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Unit 1: Introduction - Single degree-of-freedom
system
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| Introduction to Single-Defree-of-Freedom-System
1 1.1  [Simple Harmonic motion (SHM), terminology
1.2 |Degrees of freedom
2 1.3 |Free vibration and forced vibration
Examples of single-degree-of-freedom mechanical
vibrations
Equation of motion
1.4 |Spring, inertia and damping elements
3 1.5 |Undamped natural frequency
Damped natural frequency
Damping ratio
4 1.6  [Mechanism of damping
Equivalent viscous damping
5 1.7 |Forced vibrations
Examples
Resonance
Amplitude and phase response diagram
6 1.8 |Vibration measuring instrunent
7 D'Alembert Principles




 Historically studies on vibration (acoustics) started long ago (around 4000BC)

Musicians and philosophers have sought out the rules and laws of sound
production, used them in improving musical instruments, and passed them
on from generation to generation

Music had become highly developed and was much appreciated by Chinese,
Hindus, Japanese, and, perhaps, the Egyptians.

These early peoples observed certain definite rules in connection with the art
of music, although their knowledge did not reach the level of a science.

Early applications (by Egyptian) to single or multiple string instruments known as
Harps

Our present system of music is based on ancient Greek civilization.

The Greek philosopher and mathematician Pythagoras (582-507 B.C.) is
considered to be the first person to investigate musical sounds on a scientific

basis [later on we will be talking about Mathematical Basis as well]




d Most human activities involve vibration in one form or other. For example, we
hear because our eardrums vibrate and see because light waves undergo
vibration

O Any motion that repeats itself after an interval of time is called vibration or
oscillation.

O The general terminology of “Vibration” is used to describe oscillatory motion
of mechanical and structural systems

O The Vibration of a system involves the transfer of its potential energy to
kinetic energy and kinetic energy to potential energy, alternately

d



* Any object in this world having mass and elasticity is capable of vibration
* We are mainly interested in vibration of mechanical system
* When subjected to an oscillating load, this system undergoes a vibratory behavior

* Vibrations are an engineering concern in these applications because they may
cause a catastrophic failure (complete collapse) of the machine or structure
because of excessive stresses and amplitudes (resulting mainly from resonance) or
because of material fatigue over a period of time

Example: - Failure of Tacoma Narrows Bridge in 1940 due to 42-mile-per-hour wind
undergoing a torsional mode resonance
- Vibration of machine components generate annoying noise
- Vibration of string generate pleasing music (already discussed before)

 Vibrations in mechanical system (or more preciously flight vehicles) is dissipated
by inherent damping of the material

* Vibration of mechanical system is model as a combination of spring-mass-damper



* In some system it may be clearly visible — for example vibration of automobiles

- The body mass represented by concentrated mass m

- The Stiffness of suspension system is represented by linear/nonlinear
spring k

- The shock absorber is represented by damper ¢

* In most of the cases (like in continuous system) it may not be possible
clearly identify spring-mass-damper system

- Vibration of flight vehicle
- Vibration of machine component etc



“Period of vibration” is the time that it takes to complete one cycle. It is
measured in seconds.

“Frequency” is the number of cycles per second. It is measured in Hz (1
cycle/second). It could be also measured in radians/second.

Period of vibration: T
Frequency of vibration: f = (1/T) Hz or w = (2rt/T) radians/s T=(2 m/w) = (1/T)



Oscillatory motion may repeat itself regularly, as in the case of a simple
pendulum, or it may display considerable irregularity, as in the case of ground
motion during an earthquake.

If the motion is repeated after equal intervals of time, it is called periodic motion.
The simplest type of periodic motion is harmonic motion.

Harmonic motion

It is described by sine or cosine functions.

X(t) = Asin(w t)

A is the amplitude while w is the frequency (radians/sec)

xt)=w 4 cos((o r)

i(t)=-0"4 sin((o r) = —"x(¢)
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Two harmonic motions having the same period and/or amplitude could have
different phase angle

2 simn(21t) 2 sin(2nt + 71/2)

Plot of two harmonic functions 2 sin(2 xt) and 2 sin(2 #t + 7 /2)



ok’ A harmonic motion can be written in terms of exponential functions.

jwit_ —iwe Wty it

= COsSwt=—

- _—

SNt =

so that
evl =coswt+isinwt

A harmonic motion could be written as
x(t) = a&¥!

k' Alternative forms for harmonic motion

Generally. a harmonic motion can be expressed as a combination of sine and
cosine waves.

y(it)=Acoswt+Bsinwt < y(f) =Y sin(wt + 6)



Y= \/A2 +B> f6=tan"}(4/B)
or

V(it)=Acoswt—Bsimwt < y(f) =-Y sin(wt —6) = ¥ cos(wt — 6)

o Periodic motion

The motion repeats itself exactly.
X

il
TV




A general vibratory motion doesn’t have a repeating pattern.
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FIGURE 1.14 A cantilever beam

(an infinite-number-of-degrees-of-freedom
system).



Vibration can be classified in several ways. Some of the important classifications
are as
follows.

a) Free and forced vibration

b) Undamped and damped vibration
c) Linear and nonlinear vibrations

d) Deterministic and random vibration

The terminology of “Free Vibration” is used for the study of natural vibration
modes in the absence external loading.

The terminology of “Forced Vibration” is used for the study of motion as a
result of loads that vary rapidly with time. Loads that vary rapidly with time are
called dynamic loads.



If no energy is lost or dissipated in friction or other resistance during oscillation,
the vibration is known as “undamped vibration”.

If any energy is lost in this way, however, is called “damped vibration”.

If the system is damped, some energy is dissipated in each cycle of vibration and

must be replaced by an external source if a state of steady vibration is to be
maintained.



Load magnification and Fatigue effects

A static load is constant and is applied to the structure for a considerable part of
its life. For example, the self weight of building. Loads that are repeatedly
exerted, but are applied and removed very slowly, are also considered static
loads.

Fatigue phenomenon can be caused by repeated application of the load. The
number of cycles is usually low, and hence this type of loading may cause what is
known as low-cycle fatigue.

Quasi-static loads are actually due to dynamic phenomena but remain constant
for relatively long periods.

Most mechanical and structural systems are subjected to loads that actually
vary over time. Each system has a characteristic time to determine whether the
load can be considered static, quasi-static, or dynamic. This characteristic time is
the fundamental period of free vibration of the system.



Dynamic Load Magnification factor (DLF) is the ratio of the maximum dynamic
force experienced by the system and the maximum applied load.

The small period of vibration results in a small DLF.

Fatigue phenomenon can be caused by repeated application of the load. The
number of cycles and the stress range are important factors in determining the

fatigue life.






A vibratory system, in general, includes a means for storing potential energy
(spring or elasticity), a means for storing kinetic energy (mass or inertia), and a
means by which energy is gradually lost (damper).

The minimum number of independent coordinates required to determine
completely the positions of all parts of a system at any instant of time defines
the degree of freedom (DOF) of the system.

A large number of practical systems can be described using a finite
number of DOFs. Systems with a finite number of DOFs are called discrete
or lumped parameter systemes.

Some systems, especially those involving continuous elastic members,
have an infinite number of DOFs. Those systems are called continuous or
distributed systems.
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Unsteady air loads — Atmospheric turbulence, gust, engine vibration
Pilots input to control surfaces for manoeuver

Landing impact

Runway unevenness'

Blast pressure

Acoustic loads



(c)

FIGURE 9.17 (a) Undamped spring mount; (b) damped spring mount; (c) pneumatic
rubber mount. (Courtesy of Sound and Vibration.)



A particle moves to and fro in such a way that the acceleration is always proportional to the
displacement and directed towards origin, the motion is called SHM

-

-

,—~

A particle is moving along a circular path with constant velocity w rad/sec

-y
N




X(t)= Asin ot
2
w="" =24
T
X = wA COS ot
X = —w’Asin ot = -
X =—w°X
X+ w*X=0

2

X



O Application of conservation of energy

O For free vibration of undamped system, the energy is partly potential and partly

kinetic
L Their sum is always constant

T + U = constant (1.2)
d

a(T +U)=0 (1.3)

L From principle of conservation of energy we can write
T,+U,=T,+U, (1.4)

0 Let1 and 2 are two instances of time
O Let 1 corresponds to equilibrium position, U; =0

O Let 2 corresponds to maximum displacement, T,= 0

Q Therefore, T,+0=0+U, (1.5)



O Since system is undergoing harmonic motion, then T, and U, are maximum values,
hence

T . =U_, (1.6)

L For a spring-mass system, kinetic energy is given by

-2
T =2mx
L Potential energy is given by
2
U =Zkx

Q Let X = Asin af , then one can write X = A®; X° = A’w°

L Substituting for x and dx/xt in the expression for U and T one can write

T . =<mA°
U, =Lka?
ImA*w® = 1 kA
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(‘/ (c/2m)* - -(\/ (c/2 m)* - ) t
1€

t
Wt) = Ay ePr + 45 eP2 " = e 2m1| 4 ] +4ye

(a) Critical dampmg (c/2 m)2 T — Ce=2MmMw

(b) Overdamped system: (¢ /2 m)2 > w?

(¢) Underdamped or lightly damped system: (¢ /2 m)* < w?



Introducing the damping ratio.

¢
g_ T 2mw

t

Therefore,

IQ

Pl,2=—ﬁi\/({;)2—w2 =—§wi\/(§(u)2—(uz =w(—§j—_ E° -

1)

(wve-1)r

W) = e‘g“”(Al e +Are

7))

Finally, we have
a) Critical damping: =1
b) Overdamped system: E>1

¢) Underdamped or lightly damped system: D<E<l



The above can be classified as critically damped motion: nonoscillatory motion:
and oscillatory motion.

& Underdamped or lightly-damped motion: 0 <& <1

f WHy+Vy

W) = e"-fw("o COS @ &+ Shiwa r)

(1) = eI (Ysinfcos wyt+ Y cos@sinwg 1) = e 9" Y sin(wy t + 6)

where

7

e EWug+vy \©

Y= \/ u% +( )
Wy

0 = tan(up /(£ )

d




Overdamped (Nonoscillatory) motion: & > 1

_twit| E9rtV -1 wugtvg (wV§2—1 )t Ewuy—y £-1 wug+vy —(w\/ £1-1 ]r
) =€ e - e
24 &-1 w 2V E-1 w

Critically damped motion: & =1



Logarithmic decrement: If there are the displacements at two consecutive
peaks at t; and t;+T4

(t1) = y1 = e 9 Ysin(wg t + 6)

¥(ty) = yy = e £ tT) ¥ sin(wy (4 + T) +6)

The logarithmic decrement 1s defined as

6=1n(%)=In e ¥ sinfuwy 1+0) )
Y2 e‘fu('l +Td') ) 4 sin(wd (tl +Td)+@)

0= :h4:-aj:jn)) ( “ﬂ%) hl EH“I}) {EQ)ZQ

2rn 2ré
6=§w[ - )= -
wy 1-£2

1

1-€°



The relationship between the logarithmic decrement and the damping ratio

0

V 4m2+8?

For lightly damped systems. the difference between two successive peaks
may be too small to measure accurately. Since the logarithmic decrement
between any two successive peaks 1s constant, we can determine the
decrement from the first peak and the peak n cycles later.

E =

5=1 hl(}j)

n Va






Phase relationships
among the applied,
spring, damping, and
inertia forces for
harmonic motion for
frequency ratio
values less than one-
half, equal to one,
and equal to one and
a half.
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FIGURE 1.28
a. Washing machine, b, Model of washing machine



FIGURE 1.29
a. Automaobile, b, Model of amomobile



FIGURE 1.30
a, Misgile in free flighe, b, Discrete model, ¢, Distributed-parameter model



d.

FIGURE 1.31
a, Ajrcraft in flight, b, Discrete model, c. Distributed-parameter model
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No Date UNIT TOPIC Reference | Pages
Il Vibration of discrete systems
2.1 |Two/three-degrees-of-freedom System
2.2 |Static and dynamic coupling
Examples
2.3 [Principle coordinates
Principle modes
2.4 |Orthogonality conditions
2.5 |Extension to multiple-degrees-of-freedom systems
2.6 |Vibration absorber




* A large number of practical systems can be described using a finite number of degrees of
freedom, such as the simple systems shown in slides 5 to 7.

* Some systems, especially those involving continuous elastic members, have an infinite
number of degrees of freedom.

* As a simple example, consider the cantilever beam shown in slide 8.

* Since the beam has an infinite number of mass points, we need an infinite number of
coordinates to specify its deflected configuration.

* The infinite number of coordinates defines its elastic deflection curve.
* Thus the cantilever beam has an infinite number of degrees of freedom.

* Most structural and machine systems have deformable (elastic) members and therefore
have an infinite number of degrees of freedom

» Systems with a finite number of degrees of freedom are called discrete or lumped
parameter systems, and those with an infinite number of degrees of freedom are called
continuous or distributed systems.



* Most of the time, continuous systems are approximated as discrete systems, and solutions
are obtained in a simpler manner.

Although treatment of a system as continuous gives exact results, the analytical methods
available for dealing with continuous systems are limited to a narrow selection of problems,

such as uniform beams, slender rods, and thin plates.

* Hence most of the practical systems are studied by treating them as finite lumped masses,

springs, and dampers.

* In general, more accurate results are obtained by increasing the number of masses,
springs, and dampers - that is, by increasing the number of degrees of freedom.
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FIGURE 1.14 A cantilever beam

(an infinite-number-of-degrees-of-freedom
system).
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mi*0, = —mglh, — ka*(8, — 8,)

mi®0, = —mgll, + ka*(8, — 8,)

Assuming the normal mode solutions as
8, = A, cos wt

8, = A, cos wt

the natural frequencies and mode shapes are found to be

/8 ,.,ka
Wz v!'l'sz!

~ oo



Figure below shows a rigid bar with its centre of mass not coinciding with its geometric
centre, ie, 1,#l,, and supported by two springs, k, and k,.

It represents a two degree of freedom since two coordinates are necessary to describe its
motion

The choice of the coordinates will define the type of coupling which can be immediately
determine from the mass and stiffness matrices.

Mass or dynamic coupling exists if the mass matrix is non-diagonal, whereas stiffness or
static coupling exists if the stiffness matrix is non-diagonal.

It is possible to have both forms of coupling.

AT
- il

k. J'nr'n;; 3k
. - S 2 k1[.ﬁ'—113}
N A Tl s s s s s ka(x +1,6)
Figure 5.2-1, Figure 5.2-2. Coordinates leading to

static coupling,



Static Coupling

Choosing coordinates x and 0 shown in the figure below, where x is the linear
displacement of the center of mass, the system will have static coupling as shown by the
matrix equation

m O0][x +‘ (k, +k,) (kL —kl)](x] (0
0 I8 | (k) —kL) (kp2+k12)[l6] o

If klll = k2|2 , the coupling disappears, and we obtain uncoupled x and 0 vibrations

S
— i
K4 1 -

m k
S S , g 2 k1[.ﬁ'—113}
NS A rErr s crrrryy kaolx +1,8)
Figure 5.2-1, Figure 5.2-2. Coordinates leading to

static coupling,



Dynamic Coupling

There is some point C along the bar where a force applied normal to the bar produces
pure translation; i.e.,

The equations of motion in terms of x_. and 0 can be shown to be

m me|[X +_(k1+k2) 0 x| [0
me J || 4 0 (kiZ+k?)||o] o

Which shows that the coordinates chosen eliminated the static coupling and introduced
dynamic coupling




Static and Dynamic Coupling

If we choose x=x1 at the end of the bar, as shown in figure below, the equations of
motion become

_m mll_ X‘l +_(k1—|-k2) kzl_ Xl _ O
ml, J, |6 I kI*|lg] |o

and both static and dynamic coupling are now present

X4

1 —-

= =







The equations of motion of a general two-degree-of-freedom system
under external forces can be written as

|:m11 M, }{Xl} _|_|:C11 C12:|{X1}+|:k11 Ky :|{X1} _ { Fl} (2 3)
m, My (X C, Cp (X Kip Ko |[% F

We shall consider the external forces to be harmonic:

Fi(t)=F j=12 (2.4)

J
where  is the forcing frequency.

We can write the steady-state solution as
it -
X (t)=X e j=12 (2.5)

where X, and X, are, in general, complex quantities that depend on
and the system parameters.



Substitution of Egs. (2.4) and (2.5) into Eq. (2.3) leads to

(— w’my, +iac,, + k11) (— w’my, +iac,, + klz)_{xl} _ {Flo} (26)
_(— w’m, +iac,, + klz) (— @’m,, +iac,, + kzz)_ X, |

we define the mechanical impedance, Z (io) as

Z (io)=-0’m +iec +k, r,s=12 (2.7)

and write Eq. (2.6) as

Z(io)]X =F, (2.8)



Z(iw)]= {Z“(i‘"; ilz(i w)} — Impedance  matrix

22(i a))

and



where the inverse of the impedance matrix is given by

Zlio)]* - 1 | Zalio) -2 ”)} 210

le(ia))Zzz(ia))—Zfz(i a)) _le(i (‘)) le(i w)

Equations (2.9) and (2.10) lead to the solution

Z,, (i a))FlO —Zy, (i w)on

Xl(i w) - le(i (0)222 (i 60)— Z122 (i a))
Ve le(la)) le(m))
XZ( ) le(la)) 22(|60) Z122( ) (2.11)

By substituting Eq. (2.11) into Eqg. (2.5) we can find the complete solution.



Equations of Motion

2.4.1 Position Vector
Let P, be the space coordinates of a point of an elastic mechanical system at a time t,.

Because of the application of an external force at t = t,, the point in consideration will
occupy a new position P at a time t.

The vector PP, will thus represent the displacement of the point with initial position P,,.

If we now consider a discrete system, or a continuum that has been approximated as a
discrete system using a set of generalized coordinates g, we can write

P=F(a) (25)

where q is the set of the generalized coordinates that define completely the mechanical
system and F is the transformation operator.

For a linear system, the transformation operator F does not depend on the generalized
coordinates g, and thus we can write for any point j of the mechanical system



Pj: N I : ' (2.6)

where 8Pj /8qi are constants that do not depend on the generalized coordinates
for a linear system and that represent the variation in the displacement at the point
in consideration due to a unit variation in the generalized coordinate q..

In this section, to simplify the notation, we will use Einstein's summation notation for
repeated indices, and we write Eq. (2.6) as

[Pl oP
P =Y|—|g=-—1qg 2.7
| Zl o, )" o 27)




2.4.2 Velocity Vector

The velocity at any point j of the mechanical elastic system at a time t can be written as

dP.
V. = d—t’ (2.8)

Using Eq. (2.6), we can write the velocity vector as

dP. _ de dg, _ dP.

‘ Lo 2.9
' dt og dt oq o (29)

where ¢, = dg; / dt

2.4.3 Kinetic Energy Functional

The kinetic energy functional of the elastic mechanical system reads

T = % | p(P)V(P).v(P)dv (2.10)



Where p(P) is the material density at a point P, V(P) is the velocity vector at point P, and v
is the volume of the elastic mechanical system.

For a discrete system we can use Egs. (2.9) and (2.10) and write kinetic energy functional
as

1
T="gq |,

P P |
p—.—av (g 2.11
oq; 0q; (21)

Or, in matrix notation, we can write

T=3{d} [Mfa'] (212)

We call [M] the mass matrix of the mechanical system.

The elements of the mass matrix are given by

oP oP
M. = d 2.13
1) ‘[’pﬁq, aqj v ( )




We conclude from Eq. (2.13) that the mass matrix is a symmetrical real
matrix and because the expression {q’}'[M]{q'} represents an energy
expression for any vector {g'} different from the null vector, we further

conciude tha {X}T [l\/l ]{x} >0 V{X} & {O} (2'14)

Therefore, [M] is a positive definite matrix

2.4.4 Strain Energy Functional

The stress-strain relationship for an elastic linear continuum can be written as

woj=[Cle; (2.15)

where [C] is the material constitutive matrix and is a symmetric matrix because
the stress and strain tensors are symmetric tensors.

Writing now the strain-displacement relationship as

tey=ld}{P} (2.16)



where [d] is the differential operator relating the strains to the displacements, and
substituting Eq. (2.7) into Eg. (2.16), we obtain

ej=[dIN]Pj (2.17)

where [N] has been used to denote the transformation matrix of the displacements
to the generalized coordinates. The strain energy functional of the elastic mechanical

system reads
y U= % | o} {eldv (2.18)

Using now the relation of Eqgs. (2.15) and (2.17) and Eq. (2.18), we can write
the strain energy functional as

U=4{af" [ INT[oT [CIdINJovia}  (2.19)

U =31aj' [KRaj (2:20)

[]=] [NT[d] [c]d]N]v (2.21)

\'

or

where



We call [K] the stiffness matrix of the elastic mechanical system.

Again, we observe that [K] is a real symmetrical matrix because the constitutive material
matrix is a symmetric matrix and is real.

Furthermore, from energy consideration concepts, we conclude from Eq. (2.20) that [K]
is a positive definite matrix for a constrained mechanical elastic system or a semi-
positive definite matrix for an elastic mechanical free body.

2.4.5 Expression of the Dissipation Function

We consider in this section that the damping forces of the elastic mechanical system are
of viscous nature and are linearly related to the velocity vector, and we write

_ Ry (P)
oq;

Fo(P)

where F,(P) is the damping force of the elastic mechanical system at point P.

a (2.22)

The variation in the virtual work of the damping forces in a virtual displacement
OP reads



T=2[ p(PV(P).V(P)v (2.10)



T=2[ p(PV(P).V(P)v (2.10)



T=2[ p(PV(P).V(P)v (2.10)



T=2[ p(PV(P).V(P)v (2.10)



T=2[ p(PV(P).V(P)v (2.10)



T=2[ p(PV(P).V(P)v (2.10)



T=2[ p(PV(P).V(P)v (2.10)



T=2[ p(PV(P).V(P)v (2.10)



As stated earlier, an n-degree-of-freedom system requires n independent coordinates to
describe its configuration.

Usually, these coordinates are independent geometrical quantities measured from the
equilibrium position of the vibrating bodly.

However, it is possible to select some other set of n coordinates to describe the
configuration of the system.

The latter set may be, for example, different from the first set in that the coordinates may
have their origin away from the equilibrium position of the body.

There could be still other sets of coordinates to describe the configuration of the system.
Each of these sets of n coordinates is called the generalized coordinates



The vibration absorber, also called dynamic vibration absorber, is a
mechanical device used to reduce or eliminate unwanted vibration.

It consists of another mass and stiffness attached to the main (or original)
mass that needs to be protected from vibration.

Thus the main mass and the attached absorber mass constitute a two-
degree-of-freedom system, hence the vibration absorber will have two
natural frequencies.

The vibration absorber is commonly used in machinery that operates at
constant speed, because the vibration absorber is tuned to one particular
frequency and is effective only over a narrow band of frequencies.

Common applications of the vibration absorber include reciprocating tools,
such as sanders, saws, and compactors, and large reciprocating internal
combustion engines which run at constant speed (for minimum fuel
consumption).



In these systems, the vibration absorber helps balance the reciprocating
forces.

Without a vibration absorber, the unbalanced reciprocating forces might
make the device impossible to hold or control.

Vibration absorbers are also used on high-voltage transmission lines.
In this case, the dynamic vibration absorbers, in the form of dumbbell-

shaped devices (Figure below), are hung from transmission lines to
mitigate the fatigue effects of wind induced vibration.

s 4
Transmission line

R |

Vibration absorber










F sin wt
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Machine (m,) T
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Dynamic vibration
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When we attach an auxiliary mass m, to a machine of mass m, through a

spring of stiffness k, the resulting two-degree-of-freedom system will look
as shown in Figure in next slide.

The equations of motion of the masses m; and m, are
m, X, + kX, +K, (X, —x,) = F, sin ot

m, X, +K,(x, =% )=0 (2.30)

By assuming harmonic solution,

X(t)=X sinat  j=12 (2.31)



we can obtain the steady-state amplitudes of the masses m, and m, as

_ (k2 —m,w’ )FO
Yk, +ky —me? ) (k, - muw? )k

(2.32)

— k2 |:O
X2 = (k, +k, —m,0?)(k, —m,0? )— k3 (233)

We are primarily interested in reducing the amplitude of the machine (X,)

In order to make the amplitude of m1 zero, the numerator of Eq. (2.32)
should be set equal to zero.

This gives
, K

=2 2.34
o=k (234



If the machine, before the addition of the dynamic vibration absorber,
operates near its resonance, a)z ~ a)f — k1 / m,

Thus if the absorber is designed such that

L (2.35)
m2 ml

the amplitude of vibration of the machine, while operating at its original
resonant frequency, will be zero. By defining

F K

0 . 1

Oy = P O =|

1 m,

as the natural frequency of the machine or main system, and
1
k 2
w, =| —% (2.36)



as the natural frequency of the absorber or auxiliary system, Egs. (2.32)
and (2.33) can be rewritten as

X _ 1_[5] i (2.37)

O, 2
155
K, 2]

- il ; (2.38)

2
st 1+k2_((()j
K, 2]

r\)><
=

S




Figure in next slide shows the variation of the amplitude of vibration of
the machine (X,/9d,,) with the machine speed (®o/®,).

The two peaks correspond to the two natural frequencies of the
composite system.

As seen before, X,=0 at ® = o,

At this frequency, Eq. (2.38) gives
X,=——L5, =——2 (2.39)

This shows that the force exerted by the auxiliary spring is opposite to the impressed
force and neutralizes it, thus reducing to zero.

The size of the dynamic vibration absorber can be found from Egs. (9.142) and (9.138):



This shows that the force exerted by the auxiliary spring is opposite to the impressed
force (k,X, = -F,) and neutralizes it, thus reducing X, to zero.

The size of the dynamic vibration absorber can be found from Egs. (2.39) and (2.35):
_ 2 _

Thus the values of k, and m, depend on the allowable value of X,.



Without absorber

With absorber / With absorber
16 ' \ \ . /[
my. 1 W
my 20 I [
12 Il §
vl - W) = W) \
~ |w / \
8 \
// )
\
4 < N
o 3 \\._
m— (21 (22 T
" | |
0.6 (0.7 0.8 0.9 1.0 | [ 1.2 1.3
w
> oy

Effect of undamped vibration absorber on the response of machine



It can be seen from Figure in previous page that the dynamic vibration absorber, while
eliminating vibration at the known impressed frequency o, introduces two resonant
frequencies QQ, and Q, at which the amplitude of the machine is infinite.

In practice, the operating frequency o must therefore be kept away from the
frequencies Q, and Q..

The values of Q2, and ), can be found by equating the denominator of Eq. (2.37) to

Zero.
Noting that 2
K, _kymym _m| o, (2.41)
kp m,m k  m e
and setting the denominator of Eq. (2.37) to zero leads to
4 2 2[ 2 |
0 Q. ) m )
— | 2| | = | |1+ 1+ 2| 22| |[+1=0 (2.42)
@, 2] @, m, \ @




The two roots of this equation are given by

 —

1{

W,

m
1+ —2
ml

I

Wy

T

m,

m

e

:

_J
N~

|\

o| P2
Wy

;

which can be seen to be functions of (m,/m,) and (®,/®,).

(2.43)



1. It can be seen, from Eq. (9.146), that is less than and is greater than the
operating speed (which is equal to the natural frequency, ) of the machine. Thus

the machine must pass through during start-up and stopping. This results in

large amplitudes.

2. Since the dynamic absorber is tuned to one excitation frequency the steady-state
amplitude of the machine is zero only at that frequency. If the machine operates at other
frequencies or if the force acting on the machine has several frequencies, then the
amplitude of vibration of the machine may become large.

3. The variations of and as functions of the mass ratio are

shown in Fig. 9.35 for three different values of the frequency ratio It can be

seen that the difference between and increases with increasing values of

m2/m1.



Variations of €); and €, given by Eq. (9.146). 4‘_"~-~.1_\__ =
4 for L2 5
0.2 - @ or T
| | | |
0.0
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Vibration of Continuous system

3.1

Introduction to Hamilton Principle

3.2

Longitudinal, transverse and torsional vibration of
cylindrical shaft - extension to taper shaft

3.3

Dynamic equations of equilibra of general elastic body




A structural member consisting of a single piece of a particular material(s) without any
visible discontinuity is a continuous structure or continuous system

Example: Rods, Beams, shafts, panels/plates, and shells

A single piece of above kind of continuous structure made of composites
materials is essentially a continuous system

Smart structures are also modeled a continuous structures

Sometimes discontinuous structure, behaves like continuous structure when
properly joined with bolts, rivets or weld

Vehicle structures (surface, air and space) appear and behave like a continuous
structures



T4

- X
:w %
' E > T
7
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,é
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(a) A continuous string of mass M, displaced transversely;
(b) a discrete model of the string.



R
=

(b)
(a) A continuous bar of mass M;
(b) A discrete model of the bar.






n Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

1 1.4142 - - - -

2 1.5307 3.695b5 - - -

3 1.5529 4 2426 H.79H6 - -

4 1.5607 4 4446 6.6Db18 78463 -

h 1.5643 4 5399 70711 89101 9 8769

7 1.5675 46239 74484 9.8995 11.8541
10 1.5692 4 6689 76537 10.4500 12 9890
15 1.5701 46930 7.7646 107510 13.6197
20 1.5704 47015 78036 10 8576 13 8447
w (exact) 1.5708 47124 7.8540 10.9956 141372

Nondimensional Frequencies w* = w x/(MI/AE)for n d.o.f. Discrete

Models of Longitudinal Vibrations of a Fixed-Free Bar, as Described in
Figure in the previous slide




* The displacement, velocity and acceleration are describe as a function of space
(x,y,2) and time (t)

* Coordinate System (rectangular, cylindrical and spherical)

* In analytical dynamics generalized coordinate system

* Application of variation principles

* Derivation of energy expressions (KE, PE, Virtual work, etc)

* Application of Lagrange’s equation or Hamilton’s principle

Differential
Continuous systems Dimensionality order
String 1 2
Bar 1 2
Beam 1 4
Membrane 2 2
Plate 2 4
Shell 2 8
Three dimensional 3 5]




Hamilton’s Principle is used for the development of equations of motion in vectorial form
using scalar energy quantities in a variational form

“S(T -Vt + [ oW, dt =0

4

Where T =total kinetic energy of system
V=potential energy of system, including both strain energy and potential
of any conservative external forces
W, .= work done by non-conservative forces acting on system, including
damping and any arbitrary external loads
O = variation taken during indicated time interval

Hamilton’s principle states that the variation of kinetic and potential energy plus the
variation of the work done by the non-conservative forces considered during interval
t, to t, must equal to zero

The application of this principle leads directly to the equations of motion for any given
system



3.1 Introduction to continuous system

3.2 Discreatize models of continuous systems

3.3 Solutions of vibration problems using Variational Principles
3.4 Vibrations of strings, bars, shafts and beams



Table 9.6  Scalar products for Rayleigh-Ritz method
Structural
element Case (u, V)71 (u, v)v
Torsional No added L L 4y dv
shaft disks or f pJu(x)vix)dx f GJ]——dx
springs 0 o dx dx
Added disk L . L dudv
alx =% j'; pJu(x)v(x)dx + Ipu(X)v(x) fﬂ GJ Ix d—xdx
Torsional spring L L dudv .
ol x =i j; pJu(x)vix)dx j; GJ Tx de + k(X
Longitudinal No added L L dudy
bar masses or f pAu(x)vix)dx EA— —dx
springs 0 0 dx dx
Added mass L . L dudv
atx = F f.:. pAu(x(x) dx + mu(x)v(x) fu EA Tx dx dx
Spring at fL Au(x)v(x)dx fL EA du dv dx + ku(x)v
X=X 0 p 0 dx dx



Structural
element Case {u, V)71 (u, v)v
Beam No added L d*u d?v
masses, disks, f pAu(x)vix)dx f EI "_g zd
or springs 0 o~ dxdx
Added mass L L d?u d?'v
ot £ = £ "; pAu(x)v(x) dx + mu(x)v(x) f Eld_tz dI
Added spring f’* L d*udv
= Au(x)v(x)dx -2 k
i [ paue) [ 15 n + bt
Added disk L du(¥) dv(®) d*u d’2
(Ip)atx = X L pAuxp(x) dx + Ip —== = f El o 2™



Table ©.1 Boundary conditions for tersional
ascillations of a circular shak
Boundary
End condition condition Remarks
Fixed,
x=0orx=1 8=0
Fme‘ ae _0
rx=0o0rx=1 ax
Torsional spring, 8 _. = kL
x=0 ox go b= G
x=1 ax hé A= JG
Torsional damper, 3g a8 _ . |J
x=10 ﬂxzﬁﬂl B=a e
Torsional damper, 8 ﬂi'f_ B=c g
x=1 ax " ae ~ ™ G
Attached disk, 39 _ 8% Ip
— =f— B=—
x=0 ax ar? pJL
Attached disk, 3 _ g% g =20
x=1 ax 32 "~ plL




Table 9.2  Physical problems gaverned by the wave equation
Nondimensional
Problem Schematic wave eguation Wave speed
Torsional
oscillations W a%6 8% |G G = shear modulus
. —_— = — = |- ]
of circular 3 ( Rl yy 5 p=massdensity
cylinder - \
itudi — Xt .
Lon g?tud!nal w(x, ) 2w  w E E = elastic modulus
oscillations 2 73 = 53 =4 = densit
of bar = ax at P £ = mass v
Transverse — e — 2 2 ) )
vibrations of W _3___'; am E.% = I T : :;ﬁ;nsity
taut string 0x ot 7 o=
Pressure waves 2p  ap k = ratio of specific heats
in an ideal = —_— ¢ =+kRT R = gas constant
gas =E | — p(x,1) 8x2 = 812 T = temperature
Naterhan .
waves in rigid 8%p _9%p .= [k & =Dbuk modulus of fuid
pipe ~—= p(x, 1) ax2 ‘El_f - I p = mass density




32w *w
A——- + EI—-— = f(x,1) [9.68]

Equation (9.68) is nondimensionalized by introducing

X oy EI
L T\ pAL?

x* =

w* = -IE- fr= -}E- [9.69]

where f,, is the maximum value of f. The resulting nondimensional form of Eq.
(9.68) is
Pw w f,,. L’

o T = m TP (9.70]




Table 9.3 Boundary conditions for transverse vibrations of a beam
Boundary Boundary B
End condition condition A condition B Remarks
Free, x = Q or 3w _0 Fw _ 0 )
x=1 ax2 axd
) _ 52
Pinned, x =0 or w =0 rw 0
x =1 dx?
Fixed, x = 0or _ ow
xr=1 w=0 Bx =0
. . a.! 33 3
x=0 dx2 ax3 El
Linear spring, ﬂ _ fﬂ — fw kL3
x=1 ax2 = axd - EI



End condition condition A condition B Remarks
2 3
e fEeo [ -
Viscous damper, 8w 3w Bw clL
x=1 2z =0 Frilatarn b= T
Attached mass, fﬂs[} ﬂ=_ﬁﬂ '3-_-__".1_
x=10 ax? ax3 3t2 pAL
Attached mass, fﬂ _o 6‘3_w 2w g M
x=1 ax2 ax? ar2 pAL
Attached inertia 3w Pw Bw J
element, x = 0 w2 Prwe b= Al
Attached inertia iw__:_ 33_“—' Eﬁ‘_‘”‘_ﬂ ﬁ___‘.{__
element, x = 1 ax? dxdt? ax3 pAL3




Frequency equations and eigenfunctions for each of the six cases are

summarized below.

Clamped—clamped:
cosfecoshf=1
X =(cosh B — cos BE) — y(sinh BE —sin BE)
y=0.98250, 1.00078, 0.99997, 1.00000, ...
Free—free:
cosfBecoshfi=1
X =(cosh BE + cos BE) — y(sinh BE + sin BE)

Y= same as clamped-clamped

(4.30a)
(4.30b)

(4.31a)

(4.31b)



Clamped-5S:
tanf = tanhf3 (4.32a)
X =(cosh BE — cos BE) — y(sinh BE —sin BE) (4.32b)
y=1.00078, 1.00000, . ..
Free-S565:
tanf = tanhf3 (4.33a)
X =(cosh B& + cos BE) — y(sinh BE + sin BE) (4.33b)

Y= same as clamped-SS



Clamped—free:
cosf« coshf=-1 (4.34a)
X =(cosh BE — cos BE) — y(sinh BE —sin BE) (4.34b)
y=0.73410, 1.01847, 0.99922, 1.00003, 1.00000, ...
SS-SS:
sinf3=0 (4.35a)
X =sin fig (4.35b)

In the above equations, € = x/£ is measured in each case from the left

end of the beam. The values of B are the square roots of the
frequency parameters listed in Table in next slide. More accurate
values of B and y are available in the classical study of Young and

Felgar .



m Cc-C C-S8S C-F $5-85 SS-F F-F

1 22373 15418 3.5160 9.8696 0 0

2 61.673 49965 22.034 39478 15418 0

3 120.903 104.248 61.697 88.826 49965 22373

4 199 859 178.270 120.902 157914 104.248 61.673

5 298 556 272.031 199.860 246.740 178.270 120.903

=b 2m+1Fn* /4 | (4m+1)Pn*/16 | 2m-1Fn*/4 | m*n? (4m -3y /16 | (2m - 3)Fn*/4

TasLe 4.1 Frequency Parameters f° = o fgﬁ.l'pAfEI for Beams




Table 9.4  Natral frequencies and mode shapes for beams.
Five lowest
natural Kinetic energy
End conditions Characteristic frequencies scalar product
X=01X=1 equation wy = A Meode shape (X j(x), Xelx))
1
Fixed-fized cos A4 cosh A1/ = | wy =237 Ci [oosh M*x —cosay™x — aptsinhay/x sin;}f‘x)] f Xj(x) Xp(x) dx
a; = 61.66 m 174 ’
coshd,'™ —cosh,
wy = 120.9 -
=199.9 mh;.”‘ m.x”"
ws = 298.6
1
Pinned-pianed sinAV4 =0 =9.870 Cy sin &) *x f Xjle)Xe(x)dx
an = 39.48 0
ws = 88.83
wy = 157.9
ws = 246.7
1
Fixed-free cos A/ cosh!/* = —1 w = 3.51 G [mh Mz — cosA*x — ap(sinhA}"*x — sinal*x) ] f X (x)Xp(x)dx
wy = 22.03 1/4 1/4 ’
=61.70 DOGJ'. + DN]'IL
3 oy = 7
wy = 1209 +mm”
ws = 199.9
|
Free-fres coshi/fcosAlf* = | wy =0 1L, V3x(k=1) f Xj(x)X(x)dx
= o
- :i_‘g G [coshay/“x + cos Af/*x + au(sinh ax + sin3}n)]
wy = 1209 cash l!ll" — cos j"l”“
= ap =
1999 inA}/* — sinh A}*
1
Fixed-linear 234 (cosh A1/ cos A1/ 4+ 1) For p = 0.25 Ci|cosrx — cosh 2 *x — apsinA!4x — sinh A} *x) X ;(x)Xp(x) dx
¥ n A j
spnng _ ﬁ{m?‘lﬁ sinh Alﬂ- — cosh .:LI'M Silll"uj g = ;;Ss ml‘:j‘ + cosh JLII.'“ il
wy =22, oy = — ;
=0 w3 = 61.70 sink,"* + sinh 3"
wy = 1209

ws = 199.9



Pinned-linear
_ spring

Fixed-attached
MAass

Pinned-free

Fixed-pimned

Fixed-attached
.
elemert

14 _ 4 _ _ 2B

A4 cos ) cosh A4 4 1)
+ BlcosA /A sinh AY* — cosh AL/ sin 31/%)
=0

tan 314 = tanh A 1/4

tan A1/4 = tanh ) 1/4

chJ.IH m;,,m
+ B(sinA " cosh A/ + cos iV sinh A1)

=-—1

Far 8 = (.15
w; = 0.8636
an = 1541
wn = 4947
wy = 104.25
ws = 178.27

For g = 0.25
wy = 3.047
= 121.54
wn = 61.21
oy = 120.4
ws = 199.4

wy =10

wp = [542
wn = 49,96
wy = 104.2
ws = [78.3

wy = [5.42
wr = 49.96
wy = 104.2
ay = 1783
g = 272.0

For p = 0.25
wy =27.28
o = 71.41
wq = 135.4
wg = 2192

sim a1
Ci | sinal*x + ——%__ sinh Aty
[ k -y hAL k

1
‘L xI(x]xg(I)d.t

1
Cy [cus l:’r 4% —cosh l:f 4 oy (sinh ll“x —sin Lll.‘; ﬁx}] j; Xi(x)Xp(x)dx

nosli‘”+¢nsh1:“ + BX(1)Xe(1)
g = sin A 7%+ sinh a1
inA,"* + sinh A,
1
Vi G=1) [ xiwxinas
.14
Ce [ sinax 4+ 222 inh 3
sinh A,
k>1)

I
G [ms 3y/*x - cosh 'z — ap(sinyx - sinhryx)] L X(x) Xy (x) dx
cos A" — cosh Al

sinh,* —sinh A}/

o =

!
Ci [cns Jn.,l"ux —cosh J»i"r *x + ay(sin J.:"" x —sinh h:" ‘x}] j; Xj(x)Xy(x)dx

. . X 1
mlﬂ" — sinh /4 + BX;(1)X(1)

=
cosh,’ +cosha,”®

A

| The dimensional natural frequencies are obiained by multiplying he given nondimensional natural frequencies by y/ Elf sAL*; for a given becm g is os defined in Table 9.3.
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Ficure 4.3 The first four mode shapes for beams with different boundanes.
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Lecture

No Date UNIT TOPIC Reference | Pages

Determination of natural frequencies and mode
shapes

4.1 |Natural vibration of solid continua

Metods of determining natural frequencies and mode
shapes

4.2




We concentrate on the solution of the eigenproblem
K¢ = Mg @)

and., in particular, on the calculation of the smallest eigenvalues ;ll’ /12 , 13,..., A

P
and corresponding eigenvectors ¢1, ¢2 : ¢3 yueny ¢

0
The solution methods that we considered here first can be subdivided into four groups,

corresponding to which basic property is used as the basis of the solution algorithm
(Ref. J.H. Wilkinson)

1. Vector Iteration Method

K¢, = M4, (2)

2. Transformation Method
First we have to determine mode shapes matrix @, such that

O KD = A (3)
O'MP = | (4)



wee O=[4 ¢ - ¢]
A =diag(4 ), i=12,---,n

3. Polynomial Iteration

p(4)=0 (5)
where p(1)=det(K - AM ) (6)
4. Sturm Sequence Property of the Characteristic Polynomials
p(A)=det(K —AM ) (7)
where p(A0)=det(KO - AM©) (@)

n=1,2,3,...,(n-1)



p")(A") s the characteristic polynomial of r™" associated
constraint problem corresponding to K¢ = AM¢

5. Lanczos Method and Subspace Iteration Method used combination of above
4 methods



In MSC/NASTRAN following Methods are Available for Real
Eigenvalue Extraction

1. Transformation Methods

O Givens Method

[ Householder Method

O Modified Givens Method
 Modified Householder Method

2. Tracking Methods
O Inverse Power Method
O Sturm Modified Inverse Power Method

Lanczos Method combines the best characteristics of both the tracking and
transformation methods.



Table 3-1 Comparison of Eigenvalue Methods

Method
Givens Modified Sturm
Housahol;jer Givens, Inverse Power Modified
Householder Inverse Power
Reliability High High Poor {can miss High High
modes)
Relative Cost:
Few Modes Medium Medium Low Low Medium
Many Modes | High High High High Medium

Limitations Cannot analyze Expensive for Can miss modes | Expensive for Difficulty with

singular [M] many modes many modes massless

mechanisms

Expensive for Expensive for Expensive for

problems thatdo | problemsthatdo | many modes

not fit in memory | not fit in memory
Best Small, dense Small, dense To detemine a To detemine a Medium to large
Application matrices that fit matrices that fit few modes few modes models

in memory in memory

Use with dynamic | Use with dynamic Backup method

reduction reduction

(Chapter 11) (Chapter 11)
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5.1

Natural frequencies of rotating shaft

5.2

Whirling of shafts

5.3

Dynamic balancing of rotating machinary

5.4

Dynamic dampers
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