## MECHANISMS AND MACHINE DESIGN

B.NAVEEN KUMAR

Asst.Professor
Institute of Aeronautical engineering

## UNIT-1 <br> MECHANISMS

## MECHANICS

## Science dealing with motion

DIVISIONS OF MECHANICS
Statics - Deals with systems which are not changing with time.

Dynamics - Deals with systems which are changing with time.

## DIVISIONS OF DYNAMICS

KINEMATICS - Deals with Motion and Time
(Kinema - Greek Word - Motion)
KINETICS - Deals with Motion, Time and Forces.

Statics
Kinematics

## Some Definitions

- Machine - device to transfer or transform energy to do useful work.
- Mechanism - device to transfer or transform given input motion to specified output motion
- Structure - a single body with no motion / combination of bodies with no relative motion


## Classification of Mechanisms

- Based on the nature of output speed
- Uniform motion mechanism
- Non-uniform motion mechanism


## Uniform Motion Mechanisms

## Uniform Motion - Equal Displacement For Equal Time Interval

Examples: All Gear Drives All Chain Drives

Belt Drives without slip





## Non-Uniform Motion Mechanisms

Non-Uniform Motion - Unequal Displacement For Equal Time Interval

Examples : Linkage Mechanisms
Cam Mechanisms
Geneva Wheel



Created for "Design of Machinery, Srd ed." by R. L. Norton and "The Multimedia Handtook of Mechanical Devices' by S. W'ang Soltware copyright © 2004 by The MoGraw-Hill Companies, Inc. All rights reserved.
cam_flat_faced


## Classification of mechanisms

Based on mobility (D.O.F) of the mechanism

1. Considering the D.O.F. of output only
a) Constrained Mechanism
b) Unconstrained Mechanism
2. Considering the sum of the D.O.F. Of input and output motions
a) Single (one) d.o.f. mechanism
b) Multi-d.o.f. mechanism

## Constrained Mechanism

- One independent output motion. Output member is constrained to move in a particular manner only.

Example: Four-bar mechanism Slider Crank Mechanism
Five-bar mechanism with two inputs

## Unconstrained mechanism

- Output motion has more than one D.O.F.
- Example: Automobile Differential during turning the vehicle on a curve


## Five-bar mechanism with one

 input
## Single D.O.F Mechanism

Sum of the input and output D.O.F. is two.
Single D.O.F. Motion - One Independent Input motion and one independent output motion

Examples: Four-Bar Mechanism
Cam-Follower Mechanism


## UNIT-2 <br> KINEMATIC ANALYSIS



## Multi D.O.F. Mechanism

Sum of the input and output motion D.O.F. is more than two.

Multi D.O.F. Motion - More than one
Independent Output / Input Motions
Examples : Automobile Differential
3-D Cam Mechanism

## (Camoid)

Five-Bar Mechanism


## Classification of Mechanisms

- Based on position occupied in space
- Planar Mechanism
- Spherical Mechanism
- Spatial Mechanism


## Planar Mechanism

Planar Motion - Particles/Points of Members move in parallel planes

Examples : Planar Four-Bar Mechanism Slider Crank Mechanism
Cam-Follower Mechanism
Spur/Helical Gear Drives

## Four-bar Crank Rocker and Coupler Curve



## Two Stroke Engine



## Spherical Mechanism

Spherical Motion - Points maintain Constant Distance w.r.t. a Common Centre Point in any position during motion.

Examples : Universal Joint
Bevel Gear Drive
Spherical Four-Bar Mechanism


## UNIT-3 <br> GYROSCOPE AND PRECESSIONAL MOTION

## GYROSCOPE

## Gyroscope

 frameGimbal
Rotor

## Spatial Mechanism

- Spatial Motion - Points can occupy any Position in space

Examples: Spatial Four-Bar Mechanism Worm Gear Drive
Serial Manipulators


## Classification of mechanisms

- Based on the connection of the output member
- Open mechanism
- Closed mechanism


## Open Mechanism

- Output member not connected to the fixed link / frame
- Robot arms
- Arms of earth movers



## Closed Mechanism

- Output member connected to the frame.
- Four-bar mechanism
- Slider-crank mechanism
- Cam follower mechanism


## Components of Mechanisms

- Link / element
- Kinematic pairs / joints
- Kinematic chain


## Link / Element

A single resistant body / combination of resistant bodies having relative motion with another resistant body / combination of resistant bodies.

Rigid Body


Flexible Body


Liquid


- Link with one Node : Unary Link
- Link with two Nodes : Binary Link (a)
- Link with three Nodes : Ternary Link
- Link with four Nodes : Quaternary Link (c)




## Kinematic Pairs / Joints

- Combination of two links kept in permanent contact permitting particular kind(s) of relative motion(s) between them


## Classification of Pairs

- BASED ON NATURE OF CONTACT BETWEEN LINKS:

1. Lower Pairs -- Surface Contact
2. Higher Pairs - Point or Line Contact


## BASED ON HOW THE CONTACT IS MAINTAINED:

1. Self / Form Closed Pairs - Shape/Form of the links maintain the contact. No external force.
2. Force Closed Pairs - External forces like gravitational force, spring force etc., required to maintain the contact.


- BASED ON THE DEGREE OF FREEDOM

1. Type I / Class I - One D.O.F
2. Type II / Class II - Two D.O.F
3. Type III / Class III - Three D.O.F
4. Type IV / Class IV - Four D.O.F
5. Type V / Class V - Five D.O.F

BASED ON THE NATURE OF CONSTRAINT

1. (Completely) Constrained Pair - 1 D.O.F
2. Unconstrained Pair - More than 1 D.O.F
3. Successfully Constrained pair - Unconstrained pair converted as Constrained pair by some means.

## Completely Constrained Pair



Unconstrained Pair


Successfully
Constrained Pair


- BASED ON THE POSSIBLE MOTIONS (Few Important Types only)
Name of Pair Letter Symbol D.O.F

1. Revolute / Turning Pair
R
2. Prismatic / Sliding Pair
3. Helical / Screw Pair
4. Cylindrical Pair
5. Spherical / Globular Pair

| $R$ | 1 |
| :---: | :---: |
| $P$ | 1 |
| $H$ | 1 |
| $C$ | 2 |
| $S$ (or) G | 3 |

6. Flat / Planar Pair
7. Cylindric Plane Pair
Cp
8. Spheric Plane Pair
Sp


Turning Pair... 1-DQF


Prismatic (Sliding) Pair...1-DOF


Screw Pair ...1-DOF


Flat Pair ...3-DOF

Cylinderical Pair 2-DOF


Spherical (Globular) Pair...3-DOF

cylindric Plane Pair D.O.F-4 CP

Two Tramslations,
Two Rotations

spheric Plame Pair D.O.F - 5

Two Tramslations
Three Rotations v. SUNDARESWARAN

## Kinematic Chain

- Assembly of links and pairs to produce required / specified output motion(s) for given input motion(s)


## UNIT-4 <br> CAMS AND FOLLOWERS

## CAMS AND FOLLOWERS



## Mobility / D.O.F of Mechanism

- No. of inputs required to get a constrained mechanism (or) no. of position variables needed to sketch the mechanism with all link lengths known.
- KUTZBACH CRITERION FOR PLANAR MECHANISM
- 

$$
F=3(n-1)-2 P_{1}-1 P_{2}
$$

- F-D.O.F
n - No. of links
- $P_{1}-$ No. of kinematic pairs with 1 D.O.F.
- $\mathrm{P}_{2}-$ No. of kinematic pairs with 2 D.O.F.

$$
\begin{aligned}
& n=2 \\
& P_{1}=2 \\
& P_{2}=0 \\
& F=3(2-1)-2 \times 8-1 \times 0 \\
&=3-4-0 \\
&=-1
\end{aligned}
$$

This is a Pre-loaded structure/ super structure. V. SUNDARESWARAN

## DETERMINATION OF D.O.F



$$
\begin{aligned}
n & =3 \\
P_{1} & =3 \\
& P_{2}=0 \\
F & =3 \times(3-1)-2 \times 2-1 \times 0 \\
= & 6-6-0=0
\end{aligned}
$$

This is a STRUCTURE


$$
\begin{aligned}
n & =4 \\
P_{1} & =4 \\
P_{2} & =0 \\
F & =3 x(4-1)-2 \times 4-1 \times 0 \\
& =9-8-0 \\
& =1
\end{aligned}
$$

This is a Constrained Mechanism.


$$
\begin{aligned}
n & =5 \\
P_{1} & =5 \\
P_{2} & =0 \\
F & =3 \times(5-1)-2 \times 5-1 \times 0 \\
& =12-10-0 \\
& =2
\end{aligned}
$$

This is an Unconstrained Mechanism.

$$
\begin{aligned}
& n=6 \\
& P_{1}=7 \\
& P_{2}=0 \\
& F=3 \times(6-1)-2 \times 7-1 \times 0 \\
& \quad=15-14-0 \\
& \quad=1
\end{aligned}
$$

This is a Constrained Mechanism.

$$
\begin{aligned}
& \text { n }=6 \\
& P_{1}=7 \\
& P_{2}=0 \\
&=3 \times(6-1)-2 \times 7-1 \times 0 \\
&=1
\end{aligned}
$$

This is a Constrained Mechanism.

$$
n=11
$$

$$
P_{1}=15
$$

$$
P_{2}=0
$$

$$
F=3 \times(11-1)-2 \times 15-1 \times 0
$$

$$
=30-30-0
$$

$$
=0
$$

There are two pairs between Links $(2,4,5) ;(3,4,6)$;

$$
(5,7,8) ;(8,10,11)
$$

## This is a Structure.

## Gruebler's Criterion

- This criterion is used to find out whether an assembly of links with 1 d.o.f. lower pairs is a constrained mechanism or not.
- $3 n-2 l-4=0$
- $n$ - no. of links I - no.of lower pairs with one d.o.f


## F < $0 \quad$ Pre-loaded structure Super structure

$F=0 \quad$ Structure

F =1 Constrained Mechanism

F > 1 Unconstrained Mechanism

## Constrained Mechanism



Unconstrained Mechanism


$$
\begin{aligned}
& 1 \text { 匀展 } \overbrace{\text { 2-3 }}^{2-3} \\
& 4 \text { slip. Rolling Pair } \\
& \text { (Higher Pair) } \\
& n=3 \\
& P_{1}=2 \\
& \begin{array}{lll}
1-2 & R & P_{1}=2 \\
3-1 & P & P_{2}=1
\end{array} \\
& F=3(3-1) 2 \times 2-1 \times 1 \\
& =6-4-1 \\
& \text { = } 1
\end{aligned}
$$

This is a comstraimed mechamism．


## UNIT-5 GEARS AND GEAR TRAINS

## GEARS AND GEAR TRAINS

## WHAT ARE GEARS???

- A friction wheel with teeth cut on it, i.e.; a symehronous arrangement of projections and recesses on wheel.


Link / Element - A resistant body which has relative motion with another resistant body of a system.

Kinematic Pair / Joint - Combination / Assembly of two links kept in permanent contact, permitting particular kind(s) of definite relative motion(s) between them.

Kinematic Chain - Combination / Assembly of links and pairs such that each link has minimum two pairs, permitting controlled definite output motion for a specified input motion.

Mechanism - A kinematic chain with one link fixed / stationary.

Machine - A device, which has one or more mechanisms, transferring / transforming motion and energy to do required useful work easily.

## MOBILITY OR DEGREE OF FREEDOM

- For a Link - Six in spatial motion, three in planar motion.
- For a Kinematic Pair - Number of independent coordinates/pair variables to specify the position of one link with another link (OR) number of independent relative motions possible between the links. Maximum five and minimum one in spatial motion. Maximum two and minimum one in planar motion.
- For a Kinematic Chain/Mechanism - Number of independent position variables to sketch the configuration with known link lengths (OR) number of input motions required to get a constrained outnut motion

Spatial D.O.F.


Planar D.O.F.


C - Pair


## Kinematic Inversions

- Process of obtaining different mechanisms from the same kinematic chain, by fixing different links in turn, is known as kinematic inversion.

Four inversions are possible from four-bar kinematic chain.

## Formation of four-bar mechanism

- No. of links - 4, No. of pairs - 4.
- All the pairs are revolute pairs.
- Links are :1. Fixed link or Frame
- 2. Input Link
- 3. Coupler

4. Output link or Follower

## Assembly Condition

- Lengths of links: Longest link - I Shortest link - s Intermediate links - p, q

$$
l<s+p+q
$$

## Grashofian four-bar mechanism

- Atleast one link will have full rotation if

$$
S+I \leq p+q
$$

## GRASHOF' S LAW

In a planar four bar revolute pair kinematic chain if the sum of the lengths of the shortest and the longest links is less than or equal to the sum of the lengths of the other two intermediate links at least one link will have full rotation.

Mechanisms obtained from the kinematic chain satisfying these conditions are known as Grashofian Mechanisms.

Mechanisms obtained from the kinematic chain which are not obeying these conditions are known as Non-Grashofian Mechanisms.

Inversions of four bar Mechanisms are named based on the motions of input link and output link.

Crank - Link with 360 degree rotation

Rocker/Lever - Link with less than 360 degree rotation

## Four- bar Inversions

- Crank - Rocker Mechanisms (Two)
- Drag Link / Double Crank Mechanism
- Double - Rocker Mechanism
- Above are Grashofian Inversions
- All four non-Grashofian inversions are Double - Rocker mechanisms


## Rockers of Grashofian Mechanisms will have less than 180 degree rotation.

Rockers of Non-Grashofian Mechanisms can have greater than 180 degree rotation.


Inversion of the kinematic chain depends upon which link is fixed.


## Conditions for Inversions

- POSITION OF SHORTEST LINK
- Adjacent to the fixed link
- Fixed link itself

Drag Link (Double Crank)

- Opposite to fixed link

Examples for Crank - Rocker Mechanism

1. Wind shield wiper mechanism on Driver Side

2. Sewing Machine Treadle Mechanism


## 3. Grinding Wheel Treadle Mechanism


4. Pedaling action of a Bicycle


Example for Double Crank / Drag Link Mechanism 1.

2. Locomotive Wheels Mechanism


## Example for Double Rocker Mechanism

1. Wind Shield wiper on Passenger Side

2. Ackerman's Steering Gear Mechanism



Created for "Design of Machinery, 3rd ed." by R. L. Norton and
"The Multimedia Handbook of Mechanical Devices" by S. Wang Software copyright 92004 by The MeGraw-Hill Comparies, Inc. All rights reserved.

