MECHANICS OF SOLIDS

BY

Mr G S D Madhav

Assistant Professor

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING



UNIT-I



MECHANICS OF SOLIDS



MEGRANTES QR SGERS
PART - |



Mechanics of Solids

Svllzaious

1. Simple Stresses & Strains:-



2. Principle Stresses & Strains:-



Torsion of Circular, Solid, Hollow Section Shafts
Shear Stress, Angle of Twist,

Torsional Moment of Resistance,

Power Transmitted by a Shaft,
Keys & Couplings,
Combined Bending & Torsion,
Close Colled Helical Springs,

Principle Stresses in Shafts Subjected to
Bending, Torsion & Axial Force.



Vlechanics of Solids

Svlleious  Part - 5

1. Bending Moment & Shear Force:-



2. Moment of Inertia:-



3. Stresses in Beams:-

4. Shear stresses in Beams:-



5. Mechanical Properties of Materials:-



1. Mechanics of Structures Vol.-1:-
S.B.Junarkar & H.J.
Shah

2. Strength of Materials:- S.Rarnarmurtham.



MECHANICS OF SOLIDS

Introduction:-
*Structures /Machines
‘Numerous Parts / Members
*Connected together

*perform useful functions/withstand applied loads
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eStresses can occur 1solated or in combination.

e Is structure strong enough to withstand loads
applied to 1t ?

e Is 1t stiff enough to avoid excessive
deformations and deflections?

* Engineering Mechanics---->  Statics----->
deals with rigid bodies

 All materials are deformable and mechanics
of solids takes this into account.



*Properties of Material:-
* Elasticity

* Plasticity
 Ductility
* Malleabillity
* Brittleness
* Toughness
e Hardness



INTERNAL FORCE:- STRESS




» Resistance offered by the material per unit cross-
sectional area 1s called STRESS.

c =P/A
Unit of Stress:
Pascal = 1 N/m?
kN/m? |, MN/m? , GN/m?

Permissible stress or allowable stress or working stress = yield stress
or ultimate stress /factor of safety.

1 MPa = 1 N/mm?






Example :

Solution: ¢ = 80N/mm?;

P=100 kN = 100*10° N

A =(1t/4) *{D? - (D-20)?}
as o = P/A

substituting in above eq. and
solving. D = 49.8 mm




Example: 2

Solution:
o, =200 MPa= 200*10° kN/m? ;
v=80 kN/m>.

Wt. of wire P=(nt/4)*D?**L* y
c/s area of wire A=(n/4)*D?
c,= P/A
solving above eq. L =2500m
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Modulus of Elasticity:

Value of E 1s same 1n
Tension &
Compression.



> €
* Hooke’s Law:-
Up to elastic limit, Stress 1s proportional to strain
GO €
; where E=Young’s modulus
oc=P/Aand € =0 /L
P/A=E (0/L)
















For the bar to be 1in horizontal position, Displacements
at A & B should be same,

O = Op

(PL/AE), =(PL/AE);

{P(9-x)/9}*3 _ {P(x)/9}*5
(0.001*1*105) 0.000445%2%105

(9 - x)*3=x*5%1.1236
277-3x=5.618 x
8.618 x=27
Xx=3.13m



Extension of Bar of Tapering cross Section
fromn diameter d1 to d2:-

— )




[ A= 4Pdx/[E n{dl+kx)?]

=-14P/rE]lx 1/k [ {1 /(d1+k)I£)}] dx
=- [4PL/ n E(d2-d1)] {1/(d1+d2 -d1) - 1/d1}

A = 4PL/(r E d1 d2)

Check :-

When d = d1=d2
A =PL/ [(x /4)* d°E ] = PL /AE (refer -24)



Q. Find extension of tapering circular bar under axial pull for the
following data: d1 = 20mm, d2 = 40mm, L = 600mm, E = 200GPa.

P = 40kN

— )




Extension of Tapering bar of uniform thickness
t, width varies from b1 to b2:-

C———

 P/EL|



IL IL A@Lz AL = P8x /[Et(bl - k¥X)].
0O O 0

= P/Et [ 8x /[ (bl - k*X)],

L
= - P/Etk * log, [ (bl -k*X)] ,

= PLlog (b1/b2) / [Et(b] — b2)]



Q. Calculate extension of Tapering bar of
uniform thickness t, width varies from b1 to

2:
—
L
a
——
A 4
A 4
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Let W=total weight of bar = (1/3)*(n/4*d?)L Yy

y =12W/ (n*d?L)
SO,
AL = [12W/ (m*d2L)]*(L¥6E)
=OWL/ (n*d’E)
=WL/[2*(n*d2/4)*E]

=WL /2*A*E
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Extension of Uniform cross section bar subjected
to uniformly varying tension due to self weight

a
\ 4
a

A 4

0=WL2AE



(). Calculate extension of Unitorm cross section bar subjected to
uniformly varying tension due to self weignt

Take L = 100m, A = 100mm? , density =
7850kg/m?



Bar of uniform strenght:(i.e.stress 1s constant at all points of the bar.)

Area = A,
Force = p*(A+dA)
B C dx B C
dx
A L. Force = p*(A*dA)
X
Area = A,

P(A + dA) = Pa + w*A*dx,



Area = A,
Force = p*(A+dA)

B C dx B C
A

dx
L. Force = p*(A*dA)

Area = A,



Q. A bar of uniform strength has following data. Calculate cross sectional
area at top of the bar.

Area = A, A, =5000mm? , L =20m, load at
lower end = 700k, density of the
B C dx material = 8000kg/m?
D)
A L
X

p = 700000/5000 = 140MPa

Area = A,



POISSONS RATIO:-




for 1sotropic materials u =% for steel u = 0.3
Volume of bar before deformation V=L * B*D
new length after deformation L=L+o6L=L+eL=L(l+¢g)
new breadth B.=B-0B =B-guB=B(l -pe¢)

newdepth D,=D-0D=D-euD=D(1-pe¢)
new cross-sectional area = A,= B(1-p &)*D(1-u €)= A(1- n € )?
new volume V1=V -8V =L(1+¢)* A(1- n g)?
~ AL(1+e-2pue¢g)
Since € 1s small
change in volume = 0V =V1-V = AL¢ (1-2 p)
and unit volume change =0V/V = {AL¢ (1-2 n)}/AL




In case of uniformly varying tension, the elongation
‘0’ 1s just half what it would be if the tension were
equal throughout the length of the bar.






now € = ¢ /E=80/(2*10° )=4*10"*

e = OL/LL ==> 8L=¢ *L=4*104*3000 = 1.2 mm

(Increase)

Ob= - u*(g *b)=-0.3*%4*10**40 =4.8*10~° mm

(decrease)

ot = - u*(e *t)=-0.3*4*10*40 =4.8*10~° mm

(decrease)



Change 1n volume = [3000 + 1.2) * (40 — 0.0048) *
(40 — 0.0048)] — 3000*40*40
= 767.608 mm?

OR by using equation (derivation is in chapter of
volumetric stresses and strains)

dv = p*(1-2n)Vv/E
= (128000/40*40)*0.4*3000*40*40/200000

= 768mm?



Example: 8

Solution:given,

c/s =20 mm*30 mm, A =600mm?2,L.=1000 mm,
P=6 kN=6*10° N, oL =0.05 mm, € = ?, 6="E =?.
1. o = P/A =6000/600 =10 N/mm? ----- (1)

2 & = 0L /L=0.05/1000 =0.00005 ----- (2)

o =E ¢ ==>E = ¢/ £ =10/0.00005 = 2*10> N/mm?




3 Now,
New breadth B1 =B(1-u ¢)
=20(1-0.3*0.00005)
=19.9997 mm
New Depth D1 =D(1-u ¢)
=30(1-0.3*0.00005)
=29.9995mm



Example: 9

L
b =200 mm,t = 10mm,so A = 2000mm?

o = P/A=240%10°/ 2000 =120N/mm?
now ol ¢ ¢ = o/E =120/2*10°=0.0006
c= iy /L. oL = ¢ *L=0.0006*5000=3 mm

Ob = -u*(g *b)=-0.25*%6*10*%200
= 0.03 mm(decrease)

Ot = -u*(e *t) = -0.25*%6*104*10



:‘r
tior
1S

@
U )

)

L/







Solution:-
Gross C.S. area of column =0.16 m?

C.S. area of steel = 4*7*0.025% = 0.00785 m?
Area of concrete =0.16 - 0.00785=0.1521m?
Steel bar and concrete shorten by same amount. So,
e,=¢.=>0,/Es=0c,/Ec=>0c=0c.X (Es /Ec)

= 150,



load carried by steel +concrete=300000 N
Ws +Wce= 300000
o, As + o, Ac = 300000
15 6, x 0.00785 + o, x0.1521 = 300000
c,=1.11 x 10° N/ m?
o, =15x 6.=15 x1.11x 10°=16.65 x10° N/ m?
Ws =16.65x10° x0.00785 / 10 3 =130.7 kN
Wc=1.11x 10°x 0.1521/10°= 168.83 kN

(error 1n result 1s due to less no. of digits
considered 1n stress calculation.)



we know that,
os/Es=oc/E(=e= /L)_ (1) &(2)
c.= 1.11 MPa
o, =15x 6.=15 x1.11x 10°=16.65 MPa

The length of the column 1s 2m

Change 1n length

dL = 1.11#2000/[13.333*1000] = 0.1665mm

OR
dL = 16.65*2000/[200000] = 0.1665mm






Solution:-
Gross C.S. area of column =0.16 m?

C.S. area of steel = 4*7*0.025% = 0.00785 m?
Area of concrete =0.16 - 0.00785=0.1521m?
Steel bar and concrete shorten by same amount. So,
e,=¢.=>0,/Es=0c,/Ec=>0c=0c.X (Es /Ec)

= 14.286 o,



Solution:-
Gross C.S. area of column =0.16 m?
C.S. area of steel = 4%1%0.025% = 0.00785 m?
Area of concrete =0.16 - 0.00785=0.1521m?
Steel bar and concrete shorten by same amount. So,
e,=¢.=>0,/Es=0c./Ec=>0c=0.X (Es /Ec) =ocx (200/14)
= 14.2860,
So o, = 14.2860G,

os = 160 then oc = 160/14.286 = 11.2MPa > 5MPa, Not valid
oc = SMPa then os = 14.286*5 =71.43 MPa <120MPa, Valid



Permissible stresses in each material are

oc = 5S5MPa & os =71.43 MPa

We know that

oS As+occAc =W
[71.43 x 0.00785 + 5 x0.15211%*10002 / 1000 = 1321.22kN

[Load in each materials are
Ws =71.43x0.00785 x1000 =560.7255 kN
Wc =5x0.1521x1000 = 760.5kN



we know that,
os/Es=cc/E(=e= /L)___ (1) &(2)
c. =5 MPa
c, =71.43 MPa
The length of the column 1s 2m
Change 1n length

dL = 5%2000/[14000] = 0.7143mm
OR

dL= 71.43%2000/200000] = 0.7143mm



ast 1ron
copper

dast 11ron




Area of Copper Rod =Ac = (n/4)* 0.04*> = 0.00047 m?
Area of Cast Iron  =Aci= (n/4)* (0.082 - 0.04%) = 0.00127® m?
o, /Ect = o, /Ec or

175x 10°

75 v 10 9
=2.33

o, =2.33 o,

o,/ o,=Ecl/Ec=

—



Now,
W =Wci +Wc
30=(2.330.)x0.012 ®t + o, x 0.0004 ©
o, = 2987.5 kN/m?
o, = 2.33 x 6, = 6960.8kN/m?
load shared by copperrod = Wc =c_Ac
=2987.5 x 0.0004 7
=3.75 kN
Wei=30-3.75=26.25 kN



Strain ¢.=c,/ Ec = oL /L

oL = (o, /Ec) x L = [2987.5/(75 x 10°)] x 2
= 0.0000796 m

=(0.0796 mm

Decrease in length = 0.0796 mm



Example: 12
For the bar shown 1n figure, calculate

the reaction produced by the lower
support on the bar. Take E= 2*108
kN/m?.Find also stresses in the bars.




Solution:-
R1+R2 =55
o L1 =(55-R2)*1.2 / (110*10%)*2*10% (LM extension)
0 L2 =R2*2.4 / (220*10%)*2*108 (MN contraction)
( Given: o L1- 0 L2 =1.2 /1000=0.0012)
(55-R2)*1.2 / [(110*10%)*2*108 ] -R2*2.4 /[ (220*100)*2*108 ]

=0.0012
so R2 =16.5 kN Since R1+R2 = 55 kN,
R1=38.5 kN

Stress in LM = Force/area = 350000 kN/m?
Stress in MN =75000 kN/m?



Direct Shear:--



*Dealing with machines and structures an engineer
encounters members subjected to tension, compression
and shear.

*The members should be proportioned in such a
manner that they can sately & economically withstand

loads they have to carry.






Temperature stresses:-







Steel(S) ,
Copper(C)



e —



A railway 1s laid so that there 1s no
stress 1n rail at 10° C. If rails are 30 m long Calculate,

1. The stress 1n rails at 60 ° C if there 1s no allowance
for expansion.

2. The stress 1in the rails at 60 °© C if there 1s an
expansion allowance of 10 mm per rail.

3. The expansion allowance if the stress in the rail 1s to
be zero when temperature 1s 60 ° C.

4. The maximum temp. to have no stress in the rails if
the expansion allowance 1s 13 mm/rail.

Take oo = 12 x 10 © per 1°C E=2 x 10 > N/mm ?



Solution:
1. Rise in temp. =60°-10°=50°C

sostress=otE =12x10°x50x2x 10°
= 120 MPa

2.0,x LIE= A= (Lat-10)
= (30000 x 12 x 10 -® x50-10)
=18 -10 = 8 mm
6, =AE /L =8x2x 10°/30000
= 53.3 MPa



3. If stresses are zero ,

Expansion allowed =(La t)
= (30000 x 12 x 10 -® x50)
=18 mm
4. If stresses are zero
6, =E /L*(La t -13)=0
Lo t=13
so t=13/ (30000 x 12 x 10 ©)=36"C

allowable temp.=10+36=46°¢.



A steel bolt of length L passes through a copper tube
of the same length, and the nut at the end 1s turned up
just snug at room temp. Subsequently the nut 1s turned
by 1/4 turn and the entire assembly 1s raised by temp
559C. Calculate the stress in bolt if L=500mm,pitch of

nut 1s 2mm, area of copper tube =500sq.mm,area of
steel bolt=400sq.mm

Es=2 * 10° N/mm?;o,, =12*%10°/°C
Ec=1 * 10° N/mm? ;o= 17.5*10°/°C



Solution:-
Two effects
(1) tightening of nut
(11)raising temp.

tensile stress in steel = compressive force in copper

[Total extension of bolt
+Total compression of tube] =Movement of Nut

[As+ Ac]=np ( where p = pitch of nut)



(PL/ALE.+ o, Lt) +(PL/AE_- a_ L t)=np
P (1I/AE,+1/A_E,) = t(a, - a)+np/L
so P[1/(400*2*10°) + 1/(500*1*10°) ]
=(17.5-12)*10° +(1/4)*2/500
so P=40000N
so p,=40000/400 = 100 MPa(tensile)
and p.=40000/500=80 MPa(compressive)



A circular section tapered bar 1s rigidly
fixed as shown 1n figure. If the temperature 1s raised

by 30° C, calculate the maximum stress in the bar.
Take

E=2*10° N/mm? ;o0 =12*10°/°C

D,=100 m\$ L

X

P
D,=200 mm

[TTTT e
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With rise 1in temperature compressive force P 1s
induced which 1s same at all c/s.

Free expansion =L o t = 1000*12%10-0*30
=(0.36 mm

Force P induced will prevent a expansion of 0.36 mm
A =4PL/(rE*d1*d2)=L o t
Or P = (m4)*d1*d2 oo t E=1130400 N

Now Maximum stress = P/(least c¢/s area)

=1130400/(.785*100%) = 144MPa



A composite bar made up of aluminum and
steel 1s held between two supports.The bars are stress
free at 40°c. What will be the stresses in the bars when
the temp. drops to 20°C, if

(a) the supports are unyielding
(b)the supports come nearer to each other by 0.1 mm.
Take E ,, =0.7*10° N/mm? ;a.,; =23.4*10°/°C
E¢=2.1*10°> N/mm? a, =11.7*10°/°C

A;=3cm* A=2cm?



Aluminum






contraction of steel bar A, °= (6 /E,)*L

=[600/(2.1*¥10°)]* o,

contra.of aluminum bar A, °= (¢ ,/E,)*L,
=[300/(0.7*10°)]* o,

(a) When supports are unyielding
A, °+ A, °= A (free contraction)
=[600/(2.1*%10°)]* o, +[300/(0.7*10°)]* o,
=0.2808 mm



=[600/(2.1*10°)]* o, +[300/(0.7*10°)]* o,
=(0.2808; but
c=1.50,
o, =32.76 N/mm?(tensile)
o, =49.14 N/mm?(tensile)
(b) Supports are yielding

A%+ A, °= (A -0.Imm)
o, =21.09 N/mm?(tensile)

ST 7 A NT D7y 1 N\



A copper bar 30 mm dia. Is completely
enclosed 1n a steel tube 30mm internal dia. and 50 mm
external dia. A pin 10 mm 1n dia.,1s fitted transversely
to the axis of each bar near each end. To secure the bar
to the tube.Calculate the intensity of shear stress
induced 1n the pins when the temp of the whole
assembly is raised by 50°K

Es=2 * 10° N/mm?;a, =11*10° /°K
Ec=1 * 10° N/mm? ;o= 17*10°/°K



Solutor




Since no external force 1s present
6 A=G_A,
o= 6. A/A=[706.9/1257.1]*c,
=0.562 6.---(2)
substituting 1n eq.(1)
0.=23.42 N/mm?
Hence force in between copper bar &steel tube

=5_A_=23.42%706.9=16550N



C.S. area of pin = 0.785*10%=78.54 mm?
pin 1s in double shear

so shear stress 1n pin

=16550/(2*%78.54)=105.4N/mm?



SHRINKING ON:



Tensile strain
e=(nD - nd)/ nd =(D-d)/d
so hoop stress = o= E¢

o=E*(D -d)/d



A thin steel tyre 1s to be shrunk onto a rigid wheel of
1m dia. If the hoop stress 1s to be limited to
100N/mm?, calculate the internal dia. of tyre. Find also
the least temp. to which the tyre must be heated above
that of the wheel before it could be slipped on.

Take o for the tyre = 12*10-%/°C
E =2.04 *10°N/mm?



Solution:
o= E*(D - d)/d
100 =2.04*10%D - d)/d
or
(D - d)/d =4.9*%10
or D/d =(1+4.9%10%)
so d =0.99951D=0.99951*1000=999.51 mm



Now
nD = nd(1 + at)
or
at =(D/d)-1 = (D-d)/d =4.9*10 -4
t =(D-d)/d *1/ a
=4.9%104/12%°
=40.85°C



ELASTIC CONSTANTS




Single direct stress along longitudinal axis






Stress o, along the axis and ¢, and o,
perpendicular to it.

e~ o0,/E - o,/mE - 6,/mE

¢~ 0,/E - 6,/mE - 6,/mE----




et et e,=(1-2/m)o,+o,+0c,) E il @)







A steel bar of size 20 mm x 10mm 1s subjected to a
pull of 20 kKN 1n direction of its length. Find the
length of sides of the C.S. and decrease in C.S.
area. Take E=2 x 10 > N/mm? and m=10/3.



e =c /E= (P/A.) x (1/E)

= (20000/(20x10)) x1/( 2 x10°)=5 x 10 “4(T)

Lateral Strain =g, =-p &,=-¢,/m =-1.5x10 *(C)
side decreased by 20x1.5x10 #=0.0030mm
side decreased by 10x1.5x10 #=0.0015mm

new C.S=(20-0.003)(10-.0015)=199.94mm?



Example: 20

Solution:

¢ = o /E= (P/A) x (1/E)
=40000/20%20%2.05%10%= 4.88*%104

e,= £,=-(1/m)* g = -0.3* 4.88*10"



Change in volume:
3V/ V=g, + g +g,=(4.88 - 2%1.464)*10
=1.952 *10
V=200%20%20=80000 mm?
5V=1.952*104*80000=15.62 mm’



YOUNG’S MODULUS (E):--

Stress (0)  strain (g)

cE—-0/¢



BULK MODULUS (K):--

K=0c/¢,



BULK MODULUS (K):--

K=oc/g,| (6) 9

Where, ¢,= AV/V
= —Changein-volume-

Original volume

Volumetric Strain



MODULUS OF RIGIDITY (N):
MODULUS OF TRANSVERSE ELASTICITY
SHEARING MODULUS



ELASTIC CONSTANTS






Here no other stress 1s acting

n. T’ C - only simple shear.
X T
A , D
T’

Let side of square = b
length of diagonal AC =V2 .b

consider unit thickness perpendicular to block.



Equilibrium of piece ABC

the resolved sum of t perpendicular to the diagonal =

2*(t*b*1)cos 45

0=+2 1.b

if & 1s the tensile stress so produced on the diagonal

o(AC*1)=f2.zh T

c(N2 bE=1:

SO

Z’C.b)(

c=A

C




Similarly the intensity of compressive stress on
plane BD 1s numerically equal to t.

“Hence a state of simple shear produces pure
tensile and compressive stresses across planes
inclined at 45 © to those of pure shear, and
intensities of these direct stresses are each equal to

pure shear stress.” ,

B. . C

A

1> ||




SHEAR STRAIN:




: 29
Since .

¢ 1s extremely smal
We can assume

BB’ = arc with A as cexy’.

AB as radius.

So, ¢p=BB”/AB=CC”/CD

Elongation of diagonal AC can be nearly taken as FC”.
Linear strain of diagonal = FC”/AC
= CC”cos 45/CDsec45



e=CC”2CD=(1/2) ¢
but =1 /N (we know N= 1/ )

SO

Linear strain ‘€’1s half the shear strain ‘¢’.

B??




RELATION BETWEEN ELASTIC CONSTANTS

o)

o
W

o)

Z




The total linear strain for each side
=60/E - 6 /(mE) - o /(mE)
sooL/L= =(o/E) *(1-2 /m)------------- (11)
now V=L’
OV =3 L?5L

SV/V =3 1281/ L3= 3 8L/L
= 3 (G/E) * (1-2 /M) —oommmmmmemmmmem (iii)



Equating (1) and (111)
o/K =3(oc /E)(1-2 /m)
E =3 K(1-2 /m)




(B) Relation between E and N



State of simple shear produces tensile and
compressive stresses along diagonal planes
and

C—1

Strain of diagonal AC, due to these two
mutually perpendicular direct stresses

=o/E - (- o/mE) = (c/E)*(1+1/m) ---(11)
But c=r1

0 = (T/B)*(141/mM)  ooommmmmmeeemmeee (iii)



From equation (1) and (111)
T /2N = (t /E)(1+1/m)
OR

E =2N(1+1/m)
But E=3 K (1-2 /m)

Eliminating E from --(9) & --(10)
u=1/m= 3K -2N) /(6K +2N)
Eliminating m from —(9) & --(10)

E = 9KN / (N+BK)




(C) Relation between E ,K and N:--



(a) Determine the % change in volume of a
steel bar of size 50 x 50 mm and 1 m long,

when subjected to an axial compressive load
of 20 kN.

(b) What change in volume would a 100 mm
cube of steel suffer at a depth of 5 km 1n sea
water?

Take E=2.05 x 10 °N/mm? and
N = 0.82 x 10 °N/mm?



Solution: (a)
oV/V =¢, = (c/E)(1-2 /m)
[c = P/A =20000/50 x 50 =8 kN/cm?2]

SO NOW
OV/V=-(8/2.05x10°)(1 - 2/m)
=-3.902 *10 -2(1 - 2/m)------—=---==—--mem- (1)
Also E =2N(1+1/m) ------—--—---mmom - (10)

(1 +1/m)=E/2N =2.05x 10°/(2 *0.82 x 10°)
so 1/m =0.25



Substituting in ----(1)
OV/V =-3.902*10 -(1-2(0.25))=-1.951* 10
Change in volume=-1.951*10~ *1000*50*50
oV =48.775 mm?

% Change 1n volume=(48.775/ 50*50*1000)*100
=0.001951 %



Solution:(b)
Pressure in water at any depth ‘h’ is given by

p=wh taking w= 10080N/m? for sea water
and h = Skm=5000m

p=10080*5000=50.4 *10°N/m? = 50.4N/mm?
E = 3K(1-2/m)



We have 1/m =0.25
so E = 3K(1-0.5) or K=E/1.5 = 2/3(E)
K=2/3 *2.05* 10 >=1.365 * 10 > =N/mm?
now by definition of bulk modulus
K=o/¢, org, = o/K
bute,=oV/V
oV/V =c/K

O0V=50.4/1.365 * 10> * 100 3 =369.23 mm?



Example: 22

Solution:
Stress = 54 *103/(nt/4*d?) = 76.43 N/mm?

e=Linear strain = oL./[.=0.112/300
=3.733*%10~



E=stress/strain =76.43/3.733* 10

=204741 N/mm?=204.7 kN/mm?
[ateral strain= 6d/d = 0.00366/30=1.22*10*

But lateral strain =1/m* ¢
so 1.22*%10%=1/m *3.733*104
so 1/m=0.326

E=2N(1+1/m) or N=E/[2*(1+1/m)]
so N=204.7/[2*(1+0.326)]=77.2 kN/mm?



E =3 K *(1-2 /m)
so K=E/[3*(1-2/m)]=204.7/[3*(1-2*0.326)]

K=196kN/mm?






S0
(f;,/E)(1+2/m) =(1,/E)(2+1/m)
f,(1+2*0.3) =1,(2+0.3)
1.61,=2.31,

So f;:1, = 1:1.4375



A rectangular block 250 mmx100
mmx380mm 1s subjected to axial loads as
follows.

480 kN (tensile 1n direction of its length)
900 kN ( tensile on 250mm x 80 mm faces)
1000kN (comp. on 250mm x100mm faces)

taking E=200 GN/m2 and 1/m=0.25 find
(1) Change 1n volume of the block
(2) Values of N and K for material of the block.



o, =480x103/(0.1*0.08)=60 *10°N/m? (tens.)
¢,=1000x10°/(0.25*0.1)=40*10°N/m?*(comp)

c,=900x10%/(0.25*0.08)=45*10°N/m?(tens.)
.= (60 *10°/E)+(0.25* 40*10%E)
- (0.25* 45*10°/E)=(58.75* 10°/E)
g,~=-(40 *106/E)-(0.25* 45*10%/E)

- (0.25* 60*106/E)=(- 66.25* 10/E)
g = (45 *105/E)-(0.25* 60*105/E)

+(0.25* 40*10%/E)=(40* 10%/E)



Volumetric strain = g, =g, + g, + &,
=(58.75* 10°/E)- (66.25* 10%/E)+ (40* 10%/E)
=32.5*10%/E
e, =oV/V
sooV=¢,V
=32.5*%100*[(0.25*0.10*0.08)/(200*10%)]*10

=325 mm?>(increase)



Modulus of Rigidity
E =2N(1+1/m)

SO
N=E/[2*(1+1/m)]=200/[2(1+0.25)]=80GN/m?

Bulk Modulus:
E = 3K(1-2/m)

so K=E/[3(1-2/m)]=200/[3(1-2*0.25)=133.33
GN/m?



Example: 25 For a given material E=110GN/m?
and N=42 GN/M?. Find the bulk modulus and
lateral contraction of a round bar of 37.5 mm

diameter and 2.4 m long when stretched by 2.5
mm.

Solution:
E=2N(1+1/m)
110*10°=2*%42*10°(1+1/m)
gives 1/m =0.32



Now E = 3K(1-2/m)
110 x 109=3K(1-2*0.31)
gives K=96.77 GN/m?

Longitudinal strain =
0L./1.=0.0025/2.4=0.00104

[ateral strain=.00104*%1/m=0.00104%*0.31

=(.000323
Lateral Contraction=0.000323*37.5=0.0121mm



UNIT-II
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Shear Force and Bending Moment

Diagrams
[ISFD & BMD]



=w  Shear Force and Bending Moments

Consider a section x-x at a distance 6m from left hand support A

< 6 m >
lSkN X 10kN SkN
B
C X D E
~ 4m . dm 5 S5m dm 777
N i g i g
YRAz 8.2 kN R,=14.8kN Y

Imagine the beam 1s cut into two pieces at section x-x and 1s separated, as
shown 1n figure



To find the forces experienced by the section, consider any one portion of the
beam. Taking left hand portion

Transverse force experienced = 8.2 -5=3.2kN (upward)

Moment experienced =8.2 X6 -5 X2 =139.2 kN-m (clockwise)

If we consider the right hand portion, we get

Transverse force experienced = 14.8 — 10 — 8 =-3.2 kN = 3.2 kN (downward)
Moment experienced =- 14.8 X9 +8 X 8 + 10 X 3 =-39.2 kN-m = 39.2 kN-m

(anticlockwise)



Q
PKN 3.2 kN
1 N
8 2 kN 39.2 kN-m
llOkN lgkN B
1
/39.2 kN-m T
32 kN 14.8 kN

Thus the section x-x considered 1s subjected to forces 3.2 kN and
moment 39.2 kKN-m as shown 1n figure. The force is trying to shear off
the section and hence 1s called shear force. The moment bends the
section and hence, called bending moment.



Shear force at a section: The algebraic sum of the vertical forces
acting on the beam either to the left or right of the section i1s

known as the shear force at a section.

Bending moment (BM) at section: The algebraic sum of the moments
of all forces acting on the beam either to the left or right of the
section is known as the bending moment at a section

3.2 kKN 39.2 kN
A
T v I < > |
3.2 kN
F W\Y|
F

Shear force at x-x Bending moment at x-x



W Moment and Bending moment

Moment: It 1s the product of force and perpendicular
distance between line of action of the force and the point
about which moment 1s required to be calculated.

Bending Moment (BM): The moment which causes the
bending effect on the beam 1s called Bending Moment. It is
generally denoted by ‘M’ or ‘BM’.




Sign Convention for shear force

=
T

+ ve shear force - ve shear force



ir Sign convention for bending moments:

Manipal

The bending moment 1s considered as Sagging Bending
Moment if it tends to bend the beam to a curvature having
convexity at the bottom as shown in the Fig. given below.

Sagging Bending Moment is considered as positive bending
moment.

Q

Fig. Sagging bending moment [Positive bending moment

|



Q

== Sign convention for bending moments:

Similarly the bending moment i1s considered as hogging
bending moment 1f it tends to bend the beam to a
curvature having convexity at the top as shown in the
Fig. given below. Hogging Bending Moment 1s
considered as Negative Bending Moment.

___— Convexity
<4 D

Fig. Hogging bending moment [Negative bending moment ]
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Shear Force and Bending Moment Diagrams
(SFD & BMD)

=
o

Shear Force Diagram (SFD):

The diagram which shows the variation of shear force
along the length of the beam 1s called Shear Force
Diagram (SFD).

Bending Moment Diagram (BMD):

The diagram which shows the variation of bending

moment along the length of the beam 1s called
Bending Moment Diagram (BMD).




Point of Contra flexure [Inflection point]:

It 1s the point on the bending moment diagram where
bending moment changes the sign from positive to
negative or vice versa.

It 1s also called ‘Inflection point’. At the point of
inflection point or contra flexure the bending moment
1S zero.



T Relationship between load, shear force and
bending moment

X ol w kKN/m

o

L

»
|‘ '|

Fig. A simply supported beam subjected to general type loading

The above Fig. shows a simply supported beam subjected to a general
type of loading. Consider a differential element of length ‘dx’ between
any two sections x-x and x!-x! as shown.



w kN/m
V+dV

(M.

dx Ox
Fig. FBD of Differential element of the beam
Taking moments about the point ‘O’ [Bottom-Right corner of the

differential element ]

-M + (M+dM) — V.dx — w.dx.dx/2=0

Neglecting the small quantity of higher order

Vdx =dM = N




w kN/m
V+dV
O

l I >M+dM
e

Fig. FBD of Differential element of the beam

Considering the Equilibrium Equation XFy =0
-V+(V+dV)—-wdx=0 = dv=wdx =

W= —
<
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M“r Variation of Shear force and bending moments

INSPIRED BY LIFH]

Variation of Shear force and bending moments for various standard
loads are as shown 1n the following Table

Table: Variation of Shear force and bending moments

Shear Force Horizontal line Inclined line  Two-degree curve
Diagram (Parabola)




"« Sections for Shear Force and Bending Moment Calculations:

wr /\o
=shear force and bending moments are to be calculated at various
sections of the beam to draw shear force and bending moment diagrams.

These sections are generally considered on the beam where the
magnitude of shear force and bending moments are changing abruptly.

Therefore these sections for the calculation of shear forces include
sections on either side of point load, uniformly distributed load or
uniformly varying load where the magnitude of shear force changes
abruptly.

The sections for the calculation of bending moment include position
of point loads, either side of uniformly distributed load, uniformly
varying load and couple

Note: While calculating the shear force and bending moment, only the
portion of the udl which is on the left hand side of the section should
be converted into point load. But while calculating the reaction we
convert entire udl to point load




“r Example Problem 1

INSPIRED BY LIFE]

1. Draw shear force and bending moment diagrams [SFD
and BMDY] for a simply supported beam subjected to
three point loads as shown 1n the Fig. given below.




Solution:

| Clockwise moment is Positive |

Using the condition: XM, =0
-Rgx8+8x7+10x4+5x2=0 = Rz;=1325N
Using the condition: XF, =0

R, +1325=5+10+38 2> R,=975N

4]



nr Shear Force Calculation:

0 SN 10N 8N
2 3 8
4 5 6 7
2 3 41 15 6! 17 8
0 2m 0 3m . lm

R,=13.25N

Shear Force at the section 1-1 1s denoted as V

Shear Force at the section 2-2 1s denoted as V, , and so on...

Voo=0; V,.,;=+975N V.= -525N
V,,=+9.75N V,..=525-8=-13.25N
Vis= +9.75-5=475N Vg =-13.25
V,,=+475N

Voo =-13.25+13.25=0
Vis=4475-10=-525N | (Check)




SN 10N

C D

’ 2m o 2m o 3m

0 75N 9.75N
4.75N 4.75N
+

S
BSEBN 525N 2-25N

13.25N 13.25N




Manipal

13.25N 13.25N



Bending Moment Calculation

Bending moment at A 1s denoted as M ,
Bending moment at B 1s denoted as My
and so on...
M, = 0 [ since it 1s simply supported]
My =9.75 x2=19.5 Nm
Mp=9.75%x4-5x2=29 Nm
Mg=9.75xT7-5x5-10x3=13.25 Nm
Mg=975x8-5x6-10x4-8x1=0
or Mg =0 [ since it 1s simply supported]






e VM-34 10N 8N

A

2m 1 3m dm 77

Example Problem 1

L|A

9.75N 9.75N
@ 475N 475N

B 525N 525N &

13.25N 13.25N

13.25Nm




“e 10N N

A

2m 1 3m dm 77

L|A

9.75N 9. 75N
475N 475N

13.25N 13.25N

13.25Nm




wr Example Problem 2

2. Draw SFD and BMD for the double side overhanging
beam subjected to loading as shown below. Locate points
of contraflexure if any.

SkN 10kN SkN

Ll lll/lml%? l




Solution:

Calculation of Reactions:

Due to symmetry of the beam, loading and boundary
conditions, reactions at both supports are equal.

>, Ry =Ry = 14(5+10+5+2 x 6) = 16 kN |4



|

o N 215 4 5 gl17 8 P

e 2m »e 3m ol 3m >l 2m >

| |RA=16kN | | R, = 161(1\']
Shear Force Calculation: V,,=0
V,;=-5kN Vee=-5-6=-11kN
V,,=-5kN V,,=-11+16 =5kN
V;3=-5 +16=11kN Ve =5kN
Vy,=11-2x3=+5kN Vo9 =5—-5=0 (Check)

V. =5-10=-5kN






e q
T '|
R,=16kN R, = 16kN

Bending Moment Calculation:

M, = Mg = 0 [Because Bending moment at free end 1s zero]
M,=Mzg=-5x2=-10kNm
Mp=-5x5+16x3-2x3x1.5=+14kNm









10kNm 10kNm

Points of contra flexure

Let x be the distance of point of contra flexure from support A

Taking moments at the section x-x (Considering left portion)
) x=1or10

M = 5(2+x)+16x—2%=0

x—x

..Xx=1m



ﬂf‘ Example Problem 3

NSPIRED BY LIFEE

3. Draw SFD and BMD for the single side overhanging beam
subjected to loading as shown below. Determine the
absolute maximum bending moment and shear forces and

mark them on SFD and BMD. Also locate points of contra
flexure if any.

10kN/m 2 kN SkN

—




10kN/m 2 kN SkN

—

R, 4m | Ilm |NB2m |

Solution : Calculation of Reactions:
M, =0
-Rgx5+10x4x2+2x4+5x7=0 =» Ry;=24.6kN |4
>F, =0
Ry,+246-10x4-2+5=0 = R,=224KkN|{|




10kN/m 2 kN SkN

R,=22.4kN  4m | Im | 2m |

R,=24.6kN |

Shear Force Calculations:
Voo =0; V,;=22.4KkN V::=-19.6+24.6=5KkN
V,,=224-10x4=-17.6kN |V =5kN
V;,=-17.6-2=-19.6 kN V,-,=5-5=0 (Check)
V,4=-19.6 kN




10kN/m 2 kN SkN

—

R,=22.4kN  4m Im | 2m |

R,=24.6kN

22.4kN

19.6kN 19.6kN




10kN/m 2 kN SkN
X

D

1 2m
Ry=24.6kN

»
V|

Max. bending moment will occur at the section where the shear force 1s
zero. The SFD shows that the section having zero shear force is available
in the portion AC. Let that section be X-X, considered at a distance x
from support A as shown above.

The shear force at that section can be calculated as
Vx-x=224 - 10.x=0 = x=224m



10kN/m 2 kN DKIN

C B D

R, =22.4kN
A 4m | Im 2m
Ry=24.6kN

»
V|

Calculations of Bending Moments:

M,=M;=0

M:=224%x4-10%x4x2=9.6kNm

Mg =224%x5-10%x4x3 -2 X 1=-10kNm (Considering Left portion
of the section)

Alternatively

Mg =-5 X 2 =-10 kNm (Considering Right portion of the section)
Absolute Maximum Bending Moment i1s at X- X,

v Mmax =22.4 x2.24 — 10 x (2.24)2 /2 =25.1 kNm




10kN/m 2 kN SkN
X

—

Rg=24.6kN
Mmax = 25.1 kNm

9.6kNm Point of

/ contra flexure

»
V|

S



R,=24.6kN

5 kN

'l
- 19.6kN 19.6kN

Point of
contra flexure




10kN/m 2 kN SkN %
X

»
V|

R,=24.6kN

Calculations of Absolute Maximum Bending Moment:

Max. bending moment will occur at the section where the shear force 1s
zero. The SFD shows that the section having zero shear force is available
in the portion AC. Let that section be X-X, considered at a distance x
from support A as shown above.

The shear force at that section can be calculated as

Vx-x=224 - 10.x=0 = x=224m

Max. BM at X- X,

Myux =22.4 x2.24 - 10 X (2.24)? /2 =25.1 kNm




e 10kN/m 2 kN SkN
X

—

»
V|

R,=24.6kN

Mmax = 25.1 kNm

9.6kNm Point of

/ contra flexure

S

- 10kNm




w
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e
Let a be the distance of point of contra flexure from support B

Taking moments at the section A-A (Considering left portion)

M,  =-52+a)+24.6a=0

A—A

a=0.51m
Mmax = 25.1 kNm

9.6kINm Point of

/ contra flexure
\V




w Example Problem 4
4. Draw SFD and BMD for the single side overhanging beam
subjected to loading as shown below. Mark salient points on

SFD and BMD.

P

l

C g B D
)
-

20kN/m  2OKN

J 3m | 2m 2m |




L
7 60kN/m
_
- e 20kN/m  2OKN
A
C D

Ry 3m

»ld
V|‘

Solution: Calculation of reactions:
>MA =0
Ry X 5+ Y5 %3 %60 % (2/3) X 3 +20 X 4 x 5+ 20 x 7= 0 D R, =144kN}|
2>Fy =0
R,+144 -1 x3x60-20x420=0 => R,=46kN{]




Ry =40KN" 3m | 2m 2m |

Shear Force Calculations:

Voo=0:;V, ;= +46kN V,,=- 84+ 144 =+ 60kN
V,,=+46 -1 x3x60=-44kN | V..=+60-20x2=+20kN
V;3=-44-20%x2=-84 kN V¢.= 20 —20 = 0 (Check)




A
M“.r Example Problem 4

// m

1 2 34\ 4 5116

Ry =40KN" 3m | 2m 2m |

A46kN /Parabola 60kN SOKN
@ Ene

"sfp S4KN




R,=144kN

R, =46kN

3m 2m 2m

»
V|

Max. bending moment will occur at the section where the shear force is
zero. The SFD shows that the section having zero shear force is available
in the portion AC. Let that section be X-X, considered at a distance ‘X’
from support A as shown above. The shear force expression at that section
should be equated to zero. 1.e.,

Vx-x =46 -1 x. (60/3)x=0 = x=2.145m



R,=144kN

R, =46kN

2m

3m 2m |

Calculation of bending moments:
M, = M;=0

M= 46 X3 -% Xx3 x 60 %X (1/3 X 3) =48 kNm[Considering LHS of
section]

Mg= -20x2-20x2x1=-80kNm [Considering RHS of section]

Absolute Maximum Bending Moment, Mmax =46 X 2.145 — %2 x 2.145
X(2.145 x 60/3) x (1/3 x 2.145) = 65.74 KNm




7 60kN/m
"
& e 20kN/m 20K
C B D
R,=144kN
RA =46kN 3 m ;L 2 m 2m J
| 48KkNm |
65.74kNm
g;l;i];:()la N Parabola

Point of /

Contra flexure

Parabola
80kNm



Parabola )\
16kN / HOKN
@ ®

N~
SFD S4KN

65.74kNm

Cubic

parabola - Parabola

Point of /
- Contra flexure

Parabola
80kNm



_~ 60kN/m
>< >V 20KN

A

x=2.145m C

R,=144kN

R, =46kN

2m 2m

3m

A\ 4

Calculations of Absolute Maximum Bending Moment:

Max. bending moment will occur at the section where the shear force is
zero. The SFD shows that the section having zero shear force 1s available
in the portion AC. Let that section be X-X, considered at a distance ‘x’
from support A as shown above. The shear force expression at that section
should be equated to zero. 1.e.,

Vx-x =46 -1 x. (60/3)x=0 = x=2.145m

1131%/1 at X- X, Mmax = 46 X 2.145 — 15 X 2.145 X(2.145 X 60/3) X (1/3 X 2.145)=65.74
m



h
nwr
Manipal / 60kN/IIl
- e o0kN/m  2OKN
| |
C D
3m 2m ;
| 48kNm |
65.74kN

Cubic
parabola

Point of /

Contra flexure

Parabola
80kNm
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Point of contra flexure:

BMD shows that point of contra flexure 1s existing in the
portion CB. Let ‘a’ be the distance in the portion CB from the
support B at which the bending moment 1s zero. And that ‘@’
can be calculated as given below.

M, =0

2+a)” _

144a—-20(a+2)—20 5

0

a=1.095m



‘M‘ Example Problem 5

INSPIRED BY LIFE]

5. Draw SFD and BMD for the single side overhanging beam

subjected to loading as shown below. Mark salient points on

SFD and BMD.
40kN
0.5"1
20kN/m
- o]

i? OkN/m
| | |

A _
A B C g)
I
-

2m | 1m | Im

2m |

‘A
|‘



20kN/m

2m

40kN
0.5
'_“i 30kN/m

e ol |\
LMM
A :

40x0.5=20kNm

N

A

A

‘A
|‘

OkN

/ZOkN/m | i‘




40kN 30k N/m

/ZOkN/m SOKN
A | [l | *

B C D E

Ra 2m | Im | 2m |
) ) |
Solution: Calculation of reactions:
M, =0
Ry X4 +20x2x1+40%x3+20+%2%x2x30x(4+2/3) =0 => R, =80k
SFy = 0 4

Ry+80-20x2-40-1%x2x30=0 =2 R,=30KkN|4]



RA :30kN 2m ‘L 1 m ‘L 1 m 2m “
i i 'I

Calculation of Shear Forces: V,,=0

V,;=30kN V..=-50kN
V,,=30-20x2=-10kN V. =-50+80 =+ 30kN
V55 =- 10kN V., =+30-% X2 X 30 = O(check)

Vs, =-10—40=-50kN



A )
e 20kNm 40kN 50~

i 1 /ZOKN/ m 2 31 4 R 7
LYy biietiiild - |

1 5 ; 4 5 6 /
RD :SOkN
2m

Ry=30kN L Im |

»ld S

o 30kN /, Parabola

3 ®

x=15m ol

T 10kN 10kN -

SOKN 50kN




2m _Im | Im 2m |

| ) L
Calculation of bending moments:
M,=Mg=0
M, =30%x15-20x1.5%x1.5/2=22.5kNm
Mg= 30x2-20x%x2x1=20kNm
M-=30%x3-20x%x2Xx2=10kNm (section before the couple)
M. =10 + 20 = 30 kNm (section after the couple)
My=-% X30x2x(1/3 x2)=-20 kNm( Considering RHS of the sectio




40kN _ 30kN/m

/20kN/)r(n HOKN
GRLL ] gl: ml;l};g;h

C D E

Cubic parabola

20kNm



@
30kN 30kN f Parabola
B x=15m |
) 1 10kN 10kN @
S0kN SOkN
Parabola

Point of contra flexure

Cubic parabola

20kNm
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6. Draw SFD and BMD for the cantilever beam subjected

to loading as shown below.

40kN

20kN/m




Q
20kN/m
K 0.7m
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\ 3m Im | Im
| StEELE.
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20kN/m 40Cos30 =34.64kN

* 0.7m
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Manipal

40S1n30 = 20kN

20x0.5 — 34.64x0.7=-14.25kNm
20kN




20kN
20kN/m 14.25kNm

Im C_L:

Calculation of Reactions (Here it 1s optional):

¥F. =0 = Hy=34.64 kN

YF,=0 = Vp=20x3+20=80kN

EMp=0 = My -20x3x3.5-20x1—14.25 =244.25kNm




20kN
14.25kNm

il) 5

34.64kN

Shear Force Calculation:

V,, =0
V,,=-20x 3 = - 60kN
V,,=-60kN
V,,=-60-20=-80kN
V.. =-80kN

V. . =- 80 + 80 = 0 (Check)
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20kN

1 5 14.25kN
I / OkN/m 12 3114 rsnl |6
, \34.64kN |
‘ B P2 1m 3 4 @ Mo
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V,=80kN

ROKN S8OKN



Bending Moment Calculations:

M,=0

Mgz =-20%X3 X 1.5=-90kNm

M- =-20X%3Xx2.5=-150 kNm (section before the couple)
M-=-20 X3 X2.5-14.25=-164.25 kNm (section after the couple)

Mp=-20X%3x3.5-14.25-20 x 1 =-244.25 kNm (section before M)
moment)

MD = -244.25 +244.25 = 0 (section after M)




Manipal

9OanI1 @

164.25kNm
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wanip! Exercise Problems VM-73

1. Draw SFD and BMD for a single side overhanging beam
subjected to loading as shown below. Mark absolute
maximum bending moment on bending moment diagram and
locate point of contra flexure.

10KN 15kN/m

SN / 20kN/m
m

Im | Im | 3m ="lm ="lm i 2m ‘

[Ans: Absolute maximum BM = 60.625 kNm |



we K xXercise Problems VM-74

2. Draw shear force and bending moment diagrams [SFD
and BMDY] for a simply supported beam subjected to

loading as shown 1n the Fig. given below. Also locate
and determine absolute maximum bending moment.

10kN AKN/m 16kN

[Ans: Absolute maximum bending moment = 22.034kNm

Its position is 3.15m from Left hand support ]



we K xXercise Problems VM-T75

3. Draw shear force and bending moment diagrams [SFD
and BMD)] for a single side overhanging beam subjected
to loading as shown in the Fig. given below. Locate

points of contra flexure if any.
25kN/m
SOKN 10kN/m

[Ans : Position of point of contra flexure from RHS = 0.375m]



we K xercise Problems VM-76

4. Draw SFD and BMD for a double side overhanging beam
subjected to loading as shown 1n the Fig. given below.
Locate the point in the AB portion where the bending
moment 1S zero.

16kN
8kN AN/ 8KN

[Ans : Bending moment 1s zero at mid span]



we K xercise Problems VM-77

5. A single side overhanging beam is subjected to uniformly distributed
load of 4 kKN/m over AB portion of the beam in addition to its self
weight 2 kIN/m acting as shown 1n the Fig. given below. Draw SFD
and BMD for the beam. Locate the inflection points if any. Also locate
and determine maximum negative and positive bending moments.

4kN/m
/ 2kN/m

[Ans :Max. positive bending moment is located at 2.89 m from LHS.
and whose value is 37.57 kNm |



we K xXercise Problems VM-78

6. Three point loads and one uniformly distributed load are

acting on a cantilever beam as shown in the Fig. given
below. Draw SFD and BMD for the beam. Locate and
determine maximum shear force and bending moments.

SkN 10kN

kN/m  £OKN

J Im | Im | Im | B
- | T g

[Ans : Both Shear force and Bending moments are maximum
at supports. ]



we K xXercise Problems VM-79

7. One side overhanging beam 1s subjected loading as

shown below. Draw shear force and bending moment
diagrams [SFD and BMD] for beam. Also determine
maximum hogging bending moment.

30N/m
M
A B
L 3m 4m 1. 4m |

[Ans: Max. Hogging bending moment = 735 kKNm]



we K xXercise Problems VM-80

8. A cantilever beam of span 6m is subjected to three point
loads at 1/3" points as shown in the Fig. given below.
Draw SFD and BMD for the beam. Locate and determine
maximum shear force and hogging bending moment.

S5kN 10kN (i% SkN SKN

A 2m | 2m | 2m | B
|‘ i 0 ]

[Ans : Max. Shear force = 20.5kN, Max BM= 71kNm
Both max. shear force and bending moments will occur
at supports. |




we K xXercise Problems VM-8l

9. A trapezoidal load is acting in the middle portion AB of the double
side overhanging beam as shown 1n the Fig. given below. A couple
of magnitude 10 kNm and a concentrated load of 14 kN acting on
the tips of overhanging sides of the beam as shown. Draw SFD and
BMD. Mark salient features like maximum positive, negative
bending moments and shear forces, inflection points if any.

14kN 40kN/m 20kN/m

60(>¥ ( | > 10kNm

Im

[Ans : Maximum positive bending moment = 49.06 kNm




we K xXercise Problems VM-82

10. Draw SFD and BMD for the single side overhanging beam
subjected loading as shown below.. Mark salient features like
maximum positive, negative bending moments and shear forces,
inflection points if any.

0.5m ZAIAN 4kN/m

- /— 6kN/m

Ans: Maximum positive bending moment = 41.0 kNm



UNIT-III



Chapter 6
Section 3.4



6.2 Bending Deformation and Strain

Axis of
symmetry y

surface

Longitudinal
axis

Copyright © 2005 Pearson Prentice Hall, Inc.



After deformation

straight, yet rotate

Vertical lines remain
Copyright © 2005 Pearson Prentice Hall, Inc.

Horizontal lines
become curved

Before deformation
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e neut_l al
axis

_ M
&\

longitudinal ncu‘lral
axis surface

(b)
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Radius of

curvature \

P

longitudinal

longitudinal

—%KZ?

Undeformed element Deformed element

(a) (b)
Copyright © 2005 Pearson Prentice Hall, Inc.




_> € max

_.l Ax |._

Normal strain distribution



6.2 Bending Stress — The Flexure Formula

What about Stress????

Recall from section 6.1:

Therefore, it follows that



Normal strain variation
(profile view)

Bending stress variation
(profile view)

(b)
Copyright © 2005 Pearson Prentice Hall, Inc.




Bending stress variation

(c)




Or in general:



Examples:

e Find maximum moment
* Find area properties, I and ¢

e Calculate stress



The simply supported beam in Fig. 6-28a has the cross-sectional area
shown in Fig. 6-28b. Determine the absolute maximum bending stress
in the beam and draw the stress distribution over the cross section at
this location.

5 kN/m

WHERE IS
BENDING
STRESS

MAXIMUM??

M (kKN-
m) eQOuter surface

253 (furthest away
from Neutral Axis)

(; *Value of x along

Fig. 6-28 len gth where




aximum | {orn The maximum internal moment in the
beam M = 22 5 kN m, occurs at the center as shown on the bending
moment diagram, Fig. 6-28c. See Example 6.3.

Secti ropei By reasons of symmetry, the centroid C and thus the
neutral axis pass through the midheight of the beam, Fig. 6-28b. The area
is subdivided into the three parts shown, and the moment of inertia of
each part is computed about the neutral axis using the parallel-axis
theorem. (See Eq. A-5 of Appendix A.) Choosing to work in meters, we
have

I =3(1+ Ad?)

2Hﬂ&%mxmmnmﬁ+mﬁnmammmmummy

{fz(oozoln)(ozoorn)

= 301.3(107%) m*

S | SOT
- (‘ R mm

!
20 mm—] |=— T
150 mm

}
¥ ' ™
20 mm D
250 mm

(b)




11.2 MPa

 /

‘ M=22.5kN'm

i

12.7 MPa

11.2 MPa

12.7 MPa

~

1

S

D

12.7 MPa




lending Stress.  Applying the flexure formula, with ¢ = 170 mm, the
absolute maximum bending stress is

- 22.5 kN -m(0.170 m)
Omax — 5 > Omax — F 4 = 12.7 MPa Ans.
I 301.3(10) m

Two-and-three-dimensional views of the stress distribution are shown
in Fig. 6-28d. Notice how the stress at each point on the cross section
develops a force that contributes a moment dM about the neutral axis
such that it has the same direction as M. Specifically, at point B,
yg = 150 mm, and so

Myg 22.5kN-m(0.150 m)
B oy = ———— = 11.2 MPa
I 301.3(10%) m

og =

The normal stress acting on elements of material located at points B and D
is shown in Fig. 6-28e.




100 Ib /ft

| in.

4 l==16imn.

=

T -

I in.
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Statics: Example 1 - Pliers

Do this for homework.

See solution Link




Statics: Example 2 — Crane Structure

Dimensions in millitneters

Do this for homework.

CQee coliition T ink



150 Ib /ft
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Chapter 3 Torsion

Introduction

-- Analyzing the stresses and strains in machine
parts which are subjected to torque T

Circular
-- Cross=gection Non-circular
Irregular shapes
-- Mateylal (1) Elastic
{ (2) Elasto-plastic
-- Shaft (1) Solid
{ (2) Hollow



3.1 Introduction

e T is a vector

e Two ways of expression

-- Applications:

a. Transmission of torque in shafts,
e.g. In automobiles




Assumptions in Torque Analysis:

a. Every cross section remains plane and undistorted.

b. Shearing strain varies linearly along the axis of the shatft.



3.2 Preliminary Discussion of the Stresses in a Shaft

Ide=T

Where p = distance (torque arm)

Since dF =t dA

[p(raa)=T

The stress distribution 1s Statically
Indeterminate.

Free-body Diagram



to solve the problem

29

1011

“deformat

Must rely on

ing a small el¢

Analyz




3.3 Deformations in a Circular Shaft

¢ = ¢ (T, L) -- the angle of twist Rectangular cross section
(deformation) warps under torsion



CD=C'D'’

.. A circular plane remains
circular plane



Determination of Shear Strain y

Yy =— (1n radians)

L

The shear strain y oc p




_<¢
},max_ L

p = ¢ = radius of the shaft




3.4 Stresses in the Elastic Range

Hooke’s Law 7 = G}/

},=p},max
C

r=Gy=G%y,,,
C

T — G}/ _)lz. = G}/max

max

Yo,

Therefore, T = — T

max
C

(3.6)







IP(TdA)=T sy r=Pr

C max (36)
T =(prda=pPs,, da=""[ p'da
C C
But Ipsz — J
T
Therefore, T = Tmax/ Or, Tpuy = Jc (3.9)

C



Substituting Eq. (3.9) into Eq. (3.6)

T .= Ie 3.10

max = (3.10)
Tp

T=—"- (3.9)
J

These are elastic torsion formulas.

For a solid ché&d;ei;z'c4

For a hollow c&&m%ezr(c;‘ —c)



A2 (3-13)

F =2

max

A )cos45° =

Tmax

Since A= AN2 Fa-G-13




Mohr’s Circle (Sec. 7.4)

-- Pure Shear Condition




Ductile materials fail Brittle materials are weaker in
in shear (90° fracture) tension (45° fracture)



3.5 Angle of Twist in the Elastic Range

Therefore,

Eq.(3.3) = Eq.3.15) —» y__ =

Hence,

Vinax = (3.3)

T . Tc
since 7, =

(3.15)

c¢ Tc
L JG



For Multiple-Section Shafts:







3.6 Statically Indeterminate Shafts

-- Must rely on both
(1) Torque equations and7" = ()
- .. TL
(2) Deformation equation, i.e. ¢ — G

Example 3.05




3.7 Design of Transmission Shafts

-- Two Parameters in Transmission Shafts:
a. Power P

b. Speed of rotation

P = power=Tw
where ® = angular velocity (radians/s) = 2xnf

f = frequency (Hz)

P=2n fT

|

T~
2nf

[IN.m/s = watts (W)]

(3.21)



T="
2f (3.21)
. _TIc
max J (3'9)
J T
Therefore, =
C T

For a Solid Circular Shaft:

! e

J=—rmc' and J/c=27[c




3.8 Stress Concentrations in Circular Shafts




3.9 Plastic Deformation sin Circular Shafts

V= p?'max (3.4)
C

¢ = radius of the shaft




[paF =T  GD

dA =2np dp

Knowing dF =t dA
I = Ide = IprdA — Ipr(Qﬂpdp)

T=2r joc o’rdp (3.26)

Where 1t = 1(p)



Tmax = (3.9)

If we can determine experimentally an Ultimate
Torque, Ty

then by means of Eq. (3.9), we have

T .c
R, ="

R, = Modulus of Rupture in Torsion






3.10 Circular Shafts Made of an Elasto-Plastic Material

Casel: T < 1y Hooke’s Law applies,t<7_.. Case |

Case II



1
J/C = 271'03 Since

1
T, = zmﬁry (3-29)

Case I11: Entering Plastic Region

OSpSpY: r:TYp
Py

py — region within the plastic
range

Case II1



By evoking Eq. (3.26)
T=2r joc o’rdp (3.26)

T = ];lastic + Tplastic— zﬂj‘py (p p) dp + 2”_" p TY dp
Y

| 2 2
2 |
T=37rc3z'y(1—py) (3.31)

~
Il
|
;
T
-
1
N
I



Case IV_-- Fully Plastic

4 Case IV
I, =—1, =Plastic Torque (3-33)



4 1 ¢
=—T,(1--2%)
d 3 v ( 4 ¢




3.11 Residual Stresses in Circular Shafts







3.12 Torsion of Noncircular Members

A rectangular shaft does not axisymmetry.

7,=0 7, =0
ryx=0 z'yz=0
rxy=0 7,=0



From Theory of Elasticity:

T

Toax = 15
c,ab

max

Coefficients for

Rectangular Bars in Torsion

a'b

TL
9= c,ab’G

].1
[ 2

C,

(.208

0.219

(0.231

(l,j-l(‘;

().258
0.267

0282

0.291]

0.312

(0.333

I
i ().1406

[ 0.1661

C,

(.1958
(1229
(0.249

o
(.263




c,=cC,= ;(1— 0.630b/a) (for b/a =15 only) 3.45




3.13 Thin-Walled Hollow Shafts

F. =0 F,-F,=0 F,=7,(t,Ax)

T,(t,Ax)—7,(t,Ax)=0



q =17t =constant




dF =tdA =7(tds) = (tt)ds = qds

dM, = pdF = p(qds)= q(pds)

dM_ = q(2dQ)

T =2gQ®







UNIT-V



THIN AND THICK CYLINDERS

INTRODUCTION:

In many engineering applications, cylinders are frequently

used for transporting or storing of liquids, gases or fluids.

Eg: Pipes, Boilers, storage tanks etc.

These cylinders are subjected to fluid pressures. When a
cylinder 1s subjected to a internal pressure, at any point on the
cylinder wall, three types of stresses are induced on three

mutuallF perpendicular planes.
hey are,



1. Hoop or Circumferential Stress (o) — This 1s directed along the
tangent to the circumference and tensile in nature. Thus, there

will be increase in diameter.

2. Longitudinal Stress (o; ) — This stress 1s directed along the
length of the cylinder. This 1s also tensile in nature and tends

to increase the length.

3. Radial pressure ( p, ) — It 1s compressive 1n nature.

Its magnitude 1s equal to fluid pressure on the inside wall and

zero on the outer wall if it is open to atmosphere.




Element on the cylinder
wall subjected to these
three stresses




THIN CYLINDERS

INTRODUCTION:

A cylinder or spherical shell 1s considered to be thin when the

metal thickness is small compared to internal diameter.

1. e., when the wall thickness, ‘t’ 1s equal to or less than
‘d/20°, where ‘d’ is the internal diameter of the cylinder or shell,

we consider the cylinder or shell to be thin, otherwise thick.

Magnitude of radial pressure 1s very small compared to other

two stresses 1n case of thin cylinders and hence neglected.




wm

Manipal
INSPIRED BY LIFF

Circumferential strg

axis

>

The stress acting along the circumference of the cylinder 1s called
circumferential stresses whereas the stress acting along the length of
the cylinder (i.e., in the longitudinal direction ) i1s known as
longitudinal stress




/>

The bursting will take place if the force due to internal (fluid)
pressure (acting vertically upwards and downwards) 1s more than the
resisting force due to circumferential stress set up in the material.

P - internal pressure (str

o, —circumferential stre




dL

P - internal pressure (str

o, — circumferential stre



EVALUATION OF CIRCUMFERENTIAL or HOOP STRESS (6.):

Consider a thin cylinder closed at both ends and subjected to internal
pressure ‘p’ as shown in the figure.
Let d=Internal diameter, t = Thickness of the wall

L = Length of the cylinder.



To determine the Bursting force across the diameter:

Consider a small length ‘dl’ of the cylinder and an elementary
area ‘dA’ as shown in the figure.
Force on the elementary area, / JA

dF =pxdA=pxrxdlxdb

=pX % xdlxdo \
Horizontal component of this force t i |
de:px%xdlxcosOde { .: ‘ \

o)

Vertical component of this force

dF’, :pxﬂxdlxsin 0x db
2



wm
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The horizontal components cancel out ! I dA
when integrated over semi-circular - /
portion as there will be another equal
and opposite horizontal component on
the other side of the vertical axis.

.. Total diametrica 1 bursting force = j p X % X dlx s @xdb
0

:px%xdlx[—cosé’] o=pxdxdl

= px projected area of the curved surface.



.. Resisting force (due to circumfere ntial stress 6,.) =2xo6,_ xtxdl

Under equillibri um, Resisting force = Bursting force
Le., 2xo, xtxdl =pxdxdl

.. Crcumfere ntial Stress, 6, = ——......ccccoevueeennne. (1)

dL



nr Assumed as rectangular

Force due to fluid pressure = p x area on which p 1s acting = p X(d XL)
(bursting force)
Force due to circumferential stress = ¢, X area on which 6, 1s acting
(resisting force) = o, X (LXt+LXt)=0.X2LXt
Under equilibrium bursting force = resisting force

pXxX(dXxXL)=0c,X2LXt

.. Crrcumfere ntial Stress, 6, = ——.....cccccevvueeennne. (1)




Wir  / LONGITUDINAL STRESS (c,):

Manipal
INSPIRED BY LIFF

A
— ] The bursting of the cylinder takes
-~ _ place along the section AB
- P I —>
B

The force, due to pressure of the fluid, acting at the ends of the
thin cylinder, tends to burst the cylinder as shown in figure



W' EVALUATION OF LONGITUDINAL STRESS (o, ):

Manipal
INSPIRED BY LIFF

Longitudin al bursting force (on the end of cylinder) =px % xd”

Area of cross section resisting this force =mxdxt

Let 6, = Longitudin al stress of the material of the cylinder.

. Resisting force =0, xmxdxt



Under equillibri um, bursting force =resisting force

. T
Le., p><Z><d2 =0, xmxdxt

Longitudin al stress, o, = pxd (2)

Fromeqgs (1) & (2), o.=2x0c,
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Force due to flmd pressure = pxarea on which pis acting

U
—px—xd
P 4

Re sisting force = o, xarea on which o, is acting

=0 XYmXdxXxt
circumference

Under equillibri um, bursting force =resisting force




EVALUATION OF STRAINS

6.=(pd)/(41)

O ~=(pd)/(2t) O =(pd)/(2t)

G =(pd)/(4t)

A point on the surface of thin cylinder 1s subjected to biaxial
stress system, (Hoop stress and Longitudinal stress) mutually
perpendicular to each other, as shown in the figure. The strains due
to these stresses 1.e., circumferential and longitudinal are obtained

by applying Hooke’s law and Poisson’s theory for elastic materials.



Circumfere ntial stram, € :

Oc O
Ee = — —UX— G 7(pd)/(4)

E E T

@) @)
=2X—= —pX—=
E E oc=(pd)/(2t)+—— " O =(pd)
cSL
=—Xx(2-p) l

E

G =(pd)/(41)

_ Jinal circumference— original circumference

original circumference

{ﬂ(d+5d)—7zd}

7ud




Longitudin al stram, ¢, :

o (2x0,) o
=L _ux =—x(1-2x
o N = ( 1)
. ol pxd
le., & =—= X(L=2X ) eeeeeeeeeeeeeeeeieeeeeeeann 4
L 4><t><E( 2 )

VOLUMETRIC STRAIN, %

Change in volume = 6V = final volume — original volume

original volume =V = area of cylindrical shell x length

_7za,’2

= L
4




final volume = final area of cross section x final length

ld+5d]|*x|L+5 L]

4’ +(5d)+2d5d| x [L+5 L]

-l>|é\ Ala Alé\

’L+(5d)’ L+2LdSd+d>SL+(Sd)>SL+2d5d SL]

neglecting the smaller quantities suchas(5d)° L,(8d)° 0L and 2déd SL

Final volume= %[d2L+2Ld5d+d25L]

changeinvolume W:%[d2L+2Ld5d+d25L] — %[d]zL

:%[ZLd5d+d25L]



gde5d+5Ldﬂ

dv
v E-><d.2><L
4
:Q_szﬁ
L d
v = g +2 X¢g
pxd pxd
1-2xu)+2x 2 —
4xth( H) 4xt xE( )
e, N PXd o i, (5)

V 4xtxE




Maximum Shear stress :

There are two principal stresses at any point,
viz., Circumfere ntial and longitudin al. Both
these stresses are normal and act perpendicu lar

to each other.

: G.-0
. Maximum Shear stress, T, = ———=
y) G L=(pd)/(4)
pd pd
2t 4t e
— . N
2 F G =(pd)/(21)
: d
1e., T . = e ®))
St G, =(pd)/(41)
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Maximum Shear stress :

.. Maximum Shear stress, T_. = e éGL
pd pd
_ 2t 4t
2
1e., T = p_d ..................... ®))




LLLS ILLUSTRATIVE PROBLEMS

PROBLEM

A thin cylindrical shell 1s 3m long and 1m in internal diameter. It 1s

subjected to internal pressure of 1.2 MPa. If the thickness of the sheet is

12mm, find the circumferential stress, longitudinal stress, changes in

SOBIFION:th and volume . Take E=200 GPa and p= 0.3.
1. Circumferential stress, o:

o= (pxd) / (2x1)

= (1 2x1000) / (2x 12)
2. Longitudinal stress, o

= 50 N/mm2 = 50 MPa (Tensile).
= (pxd) / (4x1)

= 6/2 = 50/2

— 95 N/mm2 = 985 MP4a (Tencile)



3. Circumferential strain, €_:
(pxd) -

8C
@4x0  E

_ (1.2x1000)  (2-0.3)
(4x12)  200x10°

=2.125x10™"* (Increase)

Change in diameter, od = ¢, Xd

4. Longitudinal strain, g; : (o d) (1-2xp)
0

@4x0)  E

&L =

_ (1.2x1000)  (1-2x0.3)
(4x12) 200x10°

=5x10" (Increase)

Change in length = £ | XL= 5x10%%3000 = 0.15 mm (Increase).




Volumetric strain, % :

dv _ (pxd)
V  (@4xt)xE

x(5—4xp)

~ (1.2x1000)
(4x12)x200x10°

=4.75%10™ (Increase)

x(5—4x0.3)

-.Change in volume, dv=4.75x10"xV

—4.75%10™ x % 10002 x 3000

=1.11919%10° mm?®* =1.11919%10> m’
=1.11919 Litres.




A copper tube having 45mm internal diameter and 1.5mm wall
thickness 1s closed at its ends by plugs which are at 450mm apart. The
tube 1s subjected to internal pressure of 3 MPa and at the same time
pulled in axial direction with a force of 3 kN. Compute: 1) the change

in length between the plugs 11) the change in internal diameter of the
SOLUTION:

tube. Take Ey :A?Oﬁﬂ%at{ﬁpﬁl}ttprés@&e of 3 MPa;:

Longitudinal stress, 6; = (pxd) / (4xt)

Long. stiifid éﬁi)%@? ;ﬂ)—%ﬂ%o N/mm2 = 22.50 MPa.
X

~225x(1-2x0.3)
100x10°

Change in length, ;= & X L =9 x 10°x450 = +0.0405 mm (increase)

0x107°




KN Pd/4t = 225
t= .
wm

(pxd) (C-w
4xt) E
22.5%x(2-0.3)

~ 100x10}
Change in diameter, 0= €, X d = 3.825 X 10*x45

Circumfere ntial stram €. =

=3.825x10""

=+ (0.0172 mm (increase)
B] Due to Pull of 3 kN (P=3kN):

Area of cross section of copper tube, A= X d X t

— — 2
Longitudinal strain, € | = direct Siieg s = é?EXJPS/( AC2>1<2E(36 .
=3 x 10%/(212.06 X 100 x 10°)

=1415x10*
Change in length, &, =¢; X L= 1.415 x 10+ x450= +0.0637mm (increase)




Lateral strain, €= -1 X Longitudinal strain = -p X g

=-0.3x 1415 x 10%= -4.245 x 10

Change in diameter, 6= g, X d = -4.245 x 10> x45

=-1.91 x 103 mm (decrease)

C) Changes due to combined effects:

Change in length = 0.0405 + 0.0637 = + 0.1042 mm (increase)

Change in diameter = 0.01721 - 1.91 X 10~ =+ 0.0153 mm (increase)




Q
“ir PROBLEM

A cylindrical boiler 1s 800mm in diameter and 1m length. It is
required to withstand a pressure of 100m of water. If the permissible
tensile stress is 20N/mm?, permissible shear stress is 8N/mm? and

permissible change in diameter i1s 0.2mm, find the minimum thickness

&Mfeﬂ required. Take E = 200GPa, and p = 0.3.
Fluid pressure, p = 100m of water = 100x9.81x10° N/m?
= 0.981N/mm? .

1. Thickness from Hoop Stress consideration: (Hoop stress 1s critical

than long. Stress)
o = (pxd)/(2xt)

20 = (0.981x800)/(2xt)



2. Thickness from Shear Stress consideration:
(pxd)

Tmax N
(8% t)

g (0.981x800)
(8% t)

St =12.26mm.
3. Thickness from permissible change in diameter consideration
(0d=0.2mm):
od _(pxd) C—p)
d (4 < t) E

0.2 _ (0.981x800) (2-0.3)

800 (4x1) 200 %103

t =6.67/mm

Therefore, required thickness, t = 19.62 mm.




PROBLEM

A cylindrical boiler has 450mm in internal diameter, 12mm thick and
0.9m long. It 1s 1nitially filled with water at atmospheric pressure.
Determine the pressure at which an additional water of 0.187 liters

may be pumped into the cylinder by considering water to be
incompressible. Take E = 200 GPa, and pn = 0.3.

SOLUTION:
Additional volume of water, 8V = 0.187 liters = 0.187x103 m?

= 187x10° mm?
V= %4502 % (0.9%10%)=143.14x10° mm>

dV _ px
V 4><t><E

(5—4xp)

187 x10° 3 px450
143.14x10° 4x12x200x10°

(5—-4x0.33)

Solving, p=7.33 N/mm?




LLLS JOINT EFFICIENCY

Steel plates of only particular lengths and width are available. Hence
whenever larger size cylinders (like boilers) are required, a number
of plates are to be connected. This i1s achieved by using riveting in
circumferential and longitudinal directions as shown 1n figure. Due to
the holes for rivets, the net area of cross section decreases and hence
the stresses increase.

Circumferential Longitudinal
rivets rivets

7 / /
/
|
\ X
\ \*




JOINT EFFICIENCY

The cylindrical shells like boilers are having two types of joints
namely Longitudinal and Circumferential joints. Due to the holes for
rivets, the net area of cross section decreases and hence the stresses
increase. If the efficiencies of these joints are known, the stresses can

be calculated as follows.
Let n (= Efficiency of Longitudinal joint

and n = Efficiency of Circumferential joint.
Circumferential stress is given by,

pxd

O.=
- 2xtxm,




wm
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Longitudinal stress 1s given by,

pxd

0, =
: 4xtxm,

Note: In longitudinal joint, the circumferential stress 1s developed

and-in-circumferential joint,; longitudinal stress-1s-developed.
Circumferential Longitudinal
¥ /
/
[ 3




If A 1s the gross area and A 1s the effective resisting area then,

Efficiency = A /A

Bursting force=p L d

Resisting force = 6, XA -0, X1 XA =0c Xn; X2 tL

Where n | =Efficiency of Longitudinal joint

Bursting force = Resisting force

pLd =occxn x2tL




If n =Efficiency of circumferential joint

Efficiency = A /A

Bursting force = (w d*/4)p
Resisting force = 6; XA’ =0 Xn, xA"'=o; Xn Xndt

Where n | =Efficiency of circumferential joint

Bursting force = Resisting force



A cylindrical tank of 750mm internal diameter, 12mm thickness and
1.5m length 1s completely filled with an o1l of specific weight
7.85 kN/m? at atmospheric pressure. If the efficiency of longitudinal
joints 1s 75% and that of circumferential joints is 45%, find the
pressure head of o1l in the tank. Also calculate the change in volume.

Take permissible tensile stress of tank plate as 120 MPa and E = 200
GPa, and pn = 0.3.

SOLUTION:
Let p = max permissible pressure in the tank.

Then we have, o; = (pXxd)/(4xt) 1 ¢
120 = (px750)/(4x12) 0.45

Also, 6 = (pd¥@AHOYIPa.
120 = (px750)/(2%x12) 0.75

—_ — D) OO0 N TD -~



Max permissible pressure in the tank, p = 2.88 MPa.

Vol Strain, ¥ = —®*D (5 4y
V  (4xtxE)

(2.88x750)

= ; x(5-4x0.3)=8.55x10"
(4x12x200x10")

dv=8.55x10"*xV =8.55x10" x§x7502 %1500 = 0.567 x10° mm°.

=0.567x10° m> =0.567 litres.



A boiler shell 1s to be made of 15mm thick plate having a limiting
tensile stress of 120 N/mm?. If the efficiencies of the longitudinal and
circumferential joints are 70% and 30% respectively determine;

1) The maximum permissible diameter of the shell for an
internal pressure of 2 N/mm?.

(11) Permissible intensity of internal pressure when the shell

diameter 1s 1.5m.
SOLUTION:

(1) To find the maximum permissible diameter of the shell for an
internal pressure of 2 N/mm?:

a) Let limiting tensile stress = Circumferential stress = ¢ _ =

120N/mm?.
Le., O, = pxd
2xtxm,
120=_2>d d = 1260 mm

T 2%15%0.7




b) Let limiting tensile stress = Longitudinal stress = 6 ; = 120N/mm?.

: pxd
ie., o, =
Axtxn,
2
120= —2*d d = 1080 mm
e

The maximum diameter of the cylinder in order to satisfy both the
conditions = 1080 mm.




(1) To find the permissible pressure for an internal diameter of 1.5m:
(d=1.5m=1500mm)

a) Let limiting tensile stress = Circumferential stress = ¢ . =

120N/mm?.
Le., O, = pxd
2xtxn,
120 = px1500
2x15%0.7
p=1.68 N/mm".
b) Let limiting tensile stress = Longitudinal stress = ¢ ; = 120N/mm?.
Le., O, = pxd
4x XM
120 = px1500
4x15%0.3
p=1.44 N/mm".

The maximum permissible pressure = 1.44 N/mm?.




nw PROBLEMS FOR PRACTICE

PROBLEM 1:

Calculate the circumferential and longitudinal strains for a boiler of

1000mm diameter when it 1s subjected to an internal pressure of
I1MPa. The wall thickness 1s such that the safe maximum tensile stress
in the boiler material 1s 35 MPa. Take E=200GPa and u= 0.25.

(Ans: € ~=0.0001531, £ {=0.00004375)

PROBLEM

A water main 1m in diameter contains water at a pressure head of
120m. Find the thickness of the metal if the working stress in the pipe

metal is 30 MPa. Take unit weight of water = 10 kN/m?.

(Ancs +—)D1r 1)



PROBLEM

A gravity main 2m in diameter and 15mm in thickness. It is subjected
to an internal fluid pressure of 1.5 MPa. Calculate the hoop and
longitudinal stresses induced in the pipe material. If a factor of safety
4 was used 1n the design, what 1s the ultimate tensile stress in the pipe
material?

(Ans: *-=100 MPa, ¢, =50 MPa, 6,=400 MPa)
PROBLEM

At a point in a thin cylinder subjected to internal fluid pressure, the
value of hoop strain is 600x10* (tensile). Compute hoop and
longitudinal stresses. How much i1s the percentage change in the
volume of the cylinder? Take E=200GPa and pu= 0.2857.

(Ans: *-=140 MPa, ¢, =70 MPa, %age change=0.135%.)



PROBLEM

A cylindrical tank of 750mm internal diameter and 1.5m long is to be
filled with an oil of specific weight 7.85 kN/m3 under a pressure head
of 365 m. If the longitudinal joint efficiency 1s 75% and
circumferential joint efficiency is 40%, find the thickness of the tank
required. Also calculate the error of calculation in the quantity of oil
in the tank 1f the volumetric strain of the tank is neglected. Take
permissible tensile stress as 120 MPa, E=200GPa and p= 0.3 for the
tank material. (Ans: t=12 mm, error=0.085%.)



aaaaaa

THICK CYLINDERS



INTRODUCTION:

The thickness of the cylinder is large compared to that of thin

cylinder.

1. €., In case of thick cylinders, the metal thickness ‘t’ is more

than ‘d/20°, where ‘d’ is the internal diameter of the cylinder.

Magnitude of radial stress (p,) 1s large and hence it cannot be
neglected. The circumferential stress 1s also not uniform across the
cylinder wall. The radial stress i1s compressive in nature and
circumferential and longitudinal stresses are tensile in nature.
Radial stress and circumferential stresses are computed by using

‘Lame’s equations’.
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LAME’S EQUATIONS (Theory) :
ASSUMPTIONS:

1. Plane sections of the cylinder normal to its axis remain plane and
normal even under pressure.
2. Longitudinal stress (o; ) and longitudinal strain (g, ) remain constant
throughout the thickness of the wall.
3. Since longitudinal stress (o; ) and longitudinal strain (g, ) are

constant, it follows that the difference in the magnitude of hoop

stress and radial stress (p,) at any point on the cylinder wall 1s a

constant.

4. The material 1s homogeneous, isotropic and obeys Hooke’s law. (The

stresses are within proportionality limit).



LAME’S EQUATIONS FOR RADIAL PRESSURE AND

CIRCUMFERENTIAL STRESS

Consider a thick cylinder of external radius r, and internal radius

r,, containing a fluid under pressure ‘p’ as shown in the fig.
Let ‘L’ be the length of the cylinder.



p.top,

External
pressure

Consider an elemental ring of radius ‘r’ and thickness 0,” as shown

in the above figures. Let p, and (p,+ op,) be the intensities of radial

rad «~— ;1



Consider the longitudinal
section XX of the ring as

shown in the fig.

The bursting force is

evaluated by considering
o DAL

the projected area, T
‘2xrxL. for the nner face
and ‘2x(r+0,)xL’ for the
outer face .

The net bursting force, P = p x2xrxL - (p,+0p,) 2% (r+9,)xL

p,+op,

:( _er Br_ r><8pr— 8pr X 8r) 2L

Bursting force 1s resisted by the hoop tensile force developing at the

level of the strip 1.e.,



Thus, for equilibrium, P =F,
(-p,X 0, - <X0p,- Op, X 0,) 2L = ¢ *x2x0 *xL
-prX Or - rXop,- Op, X 0, = G Xor
Neglecting products of small quantities, (i.e., Op, X Or)

O .=-DP.—(FXOP, ) O ovvveeiiinnnnnnn.. (1)

L LCLIEI'[U(%D&]}?U‘&&I 1SE0ns(fa111]§ taﬁteane we h ng\e/el:) 1s compressive

GL_M(G

— = constant
=z p,)




C .- P, = 2a,

l.e,0.=p,+2a, cooiiiiiiin... (2)
From (1), p+t2a=-p.,—(rxop,) /0,
1. €. _ 5pr
» 2(p, +a)=-rx
2
—2X OB 3)
ro (p,+a)

Integrating, (-2 Xlog,r) + ¢ = log, (p,+ a)

Where c 1s constant of integration. Let it be taken as log, b, where ‘b’
1s another constant. "
2
Thus, log, (p,+a) = -2 xlog,_ r + log. b = - log, r*+ log_b = 1bg,



b

Le., p,ta=— or, radial stress, p,=——a .......... 4)

r r

Substituting it in equation 2, we get

b

Hoop stress, o,=p,+2a=— —a+2a

The equations (4) & (5) are known as “Lame’s Equations” for radial
pressure and hoop stress at any specified point on the cylinder wall.

Thus, r,<r <r,.



W' ANALYSIS FOR LONGITUDINAL STRESS

e L |
: . J : :
Consider a traﬂsverse section near the end wall as shown in the fig.
Bursting force, P =nxr,2xp

Resisting force 1s due to longitudinal stress ‘G .

i.e, F =o X7nX(?2r1,°)

For equilibri =
quilib 1uni FIp Xf;zz |
O =5 (Tensile)
G 1 X 1 X(r,*1,%)= KT, >1p )




NOTE:

1. Variations of Hoop stress and Radial stress are parabolic across

the cylinder wall.

2. At the inner edge, the stresses are maximum.

3. The value of ‘Permissible or Maximum Hoop Stress’ 1s to be

considered on the inner edge.

4. The maximum shear stress (¢ .. ) and Hoop, Longitudinal and

max

radial strains (€, g, €,) are calculated as 1n thin cylinder but

separately for inner and outer edges.



ILLUSTRATIVE PROBLEMS

PROBLEM

A thick cylindrical pipe of external diameter 300mm and internal
diameter 200mm is subjected to an internal fluid pressure of 20N/mm?
and external pressure of 5 N/mm?. Determine the maximum hoop

stress developed and draw the variation of hoop stress and radial

SOLUTION:

stress across the thickness. Show at least four points for each case.

External diameter = 300mm.

Internal diameter = 200mm.

External radius, r,=150mm.

Internal radius, r,=100mm.

Lame’s equations:

For Hoop stress,




Boundary conditions:

At r =100mm (on the inner face), radial pressure = 20N/mm?

b
U A e, 3
100° )
1.€.,
b

Similarly, at r :1§6m§0{c;nath'é' oufer 'féié@, radial pressure = SN/mm?

Solving equations (3) & (4), we get a= 7, b =2.70,000.

e.,
g, =210 4 5)
r

Lame’s equations are, fozj{p@@x)str%ss,
—

pr — = . /' coo000000000 (6)
r




To draw variations of Hoop stress & Radial stress :

Atr=100mm (omt er face),
Hoop stress, o, IQ ’1’7@6@@ +7 = 34 MPa (Tensile)

100°
Radial stress, p, = 2’;8(’)200 —7= 20 MPa (Comp)
Atr =120mm,
Hoop stress, G, = 2’1(2)2)0200 +7 = 25.75 MPa (Tensile)
Radial stress, p, = 2’1(2)60200 —7 = 11.75 MPa (Comp)
Atr=135mm,
Hoop stress, o, = 2’1(3);200 +7 = 21.81 MPa (Tensile)
2,70,000

Radial stress, p, = —7="7.81 MPa (Comp)

135°



At r =150mm,

Hoop stress, 6, = 2’70’200 +7 = 19 MPa (Tensile)
Radial stress, p, = 2’:260200 —7=5MPa (Comp)

34MPa.

20MPa

19MPa
SMPa

Variation of Radial Variation of Hoop

~2=150mm Stress-Tensile

Stress —Comp

(Parabolic) (Parabolic)

Variation of Hoop stress & Radial stress



PROBLEM
Find the thickness of the metal required for a thick cylindrical shell of

internal diameter 160mm to withstand an internal pressure of 8 N/mm?.

TesaFi@nm hoop stress in the section is not to exceed 35 N/mm?,

Internal radius, r,=80mm.

Lame' s equations are,

for Hoop Stress, 6, = % o T (1)
r
: b
for Radial stress, p, =——a............... (2)




Boundary conditions are,

atr =80mm, radial stress p, =8 N/mm °,

and Hoop stress, 6. =35 N/mm *. (.- Hoop stress is max on inner face)

b
L€e., B8=———Q teeeeeereueennnnn. R)
202 ©)
b
35=——4a eereeeeenennn. 4
0 4)

Solving equations (3) & (4), we get a =13.5, b =1,37,600.

.Lame's equations are, o, = 1’37’2600 +13.5 ............ ®)
r
|
and p, = ’37’2600 —13.5 ©)

r



On the outer face, pressure = 0.

Le.,, p, =0atr=r,.

0 —13.5

1,37,600
= 2
L

1, =100.96mm.

Thickness of the metal =1, -1,
= 20.96mm.




PROBLEM

A thick cylindrical pipe of outside diameter 300mm and internal
diameter 200mm is subjected to an internal fluid pressure of 14 N/mm?.
Determine the maximum hoop stress developed in the cross section.

What is the percentage error if the maximum hoop stress is calculated
SOLUTION:

by the equations for thin cylinder?
Internal radius, r,=100mm. External radius, r;=150mm
: . b
Lame’s equations: 6, =—+a
r
For Hoop stress, b e (1)
P. = 2 2

For radial pressure. @ ......... (2)



Boundary conditions:

Atx =100mm P. = 14N/mm?
b
14 = Sk: HRN |
1007 D
1.€.,
b

Similarly, asee=150wii % P, =0

Solving, equations (1) & (2)i we get a=11.2, b=2,52,000.

22,500

2
r

+11.2 ............ €))

. Lame's equation for Hoop stress, 6, =




Max hoop stress on the inner face (where x=100mm):

G . = 252090 +11.2=36.4 MPa.
100
: . pxd
By thin cylinder formula, G = o
X

where D =200mm, t =50mm and p =14MPa.

o =120 oenipa
2x50
36.4-28

Percentage error = ( )x100 = 23.08%.
36.4




STSTTST STET

e
m PROBLEM

The principal stresses at the inner edge of a cylindrical shell are

81.88 MPa (T) and 40MPa (C). The internal diameter of the
cylinder 1s 180mm and the length 1s 1.5m. The longitudinal
stress 1s 21.93 MPa (T). Find,

(1) Max shear stress at the inner edge.
(11) Change in internal diameter.

(111) Change 1n length.

QOB TIEN volume.

Take E=200 (yRbaamsthqarOi@ss on the inner face :
o--p, 81.88-(-40)

Tmax = =
2 2

= 60.94 MPa




i) Change in mner diameter :

Sd:GC—Expr—ExcL

d E E E

_ 81.883_ 0.3 _%21.93- 0.3 < (~40)
200x10° 200x10 20010
=4.365%x10"
od =+0.078mm.
m) Change in Length :
ol o, K
— =—-—XPp. -—XO
L E E PR S
_ 21.933_ 0.3 < (~40) - 0.3 81,88
200x10° 200x10 20010
=46.83x10°

ol =+0.070mm.




iv) Change m volume :

oV ol od
—=—+2X—
V L D)
=9.198 x10*
2
5V :9.198><10'4x(nX1804X1500)

=135.11x10° mm>.




PROBLEM

Find the max internal pressure that can be allowed into a thick pipe of
outer diameter of 300mm and inner diameter of 200mm so that tensile
stress in the metal does not exceed 16 MPa if, (i) there is no external

fROI WERF@N: (1) there is a fluid pressure of 4.2 MPa.

External radius, r;=150mm.

Internal radius, r,=100mm.

Case (1) — When there 1s no external fluid pressure:

Boundary conditions:
At r=100mm , 6, = 16N/mm?
Atr=150mm , P, =0



Le., 16 = FQ e 1
100° @)
b
= e TETTTTO 2
150° )

Solving we get, a = 492 & b=110.77x10°

110.77x10°
sothat o, = 200 L 4gp . (3)
r
3
L L Y, S @)
r

Fluid pressure on the mner face where r =100mm,

~110.77x10°

o —492=6.16MPa.

P:




Case (11) — When there 1s an external fluid pressure of 4.2 MPa:

Boundary conditions:
Atr=100mm , .= 16 N/mm?
Atr=150mm , p,= 4.2 MPa.

L€e., 16 = FQ e |
100? 2
b
4.2 = —Q e, 2
150° )

Solving we get, a = 2.01 & b=139.85x10°
139.85x10°
= +

sothat o, ! 220} SO €)
r
3
p, =228 g @)

r



Fluid pressure on the mner face where » = 100mm,

~ 139.85x10°
100°

P, —2.01=11.975 MPa.




LS PROBLEMS FOR PRACTICE
PROBLEM

A pipe of 150mm internal diameter with the metal thickness of 50mm
transmits water under a pressure of 6 MPa. Calculate the maximum
and minimum intensities of circumferential stresses induced.

(Ans: 12.75 MPa, 6.75 MPa)
PROBLEM

Determine maximum and minimum hoop stresses across the section
of a pipe of 400mm internal diameter and 100mm thick when a fluid
under a pressure of 8N/mm? is admitted. Sketch also the radial
pressure and hoop stress distributions across the thickness.

(Ans: ¢ =20.8 N/mm?, ¢ . =12.8 N/mm?)

min

PROBLEM

A thick cylinder with external diameter 240mm and internal diameter



PROBLEM

A thick cylinder of 1m inside diameter and 7m long 1s subjected to an
internal fluid pressure of 40 MPa. Determine the thickness of the
cylinder if the maximum shear stress in the cylinder is not to exceed
65 MPa. What will be the increase in the volume of the cylinder?
E=200 GPa, p=0.3. (Ans: t=306.2mm, 0v=5.47x10-m?)

PROBLEM

A thick cylinder i1s subjected to both internal and external pressure.
The internal diameter of the cylinder is 150mm and the external
diameter 1s 200mm. If the maximum permissible stress in the cylinder
is 20 N/mm? and external radial pressure is 4 N/mm?, determine the
intensity of internal radial pressure. (Ans: 10.72 N/mm?)
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