
Statement (Proposition) 

A Statement is a sentence that is either True or False 

Examples: 

Non-

examples: 

x+y>0 

 

x2+y2=z2 

True 

False 

2 + 2 = 4 

3 x 3 = 8 

787009911 is a prime 

They are true for some values of x and y  

but are false for some other values of x 

and y. 

Today is Tuesday. 



Logic Operators 
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OR::

Logic operators are used to construct new statements from old statements.

 

There are three main logic operators, NOT, AND, OR. 



Logic Operators 

NOT:: ¬ P is true if and only if P is false 

Logic operators are used to construct new statements  

               from old statements. 

There are three main logic operators, NOT, AND, OR. 

T F 

F T 

¬P P 



Compound Statement 

p = “it is hot” q = “it is sunny” 

It is hot and sunny 

 

 

It is not hot but sunny 

 

 

It is neither hot nor sunny 

We can also define logic operators on three or more statements, e.g. OR(P,Q,R)



More Logical Operators 

coffee “or” tea 

 exclusive-or 

p q p  q 

T T F 

T F T 

F T T 

F F F 

We can define more logical operators as we need. 

P Q R M(P,Q,R) 

T T T T 

T T F T 

T F T T 

T F F F 

F T T T 

F T F F 

F F T F 

F F F F 

majority 



 Truth table for (~p  q)  (q  ~r) 

 Two statements are called logically equivalent if and only if 

(iff) they have identical truth tables 

 Double negation 

 Non-equivalence: ~(p  q) vs ~p  ~q 

 De Morgan’s Laws: 

• The negation of and AND statement is logically equivalent to the OR 

statement in which component is negated 

• The negation of an OR statement is logically equivalent to the AND 

statement in which each component is negated 



 Applying De-Morgan’s Laws: 
• Write negation for 
 The bus was late or Tom’s watch was slow 

 -1 < x <= 4 

 Tautology is a statement that is always true regardless 
of the truth values of the individual logical variables 

 Contradiction is a statement that is always false 
regardless of the truth values of the individual logical 
variables 



Exclusive-Or 

Is there a more systematic way to construct such a formula? 

p q p  q 

T T F 

T F T 

F T T 

F F F 

Idea 1: Look at the true rows Idea 1: Look at the true rows Idea 1: Look at the true rows 

Want the formula to be true 

exactly when the input belongs 

to a “true” row. 

The input is the second row exactly if this sub-formula is satisfied 

And the formula is true exactly when the input is the second row or the third row.



Exclusive-Or 

p q p  q 

T T F 

T F T 

F T T 

F F F 

Idea 2: Look at the false rows 

Want the formula to be true 

exactly when the input does 

not belong to a “false” row. 

The input is the first row exactly if this sub-formula is satisfied 

And the formula is true exactly when the input is not in the 1st row and the 4

Is there a more systematic way to construct such a formula? 



DeMorgan’s Laws 

Logical equivalence: Two statements have the same truth 

table 

Statement: Tom is in the football team and the basketball team. 

Negation: Tom is not in the football team or not in the basketball team.

De Morgan’s Law 

Why the negation of the above statement is not the following 

“Tom is not in the football team and not in the basketball team”? 

The definition of the negation is that exactly one of P or ¬P is true, but it 

could be the case that both the above statement and the original statement 

are false (e.g. Tom is in the football team but not in the basketball team).



 If something, then something: p  q, p is called the 
hypothesis and q is called the conclusion 

 The only combination of circumstances in which a 
conditional sentence is false is when the hypothesis is 
true and the conclusion is false 

 A conditional statements is called vacuously true or 
true by default when its hypothesis is false 

 Among , , ~ and  operations,  has the lowest 
priority 



 Commutative laws: p  q = q  p, p  q = q  p 
 Associative laws: (p  q)  r = p  (q  r), (p  q)  r = p  (q  r) 
 Distributive laws:  p  (q  r) = (p  q)  (p  r) 
    p  (q  r) = (p  q)  (p  r) 
 Identity laws: p  t = p, p  c = p 
 Negation laws: p  ~p = t, p  ~p = c 
 Double negative law: ~(~p) = p 
 Idempotent laws: p  p = p, p  p = p 
 De Morgan’s laws: ~(p  q) = ~p  ~q, ~(p  q) = ~p  ~q 
 Universal bound laws: p  t = t, p  c = c 
 Absorption laws: p  (p  q) = p, p  (p  q) = p 
 Negation of t and c: ~t = c, ~c = t 



 Contrapositive p  q is another conditional 
statement ~q  ~p 

 A conditional statement is equivalent to its 
contrapositive 

 The converse of p  q is q  p 
 The inverse of p  q is ~p  ~q 
 Conditional statement and its converse are not 

equivalent 
 Conditional statement and its inverse are not 

equivalent 



 The converse and the inverse of a conditional 

statement are equivalent to each other 

 p only if q means ~q  ~p, or p  q 

 Biconditional of p and q means “p if and only if 

q” and is denoted as p  q 

 r is a sufficient condition for s means “if r then 

s” 

 r is a necessary condition for s means “if not r 

then not s” 



 An argument is a sequence of statements. All 

statements except the final one are called 

premises (or assumptions or hypotheses). The 

final statement is called the conclusion. 

 An argument is considered valid if from the 

truth of all premises, the conclusion must also 

be true.  

 The conclusion is said to be inferred or 

deduced from the truth of the premises 



Contradiction rule: if one can show that 
the supposition that a statement p is false 
leads to a contradiction , then p is true.  

Knight is a person who always says truth, 
knave is a person who always lies: 
• A says: B is a knight 

• B says: A and I are of opposite types 

What are A and B? 



DeMorgan’s Laws 

Logical equivalence: Two statements have the same truth table 

Statement: The number 783477841 is divisible by 7 or 11. 

Negation: The number 783477841 is not divisible by 7 and not divisible by 11.

De Morgan’s Law 

Again, the negation of the above statement is not 

“The number 783477841 is not divisible by 7 or not divisible by 11”.

In either case, we “flip” the inside operator from OR to AND or from AND to OR.



Simplifying Statement 

(Optional) See textbook for more identities. 

DeMorgan 

Distributive law 

The DeMorgan’s Law allows us to always “move the NOT inside”.

We can use logical rules to simplify a logical formula. 



Tautology, Contradiction 

A tautology is a statement that is always true. 

A contradiction is a statement that is always false. (negation of a tautology)

In general it is “difficult” to tell whether a statement is a contradiction. 

It is one of the most important problems in CS – the satisfiability problem.



IMPLIES::

Logic Operator 
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Convention: if we don’t say anything wrong, then it is not false, and thus true.

Make sure you understand the definition of IF. 

 

The IF operation is very important in mathematical proofs. 



Logical Equivalence 

If you see a question in the above form, 

there are usually 3 ways to deal with it. 

(1)Truth table 

(2)Use logical rules 

(3)Intuition 



If-Then as Or 
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Idea 2: Look at the false rows, 

       negate and take the “and”. 

•If you don’t give me all your money, then I will kill you. 

•Either you give me all your money or I will kill you (or both). 

•If you talk to her, then you can never talk to me. 

•Either you don’t talk to her or you can never talk to me (or both). 



Negation of If-Then 

•If you eat an apple everyday, then you have no toothache. 

•You eat an apple everyday but you have toothache. 

•If my computer is not working, then I cannot finish my homework. 

•My computer is not working but I can finish my homework. 

previous slide 

DeMorgan 



Contrapositive 

The contrapositive of “if p then q” is “if ~q then ~p”. 

Statement:   If you drive, then you don’t drink. 

Statement:   If you are a CS year 1 student,  

                     then you are taking CSC 2110. 

Contrapositive:   If you drink, then you don’t drive. 

Contrapositive:   If you are not taking CSC 2110,  

                          then you are not a CS year 1 student. 

Fact: A conditional statement is logically equivalent to its contrapositive.



Proofs 

Statement:   If P, then Q 

Contrapositive:   If    Q, then     P. 

F F T 

T F F 

F T T 

T T T 

T T T 

T F F 

F T T 

F F T 

In words, the only way the above statements are false is when P true and Q false.



Contrapositive 

Statement:   If P, then Q 

Contrapositive:   If    Q, then     P. 

Or we can see it using logical rules: 

Contrapositive is useful in mathematical proofs, e.g. to prove 

Statement:   If x2 is an even number, then x is an even number. 

Contrapositive:   If x is an odd number, then x2 is an odd number. 

You could instead prove: 

This is equivalent and is easier to prove. 



 Tautology – a logical expression that is true for all 
variable assignments. 

 Contradiction – a logical expression that is false 
for all variable assignments. 

 Contingent – a logical expression that is neither a 
tautology nor a contradiction. 
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 Normal forms are standard forms, sometimes called 

canonical or accepted forms. 

 A logical expression is said to be in disjunctive normal 

form (DNF) if it is written as a disjunction, in which all 

terms are conjunctions of literals. 

 Similarly, a logical expression is said to be in conjunctive 

normal form (CNF) if it is written as a conjunction of 

disjunctions of literals. 

Discussion #10 
28/16 



 Disjunctive Normal Form (DNF) 
 ( ..  ..  .. )  ( ..  ..  .. )  …  ( ..  .. ) 
  

Discussion #10 
29/16 

Term Literal, i.e. P or P 

• Conjunctive Normal Form (CNF) 

 ( ..  ..  .. )  ( ..  ..  .. )  …  ( ..  .. ) 

     

  Examples: (P  Q)  (P  Q) 

    P  (Q  R) 

  Examples: (P  Q)  (P  Q) 

    P  (Q  R) 



Discussion #10 
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The following procedure converts an expression to DNF or CNF: 

1. Remove all  and . 

2. Move  inside.  (Use De Morgan’s law.) 

3. Use distributive laws to get proper form. 

Simplify as you go.  (e.g. double-neg., idemp., comm., assoc.) 



((P  Q)  R  (P  Q)) 
  ((P  Q)  R  (P  Q))   impl. 

  (P  Q)  R  (P  Q)  deM. 

  (P  Q)  R  (P  Q)  deM. 

  (P  Q)  R  (P  Q)   double neg. 

  ((P  R)  (Q  R))  (P  Q)  distr. 

  ((P  R)  (P  Q))    distr. 

  ((Q  R)  (P  Q)) 
  (((P  R)  P)  ((P  R)  Q))  distr. 

  (((Q  R)  P)  ((Q  R)  Q)) 
  (P  R)  (P  R  Q)  (Q  R) assoc. comm. 

idemp. 

Discussion #10 
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(DNF) 



((P  Q)  R  (P  Q)) 
  ((P  Q)  R  (P  Q))   impl. 

  (P  Q)  R  (P  Q)   deM. 

  (P  Q)  R  (P  Q)  deM. 

  (P  Q)  R  (P  Q)   double neg. 

  ((P  R)  (Q  R))  (P  Q)  distr. 

  ((P  R)  (P  Q))    distr. 

  ((Q  R)  (P  Q)) 
  (((P  R)  P)  ((P  R)  Q))   distr. 

  (((Q  R)  P)  ((Q  R)  Q)) 
  (P  R)  (P  R  Q)  (Q  R) assoc. comm. 

idemp. 
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(DNF) 

CNF 

Using the commutative and idempotent 

laws on the previous step and then the 

distributive law, we obtain this formula 

as the conjunctive normal form. 



((P  Q)  R  (P  Q)) 
  ((P  Q)  R  (P  Q))   impl. 

  (P  Q)  R  (P  Q)   deM. 

  (P  Q)  R  (P  Q)  deM. 

  (P  Q)  R  (P  Q)   double neg. 

  ((P  R)  (Q  R))  (P  Q)  distr. 

  ((P  R)  (P  Q))    distr. 

  ((Q  R)  (P  Q)) 
  (((P  R)  P)  ((P  R)  Q))   distr. 

  (((Q  R)  P)  ((Q  R)  Q)) 
  (P  R)  (P  R  Q)  (Q  R) assoc. comm. 

idemp. 
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(DNF) 

(P  R)  (P  R  Q) 

       (Q  R) 

 (P  R)  (P  R  Q) 

       (F  Q  R)  - ident. 

 (P  R)  ((P  F) 

       (Q  R))  - comm., distr. 

 (P  R)  (F 

       (Q  R))  - dominat. 

 (P  R)  (Q  R)  - ident. 



Predicate logic 

Free and bound variables 

Rules of Inference 

Consistency 

Proof of Contradiction 

 

 



Universal quantifier : The quantifier  ‘ all ’ is called the 
Universal quantifier, and we shall denote it by  x (or  (x) 
), which is an inverted A followed by the variable x. 

      x :  for all x  ( for every  x    (or)   for each x ) 

Existential quantifier : The quantifier  ‘some’ is called the 
Existential quantifier, and we shall denote it by x, which 
is a reversed E followed by the variable x. 

     x :  for some x  ( There exists an x such that  or  There is 
at least one  x such that ) 

Consider the statement,    ‘John is a Politician’ 

     Here, ‘John’  is the subject and  ‘is a Politician’ is the 
predicate 

     Denote the predicate, ‘is a Politician’  symbolically by the 
predicate letter P, and the subject  ‘John’  by  j . 



The statement ‘John is a Politician’ can be written as P(j)  

       P(j) : John is a Politician 

 If x is any person, then 

       P(x) : x is a politician 

In general, any statement of the type “ x is Q ” is denoted by Q(x). 

Let S(x) : x is a scientist. ( Here, S denote the predicate ‘is a scientist’). 

   P(x)        :   x is not a politician 

P(x)  S(x)  :   x is a politician  and  x is a scientist. 

P(x)  S(x)  :   Either x is a politician  or  x is a scientist. 

P(x) S(y)  :   If x is a politician  then   y is a scientist. 

x  {P(x)}   :   All are politicians    



In general, P(x,y) is any predicate involving the two variables x 
and y . 

Let  L(x,y) :  x  likes y   (Here, L denotes the predicate ‘Likes’, x 
and y are any two persons),  then the following possibilities exist: 

(x) (y)  L(x,y)  :  Every body likes every body. 

(x) (y)  L(x,y)   :  Every body likes some body. 

(x) (y)  L(x,y)   :  Some body likes every body. 

(x) (y)  L(x,y)    :  Some body likes Some body. 

(y) (x) L(x,y)    :  Every body was  liked by every body. 

(y) (x)  L(x,y)    : There is some body who is liked by every 
body. 

(y) (x)  L(x,y)    : Every body is liked by some one.  

(y) (x)   L(x,y)    : Some body was liked by some body. 



Universal specification : If a statement of the form ( x) P(x)  is 

assumed to be true then the universal quantifier can be dropped to 

obtain P(c) is true for an arbitrary object  c  in the universe. This rule 

may be represented as  

                                          x, P(x) 

                                       ----------------- 

               P(c) for all c. 

Universal generalization: If a statement P(c) is true for each element c 

of the universe, then the universal quantifier may be prefixed to obtain 

( x) P(x). In symbols, this rule is 

      P(c) for all c 

       x, P(x)  



Existential specification: If  ( x) P(x) is assumed to be true, then 

there is an element c  in the universe such that P(c) is true. This rule 

takes the form  

          ( x)  P(x)   

                           ----------------------- 

     P(c) for some c 

 

Existential generalization:. If P(c) is true for some element c in the 

universe, then x, P(x) is true. In symbols,  we have  

                                        P(c) for some c 

       ( x) P(x) 



Given a formula containing a part of the form  ( x) P(x)  or  ( x) 

P(x), such a part is called an x-bound part of the formula. Further P(x) 

is the scope of the quantifier in both the formulas. 

Any occurrence of  x, in an x-bound part of the formula is called a 

bound occurrence of x, while any variable that is not a bound 

occurrence is called a free occurrence 

Ex: consider,  (x) P(x,y) 

     Here, the scope of the universal quantifier is P(x,y),  x  is a bound 

variable      and   y   is a free variable. 

Ex: Consider the formula,  (x) (P(x) Q(x)) 

             Here, Scope of the quantifier is P(x) Q(x). 

                        Both the occurrences of x are bound. 



Ex: ( x) {P(x)  ( y) R(x,y)} 

            Here, the scope of  x  is  P(x)  ( y) R(x,y)  

             and   the scope of  y  is  R(x,y) 

              All occurrences of x and y are bound occurrences. 

In the bound occurrence of a variable, the letter which is used to 

represent the variable is a dummy variable. 

     The formula ( x) {P(x)} is same as ( y) {P(y)}  

     The formula, ( y) R(x,y)  is same as  ( z) R(x,z) . 

Generally speaking, in order to draw conclusions from quantified 

premises, we need to remove quantifiers properly, argue with the 

resulting propositions, and then properly prefix the correct quantifiers.      



Ex:  Let    P(x)    : x is a person 

                     F(x,y)  : x is the father of y   

                     M(x,y) : x is the mother of y 

      Write the predicate “ x is the father of the mother of y ” in 

symbolic form. 

Solution:   In order to symbolize the predicate, 

                       let us  assume a person called z as the mother 

of y. 

                       Now, x is the father of z  and  z is the mother of 

y . 

                       We symbolize the predicate as  

                      ( z) { P(z)    F(x , z)    M(z , y) } 



Solution:  First, let us note that the quotation really means that every 

body loves a lover. 

     Now  let                  P(x) : x is a person 

                                     L(x) : x is a lover 

                                     Q(x , y) :  x   loves  y  

The required expression is 

        (x) [P(x)  (y){P(y)   L(y) Q(x , y)}] 



Proof: From (1), By the rule of US, we have 

P(c)  Q(c)   ….(3) 

From (2), By the rule of US, we have 

{ P(c)  Q(c)}  R(c)   ..…(4) 

From (4), By contra positive equivalence, we have 

R(c)  {P(c)  Q(c)}  ……(5) 

Let     R(c)   ……………(6) (Additional premise) 

From (5) and (6), By the rule of modus ponens, we have 

P(c)  Q(c)   ……………(7) 

From (3) and (7), we have  

{P(c)  Q( c )}  {P(c)  Q(c)} 



 P(c)  {Q( c )  Q(c)} 

 P(c)   F 

 P(c) 

Now, By CP rule, 

R(c) P(c)    ….(8)      follows 

From (8), By the rule of UG, we have 

( x) { R(x) P(x)} 

Hence, the given argument is valid. 



String of Formulas: A string of formulas is defined as follows. 

    A) Any formula is a string of formulas  

    B) If  and  are strings of formulas, then  

         ,   and  ,   are strings of formulas. 

    C) Only those strings which are obtained by steps  (A) and (B) are 

strings of formulas, with the exception of empty string which is also a 

string of formulas.  

                                                                                             

Sequents :  If  and  are strings of formulas, then        is called 

a sequent in which  is called antecedent and    is called consequent. 

 

s 



A sequent     is true  if and only if  either at least one of the 

formulas of the antecedent is false or at least one of the formulas of the 

consequent is true. 

Thus   

       A, B, C   D, E, F   is true   iff  (A  B  C) (D  E  F) is true . 

        means that     is true. 

The empty antecedent is interpreted  as  ‘true’   or  T  

The empty consequent is interpreted  as  ‘false’ or  F 

Axiom schema: If  and  are strings of formulas such that every 

formula in both  and  is a variable only, then the sequent     is 

an axiom iff  and   have at least one variable in common. 

s 

s 

s s 

s 



Ex:  A,B,C  P,B,R  is an axiom. 

     If      is an axiom, then   . 

Theorem: The following sequents are theorems of our system. 

     a) Every axiom is a theorem . 

     b) If a sequent  is a theorem and  a sequent  results from  through 

the use of one of the 10 rules of the system which are given below,  

then  is a theorem. 

      c) Sequents obtained by (a) and (b) are the only theorems. 

Rules: The following rules are used to combine formulas within strings 

by introducing connectives.Corresponding to each of the connectives 

there are two rules, one for introducing the connective in the 

antecedent and the other for its introduction in the consequent.  

s s 

s 



Antecedent rules: 

Rule     :   If    ,    X ,    then   , X ,      

Rule     :   If  X, Y,  ,        then   , X Y ,      

Rule     :   If    X,  ,       and   Y,  ,      ,  

                                                                   then     , X  Y,      

 

Rule    :   If   Y,  ,        and    ,    X ,   

                                                                   then    , X  Y,      

 

Rule   :   If   X,Y, ,        and    ,   X, Y,   

                                                                  then    , X Y,      

 

s s 

s s 
s s 

s 

s` s 

s 

s s 

s 



Consequent rules: 

Rule   :   If   X,     ,    then    , X ,   

Rule  :   If    X, ,   and      Y, ,    

                                                                   then       , X  Y,   

Rule   :   If     X, Y, ,    then    , X  Y,   

 

Rule    :   If   X ,   Y, ,    and         , X  Y,   

                                                                    

Rule    :   If   X ,    Y, ,   and   Y,    X, ,    

                                                                  then      , X Y,   

s s 

s s 

s s 
s 

s s 

s s 
s 



Ex: Using Automatic theorem proving, Show that P Q follows from P. 

Solution: we need to show that 

(1)   P (P Q ) 

(1)  if  (2)     P ( P  Q )      ( By the rule,  ) 

(2)  if  (3)     P   P , Q         ( By the rule,   ) 

Now, (3) is an axiom 

Hence, the theorem (1) follows. 

 

 

s 

s 

s 



Solution:  Assume 

(1)    (P Q ) P 

(1)  if  (2)     ( P  Q ) P              ( By the rule,  ) 

(2)  if  (3)     P   P   and    (4)  Q P    ( By the rule,   ) 

 Note that (3)is an axiom, but (4) is not. 

Hence,  P does not follow from P Q. 

s 

s 

s s 



Solution: (a) To show  (1)   {P ( P Q)} R 

(1)  if  (2)  {P ( P Q)}  R       ( By using the rule, , twice) 

(2)  if  (3)  {P, P,Q)}  R           ( By the rule,   ) 

(3)  if  (4)  {P,Q)} {P, R}          ( By the rule,   ) 

Now (4) is an axiom , therefore the result follows. 

 

(b) To show  (1)   R  {P  ( P Q)}  

(1) if (2)     R  {P  ( P Q)}     ( By the rule,  ) 

(2) if (3)     R  {P, P, Q)}            ( By using the rule,   , twice) 

(3) if (4)     {R,P}  {P, Q)}            ( By using the rule,  ) 

Now (4) is an axiom , therefore the result follows. 

 

s 

s 

s 

s 

s 

s 

s 
s 



If we want to describe a relationship between 

elements of two sets A and B, we can use ordered 

pairs with their first element taken from A and  their 

second element taken from B.  

Since this is a relation between two sets, it is called 

a binary relation. 
 

Definition: Let A and B be sets. A binary relation 

from A to B is a subset of AB. 
 

In other words, for a binary relation R we have  

R  AB. We use the notation aRb to denote that (a, 

b)R and aRb to denote that (a, b)R. 

- 
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Relations 

55 



When (a, b) belongs to R, a is said to be related to b 
by R. 
Example: Let P be a set of people, C be a set of 
cars, and D be the relation describing which person 
drives which car(s). 
P = {Carl, Suzanne, Peter, Carla},  
C = {Mercedes, BMW, tricycle} 
D = {(Carl, Mercedes), (Suzanne, Mercedes), 
        (Suzanne, BMW), (Peter, tricycle)} 
This means that Carl drives a Mercedes, Suzanne 
drives a Mercedes and a BMW, Peter drives a 
tricycle, and Carla does not drive any of these 
vehicles. 

- 
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You might remember that a function f from a set A to 

a set B assigns a unique element of B to each 

element of A. 

The graph of f is the set of ordered pairs (a, b) such 

that b = f(a). 

Since the graph of f is a subset of AB, it is a relation 

from A to B. 

Moreover, for each element a of A, there is exactly 

one ordered pair in the graph that has a as its first 

element. 

- 
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Conversely, if R is a relation from A to B such that 

every element in A is the first element of exactly one 

ordered pair of R, then a function can be defined 

with R as its graph. 

 

This is done by assigning to an element aA the 

unique element bB such that (a, b)R. 

- 
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Definition: A relation on the set A is a relation from 

A to A. 
 

In other words, a relation on the set A is a subset of 

AA. 

 

Example: Let A = {1, 2, 3, 4}. Which ordered pairs 

are in the relation R = {(a, b) | a < b} ? 
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Solution:   R = { 
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(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 

R 1 2 3 4 

1 

2 

3 

4 

1 1 

2 

3 

4 

2 

3 

4 

X X X 

X X 

X 



We will now look at some useful ways to classify 

relations. 

Definition: A relation R on a set A is called 

reflexive if (a, a)R for every element aA. 

Are the following relations on {1, 2, 3, 4} reflexive? 

- 
61 

- - Discrete Structures 

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No. 

R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes. 

R = {(1, 1), (2, 2), (3, 3)} No. 

Definition: A relation on a set A is called irreflexive if (a, a)R for 

every element aA. 



Definitions:  
 

A relation R on a set A is called symmetric if (b, 

a)R whenever (a, b)R for all a, bA.  
 

A relation R on a set A is called antisymmetric if  

a = b whenever (a, b)R and (b, a)R. 
 

A relation R on a set A is called asymmetric if  

(a, b)R implies that (b, a)R for all a, bA.  
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Are the following relations on {1, 2, 3, 4}  

symmetric, antisymmetric, or asymmetric? 
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R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)} symmetric 

R = {(1, 1)} sym. and 

antisym. 

R = {(1, 3), (3, 2), (2, 1)} antisym. and 

asym. 

R = {(4, 4), (3, 3), (1, 4)} antisym. 



Definition: A relation R on a set A is called 
transitive if whenever (a, b)R and (b, c)R, then (a, 
c)R for a, b, cA.  
 

Are the following relations on {1, 2, 3, 4}  
transitive? 
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R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes. 

R = {(1, 3), (3, 2), (2, 1)} No. 

R = {(2, 4), (4, 3), (2, 3), (4, 1)} No. 



Example: How many different reflexive relations 
can be defined on a set A containing n elements? 
 

Solution: Relations on R are subsets of AA, which 
contains n2 elements. 
Therefore, different relations on A can be generated 
by choosing different subsets out of these n2 
elements, so there are 2n2

 relations. 
A reflexive relation, however, must contain the n 
elements (a, a) for every aA. 
Consequently, we can only choose among n2 – n =  
n(n – 1) elements to generate reflexive relations, so 
there are 2n(n – 1) of them. 
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Relations are sets, and therefore, we can apply the 

usual set operations to them. 
 

If we have two relations R1 and R2, and both of them 

are from a set A to a set B, then we can combine 

them to R1  R2, R1  R2, or R1 – R2. 
 

In each case, the result will be another relation 

from A to B. 
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… and there is another important way to combine 
relations. 
 

Definition: Let R be a relation from a set A to a set B 
and S a relation from B to a set C. The composite of 
R and S is the relation consisting of ordered pairs (a, 
c), where aA, cC, and for which there exists an 
element bB such that (a, b)R and  
(b, c)S. We denote the composite of R and S by 
SR. 
 

In other words, if relation R contains a pair (a, b) and 
relation S contains a pair (b, c), then SR contains a 
pair (a, c). 
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Example: Let D and S be relations on A = {1, 2, 3, 4}. 

D = {(a, b) | b = 5 - a}     “b equals (5 – a)” 

S = {(a, b) | a < b}        “a is smaller than b” 
 

D = {(1, 4), (2, 3), (3, 2), (4, 1)} 

S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 

SD = { 
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(2, 4), (3, 3), (3, 4), (4, 2), (4, 3), 

D maps an element a to the element (5 – a), and afterwards S maps (5 

– a) to all elements larger than (5 – a), resulting in SD = {(a,b) | b > 5 

– a} or SD = {(a,b) | a + b > 5}. 

(4, 4)} 



We already know that functions are just special 

cases of relations (namely those that map each 

element in the domain onto exactly one element in 

the codomain). 

 

If we formally convert two functions into relations, 

that is, write them down as sets of ordered pairs, the 

composite of these relations will be exactly the same 

as the composite of the functions (as defined 

earlier). 
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Definition: Let R be a relation on the set A. The 

powers Rn, n = 1, 2, 3, …, are defined inductively by 

R1 = R 

Rn+1 = RnR 

 

In other words: 

Rn = RR … R  (n times the letter R) 
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Theorem: The relation R on a set A is transitive if 
and only if Rn  R for all positive integers n.  
Remember the definition of transitivity: 
Definition: A relation R on a set A is called transitive 
if whenever (a, b)R and (b, c)R, then (a, c)R for a, 
b, cA.  
The composite of R with itself contains exactly these 
pairs (a, c).  
Therefore, for a transitive relation R, RR does not 
contain any pairs that are not in R, so RR  R. 
Since RR does not introduce any pairs that are not 
already in R, it must also be true that (RR)R  R, and 
so on, so that Rn  R. 
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In order to study an interesting application of 

relations, namely databases, we first need to 

generalize the concept of binary relations to n-ary 

relations. 

 

Definition: Let A1, A2, …, An be sets. An n-ary 

relation on these sets is a subset of A1A2…An. 

The sets A1, A2, …, An are called the domains of the 

relation, and n is called its degree. 
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Example:  

Let R = {(a, b, c) | a = 2b  b = 2c with a, b, cN} 

What is the degree of R? 

The degree of R is 3, so its elements are triples. 

What are its domains? 

Its domains are all equal to the set of integers. 

Is (2, 4, 8) in R? 

No. 

Is (4, 2, 1) in R? 

Yes. 
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We already know different ways of representing 
relations. We will now take a closer look at two ways 
of representation: Zero-one matrices and directed 
graphs. 
 

If R is a relation from A = {a1, a2, …, am} to B =  
{b1, b2, …, bn}, then R can be represented by the 
zero-one matrix MR = [mij] with 

mij = 1,   if (ai, bj)R, and 

mij = 0,  if (ai, bj)R. 
 

Note that for creating this matrix we first need to list 
the elements in A and B in a particular, but 
arbitrary order. 
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Example: How can we represent the relation  

R = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix? 

 

Solution: The matrix MR is given by  
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11

01

00

RM



What do we know about the matrices representing a 
relation on a set (a relation from A to A) ? 

They are square matrices. 

What do we know about matrices representing 
reflexive relations? 

All the elements on the diagonal of such matrices 
Mref must be 1s. 
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1

.

.

.

1

1

refM



What do we know about the matrices representing 

symmetric relations? 

These matrices are symmetric, that is, MR = (MR)t. 
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1101

1001

0010

1101

RM

symmetric matrix, 

symmetric relation. 





















0011

0011

0011

0011

RM

non-symmetric matrix, 

non-symmetric relation. 



The Boolean operations join and meet (you 
remember?) can be used to determine the matrices 
representing the union and the intersection of two 
relations, respectively. 
 
To obtain the join of two zero-one matrices, we apply 
the Boolean “or” function to all corresponding 
elements in the matrices. 
 
To obtain the meet of two zero-one matrices, we 
apply the Boolean “and” function to all 
corresponding elements in the matrices. 
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Example: Let the relations R and S be represented 
by the matrices 
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011

111

101

SRSR MMM



















001

110

101

SM

What are the matrices representing RS and RS? 
 

Solution: These matrices are given by 



















000

000

101

SRSR MMM



















010

001

101

RM



Example: How can we represent the relation  

R = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix? 

 

Solution: The matrix MR is given by  
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11

01

00

RM



Example: Let the relations R and S be represented 
by the matrices 
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011

111

101

SRSR MMM



















001

110

101

SM

What are the matrices representing RS and RS? 
 

Solution: These matrices are given by 



















000

000

101

SRSR MMM



















010

001

101

RM
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Do you remember the Boolean product of two zero-one matrices? 
 

Let A = [aij] be an mk zero-one matrix and  

B = [bij] be a kn zero-one matrix. 
 

Then the Boolean product of A and B, denoted by AB, is the mn 

matrix with (i, j)th entry [cij], where 
 

cij = (ai1  b1j)  (ai2  b2i)  …  (aik  bkj).  
 

 

cij = 1 if and only if at least one of the terms 

(ain  bnj) = 1 for some n; otherwise cij = 0. 
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Let us now assume that the zero-one matrices  

MA = [aij], MB = [bij] and MC = [cij] represent relations A, B, and C, 

respectively. 
 

Remember: For MC = MAMB we have: 
 

cij = 1 if and only if at least one of the terms 

(ain  bnj) = 1 for some n; otherwise cij = 0. 
 

In terms of the relations, this means that C contains a pair (xi, zj) if 

and only if there is an element yn such that (xi, yn) is in relation A and  

(yn, zj) is in relation B. 
 

Therefore, C = BA  (composite of A and B). 
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This gives us the following rule: 
 

MBA = MAMB 
 

In other words, the matrix representing the composite of relations A 

and B is the Boolean product of the matrices representing A and B. 

 

Analogously, we can find matrices representing the powers of 

relations: 
 

MRn = MR
[n]    (n-th Boolean power). 



Example: Find the matrix representing R2, where 

the matrix representing R is given by   
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001

110

010

RM

Solution: The matrix for R2 is given by   



















010

111

110
]2[

2 RR
MM



Definition: A directed graph, or digraph, consists 

of a set V of vertices (or nodes) together with a set 

E of ordered pairs of elements of V called edges (or 

arcs). 

The vertex a is called the initial vertex of the edge 

(a, b), and the vertex b is called the terminal vertex 

of this edge. 

 

We can use arrows to display graphs. 
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Example: Display the digraph with V = {a, b, c, d},  

E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}. 
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a 
b 

c d 

An edge of the form (b, b) is called a loop. 



Obviously, we can represent any relation R on a set A 

by the digraph with A as its vertices and all pairs (a, 

b)R as its edges. 
 

Vice versa, any digraph with vertices V and edges E 

can be represented by a relation on V containing all 

the pairs in E. 
 

This one-to-one correspondence between relations 

and digraphs means that any statement about 

relations also applies to digraphs, and vice versa. 
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Equivalence relations are used to relate objects 

that are similar in some way. 
 

Definition: A relation on a set A is called an 

equivalence relation if it is reflexive, symmetric, and 

transitive. 
 

Two elements that are related by an equivalence 

relation R are called equivalent. 
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Since R is symmetric, a is equivalent to b whenever 

b is equivalent to a. 
 

Since R is reflexive, every element is equivalent to 

itself. 
 

Since R is transitive, if a and b are equivalent and b 

and c are equivalent, then a and c are equivalent. 

 

Obviously, these three properties are necessary for 

a reasonable definition of equivalence. 
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Example: Suppose that R is the relation on the set of 

strings that consist of English letters such that aRb if 

and only if l(a) = l(b), where l(x) is the length of the 

string x. Is R an equivalence relation? 

Solution:  

 R is reflexive, because l(a) = l(a) and therefore  

  aRa for any string a. 

 R is symmetric, because if l(a) = l(b) then l(b) =  

  l(a), so if aRb then bRa. 

 R is transitive, because if l(a) = l(b) and l(b) = l(c),  

  then l(a) = l(c), so aRb and bRc implies aRc. 

R is an equivalence relation. 
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Definition: Let R be an equivalence relation on a set 

A. The set of all elements that are related to an 

element a of A is called the equivalence class  

of a.  

The equivalence class of a with respect to R is 

denoted by [a]R. 

When only one relation is under consideration, we 

will delete the subscript R and write [a] for this 

equivalence class. 

If b[a]R, b is called a representative of this 

equivalence class. 
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Example: In the previous example (strings of 

identical length), what is the equivalence class of the 

word mouse, denoted by [mouse] ? 

 

Solution: [mouse] is the set of all English words 

containing five letters. 

 

For example, ‘horse’ would be a representative of 

this equivalence class. 
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Theorem: Let R be an equivalence relation on a set 

A. The following statements are equivalent: 

   aRb 


   [a] = [b] 

 [a]  [b]    

Definition: A partition of a set S is a collection of 

disjoint nonempty subsets of S that have S as their 

union. In other words, the collection of subsets Ai,  

iI, forms a partition of S if and only if  

(i)   Ai   for iI 

  Ai  Aj = , if i  j 

 iI Ai = S 
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Theorem: Let R be an equivalence relation on a  

set S. Then the equivalence classes of R form a 

partition of S. Conversely, given a partition  

{Ai | iI} of the set S, there is an equivalence relation 

R that has the sets Ai, iI, as its equivalence classes. 
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Example: Let us assume that Frank, Suzanne and 

George live in Boston, Stephanie and Max live in 

Lübeck, and Jennifer lives in Sydney.  

Let R be the equivalence relation {(a, b) | a and b 

live in the same city} on the set P = {Frank, Suzanne, 

George, Stephanie, Max, Jennifer}. 

Then R = {(Frank, Frank), (Frank, Suzanne), 

(Frank, George), (Suzanne, Frank), (Suzanne, 

Suzanne), (Suzanne, George), (George, Frank), 

(George, Suzanne), (George, George), (Stephanie, 

Stephanie), (Stephanie, Max), (Max, Stephanie), 

(Max, Max), (Jennifer, Jennifer)}. 
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Then the equivalence classes of R are: 

{{Frank, Suzanne, George}, {Stephanie, Max}, 

{Jennifer}}. 

This is a partition of P. 
 

The equivalence classes of any equivalence relation 

R defined on a set S constitute a partition of S, 

because every element in S is assigned to exactly 

one of the equivalence classes. 
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Another example: Let R be the relation  

{(a, b) | a  b (mod 3)} on the set of integers. 

Is R an equivalence relation? 

Yes, R is reflexive, symmetric, and transitive. 
 

What are the equivalence classes of R ? 

{{…, -6, -3, 0, 3, 6, …}, 

 {…, -5, -2, 1, 4, 7, …}, 

 {…, -4, -1, 2, 5, 8, …}} 
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Total orderings: single sequence of elements 
Partial orderings: some elements may come before/after others, but some need not be 

ordered 
Examples of partial orderings: 

Discussion #28 99/

13 

foundation 

framing 

plumbing wiring 

finishing 

{a, b, c} 

{a, b} {a, c} {b, c} 

{a} {b} {c} 

 

“must be completed before” “set inclusion, ” 



A relation R: SS is called 

a (weak) partial order if it 

is reflexive, 

antisymmetric, and 

transitive. 

Discussion #28 
10

0/1

3 

1 

2 3 

• A relation R: SS is called 

a strict partial order if it is 

irreflexive, antisymmetric, 

and transitive.  
          

1 

2 3 
          

          

e.g.  on the integers 

e.g. < on the integers 



   We produce Hasse Diagrams from directed graphs 
of relations by doing a transitive reduction plus a 
reflexive reduction (if weak) and (usually) dropping 
arrowheads (using, instead, “above” to give 
direction) 
1) Transitive reduction  discard all arcs except those 

that “directly cover” an element. 
2) Reflexive reduction  discard all self loops. 

Discussion #28 
10

1/1

3 

 

{b} {a} 

{a, b} 

 

{b} {a} 

{a, b} 

 

For  we write: 



Descending sequence: A sequence <x1, x2, 
…, xn> where for i < j, xi “is strictly 
above” xj on a path in a Hasse diagram; xi 
need not, however, be “immediately 
above” xj. 

Examples: 
   <{a,b,c}, {c},  >  descending 

   <{a,b,c}, {b}, {c},  > not descending 

   <{a,b,c}, {b,c}, {c},  > descending 

  <5, 4, 2>   descending 

   <3, 2, 2, 2, 1>  not descending 

Discussion #28 
10
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3 



A poset is well founded if it has no infinite 
descending sequence. 

Examples: 
>  on the integers? 
   <3, 2, 1, 0, -1, …> not well founded 
  on finite sets? 

<{a, b, c}, {c}, > well founded 

   All finite strict posets are well founded. 
  on finite sets? 
   <{a}, {a}, {a}, …> not a descending 

sequence 
   All finite (weak) posets are well founded. 
>  natural numbers? 

  <…, 3, 2, 1, 0> infinite, but well founded 

Discussion #28 
10

3/1

3 



A least upper bound of two elements x and y is a 
minimal element in the intersection of the upper 
bounds of x and y. 

A greatest lower bound is a maximal element in 
the intersection of the lower bounds of x and y. 

Examples: 
 For , {a, c} is a least upper bound of {a} and {c}, 
  is a greatest lower bound of {a} and {b, c}, and 
 {a} is a least upper bound of {a} and . 
 For the following strict poset, lub(x,y) = {a,b}, 

lub(y,y) = {a,b,c}, lub(a,y) = , glb(a,b) = {x,y}, 
glb(a,c) = {y} 

Discussion #28 

10

4/1

3 

a b 

x y 

c 
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1.1. Binary Operations 

1.2.Definition of Groups 

1.3.Examples of  Groups 
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1.1.Binary Operations 

    A binary operation on a set is a rule for  

combining two elements of the set. More 

precisely, if S iz a nonemty set, a binary 

operation on S iz a mapping f : S  S  S. 

Thus f associates with each ordered pair 

(x,y) of element of S an element f(x,y) of 

S. It is better notation to write x   y for 

f(x,y), refering to     as the binary 

operation. 
10
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1.2.Definition of Groups 
 A group (G, ・) is a set G together with a binary 

operation ・ satisfying the following axioms. 
(i) The operation ・ is associative; that is,  
      (a ・ b) ・ c = a ・ (b ・ c) for all  a, b, c ∈ G. 
(ii) There is an identity element e ∈ G such that  
       e ・ a = a ・ e = a for all a ∈ G. 
(iii) Each element a ∈ G has an inverse element a−1 
∈ G such that  a-1・ a = a ・ a−1 = e. 
 

10
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If  the operation is commutative, that is, 

   if  a ・ b = b ・ a        for all a, b ∈ G, 

the group is called commutative or 

abelian, in honor of the 

mathematician Niels Abel. 

 

11
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1.3.Examples of  Groups 
 Example 1.3.1. Let G be the set of complex 

numbers {1,−1, i,−i} and let ・ be the standard 
multiplication of complex numbers. Then (G, ・) 
is an abelian group. The product of any two of 
these elements is an element of G; thus G is 
closed under the  operation. Multiplication is 
associative and commutative in G because 
multiplication of complex numbers is always 
associative and commutative. The identity 
element is 1, and the inverse of each element a is 
the element 1/a. Hence 

       1−1 = 1, (−1)−1 = −1, i−1 = −i, and (−i)−1 = i. 

11
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 Example 1.3.2. The set of all rational numbers, 
Q, forms an abelian group (Q,+) under 
addition.The identity is 0, and the inverse of each 
element is its negative. Similarly, 

     (Z,+), (R,+), and (C,+) are all abelian groups 
under addition. 

 Example1. 3.3. If Q∗, R∗, and C∗ denote the set of 
nonzero rational, real, and complex numbers, 
respectively, (Q∗,・),  

    (R∗,・), and (C∗, ・) are all abelian groups under 
     multiplication. 

11
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 Example 1.3.4. A translation of the plane R2 in the 
direction of the vector (a, b) is a function f :R2 → R2 
defined by f (x, y) = (x + a, y + b). The composition of 
this translation with a translation g in the direction of 
(c, d) is the function 

      f  g:R2 → R2, where 
     f  g(x, y) = f (g(x, y))= f (x + c, y + d)= (x + c + a, y + 

d + b). 
    This is a translation in the direction of (c + a, d + b). It 

can easily be verified  that the set of all translations in 
R2 forms an abelian group,  under composition. The 
identity is the identity transformation 1R

2 :R2 → R2, and 
the inverse of the translation in the direction (a, b) is 
the translation in the opposite direction (−a,−b). 
 

11

3 



Example1.3.5. If S(X) is the set of 

bijections from any set X to itself, then 

(S(X), ) is a group under composition. 

This group is called the symmetric group 

or permutation group of X. 

 

11

4 



Proposition 1.3.1. If a, b, and c are 

elements of a group G, then 

(i) (a−1)−1 = a. 

(ii) (ab)−1 = b−1a−1. 

(iii) ab = ac or ba = ca implies that b = c. 

(cancellation law) 

 

11
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 1.4.Subgroups 

It often happens that some subset of a group will 

also form a group under the same operation.Such 

a group is called a subgroup. If (G, ・) is a 

group and H is a nonempty subset of G, then  

(H, ・) is called a subgroup of (G, ・) if the 

following conditions hold: 

(i) a ・ b ∈ H for all a, b ∈ H. (closure) 

(ii) a−1 ∈ H for all a ∈ H. (existence of inverses) 

11
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 Conditions (i) and (ii) are equivalent to the 
single condition: 

   (iii) a ・ b−1 ∈ H for all a, b ∈ H. 
 

 Proposition 1.4.2. If H is a nonempty finite 
subset of a group G and ab ∈ H for all a, b ∈ 
H, then H is a subgroup of G. 
 

Example 1.4.1 In the group ({1,−1, i,−i}, ・), 
the subset {1,−1} forms a subgroup because  
this subset is closed under multiplication 
 

11
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 Example 1.4.2 .The group Z is a subgroup of 
Q,Q is a subgroup of R, and R is a subgroup of C. 
(Remember that addition is the operation in all 
these groups.) 

 However, the set N = {0, 1, 2, . . .} of nonnegative 
integers is a subset of Z but not a subgroup, 
because the inverse of 1, namely, −1, is not in N. 
This example shows that Proposition 1.4.2 is false 
if we drop the condition that H be finite. 

 The relation of  being a subgroup is transitive. In 
fact, for any group G, the inclusion relation 
between the subgroups of G is a partial order 
relation. 
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Definition. Let G be a group and let a  

G. If ak = 1 for some k  1, then the 

smallest such exponent k  1 is called the 

order of a; if no such power exists, then 

one says that a has infinite order. 

 

Proposition 1.4.3 . Let G be a group and 

assume that a G has finite order k. If an = 

1, then k | n. In fact, {n Z : an = 1} is the set 

of all the multiples of k.   
11
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 Definition.  If G is a group and a  G, write 
        <a > = {an : n Z} = {all powers of a } . 
    It is easy to see that <a > is a subgroup of G . 
      < a > is called the cyclic subgroup of G 

generated by a. A group G is called cyclic if there 
is some a  G with G = < a >; in this case a is 
called a generator  of  G. 

  Proposition 1.4.4. If G= <a > is a cyclic group of 
order n, then ak is a generator of G if and only if 
gcd(k; n)= 1. 

 Corollary 1.4.5. The number of generators of a 
cyclic group of order n is (n). 
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Proposition 1.4.6. Let G be a finite group 

and let a  G. Then the order of a  is the 

number of elements in  <a >. 

 

Definition. If G is a finite group, then the 

number of elements in G, denoted by G, 

is called the order of G. 
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2.1.Cosets 

2.2.Theorem of Lagrange 

2.3.Normal Subgrops 

2.4.Quotient Groups 
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2.1.Cosets 

Let (G, ·) be a group with subgroup H. For 

a, b ∈ G, we say that a is congruent to b 

modulo H, and write a ≡ b mod H if and 

only if ab−1 ∈ H. 

Proposition 2.1. 1.The relation a ≡ b mod 

H is an equivalence relation on G. The 

equivalence class containing a can be 

written in the form Ha = {ha|h ∈ H}, and it 

is called a right coset of H in G. The 

element a is called a representative of 
12
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Example 2.1.1. Find the right cosets of 

A3 in S3. 

   Solution. One coset is the subgroup itself  

A3 = {(1), (123), (132)}. Take any element 

not in the subgroup, say (12). Then 

another coset is A3(12) = {(12), (123) (12), 

(132) (12)} = {(12), (13), (23)}.Since the 

right cosets form a partition of S3 and the 

two cosets above contain all the elements 

of S3, it follows that these are the only two 

cosets. 
12
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Example 2.1.2. Find the right cosets of 

H = {e, g4, g8} in   C12 = {e, g, g2, . . . , g11}. 

Solution. H itself is one coset. Another is 

Hg = {g, g5, g9}. These two cosets have not 

exhausted all the elements of C12, so pick 

an element, say g2, which is not in H or 

Hg. A third coset is Hg2 = {g2, g6, g10} and 

a fourth is Hg3 ={g3, g7, g11}. 

    Since C12 = H ∪ Hg ∪ Hg2 ∪ Hg3, these 

are all the cosets 
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 2.2.Theorem of  Lagrange 
 As the examples above suggest, every coset 

contains the same number of elements. We use 
this result to prove the famous theorem of Joseph 
Lagrange (1736–1813). 

 Lemma 2.2.1. There is a bijection between any 
two right cosets of H in G. 

Proof. Let Ha be a right coset of H in G. We produce 
a bijection between Ha and H, from which it 
follows that there is a bijection between any two 
right cosets. 

    Define ψ:H → Ha by ψ(h) = ha. Then ψ is clearly 
surjective. Now suppose that ψ(h1) = ψ(h2), so that 
h1a = h2a. Multiplying each side by a−1 on the 
right, we obtain h1 = h2. Hence ψ is a bijection. 
 12
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Theorem 2.2.2. Lagrange’s Theorem. If G 

is a finite group and H is a subgroup of G, 

then |H| divides |G|. 

Proof. The right cosets of H in G form a 

partition of G, so G can be written  as a 

disjoint union 

G = Ha1 ∪ Ha2 ∪ ·· ·∪ Hak for a finite set of 

elements a1, a2, . . . , ak ∈ G. 

By Lemma 2.2.1, the number of elements in 

each coset is |H|. Hence, counting all the 

elements in the disjoint union above, we 
12
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 If H is a subgroup of G, the number of 

distinct right cosets of H in G is called the 

index of H in G and is written |G : H|. The 

following is a direct consequence of the 

proof of Lagrange’s theorem. 

Corollary 2.2.3. If G is a finite group with 

subgroup H, then 

     |G : H| = |G|/|H|. 

Corollary 2.2.4. If a is an element of a 

finite group G, then the order of a divides  

the order of G. 
12
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2.3.Normal Subgrops 

Let G be a group with subgroup H. The 

right cosets of H in G are equivalence  

classes under the relation a ≡ b mod H, 

defined by ab−1 ∈ H. We can also define 

the relation L on G so that aLb if and only 

if b−1a ∈ H. This relation, L, is an 

equivalence relation, and the 

equivalence class containing a is the left 

coset aH = {ah|h ∈ H}. As the following 

example shows, the left coset of an 
12
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 Example 2.3.1. Find the left and right cosets of H = A3 and K = 

{(1), (12)} in S3. 

 Solution. We calculated the right cosets of H = A3 in Example 2.1.1. 

    Right Cosets   

    H  = {(1), (123), (132)}; H(12) = {(12), (13), (23)}  

    Left Cosets 

     H = {(1), (123), (132}; (12)H = {(12), (23), (13)} 

    In this case, the left and right cosets of H are the same. 

 However, the left and right cosets of K are not all the same. 

   Right Cosets  

      K = {(1), (12)} ; K(13) = {(13), (132)} ; K(23) = {(23), (123)}  

   Left Cosets 

       K = {(1), (12)};(23)K = {(23), (132)}; (13)K = {(13), (123)}  
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Definition:  A subgroup H of a group G is called a 
normal subgroup of G if g−1hg ∈ H for all g ∈ G 
and h ∈ H. 

Proposition 2.3.1. Hg = gH, for all g ∈ G, if and only 
if H is a normal subgroup of G. 

Proof. Suppose that Hg = gH. Then, for any element 
h ∈ H, hg ∈ Hg = gH. Hence hg = gh1 for some h1 
∈ H and g−1hg = g−1gh1 = h1 ∈ H. Therefore,H is a 
normal subgroup. 

    Conversely, if H is normal, let hg ∈ Hg and g−1hg 
= h1 ∈ H. Then hg = gh1 ∈ gH and Hg ⊆ gH. Also, 
ghg−1 = (g−1)−1hg−1 = h2 ∈ H, since H is normal, so 
gh = h2g ∈ Hg. Hence, gH ⊆ Hg, and so Hg = gH. 
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 If N is a normal subgroup of a group G, 

the left cosets of N in G are the same as 

the right cosets of N in G, so there will be 

no ambiguity in just talking about the 

cosets of N in G. 

 

Theorem 2.3.2. If N is a normal subgroup 

of (G, ·), the set of cosets G/N = {Ng|g ∈ G} 

forms a group (G/N, ·), where the 

operation is defined by (Ng1) · (Ng2) = 

N(g1 · g2). This group is called the quotient 
13
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 Proof. The operation of multiplying two cosets, Ng1 and Ng2, is 
defined in terms of particular elements, g1 and g2, of the 
cosets. For this operation to make sense, we have to verify 
that, if we choose different elements, h1 and h2, in the same 
cosets, the product coset N(h1 · h2) is the same as N(g1 · g2). In 
other words, we have to show that multiplication of cosets is 
well defined. Since h1 is in the same coset as g1, we have h1 ≡ 
g1 mod N. Similarly, h2 ≡ g2 mod N. We show that Nh1h2 = 
Ng1g2. We have h1g 1

−1  = n1 ∈ N and h2g 2
−1

  = n2 ∈ N, so 
h1h2(g1g2)

−1 = h1h2g 2
−1g 1

−1 =  n1g1n2g2g2 
−1 g 1

−1 = n1g1n2g 1
−1. 

Now N is a normal subgroup, so g1n2g 1
−1

 ∈ N and n1g1n2g 1
−1 ∈ 

N. Hence h1h2 ≡ g1g2 mod N and Nh1h2 = Ng1g2. Therefore, the 
operation is well defined. 
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The operation is associative because 

(Ng1 · Ng2) · Ng3 = N(g1g2) · Ng3 = 

N(g1g2)g3 and also Ng1 · (Ng2 · Ng3) = 

Ng1 · N(g2g3) = Ng1(g2g3) = N(g1g2)g3. 

Since Ng · Ne = Nge = Ng and Ne · Ng = 

Ng, the identity is Ne = N.  

The inverse of Ng is Ng−1 because Ng · 

Ng−1 = N(g · g−1) = Ne = N and also Ng−1 · 

Ng = N. 

Hence (G/N, ·) is a group. 
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 Example 2.3.1. (Zn, +) is the quotient group of (Z,+) 
by the subgroup nZ =  {nz|z ∈ Z}. 

 Solution. Since (Z,+) is abelian, every subgroup is 
normal. The set nZ can be verified to be a subgroup, 
and the relationship a ≡ b mod nZ is equivalent to a − 
b ∈ nZ and to n|a − b. Hence a ≡ b mod nZ is the 
same relation as a ≡ b mod n. Therefore, Zn is the 
quotient group Z/nZ, where the operation on 
congruence classes is defined by [a] + [b] = [a + b].  

  (Zn,+) is a cyclic group with 1 as a generator .When 
there is no confusion, we write the elements of Zn as 
0, 1, 2, 3, . . . , 

  n − 1 instead of [0], [1], [2], [3], . . . , [n − 1]. 
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3.1.Definition of Homomorphisms 

3.2.Examples of Homomorphisms 

3.3.Theorem on Homomorphisms 
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 3.1.Definition of Homomorphisms 
 If (G, ・) and (H,  ) are two groups, the function f 

:G → H is called a group homomorphism if 
         f (a ・ b) = f (a)  f (b) for all a, b ∈ G. 
 We often use the notation f : (G, ・) → (H, ) for 

such a homorphism. Many authors use morphism 
instead of homomorphism. 

 A group isomorphism is a bijective group 
homomorphism. If there is an isomorphism 
between the groups (G, ・) and  

   (H, ), we say that (G, ・) and (H, ) are 
isomorphic and write (G, ・)  (H,  ). 

13

7 



 3.2.Examples of  Homomorphisms 
 -  The function  f : Z → Zn , defined by f (x) = [x] iz  the  

group  homomorphism. 
- Let be R the group of all real numbers with operation 

addition, and let R+ be the group of all positive real 
numbers with operation multiplication. The function f 
: R → R+ , defined by f (x) = ex , is a homomorphism, 
for if x, y  R, then   

    f(x + y) = ex+y = ex ey = f (x) f (y). Now f is an 
isomorphism, for its inverse function g :R+ → R is lnx. 
There-fore, the additive group  R is isomorphic to the 
multiplicative group  R+  . Note that the inverse 
function g is also an isomorphism:  g(x y) = ln(x y) = 
lnx + lny = g(x) + g(y).   

13
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 3.3.Theorem on Homomorphisms 
 Proposition 3.3.1. Let f :G → H be a group 

morphism, and let eG and eH be the identities 
of G and H, respectively. Then 

 (i) f (eG) = eH . 
 (ii) f (a−1) = f (a)−1 for all a ∈ G. 
 Proof. (i) Since f is a morphism, f (eG)f (eG) = 

f (eG eG) = f (eG) = f (eG)eH . Hence (i) follows 
by cancellation in H 

(ii) f (a)  f (a−1) = f (a  a−1) = f (eG) = eH by (i). 
Hence f (a−1) is the unique inverse of f (a); 
that is f (a−1) = f (a)−1 
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 If f :G → H is a group morphism, the kernel of f , 
denoted by Kerf, is defined to be the set of 
elements of G that are mapped by f to the 
identity of H. That is, Kerf ={g ∈ G|f (g) = eH  } 

 Proposition 3.3.2. Let f :G → H be a group 
morphism. Then: 

   (i) Kerf is a normal subgroup of G. 
   (ii) f is injective if and only if Kerf = {eG}. 
 Proposition 3.3.3. For any group morphism f :G 
→ H, the image of   f , Imf ={f (g)|g ∈ G}, is a 
subgroup of H (although not necessarily normal). 
 

14

0 



 Theorem 3.3.4. Morphism Theorem for 
Groups. Let K be the kernel of the group 
morphism f :G → H. Then G/K is isomorphic to the 
image of f, and  the isomorphism 

         ψ: G/K → Imf   is defined by   ψ(Kg) = f (g). 
 This result is also known as the first 

isomorphism theorem. 
 Proof. The function ψ is defined on a coset by 

using one particular element in the coset, so we 
have to check that ψ is well defined; that is, it 
does not matter which element we use. If Kg , = 
Kg, then g’ ≡ g mod K so g ,g−1 = k ∈ K = Kerf . 
Hence g , = kg and so 

     f (g ,) = f (kg) = f (k)f(g) = eHf (g) = f (g). 
     Thus ψ is well defined on cosets. 
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The function ψ is a  morphism because 

     ψ(Kg1Kg2) = ψ(Kg1g2) = f (g1g2) = f (g1)f 

(g2) = ψ(Kg1)ψ(Kg2). 

 If ψ(Kg) = eH, then f (g) = eH and g ∈ K. 

Hence the only element in the  kernel of 

ψ is the identity coset K, and ψ is 

injective. Finally, Imψ = Imf ,by the 

definition of ψ. Therefore, ψ is the 

required isomorphism between G/K and 

Imf 
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 Example 3.3.1. Show that the quotient group R/Z is 
isomorphic to the circle group W = {eiθ ∈ C | θ ∈ R }. 

Solution. The set W consists of points on the circle of 
complex numbers of unit modulus, and forms a 
group under multiplication. Define the function 

    f :R → W by f (x) = e2πix. This is a morphism from 
(R,+) to   

    (W, ·) because 
   f (x + y) = e2πi(x+y) = e2πix · e2πiy = f (x) · f (y). 
  The morphism f is clearly surjective, and its kernel is                     

{x ∈ R|e2πix = 1} = Z. 
 Therefore, the morphism theorem implies that R/Z   

W. 
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 Basics of counting 
 Permutations and Combinations  
 Combinations with Repetitions 
 Binomial coefficients  
 Principles of inclusion and exclusion 
 Pigeon hole principle and its 

application 
 

 



 Sum Rule: If E1, E2, ………, En are mutually exclusive events, and 
E1 can happen in e1 ways,  E2 can happen in e2 ways, …….. ,  

       En can happen in en ways, then   

       (E1 or E2 or….or En ) can happen in (e1 + e2 + ….. + en  )  ways. 

 Ex. A man can spend his evening in one of the following ways. 

       He can do shopping  or  he can go to a Cinema hall  or  he can 
go to a restaurant.    

        If there are 6 shopping complexes, 8 cinema halls and 9 
restaurants then, how many different ways he can spend his 
evening?. 

 Solution:  By Sum rule, he can spend his evening in  6 + 8 + 9 = 
23    

                       different ways. 



 Solution: a)  There are 3 ways to get a sum of 4 

              i.e.,  {(1 , 3), (2 , 2), (3 , 1)} 

              Likewise, There are 5 ways to get a sum of  8. 

             i.e.,    { (2 , 6),(3 , 5),(4 ,4), (5 ,3), (6 ,2)}. 

             The number of ways to get a sum of 4 or 8 = 3 + 5 = 8 

 

 b)  The number of ways we get an even sum  =  

             The number of ways to get a sum of 2 or 4 or 6 or 8 or 10 

or 12 = 

                1 +  3  + 5 + 5  + 3  +  1  =  18 ways  . 



 Solution:  a) If the dice are identical, the outcomes (a,b) and 

(b,a) cannot be differentiated. 

       Now, there are only 2 ways to get a sum of 4 

              i.e.,  {(1 , 3), (2 , 2) } 

              Likewise, There are only  3 ways to get a sum of  8. 

             i.e.,    { (2 , 6),(3 , 5),(4 ,4)}. 

             The number of ways to get a sum of 4 or 8 = 2 +3 = 5 

 b) Likewise, The number of ways we get an even sum  =  

             The number of ways to get a sum of 2 or 4 or 6 or 8 or 10 

or 12 = 

                1 +  2  + 3 + 3  + 2  +  1  =  12ways  . 



 Product Rule: If events  E1, E2, ………, En can happen in  

      e1, e2, …, en ways respectively, then the sequence of events  

      ( E1 first,  followed by E2, ……, followed by  En ) can happen  

      (e1 . e2 . …. en) ways. 

 Ex. a) If 2 distinguishable dice are rolled, in how many ways  

                  Can  they fall ? 

              b)  If 5 distinguishable dice are rolled, how many possible      

                   outcomes  are there?. 

 Solution: a) The first die can fall in 6 ways and the second can fall 
in  

                        6 ways.  

 By product rule,  the number of possible outcomes = 6 . 6 = 36. 



 b)  Similarly, the number of possible outcomes when 5 

distinguishable dice are rolled = 6.6.6.6.6 = 65 

 Ex. A man wants to spend his evening in the following way.  

              First,  He would like to do some shopping , 

              then  he would like to go to a Cinema hall   and   

              finally  he would like  to  go to a  restaurant.    

        If there are 6 shopping complexes, 8 cinema halls and 9 

restaurants then, how many different ways he can spend his 

evening?. 

 

 Ans. 6. 8. 9 = 432 ways. 



 Solution: a) Here, each of the 3 digits can be filled in 7 ways . 

       By product rule,The required number of  3-digit             

                            numbers that can be formed  = 7.7.7 = 343. 

 

 b) If the repetitions are not allowed,  

           The required number of  3-digit numbers that can be 

formed  =    

                                       7.6.5 = 210. 

 



 Solution: An even number must end with 0,2,4,6,or 8. 

 Case1                                                       x    x    0 

                                                                        9    8    - 

The number of  3- digit even numbers ending with 0 = 9 . 8 = 72 

 Case2                                                                     x    x    x                                        

                                                                                                                                                   8    8    4 

  The number of  3-digit even numbers not ending with 0 = 8. 8. 4 
= 256. 

  Since, these two cases are mutually exclusive, By sum rule 

  The required number of 3-digit even numbers = 72 + 256 = 328.  

 Ex. How many 4 digit even numbers have all 4 digits distinct ? 

 Ans. 2296  



 Permutations: A permutation of n objects taken r at a time 
(also called an r-permutation of n objects) is an  ordered 
selection or arrangement of  r of the objects.  

 

 P(n, r) =  The number of permutations of n objects taken r at a 
time 

                   (without any repetitions).                  

 P(n , 1) = n. 

 P(n , 2) = n.(n – 1). 

 P(n , 3) = n.(n – 1).(n – 2).   

 ……………. 

P(n , r) = n.(n - 1)(n - 2)…….{n – (r –1)}   =   n! / (n – r)!  

 P(n , n) =  n!     i.e..,   there are  n!  Permutations of n objects. 

 

 



 Note:  

 1) There are (n – 1)!  permutations of n distinct objects around a 
circle. 

 2) U(n, r) = The number of  r-permutations of n objects with   

                            unlimited repetitions =  nr. 

 3) The number of permutations of n objects of which n1 are alike,  

            n2 are alike, …., nr are alike  is 

                 n! 

         n1! .  n2! .  ... .nr! 

 4) The number of ways to arrange ‘n’ different pearls in a 
necklace 

            is   (n – 1)! / 2. 



 5) The number of ordered partitions of  a set S of type {q1 , q2, 
….,qk}   

         where S = n   is  

         p( n ; q1 , q2 ,….., qt)    =           n! 

                                                   q1! q2! ….. qt! 

 

 6) Enumeration of unordered partitions of equal cell size: 

     The number of unordered partitions of a set S of type (q , q, 
…q),     

         (where S =  n  = q . t )  is 

                                =                n! 

                                       (q!)t . t! 

 



 Combinations:  

 A combination of n-objects taken r at a time (called an r-
combination of n objects) is an unordered selection of n 
objects. 

 C(n, r) = The number of combinations of n-objects taken r at 
time   

                                                                             (without 
repetitions) 

            =       n! 

                 r! . (n-r)! 

 Note: 1) P(n, r) = r! . C(n, r) 

 2) C(n, 0) = 1 

 3) C(n, 1) = n 



 4) C(n, 2)  =     n.(n –1) 

                                   1.2     

 

 5) C(n, 3)  =    n.(n –1).(n –2 )  

                                     1.2.3  

 6)  C(n , n) = 1     

                  

 7) C(n , r) = C( n , n – r ) 

 



 V(n, r) = The number of combinations of n distinct objects 

taken r at a time with unlimited repetitions. 

 V(n ,r) = C(n –1 + r, r) 

                   = C(n –1 + r, n - 1) 

 V(n, r) = The number of ways distributing  ‘r’ similar balls 

into ‘n’    

                      numbered boxes. 

 V(n, r) = The number of non negative integral solutions to the    

                         equation     x1 + x2 + ……..+ xn = r 

 V(n ,r) = The number of binary sequences with ‘n – 1’ ones  

                          and  ‘r’  zeros. 

 

 



 Ex. How many ways are there to distributive 10 different 
books among 15 people,  if no person is to receive more than 
one book? 

        a) P(15, 10)      b) C(15, 10) c) 1015         d) 1510 

 Ans. a  

 Ex. How many binary sequences are there of length 15? 

        a) 215 b) 15!  c) P(15, 2) d) C(15, 2) 

  Ans. a 

 Ex. How many binary sequences are there of length 15 with 
exactly  

            6 ones   and   9 zeros? 

        a) P(15, 6)       b) C(15, 6)      c) 26            d) P(15, 6). C(15, 9)   


 Ans. b 

  



 Ex. A multiple choice test has 15questions and 4 choices for 

each answer.  

       a) How many ways can  the 15 questions be answered? 

       b) How many ways the 15 questions be answered so that exactly 

3  

             answers are correct? 

       c) How many ways the 15 questions be answered so that at least 

3  

            answers are correct? 

 Solution:  

 a) Since, each question can be answered in 4 ways,    By product 

rule,  

           the 15 questions can  be answered  in   415   ways. 



 b) The 3 correct answers can be chosen in C(15 , 3) ways. 

Each of the remaining questions can be wrongly answered in 

3 ways. 

      The required number of ways = C(15 , 3) . 312. 

 

 c) The 15 questions can  be answered  in   415   ways. 

          Number of ways in which at most 2 answers are correct =  

                                                     315  + C(15 , 1).314   + C(15 , 2).313  

        The number of ways the 15 questions be answered so that at 

least 3  

            answers are correct =  415   –   {315  + C(15 , 1).314   + C(15 , 

2).313 } 



 Solution: The number of ways distributing  ‘r’ similar balls 

into ‘n’    

                      numbered boxes  =  V(n , r)  =  C(n –1 + r , r ). 

        Here, n = 6  and   r = 10 

        The required number of ways  = V(6 , 10) 

                                                             = C(15 , 10) 

                                                             =  C(15 , 5)   

                                                             = 3003. 

   



 Solution: The number of non negative integral solutions to the    

                      equation  {x1 + x2 + x3 +… + xn = r}  =   

                                                V(n , r)  =  C(n –1 + r , r ). 

        Here, n = 5  and   r = 50 

        The required number of solutions  = V(5 , 50) 

                                                             = C(54 , 50) 

                                                             =  C(54 , 4)   = 3,16,251. 

 



 Solution: The number of binary sequences with ‘n – 1’ ones  

                          and  ‘r’  zeros =  V(n ,r) 

   Here,   n – 1 = 10   and   r = 5. 

  Required number of binary sequences  =  V ( 11, 5) 

                                                                    = C (15 , 5) = 3003 . 



 Solution: First, let us place one book in each of the shelves to 

ensure that each shelf contains at least one of the books. 

 Now, let us count the number of ways of distributing the 

remaining two books in 3 shelves. 

   Required number of ways  =  V ( 3, 2) 

                                                                    = C (4 , 2) = 10. 



 Solution: Since each question has to carry at least 2 marks, 

First he has to allot 2 marks for each question. 

 

  Now let us count the number of ways of distributing the 

remaining 10 marks to 10 questions. 

 

   Required number of ways  =  V ( 10, 10) 

                                                                    = C (19 , 10). 

  



 Solution: This problem is similar to,  placing 20 similar balls 
in 5 numbered  boxes so that,  first box contains at least 3 
balls, second box contains at least 2balls, third box contains 
at least 4 balls and 

       fourth box contains at least 6 balls. 

 

 First, let us place 3 balls in the first box, 2 balls in the second, 
4 balls in the third and 6 balls in the fourth box. 

 

 Now, let us count the number of ways of distributing the 
remaining 5 balls in boxes. 

   Required number of solutions  =  V ( 5, 5) 

                                                                    = C (9 , 5) = C (9 , 4) = 126. 

 



 Solution: If k is some integer between 0 and 19, then for 
every distribution of k balls into 5 boxes, one could distribute 
the remaining 19 – k balls into a sixth box. 

 Hence, the number of non negative integral solutions of     x1 
+ x2 + x3 + x4 + x5  19  is the same as the number of negative 
integral solutions of   x1 + x2 + x3 + x4 + x5 +x6 = 19 .  

  Required number of solutions  =  V ( 6, 19) 

                                                                    = C (24 , 19) = C (24 , 5). 

 

Ex. Find the number of ways in which 16 apples can be 
distributed among four persons so that  each of them gets at 
least one apple ? 
Ans. 455  (Home work) 



 Solution: Required number of words  =       5!        =  20. 

                                                                             3! 

 Ans. a 

 

Ex. How many 10-permutations are there of  {a,a,a, b,b,b,b, c,c, d} 

? 

      a) 12, 600  b) 16, 200 c) 14, 620              d) 8, 400 

 Solution: 

 Required number of permutations =      10!        =  12,600. 

                                                                 3! . 4! . 2! 

 Ans. a 

 



 Ex. In how many ways can 14 men be partitioned into 6 teams 

where the first team has 3 members,the second team has 2 

members, the third team has 3members, the fourth,fifth and 

sixth teams each have 2 members. 

 Solution:  The required number of ordered partitions =  

          P(14: 3,2,3,2,2,2)  

                   =              14! 

                          3!.2!.3!.2!.2!.2! 



 Solution:  

 The number of ways 12 men can be chosen out of 14 = C(14 , 

12). 

 The number of ordered partitions = P(12; 3,5,4) =    12! 

                                                                                3! .5! .4! 

 

  Required number of ways =  C(14 , 2) .       12! 

                                                                      3! .5! .4! 

 

 



 Solution:  

 The number of ways 12 men can be chosen out of 14 = C(14 , 

12). 

 The number of  unordered partitions = P(12; 4,4,4) =     12! 

                                                                                        (4!)3. 3! 

 

  Required number of ways =  C(14 , 2) .       12! 

                                                                         (4!)3. 3! 

 

 



 Solution: 

 Required number of unordered partitions =           14! 

                                                                        (3!)2.2!  . (2!)4.4! 



 Ex. Suppose that there are 101 players entered in a single 

elimination tennis tournament. How  many matches must be 

conducted to declare the winner ? 

      a) 101  b) 100  c) 99  d) 51 

 Solution: Since each mach eliminates one player, 

 we have a  one-to one correspondence between the the 

number of losers and the number of matches to be 

conducted. 

   The required number of matches to be conducted to 

declare the winner = 100. 

 Ans. b 



 Notation: 

 C(n , 0)  = C0 = 1,    

 C(n , 1)  = C1 = n,   

 C(n , 2)  = C2  = {n.(n – 1)} / {1.2},  

  ……….,  

 C(n, r)  = Cr = {n.(n – 1).(n - 2). .. .(n – r +1)} / {1.2.3. …r} , 

 ………….. 

 C(n, n)  = Cn = 1 

 C(n, r) = The number of combinations of n-objects taken r at 
time   

                                                                             (without repetitions). 

            =       n! 

                 r! . (n-r)! 

 



 1. Give a combinatorial proof  for the following. 

       a) C(n, r) . C(r, k) = C(n, k) .C(n – k, r – k)  for integers n  r  k  
0 .            

                                                                                   (Newton’s identity). 

        b) C(n, r) . r  =  n . C(n – 1, r – 1) . 

 Proof: a) The L.H.S. counts the number of ways of selecting two 
sets: first a set of r objects and then from A, a set of  k objects.  

 For example,we may be counting the number of ways to select a 
committee of  r people and then to select a subset of  k  leaders 
from this committee. 

 On the other hand, the R.H.S. counts the the number of ways we 
select a group of  k leaders from the n people first, and then  
select remaining  r – k  people from the remaining  n – k  people. 

 

 

 



  L.H.S. = R.H.S. 

 

 b) putting k = 1 in the Newton’s Identity, we have 

           C(n, r) . C(r, 1) = C(n, 1) .C(n – 1, r – 1). 

      C(n, r) . r  = n .C(n – 1, r – 1). 

 

 



 Let n be a positive integer. Then for all x and y 

 (x + y)n = C(n , 0).xn + C(n , 1).xn – 1 .y  + C(n , 2).xn – 2 .y2 + …  

                                  + C(n , r).xn – r .yr  + ..…  + C(n , n).yn . 

              

            =   C(n , r) xn – r .yr . 

 

 (x + 1)n  =   C(n , r) x r. 

 

 (1 - x)n  =   C(n , r) (-1) r . x r. 

 

 

 

n 

r=0 

r=0 

n 

r=0 

n 



 8) C0 –  C1  +  C2  – C3 + …….. +  (-1)n Cn       = 0 

   

 9) (C0 +  C2 +  C4 +  ……..)  = (C1 +  C3 +  C5 +  …….. )   = 2n –

1 

 10) C1 +  2C2 +  3C3 +  …….. + n Cn  = n 2n-1 

 10) C1 – 2 C2  +  3 C3  - …….  + ( -1)n-1  n.Cn  = 0 

 

 11) Prove that     C(n, r) 2r = 3n 

 We know that, 

                     (x + 1)n  =     C(n , r) x r.        Putting x = 2, we have  

 

 3n =   C(n, r) 2r   

 

n 

r=0 

r=0 

n 

r=0 

n 



 Ans. B 

 

 Vandermonde’s  Identity : 

 Prove that  C(n+m, r) = C(n, 0).C(m, r) + C(n, 1) . C(m , r – 1) 

+ ….. 

                                             + C(n,r). C(m,0).   (for integers m  n 

 0) 

 

 Proof: (Give combinatorial proof) 

 Hint: Let S be the union set of m men and n women. 



 Consider (1+x)2n = C(2n, 0) + C(2n, 1).x + …….+ C(2n, 2n)x2n 

…(1) 

 

 Again, (1+x)2n = [(1+x)n]2 = {C(n , 0) + C(n , 1).x +… + C(n , r).xr 
+             

                                                                 …. + C(n , n).xn}2 ….(2) 

From(1) and (2), we have  

{C(n , 0) + C(n , 1).x +….  C(n , n).xn}2  = C(2n, 0) + C(2n, 1).x +                                                                                          

                                                                          …….+ C(2n, 2n)x2n …..(3) 

Putting x = 1 in (3), we have 

 {C(n , 0) +  C(n , 1) +… + C(n , r) + …+ C(n , n)}2  =  
                                       C(2n, 0) + C(2n, 1) + …….+ C(2n, 2n) 

 Hence, the result follows. 



 State and prove the multinomial theorem. 

 Statement: Let n be a positive integer. Then for all x1,x2,…,xt, we 

have 

 (x1 + x2 + …+ xt )
n =  P(n ; q1, q2 , ... ,qt ). (x1.  x2 .….xt    ) 

 Where the summation extends over all sets of non negative integers 

 q1, q2 , ... ,qt   where  q1 + q2  + ... + qt = n . 

There are   C(n + t – 1 , n) terms in the expansion of (x1 + x2 + …+ xt 

)n  

 

 Proof: The coefficient of (x1.  x2 .….xt   ) is the number of ways of 

arranging the n letters {q1.x1, q2.x2, … , qt.xt}, therefore it is  

        P (n ; q1, q2 , ... ,qt ).  

 

q1 
q2 qt 

q1 q2 qt 



 The number of terms is determined as follows: each term of 

the form  

      x1.  x2 .….xt   is a selection of n objects with repetitions from t 

distinct        

        types. 

  Hence there are C(n + t – 1 , n) ways to do this. 

q1 q2 qt 



 Ex. In the expansion of  (x1 + x2 + x3 +x4 +x5)10 

 a) Evaluate the  coefficient of  x1
2  x3  x4

3  x5
4  

 b) How many terms are there in the expansion ? 

 

 Solution: a) The  coefficient of  x1
2  x3  x4

3  x5
4  is 

 P(10 ; 2, 0, 1, 3, 4)  =               10!                        =  12,600 

                                      2!   0!   1!   3!   4! 

 

 b) The number of terms in the expansion = C(10 + 5 – 1 , 10) 

                                                                  = C(14 , 4) = 1001 



 Solution:a)  Let   x1 = 2x,   x2 = - 3y ,   x3 = 5z   then  

 The coefficient of x1
3  x2

3  x3
2    =  P(8 ; 3, 3, 2) =       8!             = 

560 

                                                                                  3!   3!   2! 

 Thus, the coefficient of x3  y3  z2  =  23 (-3)3. 52 . P(8 ; 3, 3 2)  

                                                      =  – (5400).(560) 

 

 b) The number of terms in the expansion = C(8 + 3 – 1 , 8) 

                                                                  = C(10 , 2) = 45 

 



 (x – 2y + z)3  =  P(3; 3,0,0) x3 + P(3; 0,3,0) (- 2y)3 + P(3; 0,0,3) 

z3 +  

                          P(3; 2,1,0) x2 (- 2y) + P(3; 1,2,0) x (- 2y)2 +  

                          P(3; 2,0,1) x2 z  +  P(3; 1,0,2) x z2  + 

                          P(3; 0,2,1) (- 2y)2 z + P(3; 0,1,2) (- 2y) z2 +      

                          P(3; 1,1,1) x(-2y) z . 

 

 = x3 – 8y3 + z3– 6x2y + 12xy2 + 3x2z + 3xz2 + 12y2z – 6yz2 – 

12xyz 
 

 

 

 

 



 Solution: a) The coefficient of x3 y7  =      10!        = 120 

                                                                  3!   7! 

 

 b) The coefficient of x3 y7  =   23.  (-9)7 .        10!         

                                                                     3!   7! 

 



 Theorem: If A and B are subsets of some universe set U, then  

                         A  B = A + B –  A  B . 

                                   =  A  Bc+ B  Ac+ A  B . 

 Theorem:  If  A, B and C are finite sets, then 

 A  B  C  = A + B + C – A  B– B  C– C  A  

                                                                                      + A  B  C . 

 

                U 

 

 

 

  A                                   B 

 
                                       Ac  Bc 

A Bc AB            BAc 



                                                                     

 

 

 

 

 

                                                    U 

     A 

                                                 B 
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 Solution: Let F = Set of faculty who can speak French. 

                       R = Set of faculty who can speak Russian. 

               F  R = Set of faculty who can speak French and 

Russian. 

  Required number of faculty members = F  R  

      F  R = F + R –  F  R . 

                      =   200 + 50 – 20  

                      =    230. 

 



 Ex. If there are 200 faculty members that speak French, 50 
that speak Russian, 100 that speak Spanish, 20 that speak 
French and Russian , 60 that speak French and Spanish, 35 
that speak Russian and Spanish, while only 10 speak French, 
Russian and Spanish. How many speak  

      either French or Russian or Spanish ? 

 Solution:  Let F = Set of faculty who can speak French. 

                        R = Set of faculty who can speak Russian. 

                        S = Set of faculty who can speak Spanish. 

  Required number of faculty members = F  R  S  

                       = F + R + S – F  R– R  S– S  F  

                                                                                      + F  R  S. 

                       = 200 + 50 + 100 – 20 – 60 – 35 + 10  = 245. 

 

 



 Solution: 

 

 

 

 

 

 

                                                                                             100 

 The number of programmers who can program in at least one 
of the 2 languages = 24 + 23 + 12 = 59. 

 The number of programmers who can program in neither of 
these 2 languages = 100 – 59 = 41. 

 

 

 

 41 

 

     

      F                       P 

 

     

24 23  12 



 Let   F = {Programmers who can program in FORTRAN} 

         P = {Programmers who can program in Pascal } 

  F  P = {Programmers who can program in FORTRAN and 

Pascal} 

 The number of programmers who can program in at least one 

of the 2 languages = F  P  

                 = F + P –  F  P 

                 =  47  + 35 –  23  =  59. 

  The number of programmers who can program in neither 

of these 2 languages = Fc  Pc = (F  P)c = U –  F  P  

                                                   = 100 – 59 = 41. 



 Solution: From the Venn diagram, we have 

 a) The number of programmers who can program in only one 

of the 2  

           languages  = 24 + 12 = 36. 

 b) The number of programmers who can program in Pascal 

but not in   

            FORTRAN = 12. 

 c) The number of programmers who can program in 

FORTRAN but    

           not in Pascal = 24. 

 



 Euler’s      - function: 

 If  n  is a positive integer,  then   

  (n)  = The number of integers ‘x’ such that  1  x  n  and such 
that  

                      n and x are relatively prime. 

  (n)  = n [{1 – (1/p1)}.{(1 – (1/p2)}. ……. .{(1 – (1/pk)}]  

        where p1, p2,…. , pk are distinct prime divisors of n.  

 Ex. Find the number of positive integers less than or equals to  
91 and        

              relatively prime to 91. 

 Solution: The prime divisors of 91 are 7 and 13.  

  (91)  =  91.{1 – (1/7)}.{(1 – (1/13)}. 

               = 72.  



 Solution: The prime divisors of  2 and 5.  

  (100)  =  100.{1 – (1/2)}.{(1 – (1/5)}. 

               = 40.  

   



 Derangements: 

  Among the permutations of  {1, 2, …., n} there are some, 

called derangements, in which none of the n integers 

appears in its natural place. 

    Dn =  The number of derangements of  n elements  

   

                            1           1          1         1                (-1)n   

                            2!         3!         4!        5!                  n!    
+ + + … n! = 



 Solution:  Required number of ways = D5 

                                      =                 1           1            1         1 

                                                         2!         3!           4!        5! 

 

                                    = 60 – 20 + 5 – 1   =  44. 

+ 5! 



 Solution:  Required number of ways = D4 

                                      =                 1           1            1 

                                                         2!          3!           4! 

 

                                    = 12 – 4 + 1 = 9. 

 

4!  –  

  

 +   



 Ex. Let 5 different books be distributed to 5 students. 

Suppose the books are returned and  distributed to the 

students again later on . In how many ways the books be 

distributed so that no student will get the same book twice ? 

 

 Solution: The number of ways 5 different books be 

distributed to 5 students = 5! = 120. 

 Second time, the number of ways the books be distributed so 

that no student will get the same book twice  = D5  = 44. 

  The required number of distributions = (120) . (44)  

                                                                 = 5280 . 
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 Suppose a flock of pigeons fly into a set of 
pigeonholes to roost 
 

 If there are more pigeons than pigeonholes, then 
there must be at least 1 pigeonhole that has more 
than one pigeon in it 
 

 If k+1 or more objects are placed into k boxes, 
then there is at least one box containing two or 
more of the objects 

 This is Theorem 1 
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 In a group of 367 people, there must be 

two people with the same birthday 
• As there are 366 possible birthdays 

 

 In a group of 27 English words, at least two 

words must start with the same letter 
• As there are only 26 letters 
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 If N objects are placed into k boxes, then 

there is at least one box containing N/k 

objects 
• This is Theorem 2 



20
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Among 100 people, there are at least 

100/12 = 9 born on the same month 

 

How many students in a class must there 

be to ensure that 6 students get the same 

grade (one of A, B, C, D, or F)? 
• The “boxes” are the grades.  Thus, k = 5 

• Thus, we set N/5 = 6 

• Lowest possible value for N is 26 
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 A bowl contains 10 red and 10 yellow balls 
a) How many balls must be selected to ensure 3 balls of 

the same color? 
• One solution: consider the “worst” case 

 Consider 2 balls of each color 

 You can’t take another ball without hitting 3 

 Thus, the answer is 5 

• Via generalized pigeonhole principle 

 How many balls are required if there are 2 colors, and one color 
must have 3 balls? 

 How many pigeons are required if there are 2 pigeon holes, and 
one must have 3 pigeons? 

 number of boxes: k = 2 

 We want  N/k = 3 

 What is the minimum N? 

 N = 5 
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 A bowl contains 10 red and 10 yellow 

balls 

b) How many balls must be selected to 

ensure 3 yellow balls? 
• Consider the “worst” case 

 Consider 10 red balls and 2 yellow balls 

 You can’t take another ball without hitting 3 

yellow balls 

 Thus, the answer is 13 
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 6 computers on a network are connected to at least 1 
other computer 

 Show there are at least two computers that are have 
the same number of connections 
 

 The number of boxes, k, is the number of computer 
connections 

• This can be 1, 2, 3, 4, or 5 
 The number of pigeons, N, is the number of 

computers  
• That’s 6 

 By the generalized pigeonhole principle, at least one 
box must have N/k objects 

• 6/5 = 2 

• In other words, at least two computers must have the same 
number of connections 
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 Consider 5 distinct points (xi, yi) with integer values, where i = 
1, 2, 3, 4, 5 

 Show that the midpoint of at least one pair of these five points 
also has integer coordinates 
 

 Thus, we are looking for the midpoint of a segment from (a,b) to 
(c,d) 

• The midpoint is ( (a+c)/2, (b+d)/2 ) 
 Note that the midpoint will be integers if a and c have the same 

parity: are either both even or both odd 
• Same for b and d 

 There are four parity possibilities 
• (even, even), (even, odd), (odd, even), (odd, odd) 

 Since we have 5 points, by the pigeonhole principle, there must 
be two points that have the same parity possibility 

• Thus, the midpoint of those two points will have integer 
coordinates 



Recurrece 

Relations 

 



A recurrence relation for the sequence {an} 

is an equation that expresses an is terms of 

one or more of the previous terms of the 

sequence, namely, a0, a1, …, an-1, for all 

integers n with  

n  n0, where n0 is a nonnegative integer. 

 

A sequence is called a solution of a 

recurrence relation if it terms satisfy the 

recurrence relation. 

 



In other words, a recurrence relation is like a 
recursively defined sequence, but without 
specifying any initial values (initial 
conditions). 
 
Therefore, the same recurrence relation can 
have (and usually has) multiple solutions. 
 
If both the initial conditions and the 
recurrence relation are specified, then the 
sequence is uniquely determined. 



Example:  

Consider the recurrence relation  

an = 2an-1 – an-2 for n = 2, 3, 4, … 
 

Is the sequence {an} with an=3n a solution of 

this recurrence relation? 

For n  2 we see that  

2an-1 – an-2 = 2(3(n – 1)) – 3(n – 2) = 3n = an. 

Therefore, {an} with an=3n is a solution of the 

recurrence relation. 



Is the sequence {an} with an=5 a solution of 

the same recurrence relation? 

For n  2 we see that  

2an-1 – an-2 = 25 - 5 = 5 = an. 
 

Therefore, {an} with an=5 is also a solution of 

the recurrence relation. 



Example:  

Someone deposits $10,000 in a savings 

account at a bank yielding 5% per year with 

interest compounded annually. How much 

money will be in the account after 30 years? 
 

Solution: 

Let Pn denote the amount in the account after 

n years. 

How can we determine Pn on the basis of Pn-

1? 



We can derive the following recurrence 
relation: 
Pn = Pn-1 + 0.05Pn-1 = 1.05Pn-1. 
The initial condition is P0 = 10,000. 
Then we have: 
P1 = 1.05P0  
P2 = 1.05P1 = (1.05)2P0 

P3 = 1.05P2 = (1.05)3P0 

… 
Pn = 1.05Pn-1 = (1.05)nP0 

 

We now have a formula to calculate Pn for 
any natural number n and can avoid the 
iteration. 



Let us use this formula to find P30 under the 

initial condition P0 = 10,000: 

 

P30 = (1.05)3010,000 = 43,219.42 
 

 

After 30 years, the account contains 

$43,219.42. 



Another example:  

Let an denote the number of bit strings of 

length n that do not have two consecutive 0s 

(“valid strings”). Find a recurrence relation 

and give initial conditions for the sequence 

{an}. 
 

Solution: 

Idea: The number of valid strings equals the 

number of valid strings ending with a 0 plus 

the number of valid strings ending with a 1. 



Let us assume that n  3, so that the string 

contains at least 3 bits. 

Let us further assume that we know the 

number an-1 of valid strings of length (n – 1).  

Then how many valid strings of length n are 

there, if the string ends with a 1? 

There are an-1 such strings, namely the set of 

valid strings of length (n – 1) with a 1 

appended to them. 

Note: Whenever we append a 1 to a valid 

string, that string remains valid. 



Now we need to know: How many valid 

strings of length n are there, if the string 

ends with a 0? 

Valid strings of length n ending with a 0 

must have a 1 as their (n – 1)st bit 

(otherwise they would end with 00 and 

would not be valid). 

And what is the number of valid strings of 

length (n – 1) that end with a 1? 

We already know that there are an-1 strings of 

length n that end with a 1. 

Therefore, there are an-2 strings of length (n – 

1) that end with a 1. 



So there are an-2 valid strings of length n that 

end with a 0 (all valid strings of length (n – 

2) with 10 appended to them). 
 

As we said before, the number of valid 

strings is the number of valid strings ending 

with a 0 plus the number of valid strings 

ending with a 1. 
 

That gives us the following recurrence 

relation: 

an = an-1 + an-2 



What are the initial conditions? 
 

a1 = 2 (0 and 1) 

a2 = 3 (01, 10, and 11) 

a3 = a2 + a1 = 3 + 2 = 5 

a4 = a3 + a2 = 5 + 3 = 8 

a5 = a4 + a3 = 8 + 5 = 13 

… 
 

This sequence satisfies the same recurrence 

relation as  the Fibonacci sequence. 

Since a1 = f3 and a2 = f4, we have an = fn+2. 
 



In general, we would prefer to have an 

explicit  formula to compute the value of an 

rather than conducting n iterations. 
 

For one class of recurrence relations, we can 

obtain such formulas in a systematic way. 
 

Those are the recurrence relations that 

express the terms of a sequence as linear 

combinations of previous terms. 



Definition: A linear homogeneous 
recurrence relation of degree k with 
constant coefficients is a recurrence relation 
of the form: 
an = c1an-1 + c2an-2 + … + ckan-k, 
Where c1, c2, …, ck are real numbers, and ck 
 0.  
 
A sequence satisfying such a recurrence 
relation is uniquely determined by the 
recurrence relation and the k initial 
conditions 
 

a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1. 



Examples: 
 

The recurrence relation Pn = (1.05)Pn-1 

is a linear homogeneous recurrence relation 
of degree one. 
 

The recurrence relation fn = fn-1 + fn-2 

is a linear homogeneous recurrence relation 
of degree two. 
 

The recurrence relation an = an-5 

is a linear homogeneous recurrence relation 
of degree five. 



 
Basically, when solving such recurrence 
relations, we try to find solutions of the form 
an = rn, where r is a constant. 
an = rn is a solution of the recurrence relation 
an = c1an-1 + c2an-2 + … + ckan-k if and only if 
rn = c1rn-1 + c2rn-2 + … + ckrn-k. 
Divide this equation by rn-k and subtract the 
right-hand side from the left: 
rk - c1rk-1 - c2rk-2 - … - ck-1r - ck = 0 
This is called the characteristic equation of 
the recurrence relation. 



 
The solutions of this equation are called the 
characteristic roots of the recurrence 
relation. 
 

Let us consider linear homogeneous 
recurrence relations of degree two. 
 

Theorem: Let c1 and c2 be real numbers. 
Suppose that r2 – c1r – c2 = 0 has two distinct 
roots r1 and r2. 
Then the sequence {an} is a solution of the 
recurrence relation an = c1an-1 + c2an-2 if and 
only if an = 1r1

n + 2r2
n for n = 0, 1, 2, …, 

where 1 and 2 are constants. 
 



Example: What is the solution of the 

recurrence relation an = an-1 + 2an-2 with a0 = 

2 and a1 = 7 ? 

 

Solution: The characteristic equation of the 

recurrence relation is r2 – r – 2 = 0. 

Its roots are r = 2 and r = -1. 

Hence, the sequence {an} is a solution to the 

recurrence relation if and only if: 

an = 12n + 2(-1)n   for some constants 1 and 

2. 



 
Given the equation an = 12n + 2(-1)n and the 
initial conditions a0 = 2 and a1 = 7, it follows that 
a0 = 2 = 1 + 2 
a1 = 7 = 12 + 2 (-1) 
 

Solving these two equations gives us 
1 = 3 and 2 = -1. 
 

Therefore, the solution to the recurrence relation 
and initial conditions is the sequence {an} with 
an = 32n – (-1)n.  



 

an = rn is a solution of the linear 

homogeneous recurrence relation 

an = c1an-1 + c2an-2 + … + ckan-k  

if and only if 

rn = c1rn-1 + c2rn-2 + … + ckrn-k. 

Divide this equation by rn-k and subtract the 

right-hand side from the left: 

rk - c1rk-1 - c2rk-2 - … - ck-1r - ck = 0 

This is called the characteristic equation of 

the recurrence relation. 



 
The solutions of this equation are called the 
characteristic roots of the recurrence 
relation. 
 

Let us consider linear homogeneous 
recurrence relations of degree two. 
 

Theorem: Let c1 and c2 be real numbers. 
Suppose that r2 – c1r – c2 = 0 has two distinct 
roots r1 and r2. 
Then the sequence {an} is a solution of the 
recurrence relation an = c1an-1 + c2an-2 if and 
only if an = 1r1

n + 2r2
n for n = 0, 1, 2, …, 

where 1 and 2 are constants. 
 

See pp. 321 and 322 for the proof. 



Example: Give an explicit formula for the 

Fibonacci numbers. 

Solution: The Fibonacci numbers satisfy the 

recurrence relation fn = fn-1 + fn-2 with initial 

conditions f0 = 0 and f1 = 1. 

The characteristic equation is r2 – r – 1 = 0. 

Its roots are 

2

51
,

2

51
21





 rr



 
Therefore, the Fibonacci numbers are given by  
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nf 
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51
21 

for some constants 1 and 2. 

We can determine values for these constants so that the sequence 

meets the conditions f0 = 0 and f1 = 1:  

0210  f

1
2

51

2

51
211 













 














 
 f



The unique solution to this system of two 

equations and two variables is 

5

1
,

5

1
21  

So finally we obtained an explicit formula for the Fibonacci 

numbers:  
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3 

But what happens if the characteristic 

equation has only one root? 

How can we then match our equation with the 

initial conditions a0 and a1 ? 

Theorem: Let c1 and c2 be real numbers with 

c2  0. Suppose that r2 – c1r – c2 = 0 has only 

one root r0.  

A sequence {an} is a solution of the recurrence 

relation an = c1an-1 + c2an-2 if and only if  

an = 1r0
n + 2nr0

n, for n = 0, 1, 2, …, where 1 

and 2 are constants. 
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4 

 
Example: What is the solution of the recurrence 
relation an = 6an-1 – 9an-2 with a0 = 1 and a1 = 6? 
Solution: The only root of r2 – 6r + 9 = 0 is r0 = 3. 
Hence, the solution to the recurrence relation is 
an = 13n + 2n3n  for some constants 1 and 2. 
To match the initial condition, we need 
a0 = 1 = 1 
a1 = 6 = 13 + 23 
Solving these equations yields 1 = 1 and 2 = 1. 
Consequently, the overall solution is given by 
an = 3n + n3n. 



Generating Functions of Sequences 

Sequences 

  A = {ar}, r = 0 .. .  

Examples: 

 

   1.  A = {ar}, r = 0 .. , where ar = 2r. 

            = {1, 2, 4, 8, 16, …, 2r, …} 

   2.  B = {br}, r = 0 .. , where 

                    br  = 0, if 0  r  4 

            = 2, if 5  r  9 

            = 3, if r = 10 

            = 4, if 11  r 

  = {0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 3, 4, 4, …} 



3.  C = {cr}, r = 0 .. , where cr = r + 1. 

         = {1, 2, 3, 4, 5, …} 

 

4.  D  = {dr}, r = 0 .. , where dr = r2. 

          = {0, 1, 4, 9, 16, 25, …} 



Generating function for the sequence A = {ar}, r = 0 .. . 
 

     A(X)   = a0 + a1X + a2 X2 + … + anXn + … 

    =  ar X
r, r = 0 .. . 

 

Examples: 
 

1. Generating function for the sequence A = {ar}, r = 0 .. , 

    where ar = 2r. 

     A(X) = 1 + 2X + 4X2 + … + 2n Xn + … 

  =  2r Xr, r = 0 .. . 



2. Generating function for the sequence B = {br}, r = 0 .. ,  
    where 
        br = 0, if 0  r  4 
            = 2, if 5  r  9 
            = 3, if r = 10 
            = 4, if 11  r 
     B(X) = 2X5 + 2X6 + 2X7 + 2X8 + 2X9 + 3X10 + 4X11 +  
                4X12 + … + 4Xn + … 
 
3. Generating function for the sequence C = {cr}, r = 0 .. ,  
    where cr = r + 1. 
     C(X) = 1 + 2X + 3X2 + … + (n+1)Xn + … 
  =  (r+1)Xr, r = 0 .. . 
 
4. Generating function for the sequence D = {dr}, r = 0 .. ,  
    where dr = r2. 
     D(X) = X + 4X2 + 9X3+ 16X4 + 25X5 + … + n2 Xn + … 
         =  r2 Xr, r = 0 .. . 
 

 



Definitions 
 
Let the Generating Functions / Formal Power Series be 
          A(X) =  ar X

r, r = 0 .. . 
   and B(X) =  bs X

s, s = 0 .. . 
 
1.    Equality 
          A(X) = B(X), iff an = bn for each n  0. 
 
2.    Multiplication by a scalar number C 
         C A(X) =  (C ar) Xr, r = 0 .. . 
 
3.    Sum 
         A(X) + B(X) =  (an + bn) Xr, r = 0 .. . 
 
4.    Product 
 
         A(X) B(X) =  Pn Xn, n = 0 .. ,  
         where Pn = j+k-n aj bk. 

 



Exercises: 

1.    Find a Generating function for the sequence  

                 A = {ar}, r = 0 .. , where 

            ar = 1, if 0  r  2 

    = 3, if 3  r  5 

    = 0, if r   

      A(X) = 1 + X + X2 + 3X3 + 3X4 + 3X5 

 

2.     Build a generating function for ar = no. of integral solutions to the  

        equation e1 + e2 + e3 = r, if 0  ei  3 for each i. 

    A(X) = (1 + X + X2 + X3)3 



3.   Write a generating function for ar = no. of ways of selecting r balls from 3 
      red balls, 5 blue balls, and 7 white balls. 
  A(X) = (1 + X + X2 + X3) (1 + X + X2 + X3 + X4+ X5)  
              (1 + X + X2 + X3 + X4 + X5 + X6 + X7) 
4.   Find the coefficient of X23 in (1 + X5 + X9)10. 

  e1 + e2 + … + e10 = 23 where ei = 0, 5, 9. 
  1 x 5 + 2 x 9 + 7 x 0 = 23 
  Coefficient of X23 = 10! / (1! 2! 7!)  
    = 10 . 9 . 8 / (2)  
    = 10. 9 . 4  
    = 360 
5.   Find the coefficient of X32 in (1 + X5 + X9)10. 

   e1 + e2 + … + e10 = 32 where ei = 0, 5, 9. 
  1 x 5 + 3 x 9 + 6 x 0 = 32 
  Coefficient of X32 = 10! / (1! 3! 6!)  
    = 10 . 9 . 8 . 7/ (3 . 2)  
    = 10. 3 . 4 . 7 
    = 840 
6.   Find a Generating function for the no. of r-combinations of {3.a, 5.b, 2.c}. 
  A(X) = (1 + X + X2 + X3) (1 + X + X2 + X3 + X4+ X5 )  
     (1 + X + X2) 
 

 



Calculating Coefficient of generating function 
 
       

 

 If A(X) =  ar X
r, r = 0 .. , then A(X) is said to have a multiplicative inverse  

    if there is B(X) =  bk Xk, k = 0 ..   

    such that A(X) B(X) = 1. 

 

       a0 b0 = 1 

       a1 b0 + a0 b1 = 0 

       a0 b2 + a1 b1 + a2 b0 = 0 

       a0 b3 + a1 b2 +  a2 b1 + a3 b0 = 0 

       … 

       a0 b2 + a0 b2 + … + a0 b2 = 0 

       … 

       b0 = 1 / a0 

       b1 = –a1 b0 / a0 

       b2 = –a1 b1 – a2 b0 / a0 

       … 
 



Geometric Series 

 

   A(X) = 1 – X 

   a0 = 1, a1 = –1. 

   b0 = 1 / a0 = 1 

   b1 = –a1 b0 / a0 = –(–1) (1) / (1) = 1 

   b2 = –a1 b1 – a2 b0 / a0 = –(–1) (1) – (0) (1) / (1) = 1 

   … 

   bi = 1 

     1 / (1 – X) =  Xr, r = 0 .. . 



Replace X by aX, where a is a real no. 

 

 1 / (1 – aX) =  ar X
r, r = 0 .. . 

  Let a = –1 

 1 / (1 + X)   =  (–1)r Xr, r = 0 .. . 

     1 / (1 + aX) =  (–1)r ar X
r, r = 0 .. . 

     1 / (1 – X)n  = ( Xk) n, k = 0 .. . 

                    =  C(n – 1 + r, r) Xr, r = 0 .. . 

 

 



    1 / (1 + X)n  = ( (–1)r Xk) n, k = 0 .. . 
 
                    =  C(n – 1 + r, r) (–1)r Xr, r = 0 .. . 
 
    1 / (1 – aX)n = ( ar Xk ) n, k = 0 .. . 
 
                    =  C(n – 1 + r, r) ar Xr, r = 0 .. . 
 
     1 / (1 – Xk)  =  Xkr, k = 0 .. . 
 
     1 / (1 + Xk)  =  (–1)r Xkr, k = 0 .. . 
 
     1 / (a – X)    = (1 / a)  Xr / ar, r = 0 .. . 
 
     1 / (X – a)    = (–1 / a)  Xr / ar, r = 0 .. . 
 
     1 / (X + a)    = (1 / a)  Xr / ((–1)r ar), r = 0 .. . 
 
     1 + X + X2 + … + Xn = (1 – Xn+1 ) / (1 – x) 
  



Special Cases of Binomial Theorem 

   (1 + X)n = 1 + C(n, 1) X + C(n, 2) X2 + … + C(n, n) Xn  

 
    (1 + Xk) n = 1 + C(n, 1) Xk + C(n, 2) X2k + … + C(n, n) Xnk 

 
    (1 – X) = 1 – C(n, 1) X + C(n, 2) X2 + … + (–1)n C(n, n) Xn 

 
    (1 – Xk) n = 1 – C(n, 1) Xk + C(n, 2) X2k + … + (–1)n C(n, n) Xnk  

 



Examples: 

  

 1. Calculate A(X) =  ar X
r, r = 0 ..  = 1 / (X2 – 5X + 6). 

        (X2 – 5X + 6) = (X – 3) (X – 2) 

        1 / (X2 – 5X + 6) = A / (X – 3) + B / (X – 2) 

            A(X – 2) + B(X – 3) = 1 

        Let X = 2, Then B = –1 

        Let X = 3, Then A = 1 

        1 / (X2 – 5X + 6)   

              = 1 / (X – 3) – 1 / (X – 2) 

         = (–1 / 3)  Xr / 3r – (–1 / 2)  Xr / 2r, r = 0 .. . 

         = (–1 / 3)  Xr / 3r + (1 / 2)  Xr / 2r, r = 0 .. . 

 

 



 
 
 

2. Compute the coefficients of A(X) =  ar Xr, r = 0 ..  
                  = (X2 – 5X + 3) / (X4 – 5X2 + 4). 
 

        (X4 – 5X2 + 4) = (X2 – 1) (X2 – 4)  

                                = (X – 1) (X + 1) (X – 2) (X + 2) 

       (X2 – 5X + 3) / (X4 – 5 X2 + 4)  

                         = A / (X – 1) + B / (X + 1) + C / (X – 2) + D / (X + 2) 

     (X2 – 5X + 3)   =   A (X + 1) (X – 2) (X + 2)  

                                   + B (X – 1) (X – 2) (X + 2)  

                                   + C (X – 1) (X + 1) (X + 2)  

                                   + D (X – 1) (X + 1) (X – 2) 

  

 



 

For X = 1, A = 1 / 6 

For X = –1, B = 3 / 2 

For X = 2, C = –1 / 4 

For X = –2, D = –17 / 12 

(X2 – 5X + 3) / (X4 – 5 X2 + 4) 

       = 1/(6(X – 1)) + 3/(2(X + 1)) – 1/(4(X – 2)) – 17/(12(X + 2)) 

       = (–1/6)Xr + 3/2(–1) r Xr – 1/4(–1/2) Xr /2r  

             17/12(1/2) Xr /((–1)r 2r), r = 0 ..   

       =  [(–1/6)  + 3/2(–1)r + 1/8(1/ 2r) – 17/24(–1)r / 2r)] Xr, r = 0 ..  

 

 



3.  Find the coefficient of X20 in (X3 + X4 + X5 + …)5. 

 (X3 + X4 + X5 + …)5 

                 = [X3 (1 + X + X2 + …)]5 

         = X15 (Xr)5, r = 0 ..  

         = X15 C(5 – 1 + r, r) Xr, r = 0 ..  

         = X15 C(4 + r, r) Xr, r = 0 ..  

     Coefficient of X20 in (X3 + X4 + X5 + …)5 

                  = Coefficient of X5 in C(4 + r, r) Xr, r = 0 ..  

            r = 5 

    C(4 + r, r)  

                  = C(9, 5)  

                  = 9! / (5! 4!)  

                  = 9 . 8 . 7 . 6 / (4 . 3 . 2)  

                  = 9 . 7 . 2  

                = 126  

 

 



Recurrence relations 
 

Recurrence relation 

    Formula that relates for any integer n ≥ 1, the nth term of a sequence 

A = {ar}, r = 0 ..  to one or more of the terms a0, a1, …, an-1. 

 

Examples 

an + 5an-1 + 6an-2 = 0.  

an + 5an-1 + 6an-2 = 3n2 – 2n + 1.  



Linear recurrence relation 
A recurrence relation of the form  

 c0(n) + c1(n)an + … + ck(n) an-k = f(n) for n ≥ k,  

where c0(n), c1(n), …, ck(n), and f(n) are functions of n. 

Example 

an – (n – 1)an-1 – (n – 1)an-2 = 5n.  

 

Linear recurrence relation of degree k 

c0(n) and ck(n) are not identically zero. 

Example 

an + 5an-1 + 6an-2 = 0.  



Linear recurrence relation with constant coefficients 

c0(n), c1(n), …, ck(n) are constants. 

Example 

an + 5an-1 + 6an-2 = 0.  

 

Homogeneous recurrence relation 

f(n) is identically zero. 

Example 

an + 5an-1 + 6an-2 = 0.  

 

Inhomogeneous recurrence relation 

f(n) is not identically zero. 

Example 

an + 5an-1 + 6an-2 = 5n.  

 

 



    Solving recurrence relation by substitution and Generating 

functions 

    Solving recurrence relation by substitution / Backtracking  

      Technique for finding an explicit formula for the sequence defined 

       by a recurrence relation. 

      Backtrack the value of an by substituting the definition of an-1, an-2, 

        … until a pattern is clear. 



Examples 

1. Use the technique of backtracking, to find an explicit formula for the 

sequence defined by the recurrence relation and initial condition for 

      an = an-1+ 3, a1=2. 

      an = an-1 + 3                       or an = an-1+ 1.3 

          = (an-2 + 3) + 3                 = an-2+ 2.3 

          = ((an-3 + 3) + 3) + 3 = an-3+ 3.3 

          …                                 … 

                        = an-(n-1) + (n–1).3 

                        = a1+ (n–1).3 

                                                                         = 2 + (n–1).3 

    The explicit formula for the sequence is  

              an = 2 + (n-1).3 

 

 



2. Use the technique of backtracking, to find an explicit formula for 

the sequence defined by the recurrence relation and initial 

condition for an = 2.5an-1, a1 = 4. 

  

  an = 2.5an-1  

  = 2.5(2.5an-2) 

  = (2.5)2an-2  

  = (2.5)3an-3  

           … 

  = (2.5)n-1an-(n-1)  

  = (2.5)n-1a1  

  = 4(2.5)n-1 

  Explicit formula is an = 4(2.5)n-1 



3.  Use the technique of backtracking, to find an explicit formula for the 

sequence defined by the recurrence relation and initial condition for  

      an= 5an-1+ 3, a1= 3. 

    

          an = 5an-1 + 3 

  = 5(5an-2+ 3) + 3 

  = 52an-2 + (5 + 1)3 

  = 52 (5an-3+ 3) + (5 + 1)3 

  = 53an-3 + (52 + 5 + 1)3 

   … 

  = 5n-1an-(n-1)+ (5n-2+ … + 52 + 5 + 1)3 

  =5n-1 a1 + (5n-2+ … + 52+ 5 + 1)3 

  = 5n-13 + (5n-2+ … + 52 + 5 + 1)3 

  = (5n-1+ 5n-2+ … + 52 + 5 + 1)3 

  = 3(5n– 1) / 4 

  Explicit formula is an = 3(5n– 1) / 4 



4. Use the technique of backtracking, to find an explicit formula for the 
sequence defined by the recurrence relation and initial condition for  

      an = a n-1+ n, a1 = 4. 
     

      an = a n-1 + n 
     = an-2 + (n–1) + n 

        = an-3 + (n–2) + (n–1) + n 
   … 

        = an-(n-1)+ [n– (n–1) + 1] + … + (n–1) + n 
        = a1 + 2 + … + (n–1) + n 

        = a1 – 1 + [1 + 2 + … + (n-1) + n] 
  = 4 – 1 + n(n+1)/2 

  = 3 + n(n+1)/2 
  

       Explicit formula is an = 3 + n(n+1)/2 



Solving recurrence relations by Generating functions 

Shifting properties of generating functions 

    Xk A(X) = Xk  anXn, n = 0 ..   

                 =  an Xn+k, n = 0 ..  

Replacing n+k by r, we get 

  ar-k Xr, r = k ..  



Equivalent expressions for generating functions 

If A(X) =  anXn, n = 0 .. , then 

 anXn, n = k ..  = A(X) – a0 – a1X – … – ak-1Xk-1. 

 an-1Xn, n = k ..  = X(A(X) – a0– a1X – … – ak-2Xk-2). 

 an-2 Xn, n = k ..  = X2(A(X) – a0 – a1X – … – ak-3Xk-3). 

 an-3 Xn, n = k ..  = X3(A(X) – a0 – a1X – … – ak-4Xk-4). 

… 

 an-k Xn, n = k ..  = Xk(A(X)). 

 

 



Examples 

 1. Solve the recurrence relation an – 7 an-1 + 10 an-2 = 0, n ≥ 0,  

              a0 = 10, a1 = 41, using generating functions. 

 

      1.  Let A(X) =  an Xn, n = 0 .. . 

      2.  Multiply each term in the recurrence relation by Xn and sum 

from 

           2 to ∞. 

          an Xn – 7 an-1 Xn + 10 an-2 Xn = 0, n = 2 .. . 

      3.  Replace each infinite sum by an equivalent expression. 

      [A(X) – a0 – a1X] – 7X[A(X) – a0] + 10X2[A(X)] = 0. 

      4.  Simplify. 

        A(X)(1 – 7X +10X2) = a0 + a1X – 7 a0 X. 

         A(X)  = [a0 + (a1 – 7 a0)X] / (1 – 7X +10X2) 

           = [a0 + (a1 – 7 a0)X] / [(1 – 2X) (1 – 5X)] 



5.   Decompose A(X) as a sum of partial fractions. 

                  A(X) = C1 / (1 – 2X) + C2 / (1 – 5X) 
6.   Express A(X) as a sum of familiar series. 

                 A(X)  = C1  2n Xn + C2  5n Xn , n = 0 .. . 
   = (C1 2n + C2 5n) Xn , n = 0 .. . 
7.   Express an as the coefficient of Xn in A(X) and in the sum of the 

other series. 
       an = C1 2n + C2 5n. 

8.   Determine the values of C1 and C2 . 
    For n = 0, a0 = C1 + C2 = 10  … (1) 

    For n = 1, a1 = 2 C1 + 5 C2 = 41  … (2) 
    Solving (1) and (2), we get 
   C1 = 3 
   C2 = 7 
    an = (3) 2n + (7) 5n. 



 2.  Solve the recurrence relation an – 9 an-1 + 26 an-2 – 24 an-3 = 0,  

          n ≥ 3, a0 = 0, a1 = 1, and a2 = 10 using generating functions. 

 

    1. Let A(X) =  an Xn, n = 0 .. . 

    2. Multiply each term in the recurrence relation by Xn and sum 

from 3 

         to ∞.      

       an Xn – 9  an-1 Xn + 26  an-2 Xn – 24  an-3 Xn = 0, 

   n = 3 .. . 

    3.  Replace each infinite sum by an equivalent expression. 

                   [A(X) – a0 – a1 X – a2 X
2] – 9X [A(X) –a0 – a1X] –  

                          26X2 [A(X) – a0] –24X3[A(X)] = 0. 



4.  Simplify. 

       A(X)(1 – 9X + 26X2 – 24X3)  

   = a0 +  a1 X +  a2 X
2 – 9 a0 X – 9 a1 X

2 + 26 a0 X
2. 

      A(X) = [a0 + ( a1 – 9 a0 ) X + ( a2 – 9 a1+ 26 a0 ) X2] /  

    (1– 9X + 26X2 – 24X3) 

   = [a0 + (a1 – 9 a0) X + (a2 – 9 a1 + 26 a0) X2] /  

    [(1 – 2X) (1 – 3X) (1 – 4X)] 

5.  Decompose A(X) as a sum of partial fractions. 

         A(X) = C1 / (1 – 2X) + C2/ (1 – 3X) + C3/ (1 – 4X) 

6.  Express A(X) as a sum of familiar series. 

 A(X) = C1  2n Xn + C2  3n Xn + C3  4n Xn, n = 0 .. . 

      = (C12n  + C2 3n + C2 3n + C3 4n) Xn, n = 0 .. . 



7.  Express an as the coefficient of Xn in A(X) and in the sum of the 

other series. 

 an = C1 2
n + C2 3

n + C3 4
n. 

8.  Determine the values of C1, C2 and C3. 

     Substituting a0 = 0, a1 = 1, and a2 = 10 in step 4, we get 

   A(X) = [X + X2] / [(1 – 2X) (1 – 3X) (1 – 4X)] 

    = C1 / (1 – 2X) + C2 / (1 – 3X) + C3 / (1 – 4X) 

    i.e., C1(1 – 3X) (1 – 4X) + C2 (1 – 2X) (1 – 4X)  

    + C3(1 – 2X) (1 – 3X) = X + X2 

   for X = 1/2, C1 = 3/2 

   for X = 1/3, C2 = –4 

       for X = 1/4, C3 = 5/2 

  

  an = (3/2) 2n – (4) 3n + (5/2) 4n . 



Exercises 

1. Solve the recurrence relation an – an-1 – 9 an-2+ 9 an-3= 0, n ≥ 3,  

         a0 = 0, a1 = 1, and a2 = 2 using generating functions. 

2. Solve the recurrence relation an– 3 an-2 + 2 an-3= 0, n ≥ 3, a0 = 1, 

         a1 = 0, and a2 = 0 using generating functions  



Method of Characteristics roots 

    Characteristic equation for a linear homogeneous recurrence 

relation of degree k, an = r1an-1+ … + rkan-k is  

     xk = r1xk-1+ r2xk-2+ … + rk. 

    1.  Characteristic equation x2 – r1x – r2 = 0 of the recurrence 

relation 

         an = r1an-1+ r2an-2, having two distinct roots s1 and s2. 

        Explicit formula for the sequence is an = us1
n + vs2

n and u and v 

        depend on the initial conditions. 

    2. Characteristic equation x2 – r1x – r2 = 0 of the recurrence relation 

        an = r1an-1+ r2an-2 having a single root s. 

        Explicit formula for the sequence is an = usn + vnsn and u and v 

        depend on the initial conditions. 



Examples 

1. Solve the recurrence relation an = 4an-1 + 5an-2, a1 = 2, a2 = 6. 

  The associated equation is x2 – 4x – 5 = 0 
   i.e. (x – 5)(x + 1) = 0 

   The different roots are s1 = 5 and s2 = –1. 
  Explicit formula is an = us1

n + vs2
n  

  a1 = u(5) + v(–1) = 5u – v 
  Given a1 = 2 
   5u – v = 2  (1) 
  a2 = u(5)2 + v(–1)2 = 25u + v 
  Given a2 = 6 

   25u + v = 6  (2) 
  Solving the equations (1) and (2), we get 

  u = 4/15 and v = –2/3 
   Explicit formula is an = us1

n + vs2
n  

                = 4/15(5)n –2/3(–1)n 



2. Solve the recurrence relation an = -6an-1 – 9an-2,  
   a1 = 2.5, a2 = 4.7. 
 
 
  The associated equation is x2 + 6x + 9 = 0 
   i.e. (x + 3)2 = 0 
   The multiple root is s = –3. 
  
  Explicit formula is an = usn + vsn  
   a1 = u(–3) + vn(–3) = –3u + 3v 
   
  Given a1 = 2.5 
   –3u + 3v = 2.5  (1) 
   
   a2 = u(–3)2 + vn(–3)2 = 9u + 18v 
  
  Given a2 = 4.7 
   9u + 18v = 4.7  (2) 
  
  Solving the equations (1) and (2), we get 
   u = –19.7/9 and v = 12.2/9 
  
   Explicit formula is an = usn + vnsn  
    = (–19.7/9)(–3)n + (12.2/9)n(–3)n 
 

 



3.  Solve the recurrence relation an = 2an-2 , a1 = 2, a2 = 6. 
  
  The associated equation is x2 – 2 = 0 
    i.e. (x – 2)(x + 2) = 0 
   The different roots are s1 = 2 and s2 = –2. 
  
  Explicit formula is an = us1

n + vs2
n  

   
   a1 = u(2) + v(–2) = 2u – 2v 
  
  Given a1 = 2 
    2u – 2v = 2 
  u – v = 1  (1) 
   
   a2 = u(2)2 + v(–2)2 = 2u + 2v 
  
  Given a2 = 6 
    2u + 2v = 6 
  u + v = 3  (2) 
   
  Solving the equations (1) and (2), we get 
   u = 2 and v = 1 
  
   Explicit formula is an = us1

n + vs2
n  

 
    = 2(2)n + (–2)n 
 

 



Examples: 
 
     1. Consider the argument. 
     All men are fallible. 
     All kings are men. 
         All kings are fallible. 
    Let M(x) denote the assertion “x is a man” 
        K(x) denote the assertion “x is a king” 
        F(x) denote the assertion “x is fallible” 
          The above argument is symbolised as 
   x, [M(x)F(x)] 
   x, [K(x)M(x)] 
               x, [K(x)F(x)] 
Proof: 
1) x, [M(x)F(x)]  Premise 1 
2) M(c)F(c)   Step 1) and Rule 5 
3) x, [K(x)M(x)]              Premise 2 
4) K(c)M(c)   by 3) and Rule 5 
5) K(c)F(c)   by 2) & 4) and Rule 2 
6) x, [K(x)F(x)]  by 5) and Rule 6 
 

 



2.  Symbolize the following argument and check for 

its validity: 

 Lions are dangerous animals. 

    There are lions. 

  There are dangerous animals. 

 

    Let L(x) denotes ‘x is a lion’ 

             D(x) denotes ‘x is dangerous’ 

    Symbolically  

   x,[L(x)D(x)] 

   x, L(x) 

                   x, D(x) 



Proof: 
1.  X, [L(x)D(x)]  Premise 1 
2.  L(c)D(c)   by 1) and Rule 5 
3.  X, L(x).   Premise 2 
4.  L(c)    by 3) and Rule 7 
5.  D(c)   by 2) & 4) and Rule 1 
6.  X, D(x)   by 5) and Rule 8 
 

 



Fallacies:  
There are three forms of faulty inferences. 
 
 
 
 
1.  The fallacy of affirming the consequent  
                              (or affirming the converse) 
    (p  q) 
    q 
    -------- 
                 p  Fallacy 
 
                       [(p  q)  q]  p is not a tautology 
2. The fallacy of denying the antecedent  
                           (or assuming the opposite) 
    p  q 
    ~p 
    ------ 
                  ~q                 Fallacy 
                [(p  q)  ~p]  ~q is not a tautology 
  
3. The non sequitar fallacy  
                         (means “it does not follow”)  
    p 
    -- 
                   q 



 Basic concepts 

 Representation of Graphs 

 Isomorphism and Sub graphs 

 Multi graphs and Euler Circuits 

 Hamiltonian graphs 

 Spanning trees 

 Planar graphs 

 Chromatic number 



 A Graph G is a pair of sets (V, E)  
 where V = A set of vertices (nodes)  and 
            E = A set of edges (lines) 
  V(G) = Set of vertices in G. 
  E(G) = Set of edges in G. 
 V(G)  = Number of vertices in graph G  = Order of G. 
 E(G)  = Number of edges in graph G     = Size of  G . 

 
                                                           a                 b 

 
 

                                                            c                d  
* * 

* * 



 Non Directed Graph (Undirected graph): The elements of  E are unordered 
pairs (sets) of vertices. In this case an edge {u, v} is said to join u and v or to 
be between u and v. 

 Directed Graph: In a digraph the elements of E are ordered pairs of vertices. 
In this case an edge (u, v) is said to be from u to v. 

 Loop: An edge drawn from a vertex to itself. 
 Multi Graph: If one allows more than one edge to join  a pair of vertices, the 

result is then called a multi graph. 
 Simple Graph: A graph with no loops and no parallel edges. 
 Degree: Degree of a vertex in an undirected graph is the number of edges 

incident with it, except that a loop at a vertex contributes twice to the degree of 
that vertex. The degree of the vertex ‘v’ is denoted by deg(v).                                                            
 



 In-degree and Out-degree:  In a digraph, the number of edges incident to a 

vertex is called the in-degree of the vertex and the number of vertices incident 

from a vertex is called its out-degree. 

 The in-degree of a vertex ‘v’ in a graph G is denoted by deg+(v) . 

 The out-degree of a vertex v is denoted by deg -(G). 

 A loop at a vertex in a digraph  is counted as one edge for both  

       in-degree and out-degree of that vertex. 

 Neighbors: If  there is an edge incident from u to v, or incident on u and v, 

then u and v are said to be adjacent ( neighbors).  

 (G) = minimum of all the degrees of vertices in a graph G. 

 (G) = Maximum of all the degrees of vertices in a graph G.  

 



 Regular Graph: In a graph G,    if  (G)  = (G)  = k 
       i.e.,  if each vertex of G has degree k, then G is said to be a regular graph of 

degree k (k-regular). 
 Ex: Polygon is a 2-regular graph . 
 Ex: A 3-regular graph is a cubic graph. 
 Complete Graph: A simple non directed graph with ‘n’ mutually adjacent 

vertices is called a complete graph on ‘n’ vertices and may be represented by 
Kn. 

  Note: A complete graph on ‘n’ vertices has [{n(n – 1)}/ 2]edges, and each of 
its vertices has degree ‘n-1’. 

  Every complete graph is a regular graph. 
 The converse of the above statement need not be true. 



 Cycle Graph: A cycle graph of order ‘n’ is a connected graph whose edges 

form a cycle of length n. 

  Note: A cycle graph ‘Cn’ of order n has n vertices and n edges. 

  Null Graph: A null graph of order n is a graph with n vertices and no edges. 

  Wheel Graph: A wheel graph of order ‘n’ is obtained by adding a single new 

vertex (the hub) to each vertex of a cycle graph of order n. 

  Note: A wheel graph  Wn  has  ‘n +1’ vertices and   2n  edges. 

  Bipartite Graph: A Bipartite graph is a non directed graph whose set of 

vertices can be partitioned in to two sets M and N in such a way that each edge 

joins a vertex in M to a vertex in N. 

 

 



 Complete Bipartite Graph: A complete Bipartite graph is a Bipartite  graph 

in which every vertex of M is adjacent to every vertex of N. 

 If M = m  and N  = n  then the complete Bipartite graph is denoted by   Km 

, n.  It  has ‘m n’ edges. 

 The number of edges in a bipartite graph is  (n2/4). 

 Degree Sequence: If v1, v2, ……,  vn are the vertices of a graph G, then the 

sequence{d1, d2,…..,  dn} where   di = degree of vi is called the degree 

sequence of G.  

 Usually we order the degree sequence so that the degree sequence is 

monotonically decreasing.  



 Sum of Degrees Theorem: If V = {v1, v2, ….., vn} is the vertex set of a non 

directed graph G then       

                                                    

       deg (vi) = 2.  E 

 

 Proof:  When the degrees are summed, each edge contributes a count of one to 

the degree of each of the two vertices on which the edge is incident. 

 Hence, the theorem follows. 

i =1 

n 



 Cor. 1   If G is a digraph, then 

 

                                 deg+(vi)   =     deg –(vi)  =  E 

 

 Cor.2. An undirected graph  has an even number of vertices of odd degree. 

(See Text book for proof) 

 Cor.3  If G is a  k– regular graph , then k. V  = 2.  E . 

 

 Cor.4  In a non directed graph G, If   k = (G)  and  m = (G) then                     

      k. V    2. E    m .V  

         

 

i=1 i=1 

n n 



 Ex. A non directed graph contains 16 edges and all vertices are of degree 2. 

Find the number of  vertices in G ? 

 Solution: By Sum of degrees theorem, if degree of each vertex is k, then 

             k. V  = 2. E 

          2.  V  = 2.(16) 

               V  = 16 

 

 



 Ex. A simple non directed graph G contains 21 edges, 3 vertices of degree 4 

and the other vertices are of degree 2. Find the number of vertices in the graph 

G ? 

 Solution:  Let  V = n .  By Sum of degrees theorem, 

 

  deg (vi) = 2.  E 

 

  3.(4) + (n – 3 ). 2 = 2.(21) 

        n  = 18. 

 

 

i=1 

n 



 Solution:  Let  V = n .  By Sum of degrees theorem, 

 

  deg (vi) = 2.  E 

 

  6.(2) + 3.(4) + (n – 9 ). 3 = 2.(27) 

        n  = 19. 

 

 



 Solution:  By Sum of degrees theorem, if degree of each vertex is k, then 

             k. V  = 2. E 

          k.  V  = 2.(24) 

               V  = 48/k  ( k = 1,2,3,4,6,8,…) 

  V(G) = 48, 24, 16, … 



 Solution: By Sum of degrees theorem, if degree of each vertex is  k, then 

             k. V   2. E 

          3. V   2.(35) 

               V   (70/3 = 23.33..) 

               V   23 

  The largest possible number of vertices = 23 

 



 Ex. Let G be a simple graph with n vertices. Then show that the number of 

edges in G is less than or equal to {n.(n – 1)} / 2. 

 

 Solution: In a simple graph, each edge correspond to a distinct pair of vertices.  

 The number of ways to choose a pair of vertices, out of n vertices =    

                                 C(n , 2)  =   n. (n – 1 ) 

                                                          2 

 The maximum number of edges possible in G = {n.(n – 1)} / 2. 

  The number of edges in G is less than or equal to {n.(n – 1)} / 2. 

 

 



 Solution: a) Consider the degree sequence {2, 3, 3, 4, 4, 5}  

  Here, we have 3 vertices with odd degree. 

 But, By sum of degrees theorem, An undirected graph  should contain  an even 

number of vertices of odd degree.  

  The degree sequence cannot represent a simple non directed graph. 

 

  b) Consider the degree sequence {2, 3, 4, 4, 5}  

  Here, we have a vertex with  degree 5. 

 But,  A simple non directed graph  of order 5 cannot have a vertex with degree 

5.   

  The degree sequence cannot represent a simple non directed graph. 

 

 



 c) Consider the degree sequence {1, 3, 3,  4, 5, 6, 6}  

     Here, the order of the graph is 7 and we have 2 vertices with degree 6. 

 Since these two vertices are adjacent to all other vertices of the graph, a vertex 

with degree 1 does not exist  

  The degree sequence cannot represent a simple non directed graph. 

 

  d) Consider the degree sequence {1, 3, 3, 3 }  

     Here, the order of the graph is 4 and we have 3 vertices with degree 3. 

 Since these 3 vertices are adjacent to all other vertices of the graph, a vertex 

with degree 1 does not exist.  

  The degree sequence cannot represent a simple non directed graph. 

 

 



 Solution: Let G = {v1,v2,v3,…,vn}  

 The possible degree sequences are {0,1,2,….,n –1} and {1,2,3,…,n}   

 In a simple graph of order n, if  there is a vertex with degree n – 1 

       then a vertex with degree 0 does not exist.   

 A simple non directed graph  of order ‘n’ cannot have a vertex with degree n. 

  The degree sequence with all distinct elements cannot represent a simple 

non directed graph. 

 

 

 



 Havel Hakimi Result: Consider the following two sequences 

and assume the sequence (i) is in descending order 

  i) s, t1, t2, ……. ts, d1, d2, …….. dn 

  ii) t1 – 1, t2 – 1, ……. , ts – 1, d1, d2, ……., dn 

    then sequence (i) is graphic iff (ii) is graphic 

 Ex. Apply Havel-Hakimi Result to find whether the following 

degree sequences represent a simple non directed graph. 

 S1 : {6, 6, 6, 6, 4, 3, 3, 0} 

 S2 : {6, 5, 5, 4, 3, 3, 2, 2, 2} 

 S2 : {1, 1, 3, 3, 3, 4, 6, 7} 
 

 



 Adjacency list: One way to represent a graph with no multiple edges is to use 

adjacency lists, which specify the vertices that are adjacent to each vertex of 

the graph. 

 



 Isomorphic Graphs: Two graphs G and G1 are isomorphic if there is a 
function  f : V(G)  V(G1)  such that  

        (i) f is a bijection    and  
        (ii) for each pair of vertices u and v of G, 
              {u, v}  E(G)  {f(u), f(v)}  E(G) 
  i.e..  the function preserves adjacency. 
 Note:   If G is isomorphic to G1 then 
 a)  V(G) =  V(G1)  
 b)  E(G) =  E(G1)  
 c) The degree sequences of G and G1 are same. 
 d) If {v, v} is a cycle in G, then {f(v), f(v)} is a loop in G1, and more 

generally, if v0 – v1 –  v2 – …. – vk – v0 is a cycle of length k in G, then f(v0)– 
f(v1)– f(v2) – … – f(vk) – f(v0) is a cycle of length k in G1. 

 



 Suppose G and G1 are two graphs and that  f : V(G)  V(G1) is a bijection.  

 Let A be the adjacency matrix for the vertex ordering v1, v2, ……,vn of the 

vertices of G.  

 Let A1 be the adjacency matrix for the vertex ordering 

  f(v1), f(v2), ….. , f(vn) of the vertices of G1.  

 Then f is an isomorphism from V(G) to V(G1) iff   the adjacency matrices A 

and A1 are equal. 

 Note:  If A  A1, then it may still be the case that graphs G and G1 are 

isomorphic under some other function. 

 



 Complement of a graph: The complement of a graph G is the graph G with 

the same vertices as G. An edge exists in G iff it does not exist in G. 

 Theorem: Two simple graphs are isomorphic iff their complements are 

isomorphic. 

 If two graphs are isomorphic, then their corresponding sub graphs are 

isomorphic. 

 Induced Subgraph: If W is a subset of V(G), then the sub graph induced by 

W is the sub graph H of G obtained by taking V(H) = W and E(H) to be those 

edges of G that join pairs of vertices in W. 

 If G is isomorphic to G  then G is said to be self complementary.  

 

 



 Ex. If G is self complementary graph with n vertices, then show that  
 G has {n(n – 1)}/4 edges.   
 Ex. If G is self complementary then prove that G has 4k or 4k + 1 vertices 

where k is some positive integer.  
 Ex. How many non isomorphic graphs are there of order 4 and size 2? 
 Ex. How many non isomorphic graphs are there of order 8, size 8 and degree 

sequence   {2,2,2,2,2,2,2,2}.  
 Ex. How many non isomorphic graphs are there of order 6, size 6 and degree 

sequence   {2, 2, 2, 2, 2, 2}. 
 Ex. Let Cn be a cycle graph on n vertices. if Cn is isomorphic to Cn then show 

that n = 5. 
       



 Euler Path:  An Euler  path in  a multi  graph is a path that includes each edge 

of the multi graph exactly once and intersects each vertex of the multi graph at 

least once. 

 An Euler circuit is an Euler path whose end points are identical. 

 A multi graph is  traversable if it has Euler path. 

 A non directed multi graph has an Euler path iff  it is connected and has zero 

or exactly two vertices of odd degree. 

 Any finite connected graph with exactly two odd vertices is traversable(Euler 

path exists). A traversable trail may begin at either odd vertex and will end at 

other odd vertex. 

 A connected multi graph has an Euler circuit if and only if all of its vertices 

are of even degree. 

 



 Hamiltonian Graph: A Hamiltonian Graph is a graph with a closed path that 

includes every vertex exactly once. Such a path is a cycle and is called a 

Hamiltonian cycle. 

 An Eulerian circuit uses every edge exactly once but may repeat vertices , 

while a Hamiltonian cycle uses each vertex exactly once (except for the first 

and last) but may skip edges. 

 



 Tree: A connected graph with no cycles is called a tree.     
  A tree with ‘n’ vertices has (n – 1) edges. 
 A tree with n vertices (n>1) has at least two vertices of degree 1.   
 A sub graph H of a graph G is called a spanning tree of G if 
 i) H is a tree and 
 ii) H contains all vertices of G 
 Note:  In general, if G is a connected graph with n vertices and m edges, a 

spanning tree of G must have (n – 1) edges. Therefore, the number of edges 
that must be removed before a spanning tee is obtained must be m – (n – 1). 
This number is called circuit rank of G. 

 A non directed graph G is connected iff G contains a spanning tree. 
 The complete graph Kn has nn – 2 different spanning trees.  
                                                                                  (Caley’s formula) 

 



 Breadth first search : (Algorithm for finding a spanning tree of a connected 

graph) 

 The idea of BFS is to visit all vertices sequentially on a given level before 

going to next level. 

 Input: A connected graph G.  

 Output: A spanning tree for G. 

 Method: ….. 

 ( Refer Text book by  Mott, Kandell and Baker) 



 Depth first search : (Algorithm for finding a spanning tree of a connected 

graph) 

 The idea of DFS is proceeding to higher levels successively in the first 

opportunity. Later we backtrack and add the vertices which are not visited. 

 Input: A connected graph G.  

 Output: A spanning tree for G. 

 Method: ….. 

 ( Refer Text book by  Mott, Kandell and Baker) 

 



 Kruskal’s Algorithm: (For finding minimal spanning tree of a connected 

weighted graph) 

  Input: A connected graph G with non negative values assigned to each edge. 

  Output: A minimal spanning tree for G. 

  Method: 1) Select any edge of minimal value that is not a loop. This is the 

first edge of T(if  there is more than one edge of minimal value, arbitrary 

choose one of these edges) 

 2) Select any remaining edge of G of having minimal value that does not form 

a  circuit with the edges already included in T. 

 3) Continue step 2 until T contain (n – 1) edges when n = |V(G)| 

 



 Prim’s Algorithm: (For finding a minimal spanning tree) 

 1) Let G be a connected graph with non negative values assigned to each edge. 

First let T be the tree consisting of any vertex V1 of G. 

 2) Among all the edges not in T, that are incident on a vertex in T and do not 

form a circuit when added to T, Select one of minimal cost and add it to T. 

 3) The process terminates after we have added (n – 1) edges  

     where n = |V(G)|. 

   

 



 A graph or a multi graph that can be drawn in a plane or on a sphere so that its 

edges do not cross is called a planer graph.  

 Ex : A complete graph on 4 vertices K4 is a planar graph. 

 Ex : Tree is a planar graph.  

 Map, Connected map : A particular planar representation of a finite planer 

multi graph is called  a map. We say that the map is connected if the under 

lying  multi graph is connected.  

 Region : A given map (planar graph) divide the plane into connected areas 

called regions 

 Degree of a region : The boundary of each region of a map consists of a 

sequence of edges forming a closed path. The degree of region ‘r’ denoted by 

deg (r) is the length of the closed path bordering r . 



 If G is a planar graph with  k  regions, then the sum of the degrees of the 
regions of G is equal to twice the number of edges in G. 

                 i.e.,    deg (ri) = 2. E   .  
 

 Cor.1  In a planar graph G, if the degree of each region is k  then 
                     k.R  = 2 .E 
 Cor.2  In a planar graph G, if the degree of each region is  k , then 
                     k.R    2 .E 
 In particular, If G is a  simple connected planar graph ( A planar graph with no 

loops and no parallel edges, and degree of each region is  3), then  
                           3. R    2 . E  

 

i=1 

k 



 Question:  State and prove Euler’s formula for planar graphs. 

 Statement: If G is a connected planar graph, then  

                  V –  E  + R  = 2. 

 Proof:  ….. 

 Theorem:  If G is a simple connected planar graph with  E > 1  then,  

    (a)  E    {3. V – 6}. 

    (b) There exists at least one vertex v of G such that deg(v)  5 

   Proof: …… 

 Theorem: If G is a simple connected planar graph with  v > 3  then,  

                    R    {2. V – 4}. 

    



 Polyhedral Graph: A connected plane graph is said to be polyhedral if degree 
of each region is  3 and deg(v)  3 for all v  G. 

       i.e.,   3. R    2 . E     and         3. V    2 . E . 
 

 For any polyhedral graph  
    a)  V    (2 + R  ) 
                              2  
    b)  R      (2 +  V   ) 
                                  2  
    c) (3. R - 6)    E  

 
  

 



 A graph G is not planar iff G contains a sub graph homeomorphic to K3, 3 or 
K5 . 

  
 Ex. A planar graph contains 25 vertices and 60 edges then find the number of 

regions in the graph .  
 Ex. What is the maximum number of edges possible in a planar graph with 

eight vertices ?. 
 Ex. What is the minimum  number of vertices necessary  for a graph with 11 

edges to be a simple planar graph?. 
 Ex. Suppose that a connected planar graph has 20 vertices, each of  degree 3. 

In to how many regions does a representation of this planar graph split the 
plane ? 
 



 Ex. Let G is a connected planar graph with 35 regions and degree of each 

region is 6.  Find the number of  vertices in G ?. 

 Ex. Suppose G is a polyhedral graph with 12 vertices and 30 edges prove that 

degree of each region is 3. 

 Ex. Show that there does not exist a polyhedral graph with exactly seven 

edges. 

 Ex. Show that there does not exist a polyhedral graph with exactly 30 edges 

and 11 regions.  

 Theorem: Prove that a complete graph Kn is planar iff n  4. 

 Theorem: Prove that a complete Bipartite graph Km, n is planar  

                  iff    m  2 or n  2. 

 



 Vertex coloring:  A coloring of a simple graph is the assignment of color to 
each vertex of the graph so that no two adjacent vertices are assigned the same 
color. 

  Chromatic Number: The minimum number of colors needed to paint a graph 
G is called the chromatic number of G , denoted by (G) 

 Adjacent Regions: In a planar graph two regions are adjacent if they share a 
common vertex. 

 Map  coloring: An assignment of colors to the regions of a map such that 
adjacent regions have different colors. 

 A map ‘M’ is n – colorable if there exists a coloring of M  which uses n colors. 
 A planar graph is 5 – colorable  

 



 Four color Theorem: If the regions of a planar graph are colored so that 

adjacent regions have different colors, then no more than 4 colors are required. 

                  i.e.,    (G)    4. 

 Ex. Prove that the chromatic number of a complete graph Kn is n. 

 Ex. Prove that the chromatic number of a complete Bipartite graph Km, n is 2. 

 Ex. Prove that the chromatic number of cyclic graph Cn is 2 if n is even and 3 

if n is odd. 

 Ex. If every cycle of G has even length then show that its chromatic number is 

2. 

 Ex. Prove that the chromatic number of a tree on n vertices is 2.  

 

 


