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SIMPLE STRESSES AND STRAINS

Elasticity and plasticity – Types of stresses & strains–Hooke‟s law– stress –

strain diagram for mild steel – Working stress – Factor of safety – Lateral 

strain, Poisson‟s ratio & volumetric strain – Elastic moduli & the 

relationship between them – Bars of varying section – composite bars –

Temperature stresses. Strain energy – Resilience – Gradual, sudden, impact 

and shock loadings.
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Mechanical Properties of Materials

Ductility, Brittleness, Toughness, Malleability, Behaviour of Ferrous & Non-

Ferrous metals in Tension & Compression, Shear & Bending tests, Standard Test

Pieces, Influence of Various Parameters on Test Results, True & Nominal Stress, Modes

of Failure, Characteristic Stress-Strain Curves, Izod, Charpy & Tension Impact Tests,

Fatigue, Creep, Corelation between Different Mechanical Properties, Effect of

Temperature, Testing Machines & Special Features, Different Types of Extensometers

& Compressemeters, Measurement of Strain by Electrical Resistance Strain Gauges.



AIM OF MECHANICS OF SOLIDS:

Predicting how geometric and physical properties of structure will influence its

behaviour under service conditions.
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•Stresses can occur isolated or in combination.

• Is structure strong enough to withstand loads applied to it ?

• Is it stiff enough to avoid excessive deformations and deflections?

• Engineering Mechanics----> Statics----->          

deals with rigid bodies

• All materials are deformable and mechanics of solids takes this into 

account.



• Strength and stiffness of structures is function of size and shape, certain

physical properties of material.

•Properties of Material:-

• Elasticity

• Plasticity

• Ductility

• Malleability

• Brittleness

• Toughness

• Hardness 



INTERNAL FORCE:- STRESS 

• Axial Compression

• Shortens the bar

• Crushing 

• Buckling

nm

P P

P= A

• Axial tension

•Stretches the bars & tends to pull 

it apart

• Rupture

m n

=P/A

PP



• Resistance offered by the material per unit cross- sectional area is called 

STRESS.

 = P/A

Unit of Stress:

Pascal = 1 N/m2

kN/m2    , MN/m2    , GN/m2

1 MPa = 1 N/mm2

Permissible stress or allowable stress or working stress = yield stress or ultimate 

stress /factor of safety.



• Strain

•It is defined as deformation per unit length

• it is the ratio of change in length to original length

•Tensile strain     = increase in length =    

(+ Ve) () Original length L

Compressive strain = decrease in length =  

(- Ve) () Original length       L

P



L

•Strain is dimensionless quantity.



Example : 1

A short hollow, cast iron cylinder with wall thickness of 10 mm is to carry compressive

load of 100 kN. Compute the required outside diameter `D‟ , if the working stress in

compression is 80 N/mm2. (D = 49.8 mm).

Solution:  = 80N/mm2; 

P= 100 kN = 100*103 N

A =(/4) *{D2 - (D-20)2}

as  = P/A

substituting in above eq. and solving. D = 49.8 mm

D

d

10 mm



Example: 2

A Steel wire hangs vertically under its weight. What is the greatest length it can have if

the allowable tensile stress t =200 MPa? Density of steel =80 kN/m3.(ans:-2500 m)

Solution:

t =200 MPa= 200*103 kN/m2 ;

=80 kN/m3.

Wt. of wire P=(/4)*D2*L* 

c/s area of wire A=(/4)*D2

t = P/A

solving above eq.  L =2500m
L



Strain
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Modulus of Elasticity:

• Stress required to produce a strain of unity.

• i.e. the stress under which the bar would be stretched to twice its original length . If

the material remains elastic throughout , such excessive strain.

• Represents slope of stress-strain line OA.

Value of E is same in Tension & 

Compression.

 =E 

O

A





stress

strain
E
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• Hooke‟s Law:-

Up to elastic limit, Stress is proportional to strain

  

 =E ; where E=Young‟s  modulus

=P/A and  =  / L

P/A = E ( / L)

 =PL /AE

E



Example:4 An aluminium bar 1.8 meters long has a 25 mm  square c/s over 0.6 

meters of its length and 25 mm circular c/s over other 1.2 meters . How much will 

the bar elongate under a tensile load P=17500 N, if E = 75000 Mpa.

Solution :-  = ∑PL/AE

=17500*600 / (252*75000) + 17500*1200/(0.785*252*75000) =0.794 mm

0.6 m
1.2 m

25 mm sq.sect 25 mm cir..sect

17500 N



15 kN

1 m 1 m 2 m

20 kN 15 kN

Example: 5 A prismatic steel bar having cross sectional area of A=300 mm2 is subjected 

to axial load as shown in figure . Find the net increase   in the  length  of the bar. 

Assume E = 2 x 10 5 MPa.( Ans  = -0.17mm)

 = 20000*1000/(300*2x10 5)-15000*2000/(300*2 x10 5)

= 0.33 - 0.5 = -0.17 mm    (i.e.contraction)

C B A

2020 C

00
B

15 15A

Solution:



9 m

x

5 m

3m

A = 445 mm 2

E = 2 x 10 5
A = 1000 mm 2

E = 1 x 10 5

A B

Example: 6 A rigid bar AB, 9 m long, is supported by two vertical rods at its end  and in 

a horizontal position under a load P as shown in figure. Find the position of the load P 

so that the bar AB remains horizontal.

P



9 m

x

5 m

3m

A B

P

P(9-x)/9 P(x)/9





(9 - x)*3=x*5*1.1236

27-3x=5.618 x

8.618 x=27

x = 3.13 m

For the bar to be in horizontal position, Displacements at A & B should be same,

A = B

(PL/AE)A =(PL/AE)B

=
{P(x)/9}*5

0.000445*2*105

{P(9-x)/9}*3                      

(0.001*1*105)



PP

X

L

d1 d2dx

x

Extension of Bar of Tapering cross Section from diameter d1 to d2:-

Bar of Tapering Section:

dx = d1 + [(d2 - d1) / L] * X

 = Px / E[ /4{d1 + [(d2 - d1) / L] * X}2]



 =  4 P dx /[E {d1+kx}2 ]

= - [4P/  E] x   1/k  [ {1 /(d1+kx)}]  dx

=- [4PL/  E(d2-d1)] {1/(d1+d2 -d1) - 1/d1}

 = 4PL/( E d1 d2)

Check :-

When d = d1=d2

 =PL/ [( /4)* d2E ] = PL /AE  (refer -24)


L

0

L

0



COMPLEMENTRY STRESSES:“A stress in a given direction cannot exist without a 

balancing shear stress of equal intensity in a direction at right angles to it.”

C

A

B

D
Moment of given couple=Force *Lever arm

= (.AB)*AD

Moment of balancing couple= (‟.AD)*AB

so (.AB)*AD=(‟.AD)*AB  => = ‟

Where =shear stress & ‟=Complementary shear 
stress


 

’

’



State of simple shear: Here no other stress is acting - only simple 

shear.

Let side of square = b 

length of diagonal AC =2 .b

consider unit thickness perpendicular to block.

 

’

’

A

B C

D






Equilibrium of piece ABC

the resolved sum of  perpendicular to the diagonal = 2*(*b*1)cos 450= 2 .b

if  is the tensile stress so produced on the diagonal

(AC*1)=2 .b

(2 .b)=2 .b

so 

= 

 

’

’

A

B C

D






Similarly the intensity of compressive stress on plane BD is numerically equal to

.

“Hence a state of simple shear produces pure tensile and compressive stresses

across planes inclined at 45 0 to those of pure shear, and intensities of these direct

stresses are each equal to pure shear stress.”

 

’

’

A

B C

D






SHEAR STRAIN:

 




A

B C

D


 A

B

C

D

B’
C’

D’

/2

/2

B

A

CB” C’’

 

D

State of simple 

Shear on Block

Total 

change 

in corner 

angles 

+/- 

Distortion with 

side AD fixed 

F



Since 

 is extremely small,

we can assume 

BB” = arc with A as centre ,

AB as radius.

So,  =BB”/AB=CC”/CD

Elongation of diagonal AC can  be nearly taken as FC”.

Linear strain of diagonal = FC”/AC

= CC”cos 45/CDsec45

B

A

CB” C’’

 

D

F



 = CC”/2CD = (1/2) 

but = /N    (we know N= / )

so 

 =  /2N ------(8)

Linear strain „‟is half the shear strain „‟.

B

A

CB” C’’

 

D

F
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Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal

forces and moments are developed and the terms shear force and

bending moments come into pictures which are helpful to analyze the

beams further. Let us define these terms



Sign Convention for Shear Force:

31
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Sign Convention for Shear Force



Bending Moment

33



Positive bending moment

34



Negative bending moment
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• A cantilever of length carries a concentrated load ‘W' at its free end.

Draw shear force and bending moment.

• At a section a distance x from free end consider the forces to the left, then F 

= -W (for all values of x) -ve sign means the shear force to the left of the x-

section are in downward direction and therefore negative

• Taking moments about the section gives (obviously to the left of the 

section)

36



• M = -Wx (-ve sign means that the moment on the left hand 

side of the portion is in the anticlockwise direction and is 

therefore taken as –ve according to the sign convention)

• so that the maximum bending moment occurs at the fixed 

end i.e. M = -W l

37



Bending stresses

Loading restrictions:

• As we are aware of the fact internal reactions developed on any cross-

section of a beam may consists of a resultant normal force, a resultant

shear force and a resultant couple. In order to ensure that the bending

effects alone are investigated, we shall put a constraint on the loading

such that the resultant normal and the resultant shear forces are zero on

any cross-section perpendicular to the longitudinal axis of the member,

• That means F = 0

38



• since or M = constant.

• Thus, the zero shear force means that the bending moment is constant or

the bending is same at every cross-section of the beam. Such a situation

may be visualized or envisaged when the beam or some portion of the

beam, as been loaded only by pure couples at its ends. It must be recalled

that the couples are assumed to be loaded in the plane of symmetry is

shown in Fig (1).

39



• When a member is loaded in such a fashion it is said to be in pure 

bending. The examples of pure bending have been indicated in EX 1and 

EX 2 as shown below :

40



• When a beam is subjected to pure bending are loaded by the couples at the

ends, certain cross-section gets deformed and we shall have to make out the

conclusion that,

• Plane sections originally perpendicular to longitudinal axis of the beam

remain plane and perpendicular to the longitudinal axis even after bending ,

i.e. the cross- section A'E', B'F' ( refer Fig 1(a) ) do not get warped or

curved.

• In the deformed section, the planes of this cross-section have a common

intersection i.e. any time originally parallel to the longitudinal axis of the

beam becomes an arc of circle.

41



• We know that when a beam is under bending the fibres at the top will be

lengthened while at the bottom will be shortened provided the bending

moment M acts at the ends. In between these there are some fibres which

remain unchanged in length that is they are not strained, that is they do not

carry any stress. The plane containing such fibres is called neutral surface.

• The line of intersection between the neutral surface and the transverse

exploratory section is called the neutral axisNeutral axis (N A) .
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This equation is known as the Bending Theory Equation.

The above proof has involved the assumption of pure bending without 

any shear force being present.



• J = polar moment of inertia

46

The relation (1) is known as the perpendicular axis theorem and may be

stated as follows:

The sum of the Moment of Inertia about any two axes in the plane is equal 

to the moment of inertia about an axis perpendicular to the plane, the three 

axes being concurrent, i.e, the three axes exist together.



CIRCULAR SECTION 
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An I - section girder, 200mm wide by 300 mm depth flange and web of 

thickness is 20 mm  is used as simply supported beam for a span of 7 m. The 

girder carries a distributed load of 5 KN /m and a concentrated load of 20 KN at 

mid-span. Determine the The second moment of area of the cross-section of the 

girder.



Two  Dimensional  State  of  Stress  and  Strain

Stresses on oblique plane: Till now we have dealt with either pure normal

direct stress or pure shear stress. In many instances, however both direct

and shear stresses acts and the resultant stress across any section will be

neither normal nor tangential to the plane. A plane stse of stress is a 2

dimensional state of stress in a sense that the stress components in one

direction are all zero

49
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Material subjected to pure shear
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• Material subjected to combined direct and shear stresses:

• Now consider a complex stress system shown below, acting on an element

of material.

• The stresses  x and  y may be compressive or tensile and may be the result 

of direct forces or as a result of bending.The shear stresses may be as 

shown or 
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Graphical Solution Using the Mohr‟s Stress Circle

54

4 .5 . G R A P H IC A L  S O L U T IO N -M O H R 'S  S T R E S S  C IR C L E  

C o n s id e r  th e  c o m p le x  s tre s s  s ys te m  o f F ig u re  b e lo w . A s  s ta te d  

p re v io u s ly  th is  re p re s e n ts  a  c o m p le te  s tre s s  s ys te m  fo r  a n y  

c o n d itio n  o f a p p lie d  lo a d  in  tw o  d im e n s io n s .  In  o rd e r  to  f in d  

g ra p h ic a lly  th e  d ire c t s tre s s   
p  a n d  s h e a r  s tre s s        o n  a n y  

p la n e  in c lin e d  a t     to  th e  p la n e  o n  w h ic h   x   a c ts , p ro c e e d  a s  

fo llo w s :  

(1 ) L a b e l th e  b lo c k  A B C D .  

(2 ) S e t u p  a x e s  fo r d ire c t s tre s s  (a s  a b s c is s a ) a n d  s h e a r s tre s s  (a s  o rd in a te )   

(3 ) P lo t th e  s tre s s e s  a c tin g  o n  tw o  a d ja c e n t  fa c e s , e .g . A B  a n d  B C ,  u s in g  th e  fo llo w in g  

s ig n  c o n v e n tio n s :  
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• Direct stresses: tensile, positive; compressive, negative;

• Shear stresses: tending to turn block clockwise, positive; tending to turn block

counterclockwise, negative.

• This gives two points on the graph which may then be labeled AB and BC

respectively to denote stresses on these planes
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                                                         F ig . 4 .5    M o h r 's  s tre s s  c irc le .  

 

(4 ) J o in  A B  a n d  B C .  

(5 ) T h e  p o in t P  w h e re  th is  lin e  c u ts  th e  a  a x is  is  th e n  th e  c e n tre  o f  M o h r's  c irc le , a n d  

th e  

lin e  is  th e  d ia m e te r; th e re fo re  th e  c irc le  c a n  n o w  b e  d ra w n . E v e ry  p o in t o n  th e  

c irc u m fe re n c e  o f  th e  c irc le  th e n  re p re s e n ts  a  s ta te  o f  s tre s s  o n  s o m e  p la n e  

th ro u g h  C . 
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O n  in s p e c tio n  th is  is  s e e n  to  b e  e q n .  (4 .1 ) fo r th e  d ire c t s tre s s  


 o n  th e  p la n e  in c lin e d  

a t    to  B C  in  th e  f ig u re  fo r th e  tw o -d im e n s io n a l c o m p le x  s y s te m .  

S im ila r ly ,  

 

Q N     s in  ( 2   -   )  

       =  R  s in  2  


 c o s       -    R  c o s  2  


 s in    

            
1

2
2 2( ) s in c o s    

x y x y  

A g a in , o n  in s p e c tio n  th is  is  s e e n  to  b e  e q n .  (4 .2 ) fo r th e  s h e a r s tre s s   
   o n  th e  p la n e  

in c lin e d  a t    


  to  B C .  



• The graphical method of solution of complex stress problems using Mohr's
circle is a very powerful technique since all the information relating to any
plane within the stressed element is contained in the single construction.

• It thus provides a convenient and rapid means of solution which is less
prone to arithmetical errors and is highly recommended.
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THIN SHELLS
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TORSION OF HOLLOW SHAFTS:  

From the torsion of solid shafts of circular x – section , it is seen that only the

material at the outer surface of the shaft can be stressed to the limit assigned as

an allowable working stresses. All of the material within the shaft will work at a

lower stress and is not being used to full capacity. Thus, in these cases where

the weight reduction is important, it is advantageous to use hollow shafts. In

discussing the torsion of hollow shafts the same assumptions will be made as in

the case of a solid shaft. The general torsion equation as we have applied in the

case of torsion of solid shaft will hold good
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Members Subjected to Axisymmetric Loads

Pressurized thin walled cylinder:

Preamble : Pressure vessels are exceedingly important in industry. Normally

two types of pressure vessel are used in common practice such as cylindrical

pressure vessel and spherical pressure vessel.

In the analysis of this walled cylinders subjected to internal pressures it is

assumed that the radial plans remains radial and the wall thickness dose not

change due to internal pressure. Although the internal pressure acting on the

wall causes a local compressive stresses (equal to pressure) but its value is

negligibly small as compared to other stresses & hence the sate of stress of an

element of a thin walled pressure is considered a biaxial one.



Further in the analysis of them walled cylinders, the weight of the fluid is

considered negligible.

Let us consider a long cylinder of circular cross - section with an internal radius

of R 2 and a constant wall thickness „t' as showing fig.

This cylinder is subjected to a difference of hydrostatic pressure of „p' between its

inner and outer surfaces.

In many cases, „p' between gage pressure within the cylinder, taking outside pressure

to be ambient.

By thin walled cylinder we mean that the thickness„t' is very much smaller than the

radius Ri and we may quantify this by stating than the ratio t / Ri of thickness of

radius should be less than 0.1.



Type of failure:

Such a component fails in since when subjected to an excessively high

internal pressure. While it might fail by bursting along a path following the

circumference of the cylinder. Under normal circumstance it fails by

circumstances it fails by bursting along a path parallel to the axis. This

suggests that the hoop stress is significantly higher than the axial stress. In

order to derive the expressions for various stresses we make following

Applications :

Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and

certain air plane components are common examples of thin walled cylinders

and spheres, roof domes.



ANALYSIS : In order to analyse the thin walled cylinders, let us make

the following assumptions :

• There are no shear stresses acting in the wall.

• The longitudinal and hoop stresses do not vary through the wall.

• Radial stresses r which acts normal to the curved plane of the isolated element

are neglibly small as compared to other two stresses especially when

Thin Cylinders Subjected to Internal Pressure:

When a thin – walled cylinder is subjected to internal pressure, three mutually

perpendicular

principal stresses will be set up in the cylinder materials, namely

• Circumferential or hoop stress

• The radial stress

• Longitudinal stress

now let us define these stresses and determine the expressions for them



Hoop or circumferential stress:

This is the stress which is set up in resisting the bursting effect of the applied

pressure and can be most conveniently treated by considering the equilibrium of the

cylinder.
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In the figure we have shown a one half of the cylinder. This cylinder is subjected to

an internal

pressure p.

i.e. p = internal pressure

d = inside diametre

L = Length of the cylinder

t = thickness of the wall

Total force on one half of the cylinder owing to the internal pressure 'p'

= p x Projected Area

= p x d x L

= p .d. L ------- (1)



Volumetric Strain or Change in the Internal Volume:

When the thin cylinder is subjected to the internal pressure as we have already

calculated that there is a change in the cylinder dimensions i.e, longitudinal strain and

hoop strains come into picture. As a result of which there will be change in capacity of

the cylinder or there is a change in the volume of the cylinder hence it becomes

imperative to determine the change in volume or the volumetric strain. The capacity of a

cylinder is defined as

V = Area X Length

= d2/4 x L
Let there be a change in dimensions occurs, when the thin cylinder is subjected

to an internal pressure.

(i) The diameter d changes to d + d

(ii) The length L changes to L + L

Therefore, the change in volume = Final volume Original volume





Therefore to find but the increase in capacity or volume, multiply the volumetric strain 

by original volume. Hence Change in Capacity / Volume 



Cylindrical Vessel with Hemispherical Ends:

Let us now consider the vessel with hemispherical ends. The wall

thickness of the cylindrical and hemispherical portion is different.

While the internal diameter of both the portions is assumed to be equal

Let the cylindrical vassal is subjected to an internal pressure p.



For the Cylindrical Portion



For The Hemispherical Ends:

Because of the symmetry of the sphere the stresses set up owing to internal 

pressure will be two mutually perpendicular hoops or circumferential stresses 

of equal values. Again the radial stresses are neglected in comparison to the 

hoop stresses as with this cylinder having thickness to diametre less than1:20.

Consider the equilibrium of the half – sphere

Force on half-sphere owing to internal pressure = pressure x 

projected Area
= p. < d2/4



Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion

and the spherical ends to expand by a different amount under the action of internal

pressure. So owing to difference in stress, the two portions (i.e. cylindrical and

spherical ends) expand by a different amount. This incompatibly of deformations

causes a local bending and sheering stresses in the neighborhood of the joint. Since

there must be physical continuity between the ends and the cylindrical portion, for

this reason, properly curved ends must be used for pressure vessels.



Thus equating the two strains in order that there shall be no 

distortion of the junction

But for general steel works ν = 0.3, therefore, the

thickness ratios becomes

t2 / t1 = 0.7/1.7

i.e. the thickness of the cylinder walls must be approximately 2.4 times 

that of the hemispheroid ends for no distortion of the junction to occur.



Thin rotating ring or cylinder

Consider a thin ring or cylinder as shown in Fig below subjected to a radial

internal pressure p caused by the centrifugal effect of its own mass when

rotating. The centrifugal effect on a unit length of the circumference is

p = m ω2 r

Thin ring rotating with constant angular velocity 



Here the radial pressure „p' is acting per unit length and is caused by 

the centrifugal effect if its own mass when rotating.

Thus considering the equilibrium of half the ring shown in the figure, 

2F = p x 2r (assuming unit length), as 2r is the projected area

F = pr

Where F is the hoop tension set up owing to rotation.

The cylinder wall is assumed to be so thin that the centrifugal effect 

can be assumed constant across the wall thickness.

F = mass x acceleration = m 

ω2 r x r

This tension is transmitted through the complete circumference 

and therefore is resisted by the complete cross – sectional area



hoop stress = F/A = m ω2 r2 / A

Where A is the cross – sectional area of the ring.

Now with unit length assumed m/A is the mass of the material per unit 

volume, i.e. the density < .

hoop stress H = ω2 r2



Torsion of circular shafts

Definition of Torsion: Consider a shaft rigidly clamped at one end

and twisted at the other end by a torque T =F.d applied in a plane

perpendicular to the axis of the bar such a shaft is said to be in

torsion.

Effects of Torsion: The effects of a torsional load applied to a bar are

(i) To impart an angular displacement of one end cross – section with

respect to the other end.

(ii) To setup shear stresses on any cross section of the bar perpendicular

to its axis.



Assumption:

(i)The materiel is homogenous i.e of uniform elastic properties exists throughout the

material.

(ii)The material is elastic, follows Hook's law, with shear stress proportional to shear

strain.

(iii)The stress does not exceed the elastic limit.

(iv)The circular section remains circular

(v)Cross section remain plane.

(vi)Cross section rotate as if rigid i.e. every diameter rotates through the same angle.

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the

other end being fixed Under the action of this torque a radial line at the free end of the

shaft twists through an angle , point A moves to B, and AB subtends an angle „ ' at

the fixed end. This is then the angle of distortion of the shaft i.e the shear strain.

Since angle in radius = arc / Radius arc AB = R

From the definition of Modulus of rigidity or Modulus of elasticity in shear



Stresses: Let us consider a small strip of radius r and thickness dr 

which is subjected to shear stress'.



The force set up on each element= stress x area

The total torque T on the section, will be the sum of all the contributions.

Since ' is a function of r, because it varies with radius so writing down◻'

in terms of r from the equation (1).



Tensional Stiffness: The tensional stiffness k is defined as the torque per 

radius twist i.e, k = T /= GJ / L

Power Transmitted by a shaft : If T is the applied Torque and is the 

angular velocity of the shaft, then the power transmitted by the shaft is



TORSION OF HOLLOW SHAFTS:

From the torsion of solid shafts of circular x – section , it is seen that only the 

material at the outer surface of the shaft can be stressed to the limit assigned as 

an allowable working stresses. All of the material within the shaft will work at a 

lower stress and is not being used to full capacity. Thus, in these cases where the 

weight reduction is important, it is advantageous to use hollow shafts. In 

discussing the torsion of hollow shafts the same assumptions will be made as in 

the case of a solid shaft.





Assignment Problem 

A stepped solid circular shaft is built in at its ends and subjected to an 

externally applied torque. T0 at the shoulder as shown in the figure. Determine 

the angle of rotation 0 of the shoulder section where T0 is applied ? along the 

entire length of the beam.


