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Fluid Mechanics 

The atmosphere is a fluid! 
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Characteristics of Fluids 

• Gas or liquid state 

• “Large”  molecular spacing relative to a solid 

• “Weak”  intermolecular cohesive forces 

• Can not resist a shear stress in a stationary 
state 

• Will take the shape of its container 

• Generally considered a continuum 

• Viscosity distinguishes different types of fluids 

 

 

 

 

 

 



Measures of Fluid Mass and Weight:  Density 

v

m


The density of a fluid is defined as mass per unit volume.  

  

•Different fluids can vary greatly in density 

•Liquids densities do not vary much with pressure and temperature 

•Gas densities can vary quite a bit with pressure and temperature 

•Density of water at 4° C : 1000 kg/m3 

•Density of Air at 4° C :  1.20 kg/m3 

Alternatively, Specific Volume:   


 1


m = mass, and v = volume. 

 



Measures of Fluid Mass and Weight:  Specific Weight 

g 
The specific weight of fluid is its weight per unit volume. 

  

•Specific weight characterizes the weight of the fluid system 

•Specific weight of water at 4° C : 9.80 kN/m3 

•Specific weight of air at 4° C : 11.9 N/m3 

g = local acceleration of gravity, 9.807 m/s2 

 



Measures of Fluid Mass and Weight:  Specific Gravity 

OH

SG

2



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The specific gravity of fluid is the ratio of the density of the fluid 

to the density of water @ 4° C. 

  

•Gases have low specific gravities 

•A liquid such as Mercury has a high specific gravity, 13.2 

•The ratio is unitless. 

•Density of water at 4° C : 1000 kg/m3 

 



Viscosity:  Introduction 

dy

du 

The viscosity is measure of the “fluidity” of the fluid which is not 
captured simply by density or specific weight.  A fluid can not resist a 

shear and under shear begins to flow.  The shearing stress and 

shearing strain can be related with a relationship of the following form 

for common fluids such as water, air, oil, and gasoline: 

 

 is the absolute viscosity or dynamics viscosity of the fluid, u is the 

velocity of the fluid and y is the vertical coordinate as shown in the 

schematic below: 

“No Slip 
Condition” 

 



Viscosity:  Measurements 

A Capillary Tube Viscosimeter is one method of measuring 

the viscosity of the fluid. 

Viscosity Varies from Fluid to Fluid and is dependent on 

temperature, thus temperature is measured as well. 

Units of Viscosity are  N·s/m2 or lb·s/ft2 

Movie Example using a Viscosimeter: 

 



Viscosity:  Newtonian vs. Non-Newtonian 

Newtonian Fluids are Linear Relationships between stress and 

strain:  Most common fluids are Newtonian. 

Non-Newtonian Fluids are Non-Linear between stress and strain 
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Viscosity: Kinematic Viscosity  


 

•Kinematic viscosity is another way of representing 

viscosity 

•Used in the flow equations 

•The units are of L2/T  or m2/s and ft2/s 

 



Compressibility of Fluids: Bulk Modulus   


/d

dp
E 

•Measure of how pressure compresses the volume/density 

•Units of the bulk modulus are  N/m2 (Pa) and lb/in.2 (psi). 

•Large values of the bulk modulus indicate incompressibility 

•Incompressibility indicates large pressures are needed to compress the 

volume slightly 

•It takes 3120 psi to compress water 1% at atmospheric pressure and 60° 
F. 

•Most liquids are incompressible for most practical engineering problems. 

P is pressure, and  is the density. 

 



Compressibility of Fluids: Bulk Modulus   


/d

dp
E 

•Measure of how pressure compresses the volume/density 

•Units of the bulk modulus are  N/m2 (Pa) and lb/in.2 (psi). 

•Large values of the bulk modulus indicate incompressibility 

•Incompressibility indicates large pressures are needed to compress the 

volume slightly 

•It takes 3120 psi to compress water 1% at atmospheric pressure and 60° 
F. 

•Most liquids are incompressible for most practical engineering problems. 

P is pressure, and  is the density. 

 



Surface Tension   
At the interface between a liquid and a gas or two immiscible liquids, forces  

develop forming an analogous “skin” or “membrane” stretched over the  
fluid mass which can support weight. 

 

This “skin” is due to an imbalance of cohesive forces.  The interior of the fluid is  
in balance as molecules of the like fluid are attracting each other while on the  

interface there is a net inward pulling force. 

 

Surface tension is the intensity of the molecular attraction per unit length along 

any line in the surface.   

 

Surface tension is a property of the liquid type, the temperature, and the other 

fluid at the interface. 

 

This membrane can be “broken” with a surfactant which reduces the surface 

tension. 

 



Surface Tension: Capillary Action   
Capillary action in small tubes which involve a liquid-gas-solid 

interface is caused by surface tension.  The fluid is either drawn up 

the tube or pushed down. 

h is the height, R is the radius of the tube, q is the angle of contact. 

“Wetted” “Non-Wetted” 

The weight of the fluid is balanced with the vertical force caused by surface 

tension. 

Adhesion > Cohesion Cohesion > Adhesion 

Adhesion 

Cohesion 
Adhesion 

Cohesion 



Pressure in a fluid 

• Pressure is the ratio of the perpendicular 

force applied to an object and the surface 

area to which the force was applied 

P = F/A 

• Don’t confuse pressure (a scalar) with 
force (a vector). 

 

 



The Pascal 

• The SI unit of pressure is the pascal (Pa) 

1 Pa = 1 N/m2 

 named after Blaise Pascal (1623-1662). 

One pascal also equals 0.01 millibar or 

0.00001 bar.  

• Meteorologists have used the millibar as a 

unit of air pressure since 1929. 



Millibar or hPa? 

• When the change to scientific units occurred in 

the 1960's many meteorologists preferred to 

keep using the magnitude they were used to and 

use a prefix "hecto" (h), meaning 100. 

• Therefore, 1 hectopascal (hPa) = 100 Pa = 1 

millibar (mb). 100,000 Pa equals 1000 hPa 

which equals 1000 mb. The units we refer to in 

meteorology may be different, however, their 

numerical value remains the same.  

 



Atmospheric Pressure 

• We live at the bottom of a sea of air. The 

pressure varies with temperature, altitude, and 

other weather conditions 

• The average at sea level is 1 atm (atmosphere) 

• Some common units used: 

   1 atm = 101,325 Pa 

   1 atm = 1013.25 mb = 1013.25 hPa 

   1 atm = 760 mmHg = 29.96 inHg 

   1 atm = 14.7 lb/in2 



Atmospheric Layer Boundaries 

• The layers of our 

atmosphere can vary 

in thickness from the 

equator to the poles 

• The layer boundaries 

occur at changes in 

temperature profile 

 

Image courtesy NASA 



Temperature affects pressure 

• When air warms, it expands, becoming less 

dense. Lower density means a volume of air 

weighs less, therefore applying less pressure. 

Image Courtesy NOAA 

← Approx 5.6 km 



Fluid Pressure 

• A column of fluid h = 4 m high will exert a 

greater pressure than a column h = 2 m 

• What will the pressure be due to this fluid? 

   Force = mg Area = A 

 But  m = ρV  and  A = V/h 

   Pfluid = ρVg/V/h = ρgh 

  Assuming uniform density for the fluid 



Pfluid = ρgh 

• The pressure due to a fluid depends only 
on the average density and the height 

• It does not depend on the shape of the 
container! 

• The total pressure at the bottom of an 
open container will be the sum of this fluid 
pressure and the atmospheric pressure 
above 

P = P0 + Pfluid = P0 + ρgh 

 



Compressibility 

• Liquids are nearly incompressible, so they 

exhibit nearly uniform density over a wide 

range of heights (ρ only varies by a few percent) 

• Gases, on the other hand, are highly 

compressible, and exhibit significant 

change in density over height 

ρair at sea level ~ 3ρair at Mt Everest’s peak 



Pascal’s Law 

• Pressure applied to a contained fluid is 

transmitted undiminished to the entire fluid 

and to the walls of the container 

• You use this principle to get toothpaste out 

of the tube (squeezing anywhere will 

transmit the pressure throughout the tube) 

• Your mechanic uses this principle to raise 

your car with a hydraulic lift 



Absolute and Gauge Pressure 

• Your tire maker recommends filling your 
tires to 30 psi. This is in addition to the 
atmospheric pressure of 14.7 psi (typical) 

• Since P = P0 + Pfluid, the absolute pressure 
is P, and the gauge pressure is Pfluid 

• In this case, the gauge pressure would be 
30 psi and the absolute pressure would be 
44.7 psi 

(psi = pounds per square inch) 

 



Measuring Pressure 

• There are two main types of instruments 

used to measure fluid pressure 

• The Manometer 

– Blood pressure is measured with a variant 

called the sphygmomanometer (say that three 

times fast!) 

• The Barometer 

– Many forms exist 



The Manometer 

• Open-tube manometer has 

a known pressure P0 

enclosed on one end and 

open at the other end 

P0 - Pa = ρgh 

• If Pa > P0, the fluid will be 

forced toward the closed 

end (h is neg, as shown) 

 

Image from Ruben Castelnuovo - Wikipedia 



The Barometer 

• Filling a tube (closed at one end) with liquid, then 

inverting it in a dish of that liquid 

• A near vacuum will form at the top 

• Since Pfluid = ρgh, the column of liquid will 

be in equilibrium when Pfluid = Pair 

• Meteorologist speak of 29.96 inches. This 

is the height of a column of Mercury which 

could be supported by that air pressure 



MAE 3130: Fluid Mechanics 

Lecture 5: Fluid Kinematics 

Spring 2003 

Dr. Jason Roney 

Mechanical and Aerospace Engineering 

 

 



Outline 
• Introduction 

• Velocity Field 

• Acceleration Field 

• Control Volume and System 
Representation 

• Reynolds Transport Theorem 

• Examples 

 



Fluid Kinematics: Introduction 

• Fluids subject to shear, flow 

• Fluids subject to pressure imbalance, flow 

• In kinematics we are not concerned with 
the force, but the motion. 

• Thus, we are interested in visualization. 

• We can learn a lot about flows from 
watching. 



Velocity Field 

Continuum Hypothesis:  the flow is made of tightly packed fluid particles that 

interact with each other.  Each particle consists of numerous molecules, and we 

can describe velocity, acceleration, pressure, and density of these particles at a 

given time. 

Velocity Field: 



Velocity Field: Eulerian and Lagrangian  

Eulerian: the fluid motion is given by completely describing the necessary 

properties as a function of space and time.  We obtain information about the 

flow by noting what happens at fixed points. 

Lagrangian: following individual fluid particles as they move about and 

determining how the fluid properties of these particles change as a function of 

time. 

Measurement of Temperature 

Eulerian Lagrangian 

If we have enough information, 

we can obtain Eulerian from 

Lagrangian or vice versa. 

Eulerian methods are 

commonly used in fluid 

experiments or analysis—a 

probe placed in a flow. 

Lagrangian methods can also 

be used if we “tag” fluid 
particles in a flow. 



Velocity Field: Steady and Unsteady Flows  

Steady Flow: The velocity at a given point in space does not vary with time. 

Unsteady Flow: The velocity at a given point in space does vary with time. 

Almost all flows have some unsteadiness.  In addition, there are periodic 

flows, non-periodic flows, and completely random flows. 

Very often, we assume steady flow conditions for cases where there is only 

a slight time dependence, since the analysis is “easier” 

Nonperiodic flow:  “water hammer” in water pipes. 
Periodic flow:  “fuel injectors” creating a periodic swirling in the combustion 
chamber.  Effect occurs time after time. 

Examples: 

Random flow: “Turbulent”, gusts of wind, splashing of water in the sink 

Steady or Unsteady only pertains to fixed measurements, i.e. exhaust 

temperature from a tail pipe is relatively constant “steady”; however, if we 
followed individual particles of exhaust they cool! 

Unsteady Flow: 

 Flow Visualize: 



Velocity Field: Streamlines 

Streamline: the line that is everywhere tangent to the velocity field.  If the flow is 

steady, nothing at a fixed point changes in time.  In an unsteady flow the 

streamlines due change in time. 

Analytically, for 2D flows, integrate the equations defining lines tangent to the 

velocity field:  

Experimentally, flow visualization with dyes 

can easily produce the streamlines for a 

steady flow, but for unsteady flows these 

types of experiments don’t necessarily 
provide information about the streamlines. 

 

 

 



Velocity Field: Streaklines  

Streaklines: a laboratory tool used to obtain instantaneous photographs of 

marked particles that all passed through a given flow field at some earlier time.  

Neutrally buoyant smoke, or dye is continuously injected into the flow at a given 

location to create the picture.   

If the flow is steady, the picture will look like streamlines (previous video). 

If the flow is unsteady, the picture will be of the instantaneous flow field, but 

will change from frame to frame, “streaklines”. 



Velocity Field: Pathlines  

Pathlines: line traced by a given particle as it flows from one point to another.  

This method is a Lagrangian technique in which a fluid particle is marked and 

then the flow field is produced by taking a time exposure photograph of its 

movement. 

If the flow is steady, the picture will look like streamlines (previous video). 

If the flow is unsteady, the picture will be of the instantaneous flow field, but 

will change from frame to frame, “pathlines”. 



Acceleration Field 

Lagrangian Frame: 

Eulerian Frame: we describe the acceleration in terms of position and time 

without following an individual particle.  This is analogous to describing the 

velocity field in terms of space and time. 

A fluid particle can accelerate due to a change in velocity in time (“unsteady”) 
or in space (moving to a place with a greater velocity). 



Acceleration Field: Material (Substantial) Derivative  

time dependence 
spatial  dependence 

We note: 

Then, substituting: 

The above is good for any fluid particle, so we drop “A”: 



Acceleration Field: Material (Substantial) Derivative  

Writing out these terms in vector components: 

x-direction: 

y-direction: 

z-direction: 

Writing these results in “short-hand”: 

where, 

k
z

j
y

i
x

ˆˆˆ()











 , 

Fluid flows experience fairly 

large accelerations or 

decelerations, especially 

approaching stagnation 

points. 



Acceleration Field: Material (Substantial) Derivative  

Applied to the Temperature Field in a Flow: 

The material derivative of any variable is the rate at which that variable changes 

with time for a given particle (as seen by one moving along with the fluid—
Lagrangian description). 



Acceleration Field: Unsteady Effects 

If the flow is unsteady, its paramater values at any location may change with 

time (velocity, temperature, density, etc.) 

The local derivative represents the unsteady portion of the flow: 

If we are talking about velocity, then the above term is local acceleration. 

In steady flow, the above term goes to zero. 

If we are talking about temperature, and V = 0, we still have heat transfer 

because of the following term: 

0 0 0 

= 



Acceleration Field: Unsteady Effects 

Consider flow in a constant diameter pipe, where the flow is assumed to be 

spatially uniform: 

0 
0 0 0 0 



Acceleration Field: Convective Effects 

The portion of the material derivative represented by the spatial derivatives is 

termed the convective term or convective accleration: 

It represents the fact the flow property associated with a fluid particle may 

vary due to the motion of the particle from one point in space to another. 

Convective effects may exist whether the flow is steady or unsteady. 

Example 1: 
Example 2: 

Acceleration = Deceleration 



Control Volume and System Representations 

Systems of Fluid:  a specific identifiable quantity of matter that may consist of a 

relatively large amount of mass (the earth’s atmosphere) or a single fluid 
particle.  They are always the same fluid particles which may interact with their 

surroundings. 

Control Volume:   is a volume or space through which the fluid may flow, usually 

associated with the geometry. 

Example: following a system the fluid passing through a compressor 

We can apply the equations of motion to the fluid mass to describe their 

behavior, but in practice it is very difficult to follow a  specific quantity of 

matter. 

When we are most interested in determining the the forces put on a fan, 

airplane, or automobile by the air flow past the object rather than following the 

fluid as it flows along past the object. 

Identify the specific volume in space and analyze the fluid flow within, 

through, or around that volume. 



Control Volume and System Representations 

Fixed Control Volume: 

Fixed or Moving 

Control Volume: 

Deforming Control 

Volume: 

Surface of the Pipe 

Surface of the Fluid 

Volume Around The 

Engine 
Inflow 

Outflow 

Outflow Deforming Volume 



Reynolds Transport Theorem: Preliminary Concepts 

All the laws of governing the motion of a fluid are stated in their basic form in 

terms of a system approach, and not in terms of a control volume. 

The Reynolds Transport Theorem allows us to shift from the system approach 

to the control volume approach, and back. 

General Concepts: 

B represents any of the fluid properties, m represent the mass, and  b 

represents the amount of the parameter per unit volume. 

Examples: 

Mass b = 1 

Kinetic Energy b = V2/2 

Momentum b = V (vector) 

B is termed an extensive property, and b is an intensive property.  B is 

directly proportional to mass, and b is independent of mass. 



Reynolds Transport Theorem: Preliminary Concepts  

For a System: The amount of an extensive property can be calculated by 

adding up the amount associated with each fluid particle. 

Now, the time rate of change of that system: 

Now, for control volume: 

For the control volume, we only integrate over the control volume, this is 

different integrating over the system, though there are instance when 

they could be the same. 



Reynolds Transport Theorem: Derivation  

Consider a 1D flow through a fixed  control volume between (1) and (2): 

CV, and system at t1 

System at t2 

System at t2 

Writing equation in terms of the extensive parameter: 

Originally, 

At time 2: 

Divide by dt: 



Reynolds Transport Theorem: Derivation  

Noting,  

Let,  

Time rate of change of mass within the control volume: 

The rate at which the extensive property flows out of the control surface:  

(1) (2) (3) (4) 

(1) 

(2) 

(4) 



Reynolds Transport Theorem: Derivation  

The rate at which the extensive property flows into the control surface:  

(3) 

Now, collecting the terms: 

or 

Restrictions for the above Equation: 

1) Fixed control volume 

2) One inlet and one outlet 

3) Uniform properties 

4) Normal velocity to section (1) and (2) 



Reynolds Transport Theorem: Derivation  

The Reynolds Transport Theorem can be derived for more general conditions. 

Result: 

This form is for a fixed non-deforming control volume. 



Reynolds Transport Theorem: Physical Interpretation  

(1) (2) (3) 

(1) The time rate of change of the extensive parameter of a system, mass, 

momentum, energy. 

(2) The time rate of change of the extensive parameter within the control 

volume. 

(3) The net flow rate of the extensive parameter across the entire control 

surface. “outflow across the surface” 
“inflow across the surface” 

“no flow across the surface” 

Mass flow rate: 



Reynolds Transport Theorem: Analogous to Material Derivative  

Unsteady Portion Convective Portion 

Steady Effects: 

Unsteady Effects (inflow = outflow): 



Reynolds Transport Theorem: Moving Control Volume  

There are cases where it is convenient to have the control volume move.  The 

most convenient is when the control volume moves with a constant velocity. 

Vo = 20i ft/s, V1 = 100i ft/s ,  Then W = 80i ft/s 

Now, in general for a constant velocity control volume: 



Reynolds Transport Theorem: Choosing a Control Volume  

If we want to know a property at point 1, pressure or velocity for instance: 

Good choice, since the point we want to know is on 

control surface.  Likewise, the values at the inlet and 

exit are normal to the surface. 

Valid control volume, but the point we want to know is 

interior.  So, it unlikely we will have enough 

information to obtain its value. 

Valid control volume, but the surfaces are not normal 

to the inlet and outlet.  



Boundary Layer Flow   

• The concept of boundary layer is due to Prandtl. It occurs on the 

solid boundary for high Reynolds number flows. Most high Reynolds 

number external flow can be divided into two regions: 

 

– Thin layer attached to the solid boundaries where viscous force is 

dominant, i.e. boundary layer flow region. 

 

– Other encompassing the rest region where viscous force can be 

neglected, i.e., the potential flow region, that has been discussed 

in chapter 7. 
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Boundary Layer Flow 

 

• The thin layer adjacent to a solid boundary is called the boundary 

layer and the flow inside the layer is called the boundary layer flow 

 

• Inside the thin layer the velocity of the fluid increases from zero at 

the wall (no slip) to the full value of corresponding potential flow. 

 

• There exists a leading edge for all external flows. The boundary layer 

flow developing from leading edge is laminar 
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Boundary Layer Equations 
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 For simplicity of illustration, we shall consider an incompressible 

steady flow over a semi-infinite flat plate with an uniform incoming 

flow of velocity U in parallel to the plate.  

 The flow is two dimensional. 

 The coordinates are chosen such that x is in the incoming  

flow direction with x=0 being located the leading edge and  

y is normal to the plate with y=0 being located at the plate 

wall.  



Boundary Layer Equations 

• The continuity and Navier-Stokes equations read: 
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Boundary Layer Equations 

• The above equations apply generally to two dimensional 

steady incompressible flows for all Reynolds number 

over the entire flow domain. 

 

• We now seek the equations that provide the first order 

approximation for high Reynolds number flows in the 

boundary layer. 
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Boundary Layer Equations 

• When normalize based on the following scales, we recall the 

normalized governing equations with Re underneath the viscous 

term 
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Boundary Layer Equations 

 

• When the viscous terms are dropped for high Re number 

flows, the equations become those for potential flows 

outside the boundary layer. The boundary layer effect is 

not realized. 

 

• Using L to normalize y cannot resolve the boundary layer 

near the solid boundary. We need to choose a proper 

length scale to normalize the y coordinate. 

 

 

63 



Boundary Layer Equations 

• To this end, let L be the characteristic length in the x 
direction and that L be sufficiently long, 
 
such that  

 

• Therefore, the viscous diffusion layer thickness dL at x=L 
is small compared to L, i.e.,          . 

 

• This viscous diffusion layer near the wall is  
the boundary layer. 

1Re 


UL
L
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Boundary Layer Equations 

• To resolve the flow in the boundary layer, the proper length scale in y-
direction is dL while that in x-direction remains as L. 

 

• The condition of v=0 for potential flows near the wall outside the 
boundary layer and the continuity Equation also imply that the velocity 
v in the boundary layer is small compared to U. Let V be the scale of v 
in the boundary layer, then V<<U. 

 

• It is clear that the non-dimensional normalized variables can now be 
expressed as:   
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Boundary Layer Equations 

• For high Reynolds number flow, the proper pressure 

scale is      ; hence,             . 

 

• In terms of the dimensionless variables, the governing 

equations becomes:   
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Boundary Layer Equations 

• From the continuity equation, we need 

 such that 

 

 

 

• Therefore,          , and the substitution of V into the 

momentum equation leads to: 
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Boundary Layer Equations 

• In order to balance the shear force with the inertia force, it is 
clear that we need,             ,i.e.,   
 
 

• The momentum  equations reduced further to 

 

 

 

 

 

 

• For high Reynolds number flows, the terms with ReL to the first 
approximation can be neglected. 
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Boundary Layer Equations 

• These results in the boundary layer equations that in 

dimensional form are given by: 
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Continuity: 

X-momentum: 

Y-momentum: 



Boundary Layer Equations 

• The last equation for y-momentum equation indicates that the 
pressure is constant across the boundary layer, i.e., equal to that 
outside the boundary layer (in the free stream), i.e.,         

 

• In the free stream (outside the boundary layer), the viscous force is 
negligible and we also have                 , which in fact is the slip 
velocity of corresponding potential theory near the boundary 

 

• The x-momentum boundary layer equation near the free stream 
becomes: 
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Boundary Layer Equations 

• Therefore, the boundary layer equations can be  

re-written into: 

 

 

 

 

 

 

 

and the proper boundary conditions are: 
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Boundary Layer Equations 

• For semi-infinite flat plate with uniform incoming 

velocity,                   . The boundary layer equations 

reduced further to: 

 

 

 

 

 

constantU

72 

0







yx

vu

2

2

y

u

y

u
v

x

u
u

















 



Boundary Layer Flows over Curve Surfaces 

• In fact the boundary layer equation is also meant for curved solid 

boundary, given a large radius of curvature  

R >> dL. 
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Boundary Layer Flows over Curve Surfaces 

 

• By defining an orthogonal coordinate system with 

x coordinate along boundary and y coordinate normal to boundary, 

previous analysis is also valid for curved surface. This can be done 

through a coordinate transformation. 

 

• Since radius of curvature is large, the curvature effects become 

higher order terms after transformation. These higher order terms 

can be neglected for 1st-order approximation. The same boundary 

layer equation can be obtained. 
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Boundary Layer Flows over Curve Surfaces 

• For example in 2D flows, one way is to use the potential lines and 

streamlines to form a coordination system. x is along streamline direction, 

and y is the along potential lines. Such coordination system are called 

body-fitted coordination system. 
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Similarity Solution 
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 If L is considered as a varying length scale equal to x, then the 

boundary thickness varies with x as                  where                 

  is the local Reynolds number. 

 

 A boundary layer flow is similar if its velocity profile as normalized by 

U depends only on the normalized 

 

distance from the wall,                        , i.e., 

 

 

 

 

 where V is the velocity components outside the boundary layer 

normal to U. Here g() and h() are called the similarity variables. 
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Blasius Solution 
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 For uniform flows past a semi-infinite flat plate, the Boundary 

layer flows are 2-D. It can be shown that the stream function 

defined by                          will satisfy the above conditions for 

similarity solution such that  

 

 

 

 

 

    where the f’ denotes the derivative with respect to . Consequently,  
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Blasius Solution 
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 The boundary layer equation in term of the similarity 

variables becomes: 

 

 

 subject to the boundary conditions: 

 

 

 The velocity profile obtained by solving the above ordinary 

differential equation is called the  

Blasius profile. 



Blasius Solution Plot 
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streamwise and transverse velocities 



Boundary Thickness and Skin Friction 
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 Since the velocity profile merges smoothly and asymptotically into the free 

stream, it is difficult to measure the boundary layer thickness d. 

Conventionally, d is defined as the distance from the surface to the point 

where velocity is 99% of free stream velocity. 

 

 This occurs when        , i.e., 

 

 Therefore, for laminar boundary layer, 
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 The wall shear stress can be expressed as, 

 

 

 

 

 And the friction coefficient Cf is given by, 

 

 



Boundary Thickness and Skin Friction 
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 The boundary layer thickness d increases with  x1/2, while 

the wall shear stress and the skin friction coefficient vary 

as x-1/2. 

 

 These are the characteristics of a laminar boundary layer 

over a flat plate.  



Turbulent Boundary Layer 

83 

 Laminar boundary layer flow can become unstable and evolve 

to turbulent boundary layer flow at down stream. This process 

is called transition. Among the factor that affect boundary-layer 

transition are pressure gradient, surface roughness, heat 

transfer, body forces, and free stream disturbances. 



Turbulent Boundary Layer 

84 

 Under typical flow conditions, transition usually occurs at 

a Reynolds number of 5 x 105, which can be delayed to 

Re between 3~ 4 x 106 if external disturbances are 

minimized. 

 

 Velocity profile of turbulent boundary layer flows is 

unsteady. 

 

 Because of turbulent mixing, the mean velocity profile of 

turbulent boundary layer is more flat near the outer region 

of the boundary layer than the profile of a laminar 

boundary layer.  



Turbulent Boundary Layer 
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w d

 A good approximation to the mean velocity profile for 

turbulent boundary layer is the empirical 1/7 power-law 

profile given by  

 

 

 This profile doesn't hold in the close proximity of the wall, 

since at the wall it predicts           . 

 

 Hence, we cannot use this profile in the definition of     to 

obtain an expression in terms of     .  



Turbulent Boundary Layer 
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 For the drag of turbulent boundary-layer flow, we use the 

following empirical expression developed for circular pipe 

flow, 

 

 

 where     is the pipe cross-sectional mean velocity and R 

the pipe radius. 

 

 For a 1/7-power profile in a pipe,      .The substitution of        

and         gives, 
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 For turbulent boundary layer, empirically we have 

 

 

 Therefore, 

 

 

 

 Experiment shows that this equation predicts the turbulent 

skin friction on a flat plate within about 3% for 5 x 106 

<Rex< 107 



Turbulent Boundary Layer 
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 Note the friction coefficient for the laminar boundary layer 

is proportional to Rex
-1/2, while that for the turbulent 

boundary layer is proportional to Rex
-1/5, with the 

proportional constants different also by a factor of 10. 

 

 The turbulent boundary layer develops more rapidly than 

the laminar boundary layer.  



Fluid Force on Immersed Bodies 
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 Relative motion between a solid body and the fluid in 

which the body is immersed leads to a net force, F, acting 

on the body. This force is due to the action of the fluid.  

 

 In general, dF acting on the surface element area, will be 

the added results of pressure and shear forces normal 

and tangential to the element, respectively. 



Fluid Force on Immersed Bodies 
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 Hence, 

 

 

 The resultant force, F, can be decomposed into parallel 

and perpendicular components. The component parallel 

to the direction of motion is called the drag, D, and the 

component perpendicular to the direction of motion is 

called the drag, D, and the component perpendicular to 

the direction of motion is called the lift, L. 



Fluid Force on Immersed Bodies 
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 Now 

 

 

 

 where      is the unit vector inward normal to the body 

surface, and     is the unit vector tangential to the surface 

along the surface slip velocity direction. The total fluid force 

on the body becomes 

 

 

 

st



Fluid Force on Immersed Bodies 
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 If i is the unit vector in the body motion direction, then 

magnitude of drag FD becomes: 

 

 

 

 

 Note that L is in the plane normal to i, generally for three-

dimensional flows. 

 For two-dimensional flows, we can denotes j as the unit 

vector normal to the flow direction. 

 

 



Fluid Force on Immersed Bodies 
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 Therefore, L=FL j where FL is the magnitude of lift and is 

determined by: 

 

 

 

 For most body shapes of interest, the drag and lift cannot 

be evaluated analytically  

 

 Therefore, there are very few cases in which the lift and 

drag can be determined without resolving by 

computational or experimental methods. 

 



Drag 
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 The drag force is the component of force on a body acting 

parallel to the direction of motion. 

 

drag force 
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 The drag coefficient defined as 

 

 

 

 is a function of Reynolds number             , i.e. 

 

 

 This form of the equation is valid for incompressible flow 

over any body, and the length scale, D, depends on the 

body shape. 
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 If the pressure gradient is zero and no flow separation, 

then the total drag is equal to the friction drag,                , 

and, 

 

 

 

 

 The drag coefficient depends on the shear stress 

distribution. 

 



Friction Drag 
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 For a laminar flow over a flat surface, U=U and the skin-friction 

coefficient is given by, 

 

 

 

 The drag coefficient for flow with free stream velocity, U, over a flat 

plate of length, L, and width, b, is obtained by substituting     into     , 

 DCw
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 If the boundary layer is turbulent, the shear stress on the flat plate 

then is given by, 

 

 

 

 The substitution for    results in, 

 

 

 

 This result agrees very well with experimental coefficient of, 0.074 for 

ReL< 107 
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Pressure Drag (Form Drag) 
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 The pressure drag is usually associated with flow separation which 

provide the pressure difference between the front and rear faces of 

the body. Therefore, this type of pressure drag depends strongly on 

the shape of the body and is called  

form drag. 

 

 In a flow over a flat plate normal to the flow as shown in the following 

picture, the wall shear stress contributes very little to the drag force. 

flow separation 

occurs 



Pressure Drag (Form Drag) 
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 The form drag is given by, 

 

 

 

 As the pressure difference between front and rear faces 

of the plate is caused by the inertia force, the form drag 

depends only on the shape of the body and is 

independent of the fluid viscosity. 



Pressure Drag (Form Drag) 

 

• The drag coefficient for all object with shape edges is 

essentially independent of Reynolds number. 

 

• Hence, CD=constant where the constant changes with the 

body shape and can only be determined experimentally.  
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Friction and Pressure Drag for Low Reynolds   
 Number Flows 

• At very low Reynolds number, Re<<1, the viscous force 

encompass a very large region surrounding the body. 

 

• The pressure drag is mainly caused by fluid viscosity 

rather than inertia. 

 

• Hence, both friction and pressure drags contribute to the 

total drag force, i.e., the total drag is entirely viscous drag 
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Friction and Pressure Drag for Low Reynolds   
 Number Flows 

• For low velocity flows passing a sphere of diameter D, Stokes had 
shown that the total viscous drag is given by 

 

 

 

 with 1/3 of it being contributed from normal pressure and 2/3 from 
frictional shear. The drag coefficient then is expressed as  

 

 

 

 

 

 

• As the ReD increases, the flow separates and the relative contribution 
of viscous pressure drag decreases. 
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direction flow the in sphere the of area projected the is  where    42/πDA 



Flow in Pipes 



Introduction 

• Average velocity in a pipe 

– Recall - because of the no-slip 

condition, the velocity at the walls of 

a pipe or duct flow is zero 

– We are often interested only in Vavg, 

which we usually call just V (drop the 

subscript for convenience) 

– Keep in mind that the no-slip 

condition causes shear stress and 

friction along the pipe walls 

 
Friction force of wall on fluid 



Introduction 

• For pipes of constant 

diameter and 

incompressible flow 

– Vavg stays the same 

down the pipe, even if 

the velocity profile 

changes 

• Why? Conservation of 

Mass 

same 

Vavg Vavg 

same 
same 



Introduction 

• For pipes with variable diameter, m is still the 

same due to conservation of mass, but V1 ≠ V2 

D2 

V2 

2 

1 

V1 

D1 

m m 



Laminar and Turbulent Flows 



Laminar and Turbulent Flows 

• Critical Reynolds number 
(Recr) for flow in a round pipe 

Re < 2300  laminar 

2300 ≤ Re ≤ 4000  transitional  

Re > 4000  turbulent 

 

• Note that these values are 
approximate. 

• For a given application, Recr 
depends upon 

– Pipe roughness 

– Vibrations 

– Upstream fluctuations, 
disturbances (valves, elbows, etc. 
that may disturb the flow) 

Definition of Reynolds number 



Laminar and Turbulent Flows 

• For non-round pipes, define the 
hydraulic diameter  
Dh = 4Ac/P 

Ac = cross-section area 

P = wetted perimeter 

 

 

• Example:  open channel 

Ac = 0.15 * 0.4 = 0.06m2 

P = 0.15 + 0.15 + 0.5 = 0.8m 

Don’t count free surface, since it does not 
contribute to friction along pipe walls! 

Dh = 4Ac/P = 4*0.06/0.8 = 0.3m 

What does it mean?  This channel flow is 
equivalent to a round pipe of diameter 
0.3m (approximately). 



The Entrance Region 

• Consider a round pipe of diameter D.  The flow 

can be laminar or turbulent.  In either case, the 

profile develops downstream over several 

diameters called the entry length Lh. Lh/D is a 

function of Re. 

Lh 



Fully Developed Pipe Flow 

• Comparison of laminar and turbulent flow 

There are some major differences between laminar and 

turbulent fully developed pipe flows 

Laminar 

• Can solve exactly (Chapter 9) 

• Flow is steady 

• Velocity profile is parabolic 

• Pipe roughness not important 

 

It turns out that Vavg = 1/2Umax and u(r)= 2Vavg(1 - r2/R2) 



Fully Developed Pipe Flow 

 Turbulent 
• Cannot solve exactly (too complex) 

• Flow is unsteady (3D swirling eddies), but it is steady in the mean 

• Mean velocity profile is fuller (shape more like a top-hat profile, with 
very sharp slope at the wall)  

• Pipe roughness is very important 

 

 

 

 

 

• Vavg 85% of Umax (depends on Re a bit) 

• No analytical solution, but there are some good semi-empirical 
expressions that approximate the velocity profile shape.  See text  
 Logarithmic law (Eq. 8-46) 

  Power law (Eq. 8-49) 

Instantaneous 

profiles 



Fully Developed Pipe Flow  

Wall-shear stress 
• Recall, for simple shear flows u=u(y), we had 

   = du/dy 

• In fully developed pipe flow, it turns out that 

    = du/dr 
Laminar Turbulent 

w w 

w,turb > w,lam 
 w = shear stress at the wall,  

acting on the fluid 



Fully Developed Pipe Flow  

Pressure drop 
• There is a direct connection between the pressure drop in a pipe and 

the shear stress at the wall 

• Consider a horizontal pipe, fully developed, and incompressible flow 

 

 

 

 

 

 

 

 

• Let’s apply conservation of mass, momentum, and energy to this CV 
(good review problem!) 

 

1 2 
L 

w 

P1 P2 V 
Take CV inside the pipe wall 



Fully Developed Pipe Flow  

Pressure drop 
• Conservation of Mass 

 

 

 

 

 

 

• Conservation of x-momentum 

 

Terms cancel since 1 = 2 

and V1 = V2  



Fully Developed Pipe Flow  

Pressure drop 
• Thus, x-momentum reduces to 

 

 

 

 

• Energy equation (in head form) 

 

or 

cancel (horizontal pipe) 

Velocity terms cancel again because V1 = V2, and 1 = 2 (shape not changing) 

hL = irreversible head  

loss & it is felt as a pressure 

drop in the pipe 



Fully Developed Pipe Flow  

Friction Factor 
• From momentum CV analysis 

 

 

• From energy CV analysis 

 

 

• Equating the two gives 

 

 

 

• To predict head loss, we need to be able to calculate w.  How? 

– Laminar flow:  solve exactly 

– Turbulent flow:  rely on empirical data (experiments) 

– In either case, we can benefit from dimensional analysis! 



Fully Developed Pipe Flow  

Friction Factor 
฀ w = func(  V, , D, )   = average roughness of the 

              inside wall of the pipe 

฀ -analysis gives 



Fully Developed Pipe Flow  

Friction Factor 
• Now go back to equation for hL and substitute f for w 

 

 

 

 

 

 

 

 

 

 

• Our problem is now reduced to solving for Darcy friction factor f 

– Recall 

– Therefore 

• Laminar flow:  f = 64/Re (exact) 

• Turbulent flow: Use charts or empirical equations (Moody Chart, a famous 
plot of f vs. Re and /D, See Fig. A-12, p. 898 in text) 

But for laminar flow, roughness 

does not affect the flow unless it 

is huge 





Fully Developed Pipe Flow  

Friction Factor 

• Moody chart was developed for circular pipes, but can 
be used for non-circular pipes using hydraulic diameter 

• Colebrook equation is a curve-fit of the data which is 
convenient for computations (e.g., using EES) 

 

 

 

 

 

• Both Moody chart and Colebrook equation are accurate 
to ±15% due to roughness size, experimental error, 
curve fitting of data, etc. 

Implicit equation for f which can be solved 

using the root-finding algorithm in EES 



Types of Fluid Flow Problems 

• In design and analysis of piping systems, 3 
problem types are encountered 

1. Determine p (or hL) given L, D, V (or flow rate) 
Can be solved directly using Moody chart and Colebrook 
equation 

2. Determine V, given L, D, p 

3. Determine D, given L, p, V (or flow rate) 

Types 2 and 3 are common engineering 
design problems, i.e., selection of pipe 
diameters to minimize construction and 
pumping costs 

However, iterative approach required since 
both V and D are in the Reynolds number. 



Types of Fluid Flow Problems 

• Explicit relations have been developed which 

eliminate iteration.  They are useful for quick, 

direct calculation, but introduce an additional 2% 

error 



Minor Losses 

• Piping systems include fittings, valves, bends, elbows, 

tees, inlets, exits, enlargements, and contractions. 

• These components interrupt the smooth flow of fluid and 

cause additional losses because of flow separation and 

mixing 

• We introduce a relation for the minor losses associated 

with these components 
• KL is the loss coefficient.   

• Is different for each component. 

• Is assumed to be independent of Re. 

• Typically provided by manufacturer or 

generic table (e.g., Table 8-4 in text). 



Minor Losses 

• Total head loss in a system is comprised of 

major losses (in the pipe sections) and the minor 

losses (in the components) 

 

 

 

 

• If the piping system has constant diameter 

i pipe sections j components 






