
Mathematical Foundation of  
Computer Science 



Statement (Proposition) 

A Statement is a sentence that is either True or False 

Examples: 

Non-examples: x+y>0 
 
x2+y2=z2 

True 

False 

2 + 2 = 4 

3 x 3 = 8 

787009911 is a prime 

They are true for some values of x and y  

but are false for some other values of x and y. 

Today is Tuesday. 



Logic Operators 

F 

F 

F 

T 

P    Q 

F F 

T F 

F T 

T T 

Q P 

AND::

F 

T 

T 

T 

P    Q 

F F 

T F 

F T 

T T 

Q P 

OR::

Logic operators are used to construct new statements from old statements. 
 
There are three main logic operators, NOT, AND, OR. 



Logic Operators 

NOT:: ¬ P is true if and only if P is false 

Logic operators are used to construct new statements  
               from old statements. 
There are three main logic operators, NOT, AND, OR. 
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Compound Statement 

p = “it is hot” q = “it is sunny” 

It is hot and sunny 
 
 
It is not hot but sunny 
 
 
It is neither hot nor sunny 

We can also define logic operators on three or more statements, e.g. OR(P,Q,R) 



More Logical Operators 

coffee “or” tea 

 exclusive-or 

p q p  q 

T T F 

T F T 

F T T 

F F F 

We can define more logical operators as we need. 

P Q R M(P,Q,R) 

T T T T 

T T F T 

T F T T 

T F F F 
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F T F F 

F F T F 

F F F F 

majority 



Logical Form 

• Truth table for (~p  q)  (q  ~r) 

• Two statements are called logically equivalent if and only if 
(iff) they have identical truth tables 

• Double negation 

• Non-equivalence: ~(p  q) vs ~p  ~q 

• De Morgan’s Laws: 
– The negation of and AND statement is logically equivalent to the OR 

statement in which component is negated 

– The negation of an OR statement is logically equivalent to the AND 
statement in which each component is negated 



Exercises 

• Simplify: ~(~p  q)  (p  q) 

• Write truth table for: (p  (~p  q))  ~(q  ~r) 

• Simplify: p XOR p, (p XOR p) XOR p 

• Is XOR associative? 

• Is XOR distributive with respect to AND? 

 



Logical Form 

• Applying De-Morgan’s Laws: 
– Write negation for 

• The bus was late or Tom’s watch was slow 

• -1 < x <= 4 

• Tautology is a statement that is always true 
regardless of the truth values of the individual logical 
variables 

• Contradiction is a statement that is always false 
regardless of the truth values of the individual logical 
variables 



Formula for Exclusive-Or 

p q 

T T F T F F 

T F T T T T 

F T T T T T 

F F F F T F 

Logical equivalence: Two statements have the same truth table 

Idea 0: Guess and check 

As you will see, there are many different ways to write the same logical formula. 

One can always use a truth table to check whether two statements are equivalent. 



Exclusive-Or 

Is there a more systematic way to construct such a formula? 

p q p  q 

T T F 

T F T 

F T T 

F F F 

Idea 1: Look at the true rows Idea 1: Look at the true rows Idea 1: Look at the true rows 

Want the formula to be true 

exactly when the input belongs 

to a “true” row. 

The input is the second row exactly if this sub-formula is satisfied 

And the formula is true exactly when the input is the second row or the third row. 



Exclusive-Or 

p q p  q 

T T F 

T F T 

F T T 

F F F 

Idea 2: Look at the false rows 

Want the formula to be true 

exactly when the input does 

not belong to a “false” row. 

The input is the first row exactly if this sub-formula is satisfied 

And the formula is true exactly when the input is not in the 1st row and the 4th row. 

Is there a more systematic way to construct such a formula? 



Writing Logical Formula for a Truth Table 

p q r output 

T T T F 

T T F T 

T F T T 

T F F F 

F T T T 

F T F T 

F F T T 

F F F F 

Use idea 1 or idea 2. Idea 1: Look at the true rows 

            and take the “or”. 

The formula is true exactly when the input is one of the true rows. 



Writing Logical Formula for a Truth Table 

Idea 2: Look at the false rows, 

       negate and take the “and”. 

The formula is true exactly when the input is not one of the false row. 

p q r output 

T T T F 

T T F T 

T F T T 

T F F F 

F T T T 

F T F T 

F F T T 

F F F F 



DeMorgan’s Laws 

Logical equivalence: Two statements have the same truth table 

Statement: Tom is in the football team and the basketball team. 

Negation: Tom is not in the football team or not in the basketball team. 

De Morgan’s Law 

Why the negation of the above statement is not the following 

“Tom is not in the football team and not in the basketball team”? 

The definition of the negation is that exactly one of P or ¬P is true, but it  

could be the case that both the above statement and the original statement  

are false (e.g. Tom is in the football team but not in the basketball team). 



Conditional Statements 

• If something, then something: p  q, p is called the 
hypothesis and q is called the conclusion 

• The only combination of circumstances in which a 
conditional sentence is false is when the hypothesis 
is true and the conclusion is false 

• A conditional statements is called vacuously true or 
true by default when its hypothesis is false 

• Among , , ~ and  operations,  has the lowest 
priority 



Conditional Statements 

• Write truth table for: p  q  ~p 

• Show that (p  q)  r = (p  r)  (q  r) 

• Representation of : p  q = ~p  q 

• Re-write using if-else: Either you get in class on time, 
or you risk missing some material 

• Negation of : ~(p  q) = p  ~q 

• Write negation for: If it is raining, then I cannot go to 
the beach 



Logical Equivalence 

 Commutative laws: p  q = q  p, p  q = q  p 
 Associative laws: (p  q)  r = p  (q  r), (p  q)  r = p  (q  r) 
 Distributive laws:  p  (q  r) = (p  q)  (p  r) 
    p  (q  r) = (p  q)  (p  r) 
 Identity laws: p  t = p, p  c = p 
 Negation laws: p  ~p = t, p  ~p = c 
 Double negative law: ~(~p) = p 
 Idempotent laws: p  p = p, p  p = p 
 De Morgan’s laws: ~(p  q) = ~p  ~q, ~(p  q) = ~p  ~q 
 Universal bound laws: p  t = t, p  c = c 
 Absorption laws: p  (p  q) = p, p  (p  q) = p 
 Negation of t and c: ~t = c, ~c = t 



Conditional Statements 

• Contrapositive p  q is another conditional 
statement ~q  ~p 

• A conditional statement is equivalent to its 
contrapositive 

• The converse of p  q is q  p 

• The inverse of p  q is ~p  ~q 

• Conditional statement and its converse are not 
equivalent 

• Conditional statement and its inverse are not 
equivalent 



Conditional Statements 

• The converse and the inverse of a conditional 
statement are equivalent to each other 

• p only if q means ~q  ~p, or p  q 

• Biconditional of p and q means “p if and only if q” 
and is denoted as p  q 

• r is a sufficient condition for s means “if r then s” 

• r is a necessary condition for s means “if not r then 
not s” 



Exercises 

• Write contrapositive, converse and inverse 
statements for: 
– If P is a square, then P is a rectangle 

– If today is Thanksgiving, then tomorrow is Friday 

– If c is rational, then the decimal expansion of r is repeating 

– If n is prime, then n is odd or n is 2 

– If x is nonnegative, then x is positive or x is 0 

– If Tom is Ann’s father, then Jim is her uncle and Sue is her 
aunt 

– If n is divisible by 6, then n is divisible by 2 and n is divisible 
by 3 



Arguments 

• An argument is a sequence of statements. All 
statements except the final one are called premises 
(or assumptions or hypotheses). The final statement 
is called the conclusion. 

• An argument is considered valid if from the truth of 
all premises, the conclusion must also be true.  

• The conclusion is said to be inferred or deduced from 
the truth of the premises 



Contradiction 

• Contradiction rule: if one can show that the 
supposition that a statement p is false leads to 
a contradiction , then p is true.  

• Knight is a person who always says truth, 
knave is a person who always lies: 
– A says: B is a knight 

– B says: A and I are of opposite types 

What are A and B? 



DeMorgan’s Laws 

Logical equivalence: Two statements have the same truth table 

Statement: The number 783477841 is divisible by 7 or 11. 

Negation: The number 783477841 is not divisible by 7 and not divisible by 11. 

De Morgan’s Law 

Again, the negation of the above statement is not 

“The number 783477841 is not divisible by 7 or not divisible by 11”. 

In either case, we “flip” the inside operator from OR to AND or from AND to OR. 



DeMorgan’s Laws 

Logical equivalence: Two statements have the same truth table 

T T F F 

T F T T 

F T T T 

F F T T 

De Morgan’s Law 

De Morgan’s Law 



Simplifying Statement 

(Optional) See textbook for more identities. 

DeMorgan 

Distributive law 

The DeMorgan’s Law allows us to always “move the NOT inside”. 

We can use logical rules to simplify a logical formula. 



Tautology, Contradiction 

A tautology is a statement that is always true. 

A contradiction is a statement that is always false. (negation of a tautology) 

In general it is “difficult” to tell whether a statement is a contradiction. 

It is one of the most important problems in CS – the satisfiability problem. 



IMPLIES::

Logic Operator 

T 

T 
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Convention: if we don’t say anything wrong, then it is not false, and thus true. 

Make sure you understand the definition of IF. 
 
The IF operation is very important in mathematical proofs. 



Logical Equivalence 

If you see a question in the above form, 

there are usually 3 ways to deal with it. 

(1) Truth table 

(2) Use logical rules 

(3) Intuition 



If-Then as Or 

T 

T 

F 

T 
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F T 

T T 

Q P 
Idea 2: Look at the false rows, 

       negate and take the “and”. 

•If you don’t give me all your money, then I will kill you. 

•Either you give me all your money or I will kill you (or both). 

•If you talk to her, then you can never talk to me. 

•Either you don’t talk to her or you can never talk to me (or both). 



Negation of If-Then 

•If you eat an apple everyday, then you have no toothache. 

•You eat an apple everyday but you have toothache. 

•If my computer is not working, then I cannot finish my homework. 

•My computer is not working but I can finish my homework. 

previous slide 

DeMorgan 



Contrapositive 

The contrapositive of “if p then q” is “if ~q then ~p”. 

Statement:   If you drive, then you don’t drink. 

Statement:   If you are a CS year 1 student,  

                     then you are taking CSC 2110. 

Contrapositive:   If you drink, then you don’t drive. 

Contrapositive:   If you are not taking CSC 2110,  

                          then you are not a CS year 1 student. 

Fact: A conditional statement is logically equivalent to its contrapositive. 



Proofs 

Statement:   If P, then Q 

Contrapositive:   If    Q, then     P. 

F F T 

T F F 

F T T 

T T T 

T T T 

T F F 

F T T 

F F T 

In words, the only way the above statements are false is when P true and Q false. 



Contrapositive 

Statement:   If P, then Q 

Contrapositive:   If    Q, then     P. 

Or we can see it using logical rules: 

Contrapositive is useful in mathematical proofs, e.g. to prove 

Statement:   If x2 is an even number, then x is an even number. 

Contrapositive:   If x is an odd number, then x2 is an odd number. 

You could instead prove: 

This is equivalent and is easier to prove. 



Normal Forms 

Normal forms are standard forms, sometimes called 
canonical or accepted forms. 

A logical expression is said to be in disjunctive normal 
form (DNF) if it is written as a disjunction, in which all 
terms are conjunctions of literals. 

 Similarly, a logical expression is said to be in 
conjunctive normal form (CNF) if it is written as a 
conjunction of disjunctions of literals. 
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( ), ( ), ( )P Q Q R R P

P Q R

  

 

Equivalence 

A student is trying to prove that propositions P, Q, and R are all true.  

She proceeds as follows.  

First, she proves three facts: 

• P implies Q 

• Q implies R 

• R implies P. 

Then she concludes, 

      ``Thus  P, Q, and R are all true.'' 

Proposed argument: 

Is it valid? 

assumption 

conclusion 



Valid Argument? 

assumptions conclusion 

P Q R 

T T T 

T T F 

T F T 

T F F 

F T T 

F T F 

F F T 

F F F 

T T T 

T F T 

F T T 

F T T 

T T F 

T F T 

T T F 

T T T 

OK? 

T yes 

F yes 

F yes 

F yes 

F yes 

F yes 

F yes 

F no 

To prove an argument is not valid, we just need to find a counterexample. 

( ), ( ), ( )P Q Q R R P

P Q R

  

 

Is it valid? 



Valid Arguments? 

If p then q. 
q 
p 

If you are a fish, then you drink water. 

You drink water. 

You are a fish. 

p q p→q q p 

T T T T T 

T F F F T 

F T T T F 

F F T F F 

assumptions conclusion 

Assumptions are true, but not the conclusion. 



Valid Arguments? 

If p then q. 
~p 
~q 

If you are a fish, then you drink water. 

You are not a fish. 

You do not drink water. 

p q p→q ~p ~q 

T T T F F 

T F F F T 

F T T T F 

F F T T T 

assumptions conclusion 



Exercises 



More Exercises 

Valid argument       True conclusion 

True conclusion       Valid argument 



Contradiction 

If you can show that the assumption that the statement 

p is false leads logically to a contradiction, 

then you can conclude that p is true. 

This is similar to the method of denying (modus tollens) 



DNF and CNF 
Disjunctive Normal Form (DNF) 
 ( ..  ..  .. )  ( ..  ..  .. )  …  ( ..  .. ) 
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Term Literal, i.e. P or P 

• Conjunctive Normal Form (CNF) 

 ( ..  ..  .. )  ( ..  ..  .. )  …  ( ..  .. ) 

     

  Examples: (P  Q)  (P  Q) 

    P  (Q  R) 

  Examples: (P  Q)  (P  Q) 

    P  (Q  R) 



Converting Expressions 
to DNF or CNF 

Discussion #10 44/16 

The following procedure converts an expression to DNF or CNF: 

1. Remove all  and . 

2. Move  inside.  (Use De Morgan’s law.) 

3. Use distributive laws to get proper form. 

Simplify as you go.  (e.g. double-neg., idemp., comm., assoc.) 



CNF Conversion Example 
( ..  ..  .. )  ( ..  ..  .. )  …  ( ..  .. ) 

((P  Q)  R  (P  Q)) 

  ((P  Q)  R  (P  Q))   impl. 

  (P  Q)  R  (P  Q)   deM. 

  (P  Q)  R  (P  Q)  deM. 

  (P  Q)  R  (P  Q)   double neg. 

  ((P  R)  (Q  R))  (P  Q)  distr. 

  ((P  R)  (P  Q))    distr. 

  ((Q  R)  (P  Q)) 

  (((P  R)  P)  ((P  R)  Q))   distr. 

  (((Q  R)  P)  ((Q  R)  Q)) 

  (P  R)  (P  R  Q)  (Q  R) assoc. comm. idemp. 
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(DNF) 



CNF Conversion Example 
( ..  ..  .. )  ( ..  ..  .. )  …  ( ..  .. ) 

((P  Q)  R  (P  Q)) 

  ((P  Q)  R  (P  Q))   impl. 

  (P  Q)  R  (P  Q)   deM. 

  (P  Q)  R  (P  Q)  deM. 

  (P  Q)  R  (P  Q)   double neg. 

  ((P  R)  (Q  R))  (P  Q)  distr. 

  ((P  R)  (P  Q))    distr. 

  ((Q  R)  (P  Q)) 

  (((P  R)  P)  ((P  R)  Q))   distr. 

  (((Q  R)  P)  ((Q  R)  Q)) 

  (P  R)  (P  R  Q)  (Q  R) assoc. comm. idemp. 
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(DNF) 

CNF 
Using the commutative and idempotent 
laws on the previous step and then the 
distributive law, we obtain this formula 

as the conjunctive normal form. 



CNF Conversion Example 
( ..  ..  .. )  ( ..  ..  .. )  …  ( ..  .. ) 

((P  Q)  R  (P  Q)) 

  ((P  Q)  R  (P  Q))   impl. 

  (P  Q)  R  (P  Q)   deM. 

  (P  Q)  R  (P  Q)  deM. 

  (P  Q)  R  (P  Q)   double neg. 

  ((P  R)  (Q  R))  (P  Q)  distr. 

  ((P  R)  (P  Q))    distr. 

  ((Q  R)  (P  Q)) 

  (((P  R)  P)  ((P  R)  Q))   distr. 

  (((Q  R)  P)  ((Q  R)  Q)) 

  (P  R)  (P  R  Q)  (Q  R) assoc. comm. idemp. 

Discussion #10 47/16 

(DNF) 

(P  R)  (P  R  Q) 
       (Q  R) 
 (P  R)  (P  R  Q) 

       (F  Q  R)  - ident. 
 (P  R)  ((P  F) 

       (Q  R))  - comm., distr. 
 (P  R)  (F 

       (Q  R))  - dominat. 
 (P  R)  (Q  R)  - ident. 



DNF Expression Generation 
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F 

T 

F 

F 

F 

T 

T 

F 

F F F 

T F F 

F T F 

T T F 

F F T 

T F T 

F T T 

T T T 

 R Q P 

(P  Q  R) 

(P  Q  R) 

(P  Q  R) 

  (P  Q  R)  (P  Q  R)  (P  Q  R) 

minterms 

The only definition of 
 is the truth table 



CNF Expression Generation 
1. Find . 

2. Find the DNF of . 

3. Then, use De Morgan’s law to get the 
CNF of  (i.e. ()  ) 
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T 

F 

T 

F 

 

F F F 

T T F 

F F T 

T T T 

 Q P 

 (P  Q)                     (P  Q)  

(P  Q)                  (P  Q) 

            (P  Q)  (P  Q) DNF of  
         f  ((P  Q)  (P  Q)) 
            (P  Q)  (P  Q)    De Morgan’s 

                      (P  Q)  (P  Q)  De Morgan’s, double neg. 

max terms 

} Form a 
conjunction of max 
terms 



:  Predicates 

Predicate logic 

Free and bound variables 

Rules of Inference 

Consistency 

Proof of Contradiction 

 

 



Quantifiers and Predicates 

Universal quantifier : The quantifier  ‘ all ’ is called the Universal 
quantifier, and we shall denote it by  x (or  (x) ), which is an inverted 
A followed by the variable x. 

      x :  for all x  ( for every  x    (or)   for each x ) 

Existential quantifier : The quantifier  ‘some’ is called the Existential 
quantifier, and we shall denote it by x, which is a reversed E followed 
by the variable x. 

     x :  for some x  ( There exists an x such that  or  There is at least one  x 
such that ) 

Consider the statement,    ‘John is a Politician’ 

     Here, ‘John’  is the subject and  ‘is a Politician’ is the predicate 

     Denote the predicate, ‘is a Politician’  symbolically by the predicate 
letter P, and the subject  ‘John’  by  j . 



Predicates  (Contd.,) 

The statement ‘John is a Politician’ can be written as P(j)  

       P(j) : John is a Politician 

 If x is any person, then 

       P(x) : x is a politician 

In general, any statement of the type “ x is Q ” is denoted by Q(x). 

Let S(x) : x is a scientist. ( Here, S denote the predicate ‘is a scientist’). 

   P(x)        :   x is not a politician 

P(x)  S(x)  :   x is a politician  and  x is a scientist. 

P(x)  S(x)  :   Either x is a politician  or  x is a scientist. 

P(x) S(y)  :   If x is a politician  then   y is a scientist. 

x  {P(x)}   :   All are politicians    



Predicates  (Contd.,) 

x {P(x)  S(x)}  :  Some politicians are scientists. 
x {P(x) S(x)} : All politicians are scientists. 
x {P(x)  S(x)}  :  Every body is either a politician or a scientist 
         Sentence   Abbreviated Meaning 

              (x) P(x)    all true 
              (x) P(x)     at least one true 
           {(x) P(x)}     none true 
          (x) {P(x)}     all false 
           (x) {P(x)}    at least one false 
      {(x) P(x)}    none false 
        {(x) P(x)}    not all true 
      {(x) P(x)}   not all false 



Some Equivalences and Negations 

   (x) P(x)         {(x) P(x)}   

   (x) {P(x)}    {( x) P(x)}  
 {(x) P(x)}      {(x)P(x)} 
 {(x) ~P(x)}    (x) P(x)     
  Statement          Negation 

            (x) P(x)            (x) [P(x)] 
      (x) [~P(x)]                       (x) P(x) 
          (x) [P(x)]                      (x) P(x)  
           (x) P(x)             (x) [P(x)] 

To form the negation of a statement involving one quantifier,we need 
only change the quantifier from universal to existential, or from 
existential to Universal, and negate the statement it quantifies. 



Sentences with Multiple quantifiers  
 

In general, P(x,y) is any predicate involving the two variables x and y . 

Let  L(x,y) :  x  likes y   (Here, L denotes the predicate ‘Likes’, x and y are 
any two persons),  then the following possibilities exist: 

(x) (y)  L(x,y)  :  Every body likes every body. 

(x) (y)  L(x,y)   :  Every body likes some body. 

(x) (y)  L(x,y)   :  Some body likes every body. 

(x) (y)  L(x,y)    :  Some body likes Some body. 

(y) (x) L(x,y)    :  Every body was  liked by every body. 

(y) (x)  L(x,y)    : There is some body who is liked by every body. 

(y) (x)  L(x,y)    : Every body is liked by some one.  

(y) (x)   L(x,y)    : Some body was liked by some body. 



Relationship diagram 

 

 

 

(x) (y) (y) (x) 

(y) (x) (x) (y) 

(x) (y) (y) (x) 

(x) (y) 
(y) (x) 

L(x,y) 



Rules of Inference for Quantified Propositions  

Universal specification : If a statement of the form (x) P(x)  is 
assumed to be true then the universal quantifier can be dropped to 
obtain P(c) is true for an arbitrary object  c  in the universe. This rule 
may be represented as  

                                          x, P(x) 

                                       ----------------- 

               P(c) for all c. 

Universal generalization: If a statement P(c) is true for each element 
c of the universe, then the universal quantifier may be prefixed to 
obtain (x) P(x). In symbols, this rule is 

      P(c) for all c 

       x, P(x)  



Rules of Inference for Quantified Propositions (Contd.,) 

Existential specification: If  (x) P(x) is assumed to be true, then there 
is an element c  in the universe such that P(c) is true. This rule takes 
the form  

          (x)  P(x)   

                           ----------------------- 

     P(c) for some c 

 

Existential generalization:. If P(c) is true for some element c in the 
universe, then x, P(x) is true. In symbols,  we have  

                                        P(c) for some c 

       (x) P(x) 



Free and Bound variables 

Given a formula containing a part of the form  (x) P(x)  or  (x) P(x), 
such a part is called an x-bound part of the formula. Further P(x) is the 
scope of the quantifier in both the formulas. 

Any occurrence of  x, in an x-bound part of the formula is called a 
bound occurrence of x, while any variable that is not a bound 
occurrence is called a free occurrence 

Ex: consider,  (x) P(x,y) 

     Here, the scope of the universal quantifier is P(x,y),  x  is a bound 
variable      and   y   is a free variable. 

Ex: Consider the formula,  (x) (P(x) Q(x)) 

             Here, Scope of the quantifier is P(x) Q(x). 

                        Both the occurrences of x are bound. 



Free and Bound variables (Contd.,) 

Ex: (x) {P(x)  (y) R(x,y)} 

            Here, the scope of  x  is  P(x)  (y) R(x,y)  

             and   the scope of  y  is  R(x,y) 

              All occurrences of x and y are bound occurrences. 

In the bound occurrence of a variable, the letter which is used to 
represent the variable is a dummy variable. 

     The formula (x) {P(x)} is same as (y) {P(y)}  

     The formula, (y) R(x,y)  is same as  (z) R(x,z) . 

Generally speaking, in order to draw conclusions from quantified 
premises, we need to remove quantifiers properly, argue with the 
resulting propositions, and then properly prefix the correct 
quantifiers.      



Examples 

Ex:  Let    P(x)    : x is a person 

                     F(x,y)  : x is the father of y   

                     M(x,y) : x is the mother of y 

      Write the predicate “ x is the father of the mother of y ” in symbolic 
form. 

Solution:   In order to symbolize the predicate, 

                       let us  assume a person called z as the mother of y. 

                       Now, x is the father of z  and  z is the mother of y . 

                       We symbolize the predicate as  

                      (z) { P(z)    F(x , z)    M(z , y) } 



Ex: Symbolize the expression “All the world loves a lover” 

Solution:  First, let us note that the quotation really means that every 
body loves a lover. 

     Now  let                  P(x) : x is a person 

                                     L(x) : x is a lover 

                                     Q(x , y) :  x   loves  y  

The required expression is 

        (x) [P(x)  (y){P(y)   L(y) Q(x , y)}] 



Ex: Prove the following argument, using symbolic logic  
1.All men are mortal.  
2.Socrates is a man. 

Therefore,Socrates is a mortal. 

Solution: Let us denote,   H(x) : x is a man,  M(x) : x is a mortal 

                               and            s     : Socrates  

      We can put the given argument in the following form, 

                               x {H(x) M(x)}   ….(1) 

                                       H(s)                   …(2) 

                                         M(s) 

A formal proof is as follows: 

From (1), By the rule of Universal Specification, we have 

                                        H(s) M(s)  ….(3) 

From (2) and (3), By the rule of modus ponens,  M(s)  follows 

Hence, the argument is valid 



Ex: Prove the following argument, using symbolic logic. 
      All men are fallible. 
      All kings are men. 

      Therefore, all kings are fallible.   

Solution: Let us denote, M(x) : x is a man 

                                              F(x) : x is fallible 

                                            K(x)  : x is a king 

We can put the given argument in the following form, 

                                x {M(x) F(x)}   ….(1) 

                                 x {K(x) M(x)}  ….(2) 

                                   x {K(x) F(x)}  

A formal proof is as follows 

From (1), By the rule of Universal Specification, we have 

                                        M(s) F(s)  ….(3) 

From (2), By the rule of Universal Specification, we have 

                                        K(s) M(s)  ….(4) 



Contd., 

  From (4) and (3), By the rule of transitivity, we have 

                K(s)  F(s)   …..(5) 

From (5), By the rule of Universal Generalization, we have 

                x {K(x) F(x)} 

Hence, the argument is valid. 



Ex: Symbolize the following argument and check for its validity: 
All lions are dangerous animals 

There are lions 
Therefore, there are dangerous animals. 

Solution:   Let    L(x) : x is a lion      and          

                                 D(x) : x is dangerous.  

         Then the argument takes the form 

                               (x) {L(x) D(x)}   ….(1) 

                               (x)   L(x)                  …..(2) 

                             (x)  D(x) 

    A formal proof is as follows: 

From (2), By the rule of Existential specification, we have 

                                         L(a)        …….    (3) 

From (1), By the rule of Universal Specification, we have 

                                        L(a) D(a)     ….(4) 



Contd., 

From (3) and (4), By the rule of modus ponens,   

                                        D(a)                  …(5) 

From(5), By the rule of Existential Generalization, we have 

                                        (x)  D(x) 

 Hence, the argument is valid 



Ex: Symbolize the following argument and check for its validity: 
Every living thing is a plant or animal. 

David’s dog is alive and it is not a plant. 
All animals have Hearts.    Hence, David’s dog has a heart 

Solution: Let the universe consists of all living things, and let 

          P(x) : x is a plant 

         A(x) : x is an animal 

         H(x) : x has a heart 

            a    : David’s dog 

Then the argument takes the form 

                               (x) {P(x)  A(x)}   ….(1) 

                                       P(a)                  ….(2)   

                               x) {A(x) H(x)}    ….(3) 

                                   H(a) 

The formal proof is given below: 

From (1), By the rule of Universal Specification, we have   P(a)  A(a)                                        



Contd., 

    P(a)  A(a)     ….(4) 

From (2) and (4), By the rule of Disjunctive syllogism,we have 

          A(a)         ….(5)    

From (3), By the rule of Universal Specification, we have 

         A(a) H(a)  …(6) 

From (5) and (6), By the rule of modus ponens,   

          H(a)   follows 

Hence, the argument is valid. 

 



Ex: Prove that   (x){P(x)  Q(x)}    (x)P(x)  (x)Q(x)  

      Is the converse true? .  Justify your answer.  

Proof:   L.H.S.  =  (x){P(x)  Q(x)}  

By the rule of ES,we have 

P(y)  Q(y)   …(1),   y fixed 

P(y)               …(2) , from (1) 

Q(y)              …(3),  from (1) 

From(2), By EG, we have 

(x) P(x)      ….(4) 

From(3), By EG, we have 

(x) Q(x)      ….(5) 

From (4) and (5), we have 

(x) P(x)  (x) Q(x)    =  R.H.S 



Contd., 

Now, let us show that the converse of the above result is not true 

Consider,   R.H.S.  =   (x) P(x)  (x) Q(x)    …(1)  

From (1), we have,                   (x) P(x)          …..(2)   

Again from (1), we have,         (x) Q(x)           …(3)   

From (2), By ES,we have               P(a)             ….(4) 

From (3), By ES,we have               Q(b)             ….(5) 

Note that in step (4), a is fixed, and it is no longer possible to use that 
variable again in step(5). 

From (4) and (5), the L.H.S.  (x) {P(x)  Q(x)}  does not follows 

Hence, the converse of the result does not hold. 



Ex: Show that    (x) {P(x)  Q(x)}   (x) P(x)  (x)Q(x)  

L.H.S  =  (x) {P(x)  Q(x)}     ….(1) 

We shall use the method of  ‘proof by contradiction’ 

Let     {(x) P(x)  (x) Q(x)}        ….(2)     (Additional premise) 

        {(x) P(x)  (x) Q(x)}     ….(3) 

From (3), we have,    (x) Q(x)      …..(4) 

From (3), we have,      (x) P(x)   …..(5) 

From (5), By the rule of  ES, we have   P(y)    ….(6) 

From (4), By the rule of US, we have    Q(y)    ….(7) 

From (6) and (7), we have,          P(y)  Q(y)   …(8)  

                                                {P(y)  Q(y)}  …(9) 

From (1),By the rule of  US, we have  {P(y)  Q(y)}  …..(10) 



Contd., 

But, (9) and (10) cannot be simultaneously true.(Contradiction)  

 our assumption (2), is wrong 

Hence, the result follows. 



Ex: Show that  from 
  (a) (x) {F(x) S(x)}   (y){M(y)  W(y)} 

  (b) (y) {M(y )  W(y)} 
the conclusion, (x) {F(x)  S(x)} follows 

Proof: Given premises are 

(x) {F(x) S(x)}   (y){M(y)  W(y)} ……(1) 

(y) {M(y )  W(y)} …..(2)  

(2)  [(y) {M(y )  W(y)}]  …(3)  

       [(y) {M(y ) W(y)}]    …(4)  

 

From (1) and (4), By Modus tollens, we have 

     [(x) {F(x)  S(x)}]              ….(5) 

 [(x) {F(x) )  S(x)}]         ….(6) 

 [(x) {F(x))  S(x)}]           ….(7) 

The conclusion logically follows from the premises. 



Ex: Show that P(a,b) follows logically from the premises 
          (x) (y) { P(x,y) W(x,y)}  and 

         W(a,b)  

Solution:  Given premises are 

 (x) (y) { P(x,y) W(x,y)}  …(1) 

 W(a,b)                             …..(2) 

From (1), By the rule of US, we have 

 (y) { P(a,y) W(a,y)}      …..(3) 

From (3), By the rule of US, we have 

 { P(a,b) W(a,b)}            …..(4) 

From (2)and (4), By the rule of  Modus ponens, 

P(a,b)   follows. 



Ex: Consider the statement ‘Given any positive integer, there is a greater positive 
integer’. Symbolize the statement with and without using the set of positive 

integers as the universe of discourse.  

Case1:   Let  x and y are are restricted to set of positive integers. 

                 The above statement can be written as 

                 ‘For all x, there exists a ‘y’ such that  y is greater than x’ 

                  If  G(x,y)  is ‘x greater than y’ 

  Then the given statement in symbolic form  is   (x) (y) G(y,x) 

 

 Case 2:   If we do not impose the restriction on the universe of discourse 

               and if we write  I(x) : x is an integer,  

              then we can symbolize the given statement as  

                (x) [ I(x) (y) { I(y)  G(y , x)} ] 

 



Ex: prove the following argument 
 (1)  (x) {P(x)  Q(x)} 

 (2)  (x) [{P(x)  Q(x)}R(x)]  
        (x) {R(x) P(x)}  

Proof: From (1), By the rule of US, we have 

P(c)  Q(c)   ….(3) 

From (2), By the rule of US, we have 

{P(c)  Q(c)}  R(c)   ..…(4) 

From (4), By contra positive equivalence, we have 

R(c)  {P(c)  Q(c)}  ……(5) 

Let     R(c)   ……………(6) (Additional premise) 

From (5) and (6), By the rule of modus ponens, we have 

P(c)  Q(c)   ……………(7) 

From (3) and (7), we have  

{P(c)  Q( c )}  {P(c)  Q(c)} 



Contd., 

 P(c)  {Q( c )  Q(c)} 

 P(c)   F 

 P(c) 

Now, By CP rule, 

R(c) P(c)    ….(8)      follows 

From (8), By the rule of UG, we have 

(x) {R(x) P(x)} 

Hence, the given argument is valid. 



Example: 

Ex:  Let  L(x,y) denote the statement ‘x likes y’, where the 
universe of discourse for both x and y  is the set of all 
people in the world. 

      Consider the statement  

          “ There is somebody whom no one likes” 

       Write the Statement in symbolic form. 

Solution:  

               (y) (x) [ ~L(x , y)} ] 

 



Ex: Show that the negation of the sentence 
(x) [{C(x)  B(x)}  A(x)}]   is   

(x) {C(x)  B(x)  A(x)} 

Consider,   {(x) [{C(x)  B(x)}  A(x)}] } 

                   {(x) [{C(x)  B(x)}  A(x)}] }    

                                                                   ( Since P Q  P Q) 

                     {(x) [C(x)   B(x)  A(x)] } 

                                                                  (By demorgan’s law) 

                   (x) {C(x)  B(x)  A(x)} 

                                                                     (By demorgan’s law) 

 

 



Ex: Show that the negation of the sentence 
(x) (y) [{F(x,y)  G(x,y)}  H(x,y)]   

   is  (x) (y) { F(x,y)  G(x,y)  H(x,y)}  

Consider {(x) (y) [{F(x,y)  G(x,y)}  H(x,y)] } 

 

               {(x) (y) [{F(x,y)  G(x,y)}  H(x,y)] } 

                                                                       ( Since,  P Q  P Q ) 

 

                (x) (y) {F(x,y)  G(x,y)  H(x,y)}  

                                                                             (By demorgan’s law) 

 



Ex:  Show that  
      (x) {B(x)  I(x)}     [(x){B(x)  I(x)}] 

Proof:  L.H.S.     [(x) {B(x)  I(x)}]  

                                                                  (Since,  P  P) 

                                [(x) {B(x)  I(x)}]  

                                                                            ( Since,  P Q  P Q ) 

                                   [(x){B(x)  I(x)}]  

                                                                              (By demorgan’s law) 

 



Ex:  Show that  
      (x) {N(x)  R(x)}     [(x) {N(x)  R(x)}] 

Proof:  L.H.S.      [(x) {N(x)  R(x)} ]  

                                                                                (Since,  P  P) 

                                   [(x) {N(x)  R(x)}]  

                                                                               (By demorgan’s law) 

 

                                    [(x) {N(x)  R(x)}] 

                                                                           ( Since,  P Q  P Q ) 

 



Some more Equivalences & Implications 

Let A(x) :  x is an ambitious person. 

Let  B(x) : x is a brave person. 

(x){A(x)  B(x)}        {(x)A(x)}  {(x)B(x)} 

{(x)A(x)  (x)B(x)}      (x){A(x)  B(x)} 

 

(x) {A(x)  B(x)}     {(x)A(x)}  {(x)B(x)} 

(x){A(x)B(x)}      {(x)A(x)  (x)B(x)} 

   

  {(x)A(x)  B}     (x){A(x) B} 

  {(x)A(x)  B }  (x){A(x) B}  

  

   



Automatic Theorem proving 

String of Formulas: A string of formulas is defined as follows. 

    A) Any formula is a string of formulas  

    B) If  and  are strings of formulas, then  

         ,   and  ,   are strings of formulas. 

    C) Only those strings which are obtained by steps  (A) and (B) are 
strings of formulas, with the exception of empty string which is also a 
string of formulas.  

                                                                                             

Sequents :  If  and  are strings of formulas, then        is called a 
sequent in which  is called antecedent and    is called consequent. 

 

s 



Sequents (Contd.,) 

A sequent     is true  if and only if  either at least one of the formulas 
of the antecedent is false or at least one of the formulas of the 
consequent is true. 

Thus   

       A, B, C   D, E, F   is true   iff  (A  B  C) (D  E  F) is true . 

        means that     is true. 

The empty antecedent is interpreted  as  ‘true’   or  T  

The empty consequent is interpreted  as  ‘false’ or  F 

Axiom schema: If  and  are strings of formulas such that every formula 

in both  and  is a variable only, then the sequent     is an axiom iff 
 and   have at least one variable in common. 

s 

s 

s s 
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Axioms –theorems -Rules 

Ex:  A,B,C  P,B,R  is an axiom. 

     If      is an axiom, then   . 

Theorem: The following sequents are theorems of our system. 

     a) Every axiom is a theorem . 

     b) If a sequent  is a theorem and  a sequent  results from  through 
the use of one of the 10 rules of the system which are given below,  
then  is a theorem. 

      c) Sequents obtained by (a) and (b) are the only theorems. 

Rules: The following rules are used to combine formulas within strings 
by introducing connectives.Corresponding to each of the connectives 
there are two rules, one for introducing the connective in the 
antecedent and the other for its introduction in the consequent.  

s s 

s 



Rules for Automatic Theorem proving 

Antecedent rules: 

Rule     :   If    ,    X ,    then   , X ,      

Rule     :   If  X, Y,  ,        then   , X Y ,      

Rule     :   If    X,  ,       and   Y,  ,      ,  

                                                                   then     , X  Y,      

 

Rule    :   If   Y,  ,        and    ,    X ,   

                                                                   then    , X  Y,      

 

Rule   :   If   X,Y, ,        and    ,   X, Y,  

                                                                  then    , XY,      

 

s s 
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Rules for Automatic Theorem proving (contd.,) 

Consequent rules: 

Rule   :   If   X,     ,    then    , X ,  

Rule  :   If    X, ,   and      Y, ,    

                                                                   then       , X  Y,   

Rule   :   If     X, Y, ,    then    , X  Y,   

 

Rule    :   If   X ,   Y, ,    and         , X  Y,   

                                                                    

Rule    :   If   X ,    Y, ,   and   Y,   X, ,    

                                                                  then      , XY,   

s s 

s s 

s s 

s 

s s 

s s 

s 



Examples 

Ex: Using Automatic theorem proving, Show that PQ follows from P. 

Solution: we need to show that 

(1)   P (PQ ) 

(1)  if  (2)     P ( P  Q )      ( By the rule,  ) 

(2)  if  (3)     P   P , Q         ( By the rule,   ) 
Now, (3) is an axiom 

Hence, the theorem (1) follows. 

 

 

s 

s 

s 



Ex:   Using Automatic theorem proving,  
        Show that  P  does not follow from  PQ. 

Solution:  Assume 

(1)    (PQ ) P 

(1)  if  (2)     ( P  Q ) P              ( By the rule,  ) 

(2)  if  (3)     P   P   and    (4)  Q P    ( By the rule,   ) 
 Note that (3)is an axiom, but (4) is not. 

Hence,  P does not follow from PQ. 

s 

s 

s s 



Ex: Using Automatic theorem proving, prove the following  
(a) {P(PQ)} R  

(b) R  {P  (P Q)}  

Solution: (a) To show  (1)   {P(PQ)} R 

(1)  if  (2)  {P(PQ)}  R       ( By using the rule, , twice) 

(2)  if  (3)  {P,P,Q)}  R           ( By the rule,   ) 

(3)  if  (4)  {P,Q)} {P, R}          ( By the rule,   ) 

Now (4) is an axiom , therefore the result follows. 

 

(b) To show  (1)   R  {P  (P Q)}  

(1) if (2)     R  {P  (P Q)}     ( By the rule,  ) 

(2) if (3)     R  {P,P, Q)}            ( By using the rule,   , twice) 

(3) if (4)     {R,P}  {P, Q)}            ( By using the rule,  ) 

Now (4) is an axiom , therefore the result follows. 

 

s 

s 

s 

s 

s 

s 

s 

s 



Ex: Using Automatic theorem proving, Show that  
         {Q  (P  Q)}  P 

Solution:   (1)    {Q  (P  Q)}  P 

(1)  if   (2)   {Q  (P  Q)}    P    ( By the rule,  ) 

(2)  if   (3)   {Q , (P  Q)}     P    ( By the rule,   ) 

(3)  if   (4)            (P  Q)        P, Q    ( By the rule,   ) 

(4)  if   (5)       Q    P, Q    and  

                 (6)              P, P, Q              ( By the rule,   ) 

(5)  if   (7)      P, Q    Q                      ( By the rule,  ) 

(6)  if   (8)       P  P, Q                        ( By the rule,  ) 

Now (7) and (8) are axioms, hence the theorem (1) follows. 

s 

s 

s 

s 

s 

s 

s 

s 

s 



Ex: With reference to automatic theorem proving, Show that  SR  is  
tautologically implied by (PQ)(PR) (QS). 

Solution: (1)   {(PQ)(PR) (QS)} (SR)  

(1)  if  (2)  {(PQ)(PR) (QS)} (SR)     (By the rule, ) 

(2)  if  (3)  {(PQ)(PR) (QS)}  S,R        (By the rule,  ) 

(3)  if  (4)  {(PQ),(PR),(QS)}  S,R            (By the rule,  ) 

(4)  if  (5)  {P,(PR),(QS)}  S,R 

     and (6)  {Q, (PR),(QS)}  S,R                  (By the rule,  ) 

(5)  if  (7)  {P,R,(QS)}  S,R  and  (8) {P,(QS)} P,S,R 

                                                                                    (By the rule ) 

(7)  if   (9)  P,R,S  S,R   and  (10)  P,R S,R,Q    (By the rule ) 

(8)  if  (11)  P,S P, S,R   and  (12)  PP,S,R,Q    (By the rule ) 

s 

s 

s 

s 

s 

s 

s s 

s s 

s s 



Contd., 

(6)  if  (13) {Q, R,(QS)}  S,R  and (14) {Q,(QS)}  S,R,P 

                                                                                    (By the rule ) 

 (13)  if  (15)  Q,R,S  S,R   and  (16)  Q, R  S,R,Q  

                                                                                    (By the rule ) 

(14)  if  (17)  Q,S  S,R,P   and  (18)  Q  S,R,P,Q  

                                                                                    (By the rule ) 

Now (9) to (12) and (15) to (18) are all axioms 

Hence, the result follows.  

 

 

 

s s 

s s 

s s 



 



Definitions 

• Tautology – a logical expression that is true for all 
variable assignments. 

• Contradiction – a logical expression that is false for all 
variable assignments. 

• Contingent – a logical expression that is neither a 
tautology nor a contradiction. 
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Tautologies 
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     F 
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      T 
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T 

(P  P) P  P P P 

                  T 

                  T 

                  T 

                  T 

  T 

  T 

  T 

  F 

F 

F 

F 

T 

F F 

T F 

F T 

T T 

(P  Q)  Q (P  Q) P  Q Q P 

Since P  P is true for all variable assignments, it is a tautology.  



Tautological Derivation by Substitution 

• Since A  A is a tautology, 

 so are (PQ)  (PQ) 

 and (PQR)  (PQR) 
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F T 

T T 

A  (A  B)  B A  (A  B) A  B B A 

• Since A  (AB)  B is a tautology, 

 so is (P  Q)  ((P  Q)  R)  R 

 

Using schemas that are tautologies, we can get other tautologies 
by substituting expressions for schema variables. 



Sound Reasoning 

• A logical argument has the form: 

  A1  A2  …  An  B 

 and is sound if when Ai = T for all i, B = T. 

 (i.e. If the premises are all true, then the 
conclusion is also true.) 

• This happens when A1  A2  …  An  B is a 
tautology. 
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Intuitive Basis for Sound Reasoning 

If (A1  A2  …  An  B) is a tautology, and Ai 
= T for all i then B must necessarily be true! 

Discussion #9 101/9 

A B A  B 

T ? T 

B = T is the only possibility for the 
conclusion! 



Modus Ponens 
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T T 

(A  B)  A  B (A  B)  A  (A  B) B A 

A B A  B 

T ? T 

Hence, modus ponens is sound. 

A  B 
A 

B 



Disjunctive Syllogism 
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A 

F F 

T F 

F T 

T T 

(A  B)  A  B (A  B)  A  A  B B A 

Hence, disjunctive syllogism is sound. 

A  B 
A 

B 
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You Never Escape Your… 

Relations 
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Relations 

If we want to describe a relationship between elements of 
two sets A and B, we can use ordered pairs with their first 
element taken from A and  their second element taken 
from B.  

Since this is a relation between two sets, it is called a 
binary relation. 
 

Definition: Let A and B be sets. A binary relation from A to 
B is a subset of AB. 
 

In other words, for a binary relation R we have  
R  AB. We use the notation aRb to denote that (a, b)R 
and aRb to denote that (a, b)R. 
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Relations 
When (a, b) belongs to R, a is said to be related to b by R. 

Example: Let P be a set of people, C be a set of cars, and D 
be the relation describing which person drives which car(s). 

P = {Carl, Suzanne, Peter, Carla},  

C = {Mercedes, BMW, tricycle} 

D = {(Carl, Mercedes), (Suzanne, Mercedes), 
        (Suzanne, BMW), (Peter, tricycle)} 

This means that Carl drives a Mercedes, Suzanne drives a 
Mercedes and a BMW, Peter drives a tricycle, and Carla 
does not drive any of these vehicles. 
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Functions as Relations 

You might remember that a function f from a set A to a set 
B assigns a unique element of B to each element of A. 

The graph of f is the set of ordered pairs (a, b) such that b = 
f(a). 

Since the graph of f is a subset of AB, it is a relation from 
A to B. 

Moreover, for each element a of A, there is exactly one 
ordered pair in the graph that has a as its first element. 
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Functions as Relations 

Conversely, if R is a relation from A to B such that every 
element in A is the first element of exactly one ordered 
pair of R, then a function can be defined with R as its 
graph. 

 

This is done by assigning to an element aA the unique 
element bB such that (a, b)R. 
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Relations on a Set 

Definition: A relation on the set A is a relation from A to A. 
 

In other words, a relation on the set A is a subset of AA. 

 

Example: Let A = {1, 2, 3, 4}. Which ordered pairs are in the 
relation R = {(a, b) | a < b} ? 
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Relations on a Set 

Solution:   R = { (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 

R 1 2 3 4 

1 

2 

3 

4 

1 1 

2 

3 

4 

2 

3 

4 

X X X 

X X 

X 
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Relations on a Set 
How many different relations can we define on a set A 
with n elements? 
 

A relation on a set A is a subset of AA. 

How many elements are in AA ? 
 

There are n2 elements in AA, so how many subsets (= 
relations on A) does AA have? 
 

The number of subsets that we can form out of a set with 
m elements is 2m. Therefore, 2n2

 subsets can be formed 
out of AA. 
 

Answer: We can define 2n2
 different relations  

on A. 
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Properties of Relations 
We will now look at some useful ways to classify relations. 

Definition: A relation R on a set A is called reflexive if (a, 
a)R for every element aA. 

Are the following relations on {1, 2, 3, 4} reflexive? 

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No. 

R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes. 

R = {(1, 1), (2, 2), (3, 3)} No. 

Definition: A relation on a set A is called irreflexive if (a, a)R for every element aA. 
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Properties of Relations 

Definitions:  
 

A relation R on a set A is called symmetric if (b, a)R 
whenever (a, b)R for all a, bA.  
 

A relation R on a set A is called antisymmetric if  
a = b whenever (a, b)R and (b, a)R. 
 

A relation R on a set A is called asymmetric if  
(a, b)R implies that (b, a)R for all a, bA.  
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Properties of Relations 

Are the following relations on {1, 2, 3, 4}  
symmetric, antisymmetric, or asymmetric? 

R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)} symmetric 

R = {(1, 1)} sym. and 
antisym. 

R = {(1, 3), (3, 2), (2, 1)} antisym. and asym. 

R = {(4, 4), (3, 3), (1, 4)} antisym. 
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Properties of Relations 

Definition: A relation R on a set A is called transitive if 
whenever (a, b)R and (b, c)R, then (a, c)R for a, b, 
cA.  
 

Are the following relations on {1, 2, 3, 4}  
transitive? 

R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes. 

R = {(1, 3), (3, 2), (2, 1)} No. 

R = {(2, 4), (4, 3), (2, 3), (4, 1)} No. 
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Counting Relations 

Example: How many different reflexive relations can be 
defined on a set A containing n elements? 
 

Solution: Relations on R are subsets of AA, which contains 
n2 elements. 

Therefore, different relations on A can be generated by 
choosing different subsets out of these n2 elements, so 
there are 2n2

 relations. 

A reflexive relation, however, must contain the n elements 
(a, a) for every aA. 

Consequently, we can only choose among n2 – n =  
n(n – 1) elements to generate reflexive relations, so there 
are 2n(n – 1) of them. 
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Combining Relations 

Relations are sets, and therefore, we can apply the usual 
set operations to them. 
 

If we have two relations R1 and R2, and both of them are 
from a set A to a set B, then we can combine them to R1  
R2, R1  R2, or R1 – R2. 
 

In each case, the result will be another relation from A to 
B. 
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Combining Relations 

… and there is another important way to combine 
relations. 
 

Definition: Let R be a relation from a set A to a set B and S 
a relation from B to a set C. The composite of R and S is the 
relation consisting of ordered pairs (a, c), where aA, cC, 
and for which there exists an element bB such that (a, 
b)R and  
(b, c)S. We denote the composite of R and S by 
SR. 
 

In other words, if relation R contains a pair (a, b) and 
relation S contains a pair (b, c), then SR contains a pair (a, 
c). 
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Combining Relations 

Example: Let D and S be relations on A = {1, 2, 3, 4}. 

D = {(a, b) | b = 5 - a}     “b equals (5 – a)” 

S = {(a, b) | a < b}        “a is smaller than b” 
 

D = {(1, 4), (2, 3), (3, 2), (4, 1)} 

S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 

SD = { (2, 4), (3, 3), (3, 4), (4, 2), (4, 3), 

D maps an element a to the element (5 – a), and afterwards S maps (5 – a) to all elements 

larger than (5 – a), resulting in SD = {(a,b) | b > 5 – a} or SD = {(a,b) | a + b > 5}. 

(4, 4)} 
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Combining Relations 

We already know that functions are just special cases of 
relations (namely those that map each element in the 
domain onto exactly one element in the codomain). 

 

If we formally convert two functions into relations, that is, 
write them down as sets of ordered pairs, the composite of 
these relations will be exactly the same as the composite of 
the functions (as defined earlier). 
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Combining Relations 

Definition: Let R be a relation on the set A. The powers Rn, 
n = 1, 2, 3, …, are defined inductively by 

R1 = R 

Rn+1 = RnR 

 

In other words: 

Rn = RR … R  (n times the letter R) 
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Combining Relations 
Theorem: The relation R on a set A is transitive if and only 
if Rn  R for all positive integers n.  

Remember the definition of transitivity: 

Definition: A relation R on a set A is called transitive if 
whenever (a, b)R and (b, c)R, then (a, c)R for a, b, 
cA.  

The composite of R with itself contains exactly these pairs 
(a, c).  

Therefore, for a transitive relation R, RR does not contain 
any pairs that are not in R, so RR  R. 

Since RR does not introduce any pairs that are not already 
in R, it must also be true that (RR)R  R, and so on, so 
that Rn  R. 
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n-ary Relations 

In order to study an interesting application of relations, 
namely databases, we first need to generalize the concept 
of binary relations to n-ary relations. 

 

Definition: Let A1, A2, …, An be sets. An n-ary relation on 
these sets is a subset of A1A2…An. 

The sets A1, A2, …, An are called the domains of the 
relation, and n is called its degree. 
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n-ary Relations 

Example:  

Let R = {(a, b, c) | a = 2b  b = 2c with a, b, cN} 

What is the degree of R? 

The degree of R is 3, so its elements are triples. 

What are its domains? 

Its domains are all equal to the set of integers. 

Is (2, 4, 8) in R? 

No. 

Is (4, 2, 1) in R? 

Yes. 
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Representing Relations 
We already know different ways of representing relations. 
We will now take a closer look at two ways of 
representation: Zero-one matrices and directed graphs. 
 

If R is a relation from A = {a1, a2, …, am} to B =  
{b1, b2, …, bn}, then R can be represented by the zero-one 
matrix MR = [mij] with 

mij = 1,   if (ai, bj)R, and 

mij = 0,  if (ai, bj)R. 
 

Note that for creating this matrix we first need to list the 
elements in A and B in a particular, but arbitrary order. 
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Representing Relations 

Example: How can we represent the relation  
R = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix? 

 

Solution: The matrix MR is given by  



















11

01

00

RM
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Representing Relations 
What do we know about the matrices representing a 
relation on a set (a relation from A to A) ? 

They are square matrices. 

What do we know about matrices representing reflexive 
relations? 

All the elements on the diagonal of such matrices Mref 
must be 1s. 





























1

.

.

.

1

1

refM
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Representing Relations 
What do we know about the matrices representing 
symmetric relations? 

These matrices are symmetric, that is, MR = (MR)t. 





















1101

1001

0010

1101

RM

symmetric matrix, 
symmetric relation. 





















0011

0011

0011

0011

RM

non-symmetric matrix, 
non-symmetric relation. 
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Representing Relations 

The Boolean operations join and meet (you remember?) 
can be used to determine the matrices representing the 
union and the intersection of two relations, respectively. 
 
To obtain the join of two zero-one matrices, we apply the 
Boolean “or” function to all corresponding elements in the 
matrices. 
 
To obtain the meet of two zero-one matrices, we apply the 
Boolean “and” function to all corresponding elements in the 
matrices. 
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Representing Relations 
Example: Let the relations R and S be represented by the 
matrices 



















011

111

101

SRSR MMM



















001

110

101

SM

What are the matrices representing RS and RS? 
 
Solution: These matrices are given by 



















000

000

101

SRSR MMM



















010

001

101

RM
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Representing Relations Using Matrices 

Example: How can we represent the relation  
R = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix? 

 

Solution: The matrix MR is given by  



















11

01

00

RM
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Representing Relations Using Matrices 
Example: Let the relations R and S be represented by the 
matrices 



















011

111

101

SRSR MMM



















001

110

101

SM

What are the matrices representing RS and RS? 
 
Solution: These matrices are given by 



















000

000

101

SRSR MMM



















010

001

101

RM
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Representing Relations Using Matrices 

Do you remember the Boolean product of two zero-one matrices? 
 

Let A = [aij] be an mk zero-one matrix and  
B = [bij] be a kn zero-one matrix. 
 

Then the Boolean product of A and B, denoted by AB, is the mn matrix with (i, j)th entry 
[cij], where 
 

cij = (ai1  b1j)  (ai2  b2i)  …  (aik  bkj).  
 
 

cij = 1 if and only if at least one of the terms 
(ain  bnj) = 1 for some n; otherwise cij = 0. 
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Representing Relations Using Matrices 
Let us now assume that the zero-one matrices  
MA = [aij], MB = [bij] and MC = [cij] represent relations A, B, and C, respectively. 
 

Remember: For MC = MAMB we have: 
 

cij = 1 if and only if at least one of the terms 
(ain  bnj) = 1 for some n; otherwise cij = 0. 
 

In terms of the relations, this means that C contains a pair (xi, zj) if and only if there is an 
element yn such that (xi, yn) is in relation A and  
(yn, zj) is in relation B. 
 

Therefore, C = BA  (composite of A and B). 
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Representing Relations Using Matrices 

This gives us the following rule: 
 

MBA = MAMB 
 

In other words, the matrix representing the composite of relations A and B is the Boolean 
product of the matrices representing A and B. 
 
Analogously, we can find matrices representing the powers of relations: 
 

MRn = MR
[n]    (n-th Boolean power). 
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Representing Relations Using Matrices 

Example: Find the matrix representing R2, where the 

matrix representing R is given by   



















001

110

010

RM

Solution: The matrix for R2 is given by   



















010

111

110
]2[

2 RR
MM
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Representing Relations Using Digraphs 

Definition: A directed graph, or digraph, consists of a set V 
of vertices (or nodes) together with a set E of ordered pairs 
of elements of V called edges (or arcs). 

The vertex a is called the initial vertex of the edge (a, b), 
and the vertex b is called the terminal vertex of this edge. 

 

We can use arrows to display graphs. 
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Representing Relations Using Digraphs 

Example: Display the digraph with V = {a, b, c, d},  
E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}. 

a 
b 

c d 

An edge of the form (b, b) is called a loop. 
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Representing Relations Using Digraphs 

Obviously, we can represent any relation R on a set A by 
the digraph with A as its vertices and all pairs (a, b)R as 
its edges. 
 

Vice versa, any digraph with vertices V and edges E can be 
represented by a relation on V containing all the pairs in E. 
 

This one-to-one correspondence between relations and 
digraphs means that any statement about relations also 
applies to digraphs, and vice versa. 
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Equivalence Relations  

Equivalence relations are used to relate objects that are 
similar in some way. 
 

Definition: A relation on a set A is called an equivalence 
relation if it is reflexive, symmetric, and transitive. 
 

Two elements that are related by an equivalence relation R 
are called equivalent. 
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Equivalence Relations  

Since R is symmetric, a is equivalent to b whenever b is 
equivalent to a. 
 

Since R is reflexive, every element is equivalent to itself. 
 

Since R is transitive, if a and b are equivalent and b and c 
are equivalent, then a and c are equivalent. 

 

Obviously, these three properties are necessary for a 
reasonable definition of equivalence. 
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Equivalence Relations  
Example: Suppose that R is the relation on the set of 
strings that consist of English letters such that aRb if and 
only if l(a) = l(b), where l(x) is the length of the string x. Is R 
an equivalence relation? 

Solution:  

• R is reflexive, because l(a) = l(a) and therefore  
  aRa for any string a. 

• R is symmetric, because if l(a) = l(b) then l(b) =  
  l(a), so if aRb then bRa. 

• R is transitive, because if l(a) = l(b) and l(b) = l(c),  
  then l(a) = l(c), so aRb and bRc implies aRc. 

R is an equivalence relation. 
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Equivalence Classes  

Definition: Let R be an equivalence relation on a set A. The 
set of all elements that are related to an element a of A is 
called the equivalence class  
of a.  

The equivalence class of a with respect to R is denoted by 
[a]R. 

When only one relation is under consideration, we will 
delete the subscript R and write [a] for this equivalence 
class. 

If b[a]R, b is called a representative of this equivalence 
class. 
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Equivalence Classes  

Example: In the previous example (strings of identical 
length), what is the equivalence class of the word mouse, 
denoted by [mouse] ? 

 

Solution: [mouse] is the set of all English words containing 
five letters. 

 

For example, ‘horse’ would be a representative of this 
equivalence class. 

  



Fall 2002 CMSC 203 - Discrete Structures 146 

Equivalence Classes  
Theorem: Let R be an equivalence relation on a set A. The 
following statements are equivalent: 

•   aRb 

•   [a] = [b] 

• [a]  [b]    

Definition: A partition of a set S is a collection of disjoint 
nonempty subsets of S that have S as their union. In other 
words, the collection of subsets Ai,  
iI, forms a partition of S if and only if  
(i)   Ai   for iI 

•  Ai  Aj = , if i  j 

• iI Ai = S 
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Equivalence Classes  
Examples: Let S be the set {u, m, b, r, o, c, k, s}. 
Do the following collections of sets partition S ? 

{{m, o, c, k}, {r, u, b, s}} yes. 

{{c, o, m, b}, {u, s}, {r}} no (k is missing). 

{{b, r, o, c, k}, {m, u, s, t}} no (t is not in S). 

{{u, m, b, r, o, c, k, s}} yes. 

{{b, o, o, k}, {r, u, m}, {c, s}} yes ({b,o,o,k} = {b,o,k}). 

{{u, m, b}, {r, o, c, k, s}, } no ( not allowed). 
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Equivalence Classes  

Theorem: Let R be an equivalence relation on a  
set S. Then the equivalence classes of R form a partition of 
S. Conversely, given a partition  
{Ai | iI} of the set S, there is an equivalence relation R that 
has the sets Ai, iI, as its equivalence classes. 
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Equivalence Classes  
Example: Let us assume that Frank, Suzanne and George 
live in Boston, Stephanie and Max live in Lübeck, and 
Jennifer lives in Sydney.  

Let R be the equivalence relation {(a, b) | a and b live in the 
same city} on the set P = {Frank, Suzanne, George, 
Stephanie, Max, Jennifer}. 

Then R = {(Frank, Frank), (Frank, Suzanne), 
(Frank, George), (Suzanne, Frank), (Suzanne, Suzanne), 
(Suzanne, George), (George, Frank), 
(George, Suzanne), (George, George), (Stephanie, 
Stephanie), (Stephanie, Max), (Max, Stephanie), 
(Max, Max), (Jennifer, Jennifer)}. 
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Equivalence Classes  

Then the equivalence classes of R are: 

{{Frank, Suzanne, George}, {Stephanie, Max}, {Jennifer}}. 

This is a partition of P. 
 

The equivalence classes of any equivalence relation R 
defined on a set S constitute a partition of S, because every 
element in S is assigned to exactly one of the equivalence 
classes. 
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Equivalence Classes  

Another example: Let R be the relation  
{(a, b) | a  b (mod 3)} on the set of integers. 

Is R an equivalence relation? 

Yes, R is reflexive, symmetric, and transitive. 
 

What are the equivalence classes of R ? 

{{…, -6, -3, 0, 3, 6, …}, 
 {…, -5, -2, 1, 4, 7, …}, 
 {…, -4, -1, 2, 5, 8, …}} 
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Discussion #28 
 

Partial Orders 
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Topics 

Weak and strict partially ordered sets (posets) 

Total orderings 

Hasse diagrams 

Bounded and well-founded posets 
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Partial Orders 
Total orderings: single sequence of elements 

Partial orderings: some elements may come 
before/after others, but some need not be ordered 

Examples of partial orderings: 

foundation 

framing 

plumbing wiring 

finishing 

{a, b, c} 

{a, b} {a, c} {b, c} 

{a} {b} {c} 

 

“must be completed before” “set inclusion, ” 
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Partial Order Definitions 
(Poset Definitions) 

A relation R: SS is called a 
(weak) partial order if it is 
reflexive, antisymmetric, 
and transitive. 

1 

2 3 

• A relation R: SS is called a 
strict partial order if it is 
irreflexive, antisymmetric, 
and transitive.  

          

1 

2 3 
          

          

e.g.  on the integers 

e.g. < on the integers 
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Total Order 

A total ordering is a partial ordering in which every 
element is related to every other element. (This 
forces a linear order or chain.) 

Examples: 

R:  on {1, 2, 3, 4, 5} is total. 
 Pick any two; they’re related one way 

or the other with respect to . 

{a,b} 

{a} {b} 

 

R:  on {{a, b}, {a}, {b}, } is not total. 
 We can find a pair not related one way 

or the other with respect to . 
 {a} & {b}: neither {a}  {b} nor {b}  {a}  

1 
2 
3 
4 
5 
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Hasse Diagrams 
   We produce Hasse Diagrams from directed graphs of 

relations by doing a transitive reduction plus a 
reflexive reduction (if weak) and (usually) dropping 
arrowheads (using, instead, “above” to give direction) 
1) Transitive reduction  discard all arcs except those that 

“directly cover” an element. 

2) Reflexive reduction  discard all self loops. 

 

{b} {a} 

{a, b} 

 

{b} {a} 

{a, b} 

 

For  we write: 
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Descending Sequence 

Descending sequence: A sequence <x1, x2, …, xn> 
where for i < j, xi “is strictly above” xj on a 
path in a Hasse diagram; xi need not, however, 
be “immediately above” xj. 

Examples: 
   <{a,b,c}, {c},  >  descending 

   <{a,b,c}, {b}, {c},  > not descending 

   <{a,b,c}, {b,c}, {c},  > descending 

  <5, 4, 2>   descending 

   <3, 2, 2, 2, 1>  not descending 
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Well Founded Poset 
A poset is well founded if it has no infinite descending 

sequence. 
Examples: 

>  on the integers? 
   <3, 2, 1, 0, -1, …> not well founded 
   on finite sets? 

<{a, b, c}, {c}, > well founded 
   All finite strict posets are well founded. 
  on finite sets? 
   <{a}, {a}, {a}, …> not a descending sequence 
   All finite (weak) posets are well founded. 
>  natural numbers? 

  <…, 3, 2, 1, 0> infinite, but well founded 
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Application of Well Founded 
Posets 

Has anyone ever gotten into an infinite loop in 
a program? 

We use well founded sets to prove that loops 
terminate. 
e.g. The following clearly terminates. 

   for i=1 to n do … 

   ni for i=1, …, n is a descending sequence on a 
well founded set (the natural numbers): <n1, 
n2, …, nn = 0>. 
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More Interesting Termination 
Example 1. S  Ax 

2. S  Cy 
3. D  zE 
4. E  x 
5. A  SB 
6. B  y 
7. C  z 

 

2 5 5 7 {1,2,5,7,6} {1,2,5,7,6} 3. 

3 4 5 7 {1,2,5,7} {1,2,5,7,6} 2. 

5 2 4 7 {1,2} {1,2,5,7} 1. 

7 0 2 7  {1,2} 0. 

|S'| |S| #rules S' S iteration 

//Reachable in a grammar 
S' :=  
S := {rule #’s of start symbol} 
while |S| > |S'| 
    S' := S 
    S := S'  {rule #’s of rhs non-t’s} 
  

well founded: no infinite descending sequence no 
matter what grammar is input. 

#rules  |S'| 
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Upper and Lower Bounds 

If a poset is built from relation R on set A, then any x 
 A satisfying xRy is an upper bound of y, and any x 
 A satisfying yRx is a lower bound of y. 

Examples: If A = {a, b, c} and R is , then {a, c} 
 - is an upper bound of {a}, {c}, and .    
 - is also an upper bound of {a, c} (weak poset). 
 - is a lower bound of {a, b, c}. 
 - is also a lower bound of {a, c} (weak poset). 
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Maximal and Minimal Elements 
If a poset is built from relation R on set A, then y  A is a 

maximal element if there is no x such that xRy,  and x  A 
is a minimal element if there is no y such that xRy.    
(Note: We either need the poset to be strict or x  y.) 

In a Hasse diagram, every element with no element “above” 
it is a maximal element, whereas every element with no 
element “below” it is a minimal element. 

Maximal elements 

Minimal elements 
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Least Upper and Greatest Lower 
Bounds 

A least upper bound of two elements x and y is a 
minimal element in the intersection of the upper 
bounds of x and y. 

A greatest lower bound is a maximal element in the 
intersection of the lower bounds of x and y. 

Examples: 
– For , {a, c} is a least upper bound of {a} and {c}, 

  is a greatest lower bound of {a} and {b, c}, and 

 {a} is a least upper bound of {a} and . 

– For the following strict poset, lub(x,y) = {a,b}, lub(y,y) = 
{a,b,c}, lub(a,y) = , glb(a,b) = {x,y}, glb(a,c) = {y} 

a b 

x y 

c 
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• 1. Introduction 

• 2.Normal subgroups, quotien groups. 

• 3. Homomorphism. 
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• 1.1. Binary Operations 
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• 1.4.Subgroups 
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• 1.1. Binary Operations 

• 1.2.Definition of Groups 

• 1.3.Examples of  Groups 

• 1.4.Subgroups 



1.Introduction 

1.1.Binary Operations 

    A binary operation on a set is a rule for  
combining two elements of the set. More 
precisely, if S iz a nonemty set, a binary 
operation on S iz a mapping f : S  S  S. Thus 
f associates with each ordered pair (x,y) of 
element of S an element f(x,y) of S. It is better 
notation to write x   y for f(x,y), refering to     
as the binary operation. 

168 



1.Introduction 

1.2.Definition of Groups 

 A group (G, ・) is a set G together with a binary 
operation ・ satisfying the following axioms. 

(i) The operation ・ is associative; that is,  

      (a ・ b) ・ c = a ・ (b ・ c) for all  a, b, c ∈ G. 

(ii) There is an identity element e ∈ G such that  

       e ・ a = a ・ e = a for all a ∈ G. 

(iii) Each element a ∈ G has an inverse element 
a−1 ∈ G such that  a-1・ a = a ・ a−1 = e. 

 
169 



1.Introduction 

If  the operation is commutative, that is, 

   if  a ・ b = b ・ a        for all a, b ∈ G, 

the group is called commutative or abelian, in 
honor of the 

mathematician Niels Abel. 

 

170 



1.Introduction 

1.3.Examples of  Groups 

• Example 1.3.1. Let G be the set of complex 
numbers {1,−1, i,−i} and let ・ be the standard 
multiplication of complex numbers. Then (G, 
・) is an abelian group. The product of any 
two of these elements is an element of G; 
thus G is closed under the  operation. 
Multiplication is associative and commutative 
in G because multiplication of complex 
numbers is always associative and 
commutative. The identity element is 1, and 

171 



1.Introduction 

• Example 1.3.2. The set of all rational numbers, 
Q, forms an abelian group (Q,+) under 
addition.The identity is 0, and the inverse of 
each element is its negative. Similarly, 

     (Z,+), (R,+), and (C,+) are all abelian groups 
under addition. 

• Example1. 3.3. If Q∗, R∗, and C∗ denote the set 
of nonzero rational, real, and complex 
numbers, respectively, (Q∗,・),  

    (R∗,・), and (C∗, ・) are all abelian groups 
under 

172 



1.Introduction 

• Example 1.3.4. A translation of the plane R2 in 
the direction of the vector (a, b) is a function f 
:R2 → R2 defined by f (x, y) = (x + a, y + b). The 
composition of this translation with a 
translation g in the direction of (c, d) is the 
function 

      f  g:R2 → R2, where 

     f  g(x, y) = f (g(x, y))= f (x + c, y + d)= (x + c + a, 
y + d + b). 

    This is a translation in the direction of (c + a, d 
+ b). It can easily be verified  that the set of all 

173 



1.Introduction 

• Example1.3.5. If S(X) is the set of bijections 
from any set X to itself, then (S(X), ) is a group 
under composition. This group is called the 
symmetric group or permutation group of X. 

 

174 



1.Introduction 

• Proposition 1.3.1. If a, b, and c are elements 
of a group G, then 

(i) (a−1)−1 = a. 

(ii) (ab)−1 = b−1a−1. 

(iii) ab = ac or ba = ca implies that b = c. 
(cancellation law) 

 

175 



1.Introduction 

• 1.4.Subgroups 

It often happens that some subset of a group will 

also form a group under the same operation.Such 

a group is called a subgroup. If (G, ・) is a 

group and H is a nonempty subset of G, then  

(H, ・) is called a subgroup of (G, ・) if the 

following conditions hold: 

(i) a ・ b ∈ H for all a, b ∈ H. (closure) 

(ii) a−1 ∈ H for all a ∈ H. (existence of inverses) 

176 



1.Introduction 

• Conditions (i) and (ii) are equivalent to the 
single condition: 

   (iii) a ・ b−1 ∈ H for all a, b ∈ H. 

 

 Proposition 1.4.2. If H is a nonempty finite 
subset of a group G and ab ∈ H for all a, b ∈ H, 
then H is a subgroup of G. 

 

Example 1.4.1 In the group ({1,−1, i,−i}, ・), the 
subset {1,−1} forms a subgroup because  this 

177 



1.Introduction 

• Example 1.4.2 .The group Z is a subgroup of 
Q,Q is a subgroup of R, and R is a subgroup of 
C. (Remember that addition is the operation 
in all these groups.) 

• However, the set N = {0, 1, 2, . . .} of 
nonnegative integers is a subset of Z but not a 
subgroup, because the inverse of 1, namely, 
−1, is not in N. This example shows that 
Proposition 1.4.2 is false if we drop the 
condition that H be finite. 

• The relation of  being a subgroup is transitive. 
178 



1.Introduction 

 

• Definition. Let G be a group and let a  G. If ak 
= 1 for some k  1, then the smallest such 
exponent k  1 is called the order of a; if no 
such power exists, then one says that a has 
infinite order. 

 

• Proposition 1.4.3 . Let G be a group and 
assume that a G has finite order k. If an = 1, 
then k | n. In fact, {n Z : an = 1} is the set of 
all the multiples of k.   
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1.Introduction 

• Definition.  If G is a group and a  G, write 

        <a > = {an : n Z} = {all powers of a } . 

    It is easy to see that <a > is a subgroup of G . 

      < a > is called the cyclic subgroup of G 
generated by a. A group G is called cyclic if 
there is some a  G with G = < a >; in this case 
a is called a generator  of  G. 

•  Proposition 1.4.4. If G= <a > is a cyclic group 
of order n, then ak is a generator of G if and 
only if gcd(k; n)= 1. 
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1.Introduction 

• Proposition 1.4.6. Let G be a finite group and 
let a  G. Then the order of a  is the number of 
elements in  <a >. 

 

• Definition. If G is a finite group, then the 
number of elements in G, denoted by G, is 
called the order of G. 

 

181 



2.Normal subgroups,quotient 
 groups 

• 2.1.Cosets 

• 2.2.Theorem of Lagrange 

• 2.3.Normal Subgrops 

• 2.4.Quotient Groups 
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2.Normal subgroups,quotient 
 groups 

• 2.1.Cosets 

• Let (G, ·) be a group with subgroup H. For a, b 
∈ G, we say that a is congruent to b modulo H, 
and write a ≡ b mod H if and only if ab−1 ∈ H. 

• Proposition 2.1. 1.The relation a ≡ b mod H is 
an equivalence relation on G. The equivalence 
class containing a can be written in the form 
Ha = {ha|h ∈ H}, and it is called a right coset 
of H in G. The element a is called a 
representative of 

     the coset Ha. 
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2.Normal subgroups,quotient 
 groups 

• Example 2.1.1. Find the right cosets of A3 in 
S3. 

   Solution. One coset is the subgroup itself  A3 = 
{(1), (123), (132)}. Take any element not in the 
subgroup, say (12). Then another coset is 
A3(12) = {(12), (123) (12), (132) (12)} = {(12), 
(13), (23)}.Since the right cosets form a 
partition of S3 and the two cosets above 
contain all the elements of S3, it follows that 
these are the only two cosets. 

    In fact, A  = A (123) = A (132) and A (12) = 
184 



2.Normal subgroups,quotient 
 groups 

• Example 2.1.2. Find the right cosets of H = {e, 
g4, g8} in   C12 = {e, g, g2, . . . , g11}. 

• Solution. H itself is one coset. Another is Hg = 
{g, g5, g9}. These two cosets have not 
exhausted all the elements of C12, so pick an 
element, say g2, which is not in H or Hg. A 
third coset is Hg2 = {g2, g6, g10} and a fourth is 
Hg3 ={g3, g7, g11}. 

    Since C12 = H ∪ Hg ∪ Hg2 ∪ Hg3, these are all 
the cosets 
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2.Normal subgroups,quotient 
 groups 

• 2.2.Theorem of  Lagrange 

• As the examples above suggest, every coset 
contains the same number of elements. We 
use this result to prove the famous theorem of 
Joseph Lagrange (1736–1813). 

• Lemma 2.2.1. There is a bijection between any 
two right cosets of H in G. 

Proof. Let Ha be a right coset of H in G. We 
produce a bijection between Ha and H, from 
which it follows that there is a bijection 
between any two right cosets. 
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2.Normal subgroups,quotient 
 groups 

• Theorem 2.2.2. Lagrange’s Theorem. If G is a 
finite group and H is a subgroup of G, then 
|H| divides |G|. 

Proof. The right cosets of H in G form a partition 
of G, so G can be written  as a disjoint union 

G = Ha1 ∪ Ha2 ∪ ·· ·∪ Hak for a finite set of 
elements a1, a2, . . . , ak ∈ G. 

By Lemma 2.2.1, the number of elements in 
each coset is |H|. Hence, counting all the 
elements in the disjoint union above, we see 
that |G| = k|H|. Therefore, |H| divides |G|. 
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2.Normal subgroups,quotient 
 groups 

• If H is a subgroup of G, the number of distinct 
right cosets of H in G is called the index of H in 
G and is written |G : H|. The following is a 
direct consequence of the proof of Lagrange’s 
theorem. 

• Corollary 2.2.3. If G is a finite group with 
subgroup H, then 

     |G : H| = |G|/|H|. 

• Corollary 2.2.4. If a is an element of a finite 
group G, then the order of a divides  the order 
of G. 
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2.Normal subgroups,quotient 
 groups 

• 2.3.Normal Subgrops 

• Let G be a group with subgroup H. The right 
cosets of H in G are equivalence  classes under 
the relation a ≡ b mod H, defined by ab−1 ∈ H. 
We can also define the relation L on G so that 
aLb if and only if b−1a ∈ H. This relation, L, is 
an equivalence relation, and the equivalence 
class containing a is the left coset aH = {ah|h ∈ 
H}. As the following example shows, the left 
coset of an element does not necessarily 
equal the right coset. 
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2.Normal subgroups,quotient 
 groups 

• Example 2.3.1. Find the left and right cosets of H = A3 and K = {(1), (12)} in 
S3. 

• Solution. We calculated the right cosets of H = A3 in Example 2.1.1. 

    Right Cosets   

    H  = {(1), (123), (132)}; H(12) = {(12), (13), (23)}  

    Left Cosets 

     H = {(1), (123), (132}; (12)H = {(12), (23), (13)} 

    In this case, the left and right cosets of H are the same. 

• However, the left and right cosets of K are not all the same. 

   Right Cosets  

      K = {(1), (12)} ; K(13) = {(13), (132)} ; K(23) = {(23), (123)}  

   Left Cosets 

       K = {(1), (12)};(23)K = {(23), (132)}; (13)K = {(13), (123)}  
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2.Normal subgroups,quotient 
 groups 

Definition:  A subgroup H of a group G is called a 
normal subgroup of G if g−1hg ∈ H for all g ∈ G 
and h ∈ H. 

Proposition 2.3.1. Hg = gH, for all g ∈ G, if and 
only if H is a normal subgroup of G. 

Proof. Suppose that Hg = gH. Then, for any 
element h ∈ H, hg ∈ Hg = gH. Hence hg = gh1 
for some h1 ∈ H and g−1hg = g−1gh1 = h1 ∈ H. 
Therefore,H is a normal subgroup. 

    Conversely, if H is normal, let hg ∈ Hg and 
g−1hg = h  ∈ H. Then hg = gh  ∈ gH and Hg ⊆ 
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2.Normal subgroups,quotient 
 groups 

• If N is a normal subgroup of a group G, the left 
cosets of N in G are the same as the right 
cosets of N in G, so there will be no ambiguity 
in just talking about the cosets of N in G. 

 

• Theorem 2.3.2. If N is a normal subgroup of 
(G, ·), the set of cosets G/N = {Ng|g ∈ G} forms 
a group (G/N, ·), where the operation is 
defined by (Ng1) · (Ng2) = N(g1 · g2). This group 
is called the quotient group or factor group of 
G by N. 
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2.Normal subgroups,quotient 
 groups 

• Proof. The operation of multiplying two cosets, 
Ng1 and Ng2, is defined in terms of particular 
elements, g1 and g2, of the cosets. For this 
operation to make sense, we have to verify 
that, if we choose different elements, h1 and 
h2, in the same cosets, the product coset N(h1 
· h2) is the same as N(g1 · g2). In other words, 
we have to show that multiplication of cosets 
is well defined. Since h1 is in the same coset as 
g1, we have h1 ≡ g1 mod N. Similarly, h2 ≡ g2 
mod N. We show that Nh1h2 = Ng1g2. We have 
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2.Normal subgroups,quotient 
 groups 

• The operation is associative because (Ng1 · 
Ng2) · Ng3 = N(g1g2) · Ng3 = N(g1g2)g3 and also 
Ng1 · (Ng2 · Ng3) = Ng1 · N(g2g3) = Ng1(g2g3) = 
N(g1g2)g3. 

• Since Ng · Ne = Nge = Ng and Ne · Ng = Ng, the 
identity is Ne = N.  

• The inverse of Ng is Ng−1 because Ng · Ng−1 = 
N(g · g−1) = Ne = N and also Ng−1 · Ng = N. 

• Hence (G/N, ·) is a group. 
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2.Normal subgroups,quotient 
 groups 

• Example 2.3.1. (Zn, +) is the quotient group of 
(Z,+) by the subgroup nZ =  {nz|z ∈ Z}. 

• Solution. Since (Z,+) is abelian, every subgroup 
is normal. The set nZ can be verified to be a 
subgroup, and the relationship a ≡ b mod nZ 
is equivalent to a − b ∈ nZ and to n|a − b. 
Hence a ≡ b mod nZ is the same relation as a ≡ 
b mod n. Therefore, Zn is the quotient group 
Z/nZ, where the operation on congruence 
classes is defined by [a] + [b] = [a + b].  

  (Z ,+) is a cyclic group with 1 as a generator 
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3.Homorphisms. 

• 3.1.Definition of Homomorphisms 

• 3.2.Examples of Homomorphisms 

• 3.3.Theorem on Homomorphisms 
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3.Homorphisms 

• 3.1.Definition of Homomorphisms 

• If (G, ・) and (H,  ) are two groups, the 
function f :G → H is called a group 
homomorphism if 

         f (a ・ b) = f (a)  f (b) for all a, b ∈ G. 

• We often use the notation f : (G, ・) → (H, ) 
for such a homorphism. Many authors use 
morphism instead of homomorphism. 

• A group isomorphism is a bijective group 
homomorphism. If there is an isomorphism 
between the groups (G, ・) and  
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3.Homorphisms 

• 3.2.Examples of  Homomorphisms 

 -  The function  f : Z → Zn , defined by f (x) = [x] 
iz  the  group  homomorphism. 

- Let be R the group of all real numbers with 
operation addition, and let R+ be the group of 
all positive real numbers with operation 
multiplication. The function f : R → R+ , 
defined by f (x) = ex , is a homomorphism, for 
if x, y  R, then   

    f(x + y) = ex+y = ex ey = f (x) f (y). Now f is an 
isomorphism, for its inverse function g :R+ → 
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3.Homorphisms 

• 3.3.Theorem on Homomorphisms 

• Proposition 3.3.1. Let f :G → H be a group morphism, 
and let eG and eH be the identities of G and H, 
respectively. Then 

 (i) f (eG) = eH . 

 (ii) f (a−1) = f (a)−1 for all a ∈ G. 

• Proof. (i) Since f is a morphism, f (eG)f (eG) = f (eG eG) = f 
(eG) = f (eG)eH . Hence (i) follows by cancellation in H 

(ii) f (a)  f (a−1) = f (a  a−1) = f (eG) = eH by (i). Hence f (a−1) is 
the unique inverse of f (a); that is f (a−1) = f (a)−1 
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3.Homorphisms 

• If f :G → H is a group morphism, the kernel of f , 
denoted by Kerf, is defined to be the set of 
elements of G that are mapped by f to the 
identity of H. That is, Kerf ={g ∈ G|f (g) = eH  } 

• Proposition 3.3.2. Let f :G → H be a group 
morphism. Then: 

   (i) Kerf is a normal subgroup of G. 
   (ii) f is injective if and only if Kerf = {eG}. 
• Proposition 3.3.3. For any group morphism f :G 

→ H, the image of   f , Imf ={f (g)|g ∈ G}, is a 
subgroup of H (although not necessarily normal). 
 

200 



3.Homorphisms 

• Theorem 3.3.4. Morphism Theorem for Groups. Let K 
be the kernel of the group morphism f :G → H. Then 
G/K is isomorphic to the image of f, and  the 
isomorphism 

         ψ: G/K → Imf   is defined by   ψ(Kg) = f (g). 
• This result is also known as the first isomorphism 

theorem. 
• Proof. The function ψ is defined on a coset by using 

one particular element in the coset, so we have to 
check that ψ is well defined; that is, it does not matter 
which element we use. If Kg , = Kg, then g’ ≡ g mod K so 
g ,g−1 = k ∈ K = Kerf . Hence g , = kg and so 

     f (g ,) = f (kg) = f (k)f(g) = eHf (g) = f (g). 
     Thus ψ is well defined on cosets. 201 



3.Homorphisms 

• The function ψ is a  morphism because 

     ψ(Kg1Kg2) = ψ(Kg1g2) = f (g1g2) = f (g1)f (g2) = 
ψ(Kg1)ψ(Kg2). 

• If ψ(Kg) = eH, then f (g) = eH and g ∈ K. Hence 
the only element in the  kernel of ψ is the 
identity coset K, and ψ is injective. Finally, 
Imψ = Imf ,by the definition of ψ. Therefore, ψ 
is the required isomorphism between G/K and 
Imf 

 
202 



3.Homorphisms 

• Example 3.3.1. Show that the quotient group R/Z is 
isomorphic to the circle group W = {eiθ ∈ C | θ ∈ R }. 

Solution. The set W consists of points on the circle of complex 
numbers of unit modulus, and forms a group under 
multiplication. Define the function 

    f :R → W by f (x) = e2πix. This is a morphism from (R,+) to   
    (W, ·) because 
   f (x + y) = e2πi(x+y) = e2πix · e2πiy = f (x) · f (y). 
  The morphism f is clearly surjective, and its kernel is                     

{x ∈ R|e2πix = 1} = Z. 
 Therefore, the morphism theorem implies that R/Z   W. 
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Unit –IV     Combinatorics 

 Basics of counting 

 Permutations and Combinations  

 Combinations with Repetitions 

 Binomial coefficients  

 Principles of inclusion and exclusion 

 Pigeon hole principle and its application 

 
 



Basics of counting 

 Sum Rule: If E1, E2, ………, En are mutually exclusive events, and 

E1 can happen in e1 ways,  E2 can happen in e2 ways, …….. ,  

       En can happen in en ways, then   

       (E1 or E2 or….or En ) can happen in (e1 + e2 + ….. + en  )  ways. 

 Ex. A man can spend his evening in one of the following ways. 

       He can do shopping  or  he can go to a Cinema hall  or  he can go to a 

restaurant.    

        If there are 6 shopping complexes, 8 cinema halls and 9 restaurants 

then, how many different ways he can spend his evening?. 

 Solution:  By Sum rule, he can spend his evening in  6 + 8 + 9 = 23    

                       different ways. 



Ex.: If two distinguishable  dice are rolled, then  
        a) How many ways can we get  a sum of 4 or of 8  

        b) How many ways we get an even sum? 

 Solution: a)  There are 3 ways to get a sum of 4 

              i.e.,  {(1 , 3), (2 , 2), (3 , 1)} 

              Likewise, There are 5 ways to get a sum of  8. 

             i.e.,    { (2 , 6),(3 , 5),(4 ,4), (5 ,3), (6 ,2)}. 

             The number of ways to get a sum of 4 or 8 = 3 + 5 = 8 

 

 b)  The number of ways we get an even sum  =  

             The number of ways to get a sum of 2 or 4 or 6 or 8 or 10 or 12 = 

                1 +  3  + 5 + 5  + 3  +  1  =  18 ways  . 



Ex.  If two indistinguishable  dice are rolled, then  
        a) How many ways can we get  a sum of 4 or of  8 . 

        b) How many ways we get an even sum?. 

 Solution:  a) If the dice are identical, the outcomes (a,b) and (b,a) 
cannot be differentiated. 

       Now, there are only 2 ways to get a sum of 4 

              i.e.,  {(1 , 3), (2 , 2) } 

              Likewise, There are only  3 ways to get a sum of  8. 

             i.e.,    { (2 , 6),(3 , 5),(4 ,4)}. 

             The number of ways to get a sum of 4 or 8 = 2 +3 = 5 

 b) Likewise, The number of ways we get an even sum  =  

             The number of ways to get a sum of 2 or 4 or 6 or 8 or 10 or 12 = 

                1 +  2  + 3 + 3  + 2  +  1  =  12ways  . 



Basics of counting. 

 Product Rule: If events  E1, E2, ………, En can happen in  

      e1, e2, …, en ways respectively, then the sequence of events  

      ( E1 first,  followed by E2, ……, followed by  En ) can happen  

      (e1 . e2 . …. en) ways. 

 Ex. a) If 2 distinguishable dice are rolled, in how many ways  

                  Can  they fall ? 

              b)  If 5 distinguishable dice are rolled, how many possible      

                   outcomes  are there?. 

 Solution: a) The first die can fall in 6 ways and the second can fall in  

                        6 ways.  

 By product rule,  the number of possible outcomes = 6 . 6 = 36. 



Contd., 

 b)  Similarly, the number of possible outcomes when 5 
distinguishable dice are rolled = 6.6.6.6.6 = 65 

 Ex. A man wants to spend his evening in the following way.  

              First,  He would like to do some shopping , 

              then  he would like to go to a Cinema hall   and   

              finally  he would like  to  go to a  restaurant.    

        If there are 6 shopping complexes, 8 cinema halls and 9 restaurants 
then, how many different ways he can spend his evening?. 

 

 Ans. 6. 8. 9 = 432 ways. 



Ex. a) How many 3-digit numbers can be formed using the digits  
          1,3,4,5,6,8 and 9? 

b) How many 3-digit numbers can be formed if no digit can be repeated? 

 Solution: a) Here, each of the 3 digits can be filled in 7 ways . 

       By product rule,The required number of  3-digit             

                            numbers that can be formed  = 7.7.7 = 343. 

 

 b) If the repetitions are not allowed,  

           The required number of  3-digit numbers that can be formed  =    

                                       7.6.5 = 210. 

 



Ex. How many three digit even numbers are there which are even and 
have no repeated digits? (Here we are using all digits 0 through 9) 

 Solution: An even number must end with 0,2,4,6,or 8. 

 Case1                                                       x    x    0 

                                                                        9    8    - 

The number of  3- digit even numbers ending with 0 = 9 . 8 = 72 

 Case2                                                                     x    x    x                                         

                                                                                                                                                   8    8    4 

  The number of  3-digit even numbers not ending with 0 = 8. 8. 4 = 256. 

  Since, these two cases are mutually exclusive, By sum rule 

  The required number of 3-digit even numbers = 72 + 256 = 328.  

 Ex. How many 4 digit even numbers have all 4 digits distinct ? 

 Ans. 2296  



Ex. How many different  license plates are there that involve 1,2,or 3 
letters followed by 4 digits. 

 Solution: By product rule, we have 

The number of plates with 1 letter followed by 4 digits = 26. (10)4 

 

The number of plates with 2 letters followed by 4 digits = (26)2. (10)4 

 

The number of plates with 3 letters followed by 4 digits = (26)3. (10)4 

 

Since, these 3 cases are mutually exclusive, By sum rule, we have 

 The required number of license plates = 

                                      26. (10)4  + (26)2. (10)4 + (26)3. (10)4 

                                                       = {26  + (26)2 + (26)3 }.(10)4     



Ex. How many different  license plates are there that involve 1,2,or 3 
letters followed by 1,2,3, or 4 digits. 

 Solution: From the previous example, 

 The number of different  license plates that involve 1,2,or 3 letters 

       followed by 4 digits  = {26  + (26)2 + (26)3 }. (10)4 

 Similarly, The number of different  license plates that involve 1,2,or 3  

       letters followed by 3 digits  = {26  + (26)2 + (26)3 }. (10)3 

 The number of different  license plates that involve 1,2,or 3  

       letters followed by 2 digits  = {26  + (26)2 + (26)3 }. (10)2 

  The number of different  license plates that involve 1,2,or 3  

        letters followed by 1 digits  = {26  + (26)2 + (26)3 }. (10) 

  The required number of license plates =  

                           {26  + (26)2 + (26)3 }. {(10)+(10)2  + (10)3 + (10)4}. 



Permutations 

 Permutations: A permutation of n objects taken r at a time (also 
called an r-permutation of n objects) is an  ordered selection or 
arrangement of  r of the objects.  

 

 P(n, r) =  The number of permutations of n objects taken r at a time 
                   (without any repetitions).                  
 P(n , 1) = n. 
 P(n , 2) = n.(n – 1). 
 P(n , 3) = n.(n – 1).(n – 2).   
 ……………. 
P(n , r) = n.(n - 1)(n - 2)…….{n – (r –1)}   =   n! / (n – r)!  
 P(n , n) =  n!     i.e..,   there are  n!  Permutations of n objects. 
 
 



Permutations 

 Note:  

 1) There are (n – 1)!  permutations of n distinct objects around a 
circle. 

 2) U(n, r) = The number of  r-permutations of n objects with   

                            unlimited repetitions =  nr. 

 3) The number of permutations of n objects of which n1 are alike,  

            n2 are alike, …., nr are alike  is 

                 n! 

         n1! .  n2! .  ... .nr! 

 4) The number of ways to arrange ‘n’ different pearls in a necklace 

            is   (n – 1)! / 2. 



Ordered and unordered partitions 

 5) The number of ordered partitions of  a set S of type {q1 , q2, ….,qk}   

         where S = n   is  

         p( n ; q1 , q2 ,….., qt)    =           n! 

                                                   q1! q2! ….. qt! 

 

 6) Enumeration of unordered partitions of equal cell size: 

     The number of unordered partitions of a set S of type (q , q, …q),     

         (where S =  n  = q . t )  is 

                                =                n! 

                                       (q!)t . t! 

 



Combinations 

 Combinations:  

 A combination of n-objects taken r at a time (called an r-combination 
of n objects) is an unordered selection of n objects. 

 C(n, r) = The number of combinations of n-objects taken r at time   

                                                                             (without repetitions) 

            =       n! 

                 r! . (n-r)! 

 Note: 1) P(n, r) = r! . C(n, r) 

 2) C(n, 0) = 1 

 3) C(n, 1) = n 



Combinations 

 4) C(n, 2)  =     n.(n –1) 

                                   1.2     

 

 5) C(n, 3)  =    n.(n –1).(n –2 )  

                                     1.2.3  

 6)  C(n , n) = 1     

                  

 7) C(n , r) = C( n , n – r ) 

 



Combinations with repetitions 

 V(n, r) = The number of combinations of n distinct objects taken r at 
a time with unlimited repetitions. 

 V(n ,r) = C(n –1 + r, r) 

                   = C(n –1 + r, n - 1) 

 V(n, r) = The number of ways distributing  ‘r’ similar balls into ‘n’    

                      numbered boxes. 

 V(n, r) = The number of non negative integral solutions to the    

                         equation     x1 + x2 + ……..+ xn = r 

 V(n ,r) = The number of binary sequences with ‘n – 1’ ones  

                          and  ‘r’  zeros. 

 

 



Examples 

 Ex. How many ways are there to distributive 10 different books 
among 15 people,  if no person is to receive more than one book? 

        a) P(15, 10)      b) C(15, 10) c) 1015         d) 1510 

 Ans. a  
 Ex. How many binary sequences are there of length 15? 
        a) 215 b) 15!  c) P(15, 2) d) C(15, 2) 
  Ans. a 
 Ex. How many binary sequences are there of length 15 with exactly  
            6 ones   and   9 zeros? 
        a) P(15, 6)       b) C(15, 6)      c) 26            d) P(15, 6). C(15, 9)   


 Ans. b 
  



Example 

 Ex. A multiple choice test has 15questions and 4 choices for each 
answer.  

       a) How many ways can  the 15 questions be answered? 

       b) How many ways the 15 questions be answered so that exactly 3  

             answers are correct? 

       c) How many ways the 15 questions be answered so that at least 3  

            answers are correct? 

 Solution:  

 a) Since, each question can be answered in 4 ways,    By product rule,  

           the 15 questions can  be answered  in   415   ways. 



Contd., 

 b) The 3 correct answers can be chosen in C(15 , 3) ways. Each of the 
remaining questions can be wrongly answered in 3 ways. 

      The required number of ways = C(15 , 3) . 312. 

 

 c) The 15 questions can  be answered  in   415   ways. 

          Number of ways in which at most 2 answers are correct =  

                                                     315  + C(15 , 1).314   + C(15 , 2).313  

        The number of ways the 15 questions be answered so that at least 3  

            answers are correct =  415   –   {315  + C(15 , 1).314   + C(15 , 2).313 } 



Ex. How many  ways can 10 similar balls be placed in  six numbered  
      boxes?. 

 Solution: The number of ways distributing  ‘r’ similar balls into ‘n’    

                      numbered boxes  =  V(n , r)  =  C(n –1 + r , r ). 

        Here, n = 6  and   r = 10 

        The required number of ways  = V(6 , 10) 

                                                             = C(15 , 10) 

                                                             =  C(15 , 5)   

                                                             = 3003. 

   



Ex. How many non negative integral solutions are there to the equation 
       x1 + x2 + x3 + x4 + x5 = 50 . 

 Solution: The number of non negative integral solutions to the    

                      equation  {x1 + x2 + x3 +… + xn = r}  =   

                                                V(n , r)  =  C(n –1 + r , r ). 

        Here, n = 5  and   r = 50 

        The required number of solutions  = V(5 , 50) 

                                                             = C(54 , 50) 

                                                             =  C(54 , 4)   = 3,16,251. 

 



Ex.How many binary sequences are possible with ten one’s and five 
zeros. 

 Solution: The number of binary sequences with ‘n – 1’ ones  

                          and  ‘r’  zeros =  V(n ,r) 

   Here,   n – 1 = 10   and   r = 5. 

  Required number of binary sequences  =  V ( 11, 5) 

                                                                    = C (15 , 5) = 3003 . 



Ex.  In how many ways can 5 similar books be placed on 3 different   
       shelves so that each shelf contains at least one book ?  

 Solution: First, let us place one book in each of the shelves to ensure 
that each shelf contains at least one of the books. 

 Now, let us count the number of ways of distributing the remaining 
two books in 3 shelves. 

   Required number of ways  =  V ( 3, 2) 

                                                                    = C (4 , 2) = 10. 



Ex. A professor wishes to conduct a test  with 10 questions. In how many 
ways can the test  be given a total of 30 marks if each question is to be 

worth 2 or more marks? 

 Solution: Since each question has to carry at least 2 marks, First he 
has to allot 2 marks for each question. 

 

  Now let us count the number of ways of distributing the remaining 
10 marks to 10 questions. 

 

   Required number of ways  =  V ( 10, 10) 

                                                                    = C (19 , 10). 

  



Ex. How many non negative integral solutions are there to 
          x1 + x2 + x3 + x4 + x5 = 20   

  where  x1  3,  x2  2,  x3  4,  x4  6 and  x5  0  ? 

 Solution: This problem is similar to,  placing 20 similar balls in 5 
numbered  boxes so that,  first box contains at least 3 balls, second 
box contains at least 2balls, third box contains at least 4 balls and 

       fourth box contains at least 6 balls. 

 

 First, let us place 3 balls in the first box, 2 balls in the second, 4 balls 
in the third and 6 balls in the fourth box. 

 

 Now, let us count the number of ways of distributing the remaining 5 
balls in boxes. 

   Required number of solutions  =  V ( 5, 5) 

                                                                    = C (9 , 5) = C (9 , 4) = 126. 

 



Ex. How many non negative integral solutions are there to the inequality 
     x1 + x2 + x3 + x4 + x5  19 ?. 

 Solution: If k is some integer between 0 and 19, then for every 
distribution of k balls into 5 boxes, one could distribute the 
remaining 19 – k balls into a sixth box. 

 Hence, the number of non negative integral solutions of     x1 + x2 + x3 
+ x4 + x5  19  is the same as the number of negative integral 
solutions of   x1 + x2 + x3 + x4 + x5 +x6 = 19 .  

  Required number of solutions  =  V ( 6, 19) 

                                                                    = C (24 , 19) = C (24 , 5). 

 

Ex. Find the number of ways in which 16 apples can be distributed among 
four persons so that  each of them gets at least one apple ? 

Ans. 455  (Home work) 



Ex. How many 5 letter words can be formed from the word ‘DADDY’ ? 
a) 20  b)120  c) 15   d) 80 

 Solution: Required number of words  =       5!        =  20. 

                                                                             3! 

 Ans. a 

 

Ex. How many 10-permutations are there of  {a,a,a, b,b,b,b, c,c, d} ? 

      a) 12, 600  b) 16, 200 c) 14, 620              d) 8, 400 

 Solution: 

 Required number of permutations =      10!        =  12,600. 

                                                                 3! . 4! . 2! 

 Ans. a 

 



Ex. How many 11-permutations can be formed from the word  
       ‘TALLAHASSEE’.  

How many of these permutations begin with T and end with E . 

 Solution: Required number of 11-permutations =        11!         

                                                                                         3! . 2! . 2!.2! 

 

 The number of permutations which begin with T and end with E =  

                                                                               9!         

                                                                          3! . 2! .2! 

Ex. How many different 8-digit numbers can be formed by arranging the 
digits 1,1,1,1,2,3,3,3.? 

     Solution: Required number of 8-digit numbers  =         8!       =  280 

                                                                                         4! . 3! 

                     



Ordered and unordered partitions 

 Ex. In how many ways can 14 men be partitioned into 6 teams where 
the first team has 3 members,the second team has 2 members, the 
third team has 3members, the fourth,fifth and sixth teams each have 
2 members. 

 Solution:  The required number of ordered partitions =  

          P(14: 3,2,3,2,2,2)  

                   =              14! 

                          3!.2!.3!.2!.2!.2! 



Ex. In how many ways can 12 of the 14 men be partitioned into 3 teams 
where the first team has 3 members, the second team has 5 members 

and the third team has 4 members. 

 Solution:  

 The number of ways 12 men can be chosen out of 14 = C(14 , 12). 

 The number of ordered partitions = P(12; 3,5,4) =    12! 

                                                                                3! .5! .4! 

 

  Required number of ways =  C(14 , 2) .       12! 

                                                                      3! .5! .4! 

 

 



Ex. In how many ways can 12 of the 14 men be partitioned into 3 teams 
of  

       4 each? 

 Solution:  

 The number of ways 12 men can be chosen out of 14 = C(14 , 12). 

 The number of  unordered partitions = P(12; 4,4,4) =     12! 

                                                                                        (4!)3. 3! 

 

  Required number of ways =  C(14 , 2) .       12! 

                                                                         (4!)3. 3! 

 

 



Ex. In how many ways can 14 men be partitioned into 6 teams where two  
teams have 3 each and  four teams have 2 each? 

 Solution: 

 Required number of unordered partitions =           14! 

                                                                        (3!)2.2!  . (2!)4.4! 



Ex. Find the number of ways of dividing 5 different books into  3 
nonempty groups ? 

 Solution:  

 Case 1: One of the groups contain 3 books and the remaining two 
groups contain 1 book each. (3 + 1 + 1) 

 The number of unordered partitions =       5!           1          = 10 

                                                                3! .1!.1!     2! 

                                         (Since there are two equal groups) 

 Case 2: Two of the groups contain 2 books each and the remaining 
group contains 1 book.(2 + 2 + 1) 

 The number of unordered partitions =       5!            1      =`15 

                                                                2! .2!.1!      2! 

                                         (Since there are two equal groups) 

  The required number of ways = 10 + 15 = 25 



Ex.Find the number of ways of distributing 5 different books among 3 
persons such that each one gets at least one book. 

 Solution: The required number of ways =  

        5!             +          5!              1        3!    =  150 

    3! .1!.1!                2!.2!.1!         2! 

 



Indirect counting 

 Ex. Suppose that there are 101 players entered in a single elimination 
tennis tournament. How  many matches must be conducted to 
declare the winner ? 

      a) 101  b) 100  c) 99  d) 51 

 Solution: Since each mach eliminates one player, 

 we have a  one-to one correspondence between the the number of 
losers and the number of matches to be conducted. 

   The required number of matches to be conducted to declare the 
winner = 100. 

 Ans. b 



Ex. In how many ways can 10 persons be seated in a row so that a certain    
 pair of them are not next to each other ? 

 Solution: 

  The number of ways 10 persons can be seated in a row = (10)! 

 The number of ways 10 persons can be seated in a row so that a 
certain pair of them are next to each other = 9! . 2! 

  Required number of ways =  (10)!  –  (9! . 2!) 

                                                =  10.(9!) – 2.(9!)   

                                                =  8 . (9!). 

 



Ex. Four dice are rolled. The number of possible out comes in which  
      at least one die shows 2 is 

   a) 1296 b) 625  c) 671  d) 584 

 Solution: 

 The number of possible outcomes when 4 dice are rolled = 64 

 

 The number of outcomes in which no die shows 2  = 54 

 

  Required number of outcomes =   64  –  54  =  671. 

 

 



Ex. A Box contains two white, three Black and four Red balls. In how 
many ways can three balls be drawn so that at least one black ball is 

included in the draw ? 

 Solution: 

 The number of ways we can draw 3 balls from the box = C(9 ,3) 

 

 The number of we can draw 3 balls from the box so that no black ball 
is included = C(6 , 3) 

   Required number ways  =  C(9 ,3)  –  C(6 , 3)  

                                              =  64. 

 

 



Ex. From a group of 10 professors, how many ways can a committee of  
      5 members can be formed, so that at least one of professor A and   

      professor B will be included? 

 Ans. 196 

 Required number of ways  = C(10 , 5)  – C(8 , 5)  = 196 



Binomial Coefficients 

 Notation: 

 C(n , 0)  = C0 = 1,    

 C(n , 1)  = C1 = n,   

 C(n , 2)  = C2  = {n.(n – 1)} / {1.2},  

  ……….,  

 C(n, r)  = Cr = {n.(n – 1).(n - 2). .. .(n – r +1)} / {1.2.3. …r} , 

 ………….. 

 C(n, n)  = Cn = 1 

 C(n, r) = The number of combinations of n-objects taken r at time   

                                                                             (without repetitions). 

            =       n! 

                 r! . (n-r)! 

 



Combinatorial Identities. 

 1. Give a combinatorial proof  for the following. 

       a) C(n, r) . C(r, k) = C(n, k) .C(n – k, r – k)  for integers n  r  k  0 .            

                                                                                   (Newton’s identity). 

        b) C(n, r) . r  =  n . C(n – 1, r – 1) . 

 Proof: a) The L.H.S. counts the number of ways of selecting two sets: 
first a set of r objects and then from A, a set of  k objects.  

 For example,we may be counting the number of ways to select a 
committee of  r people and then to select a subset of  k  leaders from 
this committee. 

 On the other hand, the R.H.S. counts the the number of ways we 
select a group of  k leaders from the n people first, and then  select 
remaining  r – k  people from the remaining  n – k  people. 

 

 

 



Contd., 
 

  L.H.S. = R.H.S. 

 

 b) putting k = 1 in the Newton’s Identity, we have 

           C(n, r) . C(r, 1) = C(n, 1) .C(n – 1, r – 1). 

      C(n, r) . r  = n .C(n – 1, r – 1). 

 

 



2) Give a combinatorial proof  for the following. 
a)  P(n, r) = n. P(n – 1 , r – 1 )   

b)  P(n, r) = P(n , r – 1 ) .(n – r + 1)  

 a) This identity holds because in arranging n objects we can fill the   

           first position n ways and then arrange the remaining n –1 objects in  

            r – 1 positions.  

                P(n, r) = n. P(n – 1 , r – 1 )   

 

 b) The first r – 1 positions can be filled in P(n, r – 1 ) ways while the  

          r th   position can be filled in  n – r +1 ways. Thus,  

          P(n, r) = P(n , r – 1 ) .(n – r + 1). 



3) Prove that  
   C(n, r)  = C(n-1, r) + C(n-1, r-1)     ( Give combinatorial proof)               

                                                         ( Pascal’s identity) 

 Proof:  Let S be a set of n objects.  

 Distinguish one of the objects, say  x  S.  

 The r – combinations of S can be divided into two classes: 

 (a) those selections that include x   and  

 (b) those selections that do not include x . 

 In (a), we need merely to choose r – 1 objects from the remaining 

       n – 1 objects in C(n – 1 , r – 1 ) ways. 

 In (b), we choose r objects from the remaining n – 1 
objects(excluding x) in C(n – 1 , r) ways. 

 Since these two classes are disjoint, By sum rule, we have   

         C(n, r)  = C(n-1, r) + C(n-1, r-1). 



4) Prove (Give combinatorial proof) that  
  C(n , 0) +  C(n , 1) +  C(n , 2) +  … + C(n , r) + …+ C(n , n)  = 2n 

                                                                    (Row Summation)   

 Proof:  This just means that there is a total of 2n subsets of a set S 
with n elements(R.H.S)  and  

 this number is also the sum of the number of all the subsets with 

       0 elements, 1 element, 2 elements, …, r elements, … ,   

       and n elements  (L.H.S). 



5) Diagonal Summation  
     Prove (Give combinatorial proof) that  

  C(n, 0) + C(n + 1, 1) + C(n + 2, 2) + …..+ C(n +r, r)  = C(n + r + 1, r) 

 R.H.S. = C(n + r + 1, r) = C(n + 2 + r – 1, r)  =  V(n + 2, r)  =  

       The number of ways to distribute r similar balls into n+2 numbered 
boxes. 

 But the balls may also be distributed as follows: For each 0  k  r, 
distribute k of the balls in the first n+1 boxes, and then the 
remainder in the last box. 

 This can be done in  k=0  C(n + k, k)   ways  (= L.H.S). 
r 



6) Prove (Give combinatorial proof) that 
C(m, 0).C(n , 0) + C(m, 1).C(n , 1) + …+ C(m, n).C(n, n)  = C(m +n , n) 

      for integers m  n  0 

 Here we suppose that we have a set S including a subset A of  m  men 
and  a subset B of  n  women. 

 We can choose  n  people from this set in C(m+n , n) ways (R.H.S.). 

 Also, Any  n-combination of S is a union of an  r-combination of A and an  
(n – r)-combination of B for r = 0,1,…,n. 

 Thus for any given r, there are C(m , r)  r-combinations of A  and  

      C(n , n – r ) = C(n , r)   (n – r )-combinations of B. 

 Thus, for each r, there are C(m ,r).C(n ,r)  n-combinations of S which are 
the union of an r- combination of A and an (n – r )-combination 

       of B. By sum rule as r = 0,1,2,…,n , we have  

  C(m, 0).C(n , 0) + C(m, 1).C(n , 1) + …+ C(m, n).C(n, n)  = C(m +n , n).  



7) Prove that  C0
2 +  C1

2 +  C2
2 +  …….. +  Cn

2  = C(2n, n) 
 

 Here we suppose that we have a set S including a subset A of  n  men 
and  a subset B of  n  women. 

 We can choose  n  people from this set in C(2n , n) ways (R.H.S.). 

 Also, Any  n-combination of S is a union of an  r-combination of A and 
an  (n – r)-combination of B for r = 0,1,…,n. 

 Thus for any given r, there are C(n , r)  r-combinations of A  and  

      C(n , n – r ) = C(n , r)   (n – r )-combinations of B. 

 Thus, for each r, there are C(n ,r).C(n ,r)  n-combinations of S which 
are the union of an r- combination of A and an (n – r )-combination 

       of B. By sum rule as r = 0,1,2,…,n , we have  

  C(n, 0).C(n , 0) + C(n, 1).C(n , 1) + …+ C(n, n).C(n, n)  = C(2n , n).  



The Binomial Theorem 

 Let n be a positive integer. Then for all x and y 

 (x + y)n = C(n , 0).xn + C(n , 1).xn – 1 .y  + C(n , 2).xn – 2 .y2 + …  

                                  + C(n , r).xn – r .yr  + ..…  + C(n , n).yn . 

              

            =   C(n , r) xn – r .yr . 

 

 (x + 1)n  =   C(n , r) x r. 

 

 (1 - x)n  =   C(n , r) (-1) r . x r. 

 

 

 

n 

r=0 

r=0 

n 

r=0 

n 



Some more Identities 

 8) C0 –  C1  +  C2  – C3 + …….. +  (-1)n Cn       = 0 

   

 9) (C0 +  C2 +  C4 +  ……..)  = (C1 +  C3 +  C5 +  …….. )   = 2n –1 

 10) C1 +  2C2 +  3C3 +  …….. + n Cn  = n 2n-1 

 10) C1 – 2 C2  +  3 C3  - …….  + ( -1)n-1  n.Cn  = 0 

 

 11) Prove that     C(n, r) 2r = 3n 

 We know that, 

                     (x + 1)n  =     C(n , r) x r.        Putting x = 2, we have  

 

 3n =   C(n, r) 2r   

 

n 

r=0 

r=0 

n 

r=0 

n 



Ex. C(2n, 0) + C(2n, 1) + …….+ C(2n, 2n) =  
      a) 2n  b) 22n   c) 2n +2    d)n 2n 

 Ans. B 

 

 Vandermonde’s  Identity : 

 Prove that  C(n+m, r) = C(n, 0).C(m, r) + C(n, 1) . C(m , r – 1) + ….. 

                                             + C(n,r). C(m,0).   (for integers m  n  0) 

 

 Proof: (Give combinatorial proof) 

 Hint: Let S be the union set of m men and n women. 



Ex. Prove that  {C(n , 0) +  C(n , 1) +… + C(n , r) + …+ C(n , n)}2  =  
                                       C(2n, 0) + C(2n, 1) + …….+ C(2n, 2n)  

 Consider (1+x)2n = C(2n, 0) + C(2n, 1).x + …….+ C(2n, 2n)x2n …(1) 

 

 Again, (1+x)2n = [(1+x)n]2 = {C(n , 0) + C(n , 1).x +… + C(n , r).xr +             

                                                                 …. + C(n , n).xn}2 ….(2) 

From(1) and (2), we have  

{C(n , 0) + C(n , 1).x +….  C(n , n).xn}2  = C(2n, 0) + C(2n, 1).x +                                                                                          

                                                                          …….+ C(2n, 2n)x2n …..(3) 

Putting x = 1 in (3), we have 

 {C(n , 0) +  C(n , 1) +… + C(n , r) + …+ C(n , n)}2  =  
                                       C(2n, 0) + C(2n, 1) + …….+ C(2n, 2n) 

 Hence, the result follows. 



The Multinomial Theorem 

 State and prove the multinomial theorem. 

 Statement: Let n be a positive integer. Then for all x1,x2,…,xt, we have 

 (x1 + x2 + …+ xt )
n =  P(n ; q1, q2 , ... ,qt ). (x1.  x2 .….xt    ) 

 Where the summation extends over all sets of non negative integers 

 q1, q2 , ... ,qt   where  q1 + q2  + ... + qt = n . 

There are   C(n + t – 1 , n) terms in the expansion of (x1 + x2 + …+ xt )
n  

 

 Proof: The coefficient of (x1.  x2 .….xt   ) is the number of ways of 
arranging the n letters {q1.x1, q2.x2, … , qt.xt}, therefore it is  

        P (n ; q1, q2 , ... ,qt ).  

 

q1 
q2 qt 

q1 q2 qt 



Contd., 

 The number of terms is determined as follows: each term of the form  

      x1.  x2 .….xt   is a selection of n objects with repetitions from t distinct        

        types. 

  Hence there are C(n + t – 1 , n) ways to do this. 

q1 q2 qt 



Example 

 Ex. In the expansion of  (x1 + x2 + x3 +x4 +x5)10 

 a) Evaluate the  coefficient of  x1
2  x3  x4

3  x5
4  

 b) How many terms are there in the expansion ? 

 

 Solution: a) The  coefficient of  x1
2  x3  x4

3  x5
4  is 

 P(10 ; 2, 0, 1, 3, 4)  =               10!                        =  12,600 

                                      2!   0!   1!   3!   4! 

 

 b) The number of terms in the expansion = C(10 + 5 – 1 , 10) 

                                                                  = C(14 , 4) = 1001 



Ex. In the expansion of  (2x – 3y + 5z )8 

a) Evaluate the  coefficient of  x3  y3  z2  

b) How many terms are there in the expansion ? 

 Solution:a)  Let   x1 = 2x,   x2 = - 3y ,   x3 = 5z   then  

 The coefficient of x1
3  x2

3  x3
2    =  P(8 ; 3, 3, 2) =       8!             = 560 

                                                                                  3!   3!   2! 

 Thus, the coefficient of x3  y3  z2  =  23 (-3)3. 52 . P(8 ; 3, 3 2)  

                                                      =  – (5400).(560) 

 

 b) The number of terms in the expansion = C(8 + 3 – 1 , 8) 

                                                                  = C(10 , 2) = 45 

 



Ex. Use the multinomial theorem to expand (x – 2y + z)3   

 (x – 2y + z)3  =  P(3; 3,0,0) x3 + P(3; 0,3,0) (- 2y)3 + P(3; 0,0,3) z3 +  

                          P(3; 2,1,0) x2 (- 2y) + P(3; 1,2,0) x (- 2y)2 +  

                          P(3; 2,0,1) x2 z  +  P(3; 1,0,2) x z2  + 

                          P(3; 0,2,1) (- 2y)2 z + P(3; 0,1,2) (- 2y) z2 +      

                          P(3; 1,1,1) x(-2y) z . 

 

 = x3 – 8y3 + z3– 6x2y + 12xy2 + 3x2z + 3xz2 + 12y2z – 6yz2 – 12xyz 
 

 

 

 

 



Ex. What is the coefficient of x3 y7 in  
a) (x + y)10 

b) (2x – 9y)10 

 Solution: a) The coefficient of x3 y7  =      10!        = 120 

                                                                  3!   7! 

 

 b) The coefficient of x3 y7  =   23.  (-9)7 .        10!         

                                                                     3!   7! 

 



The Principle of Inclusion-Exclusion: 

 Theorem: If A and B are subsets of some universe set U, then  

                         A  B = A + B –  A  B . 

                                   =  A  Bc+ B  Ac+ A  B . 

 Theorem:  If  A, B and C are finite sets, then 

 A  B  C  = A + B + C – A  B– B  C– C  A  

                                                                                      + A  B  C . 

 

                U 

 
 
 
  A                                   B 
 

                                       Ac  Bc 

A Bc AB            BAc 



1)A  B  C    2) A  B  C    3) A  B  C   4) A  B  C                 5) A  

B  C    6) A  B  C    7) A  B  C   8) A  B  C  

                                                                     

 

 

 

 

 

                                                    U 

     A 
                                                 B 
 
 
 
                          
                                        C               8 

 
 
 
 

5                      2 
 
 
 

4 
 
 

                
      

 
 
 
 

 
1    6 

 
 
 
 

1 
 
 
 

7 



Ex. Suppose that 200 faculty members can speak French and 50 can 
speak Russian, while only 20 can speak both French and Russian. How 

many faculty members can speak either French or Russian ? 

 Solution: Let F = Set of faculty who can speak French. 

                       R = Set of faculty who can speak Russian. 

               F  R = Set of faculty who can speak French and Russian. 

  Required number of faculty members = F  R  

      F  R = F + R –  F  R . 

                      =   200 + 50 – 20  

                      =    230. 

 



Example 

 Ex. If there are 200 faculty members that speak French, 50 that speak 
Russian, 100 that speak Spanish, 20 that speak French and Russian , 
60 that speak French and Spanish, 35 that speak Russian and 
Spanish, while only 10 speak French, Russian and Spanish. How many 
speak  

      either French or Russian or Spanish ? 
 Solution:  Let F = Set of faculty who can speak French. 
                        R = Set of faculty who can speak Russian. 
                        S = Set of faculty who can speak Spanish. 
  Required number of faculty members = F  R  S  
                       = F + R + S – F  R– R  S– S  F  
                                                                                      + F  R  S. 
                       = 200 + 50 + 100 – 20 – 60 – 35 + 10  = 245. 
 
 



Ex. A certain computer center employs 100 computer programmers. Of 
these 47 can program in FORTRAN , 35 in Pascal and 23 can program in 

both languages. How many can program in neither of these 2 languages? 

 Solution: 

 

 

 

 

 

 

                                                                                             100 

 The number of programmers who can program in at least one of the 
2 languages = 24 + 23 + 12 = 59. 

 The number of programmers who can program in neither of these 2 
languages = 100 – 59 = 41. 

 

 

 
 41 
 
     
      F                       P 
 
     

24 23  12 



Aliter 

 Let   F = {Programmers who can program in FORTRAN} 

         P = {Programmers who can program in Pascal } 

  F  P = {Programmers who can program in FORTRAN and Pascal} 

 The number of programmers who can program in at least one of the 
2 languages = F  P  

                 = F + P –  F  P 

                 =  47  + 35 –  23  =  59. 

  The number of programmers who can program in neither of these 
2 languages = Fc  Pc = (F  P)c = U –  F  P  

                                                   = 100 – 59 = 41. 



Ex. In the previous example, 
a) How many can program in only one of the 2 languages? 
b) How many can program in Pascal but not in FORTRAN. 
c) How many can program in FORTRAN but not in Pascal. 

 Solution: From the Venn diagram, we have 

 a) The number of programmers who can program in only one of the 
2  

           languages  = 24 + 12 = 36. 

 b) The number of programmers who can program in Pascal but not in   

            FORTRAN = 12. 

 c) The number of programmers who can program in FORTRAN but    

           not in Pascal = 24. 

 



Ex. In a survey of students at a college the following information was 
obtained: 

 260 were taking a Statistics course, 

 208 were taking a Mathematics course,  

 160 were taking a Computer programming course, 

  76  were taking statistics and Mathematics, 

  48  were taking statistics and Computer programming, 

  62  were taking Mathematics and Computer programming, 

  30 were taking all three courses, 

  and  150 were taking none of the 3 courses.  

 a) How many students were taking at least one of the 3 courses. 

 b) How many students were surveyed? 

 c) How many students were taking at least 2 of the 3 courses. 

 

 



Contd., 

 d) How many students were taking only one of the 3 courses ?. 
 e) How many students were taking a Statistics and a Computer 

programming course but not a Mathematics course ?. 
 f) How many students were taking a Statistics course but not taking a 

course in Computer programming  or in Mathematics ?. 
 Solution:  let   S = { Students taking a Statistics Course} 
                       M =   { Students taking a Mathematics Course} 
                    C =   { Students taking a Computer programming Course} 
a) The number of students who are taking at least one of the 3 courses  =S 

 M  C 

       = S + M + C – S  M– S  C– M  C                                                                    
                                                                                       + S  M  C 

     =   260 + 208 + 160 – 76  – 48 – 62  + 30 = 472 
        



Contd., 

 

 b)The total number of students surveyed =S  M  C+S M  C  

                                                                   = 472 + 150 = 622. 

  From Venn diagram, we have, 

 c)  The number of students who were taking at least 2 of the 3 courses    

                  = 46 + 18 + 32 = 96. 

 d) The number of  students who are taking only one of the 3 courses     

             = 166 + 100 + 80 = 346. 

 e) S  M  C = 18. 

 f) S  M  C = 166. 



Contd., 

 Venn diagram 

 

 

 

 

 

 

 

 

 

                                                                                  622 

              S                         M 
 
 
 
 
                  
                   C                        150 

              
             46 
166        30 

18 

           100 

 
           32 
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Ex. How many integers in the set {1,2,3, …1000} are not divisible by 
      2 or 3 or 5 ?. 

 Solution: 

 Let   n(2) = number of integers in the set that are divisible by 2. 

         n(3) = number of integers in the set that are divisible by 3. 

         n(5) = number of integers in the set that are divisible by 5. 

 n(2  3  5) 

       = n(2) + n(3)+ n(5) – n(2  3) – n(3  5)– n(2  5) + n(2  3  5) .                                                              

n(2) =   1000/2  = 500. 

n(3) =   1000/3  = 333. 

n(5) =   1000/5  = 200. 

n(2  3) =  1000/6  = 166. 

n(3  5) =  1000/15  = 66. 



Contd., 

• n(2  5) =  1000/10  = 100. 

• n(2  3  5) =  1000/30  = 33. 

• n(2  3  5) = 500 + 333 + 200 –  166 – 66 – 100 + 33 =  734 

•  Required number of integers = 1000 – 734 = 266.  

 

 

 

 

 



Euler’s   -function 

 Euler’s      - function: 

 If  n  is a positive integer,  then   

  (n)  = The number of integers ‘x’ such that  1  x  n  and such that  

                      n and x are relatively prime. 

  (n)  = n [{1 – (1/p1)}.{(1 – (1/p2)}. ……. .{(1 – (1/pk)}]  

        where p1, p2,…. , pk are distinct prime divisors of n.  

 Ex. Find the number of positive integers less than or equals to  91 and        

              relatively prime to 91. 

 Solution: The prime divisors of 91 are 7 and 13.  

  (91)  =  91.{1 – (1/7)}.{(1 – (1/13)}. 

               = 72.  



Ex. Find the number of positive integers less than or equals to  100 and        
              relatively prime to 100. 

 Solution: The prime divisors of  2 and 5.  

  (100)  =  100.{1 – (1/2)}.{(1 – (1/5)}. 

               = 40.  

   



Derangements 

 Derangements: 

  Among the permutations of  {1, 2, …., n} there are some, called 
derangements, in which none of the n integers appears in its natural 
place. 

    Dn =  The number of derangements of  n elements  

   

                            1           1          1         1                (-1)n   

                            2!         3!         4!        5!                  n!    
+ + + … n! = 



Ex. Five balls marked with B1,B2,B3,B4,B5 are to be kept in 5 cells marked 
with C1,C2,C3,C4,C5. How many ways this can be done so that ball Bi is not 

kept in cell  Ci  (i = 1,2,…,5). 

 Solution:  Required number of ways = D5 

                                      =                 1           1            1         1 

                                                         2!         3!           4!        5! 

 

                                    = 60 – 20 + 5 – 1   =  44. 

+ 5! 



Ex. Four students take a quiz. Then for the purpose of grading, the 
teacher ask the students to  exchange  papers, so that  no one is grading 

his own paper. How many ways this can be  done?. 

 Solution:  Required number of ways = D4 

                                      =                 1           1            1 

                                                         2!          3!           4! 

 

                                    = 12 – 4 + 1 = 9. 

 

4!  –  
  

 +   



Example 

 Ex. Let 5 different books be distributed to 5 students. Suppose the 
books are returned and  distributed to the students again later on . In 
how many ways the books be distributed so that no student will get 
the same book twice ? 
 

 Solution: The number of ways 5 different books be distributed to 5 
students = 5! = 120. 

 Second time, the number of ways the books be distributed so that no 
student will get the same book twice  = D5  = 44. 

  The required number of distributions = (120) . (44)  

                                                                 = 5280 . 

 



The pigeonhole principle 

 Suppose a flock of pigeons fly into a set of 
pigeonholes to roost 
 

 If there are more pigeons than pigeonholes, then 
there must be at least 1 pigeonhole that has more 
than one pigeon in it 
 

 If k+1 or more objects are placed into k boxes, then 
there is at least one box containing two or more of 
the objects 
This is Theorem 1 

281 



Pigeonhole principle examples 

• In a group of 367 people, there must be two 
people with the same birthday 

– As there are 366 possible birthdays 

 

• In a group of 27 English words, at least two 
words must start with the same letter 

– As there are only 26 letters 
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Generalized pigeonhole principle 

• If N objects are placed into k boxes, then there 
is at least one box containing N/k objects 

– This is Theorem 2 

283 



Generalized pigeonhole principle examples 

• Among 100 people, there are at least 
100/12 = 9 born on the same month 

 

• How many students in a class must there be to 
ensure that 6 students get the same grade 
(one of A, B, C, D, or F)? 

– The “boxes” are the grades.  Thus, k = 5 

– Thus, we set N/5 = 6 

– Lowest possible value for N is 26 
284 



Examples 
• A bowl contains 10 red and 10 yellow balls 

a) How many balls must be selected to ensure 3 balls of the 
same color? 

– One solution: consider the “worst” case 
• Consider 2 balls of each color 

• You can’t take another ball without hitting 3 

• Thus, the answer is 5 

– Via generalized pigeonhole principle 
• How many balls are required if there are 2 colors, and one color must 

have 3 balls? 

• How many pigeons are required if there are 2 pigeon holes, and one 
must have 3 pigeons? 

• number of boxes: k = 2 

• We want  N/k = 3 

• What is the minimum N? 

• N = 5 285 



Examples 

• A bowl contains 10 red and 10 yellow balls 

b) How many balls must be selected to ensure 
3 yellow balls? 

– Consider the “worst” case 

• Consider 10 red balls and 2 yellow balls 

• You can’t take another ball without hitting 3 yellow 
balls 

• Thus, the answer is 13 
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Examples 

• 6 computers on a network are connected to at least 1 other 
computer 

• Show there are at least two computers that are have the 
same number of connections 
 

• The number of boxes, k, is the number of computer 
connections 

– This can be 1, 2, 3, 4, or 5 

• The number of pigeons, N, is the number of computers  
– That’s 6 

• By the generalized pigeonhole principle, at least one box 
must have N/k objects 

– 6/5 = 2 
– In other words, at least two computers must have the same number 

of connections 
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Examples 
• Consider 5 distinct points (xi, yi) with integer values, where i = 1, 2, 3, 4, 

5 
• Show that the midpoint of at least one pair of these five points also has 

integer coordinates 
 

• Thus, we are looking for the midpoint of a segment from (a,b) to (c,d) 
– The midpoint is ( (a+c)/2, (b+d)/2 ) 

• Note that the midpoint will be integers if a and c have the same parity: 
are either both even or both odd 

– Same for b and d 

• There are four parity possibilities 
– (even, even), (even, odd), (odd, even), (odd, odd) 

• Since we have 5 points, by the pigeonhole principle, there must be two 
points that have the same parity possibility 

– Thus, the midpoint of those two points will have integer coordinates 
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Now it’s Time for… 

Recurrence 

Relations 

 



Recurrence Relations 

A recurrence relation for the sequence {an} is an 
equation that expresses an is terms of one or more 
of the previous terms of the sequence, namely, a0, 
a1, …, an-1, for all integers n with  
n  n0, where n0 is a nonnegative integer. 

 

A sequence is called a solution of a recurrence 
relation if it terms satisfy the recurrence relation. 

 



Recurrence Relations 

In other words, a recurrence relation is like a 
recursively defined sequence, but without 
specifying any initial values (initial conditions). 

 

Therefore, the same recurrence relation can have 
(and usually has) multiple solutions. 

 

If both the initial conditions and the recurrence 
relation are specified, then the sequence is 
uniquely determined. 



Recurrence Relations 

Example:  
Consider the recurrence relation  
an = 2an-1 – an-2 for n = 2, 3, 4, … 
 

Is the sequence {an} with an=3n a solution of this 
recurrence relation? 

For n  2 we see that  
2an-1 – an-2 = 2(3(n – 1)) – 3(n – 2) = 3n = an. 

Therefore, {an} with an=3n is a solution of the 
recurrence relation. 



Recurrence Relations 

Is the sequence {an} with an=5 a solution of the 
same recurrence relation? 

For n  2 we see that  
2an-1 – an-2 = 25 - 5 = 5 = an. 
 

Therefore, {an} with an=5 is also a solution of the 
recurrence relation. 



Modeling with Recurrence Relations 

Example:  

Someone deposits $10,000 in a savings account at 
a bank yielding 5% per year with interest 
compounded annually. How much money will be 
in the account after 30 years? 
 

Solution: 

Let Pn denote the amount in the account after n 
years. 

How can we determine Pn on the basis of Pn-1? 



Modeling with Recurrence Relations 

We can derive the following recurrence relation: 

Pn = Pn-1 + 0.05Pn-1 = 1.05Pn-1. 

The initial condition is P0 = 10,000. 

Then we have: 

P1 = 1.05P0  

P2 = 1.05P1 = (1.05)2P0 

P3 = 1.05P2 = (1.05)3P0 

… 

Pn = 1.05Pn-1 = (1.05)nP0 
 

We now have a formula to calculate Pn for any 
natural number n and can avoid the iteration. 



Modeling with Recurrence Relations 

Let us use this formula to find P30 under the 

initial condition P0 = 10,000: 

 

P30 = (1.05)3010,000 = 43,219.42 

 

 

After 30 years, the account contains $43,219.42. 



Modeling with Recurrence Relations 

Another example:  

Let an denote the number of bit strings of length n 
that do not have two consecutive 0s (“valid 
strings”). Find a recurrence relation and give initial 
conditions for the sequence {an}. 
 

Solution: 

Idea: The number of valid strings equals the 
number of valid strings ending with a 0 plus the 
number of valid strings ending with a 1. 



Modeling with Recurrence Relations 

Let us assume that n  3, so that the string 
contains at least 3 bits. 

Let us further assume that we know the number 
an-1 of valid strings of length (n – 1).  

Then how many valid strings of length n are there, 
if the string ends with a 1? 

There are an-1 such strings, namely the set of valid 
strings of length (n – 1) with a 1 appended to 
them. 

Note: Whenever we append a 1 to a valid string, 
that string remains valid. 



Modeling with Recurrence Relations 

Now we need to know: How many valid strings of 
length n are there, if the string ends with a 0? 

Valid strings of length n ending with a 0 must have 
a 1 as their (n – 1)st bit (otherwise they would 
end with 00 and would not be valid). 

And what is the number of valid strings of length 
(n – 1) that end with a 1? 

We already know that there are an-1 strings of 
length n that end with a 1. 

Therefore, there are an-2 strings of length (n – 1) 
that end with a 1. 



Modeling with Recurrence Relations 

So there are an-2 valid strings of length n that end 
with a 0 (all valid strings of length (n – 2) with 10 
appended to them). 
 

As we said before, the number of valid strings is 
the number of valid strings ending with a 0 plus 
the number of valid strings ending with a 1. 
 

That gives us the following recurrence relation: 

an = an-1 + an-2 



Modeling with Recurrence Relations 

What are the initial conditions? 
 

a1 = 2 (0 and 1) 

a2 = 3 (01, 10, and 11) 

a3 = a2 + a1 = 3 + 2 = 5 

a4 = a3 + a2 = 5 + 3 = 8 

a5 = a4 + a3 = 8 + 5 = 13 

… 
 

This sequence satisfies the same recurrence 
relation as  the Fibonacci sequence. 

Since a1 = f3 and a2 = f4, we have an = fn+2. 



Solving Recurrence Relations 

In general, we would prefer to have an explicit  
formula to compute the value of an rather than 
conducting n iterations. 
 

For one class of recurrence relations, we can 
obtain such formulas in a systematic way. 
 

Those are the recurrence relations that express 
the terms of a sequence as linear combinations of 
previous terms. 



Solving Recurrence Relations 

Definition: A linear homogeneous recurrence 
relation of degree k with constant coefficients is a 
recurrence relation of the form: 

an = c1an-1 + c2an-2 + … + ckan-k, 

Where c1, c2, …, ck are real numbers, and ck  0.  

 

A sequence satisfying such a recurrence relation is 
uniquely determined by the recurrence relation 
and the k initial conditions 
 

a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1. 



Solving Recurrence Relations 

Examples: 
 

The recurrence relation Pn = (1.05)Pn-1 
is a linear homogeneous recurrence relation of 
degree one. 
 

The recurrence relation fn = fn-1 + fn-2 
is a linear homogeneous recurrence relation of 
degree two. 
 

The recurrence relation an = an-5 
is a linear homogeneous recurrence relation of 
degree five. 



Solving Recurrence Relations 

Basically, when solving such recurrence relations, 
we try to find solutions of the form an = rn, where 
r is a constant. 

an = rn is a solution of the recurrence relation 
an = c1an-1 + c2an-2 + … + ckan-k if and only if 

rn = c1rn-1 + c2rn-2 + … + ckr
n-k. 

Divide this equation by rn-k and subtract the right-
hand side from the left: 

rk - c1rk-1 - c2rk-2 - … - ck-1r - ck = 0 

This is called the characteristic equation of the 
recurrence relation. 



Solving Recurrence Relations 

The solutions of this equation are called the 
characteristic roots of the recurrence relation. 
 

Let us consider linear homogeneous recurrence 
relations of degree two. 
 

Theorem: Let c1 and c2 be real numbers. Suppose 
that r2 – c1r – c2 = 0 has two distinct roots r1 and r2. 

Then the sequence {an} is a solution of the 
recurrence relation an = c1an-1 + c2an-2 if and only if an 
= 1r1

n + 2r2
n for n = 0, 1, 2, …, where 1 and 2 are 

constants. 
 

See pp. 321 and 322 for the proof. 



Solving Recurrence Relations 

Example: What is the solution of the recurrence 
relation an = an-1 + 2an-2 with a0 = 2 and a1 = 7 ? 

 

Solution: The characteristic equation of the 
recurrence relation is r2 – r – 2 = 0. 

Its roots are r = 2 and r = -1. 

Hence, the sequence {an} is a solution to the 
recurrence relation if and only if: 

an = 12n + 2(-1)n   for some constants 1 and 2. 



Solving Recurrence Relations 

Given the equation an = 12n + 2(-1)n and the 
initial conditions a0 = 2 and a1 = 7, it follows that 

a0 = 2 = 1 + 2 

a1 = 7 = 12 + 2 (-1) 
 

Solving these two equations gives us 
1 = 3 and 2 = -1. 
 

Therefore, the solution to the recurrence relation 
and initial conditions is the sequence {an} with 

an = 32n – (-1)n.  



Solving Recurrence Relations 

an = rn is a solution of the linear homogeneous 
recurrence relation 
an = c1an-1 + c2an-2 + … + ckan-k  

if and only if 

rn = c1rn-1 + c2rn-2 + … + ckr
n-k. 

Divide this equation by rn-k and subtract the right-
hand side from the left: 

rk - c1rk-1 - c2rk-2 - … - ck-1r - ck = 0 

This is called the characteristic equation of the 
recurrence relation. 



Solving Recurrence Relations 

The solutions of this equation are called the 
characteristic roots of the recurrence relation. 
 

Let us consider linear homogeneous recurrence 
relations of degree two. 
 

Theorem: Let c1 and c2 be real numbers. Suppose 
that r2 – c1r – c2 = 0 has two distinct roots r1 and r2. 

Then the sequence {an} is a solution of the 
recurrence relation an = c1an-1 + c2an-2 if and only if an 
= 1r1

n + 2r2
n for n = 0, 1, 2, …, where 1 and 2 are 

constants. 
 

See pp. 321 and 322 for the proof. 



Solving Recurrence Relations 

Example: Give an explicit formula for the Fibonacci 
numbers. 

Solution: The Fibonacci numbers satisfy the 
recurrence relation fn = fn-1 + fn-2 with initial 
conditions f0 = 0 and f1 = 1. 

The characteristic equation is r2 – r – 1 = 0. 

Its roots are 

2

51
,

2

51
21





 rr



Solving Recurrence Relations 

Therefore, the Fibonacci numbers are given by  
nn

nf 











 














 


2

51

2

51
21 

for some constants 1 and 2. 
We can determine values for these constants so that the sequence meets the conditions 

f0 = 0 and f1 = 1:  

0210  f

1
2

51

2

51
211 













 














 
 f



Solving Recurrence Relations 

The unique solution to this system of two 
equations and two variables is 

5

1
,

5

1
21  

So finally we obtained an explicit formula for the Fibonacci numbers:  

nn

nf 











 














 


2

51

5

1

2

51

5

1



Solving Recurrence Relations 

But what happens if the characteristic equation has 
only one root? 

How can we then match our equation with the 
initial conditions a0 and a1 ? 

Theorem: Let c1 and c2 be real numbers with c2  0. 
Suppose that r2 – c1r – c2 = 0 has only one root r0.  
A sequence {an} is a solution of the recurrence 
relation an = c1an-1 + c2an-2 if and only if  
an = 1r0

n + 2nr0
n, for n = 0, 1, 2, …, where 1 and 

2 are constants. 
Fall 2002 CMSC 203 - Discrete Structures 314 



Solving Recurrence Relations 

Example: What is the solution of the recurrence 
relation an = 6an-1 – 9an-2 with a0 = 1 and a1 = 6? 

Solution: The only root of r2 – 6r + 9 = 0 is r0 = 3. 
Hence, the solution to the recurrence relation is 

an = 13n + 2n3n  for some constants 1 and 2. 

To match the initial condition, we need 

a0 = 1 = 1 
a1 = 6 = 13 + 23 

Solving these equations yields 1 = 1 and 2 = 1. 

Consequently, the overall solution is given by 

an = 3n + n3n. 
Fall 2002 CMSC 203 - Discrete Structures 315 



 

Recurrence Relations 

Generating Functions of Sequences 

Sequences 

  A = {ar}, r = 0 .. .  

Examples: 

 

   1.  A = {ar}, r = 0 .. , where ar = 2r. 

            = {1, 2, 4, 8, 16, …, 2r, …} 

   2.  B = {br}, r = 0 .. , where 

                    br  = 0, if 0  r  4 

            = 2, if 5  r  9 

            = 3, if r = 10 

            = 4, if 11  r 

  = {0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 3, 4, 4, …} 



3.  C = {cr}, r = 0 .. , where cr = r + 1. 

         = {1, 2, 3, 4, 5, …} 

 

4.  D  = {dr}, r = 0 .. , where dr = r2. 

          = {0, 1, 4, 9, 16, 25, …} 



Generating function for the sequence A = {ar}, r = 0 .. . 
 

     A(X)   = a0 + a1X + a2 X2 + … + anXn + … 

    =  ar X
r, r = 0 .. . 

 

Examples: 
 

1. Generating function for the sequence A = {ar}, r = 0 .. , 

    where ar = 2r. 

     A(X) = 1 + 2X + 4X2 + … + 2n Xn + … 

  =  2r Xr, r = 0 .. . 



2. Generating function for the sequence B = {br}, r = 0 .. ,  
    where 
        br = 0, if 0  r  4 
            = 2, if 5  r  9 
            = 3, if r = 10 
            = 4, if 11  r 
     B(X) = 2X5 + 2X6 + 2X7 + 2X8 + 2X9 + 3X10 + 4X11 +  
                4X12 + … + 4Xn + … 
 
3. Generating function for the sequence C = {cr}, r = 0 .. ,  
    where cr = r + 1. 
     C(X) = 1 + 2X + 3X2 + … + (n+1)Xn + … 
  =  (r+1)Xr, r = 0 .. . 
 
4. Generating function for the sequence D = {dr}, r = 0 .. ,  
    where dr = r2. 
     D(X) = X + 4X2 + 9X3+ 16X4 + 25X5 + … + n2 Xn + … 
         =  r2 Xr, r = 0 .. . 
 

 



Definitions 
 
Let the Generating Functions / Formal Power Series be 
          A(X) =  ar X

r, r = 0 .. . 
   and B(X) =  bs X

s, s = 0 .. . 
 
1.    Equality 
          A(X) = B(X), iff an = bn for each n  0. 
 
2.    Multiplication by a scalar number C 
         C A(X) =  (C ar) X

r, r = 0 .. . 
 
3.    Sum 
         A(X) + B(X) =  (an + bn) Xr, r = 0 .. . 
 
4.    Product 
 
         A(X) B(X) =  Pn Xn, n = 0 .. ,  
         where Pn = j+k-n aj bk. 

 



Exercises: 

1.    Find a Generating function for the sequence  

                 A = {ar}, r = 0 .. , where 

            ar = 1, if 0  r  2 

    = 3, if 3  r  5 

    = 0, if r   

      A(X) = 1 + X + X2 + 3X3 + 3X4 + 3X5 

 

2.     Build a generating function for ar = no. of integral solutions to the  

        equation e1 + e2 + e3 = r, if 0  ei  3 for each i. 

    A(X) = (1 + X + X2 + X3)3 



3.   Write a generating function for ar = no. of ways of selecting r balls from 3 
      red balls, 5 blue balls, and 7 white balls. 
  A(X) = (1 + X + X2 + X3) (1 + X + X2 + X3 + X4+ X5)  
              (1 + X + X2 + X3 + X4 + X5 + X6 + X7) 
4.   Find the coefficient of X23 in (1 + X5 + X9)10. 

  e1 + e2 + … + e10 = 23 where ei = 0, 5, 9. 
  1 x 5 + 2 x 9 + 7 x 0 = 23 
  Coefficient of X23 = 10! / (1! 2! 7!)  
    = 10 . 9 . 8 / (2)  
    = 10. 9 . 4  
    = 360 
5.   Find the coefficient of X32 in (1 + X5 + X9)10. 

   e1 + e2 + … + e10 = 32 where ei = 0, 5, 9. 
  1 x 5 + 3 x 9 + 6 x 0 = 32 
  Coefficient of X32 = 10! / (1! 3! 6!)  
    = 10 . 9 . 8 . 7/ (3 . 2)  
    = 10. 3 . 4 . 7 
    = 840 
6.   Find a Generating function for the no. of r-combinations of {3.a, 5.b, 2.c}. 
  A(X) = (1 + X + X2 + X3) (1 + X + X2 + X3 + X4+ X5 )  
     (1 + X + X2) 
 

 



Calculating Coefficient of generating function 
 

       If A(X) =  ar X
r, r = 0 .. , then A(X) is said to have a multiplicative inverse  

    if there is B(X) =  bk X
k, k = 0 ..   

    such that A(X) B(X) = 1. 

 

       a0 b0 = 1 

       a1 b0 + a0 b1 = 0 

       a0 b2 + a1 b1 + a2 b0 = 0 

       a0 b3 + a1 b2 +  a2 b1 + a3 b0 = 0 

       … 

       a0 b2 + a0 b2 + … + a0 b2 = 0 

       … 

       b0 = 1 / a0 

       b1 = –a1 b0 / a0 

       b2 = –a1 b1 – a2 b0 / a0 

       … 
 



Geometric Series 

 

   A(X) = 1 – X 

   a0 = 1, a1 = –1. 

   b0 = 1 / a0 = 1 

   b1 = –a1 b0 / a0 = –(–1) (1) / (1) = 1 

   b2 = –a1 b1 – a2 b0 / a0 = –(–1) (1) – (0) (1) / (1) = 1 

   … 

   bi = 1 

     1 / (1 – X) =  Xr, r = 0 .. . 



Replace X by aX, where a is a real no. 

 

 1 / (1 – aX) =  ar X
r, r = 0 .. . 

  Let a = –1 

 1 / (1 + X)   =  (–1)r Xr, r = 0 .. . 

     1 / (1 + aX) =  (–1)r ar X
r, r = 0 .. . 

     1 / (1 – X)n  = ( Xk) n, k = 0 .. . 

                    =  C(n – 1 + r, r) Xr, r = 0 .. . 

 

 



    1 / (1 + X)n  = ( (–1)r Xk) n, k = 0 .. . 
 
                    =  C(n – 1 + r, r) (–1)r Xr, r = 0 .. . 
 
    1 / (1 – aX)n = ( ar Xk ) n, k = 0 .. . 
 
                    =  C(n – 1 + r, r) ar Xr, r = 0 .. . 
 
     1 / (1 – Xk)  =  Xkr, k = 0 .. . 
 
     1 / (1 + Xk)  =  (–1)r Xkr, k = 0 .. . 
 
     1 / (a – X)    = (1 / a)  Xr / ar, r = 0 .. . 
 
     1 / (X – a)    = (–1 / a)  Xr / ar, r = 0 .. . 
 
     1 / (X + a)    = (1 / a)  Xr / ((–1)r ar), r = 0 .. . 
 
     1 + X + X2 + … + Xn = (1 – Xn+1 ) / (1 – x) 
  



Special Cases of Binomial Theorem 

   (1 + X)n = 1 + C(n, 1) X + C(n, 2) X2 + … + C(n, n) Xn  

 

    (1 + Xk) n = 1 + C(n, 1) Xk + C(n, 2) X2k + … + C(n, n) Xnk 

 

    (1 – X) = 1 – C(n, 1) X + C(n, 2) X2 + … + (–1)n C(n, n) Xn 

 

    (1 – Xk) n = 1 – C(n, 1) Xk + C(n, 2) X2k + … + (–1)n C(n, n) Xnk  
 



Examples: 

  1. Calculate A(X) =  ar X
r, r = 0 ..  = 1 / (X2 – 5X + 6). 

        (X2 – 5X + 6) = (X – 3) (X – 2) 

        1 / (X2 – 5X + 6) = A / (X – 3) + B / (X – 2) 

            A(X – 2) + B(X – 3) = 1 

        Let X = 2, Then B = –1 

        Let X = 3, Then A = 1 

        1 / (X2 – 5X + 6)   

              = 1 / (X – 3) – 1 / (X – 2) 

         = (–1 / 3)  Xr / 3r – (–1 / 2)  Xr / 2r, r = 0 .. . 

         = (–1 / 3)  Xr / 3r + (1 / 2)  Xr / 2r, r = 0 .. . 

 

 



2. Compute the coefficients of A(X) =  ar Xr, r = 0 ..  

                  = (X2 – 5X + 3) / (X4 – 5X2 + 4). 

 

        (X4 – 5X2 + 4) = (X2 – 1) (X2 – 4)  

                                = (X – 1) (X + 1) (X – 2) (X + 2) 

       (X2 – 5X + 3) / (X4 – 5 X2 + 4)  

                         = A / (X – 1) + B / (X + 1) + C / (X – 2) + D / (X + 2) 

     (X2 – 5X + 3)   =   A (X + 1) (X – 2) (X + 2)  

                                   + B (X – 1) (X – 2) (X + 2)  

                                   + C (X – 1) (X + 1) (X + 2)  

                                   + D (X – 1) (X + 1) (X – 2) 

  

 



For X = 1, A = 1 / 6 

For X = –1, B = 3 / 2 

For X = 2, C = –1 / 4 

For X = –2, D = –17 / 12 

(X2 – 5X + 3) / (X4 – 5 X2 + 4) 

       = 1/(6(X – 1)) + 3/(2(X + 1)) – 1/(4(X – 2)) – 17/(12(X + 2)) 

       = (–1/6)Xr + 3/2(–1) r Xr – 1/4(–1/2) Xr /2r  

             17/12(1/2) Xr /((–1)r 2r), r = 0 ..   

       =  [(–1/6)  + 3/2(–1)r + 1/8(1/ 2r) – 17/24(–1)r / 2r)] Xr, r = 0 ..  

 

 



3.  Find the coefficient of X20 in (X3 + X4 + X5 + …)5. 

 (X3 + X4 + X5 + …)5 

                 = [X3 (1 + X + X2 + …)]5 

         = X15 (Xr)5, r = 0 ..  

         = X15 C(5 – 1 + r, r) Xr, r = 0 ..  

         = X15 C(4 + r, r) Xr, r = 0 ..  

     Coefficient of X20 in (X3 + X4 + X5 + …)5 

                  = Coefficient of X5 in C(4 + r, r) Xr, r = 0 ..  

            r = 5 

    C(4 + r, r)  

                  = C(9, 5)  

                  = 9! / (5! 4!)  

                  = 9 . 8 . 7 . 6 / (4 . 3 . 2)  

                  = 9 . 7 . 2  

                = 126  

 

 



Recurrence relations 
 

Recurrence relation 

    Formula that relates for any integer n ≥ 1, the nth term of a sequence A = 

{ar}, r = 0 ..  to one or more of the terms a0, a1, …, an-1. 

 

Examples 

an + 5an-1 + 6an-2 = 0.  

an + 5an-1 + 6an-2 = 3n2 – 2n + 1.  



Linear recurrence relation 

A recurrence relation of the form  

 c0(n) + c1(n)an + … + ck(n) an-k = f(n) for n ≥ k,  

where c0(n), c1(n), …, ck(n), and f(n) are functions of n. 

Example 

an – (n – 1)an-1 – (n – 1)an-2 = 5n.  

 

Linear recurrence relation of degree k 

c0(n) and ck(n) are not identically zero. 

Example 

an + 5an-1 + 6an-2 = 0.  



Linear recurrence relation with constant coefficients 

c0(n), c1(n), …, ck(n) are constants. 

Example 

an + 5an-1 + 6an-2 = 0.  

 

Homogeneous recurrence relation 

f(n) is identically zero. 

Example 

an + 5an-1 + 6an-2 = 0.  

 

Inhomogeneous recurrence relation 

f(n) is not identically zero. 

Example 

an + 5an-1 + 6an-2 = 5n.  

 
 



    Solving recurrence relation by substitution and Generating functions 

    Solving recurrence relation by substitution / Backtracking  

      Technique for finding an explicit formula for the sequence defined 

       by a recurrence relation. 

      Backtrack the value of an by substituting the definition of an-1, an-2, 

        … until a pattern is clear. 



Examples 

1. Use the technique of backtracking, to find an explicit formula for the sequence 

defined by the recurrence relation and initial condition for 

      an = an-1+ 3, a1=2. 

      an = an-1 + 3                       or an = an-1+ 1.3 

          = (an-2 + 3) + 3                 = an-2+ 2.3 

          = ((an-3 + 3) + 3) + 3 = an-3+ 3.3 

          …                                 … 

                        = an-(n-1) + (n–1).3 

                        = a1+ (n–1).3 

                                                                         = 2 + (n–1).3 

    The explicit formula for the sequence is  

              an = 2 + (n-1).3 

 

 



2. Use the technique of backtracking, to find an explicit formula for the 

sequence defined by the recurrence relation and initial condition for an = 

2.5an-1, a1 = 4. 

  

  an = 2.5an-1  

  = 2.5(2.5an-2) 

  = (2.5)2an-2  

  = (2.5)3an-3  

           … 

  = (2.5)n-1an-(n-1)  

  = (2.5)n-1a1  

  = 4(2.5)n-1 

  Explicit formula is an = 4(2.5)n-1 



3.  Use the technique of backtracking, to find an explicit formula for the sequence 
defined by the recurrence relation and initial condition for  

      an= 5an-1+ 3, a1= 3. 

    

          an = 5an-1 + 3 

  = 5(5an-2+ 3) + 3 

  = 52an-2 + (5 + 1)3 

  = 52 (5an-3+ 3) + (5 + 1)3 

  = 53an-3 + (52 + 5 + 1)3 

   … 

  = 5n-1an-(n-1)+ (5n-2+ … + 52 + 5 + 1)3 

  =5n-1 a1 + (5n-2+ … + 52+ 5 + 1)3 

  = 5n-13 + (5n-2+ … + 52 + 5 + 1)3 

  = (5n-1+ 5n-2+ … + 52 + 5 + 1)3 

  = 3(5n– 1) / 4 

  Explicit formula is an = 3(5n– 1) / 4 



4. Use the technique of backtracking, to find an explicit formula for the sequence 
defined by the recurrence relation and initial condition for  

      an = a n-1+ n, a1 = 4. 

     

      an = a n-1 + n 

     = an-2 + (n–1) + n 

        = an-3 + (n–2) + (n–1) + n 

   … 

        = an-(n-1)+ [n– (n–1) + 1] + … + (n–1) + n 

        = a1 + 2 + … + (n–1) + n 

        = a1 – 1 + [1 + 2 + … + (n-1) + n] 

  = 4 – 1 + n(n+1)/2 

  = 3 + n(n+1)/2 

  

       Explicit formula is an = 3 + n(n+1)/2 



Solving recurrence relations by Generating functions 

Shifting properties of generating functions 

    Xk A(X) = Xk  anXn, n = 0 ..   

                 =  an Xn+k, n = 0 ..  

Replacing n+k by r, we get 

  ar-k X
r, r = k ..  



Equivalent expressions for generating functions 

If A(X) =  anXn, n = 0 .. , then 

 anXn, n = k ..  = A(X) – a0 – a1X – … – ak-1Xk-1. 

 an-1Xn, n = k ..  = X(A(X) – a0– a1X – … – ak-2Xk-2). 

 an-2 Xn, n = k ..  = X2(A(X) – a0 – a1X – … – ak-3Xk-3). 

 an-3 Xn, n = k ..  = X3(A(X) – a0 – a1X – … – ak-4Xk-4). 

… 

 an-k X
n, n = k ..  = Xk(A(X)). 

 

 



Examples 

 1. Solve the recurrence relation an – 7 an-1 + 10 an-2 = 0, n ≥ 0,  

              a0 = 10, a1 = 41, using generating functions. 

 

      1.  Let A(X) =  an Xn, n = 0 .. . 

      2.  Multiply each term in the recurrence relation by Xn and sum from 

           2 to ∞. 

          an Xn – 7 an-1 Xn + 10 an-2 Xn = 0, n = 2 .. . 

      3.  Replace each infinite sum by an equivalent expression. 

      [A(X) – a0 – a1X] – 7X[A(X) – a0] + 10X2[A(X)] = 0. 

      4.  Simplify. 

        A(X)(1 – 7X +10X2) = a0 + a1X – 7 a0 X. 

         A(X)  = [a0 + (a1 – 7 a0)X] / (1 – 7X +10X2) 

           = [a0 + (a1 – 7 a0)X] / [(1 – 2X) (1 – 5X)] 



5.   Decompose A(X) as a sum of partial fractions. 

                  A(X) = C1 / (1 – 2X) + C2 / (1 – 5X) 

6.   Express A(X) as a sum of familiar series. 

                 A(X)  = C1  2n Xn + C2  5n Xn , n = 0 .. . 

   = (C1 2n + C2 5n) Xn , n = 0 .. . 

7.   Express an as the coefficient of Xn in A(X) and in the sum of the other 
series. 

       an = C1 2n + C2 5n. 

8.   Determine the values of C1 and C2 . 

    For n = 0, a0 = C1 + C2 = 10  … (1) 

    For n = 1, a1 = 2 C1 + 5 C2 = 41  … (2) 

    Solving (1) and (2), we get 

   C1 = 3 

   C2 = 7 

    an = (3) 2n + (7) 5n. 



 2.  Solve the recurrence relation an – 9 an-1 + 26 an-2 – 24 an-3 = 0,  

          n ≥ 3, a0 = 0, a1 = 1, and a2 = 10 using generating functions. 

 

    1. Let A(X) =  an Xn, n = 0 .. . 

    2. Multiply each term in the recurrence relation by Xn and sum from 3 

         to ∞.      

       an Xn – 9  an-1 Xn + 26  an-2 Xn – 24  an-3 Xn = 0, 

   n = 3 .. . 

    3.  Replace each infinite sum by an equivalent expression. 

                   [A(X) – a0 – a1 X – a2 X
2] – 9X [A(X) –a0 – a1X] –  

                          26X2 [A(X) – a0] –24X3[A(X)] = 0. 



4.  Simplify. 

       A(X)(1 – 9X + 26X2 – 24X3)  

   = a0 +  a1 X +  a2 X
2 – 9 a0 X – 9 a1 X

2 + 26 a0 X
2. 

      A(X) = [a0 + ( a1 – 9 a0 ) X + ( a2 – 9 a1+ 26 a0 ) X
2] /  

    (1– 9X + 26X2 – 24X3) 

   = [a0 + (a1 – 9 a0) X + (a2 – 9 a1 + 26 a0) X2] /  

    [(1 – 2X) (1 – 3X) (1 – 4X)] 

5.  Decompose A(X) as a sum of partial fractions. 

         A(X) = C1 / (1 – 2X) + C2/ (1 – 3X) + C3/ (1 – 4X) 

6.  Express A(X) as a sum of familiar series. 

 A(X) = C1  2n Xn + C2  3n Xn + C3  4n Xn, n = 0 .. . 

      = (C12n  + C2 3n + C2 3n + C3 4n) Xn, n = 0 .. . 



7.  Express an as the coefficient of Xn in A(X) and in the sum of the other 
series. 

 an = C1 2
n + C2 3

n + C3 4
n. 

8.  Determine the values of C1, C2 and C3. 

     Substituting a0 = 0, a1 = 1, and a2 = 10 in step 4, we get 

   A(X) = [X + X2] / [(1 – 2X) (1 – 3X) (1 – 4X)] 

    = C1 / (1 – 2X) + C2 / (1 – 3X) + C3 / (1 – 4X) 

    i.e., C1(1 – 3X) (1 – 4X) + C2 (1 – 2X) (1 – 4X)  

    + C3(1 – 2X) (1 – 3X) = X + X2 

   for X = 1/2, C1 = 3/2 

   for X = 1/3, C2 = –4 

       for X = 1/4, C3 = 5/2 

  

  an = (3/2) 2n – (4) 3n + (5/2) 4n . 



Exercises 

1. Solve the recurrence relation an – an-1 – 9 an-2+ 9 an-3= 0, n ≥ 3,  

         a0 = 0, a1 = 1, and a2 = 2 using generating functions. 

2. Solve the recurrence relation an– 3 an-2 + 2 an-3= 0, n ≥ 3, a0 = 1, 

         a1 = 0, and a2 = 0 using generating functions  



Method of Characteristics roots 

    Characteristic equation for a linear homogeneous recurrence relation of 

degree k, an = r1an-1+ … + rkan-k is  

     xk = r1xk-1+ r2xk-2+ … + rk. 

    1.  Characteristic equation x2 – r1x – r2 = 0 of the recurrence relation 

         an = r1an-1+ r2an-2, having two distinct roots s1 and s2. 

        Explicit formula for the sequence is an = us1
n + vs2

n and u and v 

        depend on the initial conditions. 

    2. Characteristic equation x2 – r1x – r2 = 0 of the recurrence relation 

        an = r1an-1+ r2an-2 having a single root s. 

        Explicit formula for the sequence is an = usn + vnsn and u and v 

        depend on the initial conditions. 



Examples 

1. Solve the recurrence relation an = 4an-1 + 5an-2, a1 = 2, a2 = 6. 

  The associated equation is x2 – 4x – 5 = 0 

   i.e. (x – 5)(x + 1) = 0 

   The different roots are s1 = 5 and s2 = –1. 

  Explicit formula is an = us1
n + vs2

n  

  a1 = u(5) + v(–1) = 5u – v 

  Given a1 = 2 

   5u – v = 2  (1) 

  a2 = u(5)2 + v(–1)2 = 25u + v 

  Given a2 = 6 

   25u + v = 6  (2) 

  Solving the equations (1) and (2), we get 

  u = 4/15 and v = –2/3 

   Explicit formula is an = us1
n + vs2

n  

                = 4/15(5)n –2/3(–1)n 



2. Solve the recurrence relation an = -6an-1 – 9an-2,  
   a1 = 2.5, a2 = 4.7. 
  The associated equation is x2 + 6x + 9 = 0 
   i.e. (x + 3)2 = 0 
   The multiple root is s = –3. 
  
  Explicit formula is an = usn + vsn  
   a1 = u(–3) + vn(–3) = –3u + 3v 
   
  Given a1 = 2.5 
   –3u + 3v = 2.5  (1) 
   
   a2 = u(–3)2 + vn(–3)2 = 9u + 18v 
  
  Given a2 = 4.7 
   9u + 18v = 4.7  (2) 
  
  Solving the equations (1) and (2), we get 
   u = –19.7/9 and v = 12.2/9 
  
   Explicit formula is an = usn + vnsn  
    = (–19.7/9)(–3)n + (12.2/9)n(–3)n 
 

 



3.  Solve the recurrence relation an = 2an-2 , a1 = 2, a2 = 6. 
  
  The associated equation is x2 – 2 = 0 
    i.e. (x – 2)(x + 2) = 0 
   The different roots are s1 = 2 and s2 = –2. 
  
  Explicit formula is an = us1

n + vs2
n  

   
   a1 = u(2) + v(–2) = 2u – 2v 
  
  Given a1 = 2 
    2u – 2v = 2 
  u – v = 1  (1) 
   
   a2 = u(2)2 + v(–2)2 = 2u + 2v 
  
  Given a2 = 6 
    2u + 2v = 6 
  u + v = 3  (2) 
   
  Solving the equations (1) and (2), we get 
   u = 2 and v = 1 
  
   Explicit formula is an = us1

n + vs2
n  

 
    = 2(2)n + (–2)n 
 

 



Examples: 
 

     1. Consider the argument. 
     All men are fallible. 
     All kings are men. 
         All kings are fallible. 
    Let M(x) denote the assertion “x is a man” 
        K(x) denote the assertion “x is a king” 
        F(x) denote the assertion “x is fallible” 
          The above argument is symbolised as 
   x, [M(x)F(x)] 
   x, [K(x)M(x)] 
               x, [K(x)F(x)] 
Proof: 
1) x, [M(x)F(x)]  Premise 1 
2) M(c)F(c)   Step 1) and Rule 5 
3) x, [K(x)M(x)]              Premise 2 
4) K(c)M(c)   by 3) and Rule 5 
5) K(c)F(c)   by 2) & 4) and Rule 2 
6) x, [K(x)F(x)]  by 5) and Rule 6 
 

 



2.  Symbolize the following argument and check for its validity: 

 Lions are dangerous animals. 

    There are lions. 

  There are dangerous animals. 

 

    Let L(x) denotes ‘x is a lion’ 

             D(x) denotes ‘x is dangerous’ 

    Symbolically  

   x,[L(x)D(x)] 

   x, L(x) 

                   x, D(x) 



Proof: 
1.  X, [L(x)D(x)]  Premise 1 

2.  L(c)D(c)   by 1) and Rule 5 

3.  X, L(x).               Premise 2 

4.  L(c)    by 3) and Rule 7 

5.  D(c)   by 2) & 4) and Rule 1 

6.  X, D(x)   by 5) and Rule 8 

 
 



Fallacies:  
There are three forms of faulty inferences. 
 
1.  The fallacy of affirming the consequent  
                              (or affirming the converse) 
    (p  q) 
    q 
    -------- 
                 p  Fallacy 
 
                       [(p  q)  q]  p is not a tautology 
2. The fallacy of denying the antecedent  
                           (or assuming the opposite) 
    p  q 
    ~p 
    ------ 
                   ~q                 Fallacy 
                [(p  q)  ~p]  ~q is not a tautology 
  
3. The non sequitar fallacy  
                         (means “it does not follow”)  
    p 
    -- 
                   q 



Graph Theory and Applications 

• Basic concepts 

• Representation of Graphs 

• Isomorphism and Sub graphs 

• Multi graphs and Euler Circuits 

• Hamiltonian graphs 

• Spanning trees 

• Planar graphs 

• Chromatic number 



Basic concepts and notations. 

• A Graph G is a pair of sets (V, E)  

• where V = A set of vertices (nodes)  and 

•            E = A set of edges (lines) 

•  V(G) = Set of vertices in G. 

•  E(G) = Set of edges in G. 

• V(G)  = Number of vertices in graph G  = Order of G. 

• E(G)  = Number of edges in graph G     = Size of  G . 

 

•                                                           a                 b 

 

 

•                                                            c                d  

* * 

* * 



Types of graphs 

• Non Directed Graph (Undirected graph): The elements of  E are 
unordered pairs (sets) of vertices. In this case an edge {u, v} is said to join 
u and v or to be between u and v. 

• Directed Graph: In a digraph the elements of E are ordered pairs of 
vertices. In this case an edge (u, v) is said to be from u to v. 

• Loop: An edge drawn from a vertex to itself. 

• Multi Graph: If one allows more than one edge to join  a pair of vertices, 
the result is then called a multi graph. 

• Simple Graph: A graph with no loops and no parallel edges. 

• Degree: Degree of a vertex in an undirected graph is the number of edges 
incident with it, except that a loop at a vertex contributes twice to the 
degree of that vertex. The degree of the vertex ‘v’ is denoted by deg(v).                                                            

 



Definitions 

• In-degree and Out-degree:  In a digraph, the number of edges incident to 
a vertex is called the in-degree of the vertex and the number of vertices 
incident from a vertex is called its out-degree. 

• The in-degree of a vertex ‘v’ in a graph G is denoted by deg+(v) . 

• The out-degree of a vertex v is denoted by deg -(G). 

• A loop at a vertex in a digraph  is counted as one edge for both  

       in-degree and out-degree of that vertex. 

• Neighbors: If  there is an edge incident from u to v, or incident on u and v, 
then u and v are said to be adjacent ( neighbors).  

• (G) = minimum of all the degrees of vertices in a graph G. 

• (G) = Maximum of all the degrees of vertices in a graph G.  

 



Regular graph 

• Regular Graph: In a graph G,    if  (G)  = (G)  = k 

       i.e.,  if each vertex of G has degree k, then G is said to be a regular graph 
of degree k (k-regular). 

• Ex: Polygon is a 2-regular graph . 

• Ex: A 3-regular graph is a cubic graph. 

• Complete Graph: A simple non directed graph with ‘n’ mutually adjacent 
vertices is called a complete graph on ‘n’ vertices and may be represented 
by Kn. 

•  Note: A complete graph on ‘n’ vertices has [{n(n – 1)}/ 2]edges, and each 
of its vertices has degree ‘n-1’. 

•  Every complete graph is a regular graph. 

• The converse of the above statement need not be true. 



More graphs 

• Cycle Graph: A cycle graph of order ‘n’ is a connected graph whose edges 
form a cycle of length n. 

•  Note: A cycle graph ‘Cn’ of order n has n vertices and n edges. 

•  Null Graph: A null graph of order n is a graph with n vertices and no 
edges. 

•  Wheel Graph: A wheel graph of order ‘n’ is obtained by adding a single 
new vertex (the hub) to each vertex of a cycle graph of order n. 

•  Note: A wheel graph  Wn  has  ‘n +1’ vertices and   2n  edges. 

•  Bipartite Graph: A Bipartite graph is a non directed graph whose set of 
vertices can be partitioned in to two sets M and N in such a way that each 
edge joins a vertex in M to a vertex in N. 

 

 



More graphs. 

• Complete Bipartite Graph: A complete Bipartite graph is a Bipartite  graph 
in which every vertex of M is adjacent to every vertex of N. 

• If M = m  and N  = n  then the complete Bipartite graph is denoted by   
Km , n.  It  has ‘m n’ edges. 

• The number of edges in a bipartite graph is  (n2/4). 

• Degree Sequence: If v1, v2, ……,  vn are the vertices of a graph G, then the 
sequence{d1, d2,…..,  dn} where   di = degree of vi is called the degree 
sequence of G.  

• Usually we order the degree sequence so that the degree sequence is 
monotonically decreasing.  



First theorem on graph theory 

• Sum of Degrees Theorem: If V = {v1, v2, ….., vn} is the vertex set of a non 
directed graph G then       

•                                                    

•       deg (vi) = 2.  E 

 

• Proof:  When the degrees are summed, each edge contributes a count of 
one to the degree of each of the two vertices on which the edge is 
incident. 

• Hence, the theorem follows. 

i =1 
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Corrollories 

• Cor. 1   If G is a digraph, then 

 

•                                 deg+(vi)   =     deg –(vi)  =  E 

 

• Cor.2. An undirected graph  has an even number of vertices of odd degree. 
(See Text book for proof) 

• Cor.3  If G is a  k– regular graph , then k. V  = 2.  E . 

 

• Cor.4  In a non directed graph G, If   k = (G)  and  m = (G) then                     

•      k. V    2. E    m .V  

•         
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Examples 

• Ex. A non directed graph contains 16 edges and all vertices are of degree 
2. Find the number of  vertices in G ? 

• Solution: By Sum of degrees theorem, if degree of each vertex is k, then 

•             k. V  = 2. E 

•          2.  V  = 2.(16) 

•               V  = 16 

 

 



Example 

• Ex. A simple non directed graph G contains 21 edges, 3 vertices of degree 
4 and the other vertices are of degree 2. Find the number of vertices in 
the graph G ? 

• Solution:  Let  V = n .  By Sum of degrees theorem, 

 

•  deg (vi) = 2.  E 

 

•  3.(4) + (n – 3 ). 2 = 2.(21) 

•        n  = 18. 
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Ex.What is the number of vertices in an undirected connected graph with 27 
edges, 6 vertices of degree 2, 3 vertices of degree 4 and remaining vertices of 

degree 3? 

• Solution:  Let  V = n .  By Sum of degrees theorem, 

 

•  deg (vi) = 2.  E 

 

•  6.(2) + 3.(4) + (n – 9 ). 3 = 2.(27) 

•        n  = 19. 

 

 



Ex. If a simple non directed graph G contains 24 edges and all vertices are of 
same degree then find the number of vertices in G? 

• Solution:  By Sum of degrees theorem, if degree of each vertex is k, then 

•             k. V  = 2. E 

•          k.  V  = 2.(24) 

•               V  = 48/k  ( k = 1,2,3,4,6,8,…) 

•  V(G) = 48, 24, 16, … 



Ex. What is the largest possible number of vertices in a graph G, with 35 
edges and all vertices are of degree at least 3 ?. 

• Solution: By Sum of degrees theorem, if degree of each vertex is  k, then 

•             k. V   2. E 

•          3. V   2.(35) 

•               V   (70/3 = 23.33..) 

•               V   23 

•  The largest possible number of vertices = 23 

 



Example 

• Ex. Let G be a simple graph with n vertices. Then show that the number of 
edges in G is less than or equal to {n.(n – 1)} / 2. 

 

• Solution: In a simple graph, each edge correspond to a distinct pair of 
vertices.  

• The number of ways to choose a pair of vertices, out of n vertices =    

•                                 C(n , 2)  =   n. (n – 1 ) 

•                                                          2 

• The maximum number of edges possible in G = {n.(n – 1)} / 2. 

•  The number of edges in G is less than or equal to {n.(n – 1)} / 2. 

 

 



Ex. Which of the following degree sequences represent a simple non directed 
graph 

   a) {2, 3, 3, 4, 4, 5}          b) {2, 3, 4, 4, 5}   
  c) {1, 3, 3, 4, 5, 6, 6}       d) {1, 3, 3, 3} 

• Solution: a) Consider the degree sequence {2, 3, 3, 4, 4, 5}  

•  Here, we have 3 vertices with odd degree. 

• But, By sum of degrees theorem, An undirected graph  should contain  an 
even number of vertices of odd degree.  

•  The degree sequence cannot represent a simple non directed graph. 

 

•  b) Consider the degree sequence {2, 3, 4, 4, 5}  

•  Here, we have a vertex with  degree 5. 

• But,  A simple non directed graph  of order 5 cannot have a vertex with 
degree 5.   

•  The degree sequence cannot represent a simple non directed graph. 

 

 



Contd., 

• c) Consider the degree sequence {1, 3, 3,  4, 5, 6, 6}  

     Here, the order of the graph is 7 and we have 2 vertices with degree 6. 

• Since these two vertices are adjacent to all other vertices of the graph, a 
vertex with degree 1 does not exist  

•  The degree sequence cannot represent a simple non directed graph. 

 

•  d) Consider the degree sequence {1, 3, 3, 3 }  

     Here, the order of the graph is 4 and we have 3 vertices with degree 3. 

• Since these 3 vertices are adjacent to all other vertices of the graph, a 
vertex with degree 1 does not exist.  

•  The degree sequence cannot represent a simple non directed graph. 

 

 



Ex. Show that a degree sequence with all distinct elements cannot represent 
a simple non directed graph. 

• Solution: Let G = {v1,v2,v3,…,vn}  

• The possible degree sequences are {0,1,2,….,n –1} and {1,2,3,…,n}   

• In a simple graph of order n, if  there is a vertex with degree n – 1 

       then a vertex with degree 0 does not exist.   

• A simple non directed graph  of order ‘n’ cannot have a vertex with degree 
n. 

•  The degree sequence with all distinct elements cannot represent a 
simple non directed graph. 

 

 

 



Havel Hakimi Result 

• Havel Hakimi Result: Consider the following two sequences and assume 
the sequence (i) is in descending order 

•  i) s, t1, t2, ……. ts, d1, d2, …….. dn 

•  ii) t1 – 1, t2 – 1, ……. , ts – 1, d1, d2, ……., dn 

•    then sequence (i) is graphic iff (ii) is graphic 

• Ex. Apply Havel-Hakimi Result to find whether the following degree 
sequences represent a simple non directed graph. 

• S1 : {6, 6, 6, 6, 4, 3, 3, 0} 

• S2 : {6, 5, 5, 4, 3, 3, 2, 2, 2} 

• S2 : {1, 1, 3, 3, 3, 4, 6, 7} 

 

 



Representation of Graphs 

• Adjacency list: One way to represent a graph with no multiple edges is to 
use adjacency lists, which specify the vertices that are adjacent to each 
vertex of the graph. 

• Ex. 



Isomorphism 

• Isomorphic Graphs: Two graphs G and G1 are isomorphic if there is a 
function  f : V(G)  V(G1)  such that  

•        (i) f is a bijection    and  

•        (ii) for each pair of vertices u and v of G, 

•              {u, v}  E(G)  {f(u), f(v)}  E(G) 

•  i.e..  the function preserves adjacency. 

• Note:   If G is isomorphic to G1 then 

• a)  V(G) =  V(G1)  

• b)  E(G) =  E(G1)  

• c) The degree sequences of G and G1 are same. 

• d) If {v, v} is a cycle in G, then {f(v), f(v)} is a loop in G1, and more generally, 
if v0 – v1 –  v2 – …. – vk – v0 is a cycle of length k in G, then f(v0)– f(v1)– f(v2) 
– … – f(vk) – f(v0) is a cycle of length k in G1. 

 



Isomorphism 

• Suppose G and G1 are two graphs and that  f : V(G)  V(G1) is a bijection.  

• Let A be the adjacency matrix for the vertex ordering v1, v2, ……,vn of the 
vertices of G.  

• Let A1 be the adjacency matrix for the vertex ordering 

•  f(v1), f(v2), ….. , f(vn) of the vertices of G1.  

• Then f is an isomorphism from V(G) to V(G1) iff   the adjacency matrices A 
and A1 are equal. 

• Note:  If A  A1, then it may still be the case that graphs G and G1 are 
isomorphic under some other function. 

 



Isomorphism 

• Complement of a graph: The complement of a graph G is the graph G with 
the same vertices as G. An edge exists in G iff it does not exist in G. 

• Theorem: Two simple graphs are isomorphic iff their complements are 
isomorphic. 

• If two graphs are isomorphic, then their corresponding sub graphs are 
isomorphic. 

• Induced Subgraph: If W is a subset of V(G), then the sub graph induced by 
W is the sub graph H of G obtained by taking V(H) = W and E(H) to be 
those edges of G that join pairs of vertices in W. 

• If G is isomorphic to G  then G is said to be self complementary.  

 

 



Isomorphism 

• Ex. If G is self complementary graph with n vertices, then show that  

• G has {n(n – 1)}/4 edges.   

• Ex. If G is self complementary then prove that G has 4k or 4k + 1 vertices 
where k is some positive integer.  

• Ex. How many non isomorphic graphs are there of order 4 and size 2? 

• Ex. How many non isomorphic graphs are there of order 8, size 8 and 
degree sequence   {2,2,2,2,2,2,2,2}.  

• Ex. How many non isomorphic graphs are there of order 6, size 6 and 
degree sequence   {2, 2, 2, 2, 2, 2}. 

• Ex. Let Cn be a cycle graph on n vertices. if Cn is isomorphic to Cn then 
show that n = 5. 

•       



Euler Path and Circuit 

• Euler Path:  An Euler  path in  a multi  graph is a path that includes each 
edge of the multi graph exactly once and intersects each vertex of the 
multi graph at least once. 

• An Euler circuit is an Euler path whose end points are identical. 

• A multi graph is  traversable if it has Euler path. 

• A non directed multi graph has an Euler path iff  it is connected and has 
zero or exactly two vertices of odd degree. 

• Any finite connected graph with exactly two odd vertices is 
traversable(Euler path exists). A traversable trail may begin at either odd 
vertex and will end at other odd vertex. 

• A connected multi graph has an Euler circuit if and only if all of its vertices 
are of even degree. 

 



Hamiltonian Graph 

• Hamiltonian Graph: A Hamiltonian Graph is a graph with a closed path 
that includes every vertex exactly once. Such a path is a cycle and is called 
a Hamiltonian cycle. 

• An Eulerian circuit uses every edge exactly once but may repeat vertices , 
while a Hamiltonian cycle uses each vertex exactly once (except for the 
first and last) but may skip edges. 

 



Spanning Trees 

• Tree: A connected graph with no cycles is called a tree.     

•  A tree with ‘n’ vertices has (n – 1) edges. 

• A tree with n vertices (n>1) has at least two vertices of degree 1.   

• A sub graph H of a graph G is called a spanning tree of G if 

 i) H is a tree and 

 ii) H contains all vertices of G 

• Note:  In general, if G is a connected graph with n vertices and m edges, a 
spanning tree of G must have (n – 1) edges. Therefore, the number of 
edges that must be removed before a spanning tee is obtained must be m 
– (n – 1). This number is called circuit rank of G. 

• A non directed graph G is connected iff G contains a spanning tree. 

• The complete graph Kn has nn – 2 different spanning trees.  

                                                                                  (Caley’s formula) 

 



BFS 

• Breadth first search : (Algorithm for finding a spanning tree of a connected 
graph) 

• The idea of BFS is to visit all vertices sequentially on a given level before 
going to next level. 

• Input: A connected graph G.  

• Output: A spanning tree for G. 

• Method: ….. 

• ( Refer Text book by  Mott, Kandell and Baker) 



DFS 

• Depth first search : (Algorithm for finding a spanning tree of a connected 
graph) 

• The idea of DFS is proceeding to higher levels successively in the first 
opportunity. Later we backtrack and add the vertices which are not 
visited. 

• Input: A connected graph G.  

• Output: A spanning tree for G. 

• Method: ….. 

• ( Refer Text book by  Mott, Kandell and Baker) 

 



Minimal Spanning Tree: Let G be a connected graph where each edge of G is 
labeled with a non negative cost. A spanning tree T where the total cost C(T) 

is minimum is called a minimal spanning tree.  

• Kruskal’s Algorithm: (For finding minimal spanning tree of a connected 
weighted graph) 

•  Input: A connected graph G with non negative values assigned to each 
edge. 

•  Output: A minimal spanning tree for G. 

•  Method: 1) Select any edge of minimal value that is not a loop. This is the 
first edge of T(if  there is more than one edge of minimal value, arbitrary 
choose one of these edges) 

• 2) Select any remaining edge of G of having minimal value that does not 
form a  circuit with the edges already included in T. 

• 3) Continue step 2 until T contain (n – 1) edges when n = |V(G)| 

 



Prim’s algorithm. 

• Prim’s Algorithm: (For finding a minimal spanning tree) 

• 1) Let G be a connected graph with non negative values assigned to each 
edge. First let T be the tree consisting of any vertex V1 of G. 

• 2) Among all the edges not in T, that are incident on a vertex in T and do 
not form a circuit when added to T, Select one of minimal cost and add it 
to T. 

• 3) The process terminates after we have added (n – 1) edges  

•     where n = |V(G)|. 

•   

 



Planar Graphs 

• A graph or a multi graph that can be drawn in a plane or on a sphere so 
that its edges do not cross is called a planer graph.  

• Ex : A complete graph on 4 vertices K4 is a planar graph. 

• Ex : Tree is a planar graph.  

• Map, Connected map : A particular planar representation of a finite planer 
multi graph is called  a map. We say that the map is connected if the under 
lying  multi graph is connected.  

• Region : A given map (planar graph) divide the plane into connected areas 
called regions 

• Degree of a region : The boundary of each region of a map consists of a 
sequence of edges forming a closed path. The degree of region ‘r’ denoted 
by deg (r) is the length of the closed path bordering r . 



Sum of degrees of regions theorem 

• If G is a planar graph with  k  regions, then the sum of the degrees of the 
regions of G is equal to twice the number of edges in G. 

                 i.e.,    deg (ri) = 2. E   .  

 

• Cor.1  In a planar graph G, if the degree of each region is k  then 

                     k.R  = 2 .E 

• Cor.2  In a planar graph G, if the degree of each region is  k , then 

                     k.R    2 .E 

• In particular, If G is a  simple connected planar graph ( A planar graph with 
no loops and no parallel edges, and degree of each region is  3), then  

                           3. R    2 . E  
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Euler’s  formula 

• Question:  State and prove Euler’s formula for planar graphs. 

• Statement: If G is a connected planar graph, then  

•                  V –  E  + R  = 2. 

• Proof:  ….. 

• Theorem:  If G is a simple connected planar graph with  E > 1  then,  

    (a)  E    {3. V – 6}. 

    (b) There exists at least one vertex v of G such that deg(v)  5 

   Proof: …… 

• Theorem: If G is a simple connected planar graph with  v > 3  then,  

                    R    {2. V – 4}. 

    Proof:   



Polyhedral graph 

• Polyhedral Graph: A connected plane graph is said to be polyhedral if 
degree of each region is  3 and deg(v)  3 for all v  G. 

       i.e.,   3. R    2 . E     and         3. V    2 . E . 

 

• For any polyhedral graph  

•    a)  V    (2 + R  ) 

•                              2  

•    b)  R      (2 +  V   ) 

•                                  2  

•    c) (3. R - 6)    E  

 
  

 



 Kurtowski Theorem 

• A graph G is not planar iff G contains a sub graph homeomorphic to K3, 3 or 
K5 . 

  
• Ex. A planar graph contains 25 vertices and 60 edges then find the number 

of regions in the graph .  

• Ex. What is the maximum number of edges possible in a planar graph with 
eight vertices ?. 

• Ex. What is the minimum  number of vertices necessary  for a graph with 
11 edges to be a simple planar graph?. 

• Ex. Suppose that a connected planar graph has 20 vertices, each of  
degree 3. In to how many regions does a representation of this planar 
graph split the plane ? 

 



Examples 

• Ex. Let G is a connected planar graph with 35 regions and degree of each 
region is 6.  Find the number of  vertices in G ?. 

• Ex. Suppose G is a polyhedral graph with 12 vertices and 30 edges prove 
that degree of each region is 3. 

• Ex. Show that there does not exist a polyhedral graph with exactly seven 
edges. 

• Ex. Show that there does not exist a polyhedral graph with exactly 30 
edges and 11 regions.  

• Theorem: Prove that a complete graph Kn is planar iff n  4. 

• Theorem: Prove that a complete Bipartite graph Km, n is planar  

•                  iff    m  2 or n  2. 

 



Chromatic number 

• Vertex coloring:  A coloring of a simple graph is the assignment of color to 
each vertex of the graph so that no two adjacent vertices are assigned the 
same color. 

•  Chromatic Number: The minimum number of colors needed to paint a 
graph G is called the chromatic number of G , denoted by (G) 

• Adjacent Regions: In a planar graph two regions are adjacent if they share 
a common vertex. 

• Map  coloring: An assignment of colors to the regions of a map such that 
adjacent regions have different colors. 

• A map ‘M’ is n – colorable if there exists a coloring of M  which uses n 
colors. 

• A planar graph is 5 – colorable  

 



Four color Theorem 

• Four color Theorem: If the regions of a planar graph are colored so that 
adjacent regions have different colors, then no more than 4 colors are 
required. 

                  i.e.,    (G)    4. 

• Ex. Prove that the chromatic number of a complete graph Kn is n. 

• Ex. Prove that the chromatic number of a complete Bipartite graph Km, n is 
2. 

• Ex. Prove that the chromatic number of cyclic graph Cn is 2 if n is even and 
3 if n is odd. 

• Ex. If every cycle of G has even length then show that its chromatic 
number is 2. 

• Ex. Prove that the chromatic number of a tree on n vertices is 2.  

 

 


