$
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0
$$

iff

$$
x \frac{Q(x)}{P(x)}=x p(x) \text { and } x^{2} \frac{R(x)}{P(x)}=x^{2} q(x) \text { are analy tic at } x=0
$$

iff

$$
x p(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \text { and } x^{2} q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}, \text { convergent on }|x|<\rho
$$

Series Solutions
 Near a Regular Singular Point, Part I

* We now consider solving the general second order linear equation in the neighborhood of a regular singular point x_{0}. For convenience, will will take $x_{0}=0$.
* Recall that the point $x_{0}=0$ is a regular singular point of

$$
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0
$$

iff

$$
x \frac{Q(x)}{P(x)}=x p(x) \text { and } x^{2} \frac{R(x)}{P(x)}=x^{2} q(x) \text { are analy tic at } x=0
$$

iff

$$
x p(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \text { and } x^{2} q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}, \text { convergent on }|x|<\rho
$$

Transforming Differential Equation

* Our differential equation has the form

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

* Dividing by $P(x)$ and multiplying by x^{2}, we obtain

$$
x^{2} y^{\prime \prime}+x[x p(x)] y^{\prime}+\left[x^{2} q(x)\right] y=0
$$

* Substituting in the power series representations of p and q,

$$
x p(x)=\sum_{n=0}^{\infty} p_{n} x^{n}, x^{2} q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}
$$

we obtain

$$
x^{2} y^{\prime \prime}+x\left(p_{0}+p_{1} x+p_{2} x^{2}+\cdots\right) y^{\prime}+\left(q_{0}+q_{1} x+q_{2} x^{2}+\cdots\right) y=0
$$

Comparison with Euler Equations

* Our differential equation now has the form

$$
x^{2} y^{\prime \prime}+x\left(p_{0}+p_{1} x+p_{2} x^{2}+\cdots\right) y^{\prime}+\left(q_{0}+q_{1} x+q_{2} x^{2}+\cdots\right) y=0
$$

* Note that if

$$
p_{1}=p_{2}=\cdots=q_{1}=q_{2}=\cdots=0
$$

then our differential equation reduces to the Euler Equation

$$
x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0
$$

* In any case, our equation is similar to an Euler Equation but with power series coefficients.
* Thus our solution method: assume solutions have the form

$$
y(x)=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)=\sum_{n=0}^{\infty} a_{n} x^{r+n}, \text { for } a_{0} \neq 0, x>0
$$

Example 1: Regular Singular Point (1 of 13)

* Consider the differential equation

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=0
$$

* This equation can be rewritten as

$$
x^{2} y^{\prime \prime}-\frac{x}{2} y^{\prime}+\frac{1+x}{2} y=0
$$

* Since the coefficients are polynomials, it follows that $x=0$ is a regular singular point, since both limits below are finite:

$$
\lim _{x \rightarrow 0} x\left(-\frac{x}{2 x^{2}}\right)=-\frac{1}{2}<\infty \text { and } \lim _{x \rightarrow 0} x^{2}\left(\frac{1+x}{2 x^{2}}\right)=\frac{1}{2}<\infty
$$

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=0
$$

Example 1: Euler Equation (2 of 13)

* Now $\operatorname{xp}(x)=-1 / 2$ and $x^{2} q(x)=(1+x) / 2$, and thus for

$$
x p(x)=\sum_{n=0}^{\infty} p_{n} x^{n}, x^{2} q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}
$$

it follows that

$$
p_{0}=-1 / 2, q_{0}=1 / 2, q_{1}=1 / 2, p_{1}=p_{2}=\cdots=q_{2}=q_{3}=\cdots=0
$$

* Thus the corresponding Euler Equation is

$$
x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0 \Leftrightarrow 2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

* As in Section 5.5, we obtain

$$
x^{r}[2 r(r-1)-r+1]=0 \Leftrightarrow(2 r-1)(r-1)=0 \Leftrightarrow r=1, r=1 / 2
$$

* We will refer to this result later.

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=0
$$

Example 1: Differential Equation

* For our differential equation, we assume a solution of the form

$$
\begin{aligned}
& y(x)=\sum_{n=0}^{\infty} a_{n} x^{r+n}, y^{\prime}(x)=\sum_{n=0}^{\infty} a_{n}(r+n) x^{r+n-1}, \\
& y^{\prime \prime}(x)=\sum_{n=0}^{\infty} a_{n}(r+n)(r+n-1) x^{r+n-2}
\end{aligned}
$$

* By substitution, our differential equation becomes

$$
\sum_{n=0}^{\infty} 2 a_{n}(r+n)(r+n-1) x^{r+n}-\sum_{n=0}^{\infty} a_{n}(r+n) x^{r+n}+\sum_{n=0}^{\infty} a_{n} x^{r+n}+\sum_{n=0}^{\infty} a_{n} x^{r+n+1}=0
$$

or

$$
\sum_{n=0}^{\infty} 2 a_{n}(r+n)(r+n-1) x^{r+n}-\sum_{n=0}^{\infty} a_{n}(r+n) x^{r+n}+\sum_{n=0}^{\infty} a_{n} x^{r+n}+\sum_{n=1}^{\infty} a_{n-1} x^{r+n}=0
$$

Example 1: Combining Series (4 of 13)

* Our equation
$\sum_{n=0}^{\infty} 2 a_{n}(r+n)(r+n-1) x^{r+n}-\sum_{n=0}^{\infty} a_{n}(r+n) x^{r+n}+\sum_{n=0}^{\infty} a_{n} x^{r+n}+\sum_{n=1}^{\infty} a_{n-1} x^{r+n}=0$
can next be written as

$$
a_{0}[2 r(r-1)-r+1] x^{r}+\sum_{n=1}^{\infty}\left\{a_{n}[2(r+n)(r+n-1)-(r+n)+1]+a_{n-1}\right\} x^{r+n}=0
$$

* It follows that

$$
a_{0}[2 r(r-1)-r+1]=0
$$

and

$$
a_{n}[2(r+n)(r+n-1)-(r+n)+1]+a_{n-1}=0, \quad n=1,2, \ldots
$$

Example 1: Indicial Equation (5 of 13)

* From the previous slide, we have

$$
a_{0}[2 r(r-1)-r+1] x^{r}+\sum_{n=1}^{\infty}\left\{a_{n}[2(r+n)(r+n-1)-(r+n)+1]+a_{n-1}\right\} x^{r+n}=0
$$

* The equation

$$
a_{0}[2 r(r-1)-r+1]=0 \stackrel{a_{0} \neq 0}{\Leftrightarrow} \quad 2 r^{2}-3 r+1=(2 r-1)(r-1)=0
$$

is called the indicial equation, and was obtained earlier when we examined the corresponding Euler Equation.

* The roots $r_{1}=1, r_{2}=1 / 2$, of the indicial equation are called the exponents of the singularity, for regular singular point $x=0$.
* The exponents of the singularity determine the qualitative behavior of solution in neighborhood of regular singular point.

Example 1: Recursion Relation (6 of 13)

* Recall that

$$
a_{0}[2 r(r-1)-r+1] x^{r}+\sum_{n=1}^{\infty}\left\{a_{n}[2(r+n)(r+n-1)-(r+n)+1]+a_{n-1}\right\} x^{r+n}=0
$$

* We now work with the coefficient on x^{r+n} :

$$
a_{n}[2(r+n)(r+n-1)-(r+n)+1]+a_{n-1}=0
$$

* It follows that

$$
\begin{aligned}
a_{n} & =-\frac{a_{n-1}}{2(r+n)(r+n-1)-(r+n)+1} \\
& =-\frac{a_{n-1}}{2(r+n)^{2}-3(r+n)+1} \\
& =-\frac{a_{n-1}}{[2(r+n)-1][(r+n)-1]}, n \geq 1
\end{aligned}
$$

Example 1: First Root (7 of 13)

* We have

$$
a_{n}=-\frac{a_{n-1}}{[2(r+n)-1][(r+n)-1]}, \text { for } n \geq 1, r_{1}=1 \text { and } r_{1}=1 / 2
$$

* Starting with $r_{1}=1$, this recursion becomes

$$
a_{n}=-\frac{a_{n-1}}{[2(1+n)-1][(1+n)-1]}=-\frac{a_{n-1}}{(2 n+1) n}, n \geq 1
$$

* Thus

$$
\begin{array}{ll}
a_{1}=-\frac{a_{0}}{3 \cdot 1} & a_{3}=-\frac{a_{2}}{7 \cdot 3}=-\frac{a_{0}}{(3 \cdot 5 \cdot 7)(1 \cdot 2 \cdot 3)}, \text { etc } \\
a_{2}=-\frac{a_{1}}{5 \cdot 2}=\frac{a_{0}}{(3 \cdot 5)(1 \cdot 2)} & a_{n}=\frac{(-1)^{n} a_{0}}{(3 \cdot 5 \cdot 7 \cdots(2 n+1)) n!}, n \geq 1
\end{array}
$$

Example 1: First Solution (8 of 13)

* Thus we have an expression for the n-th term:

$$
a_{n}=\frac{(-1)^{n} a_{0}}{(3 \cdot 5 \cdot 7 \cdots(2 n+1)) n!}, n \geq 1
$$

* Hence for $x>0$, one solution to our differential equation is

$$
\begin{aligned}
y_{1}(x) & =\sum_{n=0}^{\infty} a_{n} x^{n+r} \\
& =a_{0} x+\sum_{n=1}^{\infty} \frac{(-1)^{n} a_{0} x^{n+1}}{(3 \cdot 5 \cdot 7 \cdots(2 n+1)) n!} \\
& =a_{0} x\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{(3 \cdot 5 \cdot 7 \cdots(2 n+1)) n!}\right]
\end{aligned}
$$

Example 1: Radius of Convergence for First Solution

* Thus if we omit a_{0}, one solution of our differential equation is

$$
y_{1}(x)=x\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{(3 \cdot 5 \cdot 7 \cdots(2 n+1)) n!}\right], x>0
$$

* To determine the radius of convergence, use the ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(3 \cdot 5 \cdot 7 \cdots(2 n+1)) n!(-1)^{n+1} x^{n+1}}{(3 \cdot 5 \cdot 7 \cdots(2 n+1)(2 n+3))(n+1)!(-1)^{n} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x|}{(2 n+3)(n+1)}=0<1
\end{aligned}
$$

* Thus the radius of convergence is infinite, and hence the series converges for all x.

Example 1: Second Root (10 of 13)

Recall that
$a_{n}=-\frac{a_{n-1}}{[2(r+n)-1][(r+n)-1]}$, for $n \geq 1, r_{1}=1$ and $r_{1}=1 / 2$

* When $r_{1}=1 / 2$, this recursion becomes

$$
a_{n}=-\frac{a_{n-1}}{[2(1 / 2+n)-1][(1 / 2+n)-1]}=-\frac{a_{n-1}}{2 n(n-1 / 2)}=-\frac{a_{n-1}}{n(2 n-1)}, n \geq 1
$$

* Thus

$$
\begin{array}{ll}
a_{1}=-\frac{a_{0}}{1 \cdot 1} & a_{3}=-\frac{a_{2}}{3 \cdot 5}=-\frac{a_{0}}{(1 \cdot 2 \cdot 3)(1 \cdot 3 \cdot 5)}, \text { etc } \\
a_{2}=-\frac{a_{1}}{2 \cdot 3}=\frac{a_{0}}{(1 \cdot 2)(1 \cdot 3)} & a_{n}=\frac{(-1)^{n} a_{0}}{((1 \cdot 3 \cdot 5) \cdots(2 n-1)) n!}, n \geq 1
\end{array}
$$

Example 1: Second Solution (11 of 13)

* Thus we have an expression for the n-th term:

$$
a_{n}=\frac{(-1)^{n} a_{0}}{(1 \cdot 3 \cdot 5 \cdots(2 n-1)) n!}, n \geq 1
$$

* Hence for $x>0$, a second solution to our equation is

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} a_{n} x^{n+r} \\
& =a_{0} x^{1 / 2}+\sum_{n=1}^{\infty} \frac{(-1)^{n} a_{0} x^{n+1 / 2}}{(1 \cdot 3 \cdot 5 \cdots(2 n-1)) n!} \\
& =a_{0} x^{1 / 2}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{(1 \cdot 3 \cdot 5 \cdots(2 n-1)) n!}\right]
\end{aligned}
$$

Example 1: Radius of Convergence for Second Solution (12 of 13)

* Thus if we omit a_{0}, the second solution is

$$
y_{2}(x)=x^{1 / 2}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{(1 \cdot 3 \cdot 5 \cdots(2 n-1)) n!}\right]
$$

* To determine the radius of convergence for this series, we can use the ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(1 \cdot 3 \cdot 5 \cdots(2 n-1)) n!(-1)^{n+1} x^{n+1}}{(1 \cdot 3 \cdot 5 \cdots(2 n-1)(2 n+1))(n+1)!(-1)^{n} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x|}{(2 n+1) n}=0<1
\end{aligned}
$$

* Thus the radius of convergence is infinite, and hence the series converges for all x.

Example 1: General Solution (13 of 13)

* The two solutions to our differential equation are

$$
\begin{aligned}
& y_{1}(x)=x\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{(3 \cdot 5 \cdot 7 \cdots(2 n+1)) n!}\right] \\
& y_{2}(x)=x^{1 / 2}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{(1 \cdot 3 \cdot 5 \cdots(2 n-1)) n!}\right]
\end{aligned}
$$

* Since the leading terms of y_{1} and y_{2} are x and $x^{1 / 2}$, respectively, it follows that y_{1} and y_{2} are linearly independent, and hence form a fundamental set of solutions for differential equation.
* Therefore the general solution of the differential equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad x>0
$$

where y_{1} and y_{2} are as given above.

Shifted Expansions \& Discussion

* For the analysis given in this section, we focused on $x=0$ as the regular singular point. In the more general case of a singular point at $x=x_{0}$, our series solution will have the form

$$
y(x)=\left(x-x_{0}\right)^{r} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

* If the roots r_{1}, r_{2} of the indicial equation are equal or differ by an integer, then the second solution y_{2} normally has a more complicated structure. These cases are discussed in Section 5.7.
* If the roots of the indicial equation are complex, then there are always two solutions with the above form. These solutions are complex valued, but we can obtain real-valued solutions from the real and imaginary parts of the complex solutions.

Complex variables

$f(z)=u(x, y)+i v(x, y)$ for $z=x+i y$
$\bar{f}(\bar{z})=\lim _{\Delta z \rightarrow 0}\left[\frac{f(z+\Delta z)=f(z)}{\Delta z}\right]$ exists
Its value does not depend on the direction.
Ex : Show that the function $f(z)=x^{2}-y^{2}+i 2 x y$ is differentiable for all values of z.
for $\Delta z=\Delta x+i \Delta y$

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
& =\frac{(x+\Delta x)^{2}-(y+\Delta y)^{2}+2 i(x+\Delta x)(y+\Delta y)-x^{2}+y^{2}-2 i x y}{\Delta x+i \Delta y} \\
& =2 x+i 2 y+\frac{(\Delta x)^{2}-(\Delta y)^{2}+2 i \Delta x \Delta y}{\Delta x+i \Delta y}
\end{aligned}
$$

(1) choose $\Delta y=0, \Delta x \rightarrow 0 \Rightarrow f^{\prime}(z)=2 x+i 2 y$
(2) choose $\Delta x=0, \Delta y \rightarrow 0 \Rightarrow f^{\prime}(z)=2 x+i 2 y$

Complex variables

$f(z)=u(x, y)+i v(x, y)$ for $z=x+i y$
$\bar{f}(\bar{z})=\lim _{\Delta z \rightarrow 0}\left[\frac{f(z+\Delta z)=f(z)}{\Delta z}\right]$ exists
Its value does not depend on the direction.
Ex : Show that the function $f(z)=x^{2}-y^{2}+i 2 x y$ is differentiable for all values of z.
for $\Delta z=\Delta x+i \Delta y$

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
& =\frac{(x+\Delta x)^{2}-(y+\Delta y)^{2}+2 i(x+\Delta x)(y+\Delta y)-x^{2}+y^{2}-2 i x y}{\Delta x+i \Delta y} \\
& =2 x+i 2 y+\frac{(\Delta x)^{2}-(\Delta y)^{2}+2 i \Delta x \Delta y}{\Delta x+i \Delta y}
\end{aligned}
$$

(1) choose $\Delta y=0, \Delta x \rightarrow 0 \Rightarrow f^{\prime}(z)=2 x+i 2 y$
(2) choose $\Delta x=0, \Delta y \rightarrow 0 \Rightarrow f^{\prime}(z)=2 x+i 2 y$

Complex variables

$$
\begin{aligned}
& f(z)=u(x, y)+i v(x, y) \text { for } z=x+i y \\
& f^{\prime}(z)=\lim _{\Delta z \rightarrow 0}\left[\frac{f(z+\Delta z)-f(z)}{\Delta z}\right] \text { exists }
\end{aligned}
$$

Its value does not depend on the direction.
Ex : Show that the function $f(z)=x^{2}-y^{2}+i 2 x y$ is differentiable for all values of z.
for $\Delta z=\Delta x+i \Delta y$

$$
\begin{aligned}
& \begin{aligned}
& f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
&=\frac{(x+\Delta x)^{2}-(y+\Delta y)^{2}+2 i(x+\Delta x)(y+\Delta y)-x^{2}+y^{2}-2 i x y}{\Delta x+i \Delta y} \\
&=2 x+i 2 y+\frac{(\Delta x)^{2}-(\Delta y)^{2}+2 i \Delta x \Delta y}{\Delta x+i \Delta y} \\
& \text { (1) choose } \Delta y=0, \Delta x \rightarrow 0 \Rightarrow f^{\prime}(z)=2 x+i 2 y \\
& \text { (2) choose } \Delta x=0, \Delta y \rightarrow 0 \Rightarrow f^{\prime}(z)=2 x+i 2 y
\end{aligned}
\end{aligned}
$$

Complex variables

** Another method:

$$
\begin{aligned}
f(z) & =(x+i y)^{2}=z^{2} \\
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0}\left[\frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}\right]=\lim _{\Delta z \rightarrow 0}\left[\frac{(\Delta z)^{2}+2 z \Delta z}{\Delta z}\right] \\
& =\lim _{\Delta z \rightarrow 0} \Delta z+2 z=2 z
\end{aligned}
$$

Ex : Show that the function $f(z)=2 y+i x$ is not differentiable anywhere in the complex plane.

$$
\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{2 y+2 \Delta y+i x+i \Delta x-2 y-i x}{\Delta x+i \Delta y}=\frac{2 \Delta y+i \Delta x}{\Delta x+i \Delta y}
$$

if $\Delta z \rightarrow 0$ along a linethriugh z of slope $m \Rightarrow \Delta y=m \Delta x$
$f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta x, \Delta y \rightarrow 0}\left[\frac{2 \Delta y+i \Delta x}{\Delta x+i \Delta y}\right]=\frac{2 m+i}{1+i m}$
The limitdepends on m (the direction), so $f(z)$
is nowhere differentiable.

Complex variables

Ex : Show that the function $f(z)=1 /(1-z)$ is analyticeverywhere except at $z=1$.

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0}\left[\frac{f(z+\Delta z)-f(z)}{\Delta z}\right]=\lim _{\Delta z \rightarrow 0}\left[\frac{1}{\Delta z}\left(\frac{1}{1-z-\Delta z}-\frac{1}{1-z}\right)\right] \\
& =\lim _{\Delta z \rightarrow 0}\left[\frac{1}{(1-z-\Delta z)(1-z)}\right]=\frac{1}{(1-z)^{2}}
\end{aligned}
$$

Provided $z \neq 1, f(z)$ is analyticeverywhere such that
$f^{\prime}(z)$ isindependent of the direction.

Cauchy-Riemann relation

A function $f(z)=u(x, y)+i v(x, y)$ is differentiable and analytic, there must be particular connection between $u(x, y)$ and $v(x, y)$
$L=\lim _{\Delta z \rightarrow 0}\left[\frac{f(z+\Delta z)-f(z)}{\Delta z}\right]$
$f(z)=u(x, y)+i v(x, y) \quad \Delta z=\Delta x+i \Delta y$
$f(z+\Delta z)=u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)$
$\Rightarrow L=\lim _{\Delta x, \Delta y \rightarrow 0}\left[\frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-u(x, y)-i v(x, y)}{\Delta x+i \Delta y}\right]$
(1) if suppose Δz is real $\Rightarrow \Delta y=0$
$\Rightarrow L=\lim _{\Delta x \rightarrow 0}\left[\frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x}\right]=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
(2) if suppose Δz is imaginary $\Rightarrow \Delta x=0$
$\Rightarrow L=\lim _{\Delta y \rightarrow 0}\left[\frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}+i \frac{v(x, y+\Delta y)-v(x, y)}{i \Delta y}\right]=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}$
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \quad$ Cauchy - Riemann relations

Ex : In which domain of the complex plane is
$f(z)=|x|-i|y|$ an analyticfunction?
$u(x, y)=|x|, v(x, y)=-|y|$
(1) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \Rightarrow \frac{\partial}{\partial x}|x|=\frac{\partial}{\partial y}[-|y|] \Rightarrow$ (a) $x>0, y<0$ the fouth quatrant
(b) $x<0, y>0$ the second quatrant
(2) $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \Rightarrow \frac{\partial}{\partial x}[-|y|]=-\frac{\partial}{\partial y}|x|$
$z=x+i y$ and complex conjugate of z is $z^{*}=x-i y$
$\Rightarrow x=\left(z+z^{*}\right) / 2$ and $y=\left(z-z^{*}\right) / 2 i$
$\Rightarrow \frac{\partial f}{\partial z^{*}}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial z^{*}}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial z^{*}}=\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)$
If $\boldsymbol{f}(\boldsymbol{z})$ is analytic, then the Cauchy - Riemann relations
are satisfied. $\Rightarrow \partial f / \partial z^{*}=0$ impliesan analyticfonction of z contains the combination of $x+i y$, not $x-i y$

If Cauchy - Riemann relationsare satisfied

(1) $\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right)=\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial x}\right)=-\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right) \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial^{2} y^{2}}=0$
(2) the same resultfor function $v(x, y) \Rightarrow \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial^{2} y^{2}}=0$
$\Rightarrow u(x, y)$ and $v(x, y)$ are solutionsof Laplace's
equation in two dimension.

For two familiesof curves $u(x, y)=$ conctant and $v(x, y)=$ constant, the normal vectors corresponding the two curves, respectively, are
$\vec{\nabla} u(x, y)=\frac{\partial u}{\partial x} \hat{i}+\frac{\partial u}{\partial y} \hat{j}$ and $\vec{\nabla} v(x, y)=\frac{\partial v}{\partial x} \hat{i}+\frac{\partial v}{\partial y} \hat{j}$
$\vec{\nabla} u \cdot \vec{\nabla} v=\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}=0$ orthogonal

Power series in a complex variable

$f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=0}^{\infty} a_{n} r^{n} \exp (i n \theta)$
if $\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}$ is convergent $\Rightarrow f(z)$ is absolutely convergent
Is $\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}$ convergent or not, can be justisfiedby" Cauchy root test".
The radius of convergence $R \Rightarrow \frac{1}{R}=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \Rightarrow(1)|z|<R$ absolutely convergent
(2) $|z|>R$ divergent
(3) $|z|=R$ undetermined
(1) $\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{1}{n!}\right)^{1 / n}=0 \Rightarrow R=\infty$ converges for all z
(2) $\sum_{n=0}^{\infty} n!z^{n} \Rightarrow \lim _{n \rightarrow \infty}(n!)^{1 / n}=\infty \Rightarrow R=0$ converges only at $z=0$

Some elementary functions

Define $\exp z=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
Ex : Show that $\exp z_{1} \exp z_{2}=\exp \left(z_{1}+z_{2}\right)$
$\exp \left(z_{1}+z_{2}\right)=\sum_{n=0}^{\infty} \frac{\left(z_{1}+z_{2}\right)^{n}}{n!}$

$$
=\sum_{n=0}^{\infty} \frac{1}{n!}\left(C_{0}^{n} z_{1}^{n}+C_{1}^{n} z_{1}^{n-1} z_{2}+C_{2}^{n} z_{1}^{n-2} z_{2}^{2}+C_{r}^{n} z_{1}^{n-r} z_{2}^{r}+\ldots+C_{n}^{n} z_{2}^{n}\right)
$$

set $n=r+s \Rightarrow$ the coeff. of $z_{1}^{s} z_{2}^{r}$ is $\frac{C_{r}^{n}}{n!}=\frac{1}{n!} \frac{n!}{(n-r)!r!}=\frac{1}{s!r!}$
$\exp z_{1} \exp z_{2}=\sum_{s=0}^{\infty} \frac{z^{s}}{s!} \sum_{r=0}^{\infty} \frac{z^{r}}{r!}=\sum_{s=0}^{\infty} \sum_{r=0}^{\infty} \frac{1}{s!r!} z_{1}^{s} z_{2}^{r}$
There are the same coeff. of $z_{1}^{s} z_{2}^{r}$ for the above two terms.

Definethe complex comonent of a real number $a>0$

$$
a^{z}=\exp (z \ln a)=\sum_{n=0}^{\infty} \frac{z^{n}(\ln a)^{n}}{n!}
$$

(1) if $a=e \Rightarrow e^{z}=\exp (z \ln e)=\exp z \quad$ the same as real number
(2) if $a=e, z=i y \Rightarrow e^{i y}=\exp (i y)=1-\frac{y^{2}}{2!}-\frac{i y^{3}}{3!}+\ldots$

$$
=1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\ldots . .+i\left(y-\frac{y^{3}}{3!}+\ldots\right)=\cos y+i \sin y
$$

(3) if $a=e, z=x+i y \Rightarrow e^{x+i y}=e^{x} e^{i y}=\exp (x)(\cos y+i \sin y)$

Set $\exp w=z$
Write $z=r$ expi θ for r is real and $-\pi<\theta \leq \pi$
$\Rightarrow z=r \exp [i(\theta+2 n \pi)] \Rightarrow w=L n z=\ln r+i(\theta+2 n \pi)$
$L n z$ is a multivalued function of z.
Take its principal value by choosing $n=0$
$\Rightarrow \ln z=\ln r+i \theta-\pi<\theta \leq \pi$
If $t \neq 0$ and z are both complex numbers, we define

$$
t^{z}=\exp (z L n t)
$$

Ex : Show that thereare exactlyn distinct nth roots of \boldsymbol{t}.

$$
\begin{aligned}
t^{\frac{1}{n}} & =\exp \left(\frac{1}{n} L n t\right) \text { and } t=r \exp [i(\theta+2 k \pi)] \\
\Rightarrow t^{\frac{1}{n}} & =\exp \left[\frac{1}{n} \ln r+i \frac{(\theta+2 k \pi)}{n}\right]=r^{\frac{1}{n}} \exp \left[i \frac{(\theta+2 k \pi)}{n}\right]
\end{aligned}
$$

Multivalued functions and branch cuts

A logarithmic function, a complex power and a complex root are all multivalued. Is the properties of analytic function still applied?

Ex: $f(z)=z^{1 / 2}$ and $z=r \exp (i \theta)$
(A) z traverse any closedcontour \mathbf{C} that dose not enclose the origin, θ return to its original value after one complete
 circuit.

Branch point: z remains unchanged while z traverse a closed contour C about some point. But a function $f(z)$ changes after one complete circuit.

Branch cut: It is a line (or curve) in the complex plane that we must cross, so the function remains single-valued.

$$
\begin{aligned}
& \text { Ex }: f(z)=z^{1 / 2} \\
& \text { restrict } \theta \Rightarrow 0 \leq \theta<2 \pi \\
& \Rightarrow f(z) \text { is single- valued }
\end{aligned}
$$

Ex : Find the branch points of $f(z)=\sqrt{z^{2}+1}$, and hencesketch suitablearrangements of branch cuts.
$f(z)=\sqrt{z^{2}+1}=\sqrt{(z+i)(z-i)}$ expectedbranch points : $z= \pm i$
$\operatorname{set} z-i=r_{1} \exp \left(i \theta_{1}\right)$ and $z+i=r_{2} \exp \left(i \theta_{2}\right)$
$\Rightarrow f(z)=\sqrt{r_{1} r_{2}} \exp \left(i \theta_{1} / 2\right) \exp \left(i \theta_{2} / 2\right)$
$=\sqrt{r_{1} r_{2}} \exp \left[i\left(\theta_{1}+\theta_{2}\right)\right]$
If contour C encloses
(1) neitherbranch point, then $\theta_{1} \rightarrow \theta_{1}, \theta_{2} \rightarrow \theta_{2} \Rightarrow f(z) \rightarrow f(z)$
(2) $z=i$ but not $z=-i$, then $\theta_{1} \rightarrow \theta_{1}+2 \pi, \theta_{2} \rightarrow \theta_{2} \Rightarrow f(z) \rightarrow-f(z)$
(3) $z=-i$ but not $z=i$, then $\theta_{1} \rightarrow \theta_{1}, \theta_{2} \rightarrow \theta_{2}+2 \pi \Rightarrow f(z) \rightarrow-f(z)$
(4) both branch points, then $\theta_{1} \rightarrow \theta_{1}+2 \pi, \theta_{2} \rightarrow \theta_{2}+2 \pi \Rightarrow f(z) \rightarrow f(z)$
$f(z)$ changes value around loops containing either $z=i$ or $z=-i$. We choose branch cut as follows :

Singularities and zeros of complex function

Isolated singularity (pole): $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$
n is a positive integer, $g(z)$ is analyticat all points in some neighborhood containing $z=z_{0}$ and $g\left(z_{0}\right) \neq 0$, the $f(z)$ has a pole of order n at $z=z_{0}$.
** An alternatedefinitionfor that $f(z)$ has a pole of order n at $z=z_{0}$ is $\lim \left[\left(z-z_{0}\right)^{n} f(z)\right]=a$ $z \rightarrow z_{0}$
$f(z)$ is analyticand a is a finite, non - zero complex number
(1) if $a=0$, then $z=z_{0}$ is a pole of order lessthan n.
(2) if \boldsymbol{a} is infinite, then $z=z_{0}$ is a pole of order greater than \boldsymbol{n}.
(3) if $z=z_{0}$ is a pole of $f(z) \Rightarrow|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$
(4) from any direction, if no finiten satisfiesthe limit \Rightarrow essentialsingularity

Ex : Find the singularifesof the function

(1) $f(z)=\frac{1}{1-z}-\frac{1}{1+z}$
$\Rightarrow f(z)=\frac{2 z}{(1-z)(1+z)}$ poles of order 1 at $z=1$ and $z=-1$
(2) $f(z)=\tanh z$

$$
=\frac{\sinh z}{\cosh z}=\frac{\exp z-\exp (-z)}{\exp z+\exp (-z)}
$$

$f(z)$ has a singularity when $\exp z=-\exp (-z)$
$\Rightarrow \exp z=\exp [i(2 n+1) \pi]=\exp (-z) n$ is any integer
$\Rightarrow 2 z=i(2 n+1) \pi \Rightarrow z=\left(n+\frac{1}{2}\right) \pi i$
Using l'Hospital's rule
$\lim _{z \rightarrow(n+1 / 2) \pi i}\left\{\frac{[z-(n+1 / 2) \pi i] \sinh z}{\cosh z}\right\}=\lim _{z \rightarrow(n+1 / 2) \pi i}\left\{\frac{[z-(n+1 / 2) \pi i] \cosh z+\sinh z}{\sinh z}\right\}=1$
each singularity is a simple pole $(\mathbf{n}=1)$

> Remove singularties:
> Singularity makesthe value of $f(z)$ undetermined, but $\lim _{z \rightarrow z_{0}} f(z)$
> existsand independent of the directionfrom which z_{0} is approached.

Ex : Show that $f(z)=\sin z / z$ is a removable singularity at $z=0$

Sol: $\lim _{z \rightarrow 0} f(z)=0 / 0$ undetermined
$f(z)=\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots \ldots ..\right)=1-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots$.
$\lim _{z \rightarrow 0} f(z)=1$ is independent of the way $z \rightarrow 0$, so
$f(z)$ has a removable singularity at $z=0$.

The behavior of $f(z)$ at infinityis given by that of $f(1 / \xi)$ at $\xi=0$, where $\xi=1 / z$

Ex : Find the behavior at infinityof (i) $f(z)=a+b z^{-2}$
(ii) $f(z)=z\left(1+z^{2}\right)$ and (iii) $f(z)=\exp z$
(i) $f(z)=a+b z^{-2} \Rightarrow \operatorname{set} z=1 / \xi \Rightarrow f(1 / \xi)=a+b \xi^{2}$
is analyticat $\xi=0 \Rightarrow f(z)$ is analyticat $z=\infty$
(ii) $f(z)=z\left(1-z^{2}\right) \Rightarrow f(1 / \xi)=1 / \xi+1 / \xi^{3}$ has a pole of order 3 at $z=\infty$
(iii) $f(z)=\exp z \Rightarrow f(1 / \xi)=\sum_{n=0}^{\infty}(n!)^{-1} \xi^{-n}$
$f(z)$ has an essentialsingularity at $z=\infty$

If $f\left(z_{0}\right)=0$ and $f(z)=\left(z-z_{0}\right)^{n} g(z)$, if n is
a positive integer, and $g\left(z_{0}\right) \neq 0$
(i) $z=z_{0}$ is calleda zero of order n.
(ii) if $\mathbf{n}=1, z=z_{0}$ is calleda simple zero.
(iii) $z=z_{0}$ is alsoa pole of order n of $1 / f(z)$

Complex integral

A real continuousparameter t, for $\alpha \leq t \leq \beta$
$x=x(t), y=y(t)$ and point A is $t=\alpha$, point B is $t=\beta$

$$
\begin{aligned}
& \Rightarrow \int_{C} f(z) d z=\int_{C}(u+i v)(d x+i d y) \\
& \quad=\int_{C} u d x-\int_{C} v d y+i \int_{C} u d y+i \int_{C} v d x \\
& \quad=\int_{\alpha}^{\beta} u \frac{d x}{d t} d t-\int_{\alpha}^{\beta} v \frac{d y}{d t} d t+i \int_{\alpha}^{\beta} u \frac{d y}{d t} d t+i \int_{\alpha}^{\beta} v \frac{d x}{d t} d t
\end{aligned}
$$

Ex : Evaluate the complex integral of $f(z)=1 / z$, along the circle $|z|=R$, starting and finishingat $z=\boldsymbol{R}$.
$z(t)=R \cos t+i R \sin t, 0 \leq t \leq 2 \pi$
$\frac{d x}{d t}=-R \sin t, \frac{d y}{d t}=R \cos t, f(z)=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}=u+i v$,
$u=\frac{x}{x^{2}+y^{2}}=\frac{\cos t}{R}, v=\frac{-y}{x^{2}+y^{2}}=\frac{-\sin t}{R}$

$\int_{C_{1}} \frac{1}{z} d z=\int_{0}^{2 \pi} \frac{\cos t}{R}(-R \sin t) d t-\int_{0}^{2 \pi}\left(\frac{-\sin t}{R}\right) R \cos t d t$

$$
+i \int_{0}^{2 \pi} \frac{\cos t}{R} R \cos t d t+i \int_{0}^{2 \pi}\left(\frac{-\sin t}{R}\right)(-R \sin t) d t
$$

$$
=0+0+i \pi+i \pi=2 \pi i
$$

** The integralis alsocalculatedby

$$
\int_{C_{1}} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{-R \sin t+i R \cos t}{R \cos t+i R \sin t} d t=\int_{0}^{2 \pi} i d t=2 \pi i
$$

The calculatedresultis independent of \boldsymbol{R}.

Ex : Evaluate the complex integral of $f(z)=1 / z$ along

(i) the contour C_{2} consistingof the semicircle $|z|=R$ in the half -plane $\boldsymbol{y} \geq 0$
(ii) the contour $\mathrm{C}_{\mathbf{3}}$ made up of two straight lines $\mathrm{C}_{\mathbf{3 a}}$ and $\mathrm{C}_{\mathbf{3 b}}$
(i) This is just as in the pre vious example,but for
$0 \leq t \leq \pi \Rightarrow \int_{C_{2}} d z / z=\pi i$
$\begin{aligned} & \text { (ii) } C_{3 a}: z=(1-t) R+i t R \text { for } 0 \leq t \leq 1 \\ & C_{3 b}:-s R+i(1-s) R \quad \text { for } 0 \leq s \leq 1 \\ & \int_{C_{3}} \frac{d z}{z}=\int_{0}^{1} \frac{-R+i R}{R+t(-R+i R)} d t+\int_{0}^{1} \frac{-R-i R}{i R+s(-R-i R)} d t\end{aligned}$

1 st term $\Rightarrow \int_{0}^{1} \frac{-1+i}{1-t+i t} d t=\int_{0}^{1} \frac{2 t-1}{1-2 t+2 t^{2}} d t+i \int_{0}^{1} \frac{1}{1-2 t+2 t^{2}} d t$
$=\left.\frac{1}{2}\left[\ln \left(1-2 t+2 t^{2}\right)\right]\right|_{0} ^{1}+\left.\frac{i}{2}\left[2 \tan ^{-1}\left(\frac{t-1 / 2}{1 / 2}\right)\right]\right|_{0} ^{1}$
$=0+\frac{i}{2}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]=\frac{\pi i}{2} \quad \int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$

$$
\begin{aligned}
\text { 2nd term } & \Rightarrow \int_{0}^{1} \frac{1+i}{s+i(s-1)} d s=\int_{0}^{1} \frac{(1+i)[s-i(s-1)]}{s^{2}+(s-1)^{2}} d s \\
& =\int_{0}^{1} \frac{2 s-1}{2 s^{2}-2 s+1} d s+i \int_{0}^{1} \frac{1}{2 s^{2}-2 s+1} d s \\
& =\left.\frac{1}{2}\left[\ln \left(2 s^{2}-2 s+1\right)\right]\right|_{0} ^{1}+\left.i \tan ^{-1}\left(\frac{s-1 / 2}{1 / 2}\right)\right|_{0} ^{1} \\
& =0+i\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]=\frac{\pi i}{2} \\
\Rightarrow \int_{C_{3}} \frac{d z}{z} & =\pi i
\end{aligned}
$$

The integralis independent of the different path.

Ex : Evaluate the complex integral of $f(z)=\operatorname{Re}(z)$ along the path C_{1}, C_{2} and C_{3} as shown in the previous examples.
(i) $\mathrm{C}_{1}: \int_{0}^{2 \pi} R \cos t(-R \sin t+i R \cos t) d t=i \pi R^{2}$
(ii) $\mathrm{C}_{2}: \int_{0}^{\pi} R \cos t(-R \sin t+i R \cos t) d t=\frac{i \pi}{2} R^{2}$
(iii) $\mathrm{C}_{\mathbf{3}}=\mathrm{C}_{3 \mathrm{a}}+\mathrm{C}_{3 \mathrm{~b}}$:

$$
\begin{aligned}
& \int_{0}^{1}(1-t) R(-R+i R) d t+\int_{0}^{1}(-s R)(-R-i R) d s \\
= & R^{2} \int_{0}^{1}(1-t)(-1+i) d t+R^{2} \int_{0}^{1} s(1+i) d s \\
= & \frac{1}{2} R^{2}(-1+i)+\frac{1}{2} R^{2}(1+i)=i R^{2}
\end{aligned}
$$

The integraldepends on the different path.

Cauchy theorem

If $f(z)$ is an analyticfunction, and $f(z)$ iscontinuous at each point within and on a closedcontour C
$\Rightarrow \oint_{C} f(z) d z=0$
If $\frac{\partial p(x, y)}{\partial x}$ and $\frac{\partial q(x, y)}{\partial y}$ are continuous within and on a closedcontour C, thenby two -demensional divergence theorem $\Rightarrow \iint_{R}\left(\frac{\partial p}{\partial x}+\frac{\partial q}{\partial y}\right) d x d y=\oint_{C}(p d y-q d x)$

$$
f(z)=u+i v \text { and } d z=d x+i d y
$$

$$
I=\oint_{C} f(z) d z=\oint_{C}(u d x-v d y)+i \oint_{C}(v d x+u d y)
$$

$$
=\iint_{R}\left[\frac{\partial(-u)}{\partial y}+\frac{\partial(-v)}{\partial x}\right] d x d y+i \iint_{R}\left[\frac{\partial(-v)}{\partial y}+\frac{\partial u}{\partial x}\right] d x d y=0
$$

$f(z)$ is analyticand the Cauchy - Riemann relationsapply.

Ex : S uppose twos points A and B in the complex plane are joined by two different paths C_{1} and C_{2}. Show that if $f(z)$ is an analyticfunction on each path and in the regionenclosedby the two paths then the integral of $f(z)$ is the same along C_{1} and C_{2}.
$\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=\oint_{C_{1}-C_{2}} f(z) d z=0$ path $C_{1}-C_{2}$ forms a closed contour enclosing R
$\Rightarrow \int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z$

Ex : Considertwo closedcontour C and γ in the Argand diagram, γ being sufficienty small that it liescompletely with \boldsymbol{C}. Show that if the function $f(z)$ is analyticin the regionbetween the two contours then $\oint_{C} f(z) d z=\oint_{\gamma} f(z) d z$
the area is bounded by Γ, and

$$
\begin{aligned}
& f(z) \text { is analytic } \\
& \begin{aligned}
\oint_{\Gamma} f(z) d z & =0 \\
& =\oint_{C} f(z) d z+\oint_{\gamma} f(z) d z+\oint_{C_{1}} f(z) d z+\oint_{C_{2}} f(z) d z
\end{aligned}
\end{aligned}
$$

If take the direction of contour γ as that of contour $C \Rightarrow \oint_{C} f(z) d z=\oint_{\gamma} f(z) d z$

Morera's theorem:
if $f(z)$ is a continuousfunction of z in a closed domain R bounded by a curve C, for $\oint_{C} f(z) d z=0 \Rightarrow f(z)$ is analytic.

Cauchy's integral formula

If $f(z)$ is analytic within and on a closed contour C and z_{0} is a point within C then $f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z$

$$
I=\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{\gamma} \frac{f(z)}{z-z_{0}} d z
$$

for $z=z_{0}+\rho \exp (i \theta), d z=i \rho \exp (i \theta) d \theta$

$$
\begin{aligned}
I & =\int_{0}^{2 \pi} \frac{f\left(z_{0}+\rho e^{i \theta}\right)}{\rho e^{i \theta}} i \rho e^{i \theta} d \theta \\
& =i \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i \theta}\right) d \theta \stackrel{\rho \rightarrow 0}{=} 2 \pi i f\left(z_{0}\right)
\end{aligned}
$$

The integralform of the derivative of a complex function:

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

$$
f^{\prime}\left(z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

$$
=\lim _{h \rightarrow 0}\left[\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{h}\left(\frac{1}{z-z_{0}-h}-\frac{1}{z-z_{0}}\right) d z\right]
$$

$$
=\lim _{h \rightarrow 0}\left[\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}-h\right)\left(z-z_{0}\right)} d z\right]
$$

$$
=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

For nth derivative $f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$

Ex : Suppose that $f(z)$ is analyticinside and on a circle C of radius R centeredon the point $z=z_{0}$. If $|f(z)| \leq M$ on the circle, where M is some constant, show that $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{M n!}{R^{n}}$.
$\left|f^{(n)}\left(z_{0}\right)\right|=\frac{n!}{2 \pi}\left|\oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}\right| \leq \frac{n!}{2 \pi} \frac{M}{R^{n+1}} 2 \pi R=\frac{M n!}{R^{n}}$

Liouville's theorem: If $f(z)$ is analyticand bounded for all z then $f(z)$ is a constant.

Using Cauchy's inequality: $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{M n!}{R^{n}}$
set $n=1$ and let $R \rightarrow \infty \Rightarrow\left|f^{\prime}\left(z_{0}\right)\right|=0 \Rightarrow f^{\prime}\left(z_{0}\right)=0$
Since $f(z)$ is analyticfor all z, we may take z_{0} as any
point in the z-plane. $f^{\prime}(z)=0$ for all $z \Rightarrow f(z)=$ constant

Taylor and Laurent series

Taylor's theorem:
If $f(z)$ is analyticinside and on a circle C of radius R centered on the point $z=z_{0}$, and z is a point inside C, then
$f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$
$f(z)$ is analyticinsideand on $C, \operatorname{so} f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\xi)}{\xi-z} d \xi$ where ξ lieson C
$\operatorname{expand} \frac{1}{\xi-z}$ as a geometricseriesin $\frac{z-z_{0}}{\xi-z_{0}} \Rightarrow \frac{1}{\xi-z}=\frac{1}{\xi-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\xi-z_{0}}\right)^{n}$
$\Rightarrow f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\xi)}{\xi-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\xi-z_{0}}\right)^{n} d \xi=\frac{1}{2 \pi i} \sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \oint_{C} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi$

$$
=\frac{1}{2 \pi i} \sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \frac{2 \pi i f^{(n)}\left(z_{0}\right)}{n!}=\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

If $\boldsymbol{f}(z)$ has a pole of order \boldsymbol{p} at $z=z_{0}$ but is analyticat every other point inside and on C. Then $g(z)=\left(z-z_{0}\right)^{p} f(z)$ is analyticat $z=z_{0}$ and expanded as a Taylor $\operatorname{seriesg}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$.
Thus, for all z inside $C f(z)$ can be $\operatorname{expanded}$ as a Laurent series

$$
f(z)=\frac{a_{-p}}{\left(z-z_{0}\right)^{p}}+\frac{a_{-p+1}}{\left(z-z_{0}\right)^{p-1}}+\ldots \ldots .+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}
$$

$a_{n}=b_{n+p}$ and $b_{n}=\frac{g^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi i} \oint \frac{g(z)}{\left(z-z_{0}\right)^{n+1}} d z$
$\Rightarrow a_{n}=\frac{1}{2 \pi i} \oint \frac{g(z)}{\left(z-z_{0}\right)^{n+1+p}} d z=\frac{1}{2 \pi i} \oint \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$
$f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{\boldsymbol{n}}$ is analyticin a region R between

two circles C_{1} and C_{2} centeredon $z=z_{0}$

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

(1) If $f(z)$ is analyticat $z=z_{0}$, thenall $a_{\boldsymbol{n}}=0$ for $\boldsymbol{n}<\mathbf{0}$.

It may happen $a_{\boldsymbol{n}}=\mathbf{0}$ for $\boldsymbol{n} \geq \mathbf{0}$, the first non- vanishing term is $a_{m}\left(z-z_{0}\right)^{m}$ with $m>0, f(z)$ is said to have a zero of order m at $z=z_{0}$.
(2) If $f(z)$ is not analyticat $z=z_{0}$
(i) possible to find $a_{-p} \neq 0$ but $a_{-p-k}=0$ for all $k>0$
$f(z)$ has a pole of order p at $z=z_{0}, \underline{a_{-1}}$ is calledthe residue of $f(z)$
(ii) impossible to find a lowest value of $-p \Rightarrow$ essentialsingularity

Ex : Find the Laurent seriesof $f(z)=\frac{1}{z(z-2)^{3}}$ about the singulariites $z=0$ and $z=2$. Hence verify that $z=0$ is a pole of order 1 and $z=2$ is a pole of order 3, and find the residue of $f(z)$ at each pole.
(1) point $z=0$

$$
\begin{aligned}
f(z) & =\frac{-1}{8 z(1-z / 2)^{3}}=\frac{-1}{8 z}\left[1+(-3)\left(\frac{-z}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{-z}{2}\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(\frac{-z}{2}\right)^{3}+\ldots\right] \\
& =-\frac{1}{8 z}-\frac{3}{16}-\frac{3}{16} z-\frac{5 z^{2}}{32}-\ldots \quad z=0 \text { is a pole of order } 1
\end{aligned}
$$

(2) point $z=2 \Rightarrow$ set $z-2=\xi \Rightarrow z(z-2)^{3}=(2+\xi) \xi^{3}=2 \xi^{3}(1+\xi / 2)$

$$
\begin{aligned}
f(z) & =\frac{1}{2 \xi^{3}(1+\xi / 2)}=\frac{1}{2 \xi^{3}}\left[1-\left(\frac{\xi}{2}\right)+\left(\frac{\xi}{2}\right)^{2}-\left(\frac{\xi}{2}\right)^{3}+\left(\frac{\xi}{2}\right)^{4}-\ldots\right] \\
& =\frac{1}{2 \xi^{3}}-\frac{1}{4 \xi^{2}}+\frac{1}{8 \xi}-\frac{1}{16}+\frac{\xi}{32}-. .=\frac{1}{2(z-2)^{3}}-\frac{1}{4(z-2)^{2}}+\frac{1}{8(z-2)}-\frac{1}{16}+\frac{z-2}{32}-
\end{aligned}
$$

$z=2$ is a pole of order 3 , the residue of $f(z)$ at $z=2$ is $1 / 8$.

How to obtain the residue ?

$f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\ldots \ldots . .+\frac{a_{-1}}{\left(z-z_{0}\right)}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots$
$\Rightarrow\left(z-z_{0}\right)^{m} f(z)=a_{-m}+a_{-m+1}\left(z-z_{0}\right)+\ldots+a_{-1}\left(z-z_{0}\right)^{m-1}+\ldots$
$\Rightarrow \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]=(m-1)!a_{-1}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
Take the limit $z \rightarrow z_{0}$
$R\left(z_{0}\right)=a_{-1}=\lim _{z \rightarrow z_{0}}\left\{\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]\right\}$ residueat $z=z_{0}$
(1) For a simple pole $m=1 \Rightarrow \boldsymbol{R}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}}\left[\left(z-z_{0}\right) f(z)\right]$
(2) If $f(z)$ has a simple at $z=z_{0}$ and $f(z)=\frac{g(z)}{h(z)}, g(z)$ is analyticand non-zeroat z_{0} and $\boldsymbol{h}\left(z_{0}\right)=\mathbf{0}$
$\Rightarrow \boldsymbol{R}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{\left(z-z_{0}\right) g(z)}{h(z)}=g\left(z_{0}\right) \lim _{z \rightarrow z_{0}} \frac{\left(z-z_{0}\right)}{h(z)}=g\left(z_{0}\right) \lim _{z \rightarrow z_{0}} \frac{1}{h^{\prime}(z)}=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}$

Ex : Suppose that $f(z)$ has a pole of order m at the point $z=z_{0}$. By considering the Laurent seriesof $f(z)$ about z_{0}, deriving a general expressionfor the residue $R\left(z_{0}\right)$ of $f(z)$ at $z=z_{0}$. Hence evaluate the residueof the function $f(z)=\frac{\text { expiz }}{\left(z^{2}+1\right)^{2}}$ at the point $z=i$.
$f(z)=\frac{\text { expiz }}{\left(z^{2}+1\right)^{2}}=\frac{\text { expiz }}{(z+i)^{2}(z-i)^{2}}$ poles of order 2 at $z=i$ and $z=-i$
for pole at $z=i$:
$\frac{d}{d z}\left[(z-i)^{2} f(z)\right]=\frac{d}{d z}\left[\frac{\exp i z}{(z+i)^{2}}\right]=\frac{i}{(z+i)^{2}} \exp i z-\frac{2}{(z+i)^{3}} \exp i z$
$R(i)=\frac{1}{1!}\left[\frac{i}{(2 i)^{2}} e^{-1}-\frac{2}{(2 i)^{3}} e^{-1}\right]=\frac{-i}{2 e}$

20.14 Residue theorem

$f(z)$ has a pole of order m at $z=z_{0}$

$$
\begin{gathered}
f(z)=\sum_{n=-m}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \\
I=\oint_{C} f(z) d z=\oint_{\gamma} f(z) d z \\
\text { set } z=z_{0}+\rho e^{i \theta} \Rightarrow d z=i \rho e^{i \theta} d \theta
\end{gathered}
$$

$I=\sum_{n=-m}^{\infty} a_{n} \oint_{C}\left(z-z_{0}\right)^{n} d z=\sum_{n=-m}^{\infty} a_{n} \int_{0}^{2 \pi} i \rho^{n+1} e^{i(n+1) \theta} d \theta$
for $n \neq-1 \Rightarrow \int_{0}^{2 \pi} i \rho^{n+1} e^{i(n+1) \theta} d \theta=\left.\frac{i \rho^{n+1} e^{i(n+1) \theta}}{i(n+1)}\right|_{0} ^{2 \pi}=0$
for $n=1 \Rightarrow \int_{0}^{2 \pi} i d \theta=2 \pi i$
$I=\oint_{C} f(z) d z=2 \pi i a_{-1}$

Residue theorem:

$f(z)$ is continuous within and on a closedcontour C and analytic, except for a finitenumber of poles within C

$$
\oint_{C} f(z) d z=2 \pi i \sum_{j} R_{j}
$$

$\sum_{j} R_{j}$ is the sum of the residuesof $f(z)$ at its poles within C

The integral I of $\boldsymbol{f}(\boldsymbol{z})$ alongan open contour C
if $f(z)$ has a simple pole at $z=z_{0}$
$\Rightarrow f(z)=\phi(z)+a_{-1}\left(z-z_{0}\right)^{-1}$
$\phi(z)$ is analytic within some neighbour surrounding z_{0}
$\left|z-z_{0}\right|=\rho$ and $\theta_{1} \leq \arg \left(z-z_{0}\right) \leq \theta_{2}$

ρ is chosensmall enough that no singularity of $f(z)$ except $z=z_{0}$
$I=\int_{C} f(z) d z=\int_{C} \phi(z) d z+a_{-1} \int_{C}\left(z-z_{0}\right)^{-1} d z$
$\lim _{\rho \rightarrow 0} \int_{C} \phi(z) d z=0$
$I=\lim _{\rho \rightarrow 0} \int_{C} f(z) d z=\lim _{\rho \rightarrow 0}\left(a_{-1} \int_{\theta_{1}}^{\theta_{2}} \frac{1}{\rho e^{i \theta}} i \rho e^{i \theta} d \theta\right)=i a_{-1}\left(\theta_{2}-\theta_{1}\right)$
for a closed contour $\theta_{2}=\theta_{1}+2 \pi \Rightarrow I=2 \pi a_{-1}$

20.16 Integrals of sinusoidal functions

$$
\begin{aligned}
& \int_{0}^{2 \pi} F(\cos \theta, \sin \theta) d \theta \text { set } z=\operatorname{expi} \theta \text { in unit circle } \\
& \Rightarrow \cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right), \sin \theta=\frac{1}{2 i}\left(z-\frac{1}{z}\right), d \theta=-i z^{-1} d z
\end{aligned}
$$

$$
\text { Ex : Evaluate } I=\int_{0}^{2 \pi} \frac{\cos 2 \theta}{a^{2}+b^{2}-2 a b \cos \theta} d \theta \text { for } b>a>0
$$

$$
\begin{aligned}
& \cos n \theta=\frac{1}{2}\left(z^{n}+z^{-n}\right) \Rightarrow \cos 2 \theta=\frac{1}{2}\left(z^{2}+z^{-2}\right) \\
& \frac{\cos 2 \theta}{a^{2}+b^{2}-2 a b \cos \theta} d \theta=\frac{\frac{1}{2}\left(z^{2}+z^{-2}\right)\left(-i z^{-1}\right) d z}{a^{2}+b^{2}-2 a b \cdot \frac{1}{2}\left(z+z^{-1}\right)}=\frac{-\frac{1}{2}\left(z^{4}+1\right) i d z}{z^{2}\left(z a^{2}+z b^{2}-a b z^{2}-a b\right)} \\
&=\frac{i}{2 a b} \frac{\left(z^{4}+1\right) d z}{z^{2}\left(z^{2}-z\left(\frac{a}{b}-+\frac{b}{a}\right)+1\right)}=\frac{i}{2 a b} \frac{\left(z^{4}+1\right)}{z^{2}\left(z-\frac{a}{b}\right)\left(z-\frac{b}{a}\right)} d z
\end{aligned}
$$

$I=\frac{i}{2 a b} \oint_{C} \frac{z^{4}+1}{z^{2}\left(z-\frac{a}{b}\right)\left(z-\frac{b}{a}\right)} d z$ double poles $a t z=0$ and $z=a / b$ within the unit circle
Residue: $R\left(z_{0}\right)=\lim _{z \rightarrow z_{0}}\left\{\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]\right.$
(1) pole at $z=0, m=2$

$$
\begin{aligned}
R(0) & =\lim _{z \rightarrow 0}\left\{\frac{1}{1!} \frac{d}{d z}\left[z^{2} \frac{z^{4}+1}{z^{2}(z-a / b)(z-b / a)}\right]\right\} \\
& =\lim _{z \rightarrow 0}\left\{\frac{4 z^{3}}{(z-a / b)(z-b / a)}+\frac{\left(z^{4}+1\right)(-1)[2 z-(a / b+b / a)]}{(z-a / b)^{2}(z-b / a)^{2}}\right\}=a / b+b / a
\end{aligned}
$$

(2) pole at $z=a / b, m=1$
$R(a / b)=\lim _{z \rightarrow a / b}\left[(z-a / b) \frac{z^{4}+1}{z^{2}(z-a / b)(z-b / a)}\right]=\frac{(a / b)^{4}+1}{(a / b)^{2}(a / b-b / a)}=\frac{-\left(a^{4}+b^{4}\right)}{a b\left(b^{2}-a^{2}\right)}$
$I=2 \pi i \times \frac{i}{2 a b}\left[\frac{a^{2}+b^{2}}{a b}-\frac{a^{4}+b^{4}}{a b\left(b^{2}-a^{2}\right)}\right]=\frac{2 \pi a^{2}}{b^{2}\left(b^{2}-a^{2}\right)}$

Some infinite integrals

$$
\int_{-\infty}^{\infty} f(x) d x
$$

$f(z)$ has the following properties:
(1) $f(z)$ is analytic in the upper half - plane, $\operatorname{Im} z \geq 0$, except for a finite number of poles, none of which is on the real axis.
(2) on a semicircle Γ of radius R, R times the maximum of $|f|$ on Γ tends to zero as $R \rightarrow \infty$ (a sufficient condition is that $z f(z) \rightarrow \mathbf{0}$ as $|z| \rightarrow \infty)$.
(3) $\int_{-\infty}^{0} f(x) d x$ and $\int_{0}^{\infty} f(x) d x$ both exist $\Rightarrow \int_{-\infty}^{\infty} f(x) d x=2 \pi i \sum_{j} R_{j}$

for $\left|\int_{\Gamma} f(z) d z\right| \leq 2 \pi R \times($ maximum of $|f|$ on Γ), the integral along Γ
tends to zero as $R \rightarrow \infty$.

Ex : Evaluate $I=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{4}} \quad a$ is real
$\oint_{C} \frac{d z}{\left(z^{2}+a^{2}\right)^{4}}=\int_{-R}^{R} \frac{d x}{\left(x^{2}+a^{2}\right)^{4}}+\int_{\Gamma} \frac{d z}{\left(z^{2}+a^{2}\right)^{4}}$ as $R \rightarrow \infty$
$\Rightarrow \int_{\Gamma} \frac{d z}{\left(z^{2}+a^{2}\right)^{4}} \rightarrow 0 \Rightarrow \oint_{C} \frac{d z}{\left(z^{2}+a^{2}\right)^{4}}=\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{4}}$
$\left(z^{2}+a^{2}\right)^{4}=0 \Rightarrow$ poles of order 4 at $z= \pm a i$,

only $z=a i$ at the upper half - plane
$\operatorname{set} z=a i+\xi, \xi \rightarrow 0 \Rightarrow \frac{1}{\left(z^{2}+a^{2}\right)^{4}}=\frac{1}{\left(2 a i \xi+\xi^{2}\right)^{4}}=\frac{1}{(2 a i \xi)^{4}}\left(1-\frac{i \xi}{2 a}\right)^{-4}$
the coefficient of ξ^{-1} is $\frac{1}{(2 a)^{4}} \frac{(-4)(-5)(-6)}{3!}\left(\frac{-i}{2 a}\right)^{3}=\frac{-5 i}{32 a^{7}}$
$\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{4}}=2 \pi i\left(\frac{-5 i}{32 a^{7}}\right)=\frac{10 \pi}{32 a^{7}} \Rightarrow I=\frac{1}{2} \times \frac{10 \pi}{32 a^{7}}=\frac{5 \pi}{32 a^{7}}$

For poles on the real axis:

Principal value of the integral, definedas $\rho \rightarrow 0$ $P \int_{-R}^{R} f(x) d x=\int_{-R}^{z_{0}-\rho} f(x) d x+\int_{z_{0}+\rho}^{R} f(x) d x$ for a closed contour C

$\oint_{C} f(z) d z=\int_{-R}^{z_{0}-\rho} f(x) d x+\int_{\gamma} f(z) d z+\int_{z_{0}+\rho}^{R} f(x) d x+\int_{\Gamma} f(z) d z$

$$
=P \int_{-R}^{R} f(x) d x+\int_{\gamma} f(z) d z+\int_{\Gamma} f(z) d z
$$

(1) for $\int_{\gamma} f(z) d z$ has a pole at $z=z_{0} \Rightarrow \int_{\gamma} f(z) d z=-\pi \dot{i} a_{1}$
(2) for $\int_{\Gamma} f(z) d z \operatorname{set} z=\operatorname{Re}^{i \theta} d z=i \operatorname{Re}^{i \theta} d \theta$

$$
\Rightarrow \int_{\Gamma} f(z) d z=\int_{\Gamma} f\left(\mathbf{R e}^{i \theta}\right) i \operatorname{Re}^{i \theta} d \theta
$$

If $f(z)$ vanishesfaster than $1 / R^{2}$ as $R \rightarrow \infty$, the integralis zero

Jordan's lemma

(1) $f(z)$ is analyticin the upper half - plane except for a finite number of polesin $\operatorname{Im} z>0$
(2) the maximum of $|f(z)| \rightarrow 0$ as $|z| \rightarrow \infty$ in the upper half - plane
(3) $m>0$, then

$$
I_{\Gamma}=\int_{\Gamma} e^{i m z} f(z) d z \rightarrow 0 \text { as } R \rightarrow \infty, \Gamma \text { is the semicircular contour }
$$

for $0 \leq \theta \leq \pi / 2, \quad 1 \geq \sin \theta / \theta \geq \pi / 2$ $|\exp (i m z)|=|\exp (-m R \sin \theta)|$
$I_{\Gamma} \leq \int_{\Gamma}\left|e^{i m z_{z}} f(z)\right||d z| \leq M R \int_{0}^{\pi} e^{-m R \sin \theta} d \theta$

$$
=2 M R \int_{0}^{\pi / 2} e^{-m R \sin \theta} d \theta
$$

M is the maximum of $|f(z)|$ on $|z|=R, R \rightarrow \infty M \rightarrow 0$

$I_{\Gamma}<2 M R \int_{0}^{\pi / 2} e^{-m R(2 \theta / \pi)} d \theta=\frac{\pi M}{m}\left(1-e^{-m R}\right)<\frac{\pi M}{m}$
as $R \rightarrow \infty \Rightarrow M \rightarrow 0 \Rightarrow I_{\Gamma} \rightarrow 0$

Ex : Find the principal value of $\int_{-\infty}^{\infty} \frac{\cos m x}{x-a} d x$ a real, $m>0$
Consider the integral $I=\oint_{C} \frac{e^{i n z}}{z-a} d z=0$ no pole in the upper half - plane, and $\left|(z-a)^{-1}\right| \rightarrow 0$ as $|z| \rightarrow \infty$

$I=\oint_{C} \frac{e^{i m z}}{z-a} d z$
$=\int_{-R}^{a-\rho} \frac{e^{i m x}}{x-a} d x+\oint_{\gamma} \frac{e^{i m z}}{z-a} d z+\int_{a+\rho}^{R} \frac{e^{i m x}}{x-a} d x+\int_{\Gamma} \frac{e^{i m z}}{z-a} d z=0$
As $R \rightarrow \infty$ and $\rho \rightarrow 0 \Rightarrow \int_{\Gamma} \frac{e^{i m z}}{z-a} d z \rightarrow 0$
$\Rightarrow P \int_{-\infty}^{\infty} \frac{e^{i m x}}{x-a} d x-i \pi a_{-1}=0$ and $a_{-1}=e^{i m a}$
$\Rightarrow P \int_{-\infty}^{\infty} \frac{\cos m x}{x-a} d x=-\pi \sin m a$ and $P \int_{-\infty}^{\infty} \frac{\sin m x}{x-a} d x=\pi \cos m a$

Integral of multivalued functions

Multivalued functionssuch as $z^{1 / 2}, ~ L n z$
Singlebranch point is at the otigin. We let $R \rightarrow \infty$ and $\rho \rightarrow 0$. The integrandismultivalued, its values along two lines $A B$ and $C D$ joining $z=\rho$ to $z=R$ are not equal and opposite.
$\mathrm{Ex}: I=\int_{0}^{\infty} \frac{d x}{(x+a)^{3} x^{1 / 2}}$ for $a>0$

(1) the integrand $f(z)=(z+a)^{-3} z^{-1 / 2},|z f(z)| \rightarrow 0$ as $\rho \rightarrow 0$ and $R \rightarrow \infty$ the two circlesmakeno contribution to the contour integral
(2) pole at $z=-a$, and $(-a)^{1 / 2}=a^{1 / 2} e^{i \pi / 2}=i a^{1 / 2}$

$$
\begin{aligned}
R(-a) & =\lim _{z \rightarrow-a} \frac{1}{(3-1)!} \frac{d^{3-1}}{d z^{3-1}}\left[(z+a)^{3} \frac{1}{(z+a)^{3} z^{1 / 2}}\right] \\
& =\lim _{z \rightarrow-a} \frac{1}{2!} \frac{d^{2}}{d z^{2}} z^{-1 / 2}=\frac{-3 i}{8 a^{5 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{A B} d z+\int_{\Gamma} d z+\int_{D C} d z+\int_{\gamma} d z=2 \pi i\left(\frac{-3 i}{8 a^{5 / 2}}\right) \\
& \text { and } \int_{\Gamma} d z=0 \text { and } \int_{\gamma} d z=0
\end{aligned}
$$

alongline $\mathrm{AB} \Rightarrow z=x e^{i 0}$, alongline $\mathrm{CD} \Rightarrow z=x e^{i 2 \pi}$

$$
\int_{0, A \rightarrow B}^{\infty} \frac{d x}{(x+a)^{3} x^{1 / 2}}+\int_{\infty, C \rightarrow D}^{0} \frac{d x}{\left(x e^{i 2 \pi}+a\right)^{3} x^{1 / 2} e^{(1 / 2 \times 2 \pi i)}}=\frac{3 \pi}{4 a^{5 / 2}}
$$

$$
\Rightarrow\left(1-\frac{1}{e^{i \pi}}\right) \int_{0}^{\infty} \frac{d x}{(x+a)^{3} x^{1 / 2}}=\frac{3 \pi}{4 a^{5 / 2}}
$$

$$
\Rightarrow \int_{0}^{\infty} \frac{d x}{(x+a)^{3} x^{1 / 2}}=\frac{3 \pi}{8 a^{5 / 2}}
$$

Ex : Evaluate $I(\sigma)=\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}-\sigma^{2}} \mathrm{dx}$
$\oint_{C} \frac{z \sin z}{z^{2}-\sigma^{2}} d z=\frac{1}{2 i} \oint_{C_{1}} \frac{z e^{i z}}{z^{2}-\sigma^{2}} d z-\frac{1}{2 i} \oint_{C_{2}} \frac{z e^{-i z}}{z^{2}-\sigma^{2}} d z=I_{1}+I_{2}$
(1) for I_{1}, the contour is choosed on the upper half - plane due to the term $e^{i z}$, and only one pole at $z=\sigma$.

$$
\begin{aligned}
I_{1} & =\frac{1}{2 i} \oint_{C_{1}} \frac{z e^{i z}}{z^{2}-\sigma^{2}} d z=\frac{1}{2 i} \int_{-R}^{-\sigma-\rho} \frac{x e^{i x}}{x^{2}-\sigma^{2}} d x \\
& +\frac{1}{2 i} \int_{-\sigma+\rho}^{\sigma-\rho} \frac{x e^{i x}}{x^{2}-\sigma^{2}} d x+\frac{1}{2 i} \int_{\sigma+\rho}^{\infty} \frac{x e^{i x}}{x^{2}-\sigma^{2}} d x
\end{aligned}
$$

$$
+\frac{1}{2 i} \int_{\gamma_{1}} \frac{z e^{i z}}{z^{2}-\sigma^{2}} d z+\frac{1}{2 i} \int_{\gamma_{2}} \frac{z e^{i z}}{z^{2}-\sigma^{2}} d z+\frac{1}{2 i} \int_{\Gamma} \frac{z e^{i z}}{z^{2}-\sigma^{2}} d z
$$

$$
=\frac{1}{2 i} 2 \pi i \times \operatorname{Res}(z=\sigma)=\pi \frac{\sigma e^{i \sigma}}{2 \sigma}=\frac{\pi}{2} e^{i \sigma}
$$

As $\rho \rightarrow 0$ and $R \rightarrow \infty \Rightarrow \int_{\Gamma} d z \rightarrow 0$
$\frac{1}{2 i} \int_{\gamma_{1}} \frac{z e^{i z}}{(z+\sigma)(z-\sigma)} d z=\frac{1}{2 i} \times(-\pi i) \operatorname{Res}(z=-\sigma)=\frac{-\pi}{4} e^{-i \sigma}$
$\frac{1}{2 i} \int_{\gamma_{2}} \frac{z e^{i z}}{(z+\sigma)(z-\sigma)} d z=\frac{1}{2 i} \times \pi i \operatorname{Res}(z=\sigma)=\frac{\pi}{4} e^{i \sigma}$
$I_{1}=\frac{1}{2 i} \int_{-\infty}^{\infty} \frac{x e^{i x}}{x^{2}-\sigma^{2}} d x+\frac{\pi}{4}\left(e^{i \sigma}-e^{-i \sigma}\right)=\frac{\pi}{2} e^{i \sigma}$
(2) for I_{2}, we choose the lower half - plane by the term $e^{-i z}$, only one pole at $z=-\sigma$

$$
I_{2}=\frac{-1}{2 i} \oint_{C_{2}} \frac{z e^{-i z}}{z^{2}-\sigma^{2}} d z=\frac{-1}{2 i} \int_{-R}^{-\sigma-\rho} \frac{x e^{-i x}}{x^{2}-\sigma^{2}} d x
$$

$-\frac{1}{2 i} \int_{-\sigma+\rho}^{\sigma-\rho} \frac{x e^{-i x}}{x^{2}-\sigma^{2}} d x-\frac{1}{2 i} \int_{\sigma+\rho}^{\infty} \frac{x e^{-i x}}{x^{2}-\sigma^{2}} d x-\frac{1}{2 i} \int_{\gamma_{1}} \frac{z e^{-i z}}{z^{2}-\sigma^{2}} d z$
$-\frac{1}{2 i} \int_{\gamma_{2}} \frac{z e^{-i z}}{z^{2}-\sigma^{2}} d z-\frac{1}{2 i} \int_{\Gamma} \frac{z e^{-i z}}{z^{2}-\sigma^{2}} d z=\left(\frac{-1}{2 i}\right) \times(-2 \pi i) \frac{(-\sigma) e^{i \sigma}}{-2 \sigma}=\frac{\pi}{2} e^{i \sigma}$

As $\rho \rightarrow \mathbf{0}, R \rightarrow \infty \Rightarrow \int_{\Gamma} d z \rightarrow \mathbf{0}$
$\frac{-1}{2 i} \int_{\gamma_{1}} \frac{z e^{-i z}}{(z+\sigma)(z-\sigma)} d z=\left(\frac{-1}{2 i}\right)(-\pi i) \frac{(-\sigma) e^{i \sigma}}{-2 \sigma}=\frac{\pi}{4} e^{i \sigma}$
$\frac{-1}{2 i} \int_{\gamma_{2}} \frac{z e^{-i z}}{(z+\sigma)(z-\sigma)} d z=\left(\frac{-1}{2 i}\right)(\pi i) \frac{\sigma e^{-i \sigma}}{2 \sigma}=\frac{-\pi}{4} e^{-i \sigma}$
$I_{2}=\frac{-1}{2 i} \int_{-\infty}^{\infty} \frac{x e^{-i x}}{x^{2}-\sigma^{2}} d x+\frac{\pi}{4}\left(e^{i \sigma}-e^{-i \sigma}\right)=\frac{\pi}{2} e^{i \sigma}$
$\Rightarrow \frac{-1}{2 i} \int_{-\infty}^{\infty} \frac{x e^{-i x}}{x^{2}-\sigma^{2}} d x=\frac{\pi}{2} e^{i \sigma}-\frac{1}{4}\left(e^{i \sigma}-e^{-i \sigma}\right)$
$I(\sigma)=\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}-\sigma^{2}} d x=\frac{1}{2 i} \int_{-\infty}^{\infty} \frac{x e^{i x}}{x^{2}-\sigma^{2}} d x-\frac{1}{2 i} \int_{-\infty}^{\infty} \frac{x e^{-i x}}{x^{2}-\sigma^{2}} d x$
$=\frac{\pi}{2} e^{i \sigma}-\frac{\pi}{4}\left(e^{i \sigma}-e^{-i \sigma}\right)+\frac{\pi}{2} e^{i \sigma}-\frac{\pi}{4}\left(e^{i \sigma}-e^{-i \sigma}\right)$
$=\pi e^{i \sigma}-\frac{\pi}{2} e^{i \sigma}+\frac{\pi}{2} e^{-i \sigma}=\frac{\pi}{2}\left(e^{i \sigma}+e^{-i \sigma}\right)=\pi \cos \sigma$

