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1.0 Some historical background
• Historically studies on vibration (acoustics) started  long ago (around 4000BC)

• Musicians and philosophers have sought out the rules and laws of sound 
production, used them in improving musical instruments, and passed them
on from generation to generation

• Music had become highly developed and was much appreciated by Chinese,   
Hindus, Japanese, and, perhaps, the Egyptians. 

• These early peoples observed  certain definite rules in connection with the art  
of music, although their knowledge did not reach the level of a science.

• Early applications (by Egyptian) to single or multiple string  instruments known as 
Harps

• Our present system of music is based on ancient Greek civilization. 

• The Greek philosopher and mathematician Pythagoras (582-507 B.C.) is  
considered to be the first person to investigate musical sounds on a scientific 

basis [later on we will be talking about Mathematical Basis as well]



1.1 Introductory Remarks
 Most human activities involve vibration in one form or other. For example, we

hear because our eardrums vibrate and see because light waves undergo 
vibration

 Any motion that repeats itself after an interval of time is called vibration or
oscillation.

 The general terminology of “Vibration” is used to describe oscillatory motion
of mechanical and structural systems

 The Vibration of a system involves the transfer of its potential energy to
kinetic energy and kinetic energy to potential energy, alternately





1.1 Introductory Remarks
• Any object in this world having mass and elasticity is capable of vibration

• We are mainly interested in vibration of mechanical system

• When subjected to an oscillating load, this system undergoes a vibratory behavior

• Vibrations are an engineering concern in these applications because they may 
cause a catastrophic failure (complete collapse) of the machine or structure 
because of excessive stresses and amplitudes (resulting mainly from resonance) or
because of material fatigue over a period of time

Example: - Failure of Tacoma Narrows Bridge in 1940 due to 42-mile-per-hour wind 
undergoing a torsional mode resonance

- Vibration of machine components generate annoying noise
- Vibration of string generate pleasing music (already discussed before)

• Vibrations in mechanical system (or more preciously flight vehicles) is dissipated 
by inherent damping of the material

• Vibration of mechanical system is model as a combination of spring-mass-damper



1.1 Introductory Remarks
• In some system it may be clearly visible – for example vibration of automobiles

- The body mass represented by concentrated mass m
- The Stiffness of suspension system is represented by linear/nonlinear 
spring k

- The shock absorber is represented by damper c

• In most of the cases (like in continuous system) it may not be possible 
clearly identify spring-mass-damper system

- Vibration of flight vehicle
- Vibration of machine component etc 



1.2 Degrees of freedom

“Period of vibration” is the time that it takes to complete one cycle. It is 
measured in seconds.
“Frequency” is the number of cycles per second. It is measured in Hz (1 
cycle/second). It could be also measured in radians/second.

Period of vibration: T
Frequency of vibration: f = (1/T) Hz or ω = (2π/T) radians/s  T=(2 π/ω) = (1/T)



Types of Vibratory Motion
Oscillatory motion may repeat itself regularly, as in the case of a simple 
pendulum, or it may display considerable irregularity, as in the case of ground 
motion during an earthquake.

If the motion is repeated after equal intervals of time, it is called periodic motion. 
The simplest type of periodic motion is harmonic motion.

Harmonic motion 

It is described by sine or cosine functions.

x(t) = Asin(ω t)

A is the amplitude while ω is the frequency (radians/sec)



Types of Vibratory Motion



Types of Vibratory Motion
Two harmonic motions having the same period and/or amplitude could have 
different phase angle



Types of Vibratory Motion



Types of Vibratory Motion



Types of Vibratory Motion



1.2 Degrees of freedom (cont…)



1.2 Degrees of freedom (cont…)



1.2 Degrees of freedom (cont…)



1.2 Degrees of freedom (cont…)



1.3 Classification Vibration
Vibration can be classified in several ways. Some of the important classifications 
are as
follows.

a)  Free and forced vibration
b)  Undamped and damped vibration
c)  Linear and nonlinear vibrations
d)  Deterministic and random vibration

The terminology of “Free Vibration” is used for the study of natural vibration
modes in the absence external loading.

The terminology of “Forced Vibration” is used for the study of motion as a
result of loads that vary rapidly with time. Loads that vary rapidly with time are
called dynamic loads.



1.3 Classification Vibration

If no energy is lost or dissipated in friction or other resistance during oscillation, 
the vibration is known as “undamped vibration”. 

If any energy is lost in this way, however, is called “damped vibration”.

If the system is damped, some energy is dissipated in each cycle of vibration and 
must be replaced by an external source if a state of steady vibration is to be 
maintained.



Importance of Dynamic Analysis

Load magnification and  Fatigue effects

A static load is constant and is applied to the structure for a considerable part of 
its life. For example, the self weight of building. Loads that are repeatedly 
exerted, but are applied and removed very slowly, are also considered static 
loads.

Fatigue phenomenon can be caused by repeated application of the load. The
number of cycles is usually low, and hence this type of loading may cause what is 
known as low-cycle fatigue.

Quasi-static loads are actually due to dynamic phenomena but remain constant 
for relatively long periods.

Most mechanical and structural systems are subjected to loads that actually
vary over time. Each system has a characteristic time to determine whether the 
load can be considered static, quasi-static, or dynamic. This characteristic time is 
the fundamental period of free vibration of the system.



Importance of Dynamic Analysis

Dynamic Load Magnification factor (DLF) is the ratio of the maximum dynamic 
force experienced by the system and the maximum applied load.

The small period of vibration results in a small DLF.

Fatigue phenomenon can be caused by repeated application of the load. The
number of cycles and the stress range are important factors in determining the
fatigue life.



1.3 Classification Vibration



1.4 Spring, inertia and damping elements
A vibratory system, in general, includes a means for storing potential energy 
(spring or elasticity), a means for storing kinetic energy (mass or inertia), and a 
means by which energy is gradually lost (damper).

The minimum number of independent coordinates required to determine 
completely the positions of all parts of a system at any instant of time defines 
the degree of freedom (DOF) of the system.

A large number of practical systems can be described using a finite
number of DOFs. Systems with a finite number of DOFs are called discrete
or lumped parameter systems.

Some systems, especially those involving continuous elastic members,
have an infinite number of DOFs. Those systems are called continuous or
distributed systems.



Parallel arrangement of springs in a freight truck



Torsional Spring Constant of a Propeller Shaft



Equivalent k of Hoisting Drum



Equivalent k of Hoisting Drum



Equivalent k of a Crane



1.4 Dynamic Loads on Flight Vehicle Structures

Unsteady air loads – Atmospheric turbulence, gust, engine vibration

Pilots input to control surfaces for manoeuver

Landing impact

Runway unevenness'

Blast pressure

Acoustic loads



1.4 Spring, Damper and Mass elements



1.4.1 Simple Harmonic Motion (SHM)
A particle moves to and fro in such a way that the acceleration is always proportional to  the
displacement and directed towards origin, the motion is called SHM

ω

A particle is moving along a circular path with constant velocity ω rad/sec

Θ=ωt



1.4.1 Simple Harmonic Motion (SHM)
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1.4.2 Energy Method
 Application of conservation of energy

 For free vibration of undamped system, the energy is partly potential and partly 
kinetic  

 Their sum is always constant

T + U = constant                        (1.2)

 From principle of conservation of energy we can write

 Let 1 and 2 are two instances of time

 Let 1 corresponds to equilibrium position, U1 = 0

 Let 2 corresponds to maximum displacement, T2=  0

 Therefore, 

   3.10UT
dt

d

 4.12211 UTUT 

 5.100 21 UT 



1.4.2 Energy Method

 Since system is undergoing harmonic motion, then T1 and U2 are maximum values,    
hence

 For a spring-mass system, kinetic energy  is given by

 Potential energy is given by

 Let                             , then one can write

 Substituting for x and dx/xt in the  expression for U and T one can write
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1.5 Equations of motion



1.5 Equations of motion



1.5 Equations of motion



1.5 Equations of motion



Logarithmic Decrement



Logarithmic Decrement



1.7 Damped forced vibration



1.7.1 Resonance

Phase relationships 
among the applied, 
spring, damping, and 
inertia forces for 
harmonic motion for
frequency ratio 
values less than one-
half, equal to one, 
and equal to one and 
a half.



Modeling Mechanical Systems



Modeling Structural Dynamic Systems



Modeling Structural Dynamic Systems



Modeling Structural Dynamic Systems
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2.0 Discrete and continuous system
• A large number of practical systems can be described using a finite number of degrees of

freedom, such as the simple systems shown in slides 5 to 7. 

• Some systems, especially those involving continuous elastic members, have an infinite 
number of degrees of freedom.

• As a simple example, consider the cantilever beam shown in slide 8. 

• Since the beam has an infinite number of mass points, we need an infinite number of 
coordinates to specify its deflected configuration. 

• The infinite number of coordinates defines its elastic deflection curve. 

• Thus the cantilever beam has an infinite number of degrees of freedom.

• Most structural and machine systems have deformable (elastic) members and therefore
have an infinite number of degrees of freedom

• Systems with a finite number of degrees of freedom are called discrete or lumped
parameter systems, and those with an infinite number of degrees of freedom are called
continuous or distributed systems.



2.0 Discrete and continuous system (cont…)
• Most of the time, continuous systems are approximated as discrete systems, and solutions

are obtained in a simpler manner. 

• Although treatment of a system as continuous gives exact results, the analytical methods 
available for dealing with continuous systems are limited to a narrow selection of problems, 
such as uniform beams, slender rods, and thin plates. 

• Hence most of the practical systems are studied by treating them as finite lumped masses, 
springs, and dampers. 

• In general, more accurate results are obtained by increasing the number of masses, 
springs, and dampers  - that is, by increasing the number of degrees of freedom. 



2.1 Two/Three-degree-of-freedom (MDOF) system



2.1 Two/Three-degree-of-freedom (MDOF) system



2.1 Two/Three-degree-of-freedom (MDOF) system



2.1 Two/Three-degree-of-freedom (MDOF) system



2.2  Static and Dynamic couplings



2.2  Static and Dynamic couplings



2.2  Static and Dynamic couplings



2.2  Static and Dynamic couplings



2.2  Static and Dynamic couplings

Figure below shows a rigid bar with its centre of mass not coinciding with its geometric 
centre, ie, l1≠l2, and supported by two springs, k1 and k2.

It represents a two degree of freedom since two coordinates are necessary to describe its 
motion

The choice of the coordinates will define the type of coupling which can be immediately 
determine from the mass and stiffness matrices.

Mass or dynamic coupling exists if the mass matrix is non-diagonal, whereas stiffness or 
static coupling exists if the stiffness matrix is non-diagonal.

It is possible to have both forms of coupling.



2.2  Static and Dynamic couplings

Static Coupling

Choosing coordinates x and  shown in the figure below, where x is the linear 
displacement of the center of mass, the system will have static coupling as shown by the 
matrix equation
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2.2  Static and Dynamic couplings

Dynamic Coupling

There is some point C along the bar where a force applied normal to the bar produces 
pure translation; i.e., 

The equations of motion in terms of xc and  can be shown to be 
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Which shows that the coordinates chosen eliminated the static coupling and introduced 
dynamic coupling 



2.2  Static and Dynamic couplings

Static and Dynamic Coupling

If we choose x=x1 at the end of the bar, as shown in figure below, the equations of 
motion become
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and both static and dynamic coupling are now present



2.2  Static and Dynamic couplings
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2.2  Forced vibration of 2-DOF System
The equations of motion of a general two-degree-of-freedom system 
under external forces can be written as
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We shall consider the external forces to be harmonic:

   4.22,10  jeFtF ti

jj



where  is the forcing frequency. 

We can write the steady-state solution as

   5.22,1 jeXtx ti

jj



where  X1 and X2 are, in general, complex quantities that depend on 
and the system parameters.



2.2 Forced vibration of 2-DOF System

Substitution of Eqs. (2.4) and (2.5) into Eq. (2.3) leads to
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we define the mechanical impedance,  Zrs(i) as

   7.22,1,2  srkcimiZ rsrsrsrs 

and write Eq. (2.6) as 
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2.2 Forced vibration of 2-DOF System
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Equation (5.32) can be solved to obtain



2.2 Forced vibration of 2-DOF System

where the inverse of the impedance matrix is given by
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By substituting Eq. (2.11) into Eq. (2.5) we can find the complete solution.



2.4  Multiple-degree-of-freedom Linear System

Equations of Motion

2.4.1  Position Vector

Let P0 be the space coordinates of a point of an elastic mechanical system at a time to. 

Because of the application of an external force at t = to, the point in consideration will 
occupy a new position P at a time t. 

The vector PPo will thus represent the displacement of the point with initial position P0. 

If we now consider a discrete system, or a continuum that has been approximated as a 
discrete system using a set of generalized coordinates q, we can write

where q is the set of the generalized coordinates that define completely the mechanical 
system and F is the transformation operator. 

For a linear system, the transformation operator F does not depend on the generalized 
coordinates q, and thus we can write for any point j of the mechanical system

   5.2qFP 



2.4  Multiple-degree-of-freedom Linear System
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where                         are constants that do not depend on the generalized coordinates
for a linear system and that represent the variation in the displacement at the point
in consideration due to a unit variation in the generalized coordinate qi. 

In this section, to simplify the notation, we will use Einstein's summation notation for
repeated indices, and we write Eq. (2.6) as
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2.4  Multiple-degree-of-freedom Linear System

 8.2
dt

dP
V
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j 

2.4.2  Velocity Vector

The velocity at any point j of the mechanical elastic system at a time t can be written as

Using Eq. (2.6), we can write the velocity vector as
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2.4.3  Kinetic Energy Functional

The kinetic energy functional of the elastic mechanical system reads
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2.4  Multiple-degree-of-freedom Linear System
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Where (P) is the material density at a point P, V(P) is the velocity vector at point P, and v 
is the volume of the elastic mechanical system.

For a discrete system we can use Eqs. (2.9) and (2.10) and write kinetic energy functional 
as  

 13.2 








v
ji

ij dv
q

P

q

P
M 
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2
1 qMqT

T


Or, in matrix notation, we can write

We call [M] the mass matrix of the mechanical system.

The elements of the mass matrix are given by
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          14.200  xxMx
T

We conclude from Eq. (2.13) that the mass matrix is a symmetrical real 
matrix and because the expression {q’}T[M]{q'} represents an energy 
expression for any vector {q'} different from the null vector, we further 
conclude that

2.4.4  Strain Energy Functional

The stress-strain relationship for an elastic linear continuum can be written as

      15.2 C

      16.2Pd

Therefore, [M] is a positive definite matrix

where [C] is the material constitutive matrix and is a symmetric matrix because
the stress and strain tensors are symmetric tensors. 

Writing now the strain-displacement relationship as
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     18.2
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where [d] is the differential operator relating the strains to the displacements, and
substituting Eq. (2.7) into Eq. (2.16), we obtain

       17.2PNd

where [N] has been used to denote the transformation matrix of the displacements
to the generalized coordinates. The strain energy functional of the elastic mechanical 
system reads

Using now the relation of Eqs. (2.15) and (2.17) and Eq. (2.18), we can write
the strain energy functional as
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TT
dvNdCdNK

or

where
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
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We call [K] the stiffness matrix of the elastic mechanical system. 

Again, we observe that [K] is a real symmetrical matrix because the constitutive material
matrix is a symmetric matrix and is real. 

Furthermore, from energy consideration concepts, we conclude from Eq. (2.20) that [K] 
is a positive definite matrix for a constrained mechanical elastic system or a semi-
positive definite matrix for an elastic mechanical free body.

2.4.5  Expression of the Dissipation Function

We consider in this section that the damping forces of the elastic mechanical system are 
of viscous nature and are linearly related to the velocity vector, and we write

where FD(P) is the damping force of the elastic mechanical system at point P.

The variation in the virtual work of the damping forces in a virtual displacement
P reads
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2.5  Coordinate Coupling and Principle coordinates

As stated earlier, an n-degree-of-freedom system requires n independent coordinates to
describe its configuration. 

Usually, these coordinates are independent geometrical quantities measured from the 
equilibrium position of the vibrating body. 

However, it is possible to select some other set of n coordinates to describe the 
configuration of the system. 

The latter set may be, for example, different from the first set in that the coordinates may 
have their origin away from the equilibrium position of the body. 

There could be still other sets of coordinates to describe the configuration of the system. 
Each of these sets of n coordinates is called the generalized coordinates



2.7 Vibration Absorber

The vibration absorber, also called dynamic vibration absorber, is a 
mechanical device used to reduce or eliminate unwanted vibration. 

It consists of another mass and stiffness attached to the main (or original) 
mass that needs to be protected from vibration. 

Thus the main mass and the attached absorber mass constitute a two-
degree-of-freedom system, hence the vibration absorber will have two 
natural frequencies. 

The vibration absorber is commonly used in machinery that operates at 
constant speed, because the vibration absorber is tuned to one particular 
frequency and is effective only over a narrow band of frequencies. 

Common applications of the vibration absorber include reciprocating tools, 
such as sanders, saws, and compactors, and large reciprocating internal 
combustion engines which run at constant speed (for minimum fuel 
consumption). 



2.7 Vibration Absorber

In these systems, the vibration absorber helps balance the reciprocating 
forces. 

Without a vibration absorber, the unbalanced reciprocating forces might 
make the device impossible to hold or control. 

Vibration absorbers are also used on high-voltage transmission lines. 

In this case, the dynamic vibration absorbers, in the form of dumbbell-
shaped devices (Figure below), are hung from transmission lines to 
mitigate the fatigue effects of wind induced vibration.



2.7  Vibration absorber



2.7  Vibration absorber



2.7  Dynamic Vibration Absorber



2.7  Dynamic Vibration Absorber

When we attach an auxiliary mass m2 to a machine of mass m1 through a 
spring of stiffness k2 the resulting two-degree-of-freedom system will look 
as shown in Figure in next slide. 

The equations of motion of the masses m1 and m2 are

By assuming harmonic solution,
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we can obtain the steady-state amplitudes of the masses m1 and m2 as
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We are primarily interested in reducing the amplitude of the machine (X1)

In order to make the amplitude of m1 zero, the numerator of Eq. (2.32) 
should be set equal to zero.

This gives
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If the machine, before the addition of the dynamic vibration absorber, 
operates near its resonance, 

Thus if the absorber is designed such that
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the amplitude of vibration of the machine, while operating at its original 
resonant frequency, will be zero. By defining
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as the natural frequency of the machine or main system, and
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as the natural frequency of the absorber or auxiliary system, Eqs. (2.32) 
and (2.33) can be rewritten as
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Figure in next slide shows the variation of the amplitude of vibration of 
the machine (X1/st) with the machine speed (/1).

The two peaks correspond to the two natural frequencies of the 
composite system. 

As seen before, X1= 0 at  = 1

At this frequency, Eq. (2.38) gives

 39.2
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This shows that the force exerted by the auxiliary spring is opposite to the impressed 
force and neutralizes it, thus reducing to zero. 

The size of the dynamic vibration absorber can be found from Eqs. (9.142) and (9.138):
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 40.202

2

222 FXmXk  

This shows that the force exerted by the auxiliary spring is opposite to the impressed 
force (k2X2 = -F0) and neutralizes it, thus reducing X1 to zero. 

The size of the dynamic vibration absorber can be found from Eqs. (2.39) and (2.35):

Thus the values of k2 and m2 depend on the allowable value of X2.



2.7 Dynamic Vibration Absorber

Effect of undamped vibration absorber on the response of machine
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It can be seen from Figure in previous page that the dynamic vibration absorber, while 
eliminating vibration at the known impressed frequency , introduces two resonant 
frequencies 1 and 2 at which the amplitude of the machine is infinite. 

In practice, the operating frequency  must therefore be kept away from the 
frequencies 1 and 2.

The values of 1 and 2 can be found by equating the denominator of Eq. (2.37) to 
zero. 

Noting that

and setting the denominator of Eq. (2.37) to zero leads to
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The two roots of this equation are given by

which can be seen to be functions of  (m2/m1) and (2/1).
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1. It can be seen, from Eq. (9.146), that is less than and is greater than the
operating speed (which is equal to the natural frequency, ) of the machine. Thus
the machine must pass through during start-up and stopping. This results in
large amplitudes.
2. Since the dynamic absorber is tuned to one excitation frequency the steady-state
amplitude of the machine is zero only at that frequency. If the machine operates at other
frequencies or if the force acting on the machine has several frequencies, then the
amplitude of vibration of the machine may become large.
3. The variations of and as functions of the mass ratio are
shown in Fig. 9.35 for three different values of the frequency ratio It can be
seen that the difference between and increases with increasing values of
m2/m1.
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Dynamic equations of equilibra of general elastic body



3.1 What is continuous system?  
A structural member consisting of a single piece of a particular material(s) without any 
visible discontinuity is a continuous structure or  continuous system

Example: Rods, Beams, shafts, panels/plates, and shells

A single piece of above kind of continuous structure made of composites  
materials is essentially a continuous system

Smart structures are also modeled a continuous structures

Sometimes discontinuous structure, behaves like continuous structure  when 
properly joined with bolts, rivets or weld

Vehicle structures (surface, air and space) appear and behave like a continuous 
structures



3.1 What is continuous system?

(a) A continuous string of mass M, displaced transversely;
(b) a discrete model of the string.



3.1 What is continuous system? (cont…)

(a) A continuous bar of mass M; 
(b)A discrete model of the bar.



3.1 What is continuous system?



3.1 What is continuous system?

Nondimensional Frequencies ω* = ω (Ml/AE) for n d.o.f. Discrete
Models of Longitudinal Vibrations of a Fixed-Free Bar, as Described in 
Figure in the previous slide



3.1 Introduction to continuous system

• The displacement, velocity and acceleration  are describe as a function of space 
(x,y,z)  and time (t)

• Coordinate System (rectangular, cylindrical and spherical)
• In analytical dynamics generalized coordinate system
• Application of variation principles
• Derivation of energy expressions (KE, PE , Virtual work, etc)
• Application of Lagrange’s equation or Hamilton’s principle



3.2 Hamilton’s Principle

Hamilton’s Principle is  used for the development of equations of motion in vectorial form
using scalar energy quantities in a variational form
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Where   T = total kinetic energy of system
V=potential energy of system, including both strain energy and potential

of any conservative external forces
Wnc= work done by non-conservative forces acting on system, including 

damping and any arbitrary external loads
 = variation taken during indicated time interval

Hamilton’s principle states that the variation of kinetic and potential energy plus the 
variation of the work done by the non-conservative forces considered during interval 
t1 to t2 must equal to zero

The application of this principle leads directly to the equations of motion for any given 
system



3.3 Solutions of vibration problems using Variational 

Principles

3.1 Introduction to continuous system

3.2 Discreatize models of continuous systems

3.3 Solutions of vibration problems using Variational Principles

3.4 Vibrations of strings, bars, shafts and beams



3.3.1 Rayleigh – Ritz Method



3.3.1 Rayleigh – Ritz Method



3.4.3 Torsional Vibrations of shafts



3.4.3 Torsional Vibrations of shafts



3.4.4 Vibrations of beams 



3.4.4 Vibrations of beams 



3.4.4 Vibrations of beams 



3.4.4 Vibrations of beams 

Frequency equations and eigenfunctions for each of the six cases are 
summarized below.



3.4.4 Vibrations of beams 



3.4.4 Vibrations of beams 

In the above equations, ξ = x/ℓ is measured in each case from the left 
end of the beam. The values of β are the square roots of the 
frequency parameters listed in Table in next slide. More accurate 
values of β and γ are available in the classical study of Young and 
Felgar .



3.4.4 Vibrations of beams 



3.4.4 Vibrations of beams 



3.4.4 Vibrations of beams 



3.4.4 Vibrations of beams 
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4.2 Solution Methods for Eigenproblems
We concentrate on the solution of the eigenproblem

 1 MK 

and., in particular, on the calculation of the smallest eigenvalues                                    
and corresponding eigenvectors                                       .

The solution methods that we considered here first can be subdivided into four groups, 
corresponding to which basic property is used as the basis of the solution algorithm 
(Ref. J.H. Wilkinson)

1. Vector Iteration Method

2. Transformation Method
First we have to determine mode shapes matrix Φ, such that
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4.2 Solution Methods for Eigenproblems

3. Polynomial Iteration

4.   Sturm Sequence Property of the Characteristic Polynomials
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4.2 Solution Methods for Eigenproblems
    
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5. Lanczos Method and Subspace Iteration Method used combination of above 
4 methods



4.3.1 Eigenvalue Extraction Methods in MSC/NASTRAN

In MSC/NASTRAN following Methods are Available for Real 
Eigenvalue Extraction

1. Transformation Methods
 Givens Method
 Householder Method
 Modified Givens Method
 Modified Householder Method

2. Tracking Methods
 Inverse Power Method
 Sturm Modified Inverse Power Method

Lanczos Method combines the best characteristics of both the tracking and 
transformation methods.
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