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Mechanics of Solids 

Syllabus:- Part - A 

1.   Simple Stresses & Strains:- 

 Introduction, Stress, Strain, 

 Tensile, Compressive & Shear Stresses, 

  Elastic Limit, Hooke’s Law, Poisson’s Ratio, 

 Modulus of Elasticity, Modulus of Rigidity, 

 Bulk Modulus, Bars of Varying Sections, 

 Extension of Tapering Rods, Hoop Stress,  

 Stresses on Oblique Sections. 



2.   Principle Stresses & Strains:- 

 State of Simple Shear,  

 Relation between Elastic Constants,   

 Compound Stresses, Principle Planes  

  Principle Stresses,  

 Mohr’s Circle of Stress, Principle Strains,  

 Angle of Obliquity of Resultant Stresses,  

 Principle Stresses in beams. 

  



3.   Torsion:- 

        Torsion of Circular, Solid, Hollow Section Shafts 

 Shear Stress, Angle of Twist,  

 Torsional Moment of Resistance, 

 Power Transmitted by a Shaft,  

 Keys & Couplings,  

 Combined Bending & Torsion, 

 Close Coiled Helical Springs, 

 Principle Stresses in Shafts Subjected to  

 Bending, Torsion & Axial Force. 



Mechanics of Solids 

Syllabus:- Part - B 

1.   Bending Moment & Shear Force:-  

 Bending Moment, 

 Shear Force in Statically Determinate Beams 

 Subjected to Uniformly Distributed,   

 Concentrated & Varying Loads, 

 Relation Between Bending Moment, 

 Shear force & Rate of Loading. 



2.   Moment of Inertia:- 

 Concept Of Moment of Inertia, 

 Moment of Inertia of Plane Areas, 

 Polar Moment of Inertia,  

 Radius of Gyration of an Area, 

 Parallel Axis Theorem,  

 Moment of Inertia of Composite Areas, 

 Product of Inertia, 

 Principle Axes & Principle Moment of Inertia. 



3.   Stresses in Beams:- 

 Theory of Simple Bending, Bending Stresses, 

 Moment of Resistance,  

 Modulus of Section, 

 Built up & Composite Beam Section, 

 Beams of Uniform Strength. 

 

4.   Shear stresses in Beams:- 

 Distribution of Shear Stresses in Different  

 Sections. 



5.   Mechanical Properties of Materials:- 

 Ductility, Brittleness, Toughness, Malleability, 

Behaviour of Ferrous & Non-Ferrous metals in 

Tension & Compression, Shear & Bending tests, 

Standard Test Pieces, Influence of Various 

Parameters on Test Results, True & Nominal Stress, 

Modes of Failure, Characteristic Stress-Strain 

Curves, Izod, Charpy & Tension Impact Tests, 

Fatigue, Creep, Corelation between Different 

Mechanical Properties, Effect of Temperature, 

Testing Machines & Special Features, Different 

Types of Extensometers & Compressemeters, 

Measurement of Strain by Electrical Resistance 

Strain Gauges. 



1.   Mechanics of Structures Vol.-1:-     

       S.B.Junarkar &  H.J. 

Shah 

 

2.   Strength of Materials:-  S.Ramamurtham. 

 



MECHANICS OF SOLIDS 

Introduction:- 

•Structures /Machines 

•Numerous Parts / Members 

•Connected together 

•perform useful functions/withstand applied loads 



AIM OF MECHANICS OF SOLIDS: 

 

Predicting how geometric  and physical properties      

of structure    will    influence its behaviour under 

service conditions. 
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•Stresses can occur isolated or in combination. 

• Is structure strong enough to withstand loads 

applied to it ? 

• Is it stiff enough to avoid excessive 

deformations and deflections? 

• Engineering Mechanics---->  Statics----->           

 deals with rigid bodies 

• All materials are deformable and mechanics 

of solids takes this into account. 



• Strength and stiffness of structures is function of 

size and shape, certain physical properties of 

material. 

•Properties of Material:- 

• Elasticity 

• Plasticity 

• Ductility 

• Malleability 

• Brittleness 

• Toughness 

• Hardness  



INTERNAL FORCE:-  STRESS  

• Axial Compression 

• Shortens the bar 

• Crushing  

• Buckling 

n m 

P P 

P= A 

• Axial tension 

•Stretches the bars & tends 

to pull it apart 

• Rupture 

m n 

=P/A 

P P 



•  Resistance offered by the material per unit cross-     

sectional area is called STRESS. 

     = P/A  

   Unit of Stress: 

   Pascal = 1 N/m2
   

      kN/m2    , MN/m2    ,      GN/m2
  

 

 1 MPa = 1 N/mm2
 

Permissible stress or allowable stress or working stress = yield stress 

or ultimate stress /factor of safety. 



• Strain 

•It is defined as deformation per unit length 

 

• it is the ratio of change in length to original length 

•Tensile strain     = increase in length  =       

(+ Ve) ()             Original length                  L 

 

Compressive strain = decrease in length =     
  

(- Ve) ()                    Original length      L 

 

 

P 
 

L 

•Strain is dimensionless quantity. 



Example : 1 

A short hollow, cast iron cylinder with wall thickness 

of 10 mm is to carry compressive load of 100 kN. 

Compute the required outside diameter `D’ , if the 

working stress in compression is 80 N/mm2. (D = 49.8 

mm). 

Solution:   = 80N/mm2;  

P= 100 kN = 100*103 N 

A =(/4) *{D2 - (D-20)2} 

as  = P/A 

substituting in above eq. and 
solving. D = 49.8 mm 

D 

d 

10 mm 



Example: 2 

A Steel wire hangs vertically under its weight. What is 

the greatest length it can have if the allowable tensile 

stress t =200 MPa? Density of steel =80 

kN/m3.(ans:-2500 m) 

Solution: 

t =200 MPa= 200*103 kN/m2  ; 

=80 kN/m3. 

Wt. of wire P=(/4)*D2*L*  
c/s area of wire A=(/4)*D2 

t = P/A 

solving above eq.  L =2500m 

L 



Strain 

Stress 

Stress- Strain Curve for Mild Steel (Ductile Material) 

Plastic state 

Of material 

Elastic State 

Of material 

Yield stress 

Point 

E = modulus of       

 elasticity 

Ultimate stress point 

Breaking stress point 



Modulus of Elasticity: 

• Stress required to produce a strain of unity. 

• i.e. the stress under which the bar would be 

stretched to twice its original length . If the 

material remains elastic throughout , such 

excessive strain. 

• Represents slope of stress-strain line OA. 

A 

 

 

O 

stress 

strain 

Value of E is same in 

Tension & 

Compression. 

 =E  

E 



A 

 

 

O 

• Hooke’s δaw:- 
 Up to elastic limit, Stress is proportional to strain 

    

  =E ; where E=Young’s  modulus 

 =P/A and  =  / L 

 P/A = E ( / L) 

   =PL /AE 

E 



Example:4 An aluminium bar 1.8 meters long has a 

25 mm  square c/s over 0.6 meters of its length and 

25 mm circular c/s over other 1.2 meters . How 

much will the bar elongate under a tensile load 

P=17500 N, if E = 75000 Mpa. 

 Solution :-  = ∑PL/AE 

=17500*600 / (252*75000) + 

17500*1200/(0.785*252*75000) =0.794 mm 

0.6 m 
1.2 m 

25 mm sq.sect 25 mm cir..sect 
17500 N 



15 kN 

1 m 1 m 2 m 

20 kN 15 kN 

Example: 5 A prismatic steel bar having cross sectional area of A=300 

mm2 is subjected to axial load as shown in figure . Find the net increase  

 in the  length  of the bar. Assume E = 2 x 10 5 MPa.( Ans  = -0.17mm) 

 = 20000*1000/(300*2x10 5)-15000*2000/(300*2 x10 5) 

  = 0.33 - 0.5 = -0.17 mm    (i.e.contraction) 

C B A 

20 20 C 

0 0 B 

15 15 A 

Solution: 

 



9 m 

x 

5 m 

3m 

A = 445 mm 2 

E = 2 x 10 5  
A = 1000 mm 2 

E = 1 x 10 5  

A B 

Example: 6 A rigid bar AB, 9 m long, is supported by two vertical rods at 

its end  and in a horizontal position under a load P as shown in figure. 

Find the position of the load P so that the bar AB remains horizontal. 

P 



9 m 

x 

5 m 

3m 

A B 

P 

P(9-x)/9 P(x)/9 

 



(9 - x)*3=x*5*1.1236 

27-3x=5.618 x 

8.618 x=27 

x = 3.13 m 

For the bar to be in horizontal position, Displacements 

at A & B should be same, 

     A = B 

  (PL/AE)A =(PL/AE)B 

= 
     {P(x)/9}*5 

0.000445*2*105 

{P(9-x)/9}*3                       

 (0.001*1*105) 



P P 

X 

L 

d1 d2 dx 

x 

Extension of Bar of Tapering cross Section 

from diameter d1 to d2:- 

Bar of Tapering Section: 

dx = d1 + [(d2 - d1) / L] * X 

 = Px / E[ /4{d1 + [(d2 - d1) / L] * X}2] 



 =  4 P dx /[E {d1+kx}2 ] 

= - [4P/  E] x   1/k  [ {1 /(d1+kx)}]  dx 

=- [4PL/  E(d2-d1)] {1/(d1+d2 -d1) - 1/d1} 

 = 4PL/( E d1 d2) 

Check :-  

When d = d1=d2 

 =PL/ [( /4)* d2E ] = PL /AE  (refer -24) 

 
L 

0 

L 

0 



`` P P 

X 

L 

d1 d2 dx 

x 

Q. Find extension of tapering circular bar under axial pull for the 

following data: d1 = 20mm, d2 = 40mm, L = 600mm, E = 200GPa. 

P = 40kN 

L = 4PL/( E d1 d2) 

      = 4*40,000*600/(π* 200,000*20*40) 

      = 0.38mm.            Ans. 



P P 

X 

L 

b2 b1 bx 

x 

Bar of Tapering Section: 

bx = b1 + [(b2 - b1) / L] * X = b1 + k*x,  

 = Px / [Et(b1 + k*X)],   k = (b2 - b1) / L 

Extension of Tapering bar of uniform thickness 

t,  width varies from b1 to b2:- 

P/Et ∫ x / [ (b1 + k*X)], 



L =   L =    Px / [Et(b1 - k*X)],  
L 

0 
 
L 

0 

      = P/Et ∫ x / [ (b1 - k*X)], 

       = - P/Etk * loge  [ (b1 - k*X)]
0

L

, 

       = PLloge(b1/b2) / [Et(b1 – b2)]  

 
L 

0 



P P 

X 

L 

b2 b1 bx 

x 

Take b1 = 200mm, b2 = 100mm, L = 500mm  

P = 40kN, and E = 200GPa, t = 20mm 

įL= PLloge(b1/b2) / [Et(b1 – b2)] 

     = 40000*500loge(200/100)/[200000*20 *100] 

     = 0.03465mm 

Q. Calculate extension of Tapering bar of 

uniform thickness t,  width varies from b1 to 

b2:- 

P/Et ∫ x / [ (b1 + k*X)], 



Elongation of a Bar of circular tapering section 

due to self weight: 

=Wx*x/(AxE)  

(from  =PL/AE ) 

now Wx=1/3* AxX  
where Wx=Wt.of the bar 

so  = X *x/(3E) 
so now 

L = X  *x/(3E)  

=  /(3E)   Xdx=  [/3E ] [X2 /2]  

= L2/(6E) 

 
L 

0 

 
L 

0 

x 

L 

d 

A B 

X 



Let W=total weight of bar = (1/3)*(/4*d2)L  

 =12W/ (*d2L) 

so, 

L = [12W/ (*d2L)]*(L2/6E) 

     =2WL/ (*d2E) 

     =WL/[2*(*d2/4)*E] 

     =WL /2*A*E 



Calculate elongation of a Bar of circular tapering 

section due to self weight:Take L =10m, d = 

100mm,  = 7850kg/m3  

 

L = L2/(6E) 

      
7850*9.81*10000*10000*/ 

        [6*200000*10003] 

      = 0.006417mm 

 

x 

L 

d 

A B 

X 



P + dP 

P 

dx 

X 

Extension of Uniform cross section bar subjected 

to uniformly varying tension due to self weight 
PX=   A  x 

d = PX dx / A E; 

 = PX dx/AE=  A x dx/AE 

  = ( /E)  x dx= ( L2/2E)  

If total weight of bar W=  A L   = W/AL 

      =WL/2AE (compare this results with slide-26) 

L 

0 

L 

0 L 

0 

L 

d 



dx 

X 

Q. Calculate extension of Uniform cross section bar subjected to 

uniformly varying tension due to self weight 

L 

d 

Take L = 100m, A = 100mm2 , density =  

7850kg/m3 

 =  ( L2/2E) 

 = 

850*9.81*100000*100000/ 

    [2*200000*10003 ]  

  = 1.925mm 



Bar of uniform strenght:(i.e.stress is constant at all points of the bar.) 

dx 

L 

x 

Area = A2 

Area = A1 

Force = p*(A*dA) 

Force = p*(A+dA) 

dx 

  comparing force at BC level of strip  

       of thickness dx 

A 

B C 

D 

B C 

                             P(A + dA) = Pa + w*A*dx,  

           where w is density of the  material  hence  

           dA/A = wdx/p,  Integrating logeA = wx/p + C,  

           at x = 0, A = A2  and x = L, A = A1, C = A2   

             loge(A/A2) = wx/p OR A = ewx/p 

Down ward force of 

strip = w*A*dx,  



dx 

L 

x 

Area = A2 

Area = A1 

Force = p*(A*dA) 

Force = p*(A+dA) 

dx 

      

A 

B C 

D 

B C 

                              

                          A = ewx/p  

          (where A is cross section area at any    

            level x of bar of uniform strenght ) 

Down ward force of strip 

= w*A*dx,  



dx 

L 

x 

Area = A2 

Area = A1 

      

A 

B C 

D 

                               p = 700000/5000 = 140MPa 

                          A1 =A2 e
wx/p  

                   A1 = 5000*e8000*9.81*20000/[140*1000
3
] 

                                   = 5056.31mm2 

Q. A bar of uniform strength has following data. Calculate cross sectional 

area at top of the bar.  

A2 = 5000mm2  , L = 20m, load at 

lower end = 700kN, density of the 

material = 8000kg/m3  



L B 

D 
P 

P 

L+L 

B-B 

D-D 

POISSONS RATIO:- = lateral contraction per Unit axial 

 elongation, (with in elastic limit) 

L(1+) 

B(1-

) 

D(1-

) 

= (B/B)/(L/L); 

   = (B/B)/() 

So B =  B; 

New breadth = 

B -B = B -  B 

      =B(1 -   ) 

Sim.,New depth= 

      D(1- ) 



for isotropic materials  = ¼   for steel  = 0.3 

Volume of bar before deformation V= L * B*D 

new length after deformation       L1=L + L = L + L = L (1+ ) 
new breadth B1= B - B  = B -  B = B(1 -  ) 

new depth    D1= D - D = D -  D = D(1 -  )  
new cross-sectional area = A1= B(1- )*D(1- )= A(1-   )2 

new volume V1= V - V = L(1+  )* A(1-   )2 

       AL(1+  - 2   ) 
Since   is small 

change in volume = V =V1-V        =  AL   (1-2 ) 

and unit volume change = V/ V    = {AL   (1-2 )}/AL 

         V/ V  =   (1-2 ) 



In case of uniformly varying tension, the elongation 

‘’ is just half what it would be if the tension were 

equal throughout the length of the bar. 



Example: 7  A steel bar having 40mm*40mm*3000mm 

dimension is subjected to an axial force of 128 kN. 

Taking E=2*105N/mm2 and  = 0.3,find out change in 

dimensions. 

Solution: 

given b=40 mm,t=40mm,L=3000mm 

P=128 kN=128*103 N,  E=2*105 mm2,  =0.3 

L=?, b=?, t=? 

t = P/A = 128*103 /40*40= 80 N/mm2 

128 kN 128 kN 
3000 mm 40 

40 



now  = t/E=80/(2*105 )=4*10-4 

 

 = L/L ==> L=  *L=4*10-4 *3000 = 1.2 mm 

       (increase) 

 

b= - *( *b)= -0.3*4*10-4*40  = 4.8*10-3 mm 

      (decrease) 

 

t = - *( *t)= -0.3*4*10-4*40  = 4.8*10-3 mm 

      (decrease) 



Change in volume = [3000 + 1.2) * (40 – 0.0048) * 

                                   (40 – 0.0048)] – 3000*40*40 

                                 =  767.608 mm3 

OR by using equation (derivation is in chapter of 

volumetric stresses and strains) 

dv = p*(1-2µ)v/E  

     = (128000/40*40)*0.4*3000*40*40/200000 

     = 768mm3  



Example: 8  A strip of 20 mm*30 mm c/s and 1000mm 

length is subjected to an axial push of 6 kN. It is 

shorten by 0.05 mm. Calculate (1) the stress induced 

in the bar. (2) strain and young's modulus & new 

cross-section. Take  =0.3 

Solution:given, 

 c/s =20 mm*30 mm, A =600mm2,L=1000 mm, 

P=6 kN=6*103 N, L =0.05 mm,  = ?, =?,E =?. 

1.  = P/A =6000/600 =10 N/mm2  -----(1) 

2  = L /L=0.05/1000 =0.00005 -----(2) 

  =E  ==>E = /  =10/0.00005 = 2*105 N/mm2 



3 Now, 

New breadth B1 =B(1- ) 

     =20(1-0.3*0.00005) 

     =19.9997 mm 

New Depth D1   = D(1- ) 

     =30(1-0.3*0.00005) 

     = 29.9995mm 

 



Example: 9  A iron bar having 200mm*10 mm c/s,and 

5000 mm long is subjected to an axial pull of 240 

kN.Find out change in dimensions of the bar. Take E 

=2*105 N/mm2 and  = 0.25. 

Solution: b =200 mm,t = 10mm,so A = 2000mm2 

 = P/A=240*103 / 2000 =120N/mm2 

now =E     = /E =120/2*105=0.0006 

= L /L     L =  *L=0.0006*5000=3 mm 

b = -*( *b)= -0.25*6*10-4*200  

    = 0.03 mm(decrease) 

t  = -*( *t) = -0.25*6*10-4*10   



Composite Sections: 

• as both the materials deforms axially by same 

value strain in both materials are same. 

     s = c =   

 s /Es= c /E (=  = L /L) _____(1) & (2) 

•Load is shared between the two materials. 

Ps+Pc = P i.e. s *As   +  c *Ac   = P   ---(3) 

         (unknowns  are s, c and L) 

Concrete 
Steel 

bars 



Example: 10  A Concrete column of C.S. area 400 x 400 

mm reinforced by 4 longitudinal 50 mm diameter 

round steel bars placed at each corner of the column 

carries a compressive  load of 300 kN. Calculate  (i) 

loads carried by each material & compressive stresses 

produced in each material. Take  Es = 15 Ec Also 

calculate change in length of the column. Assume the 

column in 2m long.  

400 mm 

  4-50 bar 4
0

0
 m

m
 

Take Es = 200GPa 



Solution:-  

Gross C.S. area of  column =0.16 m2 

 C.S. area of steel = 4*π*0.0252  = 0.00785 m2 

Area of concrete =0.16 - 0.00785=0.1521m2 

Steel bar and concrete shorten by same amount. So, 

s = c => s /Es = c /Ec = > s= cx (Es /Ec) 

           = 15c  



 load carried by steel +concrete=300000 N 

Ws +Wc= 300000 

s As + c Ac = 300000 

15 c x 0.00785 + c x0.1521 = 300000 

c = 1.11 x 10 6 N/ m2  

s =15x c=15 x1.11x 10 6=16.65 x10 6 N/ m2  

Ws =16.65x10 6 x0.00785 / 10 3 =130.7 kN 

Wc = 1.11x 10 6 x 0.1521/103= 168.83 kN 

(error in result is due to less no. of digits 
considered in stress calculation.) 



 we know that, 

 s /Es= c /E (=  = L /L) _____(1) & (2) 

c = 1.11 MPa 

s =15x c=15 x1.11x 10 6=16.65 MPa  

The length of the column is 2m 

Change in length  

dL = 1.11*2000/[13.333*1000] = 0.1665mm 

                                   OR 

 dL =  16.65*2000/[200000] = 0.1665mm 
 



Example: 10  A Concrete column of C.S. area 400 x 400 mm reinforced 

by 4 longitudinal 50 mm diameter round steel bars placed at each corner 

of the column. Calculate (1) maximum axial compressive load the 

column can support &(ii) loads carried by each material & compressive 

stresses produced in each material. Take  Also calculate change in length 

of the column. Assume the column in 2m long. Permissible stresses in 

steel and concrete are 160 and 5MPa respectively. Take Es = 200GPa and 

Ec = 14GPa. 

400 mm 

  4-50 bar 4
0

0
 m

m
 



Solution:-  

Gross C.S. area of  column =0.16 m2 

 C.S. area of steel = 4*π*0.0252  = 0.00785 m2 

Area of concrete =0.16 - 0.00785=0.1521m2 

Steel bar and concrete shorten by same amount. So, 

s = c => s /Es = c /Ec = > s= cx (Es /Ec) 

           = 14.286 c  



Solution:-  

Gross C.S. area of  column =0.16 m2 

 C.S. area of steel = 4*π*0.0252  = 0.00785 m2 

Area of concrete =0.16 - 0.00785=0.1521m2 

Steel bar and concrete shorten by same amount. So, 

s = c => s /Es = c /Ec = > s= cx (Es /Ec) = cx ( 200/14) 

           = 14.286c  

So s = 14.286c   

s = 160 then c = 160/14.286 = 11.2MPa > 5MPa, Not valid 

 c = 5MPa then s =  14.286*5 = 71.43 MPa <120MPa,Valid  



Permissible stresses in each material are  

c = 5MPa & s = 71.43 MPa  

  
We know that  

s As + c Ac = W 

[71.43 x 0.00785 + 5 x0.1521]*10002 / 1000 = 1321.22kN 

Load in each materials are  

Ws =71.43x0.00785 x1000  =560.7255 kN 

Wc = 5x 0.1521x1000 = 760.5kN 



 we know that, 

 s /Es= c /E (=  = L /L) _____(1) & (2) 

c = 5 MPa 

s =71.43 MPa  

The length of the column is 2m 

Change in length  

dL = 5*2000/[14000] = 0.7143mm 

                                   OR 

 dL =  71.43*2000/[200000] = 0.7143mm 

 



Example: 11  A copper rod of 40 mm diameter is surrounded tightly by 

a cast iron tube of 80 mm diameter, the ends being firmly fastened 

together. When it is subjected to a compressive load of 30 kN, what will 

be the load shared by each? Also determine the amount by which a 

compound bar shortens if it is 2 meter  long. Eci=175 GN/m2,Ec= 75 

GN/m2 .  

copper 
Cast iron 

80 mm 

Cast iron 

40 mm 

2 meter 



Area of Copper Rod =Ac = (/4)* 0.042    = 0.0004 m2 

Area of Cast Iron     =Aci= (/4)* (0.082 - 0.042) = 0.0012  m2 

ci /Eci = c /Ec or  

            175 x 10 9 

                 75 x 10 9   

        = 2.33 

          ci = 2.33 c  

ci / c = Eci/Ec = 



Now,  

W = Wci +Wc 

30 = (2.33 c ) x 0.012  + c x 0.0004  

  c = 2987.5 kN/m2 

ci = 2.33 x c = 6960.8kN/m2 

  load shared by copper rod   = Wc = c Ac 

                                     = 2987.5 x 0.0004   

             = 3.75 kN 

Wci = 30 -3.75 = 26.25 kN 



Strain c=c / Ec  = L /L 

L = (c /Ec) x L = [2987.5/(75 x 10 9)] x 2            

   = 0.0000796 m  

   = 0.0796 mm 

      Decrease in length = 0.0796 mm 



R1 

A1 = 110 

mm2 
1.2 m 

2.4 m  

L 

M 

N 

R2 

1.2 mm 

For the bar shown in figure, calculate 

the reaction produced by the lower 

support on the bar. Take E= 2*108 

kN/m2.Find also stresses in the bars. 

A2 = 220 

mm2 

55 

kN 

Example: 12 



Solution:- 

R1+R2 = 55 

 L1 =(55-R2)*1.2 / (110*10-6)*2*108   (LM extension) 

 L2 =R2*2.4 / (220*10-6)*2*108        (MN contraction) 

( Given:  L1-  L2 =1.2 /1000=0.0012) 

(55-R2)*1.2 / [(110*10-6)*2*108 ] -R2*2.4 /[ (220*10-6)*2*108 ]   

=0.0012 

so R2 = 16.5 kN         Since R1+R2 = 55 kN, 

R1=38.5 kN 

Stress in LM  = Force/area = 350000 kN/m2 

Stress in MN =75000 kN/m2 



P 

P/2 P/2 

P 

• Connection should withstand full load P transferred               through 

the pin to the fork . 

• Pin is primarily in shear which tends to cut it across at      section m-n . 

• Average shear Stress =>  =P/(2A)  (where A is cross   
    sectional  area of pin)  

• Note: Shearing  conditions are not as simple as that for direct stresses. 

 Direct Shear:-- 

Pin Pin 

m 

n 

Fork 



•Dealing with machines and structures an engineer 

encounters members subjected to tension, compression 

and shear.  

•The members should be proportioned in such a 

manner that they can safely & economically withstand 

loads they have to carry. 



100 mm 

30000 N 

Example: 3  Three pieces of wood having 37.5  x 37.5 mm square C.S. 

are glued together and to the foundation as shown in figure. If the 

horizontal force P=30000 N is applied to it, what is the average shear 

stress in each of the glued joints.(ans=4 N/mm2)  

Plan 

37.5 

37.5 

30000 N 
Solution:- 

P=30000N;glued c.s area=37.5x100mm x2 surfaces 

Shear stress  = P/c.s area = 4N/mm2 



Temperature stresses:- 

Material 

Change in temp. 

Expands/ Shortens 

no constraint is 

 present 

Material 

Constrained 

No Expansion/ 

contraction 

Temperature 

 stresses 

Induced in material 



Bar 
Constraint 

L 
Uniform temp. increased to tº 

Expansion =L t 

but =PL/AE=P/A *L/E = tp L/E  

so tp = *E/L = L t *E / L =  tE  

tp= compressive , if temp. increases 

tp= tensile, if temp. decreases 

Suppose the support yield by an amount  

tp=( - )*E/L =(L t - )*E/L 



Composite Section:- (Temp. stresses .) 

E  of Copper > steel 

Steel(S) 
Copper(C) 

s
t s 

 

c 
 

c
t 

s
t =Free expansion of steel due to rise in temp.  

c
t =Free expansion of copper due to rise in temp.  

s 
 =Additional extension in steel to behave as 

 composite section  

c 
 =contraction in copper to behave as   

 composite section  

Extension in steel = Contraction in copper 
L 



S = C 

s
t + s 

 = c
t - c 

  

s 
+ c 

 = c
t - s 

t  

PL(1/AsEs +1/AcEc)= Lt(c - s)        ----(1) 

P = t(c - s)/ (1/AsEs +1/AcEc) 

Substituting in eq.(1) 

 s = P /As  and c = P /Ac 

s/Es   +c/Ec = t(c - s) 

s+ c= t (c - s)         strain relation 

Steel(S) 
Copper(C) 

s
t s 

 

c 
 

c
t 



    A railway is laid so that there is no 

stress in rail at 10º  C. If rails are 30 m long Calculate, 

1. The stress in rails at 60 º C if there is no allowance 

for expansion. 

2. The stress in the rails at 60 º C if there is an 

expansion allowance of 10 mm per rail. 

3. The expansion allowance if the stress in the rail is to 

be zero when temperature is 60 º C. 

 4. The maximum temp. to have no stress in the rails if 

the expansion allowance is 13 mm/rail. 

Take  = 12 x 10 -6  per 1ºC         E= 2 x 10 5 N/mm 2  

Example: 13 



Solution: 

1. Rise in temp.   = 60 º - 10 º = 50 ºC 

so stress =  t E  =12 x 10 -6 x50x 2 x 10 5    

                     =  120 MPa 

2. tp x L/E =      = (L t -10)  

              = (30000 x 12 x 10 -6 x50-10) 

                     = 18 -10 = 8 mm 

        tp =E /L    =8x 2 x 10 5 /30000  

              = 53.3 MPa 



3. If stresses are zero , 

 Expansion allowed =(L t )  

            = (30000 x 12 x 10 -6 x50) 

                                 =18 mm 

4. If stresses are zero 

tp =E /L*(L t -13)=0 

L t=13 

so t=13/ (30000 x 12 x 10 -6 )=360 C 

allowable temp.=10+36=460c. 



Example: 14 

A steel bolt of length L passes through a copper tube 

of the same length, and the nut at the end is turned up 

just snug at room temp. Subsequently the nut is turned 

by 1/4 turn and the entire assembly is raised by temp 

550C. Calculate the stress in bolt if L=500mm,pitch of 

nut is 2mm, area of copper tube =500sq.mm,area of 

steel bolt=400sq.mm 

Es=2 * 105 N/mm2 ;s =12*10-6 /0C 

Ec=1 * 105 N/mm2 ;c= 17.5*10-6 /0C   



Solution:- 

Two effects 

 (i) tightening of nut 

(ii)raising temp. 

tensile stress in steel = compressive force in copper 

[Total extension of bolt 

+Total compression of tube] =Movement of Nut 

[s+  c] = np     ( where p = pitch of nut) 



(PL/AsEs + s L t) +(PL/AcEc- c L t)=np 

P (1/AsEs +1/AcEc) = t(c - s)+np/L 

so P[1/(400*2*105) + 1/(500*1*105) ] 

     =(17.5-12)*10-6 +(1/4)*2/500 

so P=40000N 

so ps=40000/400 = 100 MPa(tensile) 

and pc=40000/500=80 MPa(compressive) 

 



Example: 15 A circular section tapered bar is rigidly 

fixed as shown in figure. If the temperature is raised 

by 300 C, calculate the maximum stress in the bar. 

Take  

E=2*105 N/mm2 ; =12*10-6 /0C 

1.0 m 

D2=200 mm 
D1=100 mm 

X dX 

P P 

A 

B 



With rise in temperature compressive force P is 
induced which is same at all c/s. 

Free expansion = L  t = 1000*12*10-6*30    
       =0.36 mm 

Force P induced will prevent a expansion of 0.36 mm 

   = 4PL/(E*d1*d2) = L  t  

Or P = (/4)*d1*d2  t E=1130400 N 

Now Maximum stress = P/(least c/s area) 

  =1130400/(.785*1002) = 144MPa 



Example: 16 A composite bar made up of aluminum and 

steel is held between two supports.The bars are stress 

free at 400c. What will be the stresses in the bars when 

the temp. drops to 200C, if 

(a) the supports are unyielding 

(b)the supports come nearer to each other by 0.1 mm. 

Take E al =0.7*105 N/mm2 ;al =23.4*10-6 /0C 

ES=2.1*105 N/mm2                    s =11.7*10-6 /0C 

Aal=3 cm2      As=2 cm2 



Steel   Aluminum 

60cm 30cm 

2 cm2 
3 cm2 



Free contraction =Ls s t+ LALAlt 

=600*11.7*10-6*(40-20)+300*23.4* 

 10-6*(40-20)=0.2808 mm. 

Since contraction is checked tensile stresses will be set 

up. Force being same in both 

As s= Aal al 

2 s= 3 al ==> s= 1.5 al  
Steel   

Aluminum 

60cm 30cm 

2 cm2 3 cm2 



contraction of steel bar s
 = (s/Es)*Ls 

      =[600/(2.1*105)]* s 

contra.of aluminum bar al
 = (al/Eal)*Lal 

      =[300/(0.7*105)]* al 

(a) When supports are unyielding 

s
 + al

 =  (free contraction) 

=[600/(2.1*105)]* s +[300/(0.7*105)]* al 

=0.2808 mm 



=[600/(2.1*105)]* s +[300/(0.7*105)]* al 

=0.2808; but 

s=1.5 al  

al =32.76 N/mm2(tensile) 

s =49.14 N/mm2(tensile) 

(b) Supports are yielding 

 

s
 + al

 = ( - 0.1mm) 

al =21.09 N/mm2(tensile) 

 =31.64 N/mm2(tensile) 



Example: 17 A copper bar 30 mm dia. Is completely 

enclosed in a steel tube 30mm internal dia. and 50 mm 

external dia. A pin 10 mm in dia.,is fitted transversely 

to the axis of each bar near each end. To secure the bar 

to the tube.Calculate the intensity of shear stress 

induced in the pins when the temp of the whole 

assembly is raised by 500K 

Es=2 * 105 N/mm2 ;s =11*10-6 /0K 

Ec=1 * 105 N/mm2 ;c= 17*10-6 /0K   



Solution 

Copper bar Ac =0.785*302=706.9 mm2 

steel bar As =0.785*(502- 302)=1257.1 mm2 

[s /Es] +[ c/Ec] = (c - s)*t 

[s / 2 * 105] +[ c/ 1 * 105] =(17-11)*10-6*50 

s +2 c=60-----(1) 

copper 
steel 

steel 
10 
30 

10 

10Ø Pin 



Since no external force is present 

sAs= cAc 

s= cAc/As=[706.9/1257.1]*c 

=0.562 c---(2) 

substituting in eq.(1) 

c=23.42 N/mm2 

Hence force in between copper bar &steel tube 

=cAc=23.42*706.9=16550N 



C.S. area of pin = 0.785*102 =78.54 mm2 

pin is in double shear 

so shear stress in pin 

=16550/(2*78.54)=105.4N/mm2 

pin 



SHRINKING ON:  

d<D 

D=diameter of wheel 

d = diameter of steel tyre 

increase in temp = toC 

dia increases from d--->D 

•tyre slipped on to wheel, temp. allowed to fall 

•Steel tyre tries to come back to its  

  original  position 

•hoop stresses will be set up. 

D 

d 



Tensile strain 

 = (D -  d) /  d =(D-d)/d 

so hoop stress = = E 

= E*(D - d)/d 



Example: 18 

A thin steel tyre is to be shrunk onto a rigid wheel of 

1m dia. If the hoop stress is to be limited to 

100N/mm2, calculate the internal dia. of tyre. Find also 

the least temp. to which the tyre must be heated above 

that of the wheel before it could be slipped on. 

Take  for the tyre = 12*10-6/oC 

E =2.04 *105N/mm2 

 



Solution: 

= E*(D - d)/d 

100 = 2.04*106(D - d)/d 

or  

(D - d)/d =4.9*10-4 

or D/d =(1+4.9*10-4) 

so d =0.99951D=0.99951*1000=999.51 mm 

 

 



Now 

D =  d(1 + t) 

or 

t =(D/d)-1 = (D-d)/d =4.9*10 - 4 

t =(D-d)/d *1/  

  =4.9*10-4/12*-6 

  =40.85 0 C  



ELASTIC CONSTANTS: 

Any direct stress produces a strain in its 
own direction and opposite strain in every 
direction at right angles to it. 

Lateral strain /Longitudinal strain  

= Constant 

= 1/m = = Poisson’s ratio 

Lateral strain = Poisson’s ratio x   
    Longitudinal strain  

y =  x  -------------(1) 



Single direct stress along longitudinal axis 

L 
d b 

x 
x 

x 
y 

x= x/E (tensile) 

y=  x =  [x/E] (compressive) 

Volume = L b d 

V=bd L - d Lb - L bd 

V/ V = L/L - b/b - d/d 

=    =  -  -  =  - 2  =  (1-2) 



d 

L 
b 

x 
x 

x 
y 

= x - y - z = x-  x- x= x- 2 x= x(1-2 ) 

= [x/E] x (1-2 ) 

Volumetric strain=    v =[x/E] x (1-2 ) – 

                                                                                   -----(2) 

or v =[x/E] x (1-2/m) 

v =[x/E] x (1-2/m) 

 



Stress x along the axis and y and z 

perpendicular to it. 

x 

z 

y 

 

x= x/E - y/mE - z/mE-----(i)   -------(3) 

y= y/E - z/mE - x/mE-----(ii)  

z= z/E - x/mE - y/mE-----(iii)  

Note:- If some of the stresses  have opposite 

sign necessary changes in algebraic signs of the 

above expressions will have to be made. 



Upper limit of Poisson’s Ratio: 

adding (i),(ii) and (iii) 

x+ y+ z=(1 - 2/m)(x+ y + z)/ E-  -------(4) 

 

known as DILATATION 

For small strains represents  the change in 

volume /unit volume. 



x    y    z 

x

 

    

x/E - x/E - x/E 

y 

x x 

y 

y - y/E - y/E y/E 

z 
z/E - z/E - z/E 

z 

z 

Sum all 



Example: 19 

A steel bar of size 20 mm x 10mm is subjected to a 

pull of 20 kN in direction of its length. Find the 

length of sides of the C.S. and decrease in C.S. 

area. Take E=2 x 10 5 N/mm2  and m=10/3. 



x= x/E= (P/Ax) x (1/E)  

  = (20000/(20x10)) x1/( 2 x105)=5 x 10 -4(T) 

Lateral Strain =y=- x=-x/m =-1.5x10 -4(C) 

side decreased by  20x1.5x10 -4=0.0030mm 

side decreased by  10x1.5x10 -4=0.0015mm 

new C.S=(20-0.003)(10-.0015)=199.94mm2 

% decrease of area=(200-199.94)/200 x100  



Example: 20 

A steel bar 200x20x20 mm C.S. is subjected to a 

tensile force of 40000N in the direction of its length. 

Calculate the change in volume. 

Take 1/m =0.3 and E = 2.05 *105 MPa. 

Solution: 

x= x/E= (P/A) x (1/E) 

=40000/20*20*2.05*105= 4.88*10-4 

y= z=-(1/m)* x= -0.3* 4.88*10-4 



Change in volume: 

V/ V= x + y+ z=(4.88 - 2*1.464)*10-4 

=1.952 *10-4 

V=200*20*20=80000 mm3 

V=1.952*10-4*80000=15.62 mm3 



YOUNG’S εODUδUS (E):-- 

 Young’s εodulus (E) is defined as the Ratio of 
Stress () to strain ().  

  

  E =  /    -------------(5) 



BULK MODULUS (K):-- 

• When a body is subjected to the identical stress  in three 

mutually perpendicular directions, the body undergoes uniform changes 

in three directions without the distortion of the shape.  

•      The ratio of change in volume to original volume has been defined 

as volumetric strain(v ) 

 

•Then the bulk modulus, K is defined as K=  / v  



  
 

 

  

K=  / v  

BULK MODULUS (K):-- 

Where, v =  V/V 

   Change in volume = 
Original volume 

Volumetric Strain = 

-------------(6) 



MODULUS OF RIGIDITY (N):  OR  

MODULUS OF TRANSVERSE ELASTICITY OR  

SHEARING MODULUS 

Up to the elastic limit, 

 shear stress ()  shearing strain() 

    = N  

Expresses relation between shear stress and shear strain.  

 /=N; 

where  

Modulus of Rigidity = N =  /    -------------(7) 



YOUNG’S εODUδUS  E =  /   

K =  / v  BULK MODULUS  

MODULUS OF RIGIDITY N =  /  

ELASTIC CONSTANTS 

-------------(5) 

-------------(6)  

-------------(7)  



COMPLEMENTRY STRESSES:“A stress in a given 
direction cannot exist without a balancing shear stress 

of equal intensity in a direction at right angles to it.” 

C 

A 

B 

D 
Moment of given couple=Force *Lever arm 

= (.AB)*AD 

Moment of balancing couple= (’.AD)*AB 

so (.AB)*AD=(’.AD)*AB  => = ’ 
Where =shear stress & ’=Complementary shear  

    stress 

  
  

’ 

’ 



State of simple shear: Here no other stress is acting 

- only simple shear. 

Let side of square = b  

length of diagonal AC =2 .b 

consider unit thickness perpendicular to block. 

  

’ 

’ 
A 

B C 

D 
 

 



Equilibrium of piece ABC 

the resolved sum of  perpendicular to the diagonal = 

2*(*b*1)cos 450= 2 .b 

if  is the tensile stress so produced on the diagonal 

(AC*1)=2 .b 

(2 .b)=2 .b 

so  

=  

  

’ 

’ 
A 

B C 

D 
 

 



Similarly the intensity of compressive stress on 

plane BD is numerically equal to . 

“Hence a state of simple shear produces pure 

tensile and compressive stresses across planes 

inclined  at 45 0 to those of pure shear, and 

intensities of these direct stresses are each equal to 

pure shear stress.”  

  

’ 

’ 
A 

B C 

D 
 

 



SHEAR STRAIN: 

  

 

 
A 

B C 

D 
 

 A 

B 

C 

D 

B’ 
C’ 

D

’ 

/2 

/2 

B 

A 

C B” C’’ 

  

D 

State of simple 

Shear on Block 

 Total 

change in 

corner 

angles +/- 

 

Distortion with 

side AD fixed  

F 



Since  

 is extremely small, 

we can assume  

BB” = arc with A as centre , 

 AB as radius. 

So,  =BB”/AB=CC”/CD 

Elongation of diagonal AC can  be nearly taken as FC”. 

δinear strain of diagonal = FC”/AC 

           = CC”cos 4η/CDsec4η 

B 

A 

C B” C’’ 

  

D 

F 



  = CC”/2CD = (1/2)  

but = /N    (we know N= / ) 

so  

   =  /2N ------(8) 

δinear strain ‘’is half the shear strain ‘’. 

B 

A 

C B” C’’ 
  

D 

F 



RELATION BETWEEN ELASTIC CONSTANTS  

(A) RELATION BETWEEN E and K  

Let a cube having a side L be subjected to three 

mutually perpendicular stresses of intensity  

By definition of bulk modulus  

K= / v  

Now v = v /V = /K ---------------------------(i)  

x 

z 

y 

 



The total linear strain for each side  

 =/E -  /(mE) -  /(mE)  

so L / L =  =(/E) *(1-2 /m)-------------(ii) 

now V=L3 

V = 3 L2 L 

V/V = 3 L2 L/ L3= 3 L/L  

  = 3 (/E) * (1-2 /m) ------------------(iii) 



Equating (i) and (iii) 

/K = 3( /E)(1-2 /m)  

  E = 3 K(1-2 /m)  -----(9) 



(B) Relation between E and N 

D 

B 

A 

C B” C’’ 

  

Linear strain of diagonal AC, 

  = /2 = /2N   --------------------------(i) 

F 

  

 

 
A 

B C 

D 

 
 



State of simple shear produces tensile and 

compressive stresses along diagonal planes 

and 

 =  

Strain  of diagonal AC, due to these two 

mutually perpendicular direct stresses  

 = /E - (- /mE) = (/E)*(1+1/m)    ---(ii)  

But   =  

so   = ( /E)*(1+1/m)    ------------------(iii)  



From equation (i) and (iii) 

  /2N = ( /E)(1+1/m) 

 OR 

E =2N(1+1/m)-------(10) 
But  E = 3 K (1-2 /m)------(9) 

Eliminating E  from --(9)  &  --(10)  

 = 1/m = (3K - 2N) / (6K +2N)-----(11) 

Eliminating m from –(9)  &  --(10) 

E = 9KN / (N+3K)  ---------(12) 



(C) Relation between E ,K and N:-- 

 =1/m=(3K-2N)/(6K+2N)------(11) 

E = 3K (1-2 /m)   --------(9)  

E = 9KN / (N+3K) -------(12) 

   

E = 2N(1+1/m)    -------(10) 

(D) Relation between ,K and N:-- 



Example: 21 

(a) Determine the % change in volume of a 

steel bar of size 50 x 50 mm and 1 m long, 

when subjected to an axial compressive load 

of 20 kN. 

(b) What change in volume would a 100 mm 

cube of steel suffer at a depth of 5 km in sea 

water? 

Take E=2.05 x 10 5N/mm2 and  

N = 0.82 x 10 5N/mm2  



Solution: (a) 

V/V = v = (/E)(1-2 /m)  

[ = P/A = 20000/50 x 50 =8 kN/cm2] 

so now  

V/V=- (8 / 2.05 x 10 5 )(1 - 2/m) 

= -3.902 *10 -5(1 - 2/m)----------------------(i)  

Also E = 2N(1+1/m)    -----------------------(10) 

(1 +1/m)=E/2N =2.05 x 10 5 /(2 * 0.82 x 10 5 )  

 so 1/m =0.25 



Substituting in  ----(i) 

V/V = -3.902*10 -5(1-2(0.25))=-1.951* 10 -5 

Change in volume=-1.951*10-5 *1000*50*50 

                V = 48.775 mm2 

% Change in volume=(48.775/ 50*50*1000)*100 

=0.001951 % 



Solution:(b) 

Pressure in water at any depth ‘h’ is given by  

p=wh  taking w= 10080N/m3 for sea water 

and h = 5km=5000m 

p=10080*5000=50.4 *106N/m2 = 50.4N/mm2 

E = 3K(1-2/m) 



We have 1/m =0.25 

so E = 3K(1-0.5) or K=E/1.5 = 2/3(E) 

K=2/3 * 2.05* 10 5 =1.365 * 10 5 =N/mm2 

now by definition of bulk modulus 

K= /v  or v = /K 

but v = V/V 

V/V = /K 

V= 50.4 /1.365 * 10 5 * 100 3 =369.23 mm3 



Example: 22 A bar 30 mm in diameter was 

subjected to tensile load of 54 kN and 

measured extension of 300 mm  gauge length 

was 0.112 mm and change in diameter was 

0.00366 mm. Calculate Poisson’s Ratio and the 

value of three moduli.  

Solution: 

Stress = 54 *103/(/4*d2) = 76.43 N/mm2 

=Linear strain = L/L=0.112/300          

    =3.733*10-4 



E=stress/strain =76.43/3.733* 10-4  

  =204741 N/mm2=204.7 kN/mm2 

Lateral strain= d/d = 0.00366/30=1.22*10-4  

But lateral strain =1/m*  

so 1.22*10-4=1/m *3.733*10-4 

so 1/m=0.326  

E=2N(1+1/m) or N=E/[2*(1+1/m)] 

so N=204.7/[2*(1+0.326)]=77.2 kN/mm2 



E = 3 K *(1-2 /m) 

so K=E/[3*(1-2/m)]=204.7/[3*(1-2*0.326)] 

K=196kN/mm2 



Example: 23 Tensile stresses f1 and f2 act at right 

angles to one another on a element of isotropic 

elastic material. The strain in the direction of f1 

is twice the direction of f2. If E for the material 

is 120 kN/mm3, find the ratio of f1:f2. Take 

1/m=0.3 

f2 

f2 

f1 
f1 

1 = 2 2 

So ,f1/E –f2/mE =   

 2(f2/E –f1/mE) 

f1/E +2f1/mE = 2f2/E +f2/mE 



So 

(f1/E)(1+2/m) =(f2/E)(2+1/m) 

f1(1+2*0.3) =f2(2+0.3) 

1.6f1=2.3f2 

So f1:f2 = 1:1.4375 



Example: 24   A rectangular block 250 mmx100 

mmx80mm is subjected to axial loads as 

follows. 

480 kN (tensile in direction of its length) 

900 kN ( tensile on 250mm x 80 mm faces) 

1000kN (comp. on 250mm x100mm faces) 

taking E=200 GN/m2 and 1/m=0.25 find  

(1) Change in volume of the block 

(2) Values of N and K for material of the block. 



x =480x103/(0.1*0.08)=60 *106N/m2 (tens.) 

y=1000x103/(0.25*0.1)=40*106N/m2(comp) 

z=900x103/(0.25*0.08)=45*106N/m2(tens.) 

x= (60 *106/E)+(0.25* 40*106/E) 

       - (0.25* 45*106/E)=(58.75* 106/E) 

 y= -(40 *106/E)-(0.25* 45*106/E) 

       - (0.25* 60*106/E)=(- 66.25* 106/E) 

z= (45 *106/E)-(0.25* 60*106/E) 

       + (0.25* 40*106/E)=(40* 106/E) 



Volumetric strain = v = x + y + z 

=(58.75* 106/E)- (66.25* 106/E)+ (40* 106/E) 

=32.5*106/E  

v = V/V 

so V= v V 

=32.5*106*[(0.25*0.10*0.08)/(200*109)]*109 

=325 mm3(increase) 



Modulus of Rigidity 

E = 2N(1+1/m) 

so 

N=E/[2*(1+1/m)]=200/[2(1+0.25)]=80GN/m2 

Bulk Modulus: 

E = 3K(1-2/m) 

so K=E/[3(1-2/m)]=200/[3(1-2*0.25)=133.33 

        GN/m2 



Example: 25        For a given material E=110GN/m2 

and N=42 GN/M2. Find the bulk modulus and 

lateral contraction of a round bar of 37.5 mm 

diameter and 2.4 m long when stretched by 2.5 

mm. 

Solution: 

E=2N(1+1/m) 

110*109=2*42*109(1+1/m) 

gives 1/m =0.32 



Now E = 3K(1-2/m) 

110 x 109=3K(1-2*0.31) 

gives K=96.77 GN/m2 

Longitudinal strain = 

L/L=0.0025/2.4=0.00104  

Lateral strain=.00104*1/m=0.00104*0.31 

=0.000323 

Lateral Contraction=0.000323*37.5=0.0121mm 



 

 

 

UNIT-II 



 
Shear Force and Bending Moment 

Diagrams 

[SFD & BMD] 

 

 

 

 

 

 

 

 

 

 



    Shear Force and Bending Moments  

Consider a section x-x at a distance 6m from left hand support A  

  5kN 10kN   8kN 

4m 5m 5m 1m 

A 
C D 

B 

RA = 8.2 kN RB=14.8kN 

E x 

x 

6 m 

Imagine the beam is cut into two pieces at section x-x and is separated, as 

shown in figure   



To find the forces experienced by the section, consider any one portion of the 
beam. Taking left hand portion 

Transverse force experienced = 8.2 – 5 = 3.2 kN     (upward) 

Moment experienced   = 8.2 × 6 – 5 × 2 = 39.2 kN-m  (clockwise) 

If we consider the right hand portion, we get 

Transverse force experienced = 14.8 – 10 – 8 =-3.2 kN = 3.2 kN (downward) 

Moment experienced  = - 14.8 × 9 +8 × 8 + 10 × 3 = -39.2 kN-m = 39.2 kN-m 

                                                                                  (anticlockwise) 

 

  5kN 

A 

8.2 kN 

10kN   8kN B 

14.8 kN 

4 m 

6 m 

9 m 

1 m 5 m 



  5kN 

A 

8.2 kN 

10kN   8kN B 

14.8 kN 

3.2 kN 

3.2 kN 

39.2 kN-m 

39.2 kN-m 

Thus the section x-x considered is subjected to forces 3.2 kN and 

moment 39.2 kN-m as shown in figure. The force is trying to shear off 

the section and hence is called shear force. The moment bends the 

section and hence, called bending moment.  



   Shear force at a section: The algebraic sum of the vertical forces 

acting on the beam either to the left or right of the section is 

known as the shear force at a section.  

     Bending moment (BM) at section: The algebraic sum of the moments 
of all forces acting on the beam either to the left or right of the 
section is known as the  bending moment at a section 

3.2 kN 

3.2 kN 

F 

F 

Shear force at x-x 

M 

Bending moment  at x-x 

39.2 kN 



     Moment and Bending moment  

Bending Moment (BM): The moment which causes the 

bending effect on the beam is called Bending Moment. It is 

generally denoted by ‘ε’ or ‘Bε’.                       

Moment: It is the product of force and perpendicular 

distance between line of action of the force and the point 

about which moment is required to be calculated. 



Sign Convention for shear force 

F 

F 
F 

F 

+ ve  shear force - ve  shear force 



Sign convention for bending moments: 

 

The bending moment is considered as Sagging Bending 

Moment if it tends to bend  the beam to a curvature having 

convexity at the bottom as shown in the Fig. given below. 

Sagging Bending Moment is considered as positive bending 

moment. 

 

 

 

           

Fig. Sagging bending moment [Positive bending moment 

] 

   Convexity 



Sign convention for bending moments: 

 
Similarly the bending moment is considered as hogging 

bending moment  if it tends to bend the beam to a 

curvature having convexity at the top as shown in the 

Fig. given below. Hogging Bending Moment is 

considered  as Negative Bending Moment. 

           

 

Fig. Hogging bending moment [Negative bending moment ] 

    Convexity 



Shear Force and Bending Moment Diagrams  

(SFD & BMD) 

Shear Force Diagram (SFD): 

    The diagram which shows the variation of shear force 

along the length of the beam is called Shear Force 

Diagram (SFD). 

 

Bending Moment Diagram (BMD): 

   The diagram which shows the variation of bending 

moment along the length of the beam is called 

Bending Moment Diagram (BMD). 

       

 



Point of Contra flexure [Inflection point]:  

     

    It is the point on the bending moment diagram where 
bending moment changes the sign from positive to 
negative or vice versa.  

 

  It is also called ‘Inflection point’. At the point of  
inflection point or contra flexure the bending moment 
is zero.  

 



Relationship between load, shear force and 

 bending moment 

Fig. A simply supported beam subjected to general type loading 

L 

w kN/m 

x 

x 

x1 

x1 

dx 

The above Fig. shows a simply supported beam subjected to a   general 

type of loading. Consider a differential element of length ‘dx’ between 
any two sections x-x and x1-x1 as shown. 

 



dx 
v 

V+dV 

M M+dM 

Fig.  FBD of Differential element of the beam 

x 

x x1 

x1 
w kN/m 

O 

Taking moments about the point ‘O’   [Bottom-Right corner of the 

differential element ] 

- M + (M+dM) – V.dx – w.dx.dx/2 = 0 

 

V.dx = dM    

 
dx

dM
v 

It is the relation between shear force and BM 

Neglecting the small quantity of higher order 



dx 
v 

V+dV 

M M+dM 

Fig.  FBD of Differential element of the beam 

x 

x x1 

x1 
w kN/m 

O 

  Considering the Equilibrium Equation   ΣFy = 0 

  - V + (V+dV) – w dx = 0     dv = w.dx        

 

dx

dv
w    

     It is the relation Between intensity of Load and 
                                                                          shear force 



Variation of Shear force and bending moments 

Variation of Shear force and bending moments for various standard 

loads are as shown in the following Table 

        Type of load 

   

 SFD/BMD 

Between point 

loads OR for no 

load region 

Uniformly 

distributed load 

Uniformly 

varying load 

Shear Force 

Diagram 

Horizontal line Inclined line Two-degree curve 

(Parabola) 

Bending 

Moment 

Diagram 

Inclined line 

 

Two-degree curve 

(Parabola) 

 

Three-degree 

curve (Cubic-

parabola) 

Table: Variation of Shear force and bending moments 



Sections for Shear Force and Bending Moment Calculations: 

Shear force and bending moments are to be calculated at various 

sections of the beam to draw shear force and bending moment diagrams. 

These sections are generally considered on the beam where the 

magnitude of shear force and bending moments  are changing abruptly. 

 Therefore these sections for the calculation of shear forces include 

sections on either side of point load, uniformly distributed load or 

uniformly varying load where the magnitude of shear force changes 

abruptly.  

The sections for the calculation of bending moment include position 

of point loads, either side of uniformly distributed load,  uniformly 

varying load and couple 

Note: While calculating the shear force and bending moment, only the 

portion of the udl which is on the left hand side of the section should 

be converted into point load. But while calculating the reaction we 

convert entire udl to point load 



Example Problem 1    

E 

  5N 10N   8N 

2m 2m 3m 1m 

A 

C D 

B 

1. Draw shear force and bending moment diagrams [SFD 

and BMD] for a simply supported beam subjected to 

three point loads as   shown in the Fig. given below. 



E 

  5N 10N   8N 

2m 2m 3m 1m 

A 

C D 

B 

Solution:  

Using the condition:   ΣMA = 0 

   - RB × 8 + 8 × 7 + 10 × 4 + 5 × 2 = 0         RB = 13.25 N 

   Using the condition:    ΣFy = 0 

          RA + 13.25 = 5 + 10 + 8              RA = 9.75 N 

 

RA RB 

[Clockwise moment is Positive] 



 

     Shear Force at the section 1-1 is denoted as V1-1 

Shear Force at the section 2-2 is denoted as V2-2  and so on...   

 V0-0 = 0;    V1-1 = + 9.75 N                       V6-6 =  - 5.25 N  

      V2-2 = + 9.75 N                                     V7-7 = 5.25 – 8 = -13.25 N 

      V3-3 =  + 9.75 – 5 = 4.75 N                   V8-8 = -13.25 

      V4-4 = + 4.75 N                                     V9-9 = -13.25 +13.25 = 0 

      V5-5 = +4.75 – 10 = - 5.25 N                                      (Check)    

  5N 10N   8N 

2m 2m 3m 1m 
RA = 9.75 N RB=13.25N 

1 1 

1 
2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

7 

7 

8 9 

8 9 

0 

0 

Shear  Force Calculation: 



  5N 10N   8N 

2m 2m 3m 1m 

A 

C D E 

B 

9.75N 9.75N 

4.75N 4.75N 

5.25N 5.25N 

13.25N 13.25N 

SFD 



  5N 10N   8N 

2m 2m 3m 1m 

A 

C D E 

B 

9.75N 9.75N 

4.75N 4.75N 

5.25N 5.25N 

13.25N 13.25N 

SFD 



       

Bending moment at A is denoted as MA 

Bending moment at B is denoted as MB 

    and so on… 

  MA = 0 [ since it is simply supported] 

          MC = 9.75 × 2= 19.5 Nm 

          MD = 9.75 × 4 – 5 × 2 = 29 Nm 

         ME = 9.75 × 7 – 5 × 5 – 10 × 3 = 13.25 Nm 

         MB = 9.75 × 8 – 5 × 6 – 10 × 4 – 8 × 1 = 0 

  or    MB = 0 [ since it is simply supported] 

 

Bending Moment Calculation 



  5N 10N   8N 

2m 2m 3m 1m 

19.5Nm 

29Nm 

13.25Nm 

BMD 

A B 

C D E 



E 

  5N 10N   8N 

2m 2m 3m 1m 

A 

C D 

B 

BMD 

19.5Nm 

29Nm 

13.25Nm 

9.75N 9.75N 

4.75N 4.75N 

5.25N 5.25N 

13.25N 13.25N 

SFD 

Example Problem 1     

VM-34  



BMD 

19.5Nm 

29Nm 

13.25Nm 

E 

  5N 10N   8N 

2m 2m 3m 1m 

A 

C D 

B 

9.75N 9.75N 

4.75N 4.75N 

5.25N 5.25N 

13.25N 13.25N 

SFD 



2. Draw SFD and BMD for the double side overhanging  

    beam subjected to loading as shown below. Locate points 

    of contraflexure if any.      

5kN 

2m 3m 3m 2m 

5kN 10kN 
2kN/m 

A B C D E 

Example Problem 2    



      

2m 3m 3m 2m 

5kN 10kN 5kN 
2kN/m 

A B C D E 

Solution: 

Calculation of Reactions: 

Due to symmetry of the beam, loading and boundary 

conditions, reactions at both supports are equal. 

      .`.  RA = RB = ½(5+10+5+2 × 6) = 16 kN 

RA RB 



      

2m 3m 3m 2m 

5kN 10kN 5kN 
2kN/m 

1 

1 3 

4 

2 

3 2 

4 6 

6 

5 

5 

9 

9 8 

7 

7 

8 

   Shear Force Calculation:  V0-0 = 0 

V1-1 = - 5kN                                  V6-6 = - 5 – 6 = - 11kN        

V2-2 = - 5kN                                  V7-7 = - 11 + 16 = 5kN 

V3-3 = - 5  + 16 = 11 kN                V8-8 = 5 kN 

V4-4 = 11 – 2 × 3 = +5 kN             V9-9 = 5 – 5 = 0 (Check) 

V5-5 = 5 – 10 = - 5kN  

RA=16kN RB = 16kN 

0 

0 



      

2m 3m 3m 2m 

5kN 10kN 5kN 
2kN/m 

A B C D E 

5kN 

+ 
+ 

5kN 5kN 

5kN 5kN 5kN 

11kN 

11kN SFD 



      

2m 3m 3m 2m 

5kN 10kN 5kN 
2kN/m 

A B C D E 

 

Bending Moment Calculation:  

MC = ME = 0 [Because Bending moment at free end is zero] 

MA = MB = - 5 × 2 = - 10 kNm 

MD = - 5 × 5 + 16 × 3 – 2 × 3 × 1.5 = +14 kNm   

RA=16kN RB = 16kN 



      

2m 3m 3m 2m 

5kN 10kN 5kN 
2kN/m 

A B C D E 

10kNm 
10kNm 

14kNm 

BMD 



      

2m 3m 3m 2m 

5kN 10kN 5kN 
2kN/m 

A B C D E 

10kNm 
10kNm 

14kNm 

BMD 

+ 
+ 

5kN 5kN 

5kN 5kN 5kN 

11kN 

11kN SFD 



10kNm 10kNm 

Let x be the distance of point of contra flexure from support A 

Taking moments at the section x-x (Considering left portion) 

0
2

216)2(5
2


x

xxM xx

   x = 1 or 10 

  .`. x = 1 m 

x 

x 

x 

x 

Points of contra flexure 

2m 3m 3m 2m 

5kN 10kN 5kN 
2kN/m 

A B C D E 



3.  Draw SFD and BMD for the single side overhanging beam 

subjected to loading as shown below. Determine the 

absolute maximum bending moment and shear forces and 

mark them on SFD and BMD. Also locate points of contra 

flexure if any. 

4m 1m 2m 

2 kN 5kN 10kN/m 

A 
B C D 

Example Problem     Example Problem 3    



4m 1m 2m 

2 kN 5kN 10kN/m 

A B 

RA RB 

Solution :     Calculation of Reactions: 

ΣMA = 0   

 - RB × 5 + 10 × 4 × 2 + 2 × 4 + 5 × 7 = 0      RB = 24.6 kN 

ΣFy = 0 

      RA + 24.6 – 10 x 4 – 2 + 5 = 0            RA = 22.4 kN 



4m 1m 2m 

2 kN 5kN 10kN/m 

RA=22.4kN 

RB=24.6kN 

Shear Force Calculations:   

V0-0 =0;  V1-1 = 22.4 kN                V5-5 = - 19.6 + 24.6 = 5 kN 

V2-2 = 22.4 – 10 × 4 = -17.6kN     V6-6 = 5 kN 

V3-3 = - 17.6 – 2 = - 19.6 kN         V7-7 = 5 – 5 = 0 (Check) 

V4-4 = - 19.6 kN 

1 

1 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

7 

7 

0 

0 



4m 1m 2m 

2 kN 5kN 10kN/m 

RA=22.4kN 

RB=24.6kN 

22.4kN 

19.6kN 19.6kN 

17.6kN 

5 kN 5 kN 

SFD 

x = 2.24m 

A 
C B D 



 

Max. bending moment will occur at the section where the shear force is 

 zero. The SFD shows that the section having zero shear force is available  

in the portion AC. Let that section be X-X, considered at a distance x  

from support A as shown above.  

The shear force at that section can be calculated as   

Vx-x = 22.4  -  10. x = 0        x = 2.24 m 

 

4m 1m 2m 

2 kN 5kN 10kN/m 

A 
B C D 

RA=22.4kN 

RB=24.6kN 

X 

X x  



 

Calculations of Bending Moments:                                              

MA = MD = 0 

MC = 22.4 × 4 – 10 × 4 × 2 = 9.6 kNm 

MB = 22.4 × 5 – 10 × 4 × 3 – 2 × 1 = - 10kNm (Considering Left portion  

                                                                                               of the section)  
Alternatively 

 MB = -5 × 2 = -10 kNm (Considering Right portion of the section) 

 Absolute Maximum Bending Moment is at  X- X ,    

Mmax = 22.4 × 2.24 – 10 × (2.24)2 / 2 = 25.1 kNm     

 

4m 1m 2m 

2 kN 5kN 10kN/m 

A 
B C D 

RA=22.4kN 

RB=24.6kN 



4m 1m 2m 

2 kN 5kN 10kN/m 

A 
B C D 

RA=22.4kN 

RB=24.6kN 

X 

X x = 2.24m 

9.6kNm 

10kNm BMD 

Point of  

contra flexure 

Mmax = 25.1 kNm 



9.6kNm 

10kNm BMD 

Point of  

contra flexure 

4m 1m 2m 

2 kN 5kN 10kN/m 

A 
B C D 

RA=22.4kN 

RB=24.6kN 

X 

X x = 2.24m 

22.4kN 

19.6kN 19.6kN 
17.6kN 

5 kN 5 kN 

SFD 

x = 2.24m 



Calculations of Absolute Maximum Bending Moment:                                             

Max. bending moment will occur at the section where the shear force is 

 zero. The SFD shows that the section having zero shear force is available  

in the portion AC. Let that section be X-X, considered at a distance x  

from support A as shown above.  

The shear force at that section can be calculated as   

Vx-x = 22.4  -  10. x = 0        x = 2.24 m 

Max. BM at  X- X ,    

Mmax = 22.4 × 2.24 – 10 × (2.24)2 / 2 = 25.1 kNm     

 

4m 1m 2m 

2 kN 5kN 10kN/m 

A 
B C D 

RA=22.4kN 

RB=24.6kN 

X 

X x  



4m 1m 2m 

2 kN 5kN 10kN/m 

A 
B C D 

RA=22.4kN 

RB=24.6kN 

X 

X x = 2.24m 

Mmax = 25.1 kNm 

9.6kNm 

10kNm BMD 

Point of  

contra flexure 



Mmax = 25.1 kNm 

9.6kNm 

10kNm BMD 

Point of  

contra flexure 

a 

Let a be the distance of point of contra flexure from support B 

Taking moments at the section A-A (Considering left portion) 

 

A 

A 

06.24)2(5  aaM
AA

a = 0.51 m   



4. Draw SFD and BMD for the single side overhanging beam  

     subjected to loading as shown below. Mark salient points on  

     SFD and BMD. 

60kN/m 

20kN/m 
20kN 

3m 2m 2m 

A 
B 

Example Problem 4    

C D 



60kN/m 

3m 

Solution:   Calculation of reactions:     

ΣMA = 0   

-RB × 5 + ½ × 3 × 60 × (2/3) × 3 +20 × 4 × 5 + 20 × 7 = 0  RB =144kN 

ΣFy = 0   

      RA + 144 – ½ × 3 × 60 – 20 × 4 -20 = 0         RA = 46kN  

 

20kN/m 
20kN 

2m 2m 

A 
B 

RA  RB  

C D 



60kN/m 

20kN/m 
20kN 

3m 2m 2m 

1 

3 

2 3 4 

5 6 
4 

5 6 

Shear Force Calculations:                                                                        

V0-0 =0 ; V1-1 =  + 46 kN                     V4-4 = - 84 + 144 = + 60kN 

V2-2 = +46 – ½ × 3 × 60 = - 44 kN        V5-5 = +60 – 20 × 2 = + 20 kN 

V3-3 = - 44 – 20 × 2 = - 84 kN               V6-6= 20 – 20 = 0 (Check) 

RA  = 46kN  

RB = 144kN 

RA  
RA  

1 2 0 

0 



60kN/m 

20kN/m 
20kN 

3m 2m 2m 

1 

2 3 

2 3 4 

5 6 
4 

5 6 

RA  = 46kN  

RB = 144kN 

RA  
RA  

46kN 

44kN 
84kN 

60kN 
20kN

SFD 

Parabola 

1 

Example Problem 4    



Max. bending moment will occur at the section where the shear force is 

zero. The SFD shows that the section having zero shear force is available 

in the portion AC. Let that section be X-X, considered at a distance ‘x’ 
from support A as shown above. The shear force expression at that section 

should be equated to zero. i.e.,  

 Vx-x = 46 – ½ .x. (60/3)x = 0        x = 2.145 m 

60kN/m 

3m 

20kN/m 
20kN 

2m 2m 

A 
B 

RA =46kN 

C D 
 RB=144kN X 

X 

x 



Calculation of bending moments:  

MA  =  MD = 0 

MC =  46 × 3 – ½ × 3 × 60 × (1/3 × 3) = 48 kNm[Considering LHS of 

section] 

MB =   -20 × 2 – 20 × 2 × 1 = - 80 kNm [Considering RHS of section] 

Absolute Maximum Bending Moment,  Mmax = 46 × 2.145 – ½ × 2.145 

×(2.145 × 60/3) × (1/3 × 2.145) = 65.74 kNm 

60kN/m 

3m 

20kN/m 
20kN 

2m 2m 

A 
B 

RA =46kN 

C D 
 RB=144kN 



Point of  

Contra flexure BMD 

60kN/m 

3m 

20kN/m 
20kN 

2m 2m 

A 
B 

RA =46kN 

C D 
 RB=144kN 

48kNm 

80kNm 

Cubic 
parabola 

 
Parabola 

Parabola 

65.74kNm 



Point of  

Contra flexure BMD 

80kNm 

Cubic 
parabola 

 
Parabola 

Parabola 

46kN 

44kN 
84kN 

60kN 
20kN 

SFD 

Parabola 

65.74kNm 



Calculations of Absolute Maximum Bending Moment:                                             

Max. bending moment will occur at the section where the shear force is 

zero. The SFD shows that the section having zero shear force is available 

in the portion AC. Let that section be X-X, considered at a distance ‘x’ 
from support A as shown above. The shear force expression at that section 

should be equated to zero. i.e.,  

 Vx-x = 46 – ½ .x. (60/3)x = 0        x = 2.145 m 

BM at  X- X ,  Mmax = 46 × 2.145 – ½ × 2.145 ×(2.145 × 60/3) × (1/3 × 2.145)=65.74 
kNm 

60kN/m 

3m 

20kN/m 
20kN 

2m 2m 

A 
B 

RA =46kN 

C D 
 RB=144kN X 

X 

x=2.145m 



Point of  

Contra flexure BMD 

65.74kNm 48kNm 

80kNm 

Cubic 
parabola 

 
Parabola 

Parabola 

a 

60kN/m 

3m 

20kN/m 
20kN 

2m 2m 

A 
B 

RA =46kN 

C D 
 RB=144kN 

48kNm 



Point of contra flexure:  

BMD shows that point of contra flexure is existing in the 

portion CB. δet ‘a’ be the distance in the portion CB from the 
support B at which the  bending moment is zero. And that ‘a’ 
can be calculated as given below. 

ΣMx-x = 0   

    

 
0

2

)2(
20)2(20144

2





a

aa

 a = 1.095 m 



5.  Draw SFD and BMD for the single side overhanging beam  

     subjected to loading as shown below. Mark salient points on  

     SFD and BMD. 

20kN/m 
30kN/m 

40kN 

2m 2m 

A 
D 

1m 1m 

0.7m 

0.5m 

B C E 

Example Problem 5    



20kN/m 
30kN/m 

40kN 

2m 2m 

A 
D 

1m 1m 

0.7m 

0.5m 

B C E 

40x0.5=20kNm 

20kN/m 
30kN/m 40kN 

2m 2m 

A 
D 

1m 1m 

B C E 



20kN/m 
30kN/m 40kN 

2m 2m 

A 
D 

1m 1m 

B C E 

20kNm 

RA  RD   

Solution:   Calculation of reactions:     

ΣMA = 0   

-RD × 4 + 20 × 2 × 1 + 40 × 3 + 20 + ½ × 2 × 30 × (4+2/3) = 0  RD =80kN

ΣFy = 0   

      RA + 80 – 20 × 2 - 40 - ½ × 2 × 30 = 0         RA = 30 kN  

 



20kN/m 
30kN/m 40kN 

2m 2m 1m 1m 

20kNm 

1 

1 

2 

2 3 4 5 6 7 

7 3 4 5 6 

RA =30kN 
RD =80kN  

Calculation of Shear Forces:  V0-0 = 0                                                               

V1-1 = 30 kN                                      V5-5 = - 50 kN 

V2-2 = 30 – 20 × 2 = - 10kN               V6-6 = - 50 + 80 = + 30kN 

V3-3 = - 10kN                                     V7-7 = +30 – ½ × 2 × 30 = 0(check) 

V4-4 = -10 – 40 = - 50 kN 

0 

0 



20kN/m 
30kN/m 40kN 

2m 2m 1m 1m 

20kNm 

1 

1 

2 

2 3 4 5 6 7 

7 3 4 5 6 

RA =30kN 
RD =80kN  

30kN 

10kN 10kN 

50kN 50kN 

30kN Parabola 

SFD 

x = 1.5 m 



20kN/m 
30kN/m 40kN 

2m 2m 

A 
D 

1m 1m 

B C E 

20kNm 

RA  RD   

Calculation of bending moments:   

MA = ME = 0 

MX = 30 × 1.5 – 20 × 1.5 × 1.5/2 = 22.5 kNm 

MB=  30 × 2 – 20 × 2 × 1 = 20 kNm 

MC = 30 × 3 – 20 × 2 × 2 = 10 kNm  (section before the couple) 

MC = 10 + 20 = 30 kNm (section after the couple) 

MD = - ½  × 30 × 2 × (1/3 × 2) = - 20 kNm( Considering RHS of the section)

 

x = 1.5 m X 

X 



20kN/m 
30kN/m 40kN 

2m 2m 

A 
D 

1m 1m 

B C E 

20kNm 

RA  RD   

x = 1.5 m X 

X 

22.5kNm 
20kNm 

30kNm 

10kNm 

20kNm 

Cubic parabola 

 Parabola 

BMD 

Point of contra flexure 



20kNm 

10kNm 

20kNm 

Cubic parabola 

 Parabola 

BMD 

Point of contra flexure 

30kN 

10kN 10kN 

50kN 50kN 

30kN Parabola 

SFD 

x = 1.5 m 



6.  Draw SFD and BMD for the cantilever beam subjected 

     to loading as shown below.  

20kN/m 

40kN 

3m 1m 
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1m 

0.7m 

0.5m 

300 



20kN/m 
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1m 

0.7m 

0.5m 

300 

20kN/m 

3m 1m 

A 

1m 

0.7m 

0.5m 

40Sin30 = 20kN 

40Cos30 =34.64kN 



20kN/m 

3m 1m 1m 

0.7m 

0.5m 

40Sin30 = 20kN 

40Cos30 =34.64kN 

20kN/m 

3m 1m 1m 

20kN 

34.64kN 

20x0.5 – 34.64x0.7=-14.25kNm 



20kN/m 

3m 1m 1m 

20kN 

34.64kN 

14.25kNm 

A B C D 

VD 

HD 

MD 

Calculation of Reactions (Here it is optional):  

ΣFx = 0        HD = 34.64 kN 

ΣFy = 0       VD = 20 × 3 + 20 = 80 kN 

ΣMD = 0    MD  - 20 × 3 × 3.5 – 20 × 1 – 14.25 = 244.25kNm 



20kN/m 

3m 1m 1m 

20kN 

VD=80kN 

1 3 4 5 6 

6 1 
5 4 3 2 

2 

Shear Force Calculation:           

V1-1 =0 

V2-2 = -20 × 3 = - 60kN 

V3-3 = - 60 kN 

V4-4 = - 60 – 20 = - 80 kN 

V5-5 = - 80 kN 

V6-6 = - 80 + 80 = 0 (Check)                                                             

14.25kNm 

34.64kN HD 

MD 



20kN/m 

3m 1m 1m 

20kN 

VD=80kN 

1 3 4 5 6 

6 1 
5 4 3 2 

2 

60kN 60kN 

80kN 80kN 

SFD 

MD 

34.64kN 

14.25kNm 

HD 



Bending Moment Calculations:                                                                      

MA = 0 

MB = - 20 × 3 × 1.5 = - 90 kNm 

MC = - 20 × 3 × 2.5 = - 150 kNm (section before the couple) 

MC = - 20  × 3  × 2.5 – 14.25 = -164.25 kNm (section after the couple) 

MD = - 20 × 3 × 3.5 -14.25 – 20 × 1 = -244.25 kNm (section before MD)                                                                               

moment) 

MD = -244.25 +244.25 = 0 (section after MD) 

 

20kN/m 

3m 1m 1m 

20kN 

34.64kN 

14.25kNm 

A B C D 
MD 



20kN/m 

3m 1m 1m 

20kN 

34.64kN 

14.25kNm 

A B C D 

90kNm 
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Exercise  Problems  

1. Draw SFD and BMD for a single side overhanging beam   
     subjected to loading as shown below. Mark absolute  
    maximum bending moment on bending moment diagram and 
     locate point of contra flexure. 

20kN/m 
5kNm 

15kN/m 10kN 

3m 1m 1m 2m 1m 1m 

[Ans: Absolute maximum BM = 60.625 kNm ] 

VM-73  



10kN   16kN 

1m 

A B 

2.  Draw shear force and bending moment diagrams [SFD 

and BMD] for a simply supported beam subjected to 

loading as   shown in the Fig. given below. Also locate 

and determine absolute maximum bending moment. 

4kN/m 

1m 1m 1m 2m 

600 

[Ans: Absolute maximum bending moment  = 22.034kNm 

          Its position is 3.15m from Left hand support ] 

Exercise  Problems  
VM-74  



50kN 

A 

3.  Draw shear force and bending moment diagrams [SFD 

and BMD] for a single side overhanging beam subjected 

to loading as   shown in the Fig. given below. Locate 

points of contra flexure if any. 

10kN/m 

1m 1m 3m 

[Ans : Position of point of contra flexure from RHS = 0.375m] 

Exercise  Problems  

25kN/m 

10kNm 

B 
2m 

VM-75  



8kN 

4.  Draw SFD and BMD for a double side overhanging beam 

subjected to loading as   shown in the Fig. given below. 

Locate the point in the AB portion where the bending 

moment is zero. 

4kN/m 

[Ans : Bending moment is zero at mid span] 

Exercise  Problems  

B 
2m 

8kN 
16kN 

2m 2m 2m 
A 

VM-76  



5.  A single side overhanging beam is subjected to uniformly distributed 

load of 4 kN/m over AB portion of the beam in addition to its self 

weight 2 kN/m acting as shown in the Fig. given below. Draw SFD 

and BMD for the beam. Locate the inflection points if any. Also locate 

and determine maximum negative and positive bending moments.  

4kN/m 

[Ans :Max. positive bending moment is located at 2.89 m from LHS. 

            and whose value is 37.57 kNm ] 

Exercise  Problems  

B 
2m 6m 

A 

2kN/m 

VM-77  



5kN 

6.  Three point loads and one uniformly distributed load are 

acting on a cantilever beam as   shown in the Fig. given 

below. Draw SFD and BMD for the beam. Locate and 

determine maximum shear force and bending moments. 

2kN/m 

[Ans : Both Shear force and Bending moments are maximum 
           at supports.]  

Exercise  Problems  

B 

20kN 10kN 

A 
1m 1m 1m 

VM-78  



200N   100N 

A B 

7.  One side overhanging beam is subjected loading as 

shown below. Draw shear force and bending moment 

diagrams [SFD and BMD] for beam. Also determine 

maximum hogging bending moment. 

30N/m 

4m 

[Ans: Max. Hogging bending moment  = 735 kNm] 

Exercise  Problems  

4m 3m 

VM-79  



5kN 

8.  A cantilever beam of span 6m is subjected to three point 

loads at 1/3rd points as   shown in the Fig. given below. 

Draw SFD and BMD for the beam. Locate and determine 

maximum shear force and hogging bending moment. 

[Ans : Max. Shear force = 20.5kN, Max BM= 71kNm 
          Both max. shear force and bending moments will occur 
           at supports.] 

Exercise  Problems  

B 

10kN 

A 2m 2m 2m 

300 

0.5m 8kN 5kN 

VM-80  



9.  A trapezoidal load is acting in the middle portion AB of the double 

side overhanging beam as shown in the Fig. given below. A couple 

of magnitude 10 kNm and a concentrated load of 14 kN acting on 

the tips of overhanging sides of the beam as shown. Draw SFD and 

BMD. Mark salient features  like maximum positive, negative 

bending moments and shear forces, inflection points if any.  

[Ans : Maximum positive bending moment = 49.06 kNm 

Exercise  Problems  

14kN 40kN/m 

B 
2m 

10kNm 

1m 
A 

4m 

20kN/m 

600 

VM-81  



10. Draw SFD and BMD for the single side overhanging beam 

subjected loading as shown below.. Mark salient features  like 

maximum positive, negative bending moments and shear forces, 

inflection points if any.  

Exercise  Problems  

24kN 
6kN/m 

4kN/m 0.5m 

1m 1m 3m 2m 3m 

Ans:  Maximum positive bending moment = 41.0 kNm 

VM-82  



UNIT-III 



Chapter 6 

Section 3,4 

Bending Deformation, Strain and 

Stress in Beams 



Key Points: 

1. Bending moment 

causes beam to 

deform. 

2. X = longitudinal 

axis 

3. Y = axis of 

symmetry 

4. Neutral surface – 

does not undergo 

a change in length 

6.2 Bending Deformation and Strain 



Key Points: 

1. Internal bending moment causes beam to 

deform. 

2. For this case, top fibers in compression, 

bottom in tension. 



Key Points: 

1. Neutral surface – no change in length. 

2. All cross-sections remain plane and perpendicular to 

longitudinal axis. 
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
 y

 Says normal strain is 

linear 

Maximum at outer 

surface (where y = c) 

max 
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6.2 Bending Stress – The Flexure Formula 

What about Stress???? 

Recall from section 6.1: 

Therefore, it follows that 

max 







c
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
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Sum moments about cut: 

This is the 

moment of 

inertia, I 



The Flexure Formula: 

I

Mc
max

I

My
Or in general: 

Max bending stress, 

psi 

Internal bending 

moment, lb-in 

Distance from NA to 

outer fiber, in 

Moment of inertia, in4 



Examples: 

• Find maximum moment 

• Find area properties, I and c 

• Calculate stress 



WHERE IS 

BENDING 

STRESS 

MAXIMUM??? 

 

Answer:  

•Outer surface 

(furthest away 

from Neutral Axis) 

•Value of x along 

length where 

moment is 

maximum!! 









Example: The T-shape beam is subjected to the loading below. 

1. Draw shear and moment diagram. Identify location and magnitude of Mmax. 

2. Determine location and magnitude of maximum bending stress and draw stress profile.  Is the 

beam safe if the material is aluminum w/ y = 15 ksi? 

3. What is the largest internal moment the beam can resist if allow = 2 ksi? 



45K 



Statics: Example 1 - Pliers 

Given: Typical 

household pliers as 

shown. 

Find: Force applied to 

wire and force in pin that 

connects the two parts of 

the pliers. 

Side: what is the shear stress 

in pin and bending stress in 

handle?  SofM 

Do this for homework. 

 

See solution Link 



Statics: Example 2 – Crane Structure 

Given: Crane structure as 

shown. 

Find: Forces and FBD’s 
for cables A-B and A-E, 

boom DEF and post 

AFC. 

Side: what is the normal stress in 

cables (average normal only) and 

normal stress in boom and post 

(combined loading)?  SofM 

Do this for homework. 

 

See solution Link 



Example 4:  Determine the resultant internal loadings 

acting on the cross sections located through points D 

and E of the frame.  (1-114) 



UNIT_IV 



Chapter 3  Torsion  
 

Introduction 

--  Analyzing the stresses and strains in   machine   

 parts which are subjected to torque T 

   Circular 

--  Cross-section  Non-circular 

   Irregular shapes 

--  Material  (1) Elastic 

   (2) Elasto-plastic 

-- Shaft  (1) Solid 

   (2) Hollow 



3.1 Introduction 

  T is a vector 

  Two ways of expression 

 -- Applications: 

 a. Transmission of torque in shafts, 

   e.g. in  automobiles 



Assumptions in Torque Analysis: 

     a. Every cross section remains plane and undistorted. 

     b. Shearing strain varies linearly along the axis of the shaft.      



3.2 Preliminary Discussion of the Stresses in a Shaft 

( )   dA T

dF T 

Free-body Diagram 

Where  = distance (torque arm) 

Since dF =  dA 

The stress distribution is Statically 

 Indeterminate. 



-- εust rely on “deformation” to solve the problem. 

Analyzing a small element: 



3.3 Deformations in a Circular Shaft 

 =  (T, L) -- the angle of twist    

 (deformation) 

Rectangular cross section 

warps under torsion 



' 'CD C D

 A circular plane remains 

circular plane 



L

  (in radians)  

Determination of Shear Strain  

The shear strain     



max

c

L

 

max

 
c

max 
L

c

 = c = radius of the shaft 

L

 Since 



 G

3.4 Stresses in the Elastic Range 

Hooke’s Law 

max

 
c

max

   G G
c

 G  
max max  G

max

 
c

Therefore,  (3.6) 



1

2

min max 
c

c



max


J
T

c

2max
max

        T dA dA dA
c c

( )   dA T (3.1) max

 
c

(3.9) 

But    2  dA J

Therefore,  Or,   max 
Tc

J

(3.6) 



Substituting Eq. (3.9) into Eq. (3.6) 

J

T 

max 
Tc

J

41

2
J c

(3.10) 

(3.9) 

These are elastic torsion formulas. 

For a solid cylinder:   

For a hollow cylinder:   4 4

2 1

1

2
( ) J c c
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max 0
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2

2
  

F A

A A

  

(3-13) 



Mohr’s Circle (Sec. 7.4) 
-- Pure Shear Condition 



Ductile materials fail 

in shear  (90o fracture) 

Brittle materials are weaker in 

tension   (45o fracture) 



3.5 Angle of Twist in the Elastic Range 

max

c

L

 

max
max maxsin

Tc
ce

G J

  

TL

JG
 

(3.3) 

max

Tc

JG
  (3.15) 

max

c Tc

L JG

  Eq. (3.3)  =   Eq. (3.15)     

Therefore, 

Hence, 
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For Multiple-Section Shafts: 



   

Shafts with a Variable Circular Cross Section 

0
  

LTdx

JG

 
Tdx

d
JG



3.6 Statically Indeterminate Shafts 

-- Must rely on both  

(1) Torque equations and  

(2) Deformation equation, i.e.  
TL

JG
 

0T 

Example 3.05 



3.7 Design of Transmission Shafts 

P power T 

2P f T

f

P
T

2


-- Two Parameters in Transmission Shafts: 

 a. Power  P 

 b. Speed of rotation 

 where  = angular velocity  (radians/s) = 2 

             = frequency (Hz) 

[N.m/s  =  watts (W)] (3.21) 
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(3.9) 

4 31 1

2 2
/J c and J c c  

For a Solid Circular Shaft: 

Therefore, 
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3.8 Stress Concentrations in Circular Shafts 

max 
Tc

K
J



3.9 Plastic Deformation sin Circular Shafts 

max

 
c

(3.4) 

c = radius of the shaft 
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dF T  (3.1) 

Knowing dF =  dA 
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Where   =  () 

(3.26) 
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If we can determine experimentally an Ultimate 

Torque, TU, 

then by means of Eq. (3.9), we have 

RT  = Modulus of Rupture in Torsion 
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3.10 Circular Shafts Made of an Elasto-Plastic Material 

Y Y

J
T

c

max 
Tc

J

Case I:    <  Y   Hooke’s Law applies,  < max Case I 

Case II 

Case II:    <  Y   Hooke’s Law applies,  = max 

 

    TY = max elastic torque 



Since  

 

Case III: Entering Plastic Region 
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(3-29) 
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By evoking Eq. (3.26) 

(3.31) 
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Case IV 

Case IV  -- Fully Plastic 

4
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= Plastic Torque     (3-33) 
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3.11 Residual Stresses in Circular Shafts 

'   P



( ) 0 dA 



3.12 Torsion of Noncircular Members 

0 0  yx yz

0 0  zx zy

0 0  xy xz

A rectangular  shaft does not axisymmetry. 
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From Theory of Elasticity: 
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3.13 Thin-Walled Hollow Shafts 

0 A BF - F = 0  xF ( ) A A AF t x
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UNIT-V 



THIN AND THICK CYLINDERS 

    

They are,   

          In many engineering applications, cylinders are frequently 

used for transporting or storing of liquids, gases or fluids.   

   Eg: Pipes, Boilers, storage tanks etc.  

 

         These cylinders are subjected to fluid pressures. When a 

cylinder is subjected to a internal pressure, at any point on the 

cylinder wall, three types of stresses are induced on three 

mutually perpendicular planes. 

INTRODUCTION:   



2. Longitudinal Stress (σL ) – This stress is directed along the 

length of the cylinder.  This is also tensile in nature and tends 

to increase the length. 

3. Radial pressure ( pr ) – It is compressive in nature.         

Its magnitude is equal to fluid pressure on the inside wall and 

zero on the outer wall if it is open to atmosphere. 

1. Hoop or Circumferential Stress (σC) – This is directed along the 

tangent to the circumference and tensile in nature.  Thus, there 

will be increase in diameter.  



σ C σ L 

1. Hoop Stress (C) 2. Longitudinal Stress (L) 3. Radial Stress (pr) 

Element on the cylinder 

wall subjected to these 

three stresses 

σ C 
σ C 

σC 

p 

σ L 

σ L 

σ L 

p p 
pr 

σ L σ L 

σ C 

σ C 

pr 

pr 



INTRODUCTION:     

  A cylinder or spherical shell is considered to be thin when the 

metal thickness is small compared to internal diameter.   

  i. e., when the wall thickness, ‘t’ is equal to or less than 

‘d/20’, where ‘d’ is the internal diameter of the cylinder or shell,  

we consider the cylinder or shell to be thin, otherwise thick.   

  Magnitude of radial pressure is very small compared to other 

two stresses in case of thin cylinders and hence neglected. 

THIN CYLINDERS 



Longitudinal

 axis Longitudinal stress 

Circumferential stress 

t 

The stress acting along the circumference of the cylinder is called 

circumferential stresses whereas the stress acting along the length of 

the cylinder (i.e., in the longitudinal direction ) is known as 

longitudinal stress 



The bursting will take place if the force due to internal (fluid)  

pressure (acting vertically upwards and downwards) is more than the 

resisting force due to circumferential stress set up in the material. 

p 

σc σc 

P -  internal pressure (stress)

σc –circumferential stress



P -  internal pressure (stress)

σc – circumferential stress

dL 

σc 

p 

t 



EVALUATION OF CIRCUMFERENTIAL or HOOP STRESS (σC):  

   Consider a thin cylinder closed at both ends and subjected to internal 

   pressure ‘p’ as shown in the figure. 

   Let d=Internal diameter,             t = Thickness of the wall 

   L = Length of the cylinder.  

p d 

t 

σc σc 

dl t 

p 

d 



To determine the Bursting force across the diameter: 

 Consider a small length ‘dl’ of the cylinder and an elementary 

area ‘dA’ as  shown in the figure.  

                  

rpp            dθdldAdF 

dθdldFx  școs
2

d
p 

dA 

σc σc 

dl t 

p 

d 

dș 

ș 

Force on the elementary area, 

Horizontal component of this force 

dθdl
2

d
p                   

           

dθdldFy  șsin
2

d
p 

Vertical component of this force 



The horizontal components cancel out 

when integrated over semi-circular 

portion as there will be another equal 

and opposite horizontal component on 

the other side of the vertical axis. 

                                  

sin
2

d
pforce bursting ldiametrica Total 

0
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
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dp cosdl
2

d
p                                     0
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 dl



dlcc  tσ 2)σ stress ntialcircumfere  to(due force Resisting 

dldl  dptσ2 i.e.,                              c

)1....(....................
t2

dpσ stress, ntialCircumfere         c 

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dL 

σc 

p 

t 

                              

force Burstingforce Resisting um,equillibriUnder 



)1....(....................
t2

dpσ stress, ntialCircumfere         c 




Force due to fluid pressure = p × area on which p is acting = p ×(d ×L) 

  (bursting force) 

Force due to circumferential stress = σc × area on which σc is acting                                   

                            (resisting force)  = σc × ( L × t + L ×t ) = σc × 2 L × t  

Under equilibrium bursting force = resisting force  

                                          p ×(d ×L) = σc × 2 L × t  

Assumed as rectangular  



LONGITUDINAL  STRESS (σL):  

p 

σL 

The force, due to pressure of the fluid, acting at the ends of the 

thin cylinder, tends to burst the cylinder as shown in figure 

P 

 A 

 B 

The bursting of the cylinder takes 

place along the section AB 



EVALUATION OF LONGITUDINAL  STRESS (σL):  
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EVALUATION OF STRAINS  

     A point on the surface of thin cylinder is subjected to biaxial 

stress system, (Hoop stress and Longitudinal stress) mutually 

perpendicular to each other, as shown in the figure.  The strains due 

to these stresses i.e., circumferential and longitudinal are obtained 

by applying Hooke’s  law and Poisson’s theory for elastic materials. 

σ C=(pd)/(2t) σ C=(pd)/(2t) 

σL=(pd)/(4t) 

σ L=(pd)/(4t) 
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:İ strain, ntialCircumfere
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σ C=(pd)/(2σC=(pd)/(2t) 

σ L=(pd)/(4t) 

σ L=(pd)/(4t) 

              Note:    Let įd be the change in diameter. Then 
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 STRAIN, VOLUMETRIC


Change in volume = įV = final volume – original volume  

original volume = V = area of cylindrical shell × length 
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final volume = final area of cross section × final length 
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PROBLEM 1: 

A thin cylindrical shell is 3m long and 1m in internal diameter. It is  

subjected to internal pressure of 1.2 MPa.  If the thickness of the sheet is 

12mm, find the circumferential stress, longitudinal stress, changes in  

diameter, length and volume . Take E=200 GPa and μ= 0.3. 

1. Circumferential stress, σC: 

                  σC= (p×d) / (2×t)  

                                                      = (1.2×1000) / (2× 12)  

                     = 50 N/mm2 = 50 MPa (Tensile).  

SOLUTION: 

2. Longitudinal stress, σL: 

   σL = (p×d) / (4×t)  

                                          = σC/2 = 50/2  

        = 25 N/mm2 = 25 MPa (Tensile).  

ILLUSTRATIVE PROBLEMS 



3. Circumferential strain, İc:    

Change in length = İ L ×L= 5×10-05×3000 = 0.15 mm (Increase). 
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Change in diameter, įd = İc ×d  

                                      = 2.125×10-04×1000 = 0.2125 mm  (Increase). 
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A copper tube having 45mm internal diameter and 1.5mm wall  

thickness is closed at its ends by plugs which are at 450mm apart. The 

tube is subjected to internal pressure of 3 MPa and at the same time  

pulled in axial direction with a force of 3 kN.  Compute: i) the change 

in length between the plugs  ii) the change in internal diameter of the  

tube.   Take ECU = 100 GPa, and μCU = 0.3. A]  Due to Fluid pressure of 3 MPa: 

 

Longitudinal stress, σL = (p×d) / (4×t)  

                                     = (3×45) / (4× 1.5) = 22.50 N/mm2 = 22.50 MPa. 

SOLUTION: 

Change in length, įL= İL × L = 9 × 10-5×450 = +0.0405 mm (increase) 
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Change in diameter, įd= İc × d = 3.825 × 10-4×45  

   = + 0.0172 mm (increase) 
B]  Due to Pull of 3 kN (P=3kN): 

     Area of cross section of copper tube, Ac = π × d × t 

                         = π × 45 × 1.5 = 212.06 mm2 
Longitudinal strain, İ L = direct stress/E = σ/E = P/(Ac × E) 

              = 3 × 103/(212.06 × 100 × 103 ) 

              = 1.415 × 10-4 

Change in length, įL=İL× L= 1.415 × 10-4 ×450= +0.0637mm (increase) 
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 Lateral strain,         İlat= -μ × Longitudinal strain = -μ × İL 

                 = - 0.3× 1.415 × 10-4 =  -4.245 × 10-5 

    Change in diameter, įd = İlat × d = -4.245 × 10-5 ×45  

        = - 1.91 × 10-3 mm (decrease) 

C) Changes due to combined effects: 

 Change in length    = 0.0405 + 0.0637 = + 0.1042 mm (increase) 

    Change in diameter = 0.01721 - 1.91 × 10-3 = + 0.0153 mm (increase) 



PROBLEM  3: 

A cylindrical boiler is 800mm in diameter and 1m length.  It is  

required to withstand a pressure of 100m of water. If the permissible  

tensile stress is 20N/mm2, permissible shear stress is 8N/mm2 and   

permissible change in diameter is 0.2mm, find the minimum thickness  

of the  metal required. Take E = 200GPa, and μ = 0.3. 

        Fluid pressure, p = 100m of water = 100×9.81×103 N/m2 

   = 0.981N/mm2 . 

SOLUTION: 

1. Thickness from Hoop Stress consideration: (Hoop stress is critical 

than long. Stress) 

  σC = (p×d)/(2×t)  

                        20 = (0.981×800)/(2×t) 



2. Thickness from Shear Stress consideration:  

3. Thickness from permissible change in diameter consideration 

(įd=0.2mm):  

Therefore, required thickness, t = 19.62 mm. 

 

     
t)(8

d)(pĲmax 




12.26mm. t      

t)(8

800)(0.981
8 









PROBLEM  4: 

A cylindrical boiler has 450mm in internal diameter, 12mm thick and 

0.9m long.  It is initially filled with water at atmospheric pressure. 

Determine the pressure at which an additional water of 0.187 liters 

may be pumped into the cylinder by considering water to be 

incompressible. Take E = 200 GPa, and μ = 0.3. 

 Additional volume of water, įV = 0.187 liters = 0.187×10-3 m3 

          = 187×103 mm3 

SOLUTION: 
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Solving, p=7.33 N/mm2  
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JOINT EFFICIENCY 

   

Longitudinal 

rivets 

Circumferential 

rivets 

Steel plates of only particular lengths and width are available. Hence 

whenever larger size cylinders (like boilers) are required, a number 

of plates are to be connected. This is achieved by using riveting in 

circumferential and longitudinal directions as shown in figure. Due to 

the holes for rivets, the net area of cross section decreases and hence 

the stresses increase.  



JOINT EFFICIENCY 

  The cylindrical shells like boilers are having two types of joints 

namely Longitudinal and Circumferential joints.  Due to the holes for 

rivets, the net area of cross section decreases and hence the stresses 

increase.  If the efficiencies of these joints are known, the stresses can 

be calculated as follows. 

  Let Ș L=  Efficiency of Longitudinal joint 

 and Ș C =  Efficiency of Circumferential joint. 

       ...(1)..........     
Șt2

dpσ                 
L

C 




 Circumferential stress is given by,    



       ...(2)..........     
Șt4

dpσ                      
C

L 




Note:  In longitudinal joint, the circumferential stress is developed  

           and in circumferential joint, longitudinal stress is developed. 

 Longitudinal stress is given by,    

Circumferential 

rivets 
Longitudinal 

rivets 



If A is the gross area and Aeff is the effective resisting area then, 

Efficiency = Aeff/A 

Bursting force = p L d 

Resisting force = σc ×Aeff = σc ×ȘL ×A = σc ×ȘL ×2 t L  

Where Ș L=Efficiency of Longitudinal joint 

 

Bursting force = Resisting force 

p L d  = σc ×ȘL × 2 t L  

       ...(1)..........     
Șt2

dpσ                 
L

C 






If Ș c=Efficiency of circumferential joint 

Efficiency = Aeff/A 

Bursting force = (π d2/4)p 

Resisting force = σL ×A′eff = σL ×Șc ×A′ = σL ×Șc ×π d t  

Where Ș L=Efficiency of circumferential joint 

 

Bursting force = Resisting force 

       ...(2)..........     
Șt4

dpσ                      
C

L 






A cylindrical tank of 750mm internal diameter, 12mm thickness and 

1.5m length is completely filled with an oil of specific weight    

7.85 kN/m3 at atmospheric pressure. If the efficiency of longitudinal 

joints is 75% and that of circumferential joints is 45%, find the 

pressure head of oil in the tank. Also calculate the change in volume.  

Take permissible tensile stress of tank plate as 120 MPa and E = 200 

GPa, and μ = 0.3. 

Let p = max permissible pressure in the tank. 

Then we have, σL= (p×d)/(4×t) Ș C 

    120 = (p×750)/(4×12) 0.45 

  p = 3.456 MPa. 

SOLUTION: 

 Also, σ C= (p×d)/(2×t) Ș L 

   120 = (p×750)/(2×12) 0.75 

            p = 2.88 MPa. 



 Max permissible pressure in the tank, p = 2.88 MPa. 

                        

μ)45(
E)t(4

d)(p

V

dv
 Strain, Vol. 





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108.55  V108.55  dv                  

108.55  0.3)4-(5
)1020012(4

750)(2.88
                         

33-

3624-4-

4-

3













A boiler shell is to be made of 15mm thick plate having a limiting 

tensile stress of 120 N/mm2.  If the efficiencies of the longitudinal and 

circumferential joints are 70% and 30% respectively determine; 

 i) The maximum permissible diameter of the shell for an 

internal pressure of 2 N/mm2. 

 (ii) Permissible intensity of internal pressure when the shell 

diameter is 1.5m. 

(i) To find the maximum permissible diameter of the shell for an 

internal pressure of 2 N/mm2: 

SOLUTION: 

      

     

        
Șt2

dpσ     e., i.
L

c 




a) Let limiting tensile stress = Circumferential stress = σ c = 

120N/mm2. 

d = 1260 mm      
7.0512

d2
 120     

  








    

       
Șt4

dpσ     e., i.
C

L 




b) Let limiting tensile stress = Longitudinal stress = σ L = 120N/mm2. 

The maximum diameter of the cylinder in order to satisfy both the 

conditions = 1080 mm. 

d = 1080 mm .       
3.0514

d2
 120    

  








The maximum permissible pressure = 1.44 N/mm2. 

(ii) To find the permissible pressure for an internal diameter of 1.5m: 

(d=1.5m=1500mm) 

a) Let limiting tensile stress = Circumferential stress = σ c = 

120N/mm2. 

 

   
Șt2

dpσ     e., i.
L

c 




b) Let limiting tensile stress = Longitudinal stress = σ L = 120N/mm2. 

  

        
Șt4

dpσ     e., i.
C

L 




.N/mm 1.68p

      
7.0512

5001p
 120    

2





.N/mm 1.44p   

       
3.0514

5001p
 120    

       

2







PROBLEM 1: 

Calculate the circumferential and longitudinal strains for a boiler of  

1000mm diameter when it is subjected to an internal pressure of 

1MPa. The wall thickness is such that the safe maximum tensile stress 

in the boiler material is 35 MPa.  Take E=200GPa and μ= 0.25. 

    (Ans: İ C=0.0001531, İ L=0.00004375) 

 

PROBLEM 2: 

A water main 1m in diameter contains water at a pressure head of  

120m.  Find the thickness of the metal if the working stress in the pipe  

metal is 30 MPa.  Take unit weight of water = 10 kN/m3. 

       (Ans: t=20mm) 

PROBLEMS FOR PRACTICE 
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PROBLEM 3: 

A gravity main 2m in diameter and 15mm in thickness.  It is subjected 

to an internal fluid pressure of 1.5 MPa.  Calculate the hoop and 

longitudinal stresses induced in the pipe material.  If a factor of safety 

4 was used in the design, what is the ultimate tensile stress in the pipe 

material? 

   (Ans: C=100 MPa, L=50 MPa, σU=400 MPa) 

PROBLEM 4: 

At a point in a thin cylinder subjected to internal fluid pressure, the 

value of hoop strain is 600×10-4 (tensile).  Compute hoop and 

longitudinal stresses.  How much is the percentage change in the 

volume of the cylinder? Take E=200GPa and μ= 0.2857.   

         (Ans: C=140 MPa, L=70 MPa, %age change=0.135%.) 
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PROBLEM 5: 

A cylindrical tank of 750mm internal diameter and 1.5m long is to be 

filled with an oil of specific weight 7.85 kN/m3 under a pressure head 

of 365 m.  If the longitudinal joint efficiency is 75% and 

circumferential joint efficiency is 40%, find the thickness of the tank 

required.  Also calculate the error of calculation in the quantity of oil 

in the tank if the volumetric strain of the tank is neglected. Take 

permissible tensile stress as 120 MPa, E=200GPa and μ= 0.3 for the 

tank material.                                      (Ans: t=12 mm,  error=0.085%.) 



THICK  CYLINDERS 



INTRODUCTION:     

  The thickness of the cylinder is large compared to that of thin 

cylinder.   

  i. e., in case of thick cylinders, the metal thickness ‘t’ is more 

than ‘d/20’, where ‘d’ is the internal diameter of the cylinder.   

  Magnitude of radial stress (pr) is large and hence it cannot be 

neglected.  The circumferential stress is also not uniform across the 

cylinder wall. The radial stress is compressive in nature and 

circumferential and longitudinal stresses are tensile in nature.  

Radial stress and circumferential stresses are computed by using 

‘δame’s equations’.  



δAεE’S EQUATIONS (Theory) :  

4.  The material is homogeneous, isotropic and obeys Hooke’s law. (The 
stresses are within proportionality limit). 

  1. Plane sections of the cylinder normal to its axis remain plane and 

normal even under pressure. 

  2. Longitudinal stress (σL) and longitudinal strain (İL) remain constant    

throughout the thickness of the wall. 

  3. Since longitudinal stress (σL) and longitudinal strain (İL) are 

constant, it follows that the difference in the magnitude of  hoop 

stress and radial stress (pr) at any point on the cylinder wall is a 

constant. 

ASSUMPTIONS: 



δAεE’S EQUATIONS FOR RADIAδ PRESSURE AND  

CIRCUMFERENTIAL STRESS  

Consider a thick cylinder of external radius r1 and internal radius 

 r2, containing a fluid under pressure ‘p’ as shown in the fig.        
δet ‘δ’ be the length of the cylinder.  

p 

r2 

r1 

p 



Consider an elemental ring of radius  ‘r’ and thickness ‘įr’ as shown 

  in the above figures. Let pr and (pr+ įpr) be the intensities of radial 

 pressures at inner and outer faces of the ring. 

pr 

pr+δpr 

r2 

r1 

r 
pr 

pr+δpr 

r2 

r1 

r 

σc σc 

r įr 

Pr 

pr+δpr 
External 

pressure 



     Consider the longitudinal 

section XX of the ring as 

shown in the fig.   

     The bursting force is 

evaluated by considering 

the projected area, 

‘2×r×L’ for the inner face 
and ‘2×(r+įr)×L’ for the 

outer face .   

The net bursting force, P = pr×2×r×L - (pr+įpr)×2×(r+įr)×L 

         =( -pr× įr - r×įpr - įpr × įr) 2L 

Bursting force is resisted by the hoop tensile force developing at the 

level of the strip i.e.,       

                                    F =σ ×2 ×į ×L

L 

r 
pr 

pr+įpr 

r+įr 

X X 



Thus,  for equilibrium, P = Fr    

   (-pr× įr - r×įpr- įpr × įr) 2L = σ c×2×įr×L  

               -pr× įr - r×įpr- įpr × įr = σ c×įr 

Neglecting products of small quantities, (i.e., įpr × įr)  

   σ c = - pr – (r × įpr )/ įr  ...…………….(1) 

Longitudinal strain is constant.  Hence we have,  

 

 

 

 

σ μ σ –

constant
E

pμ
E

σμ
E

σ rCL  Since Pr is compressive İ L = 

constant)pσ(μ
E

σ
rC

L 
E

İ L = 



σ c- pr = 2a,   

i.e., σc = pr + 2a, ………………(2) 

From (1),   pr+ 2a = - pr – (r× įpr ) / įr 

r

r
r

p
-a)p(2




 r

)3.(..........
a)p(

p
2

r

rr





r

i. e., 

Integrating,  (-2 ×loge r) + c =  loge (pr + a) 

Where c is constant of integration. Let it be taken as loge b, where ‘b’ 

is another constant. 

Thus, loge (pr+a) = -2 ×loge r + loge b = - loge r
2+ loge b = loge 

2r

b



.....(4)..........   a
r

b
p   stress,  radial   or,        

r

b
ap   i.e.,

2r2r 

 The equations (4) & (η) are known as “δame’s Equations” for radial 

 pressure and hoop stress at any specified point on the cylinder wall.  

 Thus, r1≤r ≤r2. 

a 2  a 
b

  a 2  pσ      stress, Hoop
2rc 

r

.......(5)....................  a
r

bσ    i.e.,
2c 

Substituting it in equation 2, we get 



 ANALYSIS FOR LONGITUDINAL STRESS 

 Consider a transverse section near the end wall as shown in the fig.  
Bursting force, P  =π×r2

2×p  

Resisting force is due to longitudinal stress ‘σ L’. 

  i.e.,   FL= σ L× π ×(r1
2-r2

2) 

For equilibrium, FL= P  

σ L× π ×(r1
2-r2

2)= π ×r2
2×p  

(Tensile)      
)r(r

rpσ
2

2

2

1

2

2
L 




p 
p 

r2 
r1 

σL 

σ L σL 

σL 

L 



 NOTE: 

1. Variations of Hoop stress and Radial stress are parabolic across 

the cylinder wall. 

2. At the inner edge, the stresses are maximum. 

3. The value of ‘Permissible or εaximum Hoop Stress’ is to be 
considered on the inner edge. 

4. The maximum shear stress (σ max) and Hoop, Longitudinal and 

radial strains (İc, İL, İr) are  calculated as in thin cylinder but 

separately for inner and outer edges. 



ILLUSTRATIVE  PROBLEMS 

PROBLEM  1: 

A thick cylindrical pipe of external diameter 300mm and internal  

diameter 200mm is subjected to an internal fluid pressure of 20N/mm2 

and external pressure of 5 N/mm2.  Determine the maximum hoop  

stress developed and draw the variation of hoop stress and radial  

stress across the thickness.  Show at least four points for each case.  
SOLUTION: 

External diameter = 300mm.       External radius, r1=150mm. 

Internal diameter = 200mm.        Internal radius, r2=100mm. 

 

δame’s equations: 

      For Hoop stress,                          .........(1) 

       

  a
r

bσ   
2c 

  a
r

b
p   

2r 



Boundary conditions: 

At r =100mm (on the inner face), radial pressure = 20N/mm2 

                 

   i.e.,  

 

Similarly, at r =150mm (on the outer face), radial pressure = 5N/mm2 

                 

   i.e.,  
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 ..(5)..........  7
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2,70,000σ   
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 ..(6)..........  7
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2r 

 

Solving equations (3) & (4), we get   a = 7,     b = 2,70,000. 

 

δame’s equations are, for Hoop stress, 

 



To draw variations of Hoop stress & Radial stress : 

 

At r =100mm (on the inner face),  

(Comp) MPa 20  7
100

2,70,000
p  stress, Radial  

(Tensile) MPa 34  7
100

2,70,000σ  stress, Hoop  

2r

2c





At r =120mm, 

(Comp) MPa 11.75  7
120

2,70,000
p  stress, Radial  

(Tensile) MPa 25.75  7
120

2,70,000σ  stress, Hoop  

2r

2c





At r =135mm, 

(Comp) MPa 7.81  7
135

2,70,000
p  stress, Radial  

(Tensile) MPa 21.81  7
135

2,70,000σ  stress, Hoop  

2r

2c







(Comp) MPa 5  7
150

2,70,000
p  stress, Radial  

(Tensile) MPa 19  7
150

2,70,000σ  stress, Hoop

150mm,rAt 

2r

2c







Variation of  Hoop stress & Radial stress 

Variation of  Hoop  

    Stress-Tensile 

       (Parabolic)  

Variation of  Radial  

 Stress –Comp 

      (Parabolic)  



PROBLEM  2: 

Find the thickness of the metal required for a thick cylindrical shell of  

internal diameter 160mm to withstand an internal pressure of 8 N/mm2. 

The maximum hoop stress in the section is not to exceed 35 N/mm2.  SOLUTION: 

Internal radius, r2=80mm. 
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PROBLEM  3: 

A thick cylindrical pipe of outside diameter 300mm and internal  

diameter 200mm is subjected to an internal fluid pressure of 14 N/mm2. 

Determine the maximum hoop stress developed in the cross section.  

What is the percentage error if the maximum hoop stress is calculated  

by the equations for thin cylinder? 
SOLUTION: 

Internal radius, r2=100mm.                External radius, r1=150mm 

. 

δame’s equations: 

      For Hoop stress,                          .........(1) 

       

      For radial pressure,                      .........(2) 

  a
r

bσ   
2c 

  a
r

b
p   

2r 



Boundary conditions: 

At x  =100mm                              Pr  = 14N/mm2 

                 

   i.e.,  

 

Similarly, at x =150mm                   Pr = 0 

                 

   i.e.,  
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Solving, equations (1) & (2), we get   a =11.2,   b = 2,52,000. 
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PROBLEM  4: 

The principal stresses at the inner edge of a cylindrical shell are  

81.88 MPa (T) and 40MPa (C). The internal diameter of the 

cylinder is 180mm and the length is 1.5m. The longitudinal 

stress is 21.93 MPa (T). Find,  

(i) Max shear stress at the inner edge.  

(ii) Change in internal diameter.   

(iii) Change in length.   

(iv) Change in volume.           

Take E=200 GPa and μ=0.3. 

SOLUTION: 
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PROBLEM  5: 

Find the max internal pressure that can be allowed into a thick pipe of 

outer diameter of 300mm and inner diameter of 200mm so that tensile 

stress in the metal does not exceed 16 MPa if,  (i) there is no external  

fluid pressure, (ii) there is a fluid pressure of 4.2 MPa. SOLUTION: 

External radius, r1=150mm. 

Internal radius, r2=100mm. 

Boundary conditions: 

At r=100mm , σc = 16N/mm2 

At r=150mm , Pr = 0 

Case (i) – When there is no external fluid pressure: 
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Solving we get,   a  =  4.92    &    b=110.77×103 
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Boundary conditions: 

At r=100mm , σc= 16 N/mm2 

At r=150mm , pr= 4.2 MPa. 

Case (ii) – When there is an external fluid pressure of 4.2 MPa: 
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Solving we get,   a  =  2.01   &    b=139.85×103 
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PROBLEM 1: 

A pipe of 150mm internal diameter with the metal thickness of 50mm 

transmits water under a pressure of 6 MPa.  Calculate the maximum 

and minimum intensities of circumferential stresses induced. 

                      (Ans: 12.75 MPa, 6.75 MPa) 

PROBLEM 2: 

Determine maximum and minimum hoop stresses across the section 

of a pipe of 400mm internal diameter and 100mm thick when a fluid 

under a pressure of 8N/mm2 is admitted.  Sketch also the radial 

pressure and hoop stress distributions across the thickness. 

       (Ans:  max=20.8 N/mm2, min=12.8 N/mm2) 

PROBLEM 3: 

A thick cylinder with external diameter 240mm and internal diameter 

‘D’
‘D’
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PROBLEM 4: 

A thick cylinder of 1m inside diameter and 7m long is subjected to an 

internal fluid pressure of 40 MPa.  Determine the thickness of the 

cylinder if the maximum shear stress in the cylinder is not to exceed 

65 MPa.  What will be the increase in the volume of the cylinder?  

E=200 GPa,  μ=0.3.                      (Ans:  t=306.2mm, įv=5.47×10-3m3) 

PROBLEM 5: 

A thick cylinder is subjected to both internal and external pressure.   

The internal diameter of the cylinder is 150mm and the external 

diameter is 200mm.  If the maximum permissible stress in the cylinder 

is 20 N/mm2 and external radial pressure is 4 N/mm2, determine the 

intensity of internal radial pressure.                     (Ans:  10.72 N/mm2) 




