
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

MOBILE APPLICATION DEVELOPMENT

Prepared By:

D.Rahul

Assistant Professor

1

UNIT-I

• J2ME Overview: Java 2 Micro Edition and the world of Java, Inside J2ME,

J2ME and Wireless Devices small Computing Technology. Wireless

Technology, Radio Data Networks, Microwave Technology, Mobile Radio

Networks, Messaging, Personal Digital Assistants

2

 Introduction of Mobile Technology

 What is J2ME

 Java 2Micro edition and the world of Java

 Inside J2ME (How J2ME is organized)

 J2ME profiles & Wireless Devices

 What J2ME Isn‘t & other Java Platforms

 Wireless Technology

Overview

3

Introduction of Mobile Technology

 The goals Mobile Technology
 Connecting people
 Information sharing
 Internet access
 Entertainment

with the most importance words – ―at any time, any

where‖

4

Introduction of Mobile

 Includes
 Notebook
 Palmtops
 PDAs
 Mobile Phones
 Tablet PCs
 And more ...

5

Introduction of Mobile

 The Internet Scenario for retrieving information in a
wireless network

Base

Station

Internet

Wireless Network

Request :

Response :

W
eb

S
erv

ers

6

What is J2ME

J2ME is a family of specifications that defines various downsized

versions of the standard Java 2 platform; these downsized versions

can be used to program consumer electronic devices ranging from

cell phones to highly capable Personal Data Assistants (PDAs), smart

phones, and set-top boxes.

7

Java 2Micro edition and the world of Java

Java programming language developed by Sun Microsystems

• Required a Virtual machine to interpret the source codes and generate

bytecode

• Syntax is similar to C++

• Platform independent feature

8

Java 2Micro edition

 Java includes three different editions
 J2SE (Java 2 Standard Edition)
 J2EE (Java 2 Enterprise Edition)
 J2ME (Java 2 Micro Edition)

 The above three editions target for different
devices or systems

9

Java 2Micro edition

 J2SE (Desktop-based applications)
 Provides a complete environment for applications

development on desktops and servers

 The foundation of J2EE

 J2SE 1.5 (Tiger) is available now!

10

Java 2Micro edition

 J2EE (Server-based applications)
 Target for business use

 Large scale of systems which may contain tens of servers and
millions of users

 Web based services
 Machines are high performance

11

Java 2Micro edition

 J2ME (For handheld and embedded devices)

 The Micro Edition of the Java 2 Platform provides an application

environment that specifically addresses the needs of commodities in

the vast and rapidly growing consumer and embedded space,

including mobile phones, pagers, PDAs, set-top boxes, and vehicle

telematics systems

12

J2ME and the world of Java

13

How J2ME is Organized

J2ME is organized by two categories

 Configuration :

i s a complete Java runtimeenvironment:

 Java virtual machine (VM) to execute Java.

 Set of core Java runtime classes

 Interface to the underlying system

J2ME supports Two basic

configurat ions CDC-

Connected Device

Configurat ion

CLDC – Connected Limited Device Configurat ion
14

How J2ME is Organized

Principle: Different hardware corresponds different JVMs, hardware

which base on CDC have powerful JVMs, and hardware which base

on CIDC have KVM to support.

15

Connected Limited Device Configuration (CLDC)

CLDC is aimed at the low end of the consumer electronics range.

CDLC (Connected Limited Device

Configuration):160 - 512 KB of total memory

16-bit or 32-bit processor

Low power consumption and often

operating with battery power

Connectivity with limited bandwidth

16

Connected Device Configuration (CDC)



CDC addresses the needs of devices that lie between those

addressed by CLDC and the full desktop systems running J2SE.

2 MB or more memory for Javaplatform.

32-bitprocessor.

High bandwidth network connection.

full-featured Java 2 virtual machine (CVM).

17packages.

Use for devices likePalms.

17

J2ME Profiles

 Mobile Information Device Profile (MIDP) - CLDC-based, used for running

applications on cell phones and interactive pagers with small screens, wireless

HTTP connectivity, and limited memory.

 Personal Digital Assistant Profile (PDAP) – CLDC-based, extends

MIDP with additional classes and features for more powerful handheld

devices.

 Foundation Profile (FP) – CDC-based, extends the CDC

with additional J2SE classes.

 Personal Basis Profile (PBP) - extends the FP with lightweight (AWT-

derived) user interface classes and a new application model.

 Personal Profile extends the PBP with applet support and

heavyweight UI classes.
18

 The CLDC-profile used today:

MIDP (Mobile Information Device Profile)

 The MIDP defines a platform for dynamically and securely

deploying optimized, graphical, networked applications.

 The MIDP specification was defined through the Java

Community Process (JCP) by players like: Motorola, Nokia,

Ericsson, Research in Motion, and Symbian.

19

MIDP – MID Profile

MIDP is targeted at a class of devices known

as mobile information devices (MIDs).

Minimal characteristics of MIDs:

 Enough memory to run MIDP applications

 Display of at least 96 X 56 pixels, either monochrome or color

 A keypad, keyboard, or touch screen

 Two-way wireless networking capability

20

J2ME and Wireless Devices

 WAP (Wireless Application Protocol) forum is the initial industry

group that set out to create standard s for wireless technology

 Initially Ericsson, Motorola, nokia and Unwired Planet formed the WAP

forum in 1997 and it has grown to include nearly all mobile device

manufacturers mobile network providers and developers

 WAP standard is an enhancement of HTML XML and TCP/IP., it

includes WML specification(wireless Markup language) and also WTAI

(Wireless Telephony Application Interface)

 Many sophisticated applications designed for mobile communications

devices require the device to process information beyond the capabilities

of the WAP specification

 J2ME provides the standard to fill this gap



21

What J2ME Isn’t

 Although J2ME is J2SE without some classes developers
shouldn‘t assume that existing java applications would run in
the J2ME environment because of resource constraints
imposed by small computing devices

✓ The write once and run anywhere is overstated with J2ME

✓ Some J2SE applications require classes which are not available in
J2ME

✓ Small computing devices use JVM or KVM based on configuration of the
devices

✓ MIDlets are controlled by the AMS(Application Management
software) not like J2SE

22

Other Java Plat

 Embedded Java is the platform used for small computing devices

dedicated to one purpose and have a 32 bit processor and 512kb ROM

and RAM

 Java Card is the platform used for smart cards

 Personal Java is the platform used for small computing devices

that have a maximum of 2MB ROM and 1 MB RAM

23

How does J2ME work?

The latest Java-enabled mobile devices, you can view a list of

applications, games, and services and choose which one interests you. The

application is then sent over the air to your handset, where it is installed

and instantly available to use.

24

AM Waveforms

25

FM Waveforms

26

The carrier....

 A high frequency ‗carrier‘ takes information from

one place to another.

 The ‗carrier‘ is considered to be a ‗radio frequency‘

or RF.

 The ‗information‘ is attached to the carrier using

AM, FM, or PCM or another method.

27

The carrier is a Sine Wave

28

Carrier velocity = v

 The carrier travels at the speed of light

 186,000 miles/second

 300,000,000 meters/second

29

Wavelength = v/f

F = 1290 KHz (WNBF Radio)

Λ = v/f = 300,000,000/1,290,000

= 232.5 meters

30

Amplitude Modulation

 Includes Broadcast Radio 540 KHz to 1640KHz

 Citizen Band


Amateur Radio

 Television Video

31

Frequency Modulation

 Broadcast FM from 88 MHz to 108 MHz

 Aircraft, Marine, Taxi

 Some digital transmissions

 Television Audio

 All Satellite Television

32

Electro Magnetic Radiation

33

Powerful Transmitters..

 50 Kilo Watts into a large tower antenna

 Can travel around the globe under certain
weather conditions.

 The signal strength is affected by many conditions
including humidity, cloud cover and content, time of
day, and the terrain.

34

The receiver....

 Always has some type of antenna to catch the

signal transmitted.

 A radio direction finder has a ‗directional‘ antenna.

 The weak signal from the antenna is amplified.

 The information is removed from the carrier.

35

Noise is undesirable..

 Noise comes from many sources

 It can interfere with the signal

 AM is especially vulnerable

 FM is preferred due to its immunity

 TV Sound is FM, and generally quiet

 AM Radio is often noisy- especially long
distance reception.

36

Java Technology Carriers

37

Java Technology Handsets

To date, over 250 different handset models from more than 40
manufacturers have been developed with Java technology, with more
than 100 million of these handsets shipped worldwide.

---http://www.java.com/en/learn/mobile_(2003)
38

http://www.java.com/en/learn/mobile_(2003)
http://www.java.com/en/learn/mobile_(2003)
http://www.java.com/en/learn/mobile_(2003)
http://www.java.com/en/learn/mobile_(2003)
http://www.java.com/en/learn/mobile_(2003)
http://www.java.com/en/learn/mobile_(2003)
http://www.java.com/en/learn/mobile_(2003)
http://www.java.com/en/learn/mobile_(2003)
http://www.java.com/en/learn/mobile_(2003)

Referenc
 http://jcp.org/jsr/detail/30.jsp

es
 http://java.sun.com/products/consumer-embedded/

 http://java.sun.com/j2me/j2me-ds.pdf

 Topley,K. J2ME in a Nutshell -A Desktop Quick Reference

 http://wireless.java.sun.com/

 http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B- 228.pdf

 http://chinaunix.net/jh/26/128217.html

 http://developer.java.sun.com/developer/products/j2me/

 http://wireless.java.sun.com/midp/articles/#appmodels

 http://wireless.java.sun.com/midp/articles/getstart/

 http://www.java.com/en/learn/mobile

39

http://jcp.org/jsr/detail/30.jsp
http://jcp.org/jsr/detail/30.jsp
http://java.sun.com/products/consumer-embedded/
http://java.sun.com/products/consumer-embedded/
http://java.sun.com/products/consumer-embedded/
http://java.sun.com/j2me/j2me-ds.pdf
http://java.sun.com/j2me/j2me-ds.pdf
http://java.sun.com/j2me/j2me-ds.pdf
http://wireless.java.sun.com/
http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B-228.pdf
http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B-228.pdf
http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B-228.pdf
http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B-228.pdf
http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B-228.pdf
http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B-228.pdf
http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B-228.pdf
http://www.scc-kk.co.jp/lib_scc/catalog/books/B-228/B-228.pdf
http://chinaunix.net/jh/26/128217.html
http://developer.java.sun.com/developer/products/j2me/
http://wireless.java.sun.com/midp/articles/
http://wireless.java.sun.com/midp/articles/getstart/
http://www.java.com/en/learn/mobile

Important Questions

1. Explain the differences between J2SE , J2EE & J2ME

2. Explain how J2ME balances a thin client and a thick client

3. Explain How J2ME balances local and server side processing

4. Explain J2ME Profiles

5. Explain Wireless Technology

6. Explain Cellular Digital Packet Data protocol

7. Explain Radio Data Networks & their Limitations

40

UNIT-II

• J2ME Architecture and Development Environment: J2ME Architecture,

Small computing Device Requirements, Run-Time Environment, MIDlet

Programming, java Language for J2ME, J2ME Software Development

Kits, Hello World J2ME Style Multiple MIDLetsinaMidlet Suite, J2ME

Wireless Toolkit.J2ME Best Practices and Patterns: The Reality of working

in a J2ME World, Best Practices.

41

• The modular design of the J2ME architecture enables an application to

be scaled based on constraints of a small computing device.

• J2ME architecture doesn‘t replace the operating

system of a small computing device. Instead, J2ME architecture

consists of layers located above the native operating system,

collectively referred to as the Connected Limited Device Configuration

(CLDC).environment for small computing devices.

42

• The J2ME architecture comprises three software layers

• The first layer is the configuration layer that includes the Java

Virtual Machine (JVM), which directly interacts with the native

operating system. The configuration layer also handles interactions

between the profile and the JVM.

• The second layer is the profile layer, which consists of the minimum

set of application programming interfaces (APIs) for the small

computing device.

• The third layer is the Mobile Information Device Profile (MIDP).

• The MIDP layer contains Java APIs for user network

connections, persistence storage, and the user interface. It also

has access to CLDC libraries and MIDP libraries.

43

• A small computing device has two components supplied by the

original equipment manufacturer (OEM).

• These are classes and applications.

• OEM classes are used by the MIDP to access device-

specific features such as sending and receiving messages

and accessing device-specific persistent data.

• OEM applications are programs provided by the OEM, such as an

address book. OEM applications can be accessed by the MIDP.

• A word of caution: accessing OEM classes and OEM applications

from the MIDP restricts the portability of a J2ME application

since not all small computing device manufacturers use the same

OEM classes or OEM applications.
44

Small Computing Device Requirements

• There are minimum resource requirements for a small

computing device to run a J2ME application.

• 1. The device must have a minimum of 96 × 54 pixel display that can handle

bitmapped graphics and have a way for users to input information, such as a

keypad, keyboard, or touch screen.

• 2.At least 128 kilobytes (KB) of nonvolatile memory is

necessary to run Mobile Information Device (MID), and 8KB of nonvolatile

memory is needed for storage of persistent application data.

• To run JVM, 32KB of volatile memory must be available. The device

must also provide two-way network connectivity.

45

• Besides minimal hardware requirements, there are also

minimal requirements for the native operating system.

• The native operating system must implement exception handling,

process interrupts, be able to run the JVM, and provide schedule

capabilities.

• Furthermore, all user input to the operating system must be forwarded to

the JVM, otherwise the device cannot run a J2ME application.

• Although the native operating system doesn‘t need to implement a file

system to run a J2ME application, it must be able to write and read

persistent data (data retained when the device is powered down) to

nonvolatile memory.

46

Run-Time Environment

• A MIDlet is a J2ME application designed to operate on an MIDP small

computing device. A MIDlet is defined with at least a single class that is

derived from the javax.microedition.midlet.MIDlet abstract class.

Developers commonly bundle related MIDlets into a MIDlet suite, which

is contained within the same package and implemented simultaneously

on a small computing device. All MIDlets within a MIDlet suite are

considered a group and must be installed and

uninstalled as a group.

47

• Members of a MIDlet suite share resources of

the host environment and share the same instances of Java classes and

run within the same JVM. This means if three MIDlets from the same

MIDlet suite run the same class, only one instance of the class is created

at a time in the Java Virtual Machine.

• A key benefit of the relationship among MIDlet suite members is that

they share the same data, including data in persistent storage such as

user preferences.

48

• Sharing data among MIDlets exposes each MIDlet to data errors

caused by concurrent read/write access to data. This risk is

reduced by synchronization primitives on the MIDlet suite level that

restrict access to volatile data and persistent data.

• However, if a MIDlet uses multi-threading, the MIDlet is

responsible for coordinated access to the record store.

49

• Data cannot be shared between MIDlets that are not from the same

MIDlet suite because the MIDlet suite name is used to identify data

associated with the suite.

• A MIDlet from a different MIDlet suite is considered an

unreliable source.

50

• A MIDlet suite is installed, executed, and removed by the application

manager running on the device.

• The manufacturer of the small computing device provides

the application manager. Once a MIDlet suite is installed, each member

of the MIDlet suite is given access to classes of the JVM and CLDC by

the application manager.

• Like wise access classes defined in the MIDP to interact with the user

interface, network, and persistent storage.

• The application manager also makes the Java archive (JAR) file and the

Java application descriptor (JAD) file available to members of the

MIDlet suite.

51

JAR

• All the files necessary to implement a MIDlet

suite must be contained within a production package called a Java

archive (JAR) file.

• These files include MIDlet classes, graphic images

(if required by a MIDlet), and the manifest file. The manifest file contains

a list of attributes and related definitions that are used by the application

manager to install the files contained in the JAR file onto the small

computing device.

• Nine attributes are defined in the manifest file;

all but six of these attributes are optional.

52

Manifest File Attribute ----- Description

• 1. MIDlet-Name- MIDlet suite name.

• 2. MIDlet-Version-MIDlet version number.

• 3.MIDlet-Vendor -Name of the vendor

who supplied the MIDlet.

• 4. MIDlet-n Attribute per MIDlet.Values are MIDlet name, optional

icon, and MIDlet class name.

• 5. MicroEdition-Profile Identifies the J2ME profile that is

necessary to run the MIDlet.

53

• 6. MicroEdition-Configuration Identifies the

J2ME configuration that is necessary to run the MIDlet.

• 7. MIDlet-Icon- Icon associated with MIDlet, must be in PNG image

format (optional).

• 8. MIDlet-Description- Description of

MIDlet (optional).

• 9. MIDlet-Info-URL- URL containing more

information about the MIDlet.

54

Example- Manifest file List

• MIDlet-Name: Best MIDlet

• MIDlet-Version: 2.0

• MIDlet-Vendor: MyCompany

• MIDlet-1: BestMIDlet,

/images/BestMIDlet.png, Best.BestMIDlet

• MicroEdition-Profile: MIDP-1.0

• MicroEdition-Configuration: CLDC-1.0

55

The Java Application Descriptor File

• include a Java application descriptor (JAD) file within the JAR file of a

MIDlet suite as a way to pass parameters to a MIDlet without modifying

the JAR file.

• A JAD file is also used to provide the application manager with

additional content information about the JAR file to determine

whether the MIDlet suite can be implemented on the device.

• A JAD file is similar to a manifest in that both contain attributes that are

name:value pairs. Name:value pairs can appear in any order within the

JAD file.

56

• There are five required system attributes for a JAD file:

• MIDlet-Name

• MIDlet-Version

• MIDlet-Vendor

• MIDlet-n

• MIDlet-Jar-URL

57

Example- JAD file list

• MIDlet-Name: Best MIDlet

• MIDlet-Version: 2.0

• MIDlet-Vendor: MyCompany

• MIDlet-Jar-URL: http://www.mycompany.com/bestmidlet.jar

• MIDlet-1: BestMIDlet,

/images/BestMIDlet.png, Best.BestMIDlet

58

http://www.mycompany.com/bestmidlet.jar

Attributes of JAD File

• JAD File Attribute Description

• MIDlet-Name MIDlet suite name.

• MIDlet-Version MIDlet version number.

• MIDlet-Vendor Name of the vendor who

supplied the MIDlet.

• MIDlet-n Attribute per MIDlet. Values are

MIDlet name, optional icon, and MIDlet class

name.

• MIDlet-Jar URL Location of the JAR file.

59

• MIDlet-Jar-Size Size of the JAR file in bytes

(optional).

• MIDlet-Data-Size Minimum size (in bytes) for

persistent data storage (optional).

• MIDlet-Description Description of MIDlet

(optional).

• MIDlet-Delete-Confirm Confirmation required

before removing the MIDlet suite (optional).

• MIDlet-Install-Notify Send installation status to

given URL (optional).

60

MIDlet Programming

• Programming a MIDlet is similar to creating a J2SE application in
that define a class and related methods.

• Less Robust

• A MIDlet is a class that extends the MIDlet class and is the interface

between application

statements and the run-time environment, which is controlled
by the application manager.

61

• A MIDlet class must contain three abstract methods that are called

by the application

manager to manage the life cycle of the MIDlet. These abstract

methods are

startApp(), pauseApp(), and destroyApp().

62

• The startApp() method is called by the application manager when

the MIDlet is started and contains statements that are executed each

time the application begins execution.

• The pauseApp() method is called before the application manager

temporarily stops the MIDlet.

• The application manager restarts the MIDlet by recalling the

startApp() method.

• The destroyApp() method is called prior to the termination of the

MIDlet by the application manager.

63

Basic Shell of MIDlet

• the MIDlet class called BasicMIDletShell extends the MIDlet class.

Any name can be used for a class as long as it conforms to the Java

class naming convention.

64

• public class BasicMIDletShell extends

MIDlet

• {• public void startApp()

• {

• }

• public void pauseApp()

• {

• }

• public void destroyApp(boolean unconditional)

• {

• }

• }

65

• Both the startApp() and pauseApp() methods are
public and have no return value nor parameter list.

• The destroyApp() method is also a public

method without a return value.

• However, the destroyApp() method has a

boolean parameter that is set to true

• if the termination of the MIDlet is unconditional, and false if the

MIDlet can throw a MIDletStateChangeException telling the

application manager that the MIDlet does not want to be destroyed

just yet.
66

• At the center of every MIDlet are the MIDP API

classes used by the MIDlet to interact with the user

and handle data management. User interactions are

managed by user interface MIDP API classes.

• These APIs enable a developer to display screens of

data and prompt the user to respond with an

appropriate command.

•The command causes the MIDlet to execute one of
three routines: perform a computation, make a
network request, or display another screen.

67

• The data-handling MIDP API classes enable the developer to perform

four kinds of data routines: write and read persistent data, store data

in data types, receive data from and send data to a network, and

interact with the small computing device‘s input/output features.

68

Event Handling

• A MIDlet is an event-based application.

• All routines executed in the MIDlet are invoked in response to an

event reported to the MIDlet by the application manager.

• The initial event that occurs is when the MIDlet is started and the

application manager invokes the startApp() method.

69

• The startApp() method in a typical MIDlet

contains a statement that displays a screen

of data and prompts the user to enter a selection from among one or more

options. The nature

and number of options is MIDlet and screen dependent.

• A Command object is used to present a user with a selection of options to

choose from when a screen is displayed. Each screen must have a

CommandListener.

70

User Interfaces

• The design of a user interface for a MIDlet

depends on the restrictions of a small computing device.

• Some small computing devices contain resources that provide a rich user

interface, while other more resource-constrained devices offer a modest

user interface. A rich user interface contains the following elements, and a

device

with a minimal user interface has some subset of these elements as

determined by the profile used for the device.

71

• A Form is the most commonly invoked user interface element found in a

MIDlet and is used to contain other

• A StringItem contains text that appears on a form

that cannot be changed by the user.

• A List is an itemized options list from which the

user can choose an option.

• A ChoiceGroup is a related itemized options list.

• Ticker is text that is scrollable.

72

• A user enters information into a form by using the Choice

element, TextBox, TextField, or DateField elements.

• The Choice element returns an option that the user selected. TextBox

and TextField elements collect textual information from a user and

enable the user to edit information that appears in these user interface

elements.

• The DateField is similar to a TextBox and TextField except its contents

are a date and time.

• An Alert is a special Form that is used to alert the user that an error has

occurred.

• An Alert is usually limited to a StringItem user interface

element that defines the nature of the error to the user.

73

Device Data
• Small computing devices don‘t have the resources necessary to run an

onboard database management system (DBMS). In fact some of these

devices lack a file system.

• Therefore, a MIDlet must read and write persistent

data without the advantage of a DBMS or file system.

• A MIDlet can use an MIDP class—RecordStore—and two MIDP

interfaces— RecordComparator and RecordFilter—to write and read

persistent data.

• A RecordStore class contains methods used to write

and read persistent data in the form of a record.

• Persistent data is read from a RecordStore by using either the

RecordComparator interface or the RecordFilter interface.
74

Java Language for J2ME

• Stripped version

• Floating-point math is probably the most

notable missing feature of J2ME.

• Floating-point math requires special processing

hardware to perform floating-point calculations.

• However, most small computing devices lack such hardware and

therefore are unable to process floating-point calculations. This means

that your MIDlet cannot use any floating-point data types or

calculations.

75

• The second most notable difference between the Java language used in

J2SE and J2ME is the absence of support for the finalize() method. The

finalize() method in J2SE is automatically called before an instance of a

class terminates and typically contains statements that free previously

allocated resources. However, resources in a small computing device are

too scarce to process the finalize() method.

76

• Another dramatic difference is the reduced number of error-

handling exceptions that are supported in J2ME.

• Exception handling drains system resources,

which are precious in a small computing device and therefore the

primary reason for trimming the number of error-handling exceptions.

Typically, run-time errors are automatically

responded to by the native operating system by restarting the small

computing device.

77

• Changes were also made in the Java Virtual Machine that runs on a small

computing device because of resource constraints. One such change

occurs with the class loader.

• JVM for small computing devices requires a custom class loader that

is supplied by the device manufacturer and cannot be replaced or

modified.

• Another feature lacking in the JVM is the ThreadGroup class. You

cannot group threads. All threads are handled at the object level,

although there is a workaround . Also, you cannot call other

programming languages‘ methods and APIs, primarily because of the

memory requirements to execute such calls.

• Two other features of J2SE that are missing from J2ME are weak

references and the Reflection classes.
78

• The standard JVM uses class file verification to protect applications

from malicious code through the use of a

security manager. However, this process is replaced with a two-step

process because of the limited resources available on small

computing devices.

• The first step is called preverification and occurs outside the small

computing device prior to loading the MIDlet. Preverification requires

that additional

attributes called stack maps are inserted into a class file by software

before the second step runs.

79

• Stack maps describe the MIDlet’s variables

and operands located on the interpreter stack.

• After preverification is completed, the MIDlet

class is loaded into the device, and the verifier within the small

computing device validates each instruction in the MIDlet class. The

MIDlet class is automatically rejected if the verifier detects an error.

80

• java.lang.Object

• java.lang.String

• java.lang.Thread

• java.lang.Runnable

• java.lang.StringBuffer

• java.lang.Throwable

• Data Type Classes

• java.lang.Boolean

• java.lang.Character

• java.lang.Long

• java.lang.Byte

• java.lang.Integer java.lang.Short

81

• java.util.Enumeration

• java.util.Stack

• java.util.Hashtable

• java.util.Vector

• Input/Output Classes

• java.io.ByteArrayInputStream

• java.io.DataOutputStream

• java.io.PrintStream

• java.io.ByteArrayOutputStream

• java.io.InputStream

• java.io.Reader

• java.io.DataInput

82

• java.io.InputStreamReader

• java.io.Writer

• java.io.DataInputStream

• java.io.OutputStream

• java.io.DataOutput

• java.io.OutputStreamWriter

• Calendar and Time Classes

• java.util.Calendar

83

J2ME Software Development Kits

• AMIDlet is built using free software packages that are downloadable

from the java.sun

.com web site, although you can purchase third-party development

products such as

Borland JBuilder Mobile Set, Sun One Studio 4 (formerly Forte for

Java), and WebGain VisualCafe Enterprise Suite.

84

• Three software packages need to be downloaded

from java.sun.com.

• These are the Java Development Kit (1.3 or greater) (java.sun.com/

j2se/downloads.html),

• Connected Limited Device Configuration (CLDC)

(java.sun.com/products/cldc/), and

• The Mobile Information Device Profile (MIDP) (java.sun.com/

products/midp/).

Also need the J2ME Wireless Toolkit to develop MIDlets for handheld

devices (java.sun.com/products/j2mewtoolkit/download.html)

.
85

• First, install the Java development kit. The Java

development kit contains the Java compiler and the jar.exe, which is

used to create Java archive files, After downloading the Java

development kit package, unzip the package and run the installation

program.

• Once the Java development kit is installed, place the c:\jdk\bin directory,

or whatever directory you selected for the Java development kit, on the

PATH environment variable

86

• Install the CLDC once the Java development kit is installed. Unzip

the downloaded CLDC files from the java.sun.com web site onto the

d:\j2me directory (J2ME_HOME) on your computer.

• Need to create the j2me directory if one doesn‘t exist. Unzipping

• the CLDC package creates the j2me_cldc subdirectory below the j2me

directory.

• The j2me_cldc has a bin subdirectory that contains the K Virtual

Machine and the preverifier executable files for an assortment of

platforms such as win32.

• Each platform is in its own subdirectory under j2me_cldc. Add the

j2me\j2me_cldc\bin\win32 subdirectory to the PATH environment

variable (see ―Setting the Path in Windows‖ sidebar).

• We should substitute win32 subdirectory with the

appropriate subdirectory for your platform. 87

• Next, download and unzip the MIDP file. Be

sure to use \j2me as the directory for the MIDP file. Unzipping the

MIDP file creates a midp directory. The name of this directory might

vary depending on the version that you download.

88

• Next, create two environment variables. These

are CLASSPATH and MIDP_HOME.

• The CLASSPATH environment variable identifies the path to be

searched whenever a class is invoked. The MIDP_HOME

environment variable identifies the location of the \lib directory that

contains the internal.config file and the system.config file.

• Set the CLASSPATH to d:\j2me\midp1.0.3fcs\classes;.

• Notice that the CLASSPATH terminates with a period. The period

implies the current directory and will cause the current directory to be

searched if a class is not found in the \j2me\midp1.0.3fcs\classes

directory.

89

Hello World J2ME Style

• We can create first MIDlet once the Java development kit,

Connected Limited Device Configuration (CLDC), and Mobile

Information Device Profile (MIDP) are installed.

• The HelloWorld MIDlet shows how to create a simple MIDlet that

can be invoked directly from the class and from a Java archive file.

• how to create a MIDlet suite that contains two MIDlets. These

are HelloWorld and GoodbyeWorld.

90

HelloWorld.java

• Enter the code into a text editor such as Notepad, and save the file in the

j2me\src\greeting directory as HelloWorld.java.

91

• The HelloWorld MIDlet performs three basic

functions in all MIDlets.

• 1. These are to display a text box

• 2. A command on the screen

• 3.Listen to events that occur while the MIDlet is running.

• The HelloWorld MIDlet is created by defining a class called

HelloWorld that extends the MIDlet class and implements a

CommandListener.

• The HelloWorld class contains three private

data members and four methods

92

• The data members are a Display object, a

text box, and a command.

• The methods are startApp(), pauseApp(),

and destroyApp(),

• The fourth method is called commandAction() and is invoked by the

application manager whenever an event occurs.

93

• Two packages must be imported at the beginning of the MIDlet to access

MIDlet classes and lcdui classes.

• MIDlet classes are screen oriented and create a Display object and then

place components of the screen into the Display object.

• The Display object is then invoked later in the MIDlet to display the

screen on the small computing device.

94

• The Display object in this example is called display and will contain a

TextBox object called textBox and a Command object called

quitCommand. All three objects are private and are defined at the

beginning of the HelloWorld class definition.

• The startApp() method contains the necessary statements to

invoke previously defined objects.

• The startApp() method begins by creating an instance of the Display

object by calling the getDisplay() method. The instance of the Display

object is assigned to the display Display object that is previously

defined in the class.

95

• Calling getDisplay multiple times always returns the same Display

reference for the specified MIDlet.

• Next, an instance of a command object is created. There are three values

required when creating a command object. The first value is the label of

the command that will appear on the screen.

96

`

• The label in this example is Quit. The next value is the type of

command, which is a screen command.

• The third parameter determines the priority of the command, which is

the first priority—the higher the number, the lower the priority. The

application manager uses priority to determine the order in which a

command appears in a menu if the MIDlet uses a menu.

• The last instance of an object that is created in the startApp() is a

TextBox object. Four values are necessary to create an instance of a

TextBox object.

97

• The first is the caption for the TextBox object followed by the text

that will appear in the TextBox object.

• In this example, HelloWorld is the caption and My first MIDlet is the

text. The other two values are coordinates used by the application

manager to position the TextBox object on the screen.

98

• Next, the Command object must be associated

with the TextBox message. This is accomplished by calling the

addCommand() method of the TextBox object and passing the

addCommand() method the Command object. Once the Command

object is associated with the TextBox object, the CommandListener

must be associated with the TextBox object in order for the

CommandListener to respond to events occurring when the TextBox

object is displayed on the screen.

99

• The setCommandListener() method of the TextBox object is used to

associate the TextBox object with the CommandListener.

• And the final statement within the startApp() method associates the

TextBox object with the Display object by calling the setCurrent()

method of the Display object and passing the setCurrent() method the

TextBox object.

100

• When the application manager of the small

computing device runs the HelloWorld MIDlet, the startApp() method is

the first method that is invoked, which causes the display that contains the

Hello World message and the Quit command to be shown on the screen.

• The HelloWorld MIDlet is required to define a pauseApp() method and a

destroyApp() method, but these methods can remain empty because no

special action is taken when the HelloWorld MIDLet is paused or

destroyed.

101

• The commandAction() method contains statements that evaluate

events that occur while the HelloWorld MIDLet is running.

• The command selected by the user is passed to the commandAction()

method as the first parameter. The second parameter is a Displayable

object, which is a reference to the TextBox that is associated with the

command. A TextBox along with other interface objects are Displayable

objects.

102

• An if statement is used to determine whether the user selected the

Command object that is associated with the Hello World TextBox

object. If so, the destroyApp() method

• is invoked and is passed a boolean false.

• The destroyApp() method is called before the MIDlet is

destroyed; afterwards the notifyDestroyed() method is called to notify

the application manager that the HelloWorld MIDLet has entered into

the destroyed state.

• Prior to invoking the notifyDestroyed() method, a MIDlet should have

completed its own garbage collection.

103

Compiling Hello World

• Compiling a MIDlet is a two-step process.

• The first step is to use the Java compiler to transform the source file

into a class file.

• The second step is to preverify the class file, The preverification

generates a modified class file.

• Make j2me\src\greeting the current

directory, command at the command line.

104

• javac -d d:\j2me\tmp_classes -target 1.1 – bootclasspath

d:\j2me\midp1.0.3fcs\classes HelloWorld.java

• The compiler produces a file called HelloWorld.class in the

j2me\tmp_classes\

greeting directory. The greeting directory is created because of the

package greeting declaration in the source code.

105

• Next to preverify the HelloWorld.class that was generated by the

compiler. Make sure that j2me\src\greeting is the current directory and

enter the following command:

• preverify -d d:\j2me\classes -classpath

d:\j2me\midp1.0.3fcs\classes d:\j2me\tmp_classes

106

• We should use two preverify options. The -d option places the class

file within the tmp_classes directory.

• The second option is -classpath, which points to the location of the library

classes that come with the MIDP. Preverification files are contained in the

midp1.0.3fcs\classes directory.

• The output of the javac compiler is in

the tmp_classes directory.

107

Running Hello World

• A MIDlet should be tested in an emulator before being downloaded

to a small

computing device. An emulator is software that simulates how a

MIDlet will run in a small computing device.

• There are two ways to run a MIDlet.

• These are either by invoking the MIDlet class or by creating a JAR

file, then running the MIDlet from the JAR file.

108

• Make sure that j2me\src\ greeting is the
current directory, and then enter the
following command.

• midp -classpath d:\j2me\classes
greeting.HelloWorld

109

Deploying Hello World

• A MIDlet should be placed in a
MIDlet suite after testing is completed.

• The MIDlet suite is then packaged into a

JAR file along with other related files for

downloading to a small computing device.

This process is commonly referred to as

packaging.

110

• In the HelloWorld example, the
MIDlet suite contains one MIDlet,
which is the HelloWorld.class.

• Before packaging the MIDlet into a JAR
file, you‘ll need to use an editor to create
the manifest file shown below.

111

Helloworld Manifest

• MIDlet-1: HelloWorld, ,

greeting.HelloWorld

• MIDlet-Name: Hello World

• MIDlet-Version: 1.0

• MIDlet-Vendor: IV IT• MIDlet-

1:

HelloWorld

,/greeting/myLogo.png, greeting.HelloWorld

• MicroEdition-Configuration: CLDC-1.0

• MicroEdition-Profile: MIDP-1.0

112

• The manifest describes the JAR file. The
manifest file should be saved as manifest.txt
in the j2me\src\greeting directory.

• Notice that the MIDlet description within the

manifest file contains a graphic call,
/greeting/mylogo.png, that is associated
with the HelloWorld MIDlet.

• Any PNG-formatted image file can be used
in place of mylogo.png.

113

• You can create the JAR file once

the manifest.txt file is saved in the

j2me\src\ greeting directory.

• Make sure the j2me\src\greeting directory is
the current directory, and then create the JAR
file by entering the following command:

• jar -cfvm d:\j2me\midlets\HelloWorld.jar
manifest.txt -C d:\j2me\classes greeting

114

• The final piece of the Hello World package is

a JAD file. Create the JAD file shown below

using an editor, and save the JAD file in the

j2me/src/greeting directory.

115

Helloworld JAD

• MIDlet-Name: Hello World

• MIDlet-Version: 1.0

• MIDlet-Vendor: IV IT

• MIDlet-Description: My First MIDlet

suite• MIDlet-

1:

HelloWorld

,/greeting/myLogo.png, greeting.HelloWorld

• MIDlet-Jar-URL: HelloWorld.jar

• MIDlet-Jar-Size: 1428

116

• Copy the HelloWorld.jad file into the j2me/midlets
directory, and then make j2me/midlets the current
directory

• Invoke the MIDlet by entering the following command.

• midp -classpath HelloWorld.jar -Xdescriptor

HelloWorld.jad

• Once you are satisfied that the MIDlet suite packaged in
a JAR file is operating properly in the emulator, you can
download the JAR file to a small computing device.

• The downloading process is device dependent, and
therefore you must refer to the device‘s documentation
or the manufacturer‘s web site for steps for downloading
your JAR file.

117

What to Do When Your MIDlet

Doesn‘t Work Properly

• a MIDlet won‘t compile or run properly.

Although each MIDlet is unique, there are a

few common problems that cause a MIDlet

to fail. Here are areas to investigate if you

experience a failure.

118

• If the compiler, preverifier, JAR program, or

emulator doesn‘t run from the command line,

review the value of the PATH, CLASSPATH,

and MIDP_HOME environment variables to

be sure you have included the exact path to

these programs.

• Also make sure that the current directory
reference (a period) is included in the

CLASSPATH

environment variable.
119

• Running out of environment space is a common
problem on some platforms. We can work
around this problem by creating an executable
file, such as a batch file in Windows, that sets the
environment variables for J2ME components.

• Run this executable file before compiling and
testing your MIDlet to temporarily reset
environment variables. The environment ariables
return to their original values the next time you
restart your computer or log in.

120

• Many types of errors can occur during
the compiling and packaging process.

• syntax errors, which you‘ll be able to fix
quickly by reviewing the source code.

• Other errors can be caused by poorly formed
command line options and arguments, such as

failing to insert a space between an option
and a period when referencing the current
directory.

121

• Another common occurrence is for a MIDlet

suite to run fine in test but fail to run after

downloaded to the small computing device.

In this case, the application manager on the

small computing device might reject the

MIDlet suite because the MIDlet suite cannot

be run on the device. An oversize MIDlet

suite is a likely suspect.

122

JAD and Manifest(.jad & .mf)

• There will likely be occasions when you need to have your
application perform in a certain way, depending on the type
of small computing device that runs the application.

• Although you can create versions of your application for
specific small computing devices, there is a more
efficient approach to tailoring an application to a device.

• First, design your application with switches that
activate and/or deactivate routines depending on the
value of a setting.

• A setting is a value assigned to a variable that is

• either created within the application or passed to
the application as a command line parameter.

123

Multiple MIDlets in a MIDlet Suite

124

J2ME Wireless Toolkit

• Building and running a J2ME application at

the command line is cumbersome, to say the

least, when you are creating a robust

application consisting of several MIDlets.

• Creating your application within an integrated

development environment is more productive

than developing applications by entering

commands at the command line.

125

• The J2MEWireless Toolkit is used to develop

and test J2ME applications by selecting a few

buttons from a toolbar. However, the

J2MEWireless Toolkit is a stripped-down

integrated development environment in that

it does not include an editor, a full debugger,

and other amenities found in a third-party

integrated development environment.

126

MIDlets on the Internet

• The Wireless Toolkit can run MIDlets that
access Internet resources by configuring the
emulator to interact with a proxy server and
let you monitor activities between the MIDlet
and the Internet for debugging purposes.

• You configure the emulator for the Internet

by selecting Edit | Preferences. The Network
Configuration tab is used to set the port
number and server name of the proxy server.

127

• The Trace tab is used to set preferencesfor monitoring
the interactions between the MIDlet and the Internet.

• There are four options that you can set by selecting
the appropriate check boxes

• The Trace Garbage Collection option displays the status
of objects that include memory allocation of existing
objects, the number of objects on the heap, and the size of
the largest free object.

• The status is displayed whenever the garbage collector is

• invoked.

• The Trace Class Loading option will display the name
of each class as it is loaded into the emulator.

128

• The Trace Class Method Calls option

logs object and related methods when

they are called. Display Exceptions

causes all exceptions to be displayed

regardless of whether they are caught or

uncaught.• The Performance, Monitor, and Storage
tabs are used to fine-tune the Wireless.

• Toolkit for those aspects of an emulator.

129

• However, J2ME applications are capable of
reading the value of a setting from a JAD

file and manifest file.

• A setting is a user-defined value created in
either file.

• A good practice is to create a user-defined value
within the JAD file rather than within the
manifest file because the JAD file can be
modified without having to repackage your
application.

• A manifest file is a component of a package.
130

• A user-defined value is read by invoking

the getAppProperty() method and passing

the name of the user-defined value to the

getAppProperty() method.

• The getAppProperty() returns the user-

defined value from either the manifest file or

the JAD file depending on which of these

files contains the user-defined value.

131

Model- Version: M253.

• how to read this user-defined value during run
time without having to recompile or repackage the
application.

• MIDlet-Name: Best MIDlet

• MIDlet-Version: 2.0

• MIDlet-Vendor: MyCompany

• MIDlet-Jar-URL:
http://www.mycompany.com/bestmidlet.jar

• MIDlet-

1:

BestMIDlet

,/images/BestMIDlet.png,

Best.BestMIDlet

• Model-Version: M253

132

http://www.mycompany.com/bestmidlet.jar

• public class BasicMIDletShell extends

MIDlet

• {• public void startApp()

• {

• System.out.println(getAppProperty("Model-Version"));

• }

• public void pauseApp()

• {

• }

• public void destroyApp(boolean unconditional)

• {

• }

• }

133

lcdui

• LCDUI is a shorthand way of referring to

the MIDP user interface APIs, contained in

the javax.microedition.lcdui package.

Strictly speaking, LCDUI stands for

Liquid Crystal Display User Interface. It's

a user interface toolkit for small device

screens which are commonly LCD

screens.

134

UNIT-III

• Commands, Items, and Event Processing: J2ME User Interfaces, Display

Class, The Palm OS Emulator, Command Class, Item Class, Exception

Handling. High-Level Display: Screens, Screen Class, Alert Class, Form Class,

Item Class, List Class, Test Box Class, Ticker Class. Low-Level Display:

Canvas: The Canvas, User interactions, Graphs, Clipping Regions and

Animation.

135

The Reality of Working in a J2ME World

• A small computing device has a radically different hardware

configuration than traditional computing devices(desktop computers

and servers).

• MoreConcentrate on Hardware Configuration for designing J2ME

applications

136

Traditional and Small Computing Devices

• 1. Traditional- Continues Power- from Power Grid

• Small Computing Devices-Battery Power (Settop

Boxes- Mobiles)

• 2. Traditional computing devices and small Computing devices another

difference is the network connection.

• mobile small computing devices connect to a

network via a radio or infrared connection

• Some nonmobile small computing devices such as set- top boxes use a

hard-wired network connection similar to traditional computing devices.

137

• Data transmission between a mobile small computing device and a

traditional computing device is slow in comparison to a hard-wired

network connection because radio and infrared technology offers a

narrower transmission bandwidth than that found in hard-wired

network connections.

138

• Many users of your J2ME application expect the same response from your

application as they experience from desktop computer applications.

• Therefore, you must design your J2ME application to minimize and

optimize data transmission with offline data sources.

• One way to optimize your J2ME application is called ROMizing the

application for run-time operations. ROMizing creates a machine code

image of an application before the application is deployed on the small

computing device.

• In comparison, using a justin- time compiler, or other

techniques employed by the Java Virtual Machine, optimizes

J2SE and J2EE applications.

139

Best Practices

• Best practices are proven design and programming

techniques used to build J2ME systems.

• Patterns are routines that solve common programming

problems that occur in such systems.

• Professional developers use best practices and patterns to avoid making

common mistakes when designing and building a J2ME application.

140

Best Practices and Patterns

• 1. Keep Applications Simple

• 2. Keep Applications Small

• 3. Limit the Use of Memory

• 4. Off-Load Computations to the Server

• 5.Manage Your Application‘s Use of a
Network Connection

141

• 6. Simplify the User

Interface
• 7. Use Local Variables

• 8. Don‘t Concatenate Strings

• 9. Avoid Synchronization

• 10.Thread Group Class Workaround

• 11. Upload Code from the Web Server

• 12. Reading Settings from JAD Files

142

• 13. Populating Drop-down Boxes

• 14. Minimize Network Traffic

• 15. Dealing with Time

• 16. Automatic Data Synchronization

• 17. Updating Data that Has Changed

• 18. Be Careful of the Content of the
startApp() Method.

143

Keep Applications Simple

• because of limited resources available and
the inability to easily expand resources to

• meet application requirements. Typically,

you design an application by dividing it

into objects that have associated data and

methods.(Order Form)

144

Keep Applications Small

• J2ME application expects the application to download
quickly to the small computing device and run among other
applications on the device because fewer bytes need to be
downloaded and stored in memory on the device.

• In J2ME application should also deploy application as a
JAR file.

• A JAR file is a compressed version of a J2ME application.

• On some occasions, even a stripped-down version of
application takes too long to download or simply is
too large to run on the small computing device.

• In these situations, divide application into several
MIDlets, and then combine the MIDlets in a MIDlet suite

145

Limit the Use of Memory

• In addition to removing unnecessary features from
application, design application to manage memory
efficiently.

• There are two types of memory management in
J2ME application.

• These are overall memory management and peak
time memory management.

• Overall memory management is designed to reduce
the total memory requirements of an application.

• Peak memory management focuses on minimizing
the amount of memory the application uses at times
of increased memory usage on the device.

146

• A primary way to reduce total memory

requirements of your application is to avoid

using object types. Instead, use scalar types,

which use less memory than object types.

• Likewise, always use the minimum data type

suited for storing data. For example boolean

instead of int will create a dramatic impact on

the performance of a J2ME application.

147

• Peak time memory management requires to manage
garbage collection.

• J2ME does have a garbage collector, Here are a few ways
to manage own garbage collection:

• First, allocate an object immediately before the object is used in
the application rather than at the beginning of application.

• Allocating memory at the beginning of the application reserves
memory long before the object will be used within the application.
This memory could be utilized by other parts of the application until
the application requires the object.

• Next, set all references to objects to null once the application no
longer needs the object.

• This decreases the memory application of the object to the
minimum memory necessary to store an object reference.

148

• Always reuse objects instead of creating
new objects.

(reduces both memory allocation and the
need for processing power).

Memory allocation is reduced because multiple

references can use the same object at

different times in the application‘s life cycle.

149

• The fewer exceptions that might be thrown,
the less memory application requires.

• And the last best practice to reduce memory

usage is to release all resources immediately

following their use within application.

150

Off-Load Computations to the Server

• Small computing devices are designed to run

applications that do not require intensive processing
because processing power common to desktop
computers is not available on these devices.

• This means that we must design your J2ME application
to perform minimal processing on the small computing
device.

• However, the reality is that sophisticated, industrial-
strength applications require processing that is
beyond the capabilities of these devices.

151

• But there is an alternative that lets you

combine the convenience of a small

computing device with an application

that requires intense processing.

• i.e client-service J2ME application or
web services

152

Manage Your Application‘s Use of

a

Network Connection
• concerned about the availability of a

network connection.

• small computing devices are mobile, wireless

devices where a network connection is not

always available, and even when available,

the connection might be broken during

transmission due to the positioning of the

transmitter and receiver

153

• Cellular telephone networks use technology that
attempts to maintain connection as the mobile
device moves from one cell to another cell.

• In reality there are dead zones where the mobile
device is outside the range of the cellular
telephone transceiver.

• The connection is broken in these dead zones, and
sometimes it cannot be automatically reestablished
by the telephone company. The drop in
communication can occur without warning, as many
cellular telephone users have experienced.

154

• by keeping transmissions short—transfer the
minimum information necessary to accomplish a task.

• Instead of retrieving all emails in an inbox, you can
retrieve the ―From,‖ ―Subject,‖ and ―Data received‖
fields from the last ten emails that were placed in the
inbox. Your J2ME application can present these fields

on the screen and then give the user the options to
select an email to read, select a preview for an email,
delete an email, or retrieve the next ten emails.

155

• Consider using store-forwarding technology and a
server-side agent whenever your

J2MEapplication requests a lot of information.

• A server-side agent is software running on the server
that receives a request from a mobile device and
then retrieves requested information from a data
source, which is very similar to the business logic
layer of web services technology.

• The results of the query are then held by the agent
until the mobile device asks for the information, at
which time the information is forwarded to the
mobile device.

156

• Always build into your mobile application a

mechanism for recovering from a transmission

drop. For example, retain key information about

a request on the mobile device until the request

is fulfilled.

• The mobile application can then use the

retained key information to resubmit the

request either automatically or as a user option

if there is a breakdown in communication.

157

Simplify the User Interface

• Text boxes, combo boxes, radio buttons, check

boxes, and push buttons are the Graphical User

interface Objects for Desktop Applications.

• small computing devices use a variety

• of user display and input devices cellular
telephone, have an inch-square display and
a telephone keypad for data input.

• Other devices, such as PDA have wide rectangular
screens and a hunt-and-peck keyboard.

158

• Rule of Thumb

• A,B,C

• Download and Interact

• Depend on Device

Application

Manager
rather than your own

• Use short cut keys than all words

159

Use Local Variables

• Data storage is a key area within an application for
reducing excessive processing.

• Encapsulating data within an object tightly controls
access to the data, this advantage is realized at the
expense of additional processing time whenever the

application accesses the data member.

• Accessing a data member of a class requires more
processing steps than accessing the same data if
the data is stored as a local variable.

• Therefore, accessing a local variable is less
processing intense than accessing a class member.

160

• We can increase processing of your

application if you eliminate the extra steps

of accessing a data member of a class by

assigning values to local variables.

161

Don‘t Concatenate Strings

• Concatenation also increases the application‘s

use of memory in addition to increasing the

application‘s processing requirements, which

becomes apparent by comparing processing a

string with processing a concatenated string.

162

• the application wants to compare two strings,
both of which are four characters and reside

in memory.

• The application instructs the small computing
device to copy the first character of each
string into the CPU for comparison.

• This process continues until either the null
character is reached or a letter pair is different.

• The entire process might require ten reading
instructions and five comparison instructions,
depending on when a mismatch is discovered.

163

• additional processing steps are necessary
if one of those strings is a concatenated string.

• The concatenation process introduces six
additional processing steps: three instructions to
read each character of the second string and three
more instructions to write those characters to the
end of the first string.

• Besides the increase in processing steps,
concatenation also requires more memory than
if the first string and second string did not have
to be concatenated.

164

• Therefore, you can reduce processing time and
memory usage by avoiding concatenating strings.

• An alternative is to concatenate strings
before the string is loaded into the small
computing device.

• If there is a need to concatenate strings, use a
StringBuffer object.

• This makes efficient use of memory when
strings are appended to the buffer, although
there is additional processing overhead.

165

Avoid Synchronization

• Invokin

g

a thread is a way of sharing a
routine among other operations.

• For example, a sort routine can be shared

simultaneously by multiple operations that

must sort data(Deadlocks and other conflicts).

• These problems are avoided by
synchronizing the invocations of a thread.

166

• Always use a thread whenever an operation
takes longer than a tenth of a second to run
because a thread requires less overhead
than non-thread invocation methods.

• To increase performance is to avoid using
synchronization where possible.
Synchronization requires additional
processing steps that are not necessary when
synchronization is deactivated.

167

• avoid using synchronization unless there is
a high likelihood that conflicts among

operations will occur.

168

Thread Group Class Workaround

• Grouping thread objects is made possible by
the ThreadGroup class, but J2ME does not
support this class.

• We can work around it, however, by creating your
own grouping using the Collection class and store
groups of thread objects in a collection and then

use standard collection methods to start and stop

threads in the collection and assign threads to

particular thread objects within the collection.

169

• Les

s
processing is required to assign a

thread to an existing thread object than to
create a new thread object.

• A common way of reducing the overhead of

starting a new thread is to create a group of

thread objects that are assigned threads as

needed by operations within an application.

170

Upload Code from the Web Server

• Version management is always a concern

of application developers, especially when

applications are invoked from within a

small computing device.

• It can be a nightmare keeping track of various
versions of an application once an application
is distributed.

171

• You can reduce and possibly eliminate
problems associated with multiple versions of

the same application by requiring invocation of
the application from a web server.

• Here‘s how a small computing device can invoke a
web server–based J2ME application:

• midp -transient
http://www.mycompany.com/welcome.jad

• Rather than running a local JAD file, the -transient
option specifies that the JAD file is located on a web
server identified by the URL on the command line.

172

http://www.mycompany.com/welcome.jad

• In this way, the developer only needs to update

one copy of the application, and distribution is
handled by making the latest version of the
application available on the web server.

• This technique is ideal for set-top boxes that are
connected to a web server via a cable television
connection or satellite connection.

• Software can be updated each time the settop
box comes online without the user or a
technician having to reinstall the application.

173

Reading Settings from JAD Files
program reads the value from JAD

• public class BasicMIDletShell extends MIDlet

• {

• public void startApp()

• {

• System.out.println(getAppProperty("Model-Version"));

• }

• public void pauseApp()

• {

• }

• public void destroyApp(boolean unconditional)

• {

• }

• }

174

JAD file contains User defined data

• MIDlet-Name: Best MIDlet

• MIDlet-Version: 2.0

• MIDlet-Vendor: MyCompany

• MIDlet-Jar-URL:
http://www.mycompany.com/bestmidlet.jar

• MIDlet-1: BestMIDlet,

/images/BestMIDlet.png, Best.BestMIDlet

• Model-Version: M253

175

http://www.mycompany.com/bestmidlet.jar

• when you need to have your application perform in a
certain way, depending on the type of small computing

device that runs the application.
• Although you can create versions of your application for

specific small computing devices, there is a more
efficient approach to tailoring an application to a
device.

• First, design your application with switches that
activate and/or deactivate routines depending on the
value of a setting.

• A setting is a value assigned to a variable that is either
created within the application or passed to the application
as a command line parameter.

176

• However, J2ME applications are capable of reading the
value of a setting from a JAD file and manifest file. A
setting is a user-defined value created in either file.

• A good practice is to create a user-defined value within the

JAD file rather than within the manifest file because the

JAD file can be modified without having to repackage your

application.

• A manifest file is a component of a package

• A user-defined value is read by invoking the
getAppProperty() method and passing the name of the user-
defined value to the getAppProperty() method.

• The getAppProperty() returns the user-defined value from
either the manifest file or the JAD file depending on which
of these files contains the user-defined value.

177

Populating Drop-down Boxes

• A drop-down box is a convenient way for users
to choose an item from a list of possible items.

• Traditionally, content of a drop-down box is

loaded from the data source once when the
application is invoked and remains in memory

until the application terminates.

Load the list dynamically from a
server whenever the list is long.

178

• Release the list once the user has made a
selection, and then reload the list the next time
the drop-down box is invoked.

• In this way, memory used to store the list can
be reused between calls to the drop-down box.

• caching a long list limits memory availability

to other routines within your application and

to other applications running on the small

computing device.

179

Minimize Network Traffic

• Developing a J2ME application is a
balancing act between deciding whether
processing should be performed by the
small computing device or by a server.

• A good practice is to off-load as much
processing as is reasonable to a server and
minimize the number of processes that need
to be invoked by the J2ME application in
order to reduce network transmissions.

180

• Collect all info and forward to server when
the process invokes.

• the database server can create the customer

list in the desired order without having the

user make subsequent requests to

manipulate the customer information.

181

Dealing with Time

• Desktop computers and servers are stationary,
and therefore current time reflects the time
zone where these devices are located.

• Mobile small computing device because the
device can be moved to multiple time zones.

• cellular telephones have a geographic
positioning feature that enables the
device‘s operating system to know the
exact location of the device.

182

• Those mobile small computing devices that

have a built-in geographic positioning system

typically adjust the date/time setting on the

device automatically as the device moves to

a new time zone.

183

• The best practice is to always store time

based on Greenwich Mean Time (GMT) by

using the getTime() method of the Date class.

In this way, the time stamp of all the data is

recorded in a uniform time zone, facilitating

the data analysis.

184

Automatic Data Synchronization

• Storage of data in a small computing device is
temporary because the device usually doesn‘t
have secondary storage.

• All data is stored in primary storage (memory) and

can be lost whenever the device loses power.

• Failure to do this will cause both devices to
become unsynchronized, resulting in erroneous

data being displayed and manipulated by
the small computing device.

185

• A good practice is to build into your

J2ME application a routine that

automatically uploads the latest data

when the J2ME application is

invoked.

• Likewise, your J2ME application should

automatically download data that has

changed to the secondary storage device

prior to the termination of the application.

186

• The small computing device must be connected
to the network for both actions to occur. It is
common for the device to automatically log
onto the network when the device is activated.
However, some devices might require the user
to log onto the network.

• If the user doesn‘t log onto the network, your
application is unable to update data in the
small computing device with data stored in the
secondary storage device.

187

• A good practice is to prompt the user to open a

network connection while your J2ME

application begins running or right before the

application terminates.

• The prompt should give the user two choices: open

a network connection or skip opening a network

connection until the next time the J2ME application

is opened.

• The prompt should also explain that if the user

postpones opening a network connection, the data

retained in the small computing device might

become outdated and might be lost should the

device lose power.
188

Updating Data that Has Changed

• Keep in mind that synchronizing data can be

a time-consuming process, depending on the

speed of the network connection and the

amount of data that is being updated.

• Data can become outdated in two ways: when

data changes on the small computing device

and when data changes on the secondary

storage device, which is usually the server.

189

• Three options for updating data: incremental
updates, batch updates, and full updates.

• Incremental updates require an exchange

of data to occur whenever data changes,

either on the small computing device or on

the secondary storage device.

• An

d

only the changed data

isexchanged between devices.

190

• Performance decreases as the number of incremental data changes
occur because the changed data is transmitted following the
modification of the data.

• The batch update option eliminates the need for incremental updates by

updating a batch of data either periodically or on demand, controlled by

the user

of the application.

• A batch update only transmits data that is changed by either the small
computing device or the secondary storage device.

191

• A full update should be available as a user- invoked option because

of the time required to update all data.

• Typically, this option is used in an emergency to restore data when

incremental and batch updates are unsynchronized.

192

Be Careful of the Content of the startApp()

Method

• The startApp() method is called once during the life of the MIDlet and

therefore is a perfect place within your application to store code that is

to execute once each time the

MIDlet is invoked.

MIDlet is started more than once by

the device‘s application manager.

193

• The application manager might pause the MIDlet while another

MIDlet is processing and then restart the MIDlet by calling the

startApp() method.

• Statements that should run once during the lifetime of the MIDlet

should not be placed in the startApp() method and instead should

appear within the MIDlet constructor.

194

UNIT-IV
Record Management System: Record Storage, Writing and Reading

Records, Record Enumeration, Sorting Records, Searching Records,

Record Listener.

JDBC Objects: The Concept of JDBC, JDBC Driver Types, JDBC

Packages, Overview of the JDBC Process, Database Connection,

statement Objects. Result set, Transaction processing, metadata, Data

Types, Exceptions.

JDBC and Embedded SQL: Model Program, Tables, Indexing,

Inserting Data into Tables, Selecting Data from a Table, Metadata,

Updating Tablets, Deleting form a Table. Joining Tables, Calculating

Data, Grouping and Ordering Data, Sub queries, VIEWS.

195

• Application uses a variable to accumulate the

total of several operations within the MIDlet. Typically, you initialize the

variable once when the MIDlet is invoked the first time.

• The initialization must be performed in the MIDlet constructor and not

in the startApp() method, otherwise the total will be reset to zero each

time the MIDlet is activated after a pause in operations.

196

MIDP User Interface APIs

• The MIDP user interface API is divided into a high-and low-level

API. The high-level API provides input elements such as text

fields, choices, and gauges.

• In contrast to the Abstract Windows Toolkit (AWT), the high-level

components cannot be positioned or nested freely.

• There are only two fixed levels: Screens and Items. The Items can

be placed in a Form, which is a specialized Screen.

197

• The high-level Screens and the low-level class

Canvas have the common base class

Displayable. All subclasses of Displayable fill

the whole screen of the device. Subclasses of

Displayable can be shown on the device using

the setCurrent() method of the Display object.

• The display hardware of a MIDlet can be accessed

by calling the static method getDisplay(), where

the MIDlet itself is given as parameter.

198

199

Display and Displayable

• The difference between Display and

Displayable is that the Display class represents

the display hardware, whereasDisplayable is

something that can be shown on the display.

The MIDlet can call the isShown() method of

Displayable in order to determine whether the

content is really shown on the screen.

200

201

202

203

204

• A user interface is a set of routines that displays

information on the screen, prompts the user to

perform a task, and then processes the task.

• Ex: J2ME email application: list of menu

options, such as Inbox, Compose, and Exit, and

then prompt the user to make a selection by

moving

the cursor keys and pressing a key on the small

computing device.

205

Three kinds of User Interfaces

• 1. Command

• 2. Form

• 3.Canvas

206

Command User interface

• A command-based user interface consists of

instances of the Command class.

• An instance of the Command class is a button that the
user presses on the device to enact a specific task.

• For example, Exit, Help etc

• Exit and Help are instance‘s of the Command

Class‘s associated with an Exit button and Help button
on the keypad to terminate the application and linked
the Help key whenever the user requires assistance.

207

Form User Interface

• A form-based user interface consists of an

instance of the Form class that contains

instances derived from the Item class such as

text boxes, radio buttons, check boxes, lists,

and other conventions used to display

information on the screen and to collect

input from the user.

A form is similar to an HTML form.

208

Canvas User Interface

• A canvas-based user interface consists of

instances of the Canvas class within which

the developer creates images such as

those used in a game.

209

Display Class

• Th

e

device‘s screen is referred to as the
display, we can interact with the display by
obtaining a reference to an instance of the
MIDlet‘s Display class.

• Each MIDlet has one and only one instance of
the Display class, Every J2ME MIDlet that
displays anything on the screen must obtain a
reference to its Display instance.

• This instance is used to show instances
of Displayable class on the screen.

210

The Displayable class

• The Displayable class has two

subclasses.

• 1. Screen class

• 2. Canvas class.

211

The Screen class

• The Screen class contains a subclass called

the Item class, which has its own subclasses

used to display information or collect

information from a user (such as forms,

check boxes, radio buttons).

• The Screen class and its derived classes
are referred to as high-level user interface
components.

212

The Canvas class

• The Canvas class is used to display graphical

images such as those used for games.

Displays created using the Canvas class are

considered a low-level user interface and are

used whenever you need to display a

customized screen.

213

• Instances of classes derived from the Displayable

class are placed on the screen by calling the

setCurrent() method of the Display class. The

object that is to be displayed is passed to the

setCurrent() method as a parameter.

• It is important to note that instances of

derived classes of the Item class are not

directly displayable and must be contained

within an instance of a Form class.

214

• An instance of an Item class appears on the
screen when the setCurrent() method is
used to show the form.

• The getCurrent() method of the Display class

is used by a MIDlet to retrieve information

about the instances of derivatives of the

Displayable class.

215

• Obtain an instance of the Display class by

declaring a reference to the instance and

then assigning the instance to the reference

by invoking the getDisplay() method,

Multiple calls to the getDisplay(this) method

return the same Display instance.

• private Display

display;display =

Display.getDisplay(this);

216

• import javax.microedition.midlet.*;

• import javax.microedition.lcdui.*;

• publi

c

class CheckColor extends
MIDlet implements CommandListener

• private Display display;

• private Form form;

• private TextBox textbox;

• private Command exit;

217

• The MIDlet is called CheckColor and begins
by creating references for instances used

in the MIDlet.

These instances are for the Display class, Form
class, TextBox class, and Command class.
understand that the instance of the Display
class displays a form that contains a text box
and the Exit command.

• The color status appears in the text box, and
the Exit command terminates the MIDlet.

218

• public

CheckColor()

• {• display = Display.getDisplay(this);

• exit = new Command("Exit", Command.SCREEN, 1);

• String message=null;

• if (display.isColor())

• {

• message="Color display.";

• }

• else

• {

• message="No color display";

• }

• textbox = new TextBox("Check Colors", message, 17,

0);

• textbox.addCommand(exit);

• textbox.setCommandListener(this);

• }

219

• Statements within the constructor are
executed once during the life of the
MIDlet when the MIDlet is invoked.

• Th

e

first statement in the constructor

creates an instance of the Display class by

calling the getDisplay() method, which is

assigned to the display reference.

220

• Next, an instance of the Command
class is created.

• Understand that the label of the instance of
the Command class in this example is Exit
and the instance is assigned to the exit
reference. An instance of the TextBox class is
then created.

• The caption of this instance is ―Check

Colors‖

and is assigned to the form reference.
221

• The instance of the Command class is then

associated with the instance of the TextBox

class by calling the addCommand() method

and passing the method reference to the

Command class instance, which in
this example is called exit.

222

• A MIDlet must associate a CommandListener
whenever a Command class is instantiated.

• A CommandListener listens for command events
to occur during the execution of the MIDlet.

• A command event is the selection of a
Command object by the user of the MIDlet.

• Associate a CommandListener with a
MIDlet by specifying the listener as an
argument to the setCommandListener()
method.

223

• Th

e

MIDle

t

then call

s

the

isColor(

)

method, which returns a boolean value.

• A true indicates that the device can
display color.

• A false is returned if the device is incapable

of displaying colors.

224

• The instance of the TextBox class is
displayed with a message, depending on
the return value of the isColor() method.

• textbox = new

TextBox("CheckColors", message, 17, 0);

• The first parameter is the caption of the text
box, and the second parameter is the text
that appears in the text box.

225

• The Exit command is also associated with the
text box, so the user can terminate the MIDlet
when the text box appears on the screen.

• Likewise, a CommandListener is also
specified for the text box Exit command,
which in this case is the MIDlet itself because
the MIDlet implements the
CommandListener.

• Once the constructor is defined, define the
standard methods required by a MIDlet.

226

• public void startApp()

• {

• display.setCurrent(textbox);

• }

• public void pauseApp()

• {

• }

• public void destroyApp(boolean unconditional)

• {

• }

• public void commandAction(Command command,

• Displayable displayable)

• {

• if (command == exit)

• {

• destroyApp(true);

• notifyDestroyed();

• }

• }

• }

227

• These are the startApp() method, pauseApp()
method, and destroyApp() method.

• The startApp() is called by the device‘s

application manager whenever the MIDlet

is started or restarted following a pause in

operation.

228

• The startApp() method contains a statement

that calls the setCurrent() method and is

passed reference the instance of TextBox

class that will be shown on the screen.

• You can include additional statements in the
startApp() method as needed by your MIDlet.

229

• The pauseApp() method definition and the
destroyApp() method definition are empty in this
example because there are no special statements

that must be executed when the MIDlet is paused by

the device‘s application manager.

• The commandAction() method must be defined to
receive event reports from the device‘s application
manager.

• Whenever the user selects a command, the

commandAction() method is invoked by the application

manager to process the command.

230

• The application manager passes the commandAction()

method reference to the selected command, which is
then compared to known commands that were

created for the MIDlet.

• In this sample the commandAction statement matches
the Exit command, which invokes a destroyApp()
method to unconditionally terminate the MIDlet.

• After the execution of the destroyApp() method,
the notifyDestroyed() method is called to notify the
application manager that the MIDlet is terminating.

231

The Palm OS Emulator

• Before run the Palm OS emulator in the J2ME
Wireless ToolkitDownload Palm OS ROM files
from the Palm web site (www.palmos.com/dev).

• The ROM file contains the Palm OS required for
the emulator to properly perform like a Palm PDA.

• Also need to join the Palm OS Developer Program
(free) and agree to the online license (free) for ROM
files before you are permitted to download them.

• Be prepared to spend a few minutes downloading
since ROM files are fairly large, even when
compressed into a zip file.

232

http://www.palmos.com/dev

• Always choose the latest version of the Palm

OS for downloading unless you are

designing a MIDlet to run on a particular

type of Palm device. If your MIDlet is Palm

device specific, download the ROM file that

corresponds to the Palm OS that runs on that

Palm device.

233

• If download the wrong ROM, because the Palm
OS emulator displays an error when running your
MIDlet, indicating the proper version of the Palm

OS that is required to run your MIDlet on the
Palm device that is being tested in the emulator.

• Need to be prompted to enter the location of
the ROM file on hard disk into a dialog box
the first time that run the Palm OS emulator.
Subsequently, the Palm OS emulator uses that
ROM file.

234

Command Class

• We can create an instance of the Command
class by using the Command class
constructor within your J2ME application.

• The Command class constructor requires
three parameters. These are the command
label, the command type, and the
command priority.

• The Command class constructor returns
an instance of the Command class.

235

• cancel = new
Command("Cancel",
Command.CANCEL, 1);• The first parameter of the command

declaration is Cancel. Any text can be placed
here and will appear on the screen as the label

for the command.
• Th

e

second parameter is the
predefined command types.

• The last parameter is the priority, which is set to
1. The command created by this declaration is
assigned to cancel.

236

Predefined command types.

• Command Type Description

• BACK Move to the previous screen

• CANCEL Cancel the current operation

• EXIT Terminate the application

• HELP Display help information

• ITEM Map the command to an item on the

screen

• OK Positive acknowledgment

• SCREEN No direct key mapping available on

device; command will be mapped to

object on a form or canvas

• STOP Stop the current operation

237

• It is important to understand that although

a command type is mapped to a key on the

device‘s keypad, the device does not

process the command.

• When the user selects the command, the

application manager detects the event and

passes the selected command to

application for processing.

238

• Priority indicates preference as to the
importance of each command object created by
your application. Priority is established by the
value that assigned to the third parameter of the
command declaration.

• A low value has a higher priority than a higher
value. The device‘s application manager has
the option of ignoring the priority or using the
priority to resolve conflicts between two
commands.

239

`

• For example, an application manager may
use the priority to determine the order in
which command labels appear on the screen.

• A word of caution: you have no control

over how the device‘s application manager

uses the priority of command objects

created by your application.

240

CommandListener

• public void commandAction(Command
command, Displayable displayable)

• {

• if (command == cancel)

• {

• destroyApp(false);

• notifyDestroyed();

• }

• }

241

• Every J2ME application that creates an

instance of the Command class must

also create an instance that implements

the CommandListener interface.

• The CommandListener is notified whenever
the user interacts with a command by way
of the commandAction() method.

242

• Classes that implement the CommandListener

must implement the commandAction()

method, which accepts two parameters.

• The first parameter is a reference to an

instance of the Command class, and the

other parameter is a reference to the

instance of the Displayable class

243

• Th

e
device‘s application manager

callsthe commandAction() method and passes
the command selected by the user.

• Yo

u

must evaluate the command to
determine the command selected by the user.

• An if statement is used in this example
to evaluate the command.

244

• Compare the command with the reference to the
instance of the Command class that was

returned when you created the command within
your application.

• The commandAction() method must contain all the

processing that is to occur when the user selects a
command. The destroyApp() method is called to
unconditionally terminate the application; and before
the application terminates, the notifyDestroyed()

method is called to notify the device‘s application
manager that the application is terminating.

245

Item Class

• The Item class is derived from the Form

class, and that gives an instance of the Form

class character and functionality by

implementing text fields, images, date fields,

radio buttons, check boxes, and other

features common to most graphical user

interfaces.

• The Item class has derivative classes
that create those features.

246

• In many ways, the Item class has similarities

to the Command class in that instances of

both classes must be declared and then

added to the form.

• Likewise, a listener processes instances of
both the Item class and the Command class.

247

• The user interacts with your application by
changing the status of instances of derived

classes of the Item class, except for instances
of the ImageItem class and StringItem class.

• These instances are static and not changeable
by the user.

• An instance of the ImageItem class causes an
image to appear on the form, and an instance
of the StringItem class causes text to be
displayed on the form.

248

• For example application may present options in the form of
an instance of the ChoiceGroup class, which is derived from
the Item class.

• An instance of a ChoiceGroup class is a check box or radio
button. The user makes a selection by choosing a check box
or radio button.

• A change in the status of an instance of the Item class is

processed by the itemStateChanged() method (defined in the

ItemStateListener interface), which is called automatically by

the method for an application that utilizes the Item class.

• You must create one itemStateChanged() method for an
application that implements an instance of the Item class.

249

• The itemStateChanged() method is similar to the
actionCommand() method used to respond to

the invocation of a command by the user of your
application.

• The application manager specifically calls the
itemStateChanged() method and actionCommand()
method independently of each other.

• It is important to understand precisely when the
itemStateChanged() method is called because subtle
differences in when the method is invoked can alter
the way your application reacts to change in the
state of an instance of the Item class.

250

• The state is changed by the user or by
your application.

• The change made by the user to a radio button
or check box is detected by the listener and
causes the device‘s application manager to call
the itemStateChanged() method.

• The state change of the text field by your
program doesn‘t invoke the itemStateChanged()
method, although it too is a change of state of
an instance of the Item class.

251

• In contrast, the itemStateChanged() method is
invoked if the user changed the content of the
text field. The assumption is if the user caused
the state to change, then your application needs
to consider processing the change in state.
However, if your application caused the change,
then no additional processing is necessary
because the assumption is that any necessary
processing would have been completed by your
application prior to changing the state.

252

• The application manager invokes the
itemStateChanged() method when the user

• changes focus from the current instance of
the Item class to another instance, if the
current instance state changed because of
user interaction with the instance.

• Th

e

itemStateChanged() method
processes the change before focus is set
on the other instance.

253

• In effect, the itemStateChanged() method processes
each instance of the Item class as the state is
changed by the user.

• Let‘s say a form contains a text field and a set of
check boxes. The user enters information into the
text field and then selects check boxes.

• Between the time the focus leaves the text field and
arrives at the check boxes, the device‘s application
manager calls the itemStateChanged() method,
passing it the text of the text field.

• Only after the itemStateChanged() is processed
will the user be able to select check boxes.

254

• textbox = new TextField("Title", "Text", 4,

0);

• The text field requires four values. These are

title, text, maximum number of characters

that can be entered into the text field, and

the TextField constraint, which is zero to

indicate there isn‘t any constraint.

255

Item Listener

• public void itemStateChanged(Item item)

• {

• if (item == selection)

• {

• StringItem msg = new StringItem("Your color is

",

• radioButtons.getString(radioButtons.getSelectedI

ndex()));

• form.append(msg);

• }
256

• Each MIDlet that utilizes instances of the

Item class within a form must have an
itemStateChanged() method to handle state

changes in these instances.

• The itemStateChanged() method contains one

parameter, which is an instance of the Item class.

• The instance passed to the itemStateChanged()
method is the instance whose state was

changed by the user.

257

• There is one itemStateChanged() per MIDlet,

you must include logic within the

itemStateChanged() method to identify the Item

object that is passed by the device‘s application

manager to the itemStateChanged() method.

• In this example, an if statement is used to

compare the incoming instance to one of two

instances that the MIDlet created on the form.

These instances are a text field and radio buttons.

258

• First the itemStateChanged() method

determines whether the incoming instance is

a text field. If so, the MIDlet displays a

message that indicates the state of the text

field has been changed by the user.

259

• However, if the incoming instance is not the
text field and is a radio button, then a
similar statement is displayed at the
command line indicating that the user
changed the radio button state.

• The device‘s application manager must
pass the two instances specified in the
itemStatechanged() method for a
statement to be displayed.

260

Exception Handling

• The application manager calls the startApp(),

pauseApp(), and destroyApp() methods

whenever the user or the device requires a

MIDlet to begin, pause, or terminate.

However, there are times when the

disruption of processing by complying with

the application manager‘s request might

cause irreparable harm.

261

• For example, a MIDlet might be in the

middle of a communication session or saving

persistent data when the destroyApp()

method is called by the device‘s application

manager.

• Complying with the request would break
off communications or corrupt data.

262

MIDletStateChangeException

• We can regain a little control of the

MIDlet‘s operation by causing a

MIDletStateChangeException to be thrown.

• A MIDletStateChangeException is used to

temporarily reject a request from the

application manager either to start the

MIDlet (startApp()) or to destroy the

MIDlet (destroyApp()).

263

• A MIDletStateChangeException cannot
be thrown within the pauseApp() method.

• Many developers place routines that throw a

MIDletStateChangeException in the

destroyApp() method since terminating a

MIDlet during critical processing might have

a fatal effect on communication or data.

264

Throwing a

MIDletStateChangeExceptio

n
• import javax.microedition.midlet.*;

• import javax.microedition.lcdui.*;

• public class ThrowException extends

MIDlet

• implements CommandListener

• {

• private Display display;

• private Form form;

• private Command exit;

• private boolean isSafeToQuit;

• //private boolean exitFlag=false;

265

• public ThrowException()

• {

• isSafeToQuit = false;

• display =

Display.getDisplay(this);• exit = new

Command("Exit",Command.SCREEN, 1);

• form = new Form("Throw

Exception");

• form.addCommand(exit);

• form.setCommandListener(this);

• }
266

• public void

startApp()
• {

• display.setCurrent(form);

• }

• public void pauseApp()

• {

• }

267

• public void destroyApp(boolean unconditional)

• throws MIDletStateChangeException

• {

• if (unconditional == false)

• {

• throw new

MIDletStateChangeException();

• }

• }
268

• public void commandAction(Command command, Displayable displayable)

• {

• if (command == exit)

• {

• try

• {

• if (isSafeToQuit == false)

• {

• StringItem msg = new StringItem ("Busy", "Please try

again.");

• form.append(msg);

• destroyApp(false);

• }

• else

• {

• destroyApp(true);

• notifyDestroyed();

• }

• }

269

• catch
(MIDletStateChangeException

exception)

• {• isSafeToQuit =

true;

• }

• }

• }

• }

270

• Requires the user to select the

Exitcommand twice to terminate the MIDlet .

• When the user selects the Exit command the
first time, the device‘s application manager calls
the destroyApp() method where a
MIDletStateChangeException is thrown causing
the message ―Busy Please try again.‖ to be
displayed on the screen.

• Th

e

MIDlet successfully terminates the
second time the user selects the Exit button.

271

• boolean isSafeToQuit variable that is

• used to indicate whether it is safe
to terminate the MIDlet.

• In the constructor, the isSafeToQuit is
assigned a false, implying that the MIDlet
should not be terminated.

272

• When the MIDlet is loaded into the device,
the application manager executes the
constructor and calls the startApp() method,
where the setCurrent() method is invoked to
display the form on the screen.

• The MIDlet then waits for the user to select the
Exit command button. When this happens, the
CommandListener ―hears‖ the event and calls
the commandAction() method, passing the
command selected by the user to the method.

273

• The selected command is then compared to
known commands within the MIDlet, which in
this example is the Exit command.

• The MIDlet enters the try { } block within the
commandAction() method if the Exit command
was selected by the user. The value of the
exitFlag is then evaluated within the try { }
block.

• If the value is false, an instance of the StringItem
class is created and is displayed on the screen by
passing the instance to the append() method.

274

• The destroyApp() method is then called and
passed a false value. A false value means

that there is not an unconditional
termination of the MIDlet because

processing cannot be disrupted.

• For the sake of this example, we‘re assuming
that processing is ongoing and a fatal error
would occur should it not be allowed to
complete before the MIDlet is terminated.

275

• However, the destroyApp() method is passed

a true value if the value of the exitFlag is true,

indicating that the MIDlet can be terminated

unconditionally. Notification of the pending

destruction of the MIDlet is then sent by

invoking the notifyDestroyed() method.

276

• Notice that the destroyApp() method is capable of throwing a

MIDletState- ChangeException.

AMIDletStateChangeException is thrown if the destroyApp() method is

passed a false value indicating there is a condition to termination of the

MIDlet.

• The MIDletStateChangeException is trapped by the catch { } block

in the commandAction() method where the value of the isSafeToQuit

is set to true.

• The next time the user selects the Exit command the destroyApp() is

called and passed a true value, meaning the MIDlet can terminate

unconditionally.

277

UNIT-V

• Generic connection Framework: The connection, Hypertext Transfer

Protocol, Communication Management using HTTP commands, Session

Management, Transmit as a Background Process.

278

• Practically every J2ME application that you

develop requires persistence.

• Persistence is the retention of information during operation of the

MIDlet and when it is not running.

• Persistence is common to every Java

application written in J2SE, J2EE, or J2ME.

• The manner in which persistence is maintained in a J2ME

application differs from persistence in J2SE or J2EE applications

because of the limited resources available in small computing

devices that run J2ME applications.

279

• J2ME applications must store information in nonvolatile memory

using the Record Management System (RMS). The RMS is an

application programming interface that is used to store and manipulate

data in a small computing device using a J2ME application.

280

Record Storage

• Many operating environments contain a file system that is used to

store information in nonvolatile resources such as a CD-ROM and

disk drive.

• Groups of related information are stored under the same file

name. Not all small computing devices have a file system.

281

• The Record Management System provides

a file system–like environment that is used

to store and maintain persistence in a

small computing device.

• RMS is a combination file system and

database management system that enables to

store data in columns and rows similar to the

organization of data in a table of a database.

282

• Use RMS to perform the functionality of
database management software (DBMS).

• That is, insert records, read records, search
for particular records, and sort records stored
by the RMS.

• Although RMS provides database
functionality, RMS is not a relational
database, and therefore cannot use SQL to
interact with the data.

283

• Instead, use the RMS application

programming interface and the enumeration

application programming interface to sort,

search, and otherwise manipulate

information stored in persistence.

284

The Record Store

• RMS stores information in a record store. A

record store compares to a flat file used for
data storage in a traditional file system and to

a table of a database.

• A record store contains information referenced by

a single name, similar to a flat file and like a table.

• A record store is a collection of records
organized as rows (records) and columns (fields).

285

• Columns contain like data such as first
name. Rows contain related data such as a
first name, middle name, last name, street,

city, state, and postal code.

• RMS automatically assigns to each row a
unique integer that identifies the row in the
record store, which is called the record ID.

• The record ID is in its own column within
the record store.

286

• The record ID is considered the primary key

of the record store. A primary key of the

record store serves the same purpose as a

primary key in a table of a database, which is

to uniquely identify each record in a table.

• Although conceptually envision a record
store as rows and columns, technically there
are two columns.

287

• The first column is the record ID, and the
other column is an array of bytes that

contains the persistent data.

288

Record Store Scope

• Create multiple record stores as required
by MIDlet as long as the name of each
record store is unique.

• The name of a record store must be a
minimum of one character and not more
than 32 characters.

• Characters are Unicode, and the name is case
sensitive.

289

• Record stores can be shared among MIDlets
that are within the same MIDlet suite .

• Record stores must be uniquely named

within a MIDlet suite, although duplicate

names can be used for record stores in other

MIDlet suites.

290

• Let‘

s

say that MIDlet A collects information
about customers from a sales representative.

• MIDle

t

B displays customer information
collected by MIDlet A.

• MIDlet B can access customer information
if both MIDlet A and MIDlet B are in the
same MIDlet suite.

• However, MIDlet B is unable to access
customer information if MIDlet A and MIDlet
B are in different MIDlet suites.

291

• A system of organizing files in an operating
system in which all files are stored in a single
directory. In contrast to a hierarchical file
system, in which there are directories and
subdirectories and different files can have the
same name as long as they are stored in
different directories, in a flat file system every
file must have a different name because there
is only one list of files. Early versions of the
Macintosh and DOS operating systems used a
flat file system. Today's commercial operating
systems use a hierarchical file system.

292

http://www.webopedia.com/TERM/F/file.html
http://www.webopedia.com/TERM/O/operating_system.html
http://www.webopedia.com/TERM/O/operating_system.html
http://www.webopedia.com/TERM/D/directory.html
http://www.webopedia.com/TERM/H/hierarchical.html
http://www.webopedia.com/TERM/D/DOS.html

Setting Up a Record Store

• Th

e

openRecordStore() method
create a new record store and to open

is called to
an

existing record store.

• This method creates or opens a record store
depending on whether the record store
already exists within the MIDlet suite.

• Th

e

openRecordStore() method requires
two parameters.

• The first parameter is a string containing
the name of the record store.

293

• The second parameter is a boolean value

indicating whether the record store should
be created if the record store doesn‘t exist.

• A true value causes the record store to be

created if the record store isn‘t in the MIDlet

suite and also opens the record store.

• A false value does not create the record

store if the record store isn‘t located.

294

• The second version of the openRecordStore()
method useful whenever MIDlet tries to open
an existing record store.

• Let‘s say that MIDlet accesses address

information stored in a record store

created and maintained by another MIDlet

in the same MIDlet suite.

295

• We don‘t want MIDlet to create a new record

store if for some reason the record store is

unavailable when you tried to open it because

another MIDlet creates and maintains the

record store.

296

• Internal resources are utilized to make an open
record store available to MIDlets within a

MIDlet suite.

• As you know, resources are limited
in small computing devices.

• Therefore, you should make a conscious effort

not to tie up resources that can be otherwise

used for processing by your MIDlet or other

MIDlets running on the small computing device.

297

• To that end, always close any record store

that is not in use so that resources utilized

by the record store can be reused by other

processes.

• You close a record store by
calling the closeRecordStore()
method.• Th

e

closeRecordStore() method does
not require any parameters.

298

• A record store remains in nonvolatile

memory even after the small computing

device is powered down. Nonvolatile

memory is a scarce resource that needs to be

properly managed to ensure that sufficient

memory is available when required to store

information collected by a MIDlet.

299

• You can help manage nonvolatile memory

by removing all record stores that are no

longer being used by MIDlets running on the

device. A record store can be deleted by

calling the deleteRecordStore() method.

• This method requires one parameter, which
is a string containing the name of the record
store that is to be removed from the device.

300

Creating, Opening, Closing, and

Removing a Record Store
• To create a new record store, close it, and then

remove it from the small computing device.
All information contained in the record store is
lost when the record store is removed.

• Declare three references for instances of the
Display class, Alert class, and RecordStore
class.

• The instance of the Display class is required
because an alert dialog box is shown should an
error be detected by this MIDlet; otherwise, an
instance of the Display class is not necessary
unless the MIDlet has a user interface.

301

• A user interface is not required to interact with a
record store, although many MIDlets that interact
with a record store have a user interface.

• All the actions in this listing occur in the
commandAction() method. Typically, routines
to create, open, close, and remove a record
store are located in appropriate methods
throughout the MIDlet.

• Once the instance of the Display class is created,
the listing enters the first of three try {} blocks.

302

• In the first try {} block, the listing attempts to
create the record store by calling the

openRecordStore() method and passing it the
name of the record store and a boolean value.

• The boolean value indicates that the record store
should be created if there isn‘t an existing
record store of the same name.

• Errors occurring when creating the record store
are trapped by the catch {} block, where an
alert dialog box is displayed describing

the error.

303

• Typically, the MIDlet will read from and/or
write to the record store at this point in the
listing. We‘ll move on to showing how to close
the record store since the purpose of this listing
is to provide a framework for working with a
record store rather than illustrating how to
interact with the record store.

• The closeRecordStore() method is called within
the second try {} block to close the record store
and release resources used to maintain an open
record store.

304

• Always reopen the record store by calling the

openRecordStore() method and passing it the

name of the record store that you want to open.

• The catch {} responds to errors that happen if a

problem arises when closing the record store.

The second catch {} block, similar to other

catch

{} blocks in this listing, displays an alert dialog

box that contains the error and informs the user

that an error occurred.

305

• Next, the listing determines whether the

small computing device contains record
stores in nonvolatile memory by calling the

listRecordStores() method.

• The listRecordStores() returns a null value
if no record stores exist on the device.

• The listing proceeds if at least one record store

exists, by entering the third try {} block, where

the deleteRecordStore() method is called.

306

• The deleteRecordStore() method requires

one parameter, which is a string containing

the name of the record store that is to be

removed from the device.

Any errors occurring during this process are
trapped by the catch {} block and displayed
in an alert dialog box.

307

• import javax.microedition.rms.*;

• import javax.microedition.midlet.*;

• import javax.microedition.lcdui.*;

• import java.io.*;

• public class RecordStoreExample

• extends MIDlet implements CommandListener

• {

• private Display display;

• private Alert alert;

• private Form form;

• private Command exit;

• private Command start;

• private RecordStore recordstore = null;

• private RecordEnumeration recordenumeration = null;

308

• public RecordStoreExample

()

• {• display = Display.getDisplay(this);

• exit = new Command("Exit", Command.SCREEN,

1);

• start = new Command("Start", Command.SCREEN,

1);

• form = new Form("Record Store");

• form.addCommand(exit);

• form.addCommand(start);

• form.setCommandListener(this);

• }

• public void startApp()

• {

• display.setCurrent(form);

• }

• public void pauseApp()

• {

• } 309

• public void destroyApp(boolean unconditional)

• {

• }

• public void commandAction(Command command, Displayable displayable)

• {

• if (command == exit)

• {

• destroyApp(true);

• notifyDestroyed();

• }

• else if (command == start)

• {

• try

• {

• recordstore = RecordStore.openRecordStore("myRecordStore",

• true);

• }

310

• catch (Exception error)

• {
• alert = new Alert("Error Creating", error.toString(),

• null, AlertType.WARNING);

• alert.setTimeout(Alert.FOREVER);

• display.setCurrent(alert);

• }

• try

• {

• recordstore.closeRecordStore();

• }

• catch (Exception error)

• {

• alert = new Alert("Error Closing",

error.toString(),

• null, AlertType.WARNING);

• alert.setTimeout(Alert.FOREVER);

• display.setCurrent(alert);

• }

311

• if (RecordStore.listRecordStores() != null)

• {

• try

• {

• RecordStore.deleteRecordStore("myRecordStore");

• }

• catch (Exception error)

• {

• alert = new Alert("Error Removing", error.toString(),
null, AlertType.WARNING);

• alert.setTimeout(Alert.FOREVER);

• display.setCurrent(alert);

• }

• }

• }

• }

• }

312

Writing and Reading Records

• Once MIDlet opens a record store, the MIDlet
can write records to the record store and read
information already stored there using one of
two techniques for writing and reading records.

• The first technique is used to write and read a
string of data and is used primarily whenever
have one data column in the record store such
as a list of abbreviations of states.

• The other technique is used to write and read
multiple columns of data of different types
such as string, integer, and boolean.

313

• Th

e

addRecord() method is used to write a
record to the record store.

• The addRecord() method requires three
parameters. The first is a byte array containing
the byte value of the string being written to
the record store. The second is an integer
representing the index of the first byte of the
byte array that is to be written to the record
store.

• The third is the total number of bytes that
is to be written to the record store.

314

• The first step in writing a string to a record

store is to create an instance of a String

and assign text to the instance. Next, the

string must be converted to a byte array by

calling the getBytes() method,

• The getBytes() method returns a byte array.

• string.getBytes()

315

• The second parameter of the addRecord()
method is usually zero, and the third parameter

is the length of the byte array, indicating that the
entire byte array should be written to the record

store.

• Typically, information is read from a record store
a record at a time and stored in a byte array.

• The byte array is then converted to a string,
which is then displayed on the screen or
processed further based on the needs of the
application.

316

• MIDlet needs to know the number of records in a
record store in order to read all the records from
the record store.

• The getNumRecords() method of the RecordStore

class returns an integer that represents the total

number of records in the record store.

• Use this value as the maximum value for a
for loop used to step through each record in
the record store.

317

• Call the getRecord() method of the RecordStore
class for each iteration of the for loop

• . The getRecord() method returns bytes from the
RecordStore, which are stored in a byte array that
you create.

• The getRecord() method requires three
parameters. The first parameter is the record ID.

• The second parameter is the byte array that you
create for storing the record.

• The third parameter is an integer representing the
position in the record from which to begin copying
into the byte array.

318

• For example, the following code segment reads

the second record from the record store and
copies that record, beginning with the first byte

of the record, from the record store into the
byte array.

• Typically, the first parameter of the getRecord()
method is the integer of the for loop, and the
third parameter is zero, indicating the entire
record is to be copied into the byte array.

• recordstore.getRecord(2, myByteArray, 0)

319

Creating a New Record and Reading

an

Existing Record
• Many programmers separate routines to write

and read records into their own methods.

• These routines are shown in the
commandAction() method rather than in
separate methods in order to simplify the
design and make it easier to understand the
technique of writing and reading records.

• Rewrite the program to separate these
functionalities once you feel comfortable
working with a record store.

320

• Performs five routines. First a record store is
created, and then one record is written to the

record store.

• Next, the record is read from the record store
and displayed within an alert dialog box.

• Once the user dismisses the alert dialog box,
the MIDlet closes

the record store, then removes the record
store from the small computing device.

321

• The record store is created by
calling the openRecordStore() method,

• An exception is thrown if the MIDlet is

unable to create the record store, at which

time the exception is displayed in an alert

dialog box. The MIDlet then enters the

routine that writes a record to the record

store.

322

• This routine begins with the creation of a
string called ―First Record.‖

• The string must be stored as a byte array.
Therefore, the bytes that make up the string
are retrieved by calling the getBytes() method.

• Finally, the addRecord() method is called to
write the string to the record store. The
addRecord() method is passed three
parameters. The first parameter is the byte
array that contains the string.

323

• The second parameter is the index of the first
byte, and the third parameter is the total
number of bytes that are to be written to the
record store.

• The first byte is the first element of the byte
array (zero), and the total number of bytes is the
number stored in byteOutputData.length.
Exceptions thrown when writing the record are
displayed in an alert dialog box called within the
related catch {} block.

324

• The next routine reads the record that was
written to the record store. The routine

• begins by declaring a byte array that is used
to store the bytes read from the record store.

• An integer is also declared and is used when
converting the byte array to a string. The routine
is written to read all records from the record
store, not simply the one record that the MIDlet
wrote to the record store in the previous routine,
although that is the only record in the record
store.

325

• A for loop is used to step through records in
the record store. The maximum iteration of
the for loop is set as the return value from
the getNumRecords() method, which returns
the number of records in the record store.

• The value of the for loop integer (x)
represents the record ID. Record IDs begin
with one—not zero—therefore the value of
the for loop is initialized to one.

326

• There is always the possibility that the record
size exceeds the byte array allocation.

• Avoid this potential problem by evaluating
this condition with an if statement, as shown
in this routine. If the current record size is
greater than the length of the allocated byte
array, the MIDlet creates a new byte array
the size of the value returned by the
getRecordSize() method.

327

• The getRecord() method is called to retrieve
a record from the record store.

• The getRecord() method requires three
parameters. The first is the record ID that is
being read, which is the current value of the for
loop variable.

• The second is the name of the byte array into
which the record is copied. The third is the
index position of the first byte that is to be
copied into the byte array.

328

• The getRecord() method copies the record

from the record store and into the

byteInputData byte array and returns an

integer representing the length of the record.

• Remember that the record is still in a byte

array and must be converted to a string

before the record is displayed within the

alert dialog box.

329

• Notice that the message parameter of the Alert
method creates a new string using the byte
array that contains the record read from the

record store.
• Three parameters are necessary to create

the string from the context of the byte array.
• The first parameter is reference to the byte array.

• The next two parameters define the first index
of the byte array and the last index, which is the
number of bytes read by the getRecord()
method (length).

330

• The second parameter is almost always zero,
and the third parameter is the length of the

record read from the record store, which is the
value assigned to the length integer variable.

• The record read from the record store is
displayed in the alert dialog box. Once the alert
dialog box is dismissed, the MIDlet closes the
record store by calling the closeRecordStore()
method and then removes the record store by
calling the deleteRecordStore() method.

331

Writing and Reading Mixed Data Types

• It is common for records to consist of
mixed data types such as string, boolean,
and Integer.

• To save some information like might store
the customer name, customer number, and
gender.

• A string is used to store a customer name, an
integer to store the customer number, and a
boolean to indicate gender.

332

• MIDlet writes a string, an integer, and a
boolean value to a record store that is created
by the MIDlet. Once the record is written, the
MIDlet reads the context of the record,

which is displayed in an alert dialog box.

• The MIDlet begins by declaring references
to objects that are used within the MIDlet.

• Instances of these objects are created within
the class constructor. The MIDlet creates a
record store called myRecordStore after
retrieving reference to the display.

333

• Any errors occurring while the record store is
being created are caught by the catch {}
block and displayed in an alert dialog box.

• Th

e

DataOutputStream class has methods
that write specific data types to a buffer.

• Three of these methods are used in this
example. These are writeUTF() method,
writeBoolean() method, and writeInt()
method. Each is passed the appropriate data.

334

• The buffered data is placed in the data stream
by calling the flush() method.

• The stream is converted to a byte array by
calling the toByteArray() method, which returns
a reference to the byte array of the stream.

• This reference is passed to the addRecord()
method which saves the byte array as a new
record in the record store.

• The ByteArrayOutputStream object's internal
store is cleared by calling the reset() method.

335

• Next, the output stream and the data output

stream are both closed. Any errors

occurring while the data is being written to

the record store are trapped by the catch {}

block and displayed in an alert dialog box.

• The MIDlet then focuses on retrieving
the record from the record store.

336

• Thi

s

process begins by declaring
appropriate references and an array.

The array size is set to 100 bytes.

• We must be sure that the size of the array is
sufficient to hold all the bytes of the record.

337

• Reading a mixed data type record from a
record store is similar to the routine that
writes mixed data types.

• First, you create an instance of
the ByteArrayInputStream class.

• The constructor of this class is passed the
byte array that was just created.

• We also create an instance of the
DataInputStream class and pass reference to
the ByteArrayInputStream class to the
DataInputStream class constructor.

338

• The routine used to read records from a

record store must assume that more than one

record exists, and therefore you need to

include a for loop so the MIDlet continues

to read records from a record store until
the last record is read.

339

• The reset() method is called to enable reuse
of the ByteArrayInputStream's buffer.

• The MIDlet then returns to the top of the for
loop and evaluates whether or not to read

another record from the record store. If so,
the process begins again.

340

• If not, the inputstream and input data stream

are closed, and the contents of the variables

are displayed within an alert dialog box.
Errors that occur while records are read from

the record store are displayed in an alert

dialog box.

• The record store is then closed

and deleted from the device.

341

Record Enumeration

• A record store is more like a flat file than a
database management system and therefore
lacks many sophisticated features that find in
a database management system.

• For example,cannot send an SQL query to a
record store, nor can ask a record store to search
for keywords or sort records, which is
commonly performed by a database
management system. However, can still perform
searches and sorts of records in a record store by
using the RecordEnumeration interface.

342

• An Enumeration provides a way to
traverse data elements.

• The Enumeration object manages how data is

retrieved from the record store. Changes to

the record store are reflected when the record

store‘s content is iterated.

343

• Obtain a record enumeration by
calling the enumerateRecords() method.

• Th

e

enumerateRecords() method requires
three parameters.

• The first is the record filter used to exclude
records returned from the record store.

• The second is reference to the record
comparator, which is a method used to compare
records returned from the record store.

344

• The last parameter is a boolean value indicating
whether or not the enumeration is
automatically updated when changes are made
to the underlying record store.

• The enumerateRecords() method returns a
RecordEnumeration, as illustrated in the
following code segment.

• There isn‘t any filter or comparator method,
and the record enumeration is not
automatically updated when a change is made
to the record store.

345

• RecordEnumeration recordEnumeration =
recordstore.enumerateRecords(null,
null,false);• One of the most common interactions that
you‘ll have with a RecordEnumeration is to step
through each record of the RecordEnumeration.

• The hasNextElement() method is called
to evaluate whether or not there is another
record in the RecordEnumeration.

• A boolean true is returned if another record
exists; otherwise, a boolean false is returned.

346

• while (recordEnumeration.hasNextElement())

• {

• //do something

• }

347

• Retrieve a record from the
RecordEnumeration using one of
two techniques.

• The first technique is designed to read a
record that has a single data type such as
a string from the RecordEnumeration.

• The other technique reads a record that has a
compound data type.

348

• String string = new

String(recordEnumeration.nextRecord(

));• This code segment calls the nextRecord()
method, which returns a copy of the next
record in the RecordEnumeration.

• The record is passed to the constructor of
the String class and is assigned to the string
variable.

349

• Place this code segment within a conditional

loop, such as the while loop to be assured that a

record exists in the RecordEnumeration before

attempting to copy the record to the string.

• Of course, probably would use an array of

strings if a while loop is used; otherwise the

MIDlet would be overwriting the previous

record assigned to the string, unless plan to

process the record within the while loop.

350

• Move forward or back within the

RecordEnumeration by calling either the

nextRecord() method, which moves to the

next record, or the previousRecord() method,

which moves back one record.

Both the nextRecord() method and the
previousRecord() method return a byte
array containing a copy of the record.

351

• You are positioned at the top of the
RecordEnumeration when the RecordEnumeration
is created. The top is not the first record; you must
call the nextRecord() method to move to the first
record. You can move to the last record by calling
the previousRecord()

method while at the top of
the RecordEnumeration.

You can return to the top of the
RecordEnumeration by calling the
reset() method.

352

• Before moving in either direction through the

RecordEnumeration, you should always
determine whether there are records in the

RecordEnumeration, and if so, whether there is
a next record or previous record.

• Call the numRecords() method to determine
the number of records there are in the
RecordEnumeration.

• The numRecords() method returns an integer
representing the total number of records.

353

• If the return value is greater than zero,
then evaluate whether there is a next

record or previous record depending on
the desired direction.

• The hasNextElement() method is called to
determine whether there is a next record.

• Call the hasPreviousElement() method to

determine whether there is a previous record.
Both methods return a boolean value indicating

whether or not there is another record.

354

• You can track your progress through the
RecordEnumeration by retrieving the record
IDs of records in the RecordEnumeration.

• Let‘s say that you determine there are ten
records in the RecordEnumeration by
calling the numRecords() method.

• The ID of the first record in the
RecordEnumeration is zero, and the ID of
the last record is nine.

355

• You can determine the record ID of the next
record by calling the nextRecordId() method.

• The nextRecordId() method returns an integer
representing the ID of the next record.

• Likewise, you call the

previousRecordId() method to retrieve
the ID of the previous record.

356

• Sometimes record IDs can be misleading when the
RecordEnumeration is automatically updated whenever a

change is made to the underlying record store.
• There are two ways in which automatic updating

is activated or deactivated. The first way is when
the RecordEnumeration is created.

• As you‘ll recall, the last parameter in the
enumerateRecords() method is a boolean value that if
set to true, causes the RecordEnumeration to update
automatically.

• The RecordEnumeration is not changed

when the underlying record store changes if the
boolean value is false.

357

• The other way to set automatic updating

of the RecordEnumeration is by calling the
keepUpdated() method.

• The keepUpdated() method has one

parameter, which is a boolean value

indicating whether or not the

RecordEnumeration is automatically updated.

358

• You can check the status of the automatic updating
feature by calling the isKeptUpdated() method.

• This method returns a boolean value
indicating whether or not the

RecordEnumeration is automatically updated.

• This is important to know if you are relying on record

IDs to plot your way through the RecordEnumeration,

because each time a record is inserted or removed from
the RecordEnumeration, record IDs are reindexed.

359

• You can manually cause the
RecordEnumeration to be rebuilt by calling
the rebuild() method.

• The rebuild() method should be called

whenever records in the underlying

record store change and the automatic

update feature is deactivated.

360

• Obviously, you‘ll know when your MIDlet
changes the underlying record store and

therefore needs to call the rebuild() method.

• However, many times other MIDlets within
the same MIDlet suite can also change the
record store without notifying your MIDlet.

• In this case, you should create a RecordListener,
which notifies your MIDlet that the associated
record store has changed and that the MIDlet
needs to call the rebuild() method.

361

• You can call the destroy method to empty
the contents of a RecordEnumeration

• and release resources used by
the RecordEnumeration.

• This should be done as soon as the MIDlet no

longer requires the RecordEnumeration in order

to free those resources for other purposes.

Remember, a small computing device has

limited resources, unlike a PC or server.

362

Reading a Record of a Simple Data
Type into a RecordEnumeration

• 1. Declare references to classes.

• 2. Create instances of classes and assign those instances to references.

• 3. Open a record store and create a new record store if the record store

• doesn‘t exist.

• 4. Display any errors that occur when opening/creating a record store.

• 5. Create data in the appropriate data type.

• 6. Convert data to a byte array.

• 7. Write the record to the record store.

• 8. Display any errors that might occur while writing to the record store.

• 9. Create a RecordEnumeration.

• 10. Loop through the RecordEnumeration, copying each record to
a variable.

• 11. Display the data in a dialog box.

• 12. Display any errors that occur when reading records from the

• RecordEnumeration.

• 13. Close and remove the RecordEnumeration and the record store.

363

• The change is in the third try {} block, where
records from the record store are copied into
the RecordEnumeration and then displayed on
the screen.

• The first statement in this try {} block creates
a RecordEnumeration by calling the
enumerateRecords() method.

• The RecordEnumeration doesn‘t use a filter or
comparator and is not automatically updated
when changes are made to the underlying
record store.

364

• Before entering the while loop, the MIDlet calls the

hasNextElement() method to determine whether

there is a next record in the RecordEnumeration.

• Remember that the RecordEnumeration is not at

the first record, so the hasNextElement() method

determines whether there is a record in the record

store.

• A boolean true is returned if a record exists,

otherwise a false is returned. If a true is returned by

the hasNextElement(), the MIDlet copies the first

record of the RecordEnumeration into a string,

which is then displayed in an alert dialog box.

365

• Of course, you can further process the record

instead of displaying the record, depending

on the nature of your application. This

process continues until the hasNextElement()

method returns a false, indicating no more

records exist in the RecordEnumeration.

366

• The last modification occurs in the fifth try

{} block.

• This is where the record store is deleted. The
destroy() method is called in this example to

• release resources used by the

RecordEnumeration and thereby having

the effect of deleting records in the

RecordEnumeration.

367

Reading a Mixed Data Type Record

into a RecordEnumeration

• Write and Read mixed data type

records.creates an array of strings, integers, and
boolean and assigns values to each element of
these arrays. Each of these is a record.

• The process of writing mixed data type
records to the record store is the same as the
process used RecordStore Mixed data types
with one small difference.

• Here uses it a loop to write all three records
to the record store.

368

• The next records from the record store are copied
into the RecordEnumeration. This process is very
similar to the same process that is used to read

• records from the record store, but there are a
few subtle differences that need to notice.

• First, the enumerateRecords() method is called
to build a RecordEnumeration.

• The enumerateRecords() method doesn‘t use
a filter or comparator and is not updated
automatically as changes occur to the
record store.

369

• Next, the hasNextElement() is called to
determine whether there is a record in the

RecordEnumeration. Statements within the
while block are skipped if a false is returned;

otherwise, the MIDlet proceeds to the

current record by calling the getRecord() method.
The getRecord() method requires one parameter,

which is the record ID of the record that is
being copied into the RecordEnumeration.
The record ID is returned by the
nextRecordId() method.

370

• The readUTF() method, readBoolean() method,

and readInt() method are then called to return
their respective data from the current record of

the RecordEnumeration.

• These return values are then concatenated
and assigned to a string.

• The string is then displayed in an alert dialog box .

• The same process occurs for each record

in the RecordEnumeration.

• And releases resources used by
the RecordEnumeration

by calling the destroy() method in the fifth try
{} block. 371

Sorting Records

•Records within a RecordEnumeration are
sorted by defining a comparator class that

is an implementation of the
RecordComparator interface.

Within the comparator class define a method
that has the logic to compare each record to
determine whether

372

• The compareTo() method returns an integer
that is equal to zero, less than zero, or

greater than zero.

A zero indicates that both strings are the same.
An integer less than zero indicates that the
next record precedes the current record in the
RecordEnumeration.

• An integer greater than zero indicates that
the next record follows the current record in
the RecordEnumeration.

373

• Pass reference to the instance of the
RecordComparator() as the second parameter

of the enumerateRecords() method.

• The enumerateRecords() then calls the
compare() method whenever there is a need
to sort records within the RecordEnumerator.

• The direction of the sort is controlled by
the logic that you create within the
compare() method.

374

• If you want the sort to appear in ascending

order, then return the

RecordComparator.PRECEDES when the

return value of the compareTo() string is less

than the current record and

RecordComparator.FOLLOW when the

return value is greater than the current

record.

375

• Create a descending sort by reversing
these operations:

• return theRecordComparator.FOLLOWwhen
the return value of the compareTo() string is

less than the current record and

RecordComparator.PRECEDES when the

return value is greater than the current record.

376

Comparison Values for the

compare() Method

Description• Value

• EQUIVALE

NT

Records passed to the
compare() method are the same.

• FOLLOW The record passed as the
first parameter follows the record
passed as the second parameter.

• PRECEDES The record passed as the
first parameter precedes the record
passed as the second parameter.

377

Sorting Single Data Type

Records in a

RecordEnumeration
• In the third try {} block where an instance of

the RecordComparator() interface is created

and passed as the second argument to the

enumerateRecords() method.

• A null was passed as the second parameter to

the enumerateRecords() method because the
RecordEnumeration was not sorted.

378

• The final change occurs at the end of
the listing where the compare() method
is defined.

• The compare() method receives two

parameters called record1 and record2;

both are byte arrays supplied by the

enumerateRecords() method.

379

• Those byte arrays are transformed into
strings, which are evaluated by the
compareTo() method.

• The compareTo() method requires one

argument that is the value of the second

parameter passed to the compare() method.

380

Sorting Mixed Data Type

Records in a

RecordEnumeration
• writes three records containing two

columns of data.

• The first column consists of strings and
the second column integers.

• The next modification occurs in the third try
{} block of where an instance of the
RecordComparator interface is referenced
and passed as the second parameter to the
enumerateRecords() method.

381

• Another modification is made in the fifth try

{} block where a call is made to

the compareClose() method of the

RecordComparator interface.

• The compareClose() method closes streams
opened by the RecordComparator interface
to facilitate comparing records.

382

• The Comparator defines two methods:

• compare() and compareClose().

• The compare() method is called by the

enumerateRecords() method to compare the

next record with the current record within

the RecordEnumeration.

Both records are passed as byte arrays to

the compare() method.

383

• Records passed as parameters to the
compare() method contain both columns—

first a string and then an int.

In real projects you can expect to have
multiple columns of different data types.

However, the technique used in this example
can easily be expanded to handle records of
any number of columns and data types.

384

• The compare() method begins by creating a

byte array input stream from the first record

and then using the byte array input stream to

create a data input stream.

• Each column in the record is read using the
appropriate readXXX() method, as
described previously.

385

• It is important to remember to read
each column

• in the order in which the column appears
in the record. In this example, the first

• column is a string, and the second column
is an integer. Therefore, the readUTF()

• method must be called before calling the
readInt() method. This is also true if the

• record has other columns.

386

• Only the return value of the readInt() method
is assigned to a variable in this example

• because the value of the second column
is being used to sort the record. The return
value

• of the readUTF() method is not retained
because the value of this column is not being

• sorted. You don‘t need to read columns of
a record beyond the column that is the key

• to the sort because only the column with the
sort key is processed.

387

• The same process is used to extract the

column used as the sort key for the

second record passed to the compare()

method. The integer columns from both

records are then compared, and the

appropriate comparison value is returned

by the compare()Method.

388

Searching records

• Searching is referred to as filtering, where the filter
is defined by the search criteria.

• Records that match the search criteria are copied
into the RecordEnumeration.

• Those not matching the search criteria are filtered
from the RecordEnumeration.

• Searching for a record in a record store is very
similar to sorting records in that you define an
implementation of an interface.

• In this case the implementation you define filters
records contained in a record store rather than
sorting records in a RecordEnumeration.

389

• Th

e

RecordFilter interface is used
when searching for a record.

• You must define two methods when

defining an implementation of the
RecordFilter interface.

• These are the matches() method and
the filterClose() method.

390

• The constructor accepts the search criteria as a
parameter when your MIDlet creates an

instance of the implementation class.

• The matches() method contains the logic

necessary to determine whether a column fits
the search criteria and returns a boolean value
indicating whether or not there is a match.

The filterClose() method frees resources used by
the implementation of the RecordFilter interface
once the search is completed.

391

• Logic contained in the matches() method reads
one or multiple columns from the current record
and then applies logical operators to determine

whether the record meets the search criteria.

• You determine the logic used to decide whether
or not a record should or should not be included
in the RecordEnumeration.

• Furthermore,you can sort the filtered records
by first searching for a subset of records in the
record store, then sorting those records.

392

• The next two sections illustrate how to search

a record store that contains records of a

single data type and records containing

multiple data types.

393

• Listing 8-15 shows how to search records
that contain a single data type (Figure 8-9).

• Listing 8-16 is the JAD file for Listing 8-15.
You‘ll notice that Listing 8-15 is a modified

• version of Listing 8-13. Both

listings

write
three records to a record store. Each record

• has one column that is a String data type.
Listing 8-15 searches for one of those records

• and displays the results of the search in an
alert dialog box.

394

• You‘ll notice in the third try {} block that
a statement creating an instance of the
Filter replaces the statement that creates

an instance of the Comparator.

• The Filter is the implementation of the
RecordFilter that is defined at the end of
the listing.

• The constructor of the Filter is passed the

word ―Bob,‖ which is the search criteria.

395

• The matches() method is automatically called to

filter records that don‘t meet the search criteria.

• The matches() method requires one parameter,
which is the record that is being matched to the
search criteria.

• The record is an array of bytes passed by the

• enumerateRecords() method.

• The record is then converted to lowercase
characters and assigned to a String variable.

396

