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Fluid Mechanics

The atmosphere is a fluid!



Fluid Mechanics Overview

]_Statics ‘ Dynamics

Gas Liquids
Air, He, Ar, Water, Oils, Stability
N,, etc. L, Pressure
etc. __
Surface
Tension
Compressibility Density Viscosity

Vapor

4

, Flows

Buoyancy Compressible/

Incompressible
Laminar/
Turbulent

Steady/Unsteady
Viscous/Inviscid




Characteristics of Fluids

Gas or liquid state |
“Large” molecular spacing relative to a solid b
“Weak” intermolecular cohesive forces

Can not resist a shear stress in a stationary
state

Will take the shape of its container
Generally considered a continuum
Viscosity distinguishes different types of fluids




Measures of Fluid Mass and Weight:

The density of a fluid is defined as mass per unit volume.

m = mass, and v = volume.

*Different fluids can vary greatly in density

Liquids densities do not vary much with pressure and temperature

*Gas densities can vary quite a bit with pressure and temperature
*Density of water at 4° C : 1000 kg/ms
*Density of Airat4° C : 1.20 kg/m3




Measures of Fluid Mass and Weight:

The specific weight of fluid is its weight per unit volume.

g = local acceleration of gravity, 9.807 m/s

*Specific weight characterizes the weight of the fluid system
*Specific weight of water at 4° C : 9.80 kN/m3
*Specific weight of air at 4° C : 11.9 N/ms




Measures of Fluid Mass and Weight:

The specific gravity of fluid is the ratio of the density of the fluid
to the density of water @ 4° C.

*Gases have low specific gravities

A liquid such as Mercury has a high specific gravity, 13.2

*The ratio is unitless.
*Density of water at 4° C : 1000 kg/m3




Viscosity:

Q The viscosity is measure of the “fluidity” of the fluid which is not
— captured simply by density or specific weight. A fluid can not resist a
shear and under shear begins to flow. The shearing stress and
shearing strain can be related with a relationship of the following form
for common fluids such as water, air, oil, and gasoline:

u is the absolute viscosity or dynamics viscosity of the fluid, u is the
velocity of the fluid and y is the vertical coordinate as shown in the
schematic below:

“‘No Slip h
Condition” K




Viscosity: Measurements

A Capillary Tube Viscosimeter is one method of measuring
the viscosity of the fluid.

Viscosity Varies from Fluid to Fluid and is dependent on
temperature, thus temperature is measured as well.

Units of Viscosity are N-s/mz2 or Ib-s/ft2




Viscosity:
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Viscosity: Kinematic Viscosity

*Kinematic viscosity is another way of representing
viscosity

*Used in the flow equations

*The units are of L4/T or m4/s and ft?/s




Compressibility of Fluids:

P is pressure, and p is the density.

*Measure of how pressure compresses the volume/density

*Units of the bulk modulus are N/m? (Pa) and Ib/in.? (psi).

Large values of the bulk modulus indicate incompressibility
sIncompressibility indicates large pressures are needed to compress the
volume slightly

*It takes 3120 psi to compress water 1% at atmospheric pressure and 60°
F.




Compressibility of Fluids:

P is pressure, and p is the density.

*Measure of how pressure compresses the volume/density
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Large values of the bulk modulus indicate incompressibility
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Surface Tension

At the interface between a liquid and a gas or two immiscible liquids, forces
develop forming an analogous “skin” or “membrane” stretched over the
fluid mass which can support weight. @

This “skin” is due to an imbalance of cohesive forces. The interior of the fluid is
in balance as molecules of the like fluid are attracting each other while on the
interface there is a net inward pulling force.

is the intensity of the molecular attraction per unit length along
any line in the surface.

Surface tension is a property of the liquid type, the temperature, and the other
fluid at the interface.

This membrane can be “broken” with a surfactant which reduces the surface
tension.

Yoot
7 ¢




Surface Tension:

Capillary action in small tubes which involve a liquid-gas-solid
interface is caused by surface tension. The fluid is either drawn up
the tube or pushed down.

“Wetted” “Non-Wetted”

h is the height, R is the radius of the tube, 6 is the angle of contact.

The weight of the fluid is balanced with the vertical force caused by surface

tension.
N ‘



Pressure In a fluid

* Pressure is the ratio of the perpendicular
force applied to an object and the surface
area to which the force was applied

P=F/A

* Don’t confuse pressure (a scalar) with

force (a vector).

P



The Pascal

* The Sl unit of pressure is the pascal (Pa)
1 Pa =1 N/m?

named after Blaise Pascal (1623-1662).

One pascal also equals 0.01 millibar or
0.00001 bar.

* Meteorologists have used the millibar as a
unit of air pressure since 1929.

P



Millibar or hPa?

* When the change to scientific units occurred in
the 1960's many meteorologists preferred to
keep using the magnitude they were used to and
use a prefix "hecto” (h), meaning 100.

« Therefore, 1 hectopascal (hPa) =100 Pa = 1
millibar (mb). 100,000 Pa equals 1000 hPa
which equals 1000 mb. The units we refer to in
meteorology may be different, however, their
numerical value remains the same.

P



Atmospheric Pressure

« We live at the bottom of a sea of air. The

pressure varies with temperature, altitude, and
other weather conditions

 The average at sea level is 1 atm (atmosphere)
e« Some common units used:

1 atm = 101,325 Pa

1 atm =1013.25 mb = 1013.25 hPa

1 atm = 760 mmHg = 29.96 inHg
Ta




Atmospheric Layer Boundaries

* The layers of our
atmosphere can vary
In thickness from the
equator to the poles

* The layer boundaries
occur at changes in
temperature profile




Temperature affects pressure

 When air warms, it expands, becoming less
dense. Lower density means a volume of air
weighs less, therefore applying less pressure.

- —— - «— Approx 5.6 km



Fluid Pressure

* A column of fluid h =4 m high will exert a
greater pressure than a column h =2 m

* \What will the pressure be due to this fluid?
Force=mg Area=A
But m=pV and A=V/h
Paua = PV/V/h = pgh

Assuming uniform density for the fluid

e



Puig = Pgh

* The pressure due to a fluid depends only
on the average density and the height

* |t does not depend on the shape of the
container!

* The total pressure at the bottom of an
open container will be the sum of this fluid
pressure and the atmospheric pressure
above

P =Py + Ppyg = Po + pgh




Compressibility

* Liquids are nearly incompressible, so they
exhibit nearly uniform density over a wide
range of helghts (p only varies by a few percent)

» Gases, on the other hand, are highly
compressible, and exhibit significant
change in density over height

P, at sea level ~ 3p_,. at Mt Everest's peak

—““



Pascal’'s Law

* Pressure applied to a contained fluid is
transmitted undiminished to the entire fluid
and to the walls of the container

* You use this principle to get toothpaste out
of the tube (squeezing anywhere will
transmit the pressure throughout the tube)

* Your mechanic uses this principle to raise
your car with a hydraulic lift

P



Absolute and Gauge Pressure

* Your tire maker recommends filling your
tires to 30 psi. This is in addition to the
atmospheric pressure of 14.7 psi (typical)

» Since P = P, + Py,4, the absolute pressure
Is P, and the gauge pressure is Py 4

* In this case, the gauge pressure would be

30 psi and the absolute pressure would be
44,7 psi

(psi = pounds per square inch)

P



Measuring Pressure

* There are two main types of instruments
used to measure fluid pressure
 The Manometer

— Blood pressure is measured with a variant
called the sphygmomanometer (say that three
times fast!)

e The Barometer
— Many forms exist

P



The Manometer

* Open-tube manometer has
a known pressure P,
enclosed on one end and
open at the other end

P, - P, =pgh
* If P, > Py, the fluid will be

forced toward the closed
end (h is neg, as shown)




The Barometer

° Fllllng a tube (closed at one end) with |IC|UId, then
iInverting it in a dish of that liquid

* A near vacuum will form at the top

» Since Pg,4 = pgh, the column of liquid will
be in equilibrium when Pq iy = P

» Meteorologist speak of 29.96 inches. This
Is the height of a column of Mercury which
could be supported by that air pressure

P



MAE 3130: Fluid Mechanics
| ecture 5: Fluid Kinematics
Spring 2003

Dr. Jason Roney
Mechanical and Aerospace Engineering



Outline

Introduction
* Velocity Field
 Acceleration Field

« Control Volume and System
Representation

* Reynolds Transport Theorem
 Examples




Fluid Kinematics: Introduction

* Fluids subject to shear, flow
* Fluids subject to pressure imbalance, flow

 |n kinematics we are not concerned with
the force, but the motion.

 Thus, we are interested in visualization.

« \We can learn a lot about flows from
watching.

-



Velocity Field

. the flow is made of tightly packed fluid particles that
interact with each other. Each particle consists of numerous molecules, and we
can describe velocity, acceleration, pressure, and density of these particles at a
given time.

V = ux,y,z, r); + v(x, y, 2, r)j + w(x, y, z, r)ﬁ

V=Vxyzi

!

V= |V| = (.!.-i‘.E + v + 1;--1.---'2)]-’2 Fiticlopath @ Particle A at

Particle A at time 1 + ot

dr,/dt = V,

Velocity Field:




Velocity Field:

. the fluid motion is given by completely describing the necessary
properties as a function of space and time. We obtain information about the
flow by noting what happens at fixed points.

. following individual fluid particles as they move about and
determining how the fluid properties of these particles change as a function of
time.

Measurement of Temperature If we have enough information,
we can obtain Eulerian from

/ Lagrangian or vice versa.

Location O: Eulerian methods are

T = T(xg, yo, 1) Particle A: commonly used in fluid
Ty =Ty()

experiments or analysis—a
probe placed in a flow.

X

Lagrangian methods can also
be used if we “tag” fluid
particles in a flow.

———




Velocity Field:

: The velocity at a given point in space does not vary with time.

aV/ot = 0
Very often, we assume steady flow conditions for cases where there is only
a slight time dependence, since the analysis is “easier”

: The velocity at a given point in space does vary with time.

Almost all flows have some unsteadiness. In addition, there are periodic
flows, non-periodic flows, and completely random flows.

Unsteady Flow:
Examples:

Nonperiodic flow: “water hammer” in water pipes.

Periodic flow: “fuel injectors” creating a periodic swirling in the combustion _
chamber. Effect occurs time after time. oy el

Random flow: “Turbulent”, gusts of wind, splashing of water in the sink }’f\‘

Steady or Unsteady only pertains to fixed measurements, i.e. exhaust
elpeld C

an eady”’: howeve NE
followed individual particles of exhaus >00l!




Velocity Field:

. the line that is everywhere tangent to the velocity field. If the flow is
steady, nothing at a fixed point changes in time. In an unsteady flow the
streamlines due change in time.

Analytically, for 2D flows, integrate the equations defining lines tangent to the
velocity field:

Experimentally, flow visualization with dyes
can easily produce the streamlines for a
steady flow, but for unsteady flows these
types of experiments don’t necessarily
provide information about the streamlines.




Velocity Field: Streaklines

Streaklines: a laboratory tool used to obtain instantaneous photographs of
marked particles that all passed through a given flow field at some earlier time.

Neutrally buoyant smoke, or dye is continuously injected into the flow at a given
location to create the picture.

If the flow is steady, the picture will look like streamlines (previous video).

If the flow is unsteady, the picture will be of the instantaneous flow field, but
will change from frame to frame, “streaklines”.

Experiment
(z/h 2)

._’




Velocity Field:

. line traced by a given particle as it flows from one point to another.
This method is a Lagrangian technique in which a fluid particle is marked and
then the flow field is produced by taking a time exposure photograph of its
movement.

If the flow is steady, the picture will look like streamlines (previous video).

If the flow is unsteady, the picture will be of the instantaneous flow field, but
will change from frame to frame, “pathlines”.




Acceleration Field

Lagrangian Frame:

Eulerian Frame: we describe the acceleration in terms of position and time
without following an individual particle. This is analogous to describing the

velocity field in terms of space and time.

Vi = Vu(ry, 1) = Vu[xa(1), ya(t), za(2), 1]

A fluid particle can accelerate due to a change in velocity in time (“unsteady”)
or in space (moving to a place with a greater velocity).




Acceleration Field:

a. r = =
10 dt ot ox dt 9y dt 97 dt

Y

spatial dependence

time dependence

We note:




Acceleration Field:

Writing out these terms in vector components:

ou ou ou ou

x-direction: g2 fu—+v—+w—
ox dy az

ov av
y-direction: e
1 ) 0z

. . ow ow ow
z-direction: [ — 4+ u—+tv—+ w-

L 90

ox

Fluid flows experience fairly
large accelerations or
decelerations, especially
approaching stagnation
points.




Acceleration Field:

Applied to the Temperature Field in a Flow: [l T(x,y,2,1)

The material derivative of any variable is the rate at which that variable changes
with time for a given particle (as seen by one moving along with the fluid—
Lagrangian description).

dT, oT, o7, dx, ol dv, ol dz,
A A TIadXy  Oladya | 904

dt ot ox dt dy dt dz dt

DT 0T ol oT aT aT |
—=—4+y—4+v—+w—=—+V: VT
Dt ot ox oy 0z ot




Acceleration Field:

If the flow is unsteady, its paramater values at any location may change with
time (velocity, temperature, density, etc.)

The local derivative represents the unsteady portion of the flow:

If we are talking about velocity, then the above term is local acceleration.

In steady flow, the above term goes to zero.

If we are talking about temperature, and V = 0, we still have heat transfer
because of the following term:
ol
+u—— +
ox




Acceleration Field:

Consider flow in a constant diameter pipe, where the flow is assumed to be
SENEVATU B Y = V(1) i

A" oV oV oV
— tu—+v—+w—
rj [ ox (_] }1 0 Z




Acceleration Field:

The portion of the material derivative represented by the spatial derivatives is
termed the convective term or convective accleration: m

It represents the fact the flow property associated with a fluid particle may
vary due to the motion of the particle from one point in space to another.

Convective effects may exist whether the flow is steady or unsteady.

Example 1:

Example 2:

Water
heater

Acceleratior?_



Control Volume and System Representations

. a specific identifiable quantity of matter that may consist of a
relatively large amount of mass (the earth’s atmosphere) or a single fluid

particle. They are always the same fluid particles which may interact with their
surroundings.

Example: following a system the fluid passing through a compressor

We can apply the equations of motion to the fluid mass to describe their

behavior, but in practice it is very difficult to follow a specific quantity of
matter.

is a volume or space through which the fluid may flow, usually
associated with the geometry.

When we are most interested in determining the the forces put on a fan,

airplane, or automobile by the air flow past the object rather than following the
fluid as it flows along past the object.




Control Volume and System Representations

rface of the Pipe

Surface of the Fluid

Fixed Control Volume;

Volume Around The

INflow [
Fixed or Moving

Control Volume:

TR S O g e S p—

Outflow

Deforming Control
Volume:

Deforming Volume

_ T ——



Reynolds Transport Theorem:

All the laws of governing the motion of a fluid are stated in their basic form in
terms of a system approach, and not in terms of a control volume.

The allows us to shift from the system approach
to the control volume approach, and back.

General Concepts:

B represents any of the fluid properties, m represent the mass, and b
represents the amount of the parameter per unit volume.

Examples:
Mass b=1
Kinetic Energy b =V?/2
Momentum b =V (vector) B = mV

B is termed an extensive property, and b is an intensive property. B is



Reynolds Transport Theorem:

For a System: The amount of an extensive property can be calculated by
adding up the amount associated with each fluid particle.

B, = lim Ebl,_-(pf-ﬁ’vl,-) — l pb d¥

o¥—0

Jsys

Now, the time rate of change of that system:

1| pbav
dB, ( szgp ’ )

dt

Now, for control volume:

For the control volume, we only integrate over the control volume, this is

different integrating over the system, though there are inst
they could be the same.



Reynolds Transport Theorem:

Consider a 1D flow through a fixed control volume between (1) and (2):

— — — Fixed control surface and system
boundary at time ¢

— — — System boundary at time ¢ + &t

Bsys(r + 51) o Bin(r) Bcv(r T 6?) o BI(I T 6?) + BII(I + SF) o Bsys(r)

ot ot




Reynolds Transport Theorem:
N[elilgIol By (1) = Be\(1)

| (| pbav
Bo(t + &) — Bo(t) B, ( pr . )

ot ot




Reynolds Transport Theorem:

The rate at which the extensive property flows into the control surface:
B| (f + Sf) - (p]b])(a"vzl) — plblAlL?l 53‘ 6V| - A] 6{] - A](V'[ 6?)

SVS E)BL-"\-'
- = » T pA VoD, — piA Vb,
dl

Restrictions for the above Equation:

1) Fixed control volume

2) One inlet and one outlet

3) Uniform properties

4) ‘Normal velocity to section(®) and (2)




Reynolds Transport Theorem:

The Reynolds Transport Theorem can be derived for more general conditions.

Outflow
Inflow oy o . portion of
portion of = g control
surface

— — — Fixed control surface and system
boundary at time ¢

— —— System boundary at time ¢ + 8¢

Result: DB, o ( '
g —[ pbd¥ + l pbV -1 dA

Dt ot ).,

<+ C8

This form is for a fixed non-deforming control volume.

R



Reynolds Transport Theorem:

l pb d¥ + [ pbV - i dA

< C8

(1) The time rate of change of the extensive parameter of a system, mass,
momentum, energy.

(2) The time rate of change of the extensive parameter within the control
volume.

(3) The net flow rate of the extensive parameter across the entire control

SULEIEE: W\ )] “outflow across the surface”

(V R < 0') “‘inflow across the surface”

“no flow across the surface”

V is parallel
Mass flow rate:

| ——



Reynolds Transport Theorem:

pbd¥ + l pb'V - dA

T Y < C5

Unsteady Portion Convective Portion

Control volume

——— Control surface




Reynolds Transport Theorem:

There are cases where it is convenient to have the control volume move. The
most convenient is when the control volume moves with a constant velocity.

Control volume
moves with speed V,

absolute velocity, V W, = Velocity of

W, = Velocity of B relative

) A relative to control
V — W _|_ V to control volume
(Y volume

V, = 20i ft/s, V, = 100i ft/s , Then W = 80i ft/s

Now, in general for a constant velocity control volume:

DBy, g (
=—l pb d¥ +

SYS

bW - i dA
Dt ot P ‘

JC




Reynolds Transport Theorem:

If we want to know a property at point 1, pressure or velocity for instance:

Control surface

Good choice, since the point we want to know is on
control surface. Likewise, the values at the inlet and
exit are normal to the surface.

Valid control volume, but the point we want to know is
interior. So, it unlikely we will have enough
information to obtain its value.

Valid control volume, but the surfaces are not normal
to the inlet and outlet.

| ——



The concept of boundary layer is due to Prandtl. It occurs on the
solid boundary for high Reynolds number flows. Most high Reynolds
number external flow can be divided into two regions:

— Thin layer attached to the solid boundaries where viscous force is
dominant, i.e. boundary layer flow region.

— Other encompassing the rest region where viscous force can be
neglected, i.e., the potential flow region, that has been discussed
in chapter 7.




« The thin layer adjacent to a solid boundary is called the boundary
layer and the flow inside the layer is called the boundary layer flow

 Inside the thin layer the velocity of the fluid increases from zero at
the wall (no slip) to the full value of corresponding potential flow.

» There exists a leading edge for all external flows. The boundary layer
flow developing from leading edge is laminar




For simplicity of illustration, we shall consider an incompressible
steady flow over a semi-infinite flat plate with an uniform incoming
flow of velocity U in parallel to the plate.

The flow is two dimensional.

The coordinates are chosen such that x is in the incoming
flow direction with x=0 being located the leading edge and
y is normal to the plate with y=0 being located at the plate

wall.




« The continuity and Navier-Stokes equations read:




* The above equations apply generally to two dimensional
steady incompressible flows for all Reynolds number
over the entire flow domain.

* We now seek the equations that provide the first order
approximation for high Reynolds number flows in the
boundary layer.




 When normalize based on the following scales, we recall the
normalized governing equations with Re underneath the viscous
term




« When the viscous terms are dropped for high Re number
flows, the equations become those for potential flows

outside the boundary layer. The boundary layer effect is
not realized.

« Using L to normalize y cannot resolve the boundary layer
near the solid boundary. We need to choose a proper
length scale to normalize the y coordinate.




* To this end, let L be the characteristic length in the x
direction and that L be sufficiently long,

such that

» Therefore, the viscous diffusion layer thickness ¢, at x=L
Is small compared to L, i.e.,

« This viscous diffusion layer near the wall is
the boundary layer.




To resolve the flow in the boundary layer, the proper length scale in y-
direction is o; while that in x-direction remains as L.

The condition of v=0 for potential flows near the wall outside the
boundary layer and the continuity Equation also imply that the velocity

v in the boundary layer is small compared to U. Let V be the scale of v
in the boundary layer, then V<<U.

It is clear that the non-dimensional normalized variables can now be
expressed as:




* For high Reynolds number flow, the proper pressure
scaleis ; hence,

* In terms of the dimensionless variables, the governing
equations becomes:




* From the continuity equation, we need
such that

 Therefore, . and the substitution of V into the
momentum equation leads to:




* |n order to balance the shear force with the inertia force, it is
clear that we need, g.e.,

 The momentum equations reduced further to




* These results in the boundary layer equations that in
dimensional form are given by:

Continuity:

X-momentum:;




The last equation for y-momentum equation indicates that the
pressure is constant across the boundary layer, i.e., equal to that
outside the boundary layer (in the free stream), i.e.,

In the free stream (outside the boundary layer), the viscous force is
negligible and we also have , Which in fact is the slip
velocity of corresponding potential theory naar the: houndary

The x-momentum boundary layer equation near the free stream
becomes:




» Therefore, the boundary layer equations can be
re-written into:

and the proper boundary conditions are:

u=v=0ony=0 and u—U_‘asy—>w©

E AR




* For semi-infinite flat plate with uniform incoming
velocity, . T'he bouindary layer equations
reduced further to:




In fact the boundary layer equation is also meant for curved solid
boundary, given a large radius of curvature
R >> ¢;.




By defining an orthogonal coordinate system  with
x coordinate along boundary and y coordinate normal to boundary,
previous analysis is also valid for curved surface. This can be done
through a coordinate transformation.

Since radius of curvature is large, the curvature effects become
higher order terms after transformation. These higher order terms
can be neglected for 1st-order approximation. The same boundary
layer equation can be obtained.




For example in 2D flows, one way is to use the potential lines and
streamlines to form a coordination system. x is along streamline direction,
and y is the along potential lines. Such coordination system are called

body-fitted coordination system.

Y = constant ¢ =constant

velocity = u




If L is considered as a varying length scale equal to x, then the
boundary thickness varies with x as where
is the local Reynolds number.

A boundary layer flow is similar if its velocity profile as normalized by
U, depends only on the normalized

distance from the wall, ,1.€.,




For uniform flows past a semi-infinite flat plate, the Boundary
layer flows are 2-D. It can be shown that the stream function
defined by will satisfy the above conditions for

similarity solution such that

where the f” denotes the derivative with respect to . Consequently,




The boundary layer equation in term of the similarity
variables becomes:

subject to the boundary conditions:

The velocity profile obtained by solving the above ordinary
differential equation IS called the




streamwise and transverse velocities




Since the velocity profile merges smoothly and asymptotically into the free
stream, it is difficult to measure the boundary layer thickness 3.
Conventionally, 6 is defined as the distance from the surface to the point
where velocity is 99% of free stream velocity.

This occurs when cl.e.,

Therefore, for laminar boundary layer,




The wall shear stress can be expressed as,

And the friction coefficient C;is given by,




The boundary layer thickness o increases with x2, while
the wall shear stress and the skin friction coefficient vary
as x 172,

These are the characteristics of a laminar boundary layer
over a flat plate.




Laminar boundary layer flow can become unstable and evolve
to turbulent boundary layer flow at down stream. This process

IS @ ry-layer
tra 5, heat
tra

laminar ! transition ! turbulent




Under typical flow conditions, transition usually occurs at
a Reynolds number of 5 x 10°, which can be delayed to
Re between 3~ 4 x 10° if external disturbances are

minimized.

Velocity profile of turbulent boundary layer flows is
unsteady.

Because of turbulent mixing, the mean velocity profile of
turbulent boundary layer is more flat near the outer region




A good approximation to the mean velocity profile for
turbulent boundary layer is the empirical 1/7 power-law
profile given by

This profile doesn't hold in the close proximity of the wall,
since at the wall it predicts

Hence, we cannot use this profile in the definition of to
obtain an expression in terms of




For the drag of turbulent boundary-layer flow, we use the
following empirical expression developed for circular pipe

flow,

where is the pipe cross-sectional mean velocity and R
the pipe radius.

For a 1/7-power profile in a pipe, .The substitution of




For turbulent boundary layer, empirically we have

Therefore,

Experiment shows that this equation predicts the turbulent
skin friction on a flat plate within about 3% for 5 x 10°




Note the friction coefficient for the laminar boundary layer
is proportional to Re, "2, while that for the turbulent
boundary layer is proportional to Re/ ">, with the
proportional constants different also by a factor of 10.

The turbulent boundary layer develops more rapidly than
the laminar boundary layer.




Relative motion between a solid body and the fluid in
which the body is immersed leads to a net force, F, acting
on the body. This force is due to the action of the fluid.

In general, dF acting on the surface element area, will be
the added results of pressure and shear forces normal
and tangential to the element, respectively.




Hence,

The resultant force, F, can be decomposed into parallel
and perpendicular components. The component parallel
to the direction of motion is called the drag, D, and the
component perpendicular to the direction of motion is
called the drag, D, and the component perpendicular to
the direction of motion is called the lift, L.




Now

where Is the unit vector inward normal to the body
surface, and Is the unit vector tangential to the surface

along the surface slip velocity direction. The total fluid force
on the body becomes




If 1 is the unit vector in the body motion direction, then
magnitude of drag F, becomes:

Note that L is in the plane normal to i, generally for three-
dimensional flows.

U NVO-UIITierl Dllc DV A

X '




Therefore, L=F, ] where F, is the magnitude of lift and is
determined by:

For most body shapes of interest, the drag and lift cannot
be evaluated analytically

Therefore, there are very few cases in which the lift and




The drag force is the component of force on a body acting
parallel to the direction of motion.




The drag coefficient defined as

Is a function of Reynolds number , i.e.

)

This form of the equation is valid for incompressible flow
over any body, and the length scale, D, depends on the




If the pressure gradient is zero and no flow separation,
then the total drag is equal to the friction drag, :
and,

The drag coefficient depends on the shear stress
distribution.




For a laminar flow over a flat surface, U_=U and the skin-friction
coefficient is given by,

The drag coefficient for flow with free stream velocity, U, over a flat
plate of length, L, and width, b, is obtained by substituting into |

UL

V
D 4




If the boundary layer is turbulent, the shear stress on the flat plate
then is given by,

The substitution for results in,

This result agrees very well with experimental coefficient of, 0.074 for
Re,; < 107




The pressure drag is usually associated with flow separation which
provide the pressure difference between the front and rear faces of
the body. Therefore, this type of pressure drag depends strongly on
the shape of the body and IS called
form drag.

In a flow over a flat plate normal to the flow as shown in the following
picture, the wall shear stress contributes very little to the drag force.

flow separation
)CCUrS




The form drag is given by,

As the pressure difference between front and rear faces
of the plate is caused by the inertia force, the form drag
depends only on the shape of the body and is
independent of the fluid viscosity.




« The drag coefficient for all object with shape edges is
essentially independent of Reynolds number.

* Hence, Cy=constant where the constant changes with the
body shape and can only be determined experimentally.




« At very low Reynolds number, Re<<1, the viscous force
encompass a very large region surrounding the body.

« The pressure drag is mainly caused by fluid viscosity
rather than inertia.

* Hence, both friction and pressure drags contribute to the
total drag force, i.e., the total drag is entirely viscous drag




» For low velocity flows passing a sphere of diameter D, Stokes had
shown that the total viscous drag is given by

with 1/3 of it being contributed from normal pressure and 2/3 from
frictional shear. The drag coefficient then is expressed as




Flow In Pipes



Introduction

* Average velocity in a pipe
— Recall - because of the no-slip

condition, the velocity at the walls of
a pipe or duct flow is zero

— We are often interested only in V,,,
which we usually call just V (drop the
subscript for convenience)

— Keep in mind that the no-slip
condition causes shear stress and
friction along the pipe walls

Friction force of wall on fluid

r—'vvv‘



Introduction

* For pipes of constant
diameter and
Incompressible flow

- V,,, stays the same
down the pipe, even if
the velocity profile
changes

« Why? Conservation of
Mass

m = pVavgA = constant




Introduction

* For pipes with variable diameter, m is still the
same due to conservation of mass, but V, # V,

|

D,

s °
V, %

m

| @

\ lDz
/




aminar and Turbulent Flows

Laminar Flow
Can be steady or unsteady.

(Steady means that the flow field at any
instant in time is the same as at any other
instant in time.)

Can be one-, two-, or three-dimensional.

Has regular, predictable behavior

Diyve injection

Amnalytical solutions are possible (see
Chapter 9).

Occurs at fow Reynolds numbers.

Turbulent Flow

Is always wrsteady.

Why? There are always random, swirling
motions (vortices or eddies) in a turbulent
flow.

Nore: However, a turbulent flow can be
steady in the mean. We call this a
stationary turbulent Tow.

Is always three-dimensional.

Why? Apain because of the random
swirling eddies, which are in all directions.

NMNore: However, a turbulent flow can be 1-
D or 2-D in the mean.

Has irregular or chaotic behavior (cannot
predict exactly — there is some randomness
associated with any turbulent flow.

e traco
Ry

— "Il“-\.
'8 %

BYE

f Dwve injection

Mo analytical solutions exist! (It is too
complicated, again because of the 3-D,
unsteady, chaotic swirling eddies.)

Occurs at igh Reynolds numbers.




Laminar and Turbulent Flows

Definition of Reynolds number

_ Inertial forces
Viscous forces
p Va%'g L?
MVavg L
PVavg L

Re

Critical Reynolds number
(Re,,) for flow in a round pipe
Re < 2300 = laminar
2300 < Re <4000 = transitional
Re > 4000 = turbulent

Note that these values are
approximate.
For a given application, Recr
depends upon

— Pipe roughness

— Vibrations

— Upstream fluctuations,
disturbances (valves, elbows, etc.




Laminar and Turbulent Flows

* For non-round pipes, define the
hydraulic diameter
D, = 4A /P
_ AmDY4) A_= cross-section area
L - P = wetted perimeter

.‘“__———m
« Example: open channel ._
A,=0.15*0.4 = 0.06m? 0

P=0.15+0.15+0.5=0.8m

Don’t count free surface, since it does not
contribute to friction along pipe walls!

4ab  _ 2ab D, =4A/P = 4%0.06/0.8 = 0.3m

" 2a+b) " a+b What does it mean? This channel flow is
equivalent to a round pipe of diameter
0.3m (approximately).

_ | ——

Rectangular duct:




The Entrance Region

Consider a round pipe of diameter D. The flow
can be laminar or turbulent. In either case, the
profile develops downstream over several
diameters called the entry length L,. L,/D is a

function of Re.

[rrotational (core) Velocity boundary Developing velocity Fully developed
flow region f profile velocity profile




Fully Developed Pipe Flow

* Comparison of laminar and turbulent flow

There are some major differences between laminar and
turbulent fully developed pipe f V= thayg = th/2

Laminar
« Can solve exactly (Chapter 9)
* Flow is steady
 Velocity profile is parabolic
* Pipe roughness not important

It turns out that V,,,, = 1/2U,,, and u(r)= 2V, (1 - r//R?)

)



Fully Developed Pipe Flow

Turbulent

» Cannot solve exactly (too complex)
* Flow is unsteady (3D swirling eddies), but it is steady in the mean

« Mean velocity profile is fuller (shape more like a top-hat profile, with
very sharp slope at the wall)

* Vi, 85% of U, (depends on Re a bit)

« No analytical solution, but there are some good semi-empirical
expressions that approximate the velocity profile shape. See text




Fully Developed Pipe Flow
Wall-shear stress

« Recall, for simple shear flows u=u(y), we had
T = udu/dy

* |n fully developed pipe flow, it turns out that
T = udu/dr

Turbulent

%ﬂ slope

' ~ow actmﬁe fIww H



Fully Developed Pipe Flow
Pressure dro

There is a direct connection between the pressure drop in a pipe and
the shear stress at the wall

Consider a horizontal pipe, fully developed, and incompressible flow

«—— —— —— —— — —— “«— — — —

Let’s apply conservation of mass, momentum, and energy to this CV
(good review problem!)




Fully Developed Pipe Flow
Pressure drop

« (Conservation of Mass

mlzmgzm

pV1 = pVg — V = const

2 2
wD wD
Vi—=Vo— —=|V1 =V,
4 4
 (Conservation of x-momentum
Z F — Z »»F'I: ,grav + Z E‘E,press + Z F:c,'mlsc + Z Fﬁ:,other — Z /Bmv T Z ﬂmv
D2 D2

PIT —Pg 4 —Tw’?TDLIﬁQ?:ﬂVQ—ﬁl?ﬁvl
=P,

—

Terms cancel since f3;
and V, =V,



Fully Developed Pipe Flow
Pressure dro

* Thus, x-momentum reduces to p

L
(0]§ Pl—P2:4Tw5

« Energy equation (in head form)

P, V2 P %5

p_g + Q1 '2; + 21+ hp-ump,'u, — p_g + Qg ﬁ + 29 + hturhine,e + hL

cancel (horizontal pipe)

Velocity terms cancel again because V, = V,, and o, = a, (shape not changing)

P — Py = h h, = irreversible head
1 2 PINL loss & it is felt as a pressure
drop in the pipe

" —



Fully Developed Pipe Flow
Frictiongaciar

From momentum CV analysis

From energy CV analysis Py = PQhL

Equat L 41, L
4 w = = h h —_— T —
Twp = PINL " pg D

To predict head loss, we need to be able to calculate t,,. How?
— Laminar flow: solve exactly
— Turbulent flow: rely on empirical data (experiments)
— In either case, we can benefit from dimensional analysis!

| ——




Fully Developed Pipe Flow
Friction Factor

1z, =func(p, V, u, D, ¢) ¢ = average roughness of the
inside wall of the pipe

] H-arﬁes o 8Tw Re — oV D
pV? p
e/D

€

H3:5

= roughness factor

j = Junclite.c/D

| ——



Fully Developed Pipe Flow

Our proble IR O RTIN] s olving foP TR EG TARMGAUEABRSE f

oes not affect the flow unless it
— Recall

is huge
— Therefore

« Laminar flow: f= 64/Re (exact)
» Turbulent flow: Use charts or empirical equations (Moody Chart, a famous

plot of fvs. Re and &D, See Fig. A-12, p. 898.in text)



The Moody Chart

T — T T
Laminar Transitional Turbulent

"~ flow | flow | flow ‘\\
! RS

s =
[

Fully rough turbulent flow

0.05
0.04

-

e

0.03

0.02
0.015

S

0.01
0.008

0.006
0.004

Jl

Darcy friction factor, f

0.002

Relative roughness, /D

N S S 0001
e e T T T TN S EEe 00006

W/ /avini

Material it mm

= > 0.0004
| Glass, plastic 0 0

t Concrete 0.003-0.03 0.9-9
Wood stave 0.0016 0.5
Rubber, smoothed 0.000033 0.01
Copper or brass tubing 0.000005 0.0015
Cast iron 0.00085 0.26 {
Galvanized iron 0.0005 0.15 ‘
Wrought iron 0.00015 0.046 [ I [ 1\
|
|

0.0002

0.0001

~
|

Stainless steel 0.000007 0.002
Commercial steel 0.00015 0.045
|

TR L1 [T —=11] 0.00001
103 210 3 4 56 8 104 21013 4 56 8105 2(105 3 4 56 8 106 201093 456 8197 2103 456 808

Swum
S = S 0.00005
\j' [ e/D =0.000005] T j

: ) | |

L TN
&/D =0.000001 55

Reynolds number, Re




Fully Developed Pipe Flow
Friction Factor

 Moody chart was developed for circular pipes, but can
be used for non-circular pipes using hydraulic diameter

. Colebrqok equation is a curve-fit of the data which is

e/D  2.51
37 Re\/f)

= —2. Olog(

Implicit equation for f which can be solved
using the root-finding algorithm in EES

« Both Moody chart and Colebrook equation are accurate
to £15% due to roughness size, experimental error,

curve fitting of data, etc.



Types of Fluid Flow Problems

* In design and analysis of piping systems, 3
problem types are encountered

1. Determine Ap (or h) given L, D, V (or flow rate)

Can be solved directly using Moody chart and Colebrook
equation

2. Determine V, given L, D, Ap

3. Determine D, given L, Ap, V (or flow rate)
Types 2 and 3 are common engineering
design problems, i.e., selection of pipe

diameters to minimize construction and
pumping costs

However, iterative approach requi '
both V .and D are in the Reynolds number.



Types of Fluid Flow Problems

* Explicit relations have been developed which
eliminate iteration. They are useful for quick,
direct calculation, but introduce an additional 2%

—2
107% < ¢/D < 1072
3000 < Re < 3 x 108

5000 < Re < 3 x 108

——



Minor Losses

* Piping systems include fittings, valves, bends, elbows,
tees, inlets, exits, enlargements, and contractions.

« These components interrupt the smooth flow of fluid and
cause additional losses because of flow separation and
mixing

« We introduce a relation for the minor losses associated

with these comnonents
» K, is the loss coefficient.

* |s different for each component.

* |s assumed to be independent of Re.

» Typically provided by manufacturer or

generic table (e.qg., Table 8-4 in texti.



Minor Losses

« Total head loss in a system is comprised of

major losses (in the pipe sections) and the minor

|OSS€S (In t hL — hL mﬂj[}‘]"' _l_ hL,minn‘r

LV

| pipe sections j components

* |If the pipi ey diameter
hr = (f +ZKL) 27

| ——



Minor Losses
Here are some sample loss coefficients for various minor loss components. More values are
listed in Table 8-4, page 350 of the Cengel-Cimbala textbook:

Fipa infet == e
Reentrant: K, = 0.80  Sharp-edged<K, = 0.50> Well-rounded (rlD > 0.2)<K, = 0. ;3}"\
{t<< Dand I = 0.1D} _—T,_ Stightly rounded (D = 0.1): K, = 0.12>
\__(see Fig. B-3€)
” ——l Rounding of an inlet

| makes a big difference.

= i—ﬂ._
—_— —_— 1 (0 -—'l-lr’ £
PESEE—— ) “_,_,—l_

‘D
I

Fipe Exit o
F = Sharp-ea',qed@ a3 Epunded(:ﬁ 1

Reentrant: K; =
Rounding of
] an outlet

. makes no
=} - difference.

R

Sirdden Expansion and Confraction (based an the weloeily in the sialier-diameter pipe)

—

2% 2
Sudden expansion: K, = (1 = E)

Mote that the larger velocity (the
J velocity associated with the smaller pipe
i secition) is used by convention in the

. . - o
i equation for minor head loss, Le,,
A 5
z"' i'h
Fd A i =K
rd i 2 i
A =]
s
i
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MNote; These are

45 threaded aibow.
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